Sample records for observation system simulation

  1. Observing System Simulation Experiments

    NASA Technical Reports Server (NTRS)

    Prive, Nikki

    2015-01-01

    This presentation gives an overview of Observing System Simulation Experiments (OSSEs). The components of an OSSE are described, along with discussion of the process for validating, calibrating, and performing experiments. a.

  2. Observing System Simulation Experiments: An Overview

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2016-01-01

    An overview of Observing System Simulation Experiments (OSSEs) will be given, with focus on calibration and validation of OSSE frameworks. Pitfalls and practice will be discussed, including observation error characteristics, incestuousness, and experimental design. The potential use of OSSEs for investigation of the behaviour of data assimilation systems will be explored, including some results from experiments using the NASAGMAO OSSE.

  3. Observing system simulation experiments with multiple methods

    NASA Astrophysics Data System (ADS)

    Ishibashi, Toshiyuki

    2014-11-01

    An observing System Simulation Experiment (OSSE) is a method to evaluate impacts of hypothetical observing systems on analysis and forecast accuracy in numerical weather prediction (NWP) systems. Since OSSE requires simulations of hypothetical observations, uncertainty of OSSE results is generally larger than that of observing system experiments (OSEs). To reduce such uncertainty, OSSEs for existing observing systems are often carried out as calibration of the OSSE system. The purpose of this study is to achieve reliable OSSE results based on results of OSSEs with multiple methods. There are three types of OSSE methods. The first one is the sensitivity observing system experiment (SOSE) based OSSE (SOSEOSSE). The second one is the ensemble of data assimilation cycles (ENDA) based OSSE (ENDA-OSSE). The third one is the nature-run (NR) based OSSE (NR-OSSE). These three OSSE methods have very different properties. The NROSSE evaluates hypothetical observations in a virtual (hypothetical) world, NR. The ENDA-OSSE is very simple method but has a sampling error problem due to a small size ensemble. The SOSE-OSSE requires a very highly accurate analysis field as a pseudo truth of the real atmosphere. We construct these three types of OSSE methods in the Japan meteorological Agency (JMA) global 4D-Var experimental system. In the conference, we will present initial results of these OSSE systems and their comparisons.

  4. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  5. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE PAGES

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin; ...

    2017-01-01

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  6. An Introduction to Observing System Simulation Experiments

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.

    2017-01-01

    Observing System Simulation Experiments (OSSEs) are used to estimate the potential impact of proposed new instruments and data on numerical weather prediction. OSSEs can also be used to help design new observing platforms and to investigate the behavior of data assimilation systems. A basic overview of how to design and perform an OSSE will be given, as well as best practices and pitfalls. Some examples using the OSSE framework developed at the NASA Global Modeling and Assimilation Office will be shown.

  7. Observing System Simulation Experiments for Fun and Profit

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.

    2015-01-01

    Observing System Simulation Experiments can be powerful tools for evaluating and exploring both the behavior of data assimilation systems and the potential impacts of future observing systems. With great power comes great responsibility - given a pure modeling framework, how can we be sure our results are meaningful? The challenges and pitfalls of OSSE calibration and validation will be addressed, as well as issues of incestuousness, selection of appropriate metrics, and experiment design. The use of idealized observational networks to investigate theoretical ideas in a fully complex modeling framework will also be discussed

  8. Introduction to Observing System Simulation Experiments (OSSEs)

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.

    2014-01-01

    This presentation gives a brief overview of Observing System Simulation Experiments (OSSEs), including what OSSEs are, and how and why they are performed. The intent is to educate the audience in light of the OSSE-related sections of the Forecast Improvement Act (H.R. 2413).

  9. Ionospheric Simulation System for Satellite Observations and Global Assimilative Modeling Experiments (ISOGAME)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Stephens, Philip; Wilson, Brian D.; Akopian, Vardan; Komjathy, Attila; Lijima, Byron A.

    2013-01-01

    ISOGAME is designed and developed to assess quantitatively the impact of new observation systems on the capability of imaging and modeling the ionosphere. With ISOGAME, one can perform observation system simulation experiments (OSSEs). A typical OSSE using ISOGAME would involve: (1) simulating various ionospheric conditions on global scales; (2) simulating ionospheric measurements made from a constellation of low-Earth-orbiters (LEOs), particularly Global Navigation Satellite System (GNSS) radio occultation data, and from ground-based global GNSS networks; (3) conducting ionospheric data assimilation experiments with the Global Assimilative Ionospheric Model (GAIM); and (4) analyzing modeling results with visualization tools. ISOGAME can provide quantitative assessment of the accuracy of assimilative modeling with the interested observation system. Other observation systems besides those based on GNSS are also possible to analyze. The system is composed of a suite of software that combines the GAIM, including a 4D first-principles ionospheric model and data assimilation modules, an Internal Reference Ionosphere (IRI) model that has been developed by international ionospheric research communities, observation simulator, visualization software, and orbit design, simulation, and optimization software. The core GAIM model used in ISOGAME is based on the GAIM++ code (written in C++) that includes a new high-fidelity geomagnetic field representation (multi-dipole). New visualization tools and analysis algorithms for the OSSEs are now part of ISOGAME.

  10. An Observing System Simulation Experiment Approach to Meteorological Network Assessment

    NASA Astrophysics Data System (ADS)

    Abbasnezhadi, K.; Rasmussen, P. F.; Stadnyk, T.; Boluwade, A.

    2016-12-01

    A proper knowledge of the spatiotemporal distribution of rainfall is important in order to conduct a mindful investigation of water movement and storage throughout a catchment. Currently, the most accurate precipitation information available for the remote Boreal ecozones of northern Manitoba is coming from the Canadian Precipitation Analysis (CaPA) data assimilation system. Throughout the Churchill River Basin (CRB), CaPA still does not have the proper skill due to the limited number of weather stations. A new approach to experimental network design was investigated based on the concept of Observing System Simulation Experiment (OSSE). The OSSE-based network assessment procedure which simulates the CaPA system provides a scientific and hydrologically significant tool to assess the sensitivity of CaPA precipitation analysis to observation network density throughout the CRB. To simulate CaPA system, synthetic background and station data were simulated, respectively, by adding spatially uncorrelated and correlated Gaussian noises to an assumingly true daily weather field synthesized by a gridded precipitation generator which simulates CaPA data. Given the true reference field on one hand, and a set of pseudo-CaPA analyses associated with different network realizations on the other hand, a WATFLOOD hydrological model was employed to compare the modeled runoff. The simulations showed that as network density increases, the accuracy of CaPA precipitation products improves up to a certain limit beyond which adding more stations to the network does not result in further accuracy.

  11. Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.

    2013-01-01

    Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.

  12. Study on observation planning of LAMOST focal plane positioning system and its simulation

    NASA Astrophysics Data System (ADS)

    Zhai, Chao; Jin, Yi; Peng, Xiaobo; Xing, Xiaozheng

    2006-06-01

    Fiber Positioning System of LAMOST focal plane based on subarea thinking, adopts a parallel controllable positioning plan, the structure is designed as a round area and overlapped each other in order to eliminate the un-observation region. But it also makes the observation efficiency of the system become an important problem. In this paper According to the system, the model of LAMOST focal plane Observation Planning including 4000 fiber positioning units is built, Stars are allocated using netflow algorithm and mechanical collisions are diminished through the retreat algorithm, then the simulation of the system's observation efficiency is carried out. The problem of observation efficiency of LAMOST focal plane is analysed systemic and all-sided from the aspect of overlapped region, fiber positioning units, observation radius, collisions and so on. The observation efficiency of the system in theory is describes and the simulation indicates that the system's observation efficiency is acceptable. The analyses play an indicative role on the design of the LAMOST focal plane structure.

  13. A system for simulating aerial or orbital TV observations of geographic patterns

    NASA Technical Reports Server (NTRS)

    Latham, J. P.

    1972-01-01

    A system which simulates observation of the earth surface by aerial or orbiting television devices has been developed. By projecting color slides of photographs taken by aircraft and orbiting sensors upon a rear screen system, and altering scale of projected image, screen position, or TV camera position, it is possible to simulate alternatives of altitude, or optical systems. By altering scan line patterns in COHU 3200 series camera from 525 to 945 scan lines, it is possible to study implications of scan line resolution upon the detection and analysis of geographic patterns observed by orbiting TV systems.

  14. Spatial characteristics of the tropical cloud systems: comparison between model simulation and satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Zurovac-Jevtic, Dance; Boer, Erwin R.

    1999-10-01

    A Lagrangian cloud classification algorithm is applied to the cloud fields in the tropical Pacific simulated by a high-resolution regional atmospheric model. The purpose of this work is to assess the model's ability to reproduce the observed spatial characteristics of the tropical cloud systems. The cloud systems are broadly grouped into three categories: deep clouds, mid-level clouds and low clouds. The deep clouds are further divided into mesoscale convective systems and non-mesoscale convective systems. It is shown that the model is able to simulate the total cloud cover for each category reasonably well. However, when the cloud cover is broken down into contributions from cloud systems of different sizes, it is shown that the simulated cloud size distribution is biased toward large cloud systems, with contribution from relatively small cloud systems significantly under-represented in the model for both deep and mid-level clouds. The number distribution and area contribution to the cloud cover from mesoscale convective systems are very well simulated compared to the satellite observations, so are low clouds as well. The dependence of the cloud physical properties on cloud scale is examined. It is found that cloud liquid water path, rainfall, and ocean surface sensible and latent heat fluxes have a clear dependence on cloud types and scale. This is of particular interest to studies of the cloud effects on surface energy budget and hydrological cycle. The diurnal variation of the cloud population and area is also examined. The model exhibits a varying degree of success in simulating the diurnal variation of the cloud number and area. The observed early morning maximum cloud cover in deep convective cloud systems is qualitatively simulated. However, the afternoon secondary maximum is missing in the model simulation. The diurnal variation of the tropospheric temperature

  15. Microwave and infrared simulations of an intense convective system and comparison with aircraft observations

    NASA Technical Reports Server (NTRS)

    Prasad, N.; Yeh, Hwa-Young M.; Adler, Robert F.; Tao, Wei-Kuo

    1995-01-01

    A three-dimensional cloud model, radiative transfer model-based simulation system is tested and validated against the aircraft-based radiance observations of an intense convective system in southeastern Virginia on 29 June 1986 during the Cooperative Huntsville Meteorological Experiment. NASA's ER-2, a high-altitude research aircraft with a complement of radiometers operating at 11-micrometer infrared channel and 18-, 37-, 92-, and 183-GHz microwave channels provided data for this study. The cloud model successfully simulated the cloud system with regard to aircraft- and radar-observed cloud-top heights and diameters and with regard to radar-observed reflectivity structure. For the simulation time found to correspond best with the aircraft- and radar-observed structure, brightness temperatures T(sub b) are simulated and compared with observations for all the microwave frequencies along with the 11-micrometer infrared channel. Radiance calculations at the various frequencies correspond well with the aircraft observations in the areas of deep convection. The clustering of 37-147-GHz T(sub b) observations and the isolation of the 18-GHz values over the convective cores are well simulated by the model. The radiative transfer model, in general, is able to simulate the observations reasonably well from 18 GHz through 174 GHz within all convective areas of the cloud system. When the aircraft-observed 18- and 37-GHz, and 90- and 174-GHz T(sub b) are plotted against each other, the relationships have a gradual difference in the slope due to the differences in the ice particle size in the convective and more stratiform areas of the cloud. The model is able to capture these differences observed by the aircraft. Brightness temperature-rain rate relationships compare reasonably well with the aircraft observations in terms of the slope of the relationship. The model calculations are also extended to select high-frequency channels at 220, 340, and 400 GHz to simulate the

  16. Supporting ITM Missions by Observing System Simulation Experiments: Initial Design, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Yudin, V. A.; England, S.; Matsuo, T.; Wang, H.; Immel, T. J.; Eastes, R.; Akmaev, R. A.; Goncharenko, L. P.; Fuller-Rowell, T. J.; Liu, H.; Solomon, S. C.; Wu, Q.

    2014-12-01

    We review and discuss the capability of novel configurations of global community (WACCM-X and TIME-GCM) and planned-operational (WAM) models to support current and forthcoming space-borne missions to monitor the dynamics and composition of the Ionosphere-Thermosphere-Mesosphere (ITM) system. In the specified meteorology model configuration of WACCM-X, the lower atmosphere is constrained by operational analyses and/or short-term forecasts provided by the Goddard Earth Observing System (GEOS-5) of GMAO/NASA/GSFC. With the terrestrial weather of GEOS-5 and updated model physics, WACCM-X simulations are capable to reproduce the observed signatures of the perturbed wave dynamics and ion-neutral coupling during recent (2006-2013) stratospheric warming events, short-term, annual and year-to-year variability of prevailing flows, planetary waves, tides, and composition. With assimilation of the NWP data in the troposphere and stratosphere the planned-operational configuration of WAM can also recreate the observed features of the ITM day-to-day variability. These "terrestrial-weather" driven whole atmosphere simulations, with day-to-day variable solar and geomagnetic inputs, can provide specification of the background state (first guess) and errors for the inverse algorithms of forthcoming NASA ITM missions, such as ICON and GOLD. With two different viewing geometries (sun-synchronous, for ICON and geostationary for GOLD) these missions promise to perform complimentary global observations of temperature, winds and constituents to constrain the first-principle space weather forecast models. The paper will discuss initial designs of Observing System Simulation Experiments (OSSE) in the coupled simulations of TIME-GCM/WACCM-X/GEOS5 and WAM/GIP. As recognized, OSSE represent an excellent learning tool for designing and evaluating observing capabilities of novel sensors. The choice of assimilation schemes, forecast and observational errors will be discussed along with challenges

  17. Preparation for the solar system observations with Herschel: Simulation of Jupiter observations with PACS

    NASA Astrophysics Data System (ADS)

    Sagawa, Hideo; Hartogh, Paul; Rengel, Miriam; de Lange, Arno; Cavalié, Thibault

    2010-11-01

    Observations of the water inventory as well as other chemically important species on Jupiter will be performed in the frame of the guaranteed time key project of the Herschel Space Observatory entitled "Water and related chemistry in the Solar system". Among other onboard instruments, PACS (Photodetector Array Camera and Spectrometer) will provide new data of the spectral atlas in a wide region covering the far-infrared and submillimetre domains, with an improved spectral resolution and a higher sensitivity compared to previous observations carried out by Cassini/CIRS (Composite InfraRed Spectrometer) and by ISO (Infrared Space Observatory). In order to optimise the observational plan and to prepare for the data analysis, we have simulated the expected spectra of PACS Jupiter observations. Our simulation shows that PACS will promisingly detect several H 2O emission lines. As PACS is capable of spatially resolving the Jovian disk, we will be able to discern the external oxygen sources in the giant planets by exploring the horizontal distribution of water. In addition to H 2O lines, some absorption lines due to tropospheric CH 4, HD, PH 3 and NH 3 lines will be observed with PACS. Furthermore, owing to the high sensitivity of the instrument, the current upper limit on the abundance of hydrogen halides such as HCl will be also improved.

  18. COCOA: Simulating Observations of Star Cluster Simulations

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2017-03-01

    COCOA (Cluster simulatiOn Comparison with ObservAtions) creates idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. The code can simulate optical observations from simulation snapshots in which positions and magnitudes of objects are known. The parameters for simulating the observations can be adjusted to mimic telescopes of various sizes. COCOA also has a photometry pipeline that can use standalone versions of DAOPHOT (ascl:1104.011) and ALLSTAR to produce photometric catalogs for all observed stars.

  19. Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment

    USDA-ARS?s Scientific Manuscript database

    We develop a robust understanding of the effects of assimilating remote sensing observations of leaf area index and soil moisture (in the top 5 cm) on DSSAT-CSM CropSim-Ceres wheat yield estimates. Synthetic observing system simulation experiments compare the abilities of the Ensemble Kalman Filter...

  20. CLARREO shortwave observing system simulation experiments of the twenty-first century: Simulator design and implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, D.R.; Algieri, C.A.; Ong, J.R.

    2011-04-01

    Projected changes in the Earth system will likely be manifested in changes in reflected solar radiation. This paper introduces an operational Observational System Simulation Experiment (OSSE) to calculate the signals of future climate forcings and feedbacks in top-of-atmosphere reflectance spectra. The OSSE combines simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report for the NCAR Community Climate System Model (CCSM) with the MODTRAN radiative transfer code to calculate reflectance spectra for simulations of current and future climatic conditions over the 21st century. The OSSE produces narrowband reflectances and broadband fluxes, the latter of which have been extensivelymore » validated against archived CCSM results. The shortwave reflectance spectra contain atmospheric features including signals from water vapor, liquid and ice clouds, and aerosols. The spectra are also strongly influenced by the surface bidirectional reflectance properties of predicted snow and sea ice and the climatological seasonal cycles of vegetation. By comparing and contrasting simulated reflectance spectra based on emissions scenarios with increasing projected and fixed present-day greenhouse gas and aerosol concentrations, we find that prescribed forcings from increases in anthropogenic sulfate and carbonaceous aerosols are detectable and are spatially confined to lower latitudes. Also, changes in the intertropical convergence zone and poleward shifts in the subsidence zones and the storm tracks are all detectable along with large changes in snow cover and sea ice fraction. These findings suggest that the proposed NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission to measure shortwave reflectance spectra may help elucidate climate forcings, responses, and feedbacks.« less

  1. Status of the NASA GMAO Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2014-01-01

    An Observing System Simulation Experiment (OSSE) is a pure modeling study used when actual observations are too expensive or difficult to obtain. OSSEs are valuable tools for determining the potential impact of new observing systems on numerical weather forecasts and for evaluation of data assimilation systems (DAS). An OSSE has been developed at the NASA Global Modeling and Assimilation Office (GMAO, Errico et al 2013). The GMAO OSSE uses a 13-month integration of the European Centre for Medium- Range Weather Forecasts 2005 operational model at T511/L91 resolution for the Nature Run (NR). Synthetic observations have been updated so that they are based on real observations during the summer of 2013. The emulated observation types include AMSU-A, MHS, IASI, AIRS, and HIRS4 radiance data, GPS-RO, and conventional types including aircraft, rawinsonde, profiler, surface, and satellite winds. The synthetic satellite wind observations are colocated with the NR cloud fields, and the rawinsondes are advected during ascent using the NR wind fields. Data counts for the synthetic observations are matched as closely as possible to real data counts, as shown in Figure 2. Errors are added to the synthetic observations to emulate representativeness and instrument errors. The synthetic errors are calibrated so that the statistics of observation innovation and analysis increments in the OSSE are similar to the same statistics for assimilation of real observations, in an iterative method described by Errico et al (2013). The standard deviations of observation minus forecast (xo-H(xb)) are compared for the OSSE and real data in Figure 3. The synthetic errors include both random, uncorrelated errors, and an additional correlated error component for some observational types. Vertically correlated errors are included for conventional sounding data and GPS-RO, and channel correlated errors are introduced to AIRS and IASI (Figure 4). HIRS, AMSU-A, and MHS have a component of horizontally

  2. The Influence of Observation Errors on Analysis Error and Forecast Skill Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, R. M.; Tai, K.-S.

    2013-01-01

    The Global Modeling and Assimilation Office (GMAO) observing system simulation experiment (OSSE) framework is used to explore the response of analysis error and forecast skill to observation quality. In an OSSE, synthetic observations may be created that have much smaller error than real observations, and precisely quantified error may be applied to these synthetic observations. Three experiments are performed in which synthetic observations with magnitudes of applied observation error that vary from zero to twice the estimated realistic error are ingested into the Goddard Earth Observing System Model (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation for a one-month period representing July. The analysis increment and observation innovation are strongly impacted by observation error, with much larger variances for increased observation error. The analysis quality is degraded by increased observation error, but the change in root-mean-square error of the analysis state is small relative to the total analysis error. Surprisingly, in the 120 hour forecast increased observation error only yields a slight decline in forecast skill in the extratropics, and no discernable degradation of forecast skill in the tropics.

  3. Performance and Evaluation of the Global Modeling and Assimilation Office Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki; Errico, R. M.; Carvalho, D.

    2018-01-01

    The National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO) has spent more than a decade developing and implementing a global Observing System Simulation Experiment framework for use in evaluting both new observation types as well as the behavior of data assimilation systems. The NASA/GMAO OSSE has constantly evolved to relect changes in the Gridpoint Statistical Interpolation data assimiation system, the Global Earth Observing System model, version 5 (GEOS-5), and the real world observational network. Software and observational datasets for the GMAO OSSE are publicly available, along with a technical report. Substantial modifications have recently been made to the NASA/GMAO OSSE framework, including the character of synthetic observation errors, new instrument types, and more sophisticated atmospheric wind vectors. These improvements will be described, along with the overall performance of the current OSSE. Lessons learned from investigations into correlated errors and model error will be discussed.

  4. The dynamics of human-water systems: comparing observations and simulations

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, G.; Ciullo, A.; Castellarin, A.; Viglione, A.

    2016-12-01

    Real-word data of human-flood interactions are compared to the results of stylized socio-hydrological models. These models build on numerous examples from different parts of the world and consider two main prototypes of floodplain systems. Green systems, whereby societies cope with flood risk via non-structural measures, e.g. resettling out of floodplain areas ("living with floods" approach); and Technological systems, whereby societies cope with flood risk by also via structural measures, e.g. building levees ("fighting floods" approach). The floodplain systems of the Tiber River in Rome and the Ganges-Brahmaputra-Meghna Rivers in Bangladesh systems are used as case studies. The comparison of simulations and observations shows the potential of socio-hydrological models in capturing the dynamics of risk emerging from the interactions and feedbacks between social and hydrological processes, such as learning and forgetting effects. It is then discussed how the proposed approach can contribute to a better understanding of flood risk changes and therefore support the process of disaster risk reduction.

  5. Microwave Polarized Signatures Generated within Cloud Systems: SSM/I Observations Interpreted with Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Prigent, Catherine; Pardo, Juan R.; Mishchenko, Michael I.; Rossow, Willaim B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Special Sensor Microwave /Imager (SSM/I) observations in cloud systems are studied over the tropics. Over optically thick cloud systems, presence of polarized signatures at 37 and 85 GHz is evidenced and analyzed with the help of cloud top temperature and optical thickness extracted from visible and IR satellite observations. Scattering signatures at 85 GHz (TbV(85) less than or = 250 K) are associated with polarization differences greater than or = 6 K, approx. 50%, of the time over ocean and approx. 40% over land. In addition. over thick clouds the polarization difference at 37 GHz is rarely negligible. The polarization differences at 37 and 85 GHz do not stem from the surface but are generated in regions of relatively homogeneous clouds having high liquid water content. To interpret the observations, a radiative transfer model that includes the scattering by non-spherical particles is developed. based on the T-matrix approach and using the doubling and adding method. In addition to handling randomly and perfectly oriented particles, this model can also simulate the effect of partial orientation of the hydrometeors. Microwave brightness temperatures are simulated at SSM/I frequencies and are compared with the observations. Polarization differences of approx. 2 K can be simulated at 37 GHz over a rain layer, even using spherical drops. The polarization difference is larger for oriented non-spherical particles. The 85 GHz simulations are very sensitive to the ice phase of the cloud. Simulations with spherical particles or with randomly oriented non-spherical ice particles cannot replicate the observed polarization differences. However, with partially oriented non-spherical particles, the observed polarized signatures at 85 GHz are explained, and the sensitivity of the scattering characteristics to the particle size, asphericity, and orientation is analyzed. Implications on rain and ice retrievals are discussed.

  6. Sensitivity Observing System Experiment (SOSE)-a new effective NWP-based tool in designing the global observing system

    NASA Astrophysics Data System (ADS)

    Marseille, Gert-Jan; Stoffelen, Ad; Barkmeijer, Jan

    2008-03-01

    Lacking an established methodology to test the potential impact of prospective extensions to the global observing system (GOS) in real atmospheric cases we developed such a method, called Sensitivity Observing System Experiment (SOSE). For example, since the GOS is non uniform it is of interest to investigate the benefit of complementary observing systems filling its gaps. In a SOSE adjoint sensitivity structures are used to define a pseudo true atmospheric state for the simulation of the prospective observing system. Next, the synthetic observations are used together with real observations from the existing GOS in a state-of-the-art Numerical Weather Prediction (NWP) model to assess the potential added value of the new observing system. Unlike full observing system simulation experiments (OSSE), SOSE can be applied to real extreme events that were badly forecast operationally and only requires the simulation of the new instrument. As such SOSE is an effective tool, for example, to define observation requirements for extensions to the GOS. These observation requirements may serve as input for the design of an operational network of prospective observing systems. In a companion paper we use SOSE to simulate potential future space borne Doppler Wind Lidar (DWL) scenarios and assess their capability to sample meteorologically sensitive areas not well captured by the current GOS, in particular over the Northern Hemisphere oceans.

  7. Improving the Canadian Precipitation Analysis Estimates through an Observing System Simulation Experiment

    NASA Astrophysics Data System (ADS)

    Abbasnezhadi, K.; Rasmussen, P. F.; Stadnyk, T.

    2014-12-01

    To gain a better understanding of the spatiotemporal distribution of rainfall over the Churchill River basin, this study was undertaken. The research incorporates gridded precipitation data from the Canadian Precipitation Analysis (CaPA) system. CaPA has been developed by Environment Canada and provides near real-time precipitation estimates on a 10 km by 10 km grid over North America at a temporal resolution of 6 hours. The spatial fields are generated by combining forecasts from the Global Environmental Multiscale (GEM) model with precipitation observations from the network of synoptic weather stations. CaPA's skill is highly influenced by the number of weather stations in the region of interest as well as by the quality of the observations. In an attempt to evaluate the performance of CaPA as a function of the density of the weather station network, a dual-stage design algorithm to simulate CaPA is proposed which incorporates generated weather fields. More specifically, we are adopting a controlled design algorithm which is generally known as Observing System Simulation Experiment (OSSE). The advantage of using the experiment is that one can define reference precipitation fields assumed to represent the true state of rainfall over the region of interest. In the first stage of the defined OSSE, a coupled stochastic model of precipitation and temperature gridded fields is calibrated and validated. The performance of the generator is then validated by comparing model statistics with observed statistics and by using the generated samples as input to the WATFLOOD™ hydrologic model. In the second stage of the experiment, in order to account for the systematic error of station observations and GEM fields, representative errors are to be added to the reference field using by-products of CaPA's variographic analysis. These by-products explain the variance of station observations and background errors.

  8. Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Tapio; Lan, Shiwei; Stuart, Andrew; Teixeira, João.

    2017-12-01

    Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.

  9. Distribution system simulator

    NASA Technical Reports Server (NTRS)

    Bahrami, K. A.; Kirkham, H.; Rahman, S.

    1986-01-01

    In a series of tests performed under the Department of Energy auspices, power line carrier propagation was observed to be anomalous under certain circumstances. To investigate the cause, a distribution system simulator was constructed. The simulator was a physical simulator that accurately represented the distribution system from below power frequency to above 50 kHz. Effects such as phase-to-phase coupling and skin effect were modeled. Construction details of the simulator, and experimental results from its use are presented.

  10. Thermodynamic sensitivities in observed and simulated extreme-rain-producing mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Schumacher, R. S.; Peters, J. M.

    2015-12-01

    Mesoscale convective systems (MCSs) are responsible for a large fraction of warm-season extreme rainfall events over the continental United States, as well as other midlatitude regions globally. The rainfall production in these MCSs is determined by numerous factors, including the large-scale forcing for ascent, the organization of the convection, cloud microphysical processes, and the surrounding thermodynamic and kinematic environment. Furthermore, heavy-rain-producing MCSs are most common at night, which means that well-studied mechanisms for MCS maintenance and organization such as cold pools (gravity currents) are not always at work. In this study, we use numerical model simulations and recent field observations to investigate the sensitivity of low-level MCS structures, and their influences on rainfall, to the details of the thermodynamic environment. In particular, small alterations to the initial conditions in idealized and semi-idealized simulations result in comparatively large precipitation changes, both in terms of the intensity and the spatial distribution. The uncertainties in the thermodynamic enviroments in the model simulations will be compared with high-resolution observations from the Plains Elevated Convection At Night (PECAN) field experiment in 2015. The results have implications for the paradigms of "surface-based" versus "elevated" convection, as well as for the predictability of warm-season convective rainfall.

  11. Preliminary Observing System Simulation Experiments for Doppler Wind Lidars Deployed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Kemp, E.; Jacob, J.; Rosenberg, R.; Jusem, J. C.; Emmitt, G. D.; Wood, S.; Greco, L. P.; Riishojgaard, L. P.; Masutani, M.; Ma, Z.; hide

    2013-01-01

    NASA Goddard Space Flight Center's Software Systems Support Office (SSSO) is participating in a multi-agency study of the impact of assimilating Doppler wind lidar observations on numerical weather prediction. Funded by NASA's Earth Science Technology Office, SSSO has worked with Simpson Weather Associates to produce time series of synthetic lidar observations mimicking the OAWL and WISSCR lidar instruments deployed on the International Space Station. In addition, SSSO has worked to assimilate a portion of these observations those drawn from the NASA fvGCM Nature Run into the NASA GEOS-DAS global weather prediction system in a series of Observing System Simulation Experiments (OSSEs). These OSSEs will complement parallel OSSEs prepared by the Joint Center for Satellite Data Assimilation and by NOAA's Atlantic Oceanographic and Meteorological Laboratory. In this talk, we will describe our procedure and provide available OSSE results.

  12. An Observing System Simulation Experiment (OSSE) Investigating the OMI Aerosol Products Using Simulated Aerosol and Atmospheric Fields from the NASA GEOS-5 Model

    NASA Astrophysics Data System (ADS)

    Colarco, P. R.; Gasso, S.; Jethva, H. T.; Buchard, V.; Ahn, C.; Torres, O.; daSilva, A.

    2016-12-01

    Output from the NASA Goddard Earth Observing System, version 5 (GEOS-5) Earth system model is used to simulate the top-of-atmosphere 354 and 388 nm radiances observed by the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft. The principle purpose of developing this simulator tool is to compute from the modeled fields the so-called OMI Aerosol Index (AI), which is a more fundamental retrieval product than higher level products such as the aerosol optical depth (AOD) or absorbing aerosol optical depth (AAOD). This lays the groundwork for eventually developing a capability to assimilate either the OMI AI or its radiances, which would provide further constraint on aerosol loading and absorption properties for global models. We extend the use of the simulator capability to understand the nature of the OMI aerosol retrieval algorithms themselves in an Observing System Simulation Experiment (OSSE). The simulated radiances are used to calculate the AI from the modeled fields. These radiances are also provided to the OMI aerosol algorithms, which return their own retrievals of the AI, AOD, and AAOD. Our assessment reveals that the OMI-retrieved AI can be mostly harmonized with the model-derived AI given the same radiances provided a common surface pressure field is assumed. This is important because the operational OMI algorithms presently assume a fixed pressure field, while the contribution of molecular scattering to the actual OMI signal in fact responds to the actual atmospheric pressure profile, which is accounted for in our OSSE by using GEOS-5 produced atmospheric reanalyses. Other differences between the model and OMI AI are discussed, and we present a preliminary assessment of the OMI AOD and AAOD products with respect to the known inputs from the GEOS-5 simulation.

  13. POD experiments using real and simulated time-sharing observations for GEO satellites in C-band transfer ranging system

    NASA Astrophysics Data System (ADS)

    Fen, Cao; XuHai, Yang; ZhiGang, Li; ChuGang, Feng

    2016-08-01

    The normal consecutive observing model in Chinese Area Positioning System (CAPS) can only supply observations of one GEO satellite in 1 day from one station. However, this can't satisfy the project need for observing many GEO satellites in 1 day. In order to obtain observations of several GEO satellites in 1 day like GPS/GLONASS/Galileo/BeiDou, the time-sharing observing model for GEO satellites in CAPS needs research. The principle of time-sharing observing model is illuminated with subsequent Precise Orbit Determination (POD) experiments using simulated time-sharing observations in 2005 and the real time-sharing observations in 2015. From time-sharing simulation experiments before 2014, the time-sharing observing 6 GEO satellites every 2 h has nearly the same orbit precision with the consecutive observing model. From POD experiments using the real time-sharing observations, POD precision for ZX12# and Yatai7# are about 3.234 m and 2.570 m, respectively, which indicates the time-sharing observing model is appropriate for CBTR system and can realize observing many GEO satellites in 1 day.

  14. Observing System Simulations for ASCENDS: Synthesizing Science Measurement Requirements (Invited)

    NASA Astrophysics Data System (ADS)

    Kawa, S. R.; Baker, D. F.; Schuh, A. E.; Crowell, S.; Rayner, P. J.; Hammerling, D.; Michalak, A. M.; Wang, J. S.; Eluszkiewicz, J.; Ott, L.; Zaccheo, T.; Abshire, J. B.; Browell, E. V.; Moore, B.; Crisp, D.

    2013-12-01

    The measurement of atmospheric CO2 from space using active (lidar) sensing techniques has several potentially significant advantages in comparison to current and planned passive CO2 instruments. Application of this new technology aims to advance CO2 measurement capability and carbon cycle science into the next decade. The NASA Active Sensing of Carbon Emissions, Nights, Days, and Seasons (ASCENDS) mission has been recommended by the US National Academy of Sciences Decadal Survey for the next generation of space-based CO2 observing systems. ASCENDS is currently planned for launch in 2022. Several possible lidar instrument approaches have been demonstrated in airborne campaigns and the results indicate that such sensors are quite feasible. Studies are now underway to evaluate performance requirements for space mission implementation. Satellite CO2 observations must be highly precise and unbiased in order to accurately infer global carbon source/sink fluxes. Measurement demands are likely to further increase in the wake of GOSAT, OCO-2, and enhanced ground-based in situ and remote sensing CO2 data. The objective of our work is to quantitatively and consistently evaluate the measurement capabilities and requirements for ASCENDS in the context of advancing our knowledge of carbon flux distributions and their dependence on underlying physical processes. Considerations include requirements for precision, relative accuracy, spatial/temporal coverage and resolution, vertical information content, interferences, and possibly the tradeoffs among these parameters, while at the same time framing a mission that can be implemented within a constrained budget. Here, we attempt to synthesize the results of observing system simulation studies, commissioned by the ASCENDS Science Requirements Definition Team, into a coherent set of mission performance guidelines. A variety of forward and inverse model frameworks are employed to reduce the potential dependence of the results on model

  15. An Observing System Simulation Experiment of assimilating leaf area index and soil moisture over cropland

    NASA Astrophysics Data System (ADS)

    Lafont, Sebastien; Barbu, Alina; Calvet, Jean-Christophe

    2013-04-01

    A Land Data Assimilation System (LDAS) is an off-line data assimilation system featuring uncoupled land surface model which is driven by observation-based atmospheric forcing. In this study the experiments were conducted with a surface externalized (SURFEX) modelling platform developed at Météo-France. It encompasses the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The photosynthetic activity depends on the vegetation types. The input soil and vegetation parameters are provided by the ECOCLIMAP II global database which assigns the ecosystem classes in several plant functional types as grassland, crops, deciduous forest and coniferous forest. New versions of the model have been recently developed in order to better describe the agricultural plant functional types. We present a set of observing system simulation experiments (OSSE) which asses leaf area index (LAI) and soil moisture assimilation for improving the land surface estimates in a controlled synthetic environment. Synthetic data were assimilated into ISBA-A-gs using an Extended Kalman Filter (EKF). This allows for an understanding of model responses to an augmentation of the number of crop types and different parameters associated to this modification. In addition, the interactions between uncertainties in the model and in the observations were investigated. This study represents the first step of a process that envisages the extension of LDAS to the new versions of the ISBA-A-gs model in order to assimilate remote sensing observations.

  16. Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, Ronald M.

    2015-01-01

    The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.

  17. Assimilating Remote Sensing Observations of Leaf Area Index and Soil Moisture for Wheat Yield Estimates: An Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.

    2012-01-01

    Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.

  18. Towards Observational Astronomy of Jets in Active Galaxies from General Relativistic Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Anantua, Richard; Roger Blandford, Jonathan McKinney and Alexander Tchekhovskoy

    2016-01-01

    We carry out the process of "observing" simulations of active galactic nuclei (AGN) with relativistic jets (hereafter called jet/accretion disk/black hole (JAB) systems) from ray tracing between image plane and source to convolving the resulting images with a point spread function. Images are generated at arbitrary observer angle relative to the black hole spin axis by implementing spatial and temporal interpolation of conserved magnetohydrodynamic flow quantities from a time series of output datablocks from fully general relativistic 3D simulations. We also describe the evolution of simulations of JAB systems' dynamical and kinematic variables, e.g., velocity shear and momentum density, respectively, and the variation of these variables with respect to observer polar and azimuthal angles. We produce, at frequencies from radio to optical, fixed observer time intensity and polarization maps using various plasma physics motivated prescriptions for the emissivity function of physical quantities from the simulation output, and analyze the corresponding light curves. Our hypothesis is that this approach reproduces observed features of JAB systems such as superluminal bulk flow projections and quasi-periodic oscillations in the light curves more closely than extant stylized analytical models, e.g., cannonball bulk flows. Moreover, our development of user-friendly, versatile C++ routines for processing images of state-of-the-art simulations of JAB systems may afford greater flexibility for observing a wide range of sources from high power BL-Lacs to low power quasars (possibly with the same simulation) without requiring years of observation using multiple telescopes. Advantages of observing simulations instead of observing astrophysical sources directly include: the absence of a diffraction limit, panoramic views of the same object and the ability to freely track features. Light travel time effects become significant for high Lorentz factor and small angles between

  19. Observing System Simulation Experiment (OSSE) for the HyspIRI Spectrometer Mission

    NASA Technical Reports Server (NTRS)

    Turmon, Michael J.; Block, Gary L.; Green, Robert O.; Hua, Hook; Jacob, Joseph C.; Sobel, Harold R.; Springer, Paul L.; Zhang, Qingyuan

    2010-01-01

    The OSSE software provides an integrated end-to-end environment to simulate an Earth observing system by iteratively running a distributed modeling workflow based on the HyspIRI Mission, including atmospheric radiative transfer, surface albedo effects, detection, and retrieval for agile exploration of the mission design space. The software enables an Observing System Simulation Experiment (OSSE) and can be used for design trade space exploration of science return for proposed instruments by modeling the whole ground truth, sensing, and retrieval chain and to assess retrieval accuracy for a particular instrument and algorithm design. The OSSE in fra struc ture is extensible to future National Research Council (NRC) Decadal Survey concept missions where integrated modeling can improve the fidelity of coupled science and engineering analyses for systematic analysis and science return studies. This software has a distributed architecture that gives it a distinct advantage over other similar efforts. The workflow modeling components are typically legacy computer programs implemented in a variety of programming languages, including MATLAB, Excel, and FORTRAN. Integration of these diverse components is difficult and time-consuming. In order to hide this complexity, each modeling component is wrapped as a Web Service, and each component is able to pass analysis parameterizations, such as reflectance or radiance spectra, on to the next component downstream in the service workflow chain. In this way, the interface to each modeling component becomes uniform and the entire end-to-end workflow can be run using any existing or custom workflow processing engine. The architecture lets users extend workflows as new modeling components become available, chain together the components using any existing or custom workflow processing engine, and distribute them across any Internet-accessible Web Service endpoints. The workflow components can be hosted on any Internet-accessible machine

  20. Simulability of observables in general probabilistic theories

    NASA Astrophysics Data System (ADS)

    Filippov, Sergey N.; Heinosaari, Teiko; Leppäjärvi, Leevi

    2018-06-01

    The existence of incompatibility is one of the most fundamental features of quantum theory and can be found at the core of many of the theory's distinguishing features, such as Bell inequality violations and the no-broadcasting theorem. A scheme for obtaining new observables from existing ones via classical operations, the so-called simulation of observables, has led to an extension of the notion of compatibility for measurements. We consider the simulation of observables within the operational framework of general probabilistic theories and introduce the concept of simulation irreducibility. While a simulation irreducible observable can only be simulated by itself, we show that any observable can be simulated by simulation irreducible observables, which in the quantum case correspond to extreme rank-1 positive-operator-valued measures. We also consider cases where the set of simulators is restricted in one of two ways: in terms of either the number of simulating observables or their number of outcomes. The former is seen to be closely connected to compatibility and k compatibility, whereas the latter leads to a partial characterization for dichotomic observables. In addition to the quantum case, we further demonstrate these concepts in state spaces described by regular polygons.

  1. The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2

    NASA Astrophysics Data System (ADS)

    Swales, Dustin J.; Pincus, Robert; Bodas-Salcedo, Alejandro

    2018-01-01

    The Cloud Feedback Model Intercomparison Project Observational Simulator Package (COSP) gathers together a collection of observation proxies or satellite simulators that translate model-simulated cloud properties to synthetic observations as would be obtained by a range of satellite observing systems. This paper introduces COSP2, an evolution focusing on more explicit and consistent separation between host model, coupling infrastructure, and individual observing proxies. Revisions also enhance flexibility by allowing for model-specific representation of sub-grid-scale cloudiness, provide greater clarity by clearly separating tasks, support greater use of shared code and data including shared inputs across simulators, and follow more uniform software standards to simplify implementation across a wide range of platforms. The complete package including a testing suite is freely available.

  2. Application of Observing System Simulation Experiments (OSSEs) to determining science and user requirements for space-based missions

    NASA Astrophysics Data System (ADS)

    Atlas, R. M.

    2016-12-01

    Observing System Simulation Experiments (OSSEs) provide an effective method for evaluating the potential impact of proposed new observing systems, as well as for evaluating trade-offs in observing system design, and in developing and assessing improved methodology for assimilating new observations. As such, OSSEs can be an important tool for determining science and user requirements, and for incorporating these requirements into the planning for future missions. Detailed OSSEs have been conducted at NASA/ GSFC and NOAA/AOML in collaboration with Simpson Weather Associates and operational data assimilation centers over the last three decades. These OSSEs determined correctly the quantitative potential for several proposed satellite observing systems to improve weather analysis and prediction prior to their launch, evaluated trade-offs in orbits, coverage and accuracy for space-based wind lidars, and were used in the development of the methodology that led to the first beneficial impacts of satellite surface winds on numerical weather prediction. In this talk, the speaker will summarize the development of OSSE methodology, early and current applications of OSSEs and how OSSEs will evolve in order to enhance mission planning.

  3. Observing Galaxy Mergers in Simulations

    NASA Astrophysics Data System (ADS)

    Snyder, Gregory

    2018-01-01

    I will describe results on mergers and morphology of distant galaxies. By mock-observing 3D cosmological simulations, we aim to contrast theory with data, design better diagnostics of physical processes, and examine unexpected signatures of galaxy formation. Recently, we conducted mock surveys of the Illustris Simulations to learn how mergers would appear in deep HST and JWST surveys. With this approach, we reconciled merger rates estimated using observed close galaxy pairs with intrinsic merger rates predicted by theory. This implies that the merger-pair observability time is probably shorter in the early universe, and therefore that major mergers are more common than implied by the simplest arguments. Further, we show that disturbance-based diagnostics of late-stage mergers can be improved significantly by combining multi-dimensional image information with simulated merger identifications to train automated classifiers. We then apply these classifiers to real measurements from the CANDELS fields, recovering a merger fraction increasing with redshift in broad agreement with pair fractions and simulations, and with statistical errors smaller by a factor of two than classical morphology estimators. This emphasizes the importance of using robust training sets, including cosmological simulations and multidimensional data, for interpreting observed processes in galaxy evolution.

  4. A Regional CO2 Observing System Simulation Experiment Using ASCENDS Observations and WRF-STILT Footprints

    NASA Technical Reports Server (NTRS)

    Wang, James S.; Kawa, S. Randolph; Eluszkiewicz, Janusz; Collatz, G. J.; Mountain, Marikate; Henderson, John; Nehrkorn, Thomas; Aschbrenner, Ryan; Zaccheo, T. Scott

    2012-01-01

    Knowledge of the spatiotemporal variations in emissions and uptake of CO2 is hampered by sparse measurements. The recent advent of satellite measurements of CO2 concentrations is increasing the density of measurements, and the future mission ASCENDS (Active Sensing of CO2 Emissions over Nights, Days and Seasons) will provide even greater coverage and precision. Lagrangian atmospheric transport models run backward in time can quantify surface influences ("footprints") of diverse measurement platforms and are particularly well suited for inverse estimation of regional surface CO2 fluxes at high resolution based on satellite observations. We utilize the STILT Lagrangian particle dispersion model, driven by WRF meteorological fields at 40-km resolution, in a Bayesian synthesis inversion approach to quantify the ability of ASCENDS column CO2 observations to constrain fluxes at high resolution. This study focuses on land-based biospheric fluxes, whose uncertainties are especially large, in a domain encompassing North America. We present results based on realistic input fields for 2007. Pseudo-observation random errors are estimated from backscatter and optical depth measured by the CALIPSO satellite. We estimate a priori flux uncertainties based on output from the CASA-GFED (v.3) biosphere model and make simple assumptions about spatial and temporal error correlations. WRF-STILT footprints are convolved with candidate vertical weighting functions for ASCENDS. We find that at a horizontal flux resolution of 1 degree x 1 degree, ASCENDS observations are potentially able to reduce average weekly flux uncertainties by 0-8% in July, and 0-0.5% in January (assuming an error of 0.5 ppm at the Railroad Valley reference site). Aggregated to coarser resolutions, e.g. 5 degrees x 5 degrees, the uncertainty reductions are larger and more similar to those estimated in previous satellite data observing system simulation experiments.

  5. Volcanic observation data and simulation database at NIED, Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Fujita, E.; Ueda, H.; Kozono, T.

    2009-12-01

    NIED (Nat’l Res. Inst. for Earth Sci. & Disast. Prev.) has a project to develop two volcanic database systems: (1) volcanic observation database; (2) volcanic simulation database. The volcanic observation database is the data archive center obtained by the geophysical observation networks at Mt. Fuji, Miyake, Izu-Oshima, Iwo-jima and Nasu volcanoes, central Japan. The data consist of seismic (both high-sensitivity and broadband), ground deformation (tiltmeter, GPS) and those from other sensors (e.g., rain gauge, gravimeter, magnetometer, pressure gauge.) These data is originally stored in “WIN format,” the Japanese standard format, which is also at the Hi-net (High sensitivity seismic network Japan, http://www.hinet.bosai.go.jp/). NIED joins to WOVOdat and we have prepared to upload our data, via XML format. Our concept of the XML format is 1)a common format for intermediate files to upload into the WOVOdat DB, 2) for data files downloaded from the WOVOdat DB, 3) for data exchanges between observatories without the WOVOdat DB, 4) for common data files in each observatory, 5) for data communications between systems and softwares and 6)a for softwares. NIED is now preparing for (2) the volcanic simulation database. The objective of this project is to support to develop a “real-time” hazard map, i.e., the system which is effective to evaluate volcanic hazard in case of emergency, including the up-to-date conditions. Our system will include lava flow simulation (LavaSIM) and pyroclastic flow simulation (grvcrt). The database will keep many cases of assumed simulations and we can pick up the most probable case as the first evaluation in case the eruption started. The final goals of the both database will realize the volcanic eruption prediction and forecasting in real time by the combination of monitoring data and numerical simulations.

  6. AMR Studies of Star Formation: Simulations and Simulated Observations

    NASA Astrophysics Data System (ADS)

    Offner, Stella; McKee, C. F.; Klein, R. I.

    2009-01-01

    Molecular clouds are typically observed to be approximately virialized with gravitational and turbulent energy in balance, yielding a star formation rate of a few percent. The origin and characteristics of the observed supersonic turbulence are poorly understood, and without continued energy injection the turbulence is predicted to decay within a cloud dynamical time. Recent observations and analytic work have suggested a strong connection between the initial stellar mass function, the core mass function, and turbulence characteristics. The role of magnetic fields in determining core lifetimes, shapes, and kinematic properties remains hotly debated. Simulations are a formidable tool for studying the complex process of star formation and addressing these puzzles. I present my results modeling low-mass star formation using the ORION adaptive mesh refinement (AMR) code. I investigate the properties of forming cores and protostars in simulations in which the turbulence is driven to maintain virial balance and where it is allowed to decay. I will discuss simulated observations of cores in dust emission and in molecular tracers and compare to observations of local star-forming clouds. I will also present results from ORION cluster simulations including flux-limited diffusion radiative transfer and show that radiative feedback, even from low-mass stars, has a significant effect on core fragmentation, disk properties, and the IMF. Finally, I will discuss the new simulation frontier of AMR multigroup radiative transfer.

  7. Lateral eddy diffusivity estimates from simulated and observed drifter trajectories: a case study for the Agulhas Current system

    NASA Astrophysics Data System (ADS)

    Rühs, Siren; Zhurbas, Victor; Durgadoo, Jonathan V.; Biastoch, Arne

    2017-04-01

    The Lagrangian description of fluid motion by sets of individual particle trajectories is extensively used to characterize connectivity between distinct oceanic locations. One important factor influencing the connectivity is the average rate of particle dispersal, generally quantified as Lagrangian diffusivity. In addition to Lagrangian observing programs, Lagrangian analyses are performed by advecting particles with the simulated flow field of ocean general circulation models (OGCMs). However, depending on the spatio-temporal model resolution, not all scale-dependent processes are explicitly resolved in the simulated velocity fields. Consequently, the dispersal of advective Lagrangian trajectories has been assumed not to be sufficiently diffusive compared to observed particle spreading. In this study we present a detailed analysis of the spatially variable lateral eddy diffusivity characteristics of advective drifter trajectories simulated with realistically forced OGCMs and compare them with estimates based on observed drifter trajectories. The extended Agulhas Current system around South Africa, known for its intricate mesoscale dynamics, serves as a test case. We show that a state-of-the-art eddy-resolving OGCM indeed features theoretically derived dispersion characteristics for diffusive regimes and realistically represents Lagrangian eddy diffusivity characteristics obtained from observed surface drifter trajectories. The estimates for the maximum and asymptotic lateral single-particle eddy diffusivities obtained from the observed and simulated drifter trajectories show a good agreement in their spatial pattern and magnitude. We further assess the sensitivity of the simulated lateral eddy diffusivity estimates to the temporal and lateral OGCM output resolution and examine the impact of the different eddy diffusivity characteristics on the Lagrangian connectivity between the Indian Ocean and the South Atlantic.

  8. Retrieved Products from Simulated Hyperspectral Observations of a Hurricane

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John

    2015-01-01

    Demonstrate via Observing System Simulation Experiments (OSSEs) the potential utility of flying high spatial resolution AIRS class IR sounders on future LEO and GEO missions.The study simulates and analyzes radiances for 3 sounders with AIRS spectral and radiometric properties on different orbits with different spatial resolutions: 1) Control run 13 kilometers AIRS spatial resolution at nadir on LEO in Aqua orbit; 2) 2 kilometer spatial resolution LEO sounder at nadir ARIES; 3) 5 kilometers spatial resolution sounder on a GEO orbit, radiances simulated every 72 minutes.

  9. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance

    NASA Technical Reports Server (NTRS)

    Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time

  10. System-Level Reuse of Space Systems Simulations

    NASA Technical Reports Server (NTRS)

    Hazen, Michael R.; Williams, Joseph C.

    2004-01-01

    One of the best ways to enhance space systems simulation fidelity is to leverage off of (reuse) existing high-fidelity simulations. But what happens when the model you would like to reuse is in a different coding language or other barriers arise that make one want to just start over with a clean sheet of paper? Three diverse system-level simulation reuse case studies are described based on experience to date in the development of NASA's Space Station Training Facility (SSTF) at the Johnson Space Center in Houston, Texas. Case studies include (a) the Boeing/Rocketdyne-provided Electrical Power Simulation (EPSIM), (b) the NASA Automation and Robotics Division-provided TRICK robotics systems model, and (c) the Russian Space Agency- provided Russian Segment Trainer. In each case, there was an initial tendency to dismiss simulation reuse candidates based on an apparent lack of suitability. A more careful examination based on a more structured assessment of architectural and requirements-oriented representations of the reuse candidates revealed significant reuse potential. Specific steps used to conduct the detailed assessments are discussed. The steps include the following: 1) Identifying reuse candidates; 2) Requirements compatibility assessment; 3) Maturity assessment; 4) Life-cycle cost determination; and 5) Risk assessment. Observations and conclusions are presented related to the real cost of system-level simulation component reuse. Finally, lessons learned that relate to maximizing the benefits of space systems simulation reuse are shared. These concepts should be directly applicable for use in the development of space systems simulations in the future.

  11. Tropical Cyclones in the 7-km NASA Global Nature Run for Use in Observing System Simulation Experiments

    NASA Technical Reports Server (NTRS)

    Reale, Oreste; Achuthavarier, Deepthi; Fuentes, Marangelly; Putman, William M.; Partyka, Gary

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Nature Run (NR), released for use in Observing System Simulation Experiments (OSSEs), is a 2-year long global non-hydrostatic free-running simulation at a horizontal resolution of 7 km, forced by observed sea-surface temperatures (SSTs) and sea ice, and inclusive of interactive aerosols and trace gases. This article evaluates the NR with respect to tropical cyclone (TC) activity. It is emphasized that to serve as a NR, a long-term simulation must be able to produce realistic TCs, which arise out of realistic large-scale forcings. The presence in the NR of the realistic, relevant dynamical features over the African Monsoon region and the tropical Atlantic is confirmed, along with realistic African Easterly Wave activity. The NR Atlantic TC seasons, produced with 2005 and 2006 SSTs, show interannual variability consistent with observations, with much stronger activity in 2005. An investigation of TC activity over all the other basins (eastern and western North Pacific, North and South Indian Ocean, and Australian region), together with relevant elements of the atmospheric circulation, such as, for example, the Somali Jet and westerly bursts, reveals that the model captures the fundamental aspects of TC seasons in every basin, producing realistic number of TCs with realistic tracks, life spans and structures. This confirms that the NASA NR is a very suitable tool for OSSEs targeting TCs and represents an improvement with respect to previous long simulations that have served the global atmospheric OSSE community.

  12. Tropical Cyclones in the 7km NASA Global Nature Run for use in Observing System Simulation Experiments.

    PubMed

    Reale, Oreste; Achuthavarier, Deepthi; Fuentes, Marangelly; Putman, William M; Partyka, Gary

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Nature Run (NR), released for use in Observing System Simulation Experiments (OSSEs), is a 2-year long global non-hydrostatic free-running simulation at a horizontal resolution of 7 km, forced by observed sea-surface temperatures (SSTs) and sea ice, and inclusive of interactive aerosols and trace gases. This article evaluates the NR with respect to tropical cyclone (TC) activity. It is emphasized that to serve as a NR, a long-term simulation must be able to produce realistic TCs, which arise out of realistic large-scale forcings. The presence in the NR of the realistic, relevant dynamical features over the African Monsoon region and the tropical Atlantic is confirmed, along with realistic African Easterly Wave activity. The NR Atlantic TC seasons, produced with 2005 and 2006 SSTs, show interannual variability consistent with observations, with much stronger activity in 2005. An investigation of TC activity over all the other basins (eastern and western North Pacific, North and South Indian Ocean, and Australian region), together with relevant elements of the atmospheric circulation, such as, for example, the Somali Jet and westerly bursts, reveals that the model captures the fundamental aspects of TC seasons in every basin, producing realistic number of TCs with realistic tracks, life spans and structures. This confirms that the NASA NR is a very suitable tool for OSSEs targeting TCs and represents an improvement with respect to previous long simulations that have served the global atmospheric OSSE community.

  13. SEU induced errors observed in microprocessor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asenek, V.; Underwood, C.; Oldfield, M.

    In this paper, the authors present software tools for predicting the rate and nature of observable SEU induced errors in microprocessor systems. These tools are built around a commercial microprocessor simulator and are used to analyze real satellite application systems. Results obtained from simulating the nature of SEU induced errors are shown to correlate with ground-based radiation test data.

  14. New methods to benchmark simulations of accreting black holes systems against observations

    NASA Astrophysics Data System (ADS)

    Markoff, Sera; Chatterjee, Koushik; Liska, Matthew; Tchekhovskoy, Alexander; Hesp, Casper; Ceccobello, Chiara; Russell, Thomas

    2017-08-01

    The field of black hole accretion has been significantly advanced by the use of complex ideal general relativistic magnetohydrodynamics (GRMHD) codes, now capable of simulating scales from the event horizon out to ~10^5 gravitational radii at high resolution. The challenge remains how to test these simulations against data, because the self-consistent treatment of radiation is still in its early days, and is complicated by dependence on non-ideal/microphysical processes not yet included in the codes. On the other extreme, a variety of phenomenological models (disk, corona, jet, wind) can well-describe spectra or variability signatures in a particular waveband, although often not both. To bring these two methodologies together, we need robust observational “benchmarks” that can be identified and studied in simulations. I will focus on one example of such a benchmark, from recent observational campaigns on black holes across the mass scale: the jet break. I will describe new work attempting to understand what drives this feature by searching for regions that share similar trends in terms of dependence on accretion power or magnetisation. Such methods can allow early tests of simulation assumptions and help pinpoint which regions will dominate the light production, well before full radiative processes are incorporated, and will help guide the interpretation of, e.g. Event Horizon Telescope data.

  15. Observing System Simulation Experiment (OSSE) for a future Doppler Wind Lidar satellite in Japan:

    NASA Astrophysics Data System (ADS)

    Baron, Philippe; Ishii, Shoken; Okamoto, Kozo

    2017-04-01

    A feasibility study of tropospheric wind measurements by a coherent Doppler lidar aboard a super-low-altitude satellite is being conducted in Japan. We consider a coherent lidar with a laser light source at 2.05 μm whose characteristics correspond to an existing ground-based instrument (power=3.75 W, PRF=30 Hz and pulse width=200 ns). An Observing System Simulation Experiment (OSSE) has been implemented based on the Sensitivity Observing System experiment (SOSE) developed at the Japanese Meteorological-Research-Institute using the Japan Meteorological Agency global Numerical Weather Prediction model. The measurement simulator uses wind, aerosol and cloud 3-d global fields from the OSSE speudo-truth and the aerosol model MASINGAR. In this presentation, we will first discuss the measurement performances. Considering measurement horizontal resolutions of 100 km along the orbit track, we found that below 3 km, the median horizontal wind error is between 0.8-1 m/s for a vertical resolution of 0.5 km, and that near 50% of the data are valid measurements. Decreasing the vertical resolution to 1 km allows us to maintain similar performances up to 8 km almost over most latitudes. Above, the performances significantly fall down but a relatively good percentage of valid measurements (20-40%) are still found near the tropics where cirrus clouds frequently occur. The potential of the instrument to improve weather prediction models will be discussed using the OSSE results obtained for both polar and low inclination orbit satellites. The first results show positive improvements of short-term forecasts (<48 hours), in particular, on the wind speed at 850 hPa and 250 hPa. S. Ishii, K. Okamoto, P. Baron, T. Kubota, Y. Satoh, D. Sakaizawa, T. Ishibashi, T. Y. Tanaka, K. Yamashita, S. Ochiai, K. Gamo, M. Yasui, R. Oki, M. Satoh, and T. Iwasaki, "Measurement performance assessment of future space-borne Doppler wind lidar", SOLA, vol. 12, pp. 55-59, 2016. S. Ishii et al., "Feasibility

  16. A NEO population generation and observation simulation software tool

    NASA Astrophysics Data System (ADS)

    Müller, Sven; Gelhaus, Johannes; Hahn, Gerhard; Franco, Raffaella

    One of the main targets of ESA's Space Situational Awareness (SSA) program is to build a wide knowledge base about objects that can potentially harm Earth (Near-Earth Objects, NEOs). An important part of this effort is to create the Small Bodies Data Centre (SBDC) which is going to aggregate measurement data from a fully-integrated NEO observation sensor network. Until this network is developed, artificial NEO measurement data is needed in order to validate SBDC algorithms. Moreover, to establish a functioning NEO observation sensor network, it has to be determined where to place sensors, what technical requirements have to be met in order to be able to detect NEOs and which observation strategies work the best. Because of this, a sensor simulation software was needed. This paper presents a software tool which allows users to create and analyse NEO populations and to simulate and analyse population observations. It is a console program written in Fortran and comes with a Graphical User Interface (GUI) written in Java and C. The tool can be distinguished into the components ``Population Generator'' and ``Observation Simulator''. The Population Generator component is responsible for generating and analysing a NEO population. Users can choose between creating fictitious (random) and synthetic populations. The latter are based on one of two models describing the orbital and size distribution of observed NEOs: The existing socalled ``Bottke Model'' (Bottke et al. 2000, 2002) and the new ``Granvik Model'' (Granvik et al. 2014, in preparation) which has been developed in parallel to the tool. Generated populations can be analysed by defining 2D, 3D and scatter plots using various NEO attributes. As a result, the tool creates the appropiate files for the plotting tool ``gnuplot''. The tool's Observation Simulator component yields the Observation Simulation and Observation Analysis functions. Users can define sensor systems using ground- or space-based locations as well as

  17. Using Combined Marine Spatial Planning Tools and Observing System Experiments to define Gaps in the Emerging European Ocean Observing System.

    NASA Astrophysics Data System (ADS)

    Nolan, G.; Pinardi, N.; Vukicevic, T.; Le Traon, P. Y.; Fernandez, V.

    2016-02-01

    Ocean observations are critical to providing accurate ocean forecasts that support operational decision making in European open and coastal seas. Observations are available in many forms from Fixed platforms e.g. Moored Buoys and tide gauges, underway measurements from Ferrybox systems, High Frequency radars and more recently from underwater Gliders and profiling floats. Observing System Simulation Experiments have been conducted to examine the relative contribution of each type of platform to an improvement in our ability to accurately forecast the future state of the ocean with HF radar and Gliders showing particular promise in improving model skill. There is considerable demand for ecosystem products and services from today's ocean observing system and biogeochemical observations are still relatively sparse particularly in coastal and shelf seas. There is a need to widen the techniques used to assess the fitness for purpose and gaps in the ocean observing system. As well as Observing System Simulation Experiments that quantify the effect of observations on the overall model skill we present a gap analysis based on (1) Examining where high model skill is required based on a marine spatial planning analysis of European seas i.e where does activity take place that requires more accurate forecasts? and (2) assessing gaps based on the capacity of the observing system to answer key societal challenges e.g. site suitability for aquaculture and ocean energy, oil spill response and contextual oceanographic products for fisheries and ecosystems. The broad based analysis will inform the development of the proposed European Ocean Observing System as a contribution to the Global Ocean Observing System (GOOS).

  18. Tropical Cyclones in the 7km NASA Global Nature Run for use in Observing System Simulation Experiments

    PubMed Central

    Reale, Oreste; Achuthavarier, Deepthi; Fuentes, Marangelly; Putman, William M.; Partyka, Gary

    2018-01-01

    The National Aeronautics and Space Administration (NASA) Nature Run (NR), released for use in Observing System Simulation Experiments (OSSEs), is a 2-year long global non-hydrostatic free-running simulation at a horizontal resolution of 7 km, forced by observed sea-surface temperatures (SSTs) and sea ice, and inclusive of interactive aerosols and trace gases. This article evaluates the NR with respect to tropical cyclone (TC) activity. It is emphasized that to serve as a NR, a long-term simulation must be able to produce realistic TCs, which arise out of realistic large-scale forcings. The presence in the NR of the realistic, relevant dynamical features over the African Monsoon region and the tropical Atlantic is confirmed, along with realistic African Easterly Wave activity. The NR Atlantic TC seasons, produced with 2005 and 2006 SSTs, show interannual variability consistent with observations, with much stronger activity in 2005. An investigation of TC activity over all the other basins (eastern and western North Pacific, North and South Indian Ocean, and Australian region), together with relevant elements of the atmospheric circulation, such as, for example, the Somali Jet and westerly bursts, reveals that the model captures the fundamental aspects of TC seasons in every basin, producing realistic number of TCs with realistic tracks, life spans and structures. This confirms that the NASA NR is a very suitable tool for OSSEs targeting TCs and represents an improvement with respect to previous long simulations that have served the global atmospheric OSSE community. PMID:29674806

  19. Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Peters-Lidard, Christa; Lang, Stephen; Simpson, Joanne; Kumar, Sujay; Xie, Shaocheng; Eastman, Joseph L.; Shie, Chung-Lin; hide

    2006-01-01

    Two 20-day, continental midlatitude cases are simulated with a three-dimensional (3D) cloud-resolving model (CRM) and compared to Atmospheric Radiation Measurement (ARM) data. This evaluation of long-term cloud-resolving model simulations focuses on the evaluation of clouds and surface fluxes. All numerical experiments, as compared to observations, simulate surface precipitation well but over-predict clouds, especially in the upper troposphere. The sensitivity of cloud properties to dimensionality and other factors is studied to isolate the origins of the over prediction of clouds. Due to the difference in buoyancy damping between 2D and 3D models, surface precipitation fluctuates rapidly with time, and spurious dehumidification occurs near the tropopause in the 2D CRM. Surface fluxes from a land data assimilation system are compared with ARM observations. They are used in place of the ARM surface fluxes to test the sensitivity of simulated clouds to surface fluxes. Summertime simulations show that surface fluxes from the assimilation system bring about a better simulation of diurnal cloud variation in the lower troposphere.

  20. Comparing models of star formation simulating observed interacting galaxies

    NASA Astrophysics Data System (ADS)

    Quiroga, L. F.; Muñoz-Cuartas, J. C.; Rodrigues, I.

    2017-07-01

    In this work, we make a comparison between different models of star formation to reproduce observed interacting galaxies. We use observational data to model the evolution of a pair of galaxies undergoing a minor merger. Minor mergers represent situations weakly deviated from the equilibrium configuration but significant changes in star fomation (SF) efficiency can take place, then, minor mergers provide an unique scene to study SF in galaxies in a realistic but yet simple way. Reproducing observed systems also give us the opportunity to compare the results of the simulations with observations, which at the end can be used as probes to characterize the models of SF implemented in the comparison. In this work we compare two different star formation recipes implemented in Gadget3 and GIZMO codes. Both codes share the same numerical background, and differences arise mainly in the star formation recipe they use. We use observations from Pico dos Días and GEMINI telescopes and show how we use observational data of the interacting pair in AM2229-735 to characterize the interacting pair. Later we use this information to simulate the evolution of the system to finally reproduce the observations: Mass distribution, morphology and main features of the merger-induced star formation burst. We show that both methods manage to reproduce roughly the star formation activity. We show, through a careful study, that resolution plays a major role in the reproducibility of the system. In that sense, star formation recipe implemented in GIZMO code has shown a more robust performance. Acknowledgements: This work is supported by Colciencias, Doctorado Nacional - 617 program.

  1. El Nino and the Global Ocean Observing System

    NASA Technical Reports Server (NTRS)

    Halpern, David

    1999-01-01

    Until a decade ago, an often-quoted expression in oceanography is that very few observations are recorded throughout the ocean. Now, the sentiment is no longer valid in the uppermost 10% of the tropical Pacific Ocean nor at the surface of the global ocean. One of the remarkable legacies of the 1985-1994 Tropical Oceans Global Atmosphere (TOGA) Program is an in situ marine meteorological and upper oceanographic measurement array throughout the equatorial Pacific to monitor the development and maintenance of El Nino episodes. The TOGA Observing System, which initially consisted of moored- and drifting-buoy arrays, a network of commercial ships, and coastal and island stations, now includes a constellation of satellites and data-assimilating models to simulate subsurface oceanographic conditions. The El Nino and La Nina tropical Pacific Ocean observing system represents the initial phase of an integrated global ocean observing system. Remarkable improvements have been made in ocean model simulation of subsurface currents, but some problems persist. For example, the simulation of the South Equatorial Current (SEC) remains an important challenge in the 2S-2N Pacific equatorial wave guide. During El Nino the SEC at the equator is reduced and sometimes the direction is reversed, becoming eastward. Both conditions allow warm water stored in the western Pacific to invade the eastern region, creating an El Nino episode. Assimilation of data is a tenet of faith to correct simulation errors caused by deficiencies in surface fluxes (especially wind stress) and parameterizations of subgrid-scale physical processes. In the first of two numerical experiments, the Pacific SEC was simulated with and without assimilation of subsurface temperature data. Along the equator, a very weak SEC occurred throughout the eastern Pacific, independent of assimilation of data. However, as displayed in the diagram, in the western Pacific there was no satisfactory agreement between the two

  2. Observations and Simulations of Electron Dynamics Near an Active Neutral Line

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Hwang, Kyoung-Joo; Ashour-Abdalla, Maha; El-Aloui, Mostafa; Schriver, David; Richard, Robert; Zhou, Meng; Walker, Ray

    2010-01-01

    Recent observations in the Earth's magnetotail have shown rapid increases in the fluxes of energetic electrons with energies up to 100's of keV associated with dipolarization fronts that propagate into the inner magnetosphere. On August 15, 2001 the four Cluster spacecraft located slightly dawnward of midnight (yGSM approx. -5.4RE) at xGSM approx. -18RE observed a series of earthward propagating dipolarization fronts [Hwang et al., 2010]. At least 6 dipolarization fronts were observed in a 20m interval. Unlike previously reported cases the fluxes of electrons up to 95keV decreased during the passage of the first three fronts over the spacecraft. The energetic electron fluxes increased during the passage of the last three fronts. We have performed a global magnetohydrodynamic simulation of this event using solar wind observations from the ACE satellite to drive the simulation. In the simulation a very complex reconnection system in the near-Earth tail at XGSM approx. -20RE launched a series of earthward propagating dipolarization fronts that are similar to those observed on Cluster. The simulation results indicate that the Cluster spacecraft were just earthward of the reconnection site. In this paper we will present a study of the dynamics of electrons associated with these events by using the large-scale kinetic simulation approach in which we launch a large number of electrons into the electric and magnetic fields from this simulation.

  3. Laboratory observations and simulations of phase reddening

    NASA Astrophysics Data System (ADS)

    Schröder, S. E.; Grynko, Ye.; Pommerol, A.; Keller, H. U.; Thomas, N.; Roush, T. L.

    2014-09-01

    The visible reflectance spectrum of many Solar System bodies changes with changing viewing geometry for reasons not fully understood. It is often observed to redden (increasing spectral slope) with increasing solar phase angle, an effect known as phase reddening. Only once, in an observation of the martian surface by the Viking 1 lander, was reddening observed up to a certain phase angle with bluing beyond, making the reflectance ratio as a function of phase angle shaped like an arch. However, in laboratory experiments this arch-shape is frequently encountered. To investigate this, we measured the bidirectional reflectance of particulate samples of several common rock types in the 400-1000 nm wavelength range and performed ray-tracing simulations. We confirm the occurrence of the arch for surfaces that are forward scattering, i.e. are composed of semi-transparent particles and are smooth on the scale of the particles, and for which the reflectance increases from the lower to the higher wavelength in the reflectance ratio. The arch shape is reproduced by the simulations, which assume a smooth surface. However, surface roughness on the scale of the particles, such as the Hapke and van Horn (Hapke, B., van Horn, H. [1963]. J. Geophys. Res. 68, 4545-4570) fairy castles that can spontaneously form when sprinkling a fine powder, leads to monotonic reddening. A further consequence of this form of microscopic roughness (being indistinct without the use of a microscope) is a flattening of the disk function at visible wavelengths, i.e. Lommel-Seeliger-type scattering. The experiments further reveal monotonic reddening for reflectance ratios at near-IR wavelengths. The simulations fail to reproduce this particular reddening, and we suspect that it results from roughness on the surface of the particles. Given that the regolith of atmosphereless Solar System bodies is composed of small particles, our results indicate that the prevalence of monotonic reddening and Lommel

  4. Synthetic observations of protostellar multiple systems

    NASA Astrophysics Data System (ADS)

    Lomax, O.; Whitworth, A. P.

    2018-04-01

    Observations of protostars are often compared with synthetic observations of models in order to infer the underlying physical properties of the protostars. The majority of these models have a single protostar, attended by a disc and an envelope. However, observational and numerical evidence suggests that a large fraction of protostars form as multiple systems. This means that fitting models of single protostars to observations may be inappropriate. We produce synthetic observations of protostellar multiple systems undergoing realistic, non-continuous accretion. These systems consist of multiple protostars with episodic luminosities, embedded self-consistently in discs and envelopes. We model the gas dynamics of these systems using smoothed particle hydrodynamics and we generate synthetic observations by post-processing the snapshots using the SPAMCART Monte Carlo radiative transfer code. We present simulation results of three model protostellar multiple systems. For each of these, we generate 4 × 104 synthetic spectra at different points in time and from different viewing angles. We propose a Bayesian method, using similar calculations to those presented here, but in greater numbers, to infer the physical properties of protostellar multiple systems from observations.

  5. Simulating optoelectronic systems for remote sensing with SENSOR

    NASA Astrophysics Data System (ADS)

    Boerner, Anko

    2003-04-01

    The consistent end-to-end simulation of airborne and spaceborne remote sensing systems is an important task and sometimes the only way for the adaptation and optimization of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software ENvironment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. It allows the simulation of a wide range of optoelectronic systems for remote sensing. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. Part three consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimization requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and examples of its use are given. The verification of SENSOR is demonstrated.

  6. Dynamic system simulation of small satellite projects

    NASA Astrophysics Data System (ADS)

    Raif, Matthias; Walter, Ulrich; Bouwmeester, Jasper

    2010-11-01

    A prerequisite to accomplish a system simulation is to have a system model holding all necessary project information in a centralized repository that can be accessed and edited by all parties involved. At the Institute of Astronautics of the Technische Universitaet Muenchen a modular approach for modeling and dynamic simulation of satellite systems has been developed called dynamic system simulation (DySyS). DySyS is based on the platform independent description language SysML to model a small satellite project with respect to the system composition and dynamic behavior. A library of specific building blocks and possible relations between these blocks have been developed. From this library a system model of the satellite of interest can be created. A mapping into a C++ simulation allows the creation of an executable system model with which simulations are performed to observe the dynamic behavior of the satellite. In this paper DySyS is used to model and simulate the dynamic behavior of small satellites, because small satellite projects can act as a precursor to demonstrate the feasibility of a system model since they are less complex compared to a large scale satellite project.

  7. Observations and simulations of the ionospheric lunar tide: Seasonal variability

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.

    2014-07-01

    The seasonal variability of the ionospheric lunar tide is investigated using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations and thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. The present study focuses on the seasonal variability of the lunar tide in the ionosphere and its potential connection to the occurrence of stratosphere sudden warmings (SSWs). COSMIC maximum F region electron density (NmF2) and total electron content observations reveal a primarily annual variation of the ionospheric lunar tide, with maximum amplitudes occurring at low latitudes during December-February. Simulations of the lunar tide climatology in TIME-GCM display a similar annual variability as the COSMIC observations. This leads to the conclusion that the annual variability of the lunar tide in the ionosphere is not solely due to the occurrence of SSWs. Rather, the annual variability of the lunar tide in the ionosphere is generated by the seasonal variability of the lunar tide at E region altitudes. However, compared to the observations, the ionospheric lunar tide annual variability is weaker in the climatological simulations which is attributed to the occurrence of SSWs during the majority of the years included in the observations. Introducing a SSW into the TIME-GCM simulation leads to an additional enhancement of the lunar tide during Northern Hemisphere winter, increasing the lunar tide annual variability and resulting in an annual variability that is more consistent with the observations. The occurrence of SSWs can therefore potentially bias lunar tide climatologies, and it is important to consider these effects in studies of the lunar tide in the atmosphere and ionosphere.

  8. Galaxy simulations: Kinematics and mock observations

    NASA Astrophysics Data System (ADS)

    Moody, Christopher E.

    2013-08-01

    There are six topics to my thesis, which are: (1) slow rotator production in varied simulation schemes and kinematically decoupled cores and twists in those simulations, (2) the change in number of clumps in radiation pressure and no-radiation pressure simulations, (3) Sunrise experiments and failures including UVJ color-color dust experiments and UVbeta slopes, (4) the Sunrise image pipeline and algorithms. Cosmological simulations of have typically produced too many stars at early times. We find that the additional radiation pressure (RP) feedback suppresses star formation globally by a factor of ~ 3. Despite this reduction, the simulation still overproduces stars by a factor of ~ 2 with respect to the predictions provided by abundance matching methods. In simulations with RP the number of clumps falls dramatically. However, only clumps with masses Mclump/Mdisk ≤ 8% are impacted by the inclusion of RP, and clump counts above this range are comparable. Above this mass, the difference between and RP and no-RP contrast ratios diminishes. If we restrict our selection to galaxies hosting at least a single clump above this mass range then clump numbers, contrast ratios, survival fractions and total clump masses show little discrepancy between RP and no-RP simulations. By creating mock Hubble Space Telescope observations we find that the number of clumps is slightly reduced in simulations with RP. We demonstrate that clumps found in any single gas, stellar, or mock observation image are not necessarily clumps found in another map, and that there are few clumps common to multiple maps. New kinematic observations from ATLAS3D have highlighted the need to understand the evolutionary mechanism leading to a spectrum of fast-rotator and slow-rotators in early-type galaxies. We address the formation of slow and fast rotators through a series of controlled, comprehensive hydrodynamic simulations sampling idealized galaxy merger formation scenarios constructed from model

  9. MHSS: a material handling system simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomernacki, L.; Hollstien, R.B.

    1976-04-07

    A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can bemore » adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)« less

  10. Evolution of Mesoscale Convective System over the South Western Peninsular India: Observations from Microwave Radiometer and Simulations using WRF

    NASA Astrophysics Data System (ADS)

    Uma, K. N.; Krishna Moorthy, K.; Sijikumar, S.; Renju, R.; Tinu, K. A.; Raju, Suresh C.

    2012-07-01

    Meso-scale Convective Systems (MCS) are important in view of their large cumulous build-up, vertical extent, short horizontal extent and associated thundershowers. The Microwave Radiometer Profiler (MRP) over the equatorial coastal station Thiruvanathapuram (Trivandrum, 8.55oN, 76.9oE), has been utilized to understand the genesis of Mesoscale convective system (MCS), that occur frequently during the pre-monsoon season. Examination of the measurement of relative humidity, temperature and cloud liquid water measurements, over the zenith and two scanning elevation angles (15o) viewing both over the land and the sea respectively revealed that the MCS generally originate over the land during early afternoon hours, propagate seawards over the observational site and finally dissipate over the sea, with accompanying rainfall and latent heat release. The simulations obtained using Advanced Research-Weather Research and Forecast (WRF-ARW) model effectively reproduces the thermodynamical and microphysical properties of the MCS. The time duration and quantity of rainfall obtained by the simulations also well compared with the observations. Analysis also suggests that wind shear in the upper troposphere is responsible for the growth and the shape of the convective cloud.

  11. The role of historical forcings in simulating the observed Atlantic multidecadal oscillation

    NASA Astrophysics Data System (ADS)

    Murphy, Lisa N.; Bellomo, Katinka; Cane, Mark; Clement, Amy

    2017-03-01

    We analyze the Atlantic multidecadal oscillation (AMO) in the preindustrial (PI) and historical (HIST) simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to assess the drivers of the observed AMO from 1865 to 2005. We draw 141 year samples from the 41 CMIP5 model's PI runs and compare the correlation and variance between the observed AMO and the simulated PI and HIST AMO. The correlation coefficients in 38 forced (HIST) models are above the 90% confidence level and explain up to 56% of the observed variance. The probability that any of the unforced (PI) models do as well is less than 3% in 31 models. Multidecadal variability is larger in 39 CMIP5 HIST simulations and in all HIST members of the Community Earth System Model Large Ensemble than their corresponding PI. We conclude that there is an essential role for external forcing in driving the observed AMO.

  12. Evaluating Simulated Tropical Convective Cores using HAIC-HIWC Microphysics and Dynamics Observations

    NASA Astrophysics Data System (ADS)

    Stanford, M.; Varble, A.; Zipser, E. J.; Strapp, J. W.; Leroy, D.; Schwarzenboeck, A.; Korolev, A.; Potts, R.

    2016-12-01

    A model intercomparison study is conducted to identify biases in simulated tropical convective core microphysical properties using two popular bulk parameterization schemes (Thompson and Morrison) and the Fast Spectral Bin Microphysics (FSBM) scheme. In-situ aircraft measurements of total condensed water content (TWC) and particle size distributions are compared with output from high-resolution WRF simulations of 4 mesoscale convective system (MCS) cases during the High Altitude Ice Crystals-High Ice Water Content (HAIC-HIWC) field campaign conducted in Darwin, Australia in 2014 and Cayenne, French Guiana in 2015. Observations of TWC collected using an isokinetic evaporator probe (IKP) optimized for high IWC measurements in conjunction with particle image processing from two optical array probes aboard the Falcon-20 research aircraft were used to constrain mass-size relationships in the observational dataset. Hydrometeor mass size distributions are compared between retrievals and simulations providing insight into the well-known high bias in simulated convective radar reflectivity. For TWC > 1 g m-3 between -10 and -40°C, simulations generally produce significantly greater median mass diameters (MMDs). Observations indicate that a sharp particle size mode occurs at 300 μm for large TWC values (> 2 g m-3) regardless of temperature. All microphysics schemes fail to reproduce this feature, and relative contributions of different hydrometeor species to this size bias vary between schemes. Despite far greater sample sizes, simulations also fail to produce high TWC conditions with very little of the mass contributed by large particles for a range of temperatures, despite such conditions being observed. Considering vapor grown particles alone in comparison with observations fails to correct the bias present in all schemes. Decreasing horizontal resolution from 1 km to 333 m shifts graupel and rain size distributions to slightly smaller sizes, but increased resolution

  13. Hemispheric Coupling: Comparing Dynamo Simulations and Observations

    NASA Astrophysics Data System (ADS)

    Norton, A. A.; Charbonneau, P.; Passos, D.

    2014-12-01

    Numerical simulations that reproduce solar-like magnetic cycles can be used to generate long-term statistics. The variations in north-south hemispheric solar cycle synchronicity and amplitude produced in simulations has not been widely compared to observations. The observed limits on solar cycle amplitude and phase asymmetry show that hemispheric sunspot area production is no more than 20 % asymmetric for cycles 17-23 and that phase lags do not exceed 20 % (or two years) of the total cycle period, as determined from Royal Greenwich Observatory sunspot data. Several independent studies have found a long-term trend in phase values as one hemisphere leads the other for, on average, four cycles. Such persistence in phase is not indicative of a stochastic phenomenon. We compare these observational findings to the magnetic cycle found in a numerical simulation of solar convection recently produced with the EULAG-MHD model. This long "millennium simulation" spans more than 1600 years and generated 40 regular, sunspot-like cycles. While the simulated cycle length is too long (˜40 yrs) and the toroidal bands remain at too high of latitudes (>30°), some solar-like aspects of hemispheric asymmetry are reproduced. The model is successful at reproducing the synchrony of polarity inversions and onset of cycle as the simulated phase lags do not exceed 20 % of the cycle period. The simulated amplitude variations between the north and south hemispheres are larger than those observed in the Sun, some up to 40 %. An interesting note is that the simulations also show that one hemisphere can persistently lead the other for several successive cycles, placing an upper bound on the efficiency of transequatorial magnetic coupling mechanisms. These include magnetic diffusion, cross-equatorial mixing within latitudinally-elongated convective rolls (a.k.a. "banana cells") and transequatorial meridional flow cells. One or more of these processes may lead to magnetic flux cancellation whereby

  14. Simulated GOLD Observations of Atmospheric Waves

    NASA Astrophysics Data System (ADS)

    Correira, J.; Evans, J. S.; Lumpe, J. D.; Rusch, D. W.; Chandran, A.; Eastes, R.; Codrescu, M.

    2016-12-01

    The Global-scale Observations of the Limb and Disk (GOLD) mission will measure structures in the Earth's airglow layer due to dynamical forcing by vertically and horizontally propagating waves. These measurements focus on global-scale structures, including compositional and temperature responses resulting from dynamical forcing. Daytime observations of far-UV emissions by GOLD will be used to generate two-dimensional maps of the ratio of atomic oxygen and molecular nitrogen column densities (ΣO/N2 ) as well as neutral temperature that provide signatures of large-scale spatial structure. In this presentation, we use simulations to demonstrate GOLD's capability to deduce periodicities and spatial dimensions of large-scale waves from the spatial and temporal evolution observed in composition and temperature maps. Our simulations include sophisticated forward modeling of the upper atmospheric airglow that properly accounts for anisotropy in neutral and ion composition, temperature, and solar illumination. Neutral densities and temperatures used in the simulations are obtained from global circulation and climatology models that have been perturbed by propagating waves with a range of amplitudes, periods, and sources of excitation. Modeling of airglow emission and predictions of ΣO/N2 and neutral temperatures are performed with the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) and associated derived product algorithms. Predicted structure in ΣO/N2 and neutral temperature due to dynamical forcing by propagating waves is compared to existing observations. Realistic GOLD Level 2 data products are generated from simulated airglow emission using algorithm code that will be implemented operationally at the GOLD Science Data Center.

  15. Observing the baryon cycle in hydrodynamic cosmological simulations

    NASA Astrophysics Data System (ADS)

    Vander Vliet, Jacob Richard

    An understanding of galaxy evolution requires an understanding of the flow of baryons in and out of a galaxy. The accretion of baryons is required for galaxies to form stars, while stars eject baryons out of the galaxy through stellar feedback mechanisms such as supernovae, stellar winds, and radiation pressure. The interplay between outfiowing and infalling material form the circumgalactic medium (CGM). Hydrodynamic simulations provide understanding of the connection between stellar feedback and the distribution and kinematics of baryons in the CGM. To compare simulations and observations properly the simulated CGI must be observed in the same manner as the real CGM. I have developed the Mockspec code to generate synthetic quasar absorption line observations of the CGM in cosmological hydrodynamic simulations. Mockspec generates synthetic spectra based on the phase; lnetallicity, and kinematics of CGM gas and mimics instrumental effects. Mockspec includes automated analysis of the spectra and identifies the gas responsible for the absorption. Mockspec was applied to simulations of dwarf galaxies at low redshift to examine the observable effect different feedback models have on the CGM. While the different feedback models had strong effects on the galaxy, they all produced a similar CGM that failed match observations. Mockspec was applied to the VELA simulation suite of high redshift, high mass galaxies to examine the variance of the CGM across different galaxies in different environments. The observed CGM showed little variation between the different galaxies and almost no evolution from z=4 to z=1. The VELAs were not able to generate a CGM to match the observations. The properties of cells responsible for the absorption were compared to the derived properties from Voigt Profile decomposition. VP modeling was found to accurately describe the HI and MgII absorbing gas but failed for high ionization species such as CIV and OVI, which do not arise in the coherent

  16. Observation and numerical simulation of a convective initiation during COHMEX

    NASA Technical Reports Server (NTRS)

    Song, J. Aaron; Kaplan, Michael L.

    1991-01-01

    Under a synoptically undisturbed condition, a dual-peak convective lifecycle was observed with the COoperative Huntsville Meteorological EXperiment (COHMEX) observational network over a 24-hour period. The lifecycle included a multicell storm, which lasted about 6 hours, produced a peak rainrate exceeding 100 mm/hr, and initiated a downstream mesoscale convective system. The 24-hour accumulated rainfall of this event was the largest during the entire COHMEX. The downstream mesoscale convective system, unfortunately, was difficult to investigate quantitatively due to the lack of mesoscale observations. The dataset collected near the time of the multicell storm evolution, including its initiation, was one of the best datasets of COHMEX. In this study, the initiation of this multicell storm is chosen as the target of the numerical simulations.

  17. Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Aucelli, Pietro; Budillon, Giorgio; De Stefano, Massimo; Di Luccio, Diana; Di Paola, Gianluigi; Montella, Raffaele; Mucerino, Luigi; Sica, Mario; Pennetta, Micla

    2017-09-01

    The prediction of the formation, spacing and location of rip currents is a scientific challenge that can be achieved by means of different complementary methods. In this paper the analysis of numerical and experimental data, including RPAS (remotely piloted aircraft systems) observations, allowed us to detect the presence of rip currents and rip channels at the mouth of Sele River, in the Gulf of Salerno, southern Italy. The dataset used to analyze these phenomena consisted of two different bathymetric surveys, a detailed sediment analysis and a set of high-resolution wave numerical simulations, completed with Google EarthTM images and RPAS observations. The grain size trend analysis and the numerical simulations allowed us to identify the rip current occurrence, forced by topographically constrained channels incised on the seabed, which were compared with observations.

  18. Quantitative Comparison of the Variability in Observed and Simulated Shortwave Reflectance

    NASA Technical Reports Server (NTRS)

    Roberts, Yolanda, L.; Pilewskie, P.; Kindel, B. C.; Feldman, D. R.; Collins, W. D.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system that has been designed to monitor the Earth's climate with unprecedented absolute radiometric accuracy and SI traceability. Climate Observation System Simulation Experiments (OSSEs) have been generated to simulate CLARREO hyperspectral shortwave imager measurements to help define the measurement characteristics needed for CLARREO to achieve its objectives. To evaluate how well the OSSE-simulated reflectance spectra reproduce the Earth s climate variability at the beginning of the 21st century, we compared the variability of the OSSE reflectance spectra to that of the reflectance spectra measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY). Principal component analysis (PCA) is a multivariate decomposition technique used to represent and study the variability of hyperspectral radiation measurements. Using PCA, between 99.7%and 99.9%of the total variance the OSSE and SCIAMACHY data sets can be explained by subspaces defined by six principal components (PCs). To quantify how much information is shared between the simulated and observed data sets, we spectrally decomposed the intersection of the two data set subspaces. The results from four cases in 2004 showed that the two data sets share eight (January and October) and seven (April and July) dimensions, which correspond to about 99.9% of the total SCIAMACHY variance for each month. The spectral nature of these shared spaces, understood by examining the transformed eigenvectors calculated from the subspace intersections, exhibit similar physical characteristics to the original PCs calculated from each data set, such as water vapor absorption, vegetation reflectance, and cloud reflectance.

  19. Evaluation of simulated tropical convective updraft hydrometeor properties using aircraft observations

    NASA Astrophysics Data System (ADS)

    Stanford, McKenna W.

    The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) field campaign produced aircraft retrievals of total condensed water content (TWC), hydrometeor particle size distributions, and vertical velocity (w) in high ice water content regions of tropical mesoscale convective systems (MCSs). These observations are used to evaluate deep convective updraft properties in high-resolution nested Weather Research and Forecasting (WRF) simulations of observed MCSs. Because simulated hydrometeor properties are highly sensitive to the parameterization of microphysics, three commonly used microphysical parameterizations are tested, including two bulk schemes (Thompson and Morrison) and one bin scheme (Fast Spectral Bin Microphysics). A commonly documented bias in cloud-resolving simulations is the exaggeration of simulated radar reflectivities aloft in tropical MCSs. This may result from overly strong convective updrafts that loft excessive condensate mass and from simplified approximations of hydrometeor size distributions, properties, species separation, and microphysical processes. The degree to which the reflectivity bias is a separate function of convective dynamics, condensate mass, and hydrometeor size has yet to be addressed. This research untangles these components by comparing simulated and observed relationships between w, TWC, and hydrometer size as a function of temperature. All microphysics schemes produce median mass diameters that are generally larger than observed for temperatures between -10 °C and -40 °C and TWC > 1 g m-3. Observations produce a prominent mode in the composite mass size distribution around 300 microm, but under most conditions, all schemes shift the distribution mode to larger sizes. Despite a much greater number of samples, all simulations fail to reproduce observed high TWC or high w conditions between -20 °C and -40 °C in which only a small fraction of condensate mass is found in relatively large particle sizes. Increasing

  20. SIM_ADJUST -- A computer code that adjusts simulated equivalents for observations or predictions

    USGS Publications Warehouse

    Poeter, Eileen P.; Hill, Mary C.

    2008-01-01

    This report documents the SIM_ADJUST computer code. SIM_ADJUST surmounts an obstacle that is sometimes encountered when using universal model analysis computer codes such as UCODE_2005 (Poeter and others, 2005), PEST (Doherty, 2004), and OSTRICH (Matott, 2005; Fredrick and others (2007). These codes often read simulated equivalents from a list in a file produced by a process model such as MODFLOW that represents a system of interest. At times values needed by the universal code are missing or assigned default values because the process model could not produce a useful solution. SIM_ADJUST can be used to (1) read a file that lists expected observation or prediction names and possible alternatives for the simulated values; (2) read a file produced by a process model that contains space or tab delimited columns, including a column of simulated values and a column of related observation or prediction names; (3) identify observations or predictions that have been omitted or assigned a default value by the process model; and (4) produce an adjusted file that contains a column of simulated values and a column of associated observation or prediction names. The user may provide alternatives that are constant values or that are alternative simulated values. The user may also provide a sequence of alternatives. For example, the heads from a series of cells may be specified to ensure that a meaningful value is available to compare with an observation located in a cell that may become dry. SIM_ADJUST is constructed using modules from the JUPITER API, and is intended for use on any computer operating system. SIM_ADJUST consists of algorithms programmed in Fortran90, which efficiently performs numerical calculations.

  1. Validation: Codes to compare simulation data to various observations

    NASA Astrophysics Data System (ADS)

    Cohn, J. D.

    2017-02-01

    Validation provides codes to compare several observations to simulated data with stellar mass and star formation rate, simulated data stellar mass function with observed stellar mass function from PRIMUS or SDSS-GALEX in several redshift bins from 0.01-1.0, and simulated data B band luminosity function with observed stellar mass function, and to create plots for various attributes, including stellar mass functions, and stellar mass to halo mass. These codes can model predictions (in some cases alongside observational data) to test other mock catalogs.

  2. Observability of ionospheric space-time structure with ISR: A simulation study

    NASA Astrophysics Data System (ADS)

    Swoboda, John; Semeter, Joshua; Zettergren, Matthew; Erickson, Philip J.

    2017-02-01

    The sources of error from electronically steerable array (ESA) incoherent scatter radar (ISR) systems are investigated both theoretically and with use of an open-source ISR simulator, developed by the authors, called Simulator for ISR (SimISR). The main sources of error incorporated in the simulator include statistical uncertainty, which arises due to nature of the measurement mechanism and the inherent space-time ambiguity from the sensor. SimISR can take a field of plasma parameters, parameterized by time and space, and create simulated ISR data at the scattered electric field (i.e., complex receiver voltage) level, subsequently processing these data to show possible reconstructions of the original parameter field. To demonstrate general utility, we show a number of simulation examples, with two cases using data from a self-consistent multifluid transport model. Results highlight the significant influence of the forward model of the ISR process and the resulting statistical uncertainty on plasma parameter measurements and the core experiment design trade-offs that must be made when planning observations. These conclusions further underscore the utility of this class of measurement simulator as a design tool for more optimal experiment design efforts using flexible ESA class ISR systems.

  3. Impact of Assimilation of Conventional and Satellite Radiance GTS Observations on Simulation of Mesoscale Convective System Over Southeast India Using WRF-3DVar

    NASA Astrophysics Data System (ADS)

    Madhulatha, A.; Rajeevan, M.; Bhowmik, S. K. Roy; Das, A. K.

    2018-01-01

    The primary goal of present study is to investigate the impact of assimilation of conventional and satellite radiance observations in simulating the mesoscale convective system (MCS) formed over south east India. An assimilation methodology based on Weather Research and Forecasting model three dimensional variational data assimilation is considered. Few numerical experiments are carried out to examine the individual and combined impact of conventional and non-conventional (satellite radiance) observations. After the successful inclusion of additional observations, strong analysis increments of temperature and moisture fields are noticed and contributed to significant improvement in model's initial fields. The resulting model simulations are able to successfully reproduce the prominent synoptic features responsible for the initiation of MCS. Among all the experiments, the final experiment in which both conventional and satellite radiance observations assimilated has showed considerable impact on the prediction of MCS. The location, genesis, intensity, propagation and development of rain bands associated with the MCS are simulated reasonably well. The biases of simulated temperature, moisture and wind fields at surface and different pressure levels are reduced. Thermodynamic, dynamic and vertical structure of convective cells associated with the passage of MCS are well captured. Spatial distribution of rainfall is fairly reproduced and comparable to TRMM observations. It is demonstrated that incorporation of conventional and satellite radiance observations improved the local and synoptic representation of temperature, moisture fields from surface to different levels of atmosphere. This study highlights the importance of assimilation of conventional and satellite radiances in improving the models initial conditions and simulation of MCS.

  4. Finding the Needles in the Haystacks: High-Fidelity Models of the Modern and Archean Solar System for Simulating Exoplanet Observations

    NASA Technical Reports Server (NTRS)

    Roberge, Aki; Rizzo, Maxime J.; Lincowski, Andrew P.; Arney, Giada N.; Stark, Christopher C.; Robinson, Tyler D.; Snyder, Gregory F.; Pueyo, Laurent; Zimmerman, Neil T.; Jansen, Tiffany; hide

    2017-01-01

    We present two state-of-the-art models of the solar system, one corresponding to the present day and one to the Archean Eon 3.5 billion years ago. Each model contains spatial and spectral information for the star, the planets, and the interplanetary dust, extending to 50 au from the Sun and covering the wavelength range 0.3-2.5 micron. In addition, we created a spectral image cube representative of the astronomical backgrounds that will be seen behind deep observations of extrasolar planetary systems, including galaxies and Milky Way stars. These models are intended as inputs to high-fidelity simulations of direct observations of exoplanetary systems using telescopes equipped with high-contrast capability. They will help improve the realism of observation and instrument parameters that are required inputs to statistical observatory yield calculations, as well as guide development of post-processing algorithms for telescopes capable of directly imaging Earth-like planets.

  5. An adaptive tracking observer for failure-detection systems

    NASA Technical Reports Server (NTRS)

    Sidar, M.

    1982-01-01

    The design problem of adaptive observers applied to linear, constant and variable parameters, multi-input, multi-output systems, is considered. It is shown that, in order to keep the observer's (or Kalman filter) false-alarm rate (FAR) under a certain specified value, it is necessary to have an acceptable proper matching between the observer (or KF) model and the system parameters. An adaptive observer algorithm is introduced in order to maintain desired system-observer model matching, despite initial mismatching and/or system parameter variations. Only a properly designed adaptive observer is able to detect abrupt changes in the system (actuator, sensor failures, etc.) with adequate reliability and FAR. Conditions for convergence for the adaptive process were obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors and accurate and fast parameter identification, in both deterministic and stochastic cases.

  6. A Novel Observation-Guided Approach for Evaluating Mesoscale Convective Systems Simulated by the DOE ACME Model

    NASA Astrophysics Data System (ADS)

    Feng, Z.; Ma, P. L.; Hardin, J. C.; Houze, R.

    2017-12-01

    Mesoscale convective systems (MCSs) are the largest type of convective storms that develop when convection aggregates and induces mesoscale circulation features. Over North America, MCSs contribute over 60% of the total warm-season precipitation and over half of the extreme daily precipitation in the central U.S. Our recent study (Feng et al. 2016) found that the observed increases in springtime total and extreme rainfall in this region are dominated by increased frequency and intensity of long-lived MCSs*. To date, global climate models typically do not run at a resolution high enough to explicitly simulate individual convective elements and may not have adequate process representations for MCSs, resulting in a large deficiency in projecting changes of the frequency of extreme precipitation events in future climate. In this study, we developed a novel observation-guided approach specifically designed to evaluate simulated MCSs in the Department of Energy's climate model, Accelerated Climate Modeling for Energy (ACME). The ACME model has advanced treatments for convection and subgrid variability and for this study is run at 25 km and 100 km grid spacings. We constructed a robust MCS database consisting of over 500 MCSs from 3 warm-season observations by applying a feature-tracking algorithm to 4-km resolution merged geostationary satellite and 3-D NEXRAD radar network data over the Continental US. This high-resolution MCS database is then down-sampled to the 25 and 100 km ACME grids to re-characterize key MCS properties. The feature-tracking algorithm is adapted with the adjusted characteristics to identify MCSs from ACME model simulations. We demonstrate that this new analysis framework is useful for evaluating ACME's warm-season precipitation statistics associated with MCSs, and provides insights into the model process representations related to extreme precipitation events for future improvement. *Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson

  7. Minerva exoplanet detection sensitivity from simulated observations

    NASA Astrophysics Data System (ADS)

    McCrady, Nate; Nava, C.

    2014-01-01

    Small rocky planets induce radial velocity signals that are difficult to detect in the presence of stellar noise sources of comparable or larger amplitude. Minerva is a dedicated, robotic observatory that will attain 1 meter per second precision to detect these rocky planets in the habitable zone around nearby stars. We present results of an ongoing project investigating Minerva’s planet detection sensitivity as a function of observational cadence, planet mass, and orbital parameters (period, eccentricity, and argument of periastron). Radial velocity data is simulated with realistic observing cadence, accounting for weather patterns at Mt. Hopkins, Arizona. Instrumental and stellar noise are added to the simulated observations, including effects of oscillation, jitter, starspots and rotation. We extract orbital parameters from the simulated RV data using the RVLIN code. A Monte Carlo analysis is used to explore the parameter space and evaluate planet detection completeness. Our results will inform the Minerva observing strategy by providing a quantitative measure of planet detection sensitivity as a function of orbital parameters and cadence.

  8. Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits or Instrument Simulators

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Hemler, Richard S.; Hofman, Robert J. Patrick; Pincus, Robert; Platnick, Steven

    2011-01-01

    The properties of clouds that may be observed by satellite instruments, such as optical depth and cloud top pressure, are only loosely related to the way clouds m-e represented in models of the atmosphere. One way to bridge this gap is through "instrument simulators," diagnostic tools that map the model representation to synthetic observations so that differences between simulator output and observations can be interpreted unambiguously as model error. But simulators may themselves be restricted by limited information available from the host model or by internal assumptions. This paper considers the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties. The authors review the measurements and algorithms underlying these two cloud climatologies, introduce a MODIS simulator, and detail data sets developed for comparison with global models using ISCCP and MODIS simulators, In nature MODIS observes less mid-level doudines!> than ISCCP, consistent with the different methods used to determine cloud top pressure; aspects of this difference are reproduced by the simulators running in a climate modeL But stark differences between MODIS and ISCCP observations of total cloudiness and the distribution of cloud optical thickness can be traced to different approaches to marginal pixels, which MODIS excludes and ISCCP treats as homogeneous. These pixels, which likely contain broken clouds, cover about 15 k of the planet and contain almost all of the optically thinnest clouds observed by either instrument. Instrument simulators can not reproduce these differences because the host model does not consider unresolved spatial scales and so can not produce broken pixels. Nonetheless, MODIS and ISCCP observation are consistent for all but the optically-thinnest clouds, and models can be robustly evaluated using instrument simulators by excluding ambiguous observations.

  9. Particle simulation of plasmas and stellar systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, T.; Clark, A.; Craddock, G.G.

    1985-04-01

    A computational technique is introduced which allows the student and researcher an opportunity to observe the physical behavior of a class of many-body systems. A series of examples is offered which illustrates the diversity of problems that may be studied using particle simulation. These simulations were in fact assigned as homework in a course on computational physics.

  10. Simulated convective systems using a cloud resolving model: Impact of large-scale temperature and moisture forcing using observations and GEOS-3 reanalysis

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Hou, A.; Lin, X.

    2006-01-01

    The GCE (Goddard Cumulus Ensemble) model, which has been developed and improved at NASA Goddard Space Flight Center over the past two decades, is considered as one of the finer and state-of-the-art CRMs (Cloud Resolving Models) in the research community. As the chosen CRM for a NASA Interdisciplinary Science (IDS) Project, GCE has recently been successfully upgraded into an MPI (Message Passing Interface) version with which great improvement has been achieved in computational efficiency, scalability, and portability. By basically using the large-scale temperature and moisture advective forcing, as well as the temperature, water vapor and wind fields obtained from TRMM (Tropical Rainfall Measuring Mission) field experiments such as SCSMEX (South China Sea Monsoon Experiment) and KWAJEX (Kwajalein Experiment), our recent 2-D and 3-D GCE simulations were able to capture detailed convective systems typical of the targeted (simulated) regions. The GEOS-3 [Goddard EOS (Earth Observing System) Version-3] reanalysis data have also been proposed and successfully implemented for usage in the proposed/performed GCE long-term simulations (i.e., aiming at producing massive simulated cloud data -- Cloud Library) in compensating the scarcity of real field experimental data in both time and space (location). Preliminary 2-D or 3-D pilot results using GEOS-3 data have generally showed good qualitative agreement (yet some quantitative difference) with the respective numerical results using the SCSMEX observations. The first objective of this paper is to ensure the GEOS-3 data quality by comparing the model results obtained from several pairs of simulations using the real observations and GEOS-3 reanalysis data. The different large-scale advective forcing obtained from these two kinds of resources (i.e., sounding observations and GEOS-3 reanalysis) has been considered as a major critical factor in producing various model results. The second objective of this paper is therefore to

  11. Weather Observation Systems and Efficiency of Fighting Forest Fires

    NASA Astrophysics Data System (ADS)

    Khabarov, N.; Moltchanova, E.; Obersteiner, M.

    2007-12-01

    Weather observation is an essential component of modern forest fire management systems. Satellite and in-situ based weather observation systems might help to reduce forest loss, human casualties and destruction of economic capital. In this paper, we develop and apply a methodology to assess the benefits of various weather observation systems on reductions of burned area due to early fire detection. In particular, we consider a model where the air patrolling schedule is determined by a fire hazard index. The index is computed from gridded daily weather data for the area covering parts Spain and Portugal. We conduct a number of simulation experiments. First, the resolution of the original data set is artificially reduced. The reduction of the total forest burned area associated with air patrolling based on a finer weather grid indicates the benefit of using higher spatially resolved weather observations. Second, we consider a stochastic model to simulate forest fires and explore the sensitivity of the model with respect to the quality of input data. The analysis of combination of satellite and ground monitoring reveals potential cost saving due to a "system of systems effect" and substantial reduction in burned area. Finally, we estimate the marginal improvement schedule for loss of life and economic capital as a function of the improved fire observing system.

  12. Comparing Simulations and Observations of Galaxy Evolution: Methods for Constraining the Nature of Stellar Feedback

    NASA Astrophysics Data System (ADS)

    Hummels, Cameron

    Computational hydrodynamical simulations are a very useful tool for understanding how galaxies form and evolve over cosmological timescales not easily revealed through observations. However, they are only useful if they reproduce the sorts of galaxies that we see in the real universe. One of the ways in which simulations of this sort tend to fail is in the prescription of stellar feedback, the process by which nascent stars return material and energy to their immediate environments. Careful treatment of this interaction in subgrid models, so-called because they operate on scales below the resolution of the simulation, is crucial for the development of realistic galaxy models. Equally important is developing effective methods for comparing simulation data against observations to ensure galaxy models which mimic reality and inform us about natural phenomena. This thesis examines the formation and evolution of galaxies and the observable characteristics of the resulting systems. We employ extensive use of cosmological hydrodynamical simulations in order to simulate and interpret the evolution of massive spiral galaxies like our own Milky Way. First, we create a method for producing synthetic photometric images of grid-based hydrodynamical models for use in a direct comparison against observations in a variety of filter bands. We apply this method to a simulation of a cluster of galaxies to investigate the nature of the red-sequence/blue-cloud dichotomy in the galaxy color-magnitude diagram. Second, we implement several subgrid models governing the complex behavior of gas and stars on small scales in our galaxy models. Several numerical simulations are conducted with similar initial conditions, where we systematically vary the subgrid models, afterward assessing their efficacy through comparisons of their internal kinematics with observed systems. Third, we generate an additional method to compare observations with simulations, focusing on the tenuous circumgalactic

  13. Science simulations for the New Worlds Observer

    NASA Astrophysics Data System (ADS)

    Schindhelm, Eric; Cash, Webster; Seager, Sara

    2005-08-01

    The New Worlds Observer, currently studied under a NASA Institute for Advanced Concepts grant, will be a pinhole camera in space designed to directly detect and study extrasolar terrestrial planets. An apodized occultor or pinhole creates an image of the planetary system in the focal plane far away, where a second telescope craft orbits to detect the light. In this study we simulate the expected signal of NWO to find the optimal configuration and specifications of the two craft. The efficiency of direct detection through photometric imaging depends strongly on occulter and telescope size, while preliminary studies on absorption biomarker detection and photometric variability measurements are summarized.

  14. Theory and Simulation of Multicomponent Osmotic Systems

    PubMed Central

    Karunaweera, Sadish; Gee, Moon Bae; Weerasinghe, Samantha; Smith, Paul E.

    2012-01-01

    Most cellular processes occur in systems containing a variety of components many of which are open to material exchange. However, computer simulations of biological systems are almost exclusively performed in systems closed to material exchange. In principle, the behavior of biomolecules in open and closed systems will be different. Here, we provide a rigorous framework for the analysis of experimental and simulation data concerning open and closed multicomponent systems using the Kirkwood-Buff (KB) theory of solutions. The results are illustrated using computer simulations for various concentrations of the solutes Gly, Gly2 and Gly3 in both open and closed systems, and in the absence or presence of NaCl as a cosolvent. In addition, KB theory is used to help rationalize the aggregation properties of the solutes. Here one observes that the picture of solute association described by the KB integrals, which are directly related to the solution thermodynamics, and that provided by more physical clustering approaches are different. It is argued that the combination of KB theory and simulation data provides a simple and powerful tool for the analysis of complex multicomponent open and closed systems. PMID:23329894

  15. Evaluation of cloud-resolving model simulations of midlatitude cirrus with ARM and A-train observations

    DOE PAGES

    Muhlbauer, A.; Ackerman, T. P.; Lawson, R. P.; ...

    2015-07-14

    Cirrus clouds are ubiquitous in the upper troposphere and still constitute one of the largest uncertainties in climate predictions. Our paper evaluates cloud-resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration A-train satellites. The CRM simulations are driven with periodic boundary conditions and ARM forcing data, whereas the CSRM simulations are driven by the ERA-Interim product. Vertical profiles of temperature, relative humidity, and wind speeds are reasonably well simulated bymore » the CSRM and CRM, but there are remaining biases in the temperature, wind speeds, and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500 m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in general circulation models and in CSRM simulations with horizontal grid spacings on the order of 1 km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward the cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain, but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations

  16. Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system.

    PubMed

    Liu, Z; Voelger, P; Sugimoto, N

    2000-06-20

    We carried out a simulation study for the observation of clouds and aerosols with the Japanese Experimental Lidar in Space Equipment (ELISE), which is a two-wavelength backscatter lidar with three detection channels. The National Space Development Agency of Japan plans to launch the ELISE on the Mission Demonstrate Satellite 2 (MDS-2). In the simulations, the lidar return signals for the ELISE are calculated for an artificial, two-dimensional atmospheric model including different types of clouds and aerosols. The signal detection processes are simulated realistically by inclusion of various sources of noise. The lidar signals that are generated are then used as input for simulations of data analysis with inversion algorithms to investigate retrieval of the optical properties of clouds and aerosols. The results demonstrate that the ELISE can provide global data on the structures and optical properties of clouds and aerosols. We also conducted an analysis of the effects of cloud inhomogeneity on retrievals from averaged lidar profiles. We show that the effects are significant for space lidar observations of optically thick broken clouds.

  17. The role of historical forcings in simulating the observed Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    Goes, L. M.; Cane, M. A.; Bellomo, K.; Clement, A. C.

    2016-12-01

    The variation in basin-wide North Atlantic sea surface temperatures (SST), known as the Atlantic multidecadal oscillation (AMO), affects climate throughout the Northern Hemisphere and tropics, yet the forcing mechanisms are not fully understood. Here, we analyze the AMO in the Coupled Model Intercomparison Project phase 5 (CMIP5) Pre-industrial (PI) and Historical (HIST) simulations to determine the role of historical climate forcings in producing the observed 20th century shifts in the AMO (OBS, 1865-2005). We evaluate whether the agreement between models and observations is better with historical forcings or without forcing - i.e. due to processes internal to the climate system, such as the Atlantic Meridional Overturning Circulation (AMOC). To do this we draw 141-year samples from 38 CMIP5 PI runs and compare the correlation between the PI and HIST AMO to the observed AMO. We find that in the majority of models (24 out of 38), it is very unlikely (less than 10% chance) that the unforced simulations produce agreement with observations that are as high as the forced simulations. We also compare the amplitude of the simulated AMO and find that 87% of models produce multi-decadal variance in the AMO with historical forcings that is very likely higher than without forcing, but most models underestimate the variance of the observed AMO. This indicates that over the 20th century external rather than internal forcing was crucial in setting the pace, phase and amplitude of the AMO.

  18. Observers' focus of attention in the simulation of self-perception.

    PubMed

    Wegner, D M; Finstuen, K

    1977-01-01

    This research was designed to assess the effects of a manipulation of observers' focus of attention--from a focus on the actor to a focus on the actor's situation--upon observers' attributions of attitude to an actor in a simulation of a forced-compliance cognitive dissonance experiment. Observers induced through empathy instructions to focus attention on the actor's situation inferred less actor attitude positivity than did observers given no specific observational set. In addition, situation-focused observers inferred that the actor's attitude was directly related to reward magnitude, whereas actor-focused observers inferred that the actor's attitude was inversely related to reward magnitude. An extension of self-perception theory, offered as an interpretation of these and other results, suggested that motivation attribution made by actors and observers in dissonance and simulation studies are dependent on focus of attention. The attributions made by actor-focused observers simulate those of objectively self-aware actors and are based upon perceived intrinsic motivation; the attributions of situation-focused observers simulate those of subjectively self-aware actors and are based upon perceived extrinsic motivation.

  19. Southern Ocean Open Ocean Polynyas in Observations and from a Low- and a High-Resolution Fully-Coupled Earth System Model Simulation

    NASA Astrophysics Data System (ADS)

    Veneziani, C.; Kurtakoti, P. K.; Weijer, W.; Stoessel, A.

    2016-12-01

    In contrast to their better known coastal counterpart, open ocean polynyas (OOPs) form through complex driving mechanisms, involving pre-conditioning of the water column, external forcing and internal ocean dynamics, and are therefore much more elusive and less predictable than coastal polynyas. Yet, their impact on bottom water formation and the Meridional Overturning Circulation could prove substantial. Here, we characterize the formation of Southern Ocean OOPs by analyzing the full satellite NASA microwave imager and radiometer (SSMI/SMMR) data record from 1972 to present day. We repeat the same analysis within the low-resolution (LR) and high-resolution (HR) fully-coupled Earth System Model simulations that are part of the Accelerated Climate Model for Energy (ACME) v0 baseline experiments. The focus is on two OOPs that are more consistently seen in observations: the Maud Rise and the Weddell Sea polynyas. Results show that the LR simulation is unable to reproduce any OOP over the 195 years of its duration, while both Maud Rise and Weddell Sea polynyas are seen in the HR simulation, with extents similar to observations'. We explore possible mechanisms that would explain the asymmetric behavior, including topographic processes, eddy shedding events, and different water column stratification between the two simulations.

  20. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  1. Observing system simulations for small satellite formations estimating bidirectional reflectance

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Gatebe, Charles K.; Weck, Olivier de

    2015-12-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  2. Observing System Simulations for the NASA ASCENDS Lidar CO2 Mission Concept: Substantiating Science Measurement Requirements

    NASA Technical Reports Server (NTRS)

    Kawa, Stephan R.; Baker, David Frank; Schuh, Andrew E.; Abshire, James Brice; Browell, Edward V.; Michalak, Anna M.

    2012-01-01

    The NASA ASCENDS mission (Active Sensing of Carbon Emissions, Nights, Days, and Seasons) is envisioned as the next generation of dedicated, space-based CO2 observing systems, currently planned for launch in about the year 2022. Recommended by the US National Academy of Sciences Decadal Survey, active (lidar) sensing of CO2 from space has several potentially significant advantages, in comparison to current and planned passive CO2 instruments, that promise to advance CO2 measurement capability and carbon cycle understanding into the next decade. Assessment and testing of possible lidar instrument technologies indicates that such sensors are more than feasible, however, the measurement precision and accuracy requirements remain at unprecedented levels of stringency. It is, therefore, important to quantitatively and consistently evaluate the measurement capabilities and requirements for the prospective active system in the context of advancing our knowledge of carbon flux distributions and their dependence on underlying physical processes. This amounts to establishing minimum requirements for precision, relative accuracy, spatial/temporal coverage and resolution, vertical information content, interferences, and possibly the tradeoffs among these parameters, while at the same time framing a mission that can be implemented within a constrained budget. Here, we present results of observing system simulation studies, commissioned by the ASCENDS Science Requirements Definition Team, for a range of possible mission implementation options that are intended to substantiate science measurement requirements for a laser-based CO2 space instrument.

  3. Arctic sea-ice diffusion from observed and simulated Lagrangian trajectories

    NASA Astrophysics Data System (ADS)

    Rampal, Pierre; Bouillon, Sylvain; Bergh, Jon; Ólason, Einar

    2016-07-01

    We characterize sea-ice drift by applying a Lagrangian diffusion analysis to buoy trajectories from the International Arctic Buoy Programme (IABP) dataset and from two different models: the standalone Lagrangian sea-ice model neXtSIM and the Eulerian coupled ice-ocean model used for the TOPAZ reanalysis. By applying the diffusion analysis to the IABP buoy trajectories over the period 1979-2011, we confirm that sea-ice diffusion follows two distinct regimes (ballistic and Brownian) and we provide accurate values for the diffusivity and integral timescale that could be used in Eulerian or Lagrangian passive tracers models to simulate the transport and diffusion of particles moving with the ice. We discuss how these values are linked to the evolution of the fluctuating displacements variance and how this information could be used to define the size of the search area around the position predicted by the mean drift. By comparing observed and simulated sea-ice trajectories for three consecutive winter seasons (2007-2011), we show how the characteristics of the simulated motion may differ from or agree well with observations. This comparison illustrates the usefulness of first applying a diffusion analysis to evaluate the output of modeling systems that include a sea-ice model before using these in, e.g., oil spill trajectory models or, more generally, to simulate the transport of passive tracers in sea ice.

  4. Observer roles that optimise learning in healthcare simulation education: a systematic review.

    PubMed

    O'Regan, Stephanie; Molloy, Elizabeth; Watterson, Leonie; Nestel, Debra

    2016-01-01

    Simulation is widely used in health professional education. The convention that learners are actively involved may limit access to this educational method. The aim of this paper is to review the evidence for learning methods that employ directed observation as an alternative to hands-on participation in scenario-based simulation training. We sought studies that included either direct comparison of the learning outcomes of observers with those of active participants or identified factors important for the engagement of observers in simulation. We systematically searched health and education databases and reviewed journals and bibliographies for studies investigating or referring to observer roles in simulation using mannequins, simulated patients or role play simulations. A quality framework was used to rate the studies. We sought studies that included either direct comparison of the learning outcomes of observers with those of active participants or identified factors important for the engagement of observers in simulation. We systematically searched health and education databases and reviewed journals and bibliographies for studies investigating or referring to observer roles in simulation using mannequins, simulated patients or role play simulations. A quality framework was used to rate the studies. Nine studies met the inclusion criteria. Five studies suggest learning outcomes in observer roles are as good or better than hands-on roles in simulation. Four studies document learner satisfaction in observer roles. Five studies used a tool to guide observers. Eight studies involved observers in the debrief. Learning and satisfaction in observer roles is closely associated with observer tools, learner engagement, role clarity and contribution to the debrief. Learners that valued observer roles described them as affording an overarching view, examination of details from a distance, and meaningful feedback during the debrief. Learners who did not value observer roles

  5. Simultaneous observations of electromagnetically induced transparency (EIT) and absorption (EIA) in a multi-level V-type system of 87Rb and theoretical simulation of the observed spectra using a multi-mode approach

    NASA Astrophysics Data System (ADS)

    Das, Bankim Chandra; Bhattacharyya, Dipankar; Das, Arpita; Chakrabarti, Shrabana; De, Sankar

    2016-12-01

    We report here simultaneous experimental observation of Electromagnetically Induced Transparency (EIT) and Electromagnetically Induced Absorption (EIA) in a multi-level V-type system in D2 transition of 87Rb, i.e., F =2 →F' with a strong pump and a weak probe beam. We studied the probe spectrum by locking the probe beam to the transition F =2 →F'=2 while the pump is scanned from F =2 →F' . EIA is observed for the open transition (F =2 →F'=2 ) whereas EIT is observed in the closed transition (F =2 →F'=3 ). Sub natural line-width is observed for the EIA. To simulate the observed spectra theoretically, Liouville equation for the three-level V-type system is solved analytically with a multi-mode approach for the density matrix elements. We assumed both the pump and the probe beams can couple the excited states. A multi-mode approach for the coherence terms facilitates the study of all the frequency contributions due to the pump and the probe fields. Since the terms contain higher harmonics of the pump and the probe frequencies, we expressed them in Fourier transformed forms. To simulate the probe spectrum, we have solved inhomogeneous difference equations for the coherence terms using the Green's function technique and continued fraction theory. The experimental line-widths of the EIT and the EIA are compared with our theoretical model. Our system can be useful in optical switching applications as it can be precisely tuned to render the medium opaque and transparent simultaneously.

  6. Simultaneous observations of electromagnetically induced transparency (EIT) and absorption (EIA) in a multi-level V-type system of 87Rb and theoretical simulation of the observed spectra using a multi-mode approach.

    PubMed

    Das, Bankim Chandra; Bhattacharyya, Dipankar; Das, Arpita; Chakrabarti, Shrabana; De, Sankar

    2016-12-14

    We report here simultaneous experimental observation of Electromagnetically Induced Transparency (EIT) and Electromagnetically Induced Absorption (EIA) in a multi-level V-type system in D 2 transition of Rb87, i.e., F=2→F ' with a strong pump and a weak probe beam. We studied the probe spectrum by locking the probe beam to the transition F=2→F ' =2 while the pump is scanned from F=2→F ' . EIA is observed for the open transition (F=2→F ' =2) whereas EIT is observed in the closed transition (F=2→F ' =3). Sub natural line-width is observed for the EIA. To simulate the observed spectra theoretically, Liouville equation for the three-level V-type system is solved analytically with a multi-mode approach for the density matrix elements. We assumed both the pump and the probe beams can couple the excited states. A multi-mode approach for the coherence terms facilitates the study of all the frequency contributions due to the pump and the probe fields. Since the terms contain higher harmonics of the pump and the probe frequencies, we expressed them in Fourier transformed forms. To simulate the probe spectrum, we have solved inhomogeneous difference equations for the coherence terms using the Green's function technique and continued fraction theory. The experimental line-widths of the EIT and the EIA are compared with our theoretical model. Our system can be useful in optical switching applications as it can be precisely tuned to render the medium opaque and transparent simultaneously.

  7. Evolution of Flow channels and Dipolarization Using THEMIS Observations and Global MHD Simulations

    NASA Astrophysics Data System (ADS)

    El-Alaoui, M.; McPherron, R. L.; Nishimura, Y.

    2017-12-01

    We have extensively analyzed a substorm on March 14, 2008 for which we have observations from THEMIS spacecraft located beyond 9 RE near 2100 local time. The available data include an extensive network of all sky cameras and ground magnetometers that establish the times of various auroral and magnetic events. This arrangement provided an excellent data set with which to investigate meso-scale structures in the plasma sheet. We have used a global magnetohydrodynamic simulation to investigate the structure and dynamics of the magnetotail current sheet during this substorm. Both earthward and tailward flows were found in the observations as well as the simulations. The simulation shows that the flow channels follow tortuous paths that are often reflected or deflected before arriving at the inner magnetosphere. The simulation shows a sequence of fast flows and dipolarization events similar to what is seen in the data, though not at precisely the same times or locations. We will use our simulation results combined with the observations to investigate the global convection systems and current sheet structure during this event, showing how meso-scale structures fit into the context of the overall tail dynamics during this event. Our study includes determining the location, timing and strength of several current wedges and expansion onsets during an 8-hour interval.

  8. Preliminary Evaluation of Influence of Aerosols on the Simulation of Brightness Temperature in the NASA's Goddard Earth Observing System Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Kim, Jong; Akella, Santha; da Silva, Arlindo M.; Todling, Ricardo; McCarty, William

    2018-01-01

    This document reports on preliminary results obtained when studying the impact of aerosols on the calculation of brightness temperature (BT) for satellite infrared (IR) instruments that are currently assimilated in a 3DVAR configuration of Goddard Earth Observing System (GEOS)-atmospheric data assimilation system (ADAS). A set of fifteen aerosol species simulated by the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model is used to evaluate the influence of the aerosol fields on the Community Radiative Transfer Model (CRTM) calculations taking place in the observation operators of the Gridpoint Statistical Interpolation (GSI) analysis system of GEOSADAS. Results indicate that taking aerosols into account in the BT calculation improves the fit to observations over regions with significant amounts of dust. The cooling effect obtained with the aerosol-affected BT leads to a slight warming of the analyzed surface temperature (by about 0:5oK) in the tropical Atlantic ocean (off northwest Africa), whereas the effect on the air temperature aloft is negligible. In addition, this study identifies a few technical issues to be addressed in future work if aerosol-affected BT are to be implemented in reanalysis and operational settings. The computational cost of applying CRTM aerosol absorption and scattering options is too high to justify their use, given the size of the benefits obtained. Furthermore, the differentiation between clouds and aerosols in GSI cloud detection procedures needs satisfactory revision.

  9. A prototype knowledge-based simulation support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, T.R.; Roberts, S.D.

    1987-04-01

    As a preliminary step toward the goal of an intelligent automated system for simulation modeling support, we explore the feasibility of the overall concept by generating and testing a prototypical framework. A prototype knowledge-based computer system was developed to support a senior level course in industrial engineering so that the overall feasibility of an expert simulation support system could be studied in a controlled and observable setting. The system behavior mimics the diagnostic (intelligent) process performed by the course instructor and teaching assistants, finding logical errors in INSIGHT simulation models and recommending appropriate corrective measures. The system was programmed inmore » a non-procedural language (PROLOG) and designed to run interactively with students working on course homework and projects. The knowledge-based structure supports intelligent behavior, providing its users with access to an evolving accumulation of expert diagnostic knowledge. The non-procedural approach facilitates the maintenance of the system and helps merge the roles of expert and knowledge engineer by allowing new knowledge to be easily incorporated without regard to the existing flow of control. The background, features and design of the system are describe and preliminary results are reported. Initial success is judged to demonstrate the utility of the reported approach and support the ultimate goal of an intelligent modeling system which can support simulation modelers outside the classroom environment. Finally, future extensions are suggested.« less

  10. The Role of Model and Initial Condition Error in Numerical Weather Forecasting Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2013-01-01

    A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.

  11. Simulating pre-galactic metal enrichment for JWST deep-field observations

    NASA Astrophysics Data System (ADS)

    Jaacks, Jason

    2017-08-01

    We propose to create a new suite of mesoscale cosmological volume simulations with custom built sub-grid physics in which we independently track the contribution from Population III and Population II star formation to the total metals in the interstellar medium (ISM) of the first galaxies, and in the diffuse IGM at an epoch prior to reionization. These simulations will fill a gap in our simulation knowledge about chemical enrichment in the pre-reionization universe, which is a crucial need given the impending observational push into this epoch with near-future ground and space-based telescopes. This project is the natural extension of our successful Cycle 24 theory proposal (HST-AR-14569.001-A; PI Jaacks) in which we developed a new Pop III star formation sub-grid model which is currently being utilized to study the baseline metal enrichment of pre-reionization systems.

  12. Environmental fog/rain visual display system for aircraft simulators

    NASA Technical Reports Server (NTRS)

    Chase, W. D. (Inventor)

    1982-01-01

    An environmental fog/rain visual display system for aircraft simulators is described. The electronic elements of the system include a real time digital computer, a caligraphic color display which simulates landing lights of selective intensity, and a color television camera for producing a moving color display of the airport runway as depicted on a model terrain board. The mechanical simulation elements of the system include an environmental chamber which can produce natural fog, nonhomogeneous fog, rain and fog combined, or rain only. A pilot looking through the aircraft wind screen will look through the fog and/or rain generated in the environmental chamber onto a viewing screen with the simulated color image of the airport runway thereon, and observe a very real simulation of actual conditions of a runway as it would appear through actual fog and/or rain.

  13. A study on the characteristics of retrospective optimal interpolation using an Observing System Simulation Experiment

    NASA Astrophysics Data System (ADS)

    Kim, Shin-Woo; Noh, Nam-Kyu; Lim, Gyu-Ho

    2013-04-01

    This study presents the introduction of retrospective optimal interpolation (ROI) and its application with Weather Research and Forecasting model (WRF). Song et al. (2009) suggested ROI method which is an optimal interpolation (OI) that gradually assimilates observations over the analysis window for variance-minimum estimate of an atmospheric state at the initial time of the analysis window. The assimilation window of ROI algorithm is gradually increased, similar with that of the quasi-static variational assimilation (QSVA; Pires et al., 1996). Unlike QSVA method, however, ROI method assimilates the data at post analysis time using perturbation method (Verlaan and Heemink, 1997) without adjoint model. Song and Lim (2011) improved this method by incorporating eigen-decomposition and covariance inflation. The computational costs for ROI can be reduced due to the eigen-decomposition of background error covariance which can concentrate ROI analyses on the error variances of governing eigenmodes by transforming the control variables into eigenspace. A total energy norm is used for the normalization of each control variables. In this study, ROI method is applied to WRF model with Observing System Simulation Experiment (OSSE) to validate the algorithm and to investigate the capability. Horizontal wind, pressure, potential temperature, and water vapor mixing ratio are used for control variables and observations. Firstly, 1-profile assimilation experiment is performed. Subsequently, OSSE's are performed using the virtual observing system which consists of synop, ship, and sonde data. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error with the assimilation by ROI. The characteristics and strength/weakness of ROI method are also investigated by conducting the experiments with 3D-Var (3-dimensional variational) method and 4D-Var (4-dimensional variational) method

  14. GCM simulations of Titan's middle and lower atmosphere and comparison to observations

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Lunine, Jonathan I.; Russell, Joellen L.

    2015-04-01

    Simulation results are presented from a new general circulation model (GCM) of Titan, the Titan Atmospheric Model (TAM), which couples the Flexible Modeling System (FMS) spectral dynamical core to a suite of external/sub-grid-scale physics. These include a new non-gray radiative transfer module that takes advantage of recent data from Cassini-Huygens, large-scale condensation and quasi-equilibrium moist convection schemes, a surface model with "bucket" hydrology, and boundary layer turbulent diffusion. The model produces a realistic temperature structure from the surface to the lower mesosphere, including a stratopause, as well as satisfactory superrotation. The latter is shown to depend on the dynamical core's ability to build up angular momentum from surface torques. Simulated latitudinal temperature contrasts are adequate, compared to observations, and polar temperature anomalies agree with observations. In the lower atmosphere, the insolation distribution is shown to strongly impact turbulent fluxes, and surface heating is maximum at mid-latitudes. Surface liquids are unstable at mid- and low-latitudes, and quickly migrate poleward. The simulated humidity profile and distribution of surface temperatures, compared to observations, corroborate the prevalence of dry conditions at low latitudes. Polar cloud activity is well represented, though the observed mid-latitude clouds remain somewhat puzzling, and some formation alternatives are suggested.

  15. Threat radar system simulations

    NASA Astrophysics Data System (ADS)

    Miller, L.

    The capabilities, requirements, and goals of radar emitter simulators are discussed. Simulators are used to evaluate competing receiver designs, to quantify the performance envelope of a radar system, and to model the characteristics of a transmitted signal waveform. A database of candidate threat systems is developed and, in concert with intelligence data on a given weapons system, permits upgrading simulators to new projected threat capabilities. Four currently available simulation techniques are summarized, noting the usefulness of developing modular software for fast controlled-cost upgrades of simulation capabilities.

  16. Virtual Observatories for Space Physics Observations and Simulations: New Routes to Efficient Access and Visualization

    NASA Technical Reports Server (NTRS)

    Roberts, Aaron

    2005-01-01

    New tools for data access and visualization promise to make the analysis of space plasma data both more efficient and more powerful, especially for answering questions about the global structure and dynamics of the Sun-Earth system. We will show how new existing tools (particularly the Virtual Space Physics Observatory-VSPO-and the Visual System for Browsing, Analysis and Retrieval of Data-ViSBARD; look for the acronyms in Google) already provide rapid access to such information as spacecraft orbits, browse plots, and detailed data, as well as visualizations that can quickly unite our view of multispacecraft observations. We will show movies illustrating multispacecraft observations of the solar wind and magnetosphere during a magnetic storm, and of simulations of 3 0-spacecraft observations derived from MHD simulations of the magnetosphere sampled along likely trajectories of the spacecraft for the MagCon mission. An important issue remaining to be solved is how best to integrate simulation data and services into the Virtual Observatory environment, and this talk will hopefully stimulate further discussion along these lines.

  17. Use of High-Resolution Satellite Observations to Evaluate Cloud and Precipitation Statistics from Cloud-Resolving Model Simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Tao, W.; Hou, A. Y.; Zeng, X.; Shie, C.

    2007-12-01

    The cloud and precipitation statistics simulated by 3D Goddard Cumulus Ensemble (GCE) model for different environmental conditions, i.e., the South China Sea Monsoon Experiment (SCSMEX), CRYSTAL-FACE, and KAWJEX are compared with Tropical Rainfall Measuring Mission (TRMM) TMI and PR rainfall measurements and as well as cloud observations from the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. It is found that GCE is capable of simulating major convective system development and reproducing total surface rainfall amount as compared with rainfall estimated from the soundings. The model presents large discrepancies in rain spectrum and vertical hydrometer profiles. The discrepancy in the precipitation field is also consistent with the cloud and radiation observations. The study will focus on the effects of large scale forcing and microphysics to the simulated model- observation discrepancies.

  18. Warriors Edge Simulation and Gaming System: The Squad Simulation

    DTIC Science & Technology

    2005-08-01

    Warriors Edge Simulation and Gaming System: The Squad Simulation by Mark Thomas and Gary Moss ARL-TR-3564 August 2005...Edge Simulation and Gaming System: The Squad Simulation Mark Thomas and Gary Moss Computational and Information Sciences Directorate, ARL...2004–30 September 2004 5a. CONTRACT NUMBER 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Warriors Edge Simulation and Gaming System: The Squad

  19. Enhancing Famine Early Warning Systems with Improved Forecasts, Satellite Observations and Hydrologic Simulations

    NASA Astrophysics Data System (ADS)

    Funk, C. C.; Verdin, J.; Thiaw, W. M.; Hoell, A.; Korecha, D.; McNally, A.; Shukla, S.; Arsenault, K. R.; Magadzire, T.; Novella, N.; Peters-Lidard, C. D.; Robjohn, M.; Pomposi, C.; Galu, G.; Rowland, J.; Budde, M. E.; Landsfeld, M. F.; Harrison, L.; Davenport, F.; Husak, G. J.; Endalkachew, E.

    2017-12-01

    Drought early warning science, in support of famine prevention, is a rapidly advancing field that is helping to save lives and livelihoods. In 2015-2017, a series of extreme droughts afflicted Ethiopia, Southern Africa, Eastern Africa in OND and Eastern Africa in MAM, pushing more than 50 million people into severe food insecurity. Improved drought forecasts and monitoring tools, however, helped motivate and target large and effective humanitarian responses. Here we describe new science being developed by a long-established early warning system - the USAID Famine Early Warning Systems Network (FEWS NET). FEWS NET is a leading provider of early warning and analysis on food insecurity. FEWS NET research is advancing rapidly on several fronts, providing better climate forecasts and more effective drought monitoring tools that are being used to support enhanced famine early warning. We explore the philosophy and science underlying these successes, suggesting that a modal view of climate change can support enhanced seasonal prediction. Under this modal perspective, warming of the tropical oceans may interact with natural modes of variability, like the El Niño-Southern Oscillation, to enhance Indo-Pacific sea surface temperature gradients during both El Niño and La Niña-like climate states. Using empirical data and climate change simulations, we suggest that a sequence of droughts may commence in northern Ethiopia and Southern Africa with the advent of a moderate-to-strong El Niño, and then continue with La Niña/West Pacific related droughts in equatorial eastern East Africa. Scientifically, we show that a new hybrid statistical-dynamic precipitation forecast system, the FEWS NET Integrated Forecast System (FIFS), based on reformulations of the Global Ensemble Forecast System weather forecasts and National Multi-Model Ensemble (NMME) seasonal climate predictions, can effectively anticipate recent East and Southern African drought events. Using cross-validation, we

  20. Instrumented Architectural Simulation System

    NASA Technical Reports Server (NTRS)

    Delagi, B. A.; Saraiya, N.; Nishimura, S.; Byrd, G.

    1987-01-01

    Simulation of systems at an architectural level can offer an effective way to study critical design choices if (1) the performance of the simulator is adequate to examine designs executing significant code bodies, not just toy problems or small application fragements, (2) the details of the simulation include the critical details of the design, (3) the view of the design presented by the simulator instrumentation leads to useful insights on the problems with the design, and (4) there is enough flexibility in the simulation system so that the asking of unplanned questions is not suppressed by the weight of the mechanics involved in making changes either in the design or its measurement. A simulation system with these goals is described together with the approach to its implementation. Its application to the study of a particular class of multiprocessor hardware system architectures is illustrated.

  1. Theoretical Models of Protostellar Binary and Multiple Systems with AMR Simulations

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tomoaki; Tokuda, Kazuki; Onishi, Toshikazu; Inutsuka, Shu-ichiro; Saigo, Kazuya; Takakuwa, Shigehisa

    2017-05-01

    We present theoretical models for protostellar binary and multiple systems based on the high-resolution numerical simulation with an adaptive mesh refinement (AMR) code, SFUMATO. The recent ALMA observations have revealed early phases of the binary and multiple star formation with high spatial resolutions. These observations should be compared with theoretical models with high spatial resolutions. We present two theoretical models for (1) a high density molecular cloud core, MC27/L1521F, and (2) a protobinary system, L1551 NE. For the model for MC27, we performed numerical simulations for gravitational collapse of a turbulent cloud core. The cloud core exhibits fragmentation during the collapse, and dynamical interaction between the fragments produces an arc-like structure, which is one of the prominent structures observed by ALMA. For the model for L1551 NE, we performed numerical simulations of gas accretion onto protobinary. The simulations exhibit asymmetry of a circumbinary disk. Such asymmetry has been also observed by ALMA in the circumbinary disk of L1551 NE.

  2. Early BHs: simulations and observations

    NASA Astrophysics Data System (ADS)

    Cappelluti, Nico; di-Matteo, Tiziana; Schawinski, Kevin; Fragos, Tassos

    We report recent investigations in the field of Early Black Holes. We summarize recent theoretical and observational efforts to understand how Black Holes formed and eventually evolved into Super Massive Black Holes at high-z. This paper makes use of state of the art computer simulations and multiwavelength surveys. Although non conclusive, we present results and hypothesis that pose exciting challenges to modern astrophysics and to future facilities.

  3. Simulating Cosmic Reionization and Its Observable Consequences

    NASA Astrophysics Data System (ADS)

    Shapiro, Paul

    2017-01-01

    I summarize recent progress in modelling the epoch of reionization by large- scale simulations of cosmic structure formation, radiative transfer and their interplay, which trace the ionization fronts that swept across the IGM, to predict observable signatures. Reionization by starlight from early galaxies affected their evolution, impacting reionization, itself, and imprinting the galaxies with a memory of reionization. Star formation suppression, e.g., may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for Cold Dark Matter. I describe CoDa (''Cosmic Dawn''), the first fully-coupled radiation-hydrodynamical simulation of reionization and galaxy formation in the Local Universe, in a volume large enough to model reionization globally but with enough resolving power to follow all the atomic-cooling galactic halos in that volume. A 90 Mpc box was simulated from a constrained realization of primordial fluctuations, chosen to reproduce present-day features of the Local Group, including the Milky Way and M31, and the local universe beyond, including the Virgo cluster. The new RAMSES-CUDATON hybrid CPU-GPU code took 11 days to perform this simulation on the Titan supercomputer at Oak Ridge National Laboratory, with 4096-cubed N-body particles for the dark matter and 4096-cubed cells for the atomic gas and ionizing radiation.

  4. The Sea Breeze in South-Iceland: Observations with an unmanned aircraft and numerical simulations

    NASA Astrophysics Data System (ADS)

    Opsanger Jonassen, Marius; Ólafsson, Haraldur; Rasol, Dubravka; Reuder, Joachim

    2010-05-01

    Sea breeze events, 19-20 July 2009, observed during the international field campaign MOSO, at the southcoast of Iceland, have been investigated using high resolution numerical simulations. Thanks to the use of a small unmanned aircraft system (UAS), SUMO, the wind and temperature aloft could be observed at a high resolution in both space and time. Simultaneously with the UAS operations, conventional platforms were used to obtain surface measurements. The observations show a distinct sea breeze circulation with an onset at around noon and a final decay around 19:00 UTC. At the maximum, the sea breeze layer reached a height of appr. 400 m, marked by a capping wind minimum. When compared to the flow aloft, the sea breeze layer was found to exhibit relatively low temperatures and an expected turn from an off-shore to an on-shore flow. Overall, the agreement between the observations and simulations are relatively good. The simulations suggest a horizontal extent of the circulation some 20-30 km off-shore, but only around 5 km on-shore.

  5. "Observing" the Circumnuclear Stars and Gas in Disk Galaxy Simulations

    NASA Astrophysics Data System (ADS)

    Cook, Angela; Hicks, Erin K. S.

    2018-06-01

    We present simulations based on theoretical models of common disk processes designed to represent potential inflow observed within the central 500 pc of local Seyfert galaxies. Mock observations of these n-body plus smoothed particle hydrodynamical simulations provide the conceptual framework in which to identify the driving inflow mechanism, for example nuclear bars, and to quantify to the inflow based on observable properties. From these mock observations the azimuthal average of the flux distribution, velocity dispersion, and velocity of both the stars and interstellar medium on scales of 50pc have been measured at a range of inclinations angles. A comparison of the simulated disk galaxies with these observed azimuthal averages in 40 Seyfert galaxies measured as part of the KONA (Keck OSIRIS Nearby AGN) survey will be presented.

  6. Information and Complexity Measures Applied to Observed and Simulated Soil Moisture Time Series

    USDA-ARS?s Scientific Manuscript database

    Time series of soil moisture-related parameters provides important insights in functioning of soil water systems. Analysis of patterns within these time series has been used in several studies. The objective of this work was to compare patterns in observed and simulated soil moisture contents to u...

  7. MOCCA code for star cluster simulation: comparison with optical observations using COCOA

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Olech, Arkadiusz; Hypki, Arkadiusz

    2016-02-01

    We introduce and present preliminary results from COCOA (Cluster simulatiOn Comparison with ObservAtions) code for a star cluster after 12 Gyr of evolution simulated using the MOCCA code. The COCOA code is being developed to quickly compare results of numerical simulations of star clusters with observational data. We use COCOA to obtain parameters of the projected cluster model. For comparison, a FITS file of the projected cluster was provided to observers so that they could use their observational methods and techniques to obtain cluster parameters. The results show that the similarity of cluster parameters obtained through numerical simulations and observations depends significantly on the quality of observational data and photometric accuracy.

  8. Tag team simulation: An innovative approach for promoting active engagement of participants and observers during group simulations.

    PubMed

    Levett-Jones, Tracy; Andersen, Patrea; Reid-Searl, Kerry; Guinea, Stephen; McAllister, Margaret; Lapkin, Samuel; Palmer, Lorinda; Niddrie, Marian

    2015-09-01

    Active participation in immersive simulation experiences can result in technical and non-technical skill enhancement. However, when simulations are conducted in large groups, maintaining the interest of observers so that they do not disengage from the learning experience can be challenging. We implemented Tag Team Simulation with the aim of ensuring that both participants and observers had active and integral roles in the simulation. In this paper we outline the features of this innovative approach and provide an example of its application to a pain simulation. Evaluation was conducted using the Satisfaction with Simulation Experience Scale. A total of 444 year nursing students participated from a population of 536 (response rate 83%). Cronbach's alpha for the Scale was .94 indicating high internal consistency. The mean satisfaction score for participants was 4.63 compared to 4.56 for observers. An independent sample t test revealed no significant difference between these scores (t (300) = -1.414, p = 0.16). Tag team simulation is an effective approach for ensuring observers' and participants' active involvement during group-based simulations and one that is highly regarded by students. It has the potential for broad applicability across a range of leaning domains both within and beyond nursing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Simulation program of nonlinearities applied to telecommunication systems

    NASA Technical Reports Server (NTRS)

    Thomas, C.

    1979-01-01

    In any satellite communication system, the problems of distorsion created by nonlinear devices or systems must be considered. The subject of this paper is the use of the Fast Fourier Transform (F.F.T.) in the prediction of the intermodulation performance of amplifiers, mixers, filters. A nonlinear memory-less model is chosen to simulate amplitude and phase nonlinearities of the device in the simulation program written in FORTRAN 4. The experimentally observed nonlinearity parameters of a low noise 3.7-4.2 GHz amplifier are related to the gain and phase coefficients of Fourier Service Series. The measured results are compared with those calculated from the simulation in the cases where the input signal is composed of two, three carriers and noise power density.

  10. North American water availability under stress and duress: building understanding from simulations, observations and data products

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Condon, L. E.; Atchley, A. L.; Hector, B.

    2017-12-01

    Quantifying the available freshwater for human use and ecological function depends on fluxes and stores that are hard to observe. Evapotranspiration (ET) is the largest terrestrial flux of water behind precipitation but is observed with low spatial density. Likewise, groundwater is the largest freshwater store, yet is equally uncertain. The ability to upscale observations of these variables is an additional complication; point measurements are made at scales orders of magnitude smaller than remote sensing data products. Integrated hydrologic models that simulate continental extents at fine spatial resolution are now becoming an additional tool to constrain fluxes and address interconnections. For example, recent work has shown connections between water table depth and transpiration partitioning, and demonstrated the ability to reconcile point observations and large-scale inferences. Here we explore the dynamics of large hydrologic systems experiencing change and stress across continental North America using integrated model simulations, observations and data products. Simulations of aquifer depletion due to pervasive groundwater pumping diagnose both stream depletion and changes in ET. Simulations of systematic increases in temperature are used to understand the relationship between snowpack dynamics, surface and groundwater flow, ET and a changing climate. Remotely sensed products including the GRACE estimates of total storage change are downscaled using model simulations to better understand human impacts to the hydrologic cycle. These example applications motivate a path forward to better use simulations to understand water availability.

  11. Simulating flaring events in complex active regions driven by observed magnetograms

    NASA Astrophysics Data System (ADS)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M. K.

    2011-05-01

    Context. We interpret solar flares as events originating in active regions that have reached the self organized critical state, by using a refined cellular automaton model with initial conditions derived from observations. Aims: We investigate whether the system, with its imposed physical elements, reaches a self organized critical state and whether well-known statistical properties of flares, such as scaling laws observed in the distribution functions of characteristic parameters, are reproduced after this state has been reached. Methods: To investigate whether the distribution functions of total energy, peak energy and event duration follow the expected scaling laws, we first applied a nonlinear force-free extrapolation that reconstructs the three-dimensional magnetic fields from two-dimensional vector magnetograms. We then locate magnetic discontinuities exceeding a threshold in the Laplacian of the magnetic field. These discontinuities are relaxed in local diffusion events, implemented in the form of cellular automaton evolution rules. Subsequent loading and relaxation steps lead the system to self organized criticality, after which the statistical properties of the simulated events are examined. Physical requirements, such as the divergence-free condition for the magnetic field vector, are approximately imposed on all elements of the model. Results: Our results show that self organized criticality is indeed reached when applying specific loading and relaxation rules. Power-law indices obtained from the distribution functions of the modeled flaring events are in good agreement with observations. Single power laws (peak and total flare energy) are obtained, as are power laws with exponential cutoff and double power laws (flare duration). The results are also compared with observational X-ray data from the GOES satellite for our active-region sample. Conclusions: We conclude that well-known statistical properties of flares are reproduced after the system has

  12. Real time digital propulsion system simulation for manned flight simulators

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.; Hart, C. E.

    1978-01-01

    A real time digital simulation of a STOL propulsion system was developed which generates significant dynamics and internal variables needed to evaluate system performance and aircraft interactions using manned flight simulators. The simulation ran at a real-to-execution time ratio of 8.8. The model was used in a piloted NASA flight simulator program to evaluate the simulation technique and the propulsion system digital control. The simulation is described and results shown. Limited results of the flight simulation program are also presented.

  13. Simulation of the Ozone Monitoring Instrument Aerosol Index Using the NASA Goddard Earth Observing System Aerosol Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Colarco, Peter R.; Gasso, Santiago; Ahn, Changwoo; Buchard, Virginie; Da Silva, Arlindo M.; Torres, Omar

    2017-01-01

    We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI aerosol retrieval algorithms, and its retrieved AI (OMAERUV AI) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600hPa and 1013.25hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.

  14. Simulation of the Ozone Monitoring Instrument aerosol index using the NASA Goddard Earth Observing System aerosol reanalysis products

    NASA Astrophysics Data System (ADS)

    Colarco, Peter R.; Gassó, Santiago; Ahn, Changwoo; Buchard, Virginie; da Silva, Arlindo M.; Torres, Omar

    2017-11-01

    We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI near-UV aerosol retrieval algorithms (known as OMAERUV) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining to the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600 and 1013.25 hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial-resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.

  15. Analysis of sensor network observations during some simulated landslide experiments

    NASA Astrophysics Data System (ADS)

    Scaioni, M.; Lu, P.; Feng, T.; Chen, W.; Wu, H.; Qiao, G.; Liu, C.; Tong, X.; Li, R.

    2012-12-01

    A multi-sensor network was tested during some experiments on a landslide simulation platform established at Tongji University (Shanghai, P.R. China). Here landslides were triggered by means of artificial rainfall (see Figure 1). The sensor network currently incorporates contact sensors and two imaging systems. This represent a novel solution, because the spatial sensor network incorporate either contact sensors and remote sensors (video-cameras). In future, these sensors will be installed on two real ground slopes in Sichuan province (South-West China), where Wenchuan earthquake occurred in 2008. This earthquake caused the immediate activation of several landslide, while other area became unstable and still are a menace for people and properties. The platform incorporates the reconstructed scale slope, sensor network, communication system, database and visualization system. Some landslide simulation experiments allowed ascertaining which sensors could be more suitable to be deployed in Wenchuan area. The poster will focus on the analysis of results coming from down scale simulations. Here the different steps of the landslide evolution can be followed on the basis of sensor observations. This include underground sensors to detect the water table level and the pressure in the ground, a set of accelerometers and two inclinometers. In the first part of the analysis the full data series are investigated to look for correlations and common patterns, as well as to link them to the physical processes. In the second, 4 subsets of sensors located in neighbor positions are analyzed. The analysis of low- and high-speed image sequences allowed to track a dense field of displacement on the slope surface. These outcomes have been compared to the ones obtained from accelerometers for cross-validation. Images were also used for the photogrammetric reconstruction of the slope topography during the experiment. Consequently, volume computation and mass movements could be evaluated on

  16. Observations and Simulations of Formation of Broad Plasma Depletions Through Merging Process

    NASA Technical Reports Server (NTRS)

    Huang, Chao-Song; Retterer, J. M.; Beaujardiere, O. De La; Roddy, P. A.; Hunton, D.E.; Ballenthin, J. O.; Pfaff, Robert F.

    2012-01-01

    Broad plasma depletions in the equatorial ionosphere near dawn are region in which the plasma density is reduced by 1-3 orders of magnitude over thousands of kilometers in longitude. This phenomenon is observed repeatedly by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during deep solar minimum. The plasma flow inside the depletion region can be strongly upward. The possible causal mechanism for the formation of broad plasma depletions is that the broad depletions result from merging of multiple equatorial plasma bubbles. The purpose of this study is to demonstrate the feasibility of the merging mechanism with new observations and simulations. We present C/NOFS observations for two cases. A series of plasma bubbles is first detected by C/NOFS over a longitudinal range of 3300-3800 km around midnight. Each of the individual bubbles has a typical width of approx 100 km in longitude, and the upward ion drift velocity inside the bubbles is 200-400 m/s. The plasma bubbles rotate with the Earth to the dawn sector and become broad plasma depletions. The observations clearly show the evolution from multiple plasma bubbles to broad depletions. Large upward plasma flow occurs inside the depletion region over 3800 km in longitude and exists for approx 5 h. We also present the numerical simulations of bubble merging with the physics-based low-latitude ionospheric model. It is found that two separate plasma bubbles join together and form a single, wider bubble. The simulations show that the merging process of plasma bubbles can indeed occur in incompressible ionospheric plasma. The simulation results support the merging mechanism for the formation of broad plasma depletions.

  17. A Regional Climate Model Evaluation System based on Satellite and other Observations

    NASA Astrophysics Data System (ADS)

    Lean, P.; Kim, J.; Waliser, D. E.; Hall, A. D.; Mattmann, C. A.; Granger, S. L.; Case, K.; Goodale, C.; Hart, A.; Zimdars, P.; Guan, B.; Molotch, N. P.; Kaki, S.

    2010-12-01

    Regional climate models are a fundamental tool needed for downscaling global climate simulations and projections, such as those contributing to the Coupled Model Intercomparison Projects (CMIPs) that form the basis of the IPCC Assessment Reports. The regional modeling process provides the means to accommodate higher resolution and a greater complexity of Earth System processes. Evaluation of both the global and regional climate models against observations is essential to identify model weaknesses and to direct future model development efforts focused on reducing the uncertainty associated with climate projections. However, the lack of reliable observational data and the lack of formal tools are among the serious limitations to addressing these objectives. Recent satellite observations are particularly useful as they provide a wealth of information on many different aspects of the climate system, but due to their large volume and the difficulties associated with accessing and using the data, these datasets have been generally underutilized in model evaluation studies. Recognizing this problem, NASA JPL / UCLA is developing a model evaluation system to help make satellite observations, in conjunction with in-situ, assimilated, and reanalysis datasets, more readily accessible to the modeling community. The system includes a central database to store multiple datasets in a common format and codes for calculating predefined statistical metrics to assess model performance. This allows the time taken to compare model simulations with satellite observations to be reduced from weeks to days. Early results from the use this new model evaluation system for evaluating regional climate simulations over California/western US regions will be presented.

  18. XIMPOL: a new x-ray polarimetry observation-simulation and analysis framework

    NASA Astrophysics Data System (ADS)

    Omodei, Nicola; Baldini, Luca; Pesce-Rollins, Melissa; di Lalla, Niccolò

    2017-08-01

    We present a new simulation framework, XIMPOL, based on the python programming language and the Scipy stack, specifically developed for X-ray polarimetric applications. XIMPOL is not tied to any specific mission or instrument design and is meant to produce fast and yet realistic observation-simulations, given as basic inputs: (i) an arbitrary source model including morphological, temporal, spectral and polarimetric information, and (ii) the response functions of the detector under study, i.e., the effective area, the energy dispersion, the point-spread function and the modulation factor. The format of the response files is OGIP compliant, and the framework has the capability of producing output files that can be directly fed into the standard visualization and analysis tools used by the X-ray community, including XSPEC which make it a useful tool not only for simulating physical systems, but also to develop and test end-to-end analysis chains.

  19. Assessing the Predictability of Convection using Ensemble Data Assimilation of Simulated Radar Observations in an LETKF system

    NASA Astrophysics Data System (ADS)

    Lange, Heiner; Craig, George

    2014-05-01

    This study uses the Local Ensemble Transform Kalman Filter (LETKF) to perform storm-scale Data Assimilation of simulated Doppler radar observations into the non-hydrostatic, convection-permitting COSMO model. In perfect model experiments (OSSEs), it is investigated how the limited predictability of convective storms affects precipitation forecasts. The study compares a fine analysis scheme with small RMS errors to a coarse scheme that allows for errors in position, shape and occurrence of storms in the ensemble. The coarse scheme uses superobservations, a coarser grid for analysis weights, a larger localization radius and larger observation error that allow a broadening of the Gaussian error statistics. Three hour forecasts of convective systems (with typical lifetimes exceeding 6 hours) from the detailed analyses of the fine scheme are found to be advantageous to those of the coarse scheme during the first 1-2 hours, with respect to the predicted storm positions. After 3 hours in the convective regime used here, the forecast quality of the two schemes appears indiscernible, judging by RMSE and verification methods for rain-fields and objects. It is concluded that, for operational assimilation systems, the analysis scheme might not necessarily need to be detailed to the grid scale of the model. Depending on the forecast lead time, and on the presence of orographic or synoptic forcing that enhance the predictability of storm occurrences, analyses from a coarser scheme might suffice.

  20. LES ARM Symbiotic Simulation and Observation (LASSO) Implementation Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson Jr., WI; Vogelmann, AM

    2015-09-01

    This document illustrates the design of the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) workflow to provide a routine, high-resolution modeling capability to augment the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s high-density observations. LASSO will create a powerful new capability for furthering ARM’s mission to advance understanding of cloud, radiation, aerosol, and land-surface processes. The combined observational and modeling elements will enable a new level of scientific inquiry by connecting processes and context to observations and providing needed statistics for details that cannot be measured. The result will be improved process understandingmore » that facilitates concomitant improvements in climate model parameterizations. The initial LASSO implementation will be for ARM’s Southern Great Plains site in Oklahoma and will focus on shallow convection, which is poorly simulated by climate models due in part to clouds’ typically small spatial scale compared to model grid spacing, and because the convection involves complicated interactions of microphysical and boundary layer processes.« less

  1. Simulating AIA observations of a flux rope ejection

    NASA Astrophysics Data System (ADS)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2014-08-01

    Context. Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations now show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. While this is the case, these observations are difficult to interpret in terms of basic physical mechanisms and quantities. To fully understand CMEs we need to compare equivalent quantities derived from both observations and theoretical models. This will aid in bridging the gap between observations and models. Aims: To this end, we aim to produce synthesised AIA observations from simulations of a flux rope ejection. To carry this out we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME. Methods: We perform a simulation where a flux rope is ejected from the solar corona. From the density and temperature of the plasma in the simulation we synthesise AIA observations. The emission is then integrated along the line of sight using the instrumental response function of AIA. Results: We sythesise observations of AIA in the channels at 304 Å, 171 Å, 335 Å, and 94 Å. The synthesised observations show a number of features similar to actual observations and in particular reproduce the general development of CMEs in the low corona as observed by AIA. In particular we reproduce an erupting and expanding arcade in the 304 Å and 171 Å channels with a high density core. Conclusions: The ejection of a flux rope reproduces many of the features found in the AIA observations. This work is therefore a step forward in bridging the gap between observations and models, and can lead to more direct interpretations of EUV observations in terms of flux rope

  2. Annual asymmetry in thermospheric density: Observations and simulations

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Dou, Xiankang; Burns, Alan; Wang, Wenbin; Luan, Xiaoli; Zeng, Zhen; Xu, Jiyao

    2013-05-01

    In this paper, the Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) observations during 2002-2010 are utilized to study the variation of the annual asymmetry in thermospheric density at 400 km under low solar activity condition (F10.7 = 80) based on the method of empirical orthogonal functions (EOFs). The derived asymmetry index (AI) in thermospheric density from the EOF analysis shows a strong latitudinal variation at night but varies a little with latitudes in daytime. Moreover, it exhibits a terdiurnal tidal signature at low to middle latitudes. The global mean value of the AI is 0.191, indicating that a 47% difference in thermosphere between the December and June solstices in the global average. In addition, the NCAR Thermosphere-Ionosphere Electrodynamics Global Circulation Model (TIEGCM) is used to explore the possible mechanisms responsible for the observed annual asymmetry in thermospheric density. It is found that the standard simulations give a lower AI and also a weaker day-to-night difference. The simulated AI shows a semidiurnal pattern in the equatorial and low-latitude regions in contrast with the terdiurnal tide signature seen in the observed AI. The daily mean AI obtained from the simulation is 0.125, corresponding to a 29% December-to-June difference in thermospheric density at 400 km. Further sensitivity simulations demonstrated that the effect of the varying Sun-Earth distance between the December and June solstices is the main process responsible for the annual asymmetry in thermospheric density, while the magnetic field configuration and tides from the lower atmosphere contribute to the temporal and spatial variations of the AI. Specifically, the simulations show that the Sun-Earth distance effect explains 93% of the difference in thermospheric density between December and June, which is mainly associated with the corresponding changes in neutral temperature. However, our calculation from the

  3. Atmospheric icing of structures: Observations and simulations

    NASA Astrophysics Data System (ADS)

    Ágústsson, H.; Elíasson, Á. J.; Thorsteins, E.; Rögnvaldsson, Ó.; Ólafsson, H.

    2012-04-01

    This study compares observed icing in a test span in complex orography at Hallormsstaðaháls (575 m) in East-Iceland with parameterized icing based on an icing model and dynamically downscaled weather at high horizontal resolution. Four icing events have been selected from an extensive dataset of observed atmospheric icing in Iceland. A total of 86 test-spans have been erected since 1972 at 56 locations in complex terrain with more than 1000 icing events documented. The events used here have peak observed ice load between 4 and 36 kg/m. Most of the ice accretion is in-cloud icing but it may partly be mixed with freezing drizzle and wet snow icing. The calculation of atmospheric icing is made in two steps. First the atmospheric data is created by dynamically downscaling the ECMWF-analysis to high resolution using the non-hydrostatic mesoscale Advanced Research WRF-model. The horizontal resolution of 9, 3, 1 and 0.33 km is necessary to allow the atmospheric model to reproduce correctly local weather in the complex terrain of Iceland. Secondly, the Makkonen-model is used to calculate the ice accretion rate on the conductors based on the simulated temperature, wind, cloud and precipitation variables from the atmospheric data. In general, the atmospheric model correctly simulates the atmospheric variables and icing calculations based on the atmospheric variables correctly identify the observed icing events, but underestimate the load due to too slow ice accretion. This is most obvious when the temperature is slightly below 0°C and the observed icing is most intense. The model results improve significantly when additional observations of weather from an upstream weather station are used to nudge the atmospheric model. However, the large variability in the simulated atmospheric variables results in high temporal and spatial variability in the calculated ice accretion. Furthermore, there is high sensitivity of the icing model to the droplet size and the possibility that

  4. Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits of Instrument Simulators in Climate Models

    NASA Technical Reports Server (NTRS)

    Pincus, Robert; Platnick, Steven E.; Ackerman, Steve; Hemler, Richard; Hofmann, Patrick

    2011-01-01

    The properties of clouds that may be observed by satellite instruments, such as optical depth and cloud top pressure, are only loosely related to the way clouds are represented in models of the atmosphere. One way to bridge this gap is through "instrument simulators," diagnostic tools that map the model representation to synthetic observations so that differences between simulator output and observations can be interpreted unambiguously as model error. But simulators may themselves be restricted by limited information available from the host model or by internal assumptions. This work examines the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties. We focus on the stark differences between MODIS and ISCCP observations of total cloudiness and the distribution of cloud optical thickness can be traced to different approaches to marginal pixels, which MODIS excludes and ISCCP treats as homogeneous. These pixels, which likely contain broken clouds, cover about 15% of the planet and contain almost all of the optically thinnest clouds observed by either instrument. Instrument simulators can not reproduce these differences because the host model does not consider unresolved spatial scales and so can not produce broken pixels. Nonetheless, MODIS and ISCCP observation are consistent for all but the optically-thinnest clouds, and models can be robustly evaluated using instrument simulators by excluding ambiguous observations.

  5. Model-Observation "Data Cubes" for the DOE Atmospheric Radiation Measurement Program's LES ARM Symbiotic Simulation and Observation (LASSO) Workflow

    NASA Astrophysics Data System (ADS)

    Vogelmann, A. M.; Gustafson, W. I., Jr.; Toto, T.; Endo, S.; Cheng, X.; Li, Z.; Xiao, H.

    2015-12-01

    The Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facilities' Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) Workflow is currently being designed to provide output from routine LES to complement its extensive observations. The modeling portion of the LASSO workflow is presented by Gustafson et al., which will initially focus on shallow convection over the ARM megasite in Oklahoma, USA. This presentation describes how the LES output will be combined with observations to construct multi-dimensional and dynamically consistent "data cubes", aimed at providing the best description of the atmospheric state for use in analyses by the community. The megasite observations are used to constrain large-eddy simulations that provide a complete spatial and temporal coverage of observables and, further, the simulations also provide information on processes that cannot be observed. Statistical comparisons of model output with their observables are used to assess the quality of a given simulated realization and its associated uncertainties. A data cube is a model-observation package that provides: (1) metrics of model-observation statistical summaries to assess the simulations and the ensemble spread; (2) statistical summaries of additional model property output that cannot be or are very difficult to observe; and (3) snapshots of the 4-D simulated fields from the integration period. Searchable metrics are provided that characterize the general atmospheric state to assist users in finding cases of interest, such as categorization of daily weather conditions and their specific attributes. The data cubes will be accompanied by tools designed for easy access to cube contents from within the ARM archive and externally, the ability to compare multiple data streams within an event as well as across events, and the ability to use common grids and time sampling, where appropriate.

  6. Quantum simulation of strongly correlated condensed matter systems

    NASA Astrophysics Data System (ADS)

    Hofstetter, W.; Qin, T.

    2018-04-01

    We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.

  7. Experiments with the Mesoscale Atmospheric Simulation System (MASS) using the synthetic relative humidity

    NASA Technical Reports Server (NTRS)

    Chang, Chia-Bo

    1994-01-01

    This study is intended to examine the impact of the synthetic relative humidity on the model simulation of mesoscale convective storm environment. The synthetic relative humidity is derived from the National Weather Services surface observations, and non-conventional sources including aircraft, radar, and satellite observations. The latter sources provide the mesoscale data of very high spatial and temporal resolution. The synthetic humidity data is used to complement the National Weather Services rawinsonde observations. It is believed that a realistic representation of initial moisture field in a mesoscale model is critical for the model simulation of thunderstorm development, and the formation of non-convective clouds as well as their effects on the surface energy budget. The impact will be investigated based on a real-data case study using the mesoscale atmospheric simulation system developed by Mesoscale Environmental Simulations Operations, Inc. The mesoscale atmospheric simulation system consists of objective analysis and initialization codes, and the coarse-mesh and fine-mesh dynamic prediction models. Both models are a three dimensional, primitive equation model containing the essential moist physics for simulating and forecasting mesoscale convective processes in the atmosphere. The modeling system is currently implemented at the Applied Meteorology Unit, Kennedy Space Center. Two procedures involving the synthetic relative humidity to define the model initial moisture fields are considered. It is proposed to perform several short-range (approximately 6 hours) comparative coarse-mesh simulation experiments with and without the synthetic data. They are aimed at revealing the model sensitivities should allow us both to refine the specification of the observational requirements, and to develop more accurate and efficient objective analysis schemes. The goal is to advance the MASS (Mesoscal Atmospheric Simulation System) modeling expertise so that the model

  8. Mutual event observations of solar system objects by SRC on Mars Express. Analysis and release of observations

    NASA Astrophysics Data System (ADS)

    Ziese, R.; Willner, K.

    2018-06-01

    Context. Both Martian moons, Phobos and Deimos, have been observed during several imaging campaigns by the Super Resolution Channel (SRC) on the Mars Express probe. Several tens of images are obtained during mutual event observations - when the Martian moons are both observed or together with another solar system body. These observations provide new opportunities to determine the bodies' positions in their orbits. Aims: A method was sought to automate the observation of the positions of the imaged bodies. Within one image sequence a similarly accurate localization of the objects in all images should be possible. Methods: Shape models of Phobos and Deimos are applied to simulate the appearance of the bodies in the images. Matching the illuminated simulation against the observation provides a reliable determination of the bodies' location within the image. To enhance the matching confidence several corrections need to be applied to the simulation to closely reconstruct the observation. Results: A list of 884 relative positions between the different objects is provided through the Centre de Données astronomiques de Strasbourg (CDS). Tables A.1-A.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A15

  9. Probing the chemical composition of the Z < 1 intergalactic medium with observations and simulations

    NASA Astrophysics Data System (ADS)

    Cooksey, Kathy L.

    2009-09-01

    Metals are produced in the stars in the galaxies, and a variety of feedback processes move metals from the sites of production into the intergalactic medium (IGM), enriching the material for future generations of stars. The signature of this process is etched in the recycled gas: its metallicity, elemental abundances, density, distribution, etc. The study of the low- redshift, z <, IGM is the study of the last eight-billion years of cosmic chemical evolution and all prior enrichment. In this thesis, I characterize the cosmic enrichment cycle with the use of observations and simulations. The gas is observed through quasar absorption- line spectroscopy. As the light of a distant quasar travels to us, intervening clouds of gas absorb the light at wavelengths characteristic, albeit redshifted, of the elements in the clouds. By identifying and modeling the elements associated with the absorption systems, I learn the ionic composition and density of the cosmic web (voids, filaments, and/or groups) along the line of sight. >From a detailed study of a single sightline, I observe a multi-phase IGM, with kinematically-distinct, hot and warm components ( T [approximate] 10 5.5 K and 10 4 K, respectively). By correlating the absorption systems with a complementary galaxy survey of the field around the background quasar, I find that the IGM systems arise in a variety of galactic environments. The metal- lines systems all have L > 0.1 L [low *] galaxies within a few hundred kiloparsecs, which suggests this is the distance to which galactic feedback processes typically disperse metals. I conduct a large, blind survey for triply-ionized carbon (C IV) absorption at z < 1 in the spectra of 49 low-redshift quasars and compare their propertie with those detected at z > 1. The mass density in C IV doublets with 13 < = log N (C +3 ) <= 15 at z < 1 has increased by a factor of 2.8 ± 0.7 over the error- weighted mean of the 1.5 < z < 5 measurements, where the mass density has not evolved

  10. A comparison among observations and earthquake simulator results for the allcal2 California fault model

    USGS Publications Warehouse

    Tullis, Terry. E.; Richards-Dinger, Keith B.; Barall, Michael; Dieterich, James H.; Field, Edward H.; Heien, Eric M.; Kellogg, Louise; Pollitz, Fred F.; Rundle, John B.; Sachs, Michael K.; Turcotte, Donald L.; Ward, Steven N.; Yikilmaz, M. Burak

    2012-01-01

    In order to understand earthquake hazards we would ideally have a statistical description of earthquakes for tens of thousands of years. Unfortunately the ∼100‐year instrumental, several 100‐year historical, and few 1000‐year paleoseismological records are woefully inadequate to provide a statistically significant record. Physics‐based earthquake simulators can generate arbitrarily long histories of earthquakes; thus they can provide a statistically meaningful history of simulated earthquakes. The question is, how realistic are these simulated histories? This purpose of this paper is to begin to answer that question. We compare the results between different simulators and with information that is known from the limited instrumental, historic, and paleoseismological data.As expected, the results from all the simulators show that the observational record is too short to properly represent the system behavior; therefore, although tests of the simulators against the limited observations are necessary, they are not a sufficient test of the simulators’ realism. The simulators appear to pass this necessary test. In addition, the physics‐based simulators show similar behavior even though there are large differences in the methodology. This suggests that they represent realistic behavior. Different assumptions concerning the constitutive properties of the faults do result in enhanced capabilities of some simulators. However, it appears that the similar behavior of the different simulators may result from the fault‐system geometry, slip rates, and assumed strength drops, along with the shared physics of stress transfer.This paper describes the results of running four earthquake simulators that are described elsewhere in this issue of Seismological Research Letters. The simulators ALLCAL (Ward, 2012), VIRTCAL (Sachs et al., 2012), RSQSim (Richards‐Dinger and Dieterich, 2012), and ViscoSim (Pollitz, 2012) were run on our most recent all‐California fault

  11. An observation planning algorithm applied to multi-objective astronomical observations and its simulation in COSMOS field

    NASA Astrophysics Data System (ADS)

    Jin, Yi; Gu, Yonggang; Zhai, Chao

    2012-09-01

    Multi-Object Fiber Spectroscopic sky surveys are now booming, such as LAMOST already built by China, BIGBOSS project put forward by the U.S. Lawrence Berkeley National Lab and GTC (Gran Telescopio Canarias) telescope developed by the United States, Mexico and Spain. They all use or will use this approach and each fiber can be moved within a certain area for one astrology target, so observation planning is particularly important for this Sky Surveys. One observation planning algorithm used in multi-objective astronomical observations is developed. It can avoid the collision and interference between the fiber positioning units in the focal plane during the observation in one field of view, and the interested objects can be ovserved in a limited round with the maximize efficiency. Also, the observation simulation can be made for wide field of view through multi-FOV observation. After the observation planning is built ,the simulation is made in COSMOS field using GTC telescope. Interested galaxies, stars and high-redshift LBG galaxies are selected after the removal of the mask area, which may be bright stars. Then 9 FOV simulation is completed and observation efficiency and fiber utilization ratio for every round are given. Otherwise,allocating a certain number of fibers for background sky, giving different weights for different objects and how to move the FOV to improve the overall observation efficiency are discussed.

  12. Determination of the critical micelle concentration in simulations of surfactant systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Andrew P.; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu

    Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in bothmore » the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit)« less

  13. Simulation and analysis of a model dinoflagellate predator-prey system

    NASA Astrophysics Data System (ADS)

    Mazzoleni, M. J.; Antonelli, T.; Coyne, K. J.; Rossi, L. F.

    2015-12-01

    This paper analyzes the dynamics of a model dinoflagellate predator-prey system and uses simulations to validate theoretical and experimental studies. A simple model for predator-prey interactions is derived by drawing upon analogies from chemical kinetics. This model is then modified to account for inefficiencies in predation. Simulation results are shown to closely match the model predictions. Additional simulations are then run which are based on experimental observations of predatory dinoflagellate behavior, and this study specifically investigates how the predatory dinoflagellate Karlodinium veneficum uses toxins to immobilize its prey and increase its feeding rate. These simulations account for complex dynamics that were not included in the basic models, and the results from these computational simulations closely match the experimentally observed predatory behavior of K. veneficum and reinforce the notion that predatory dinoflagellates utilize toxins to increase their feeding rate.

  14. Simulation System Fidelity Assessment at the Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Beard, Steven D.; Reardon, Scott E.; Tobias, Eric L.; Aponso, Bimal L.

    2013-01-01

    Fidelity is a word that is often used but rarely understood when talking about groundbased simulation. Assessing the cueing fidelity of a ground based flight simulator requires a comparison to actual flight data either directly or indirectly. Two experiments were conducted at the Vertical Motion Simulator using the GenHel UH-60A Black Hawk helicopter math model that was directly compared to flight data. Prior to the experiment the simulator s motion and visual system frequency responses were measured, the aircraft math model was adjusted to account for the simulator motion system delays, and the motion system gains and washouts were tuned for the individual tasks. The tuned motion system fidelity was then assessed against the modified Sinacori criteria. The first experiments showed similar handling qualities ratings (HQRs) to actual flight for a bob-up and sidestep maneuvers. The second experiment showed equivalent HQRs between flight and simulation for the ADS33 slalom maneuver for the two pilot participants. The ADS33 vertical maneuver HQRs were mixed with one pilot rating the flight and simulation the same while the second pilot rated the simulation worse. In addition to recording HQRs on the second experiment, an experimental Simulation Fidelity Rating (SFR) scale developed by the University of Liverpool was tested for applicability to engineering simulators. A discussion of the SFR scale for use on the Vertical Motion Simulator is included in this paper.

  15. A space systems perspective of graphics simulation integration

    NASA Technical Reports Server (NTRS)

    Brown, R.; Gott, C.; Sabionski, G.; Bochsler, D.

    1987-01-01

    Creation of an interactive display environment can expose issues in system design and operation not apparent from nongraphics development approaches. Large amounts of information can be presented in a short period of time. Processes can be simulated and observed before committing resources. In addition, changes in the economics of computing have enabled broader graphics usage beyond traditional engineering and design into integrated telerobotics and Artificial Intelligence (AI) applications. The highly integrated nature of space operations often tend to rely upon visually intensive man-machine communication to ensure success. Graphics simulation activities at the Mission Planning and Analysis Division (MPAD) of NASA's Johnson Space Center are focusing on the evaluation of a wide variety of graphical analysis within the context of present and future space operations. Several telerobotics and AI applications studies utilizing graphical simulation are described. The presentation includes portions of videotape illustrating technology developments involving: (1) coordinated manned maneuvering unit and remote manipulator system operations, (2) a helmet mounted display system, and (3) an automated rendezous application utilizing expert system and voice input/output technology.

  16. A Statistical Comparison of PSC Model Simulations and POAM Observations

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Drdla, K.; Fromm, M.; Bokarius, K.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A better knowledge of PSC composition and formation mechanisms is important to better understand and predict stratospheric ozone depletion. Several past studies have attempted to compare modeling results with satellite observations. These comparisons have concentrated on case studies. In this paper we adopt a statistical approach. POAM PSC observations from several Arctic winters are categorized into Type Ia and Ib PSCs using a technique based on Strawa et al. The discrimination technique has been modified to employ the wavelengths dependence of the extinction signal at all wavelengths rather than only at 603 and 10 18 nm. Winter-long simulations for the 1999-2000 Arctic winter have been made using the IMPACT model. These simulations have been constrained by aircraft observations made during the SOLVE/THESEO 2000 campaign. A complete set of winter-long simulations was run for several different microphysical and PSC formation scenarios. The simulations give us perfect knowledge of PSC type (Ia, Ib, or II), composition, especially condensed phase HNO3 which is important for denitrification, and condensed phase H2O. Comparisons are made between the simulation and observation of PSC extinction at 1018 rim versus wavelength dependence, winter-long percentages of Ia and Ib occurrence, and temporal and altitude trends of the PSCs. These comparisons allow us to comment on how realistic some modeling scenarios are.

  17. Cassini radar : system concept and simulation results

    NASA Astrophysics Data System (ADS)

    Melacci, P. T.; Orosei, R.; Picardi, G.; Seu, R.

    1998-10-01

    The Cassini mission is an international venture, involving NASA, the European Space Agency (ESA) and the Italian Space Agency (ASI), for the investigation of the Saturn system and, in particular, Titan. The Cassini radar will be able to see through Titan's thick, optically opaque atmosphere, allowing us to better understand the composition and the morphology of its surface, but the interpretation of the results, due to the complex interplay of many different factors determining the radar echo, will not be possible without an extensive modellization of the radar system functioning and of the surface reflectivity. In this paper, a simulator of the multimode Cassini radar will be described, after a brief review of our current knowledge of Titan and a discussion of the contribution of the Cassini radar in answering to currently open questions. Finally, the results of the simulator will be discussed. The simulator has been implemented on a RISC 6000 computer by considering only the active modes of operation, that is altimeter and synthetic aperture radar. In the instrument simulation, strict reference has been made to the present planned sequence of observations and to the radar settings, including burst and single pulse duration, pulse bandwidth, pulse repetition frequency and all other parameters which may be changed, and possibly optimized, according to the operative mode. The observed surfaces are simulated by a facet model, allowing the generation of surfaces with Gaussian or non-Gaussian roughness statistic, together with the possibility of assigning to the surface an average behaviour which can represent, for instance, a flat surface or a crater. The results of the simulation will be discussed, in order to check the analytical evaluations of the models of the average received echoes and of the attainable performances. In conclusion, the simulation results should allow the validation of the theoretical evaluations of the capabilities of microwave instruments, when

  18. Cluster observations and simulations of He+ EMIC triggered emissions

    NASA Astrophysics Data System (ADS)

    Grison, B.; Shoji, M.; Santolik, O.; Omura, Y.

    2012-12-01

    EMIC triggered emissions have been reported in the inner magnetosphere at the edge of the plasmapause nightside [Pickett et al., 2010]. The generation mechanism proposed by Omura et al. [2010] is very similar to the one of the whistler chorus emissions and simulation results agree with observations and theory [Shoji et Omura, 2011]. The main characteristics of these emissions generated in the magnetic equatorial plane region are a frequency with time dispersion and a high level of coherence. The start frequency of previously mentioned observations is above half of the proton gyrofrequency. It means that the emissions are generated on the proton branch. On the He+ branch, generation of triggered emissions, in the same region, requests more energetic protons and the triggering process starts below the He+ gyrofrequency. It makes their identification in Cluster data rather difficult. Recent simulation results confirm the possibility of EMIC triggered emission on the He+ branch. In the present contribution we propose to compare a Cluster event to simulation results in order to investigate the possibility to identify observations to a He+ triggered emission. The impact of the observed waves on particle precipitation is also investigated.

  19. Practical Entanglement Estimation for Spin-System Quantum Simulators.

    PubMed

    Marty, O; Cramer, M; Plenio, M B

    2016-03-11

    We present practical methods to measure entanglement for quantum simulators that can be realized with trapped ions, cold atoms, and superconducting qubits. Focusing on long- and short-range Ising-type Hamiltonians, we introduce schemes that are applicable under realistic experimental conditions including mixedness due to, e.g., noise or temperature. In particular, we identify a single observable whose expectation value serves as a lower bound to entanglement and that may be obtained by a simple quantum circuit. As such circuits are not (yet) available for every platform, we investigate the performance of routinely measured observables as quantitative entanglement witnesses. Possible applications include experimental studies of entanglement scaling in critical systems and the reliable benchmarking of quantum simulators.

  20. Observation and Simulation of Microseisms Offshore Ireland

    NASA Astrophysics Data System (ADS)

    Le Pape, Florian; Bean, Chris; Craig, David; Jousset, Philippe; Donne, Sarah; Möllhoff, Martin

    2017-04-01

    Although more and more used in seismic imagery, ocean induced ambient seismic noise is still not so well understood, particularly how the signal propagates from ocean to land. Between January and September 2016, 10 broadband Ocean Bottom Seismometers (OBSs) stations, including acoustic sensors (hydrophone), were deployed across the shelf offshore Donegal and out into the Rockall Trough. The preliminary results show spatial and temporal variability in the ocean generated seismic noise which holds information about changes in the generation source process, including meteorological information, but also in the geological structure. In addition to the collected OBS data, numerical simulations of acoustic/seismic wave propagation are also considered in order to study the spatio-temporal variation of the broadband acoustic wavefield and its connection with the measured seismic wavefield in the region. Combination of observations and simulations appears significant to better understand what control the acoustic/seismic coupling at the sea floor as well as the effect of the water column and sediments thickness on signal propagation. Ocean generated seismic ambient noise recorded at the seafloor appears to behave differently in deep and shallow water and 3D simulations of acoustic/seismic wave propagation look particularly promising for reconciling deep ocean, shelf and land seismic observations.

  1. SENSOR: a tool for the simulation of hyperspectral remote sensing systems

    NASA Astrophysics Data System (ADS)

    Börner, Anko; Wiest, Lorenz; Keller, Peter; Reulke, Ralf; Richter, Rolf; Schaepman, Michael; Schläpfer, Daniel

    The consistent end-to-end simulation of airborne and spaceborne earth remote sensing systems is an important task, and sometimes the only way for the adaptation and optimisation of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software Environment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray-tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. The third part consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimisation requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and first examples of its use are given. The verification of SENSOR is demonstrated. This work is closely related to the Airborne PRISM Experiment (APEX), an airborne imaging spectrometer funded by the European Space Agency.

  2. Ionospheric Trend Over Wuhan During 1947-2017: Comparison Between Simulation and Observation

    NASA Astrophysics Data System (ADS)

    Yue, Xinan; Hu, Lianhuan; Wei, Yong; Wan, Weixing; Ning, Baiqi

    2018-02-01

    Since Roble and Dickinson (1989), who drew the community's attention about the greenhouse gas effect on the ionosphere, huge efforts have been implemented on ionospheric climate study. However, direct comparison between observations and simulations is still rare. Recently, the Wuhan ionosonde observations were digitized and standardized through unified method back to 1947. In this study, the NCAR-TIEGCM was driven by Mauna Loa Observatory observed CO2 level and International Geomagnetic Reference Field (IGRF) geomagnetic field to simulate their effects on ionospheric long-term trend over Wuhan. Only March equinox was considered in both data analysis and simulation. Simulation results show that the CO2 and geomagnetic field have comparable effect on hmF2 trend, while geomagnetic field effect is stronger than CO2 on foF2 trend over Wuhan. Both factors result in obvious but different diurnal variations of foF2/hmF2 long-term trends. The geomagnetic field effect is nonlinear versus years since the long-term variation of geomagnetic field intensity and orientation is complex. Mean value of foF2 and hmF2 trend is (-0.0021 MHz/yr, -0.106 km/yr) and (-0.0022 MHz/yr, -0.0763 km/yr) for observation and simulation, respectively. Regarding the diurnal variation of the trend, the simulation accords well with that of observation except hmF2 results around 12 UT. Overall, good agreement between observation and simulation illustrates the good quality of Wuhan ionosonde long-term data and the validity of ancient ionosphere reconstruction based on realistic indices driving simulation.

  3. Understanding observed and simulated historical temperature trends in California

    NASA Astrophysics Data System (ADS)

    Bonfils, C. J.; Duffy, P. B.; Santer, B. D.; Lobell, D. B.; Wigley, T. M.

    2006-12-01

    In our study, we attempt 1) to improve our understanding of observed historical temperature trends and their underlying causes in the context of regional detection of climate change and 2) to identify possible neglected forcings and errors in the model response to imposed forcings at the origin of inconsistencies between models and observations. From eight different observational datasets, we estimate California-average temperature trends over 1950- 1999 and compare them to trends from a suite of IPCC control simulations of natural internal climate variability. We find that the substantial night-time warming occurring from January to September is inconsistent with model-based estimates of natural internal climate variability, and thus requires one or more external forcing agents to be explained. In contrast, we find that a significant day-time warming occurs only from January to March. Our confidence in these findings is increased because there is no evidence that the models systematically underestimate noise on interannual and decadal timescales. However, we also find that IPCC simulations of the 20th century that include combined anthropogenic and natural forcings are not able to reproduce such a pronounced seasonality of the trends. Our first hypothesis is that the warming of Californian winters over the second half of the twentieth century is associated with changes in large-scale atmospheric circulation that are likely to be human-induced. This circulation change is underestimated in the historical simulations, which may explain why the simulated warming of Californian winters is too weak. We also hypothesize that the lack of a detectable observed increase in summertime maximum temperature arises from a cooling associated with large-scale irrigation. This cooling may have, until now, counteracted the warming induced by increasing greenhouse gases and urbanization effects. Omitting to include this forcing in the simulations can result in overestimating the

  4. Computer simulations of space-borne meteorological systems on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Halem, M.

    1984-01-01

    Because of the extreme expense involved in developing and flight testing meteorological instruments, an extensive series of numerical modeling experiments to simulate the performance of meteorological observing systems were performed on CYBER 205. The studies compare the relative importance of different global measurements of individual and composite systems of the meteorological variables needed to determine the state of the atmosphere. The assessments are made in terms of the systems ability to improve 12 hour global forecasts. Each experiment involves the daily assimilation of simulated data that is obtained from a data set called nature. This data is obtained from two sources: first, a long two-month general circulation integration with the GLAS 4th Order Forecast Model and second, global analysis prepared by the National Meteorological Center, NOAA, from the current observing systems twice daily.

  5. Atmospherical simulations of the OMEGA/MEX observations

    NASA Astrophysics Data System (ADS)

    Melchiorri, R.; Drossart, P.; Combes, M.; Encrenaz, T.; Fouchet, T.; Forget, F.; Bibring, J. P.; Ignatiev, N.; Moroz, V.; OMEGA Team

    The modelization of the atmospheric contribution in the martian spectrum is an important step for the OMEGA data analysis.A full line by line radiative transfer calculation is made for the gas absorption; the dust opacity component, in a first approximation, is calculated as an optically thin additive component.Due to the large number of parameters needed in the calculations, the building of a huge data base to be interpolated is not envisageable, for each observed OMEGA spectrum with calculation for all the involved parameters (atmospheric pressure, water abundance, CO abundance, dust opacity and geometric angles of observation). The simulation of the observations allows us to fix all the orbital parameters and leave the unknown parameters as the only variables.Starting from the predictions of the current meteorological models of Mars we build a smaller data base corresponding on each observation. We present here a first order simulation, which consists in retrieving atmospheric contribution from the solar reflected component as a multiplicative (for gas absorption) and an additive component (for suspended dust contribution); although a fully consistent approach will require to include surface and atmosphere contributions together in synthetic calculations, this approach is sufficient for retrieving mineralogic information cleaned from atmospheric absorption at first order.First comparison to OMEGA spectra will be presented, with first order retrieval of CO2 pressure, CO and H2O abundance, and dust opacity.

  6. Large Eddy Simulations of Continental Boundary Layer Clouds Observed during the RACORO Field Campaign

    NASA Astrophysics Data System (ADS)

    Endo, S.; Fridlind, A. M.; Lin, W.; Vogelmann, A. M.; Toto, T.; Liu, Y.

    2013-12-01

    Three cases of boundary layer clouds are analyzed in the FAst-physics System TEstbed and Research (FASTER) project, based on continental boundary-layer-cloud observations during the RACORO Campaign [Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations] at the ARM Climate Research Facility's Southern Great Plains (SGP) site. The three 60-hour case study periods are selected to capture the temporal evolution of cumulus, stratiform, and drizzling boundary-layer cloud systems under a range of conditions, intentionally including those that are relatively more mixed or transitional in nature versus being of a purely canonical type. Multi-modal and temporally varying aerosol number size distribution profiles are derived from aircraft observations. Large eddy simulations (LESs) are performed for the three case study periods using the GISS Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) model and the WRF-FASTER model, which is the Weather Research and Forecasting (WRF) model implemented with forcing ingestion and other functions to constitute a flexible LES. The two LES models commonly capture the significant transitions of cloud-topped boundary layers in the three periods: diurnal evolution of cumulus layers repeating over multiple days, nighttime evolution/daytime diminution of thick stratus, and daytime breakup of stratus and stratocumulus clouds. Simulated transitions of thermodynamic structures of the cloud-topped boundary layers are examined by balloon-borne soundings and ground-based remote sensors. Aircraft observations are then used to statistically evaluate the predicted cloud droplet number size distributions under varying aerosol and cloud conditions. An ensemble approach is used to refine the model configuration for the combined use of observations with parallel LES and single-column model simulations. See Lin et al. poster for single

  7. Block Oriented Simulation System (BOSS)

    NASA Technical Reports Server (NTRS)

    Ratcliffe, Jaimie

    1988-01-01

    Computer simulation is assuming greater importance as a flexible and expedient approach to modeling system and subsystem behavior. Simulation has played a key role in the growth of complex, multiple access space communications such as those used by the space shuttle and the TRW-built Tracking and Data Relay Satellites (TDRS). A powerful new simulator for use in designing and modeling the communication system of NASA's planned Space Station is being developed. Progress to date on the Block (Diagram) Oriented Simulation System (BOSS) is described.

  8. Simulations of extragalactic magnetic fields and of their observables

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Brüggen, M.; Gheller, C.; Hackstein, S.; Wittor, D.; Hinz, P. M.

    2017-12-01

    The origin of extragalactic magnetic fields is still poorly understood. Based on a dedicated suite of cosmological magneto-hydrodynamical simulations with the ENZO code we have performed a survey of different models that may have caused present-day magnetic fields in galaxies and galaxy clusters. The outcomes of these models differ in cluster outskirts, filaments, sheets and voids and we use these simulations to find observational signatures of magnetogenesis. With these simulations, we predict the signal of extragalactic magnetic fields in radio observations of synchrotron emission from the cosmic web, in Faraday rotation, in the propagation of ultra high energy cosmic rays, in the polarized signal from fast radio bursts at cosmological distance and in spectra of distant blazars. In general, primordial scenarios in which present-day magnetic fields originate from the amplification of weak (⩽nG ) uniform seed fields result in more homogeneous and relatively easier to observe magnetic fields than astrophysical scenarios, in which present-day fields are the product of feedback processes triggered by stars and active galaxies. In the near future the best evidence for the origin of cosmic magnetic fields will most likely come from a combination of synchrotron emission and Faraday rotation observed at the periphery of large-scale structures.

  9. Biases and systematics in the observational derivation of galaxy properties: comparing different techniques on synthetic observations of simulated galaxies

    NASA Astrophysics Data System (ADS)

    Guidi, Giovanni; Scannapieco, Cecilia; Walcher, C. Jakob

    2015-12-01

    We study the sources of biases and systematics in the derivation of galaxy properties from observational studies, focusing on stellar masses, star formation rates, gas and stellar metallicities, stellar ages, magnitudes and colours. We use hydrodynamical cosmological simulations of galaxy formation, for which the real quantities are known, and apply observational techniques to derive the observables. We also analyse biases that are relevant for a proper comparison between simulations and observations. For our study, we post-process the simulation outputs to calculate the galaxies' spectral energy distributions (SEDs) using stellar population synthesis models and also generate the fully consistent far-UV-submillimetre wavelength SEDs with the radiative transfer code SUNRISE. We compared the direct results of simulations with the observationally derived quantities obtained in various ways, and found that systematic differences in all studied galaxy properties appear, which are caused by: (1) purely observational biases, (2) the use of mass-weighted and luminosity-weighted quantities, with preferential sampling of more massive and luminous regions, (3) the different ways of constructing the template of models when a fit to the spectra is performed, and (4) variations due to different calibrations, most notably for gas metallicities and star formation rates. Our results show that large differences can appear depending on the technique used to derive galaxy properties. Understanding these differences is of primary importance both for simulators, to allow a better judgement of similarities and differences with observations, and for observers, to allow a proper interpretation of the data.

  10. Variable input observer for structural health monitoring of high-rate systems

    NASA Astrophysics Data System (ADS)

    Hong, Jonathan; Laflamme, Simon; Cao, Liang; Dodson, Jacob

    2017-02-01

    The development of high-rate structural health monitoring methods is intended to provide damage detection on timescales of 10 µs -10ms where speed of detection is critical to maintain structural integrity. Here, a novel Variable Input Observer (VIO) coupled with an adaptive observer is proposed as a potential solution for complex high-rate problems. The VIO is designed to adapt its input space based on real-time identification of the system's essential dynamics. By selecting appropriate time-delayed coordinates defined by both a time delay and an embedding dimension, the proper input space is chosen which allows more accurate estimations of the current state and a reduction of the convergence rate. The optimal time-delay is estimated based on mutual information, and the embedding dimension is based on false nearest neighbors. A simulation of the VIO is conducted on a two degree-of-freedom system with simulated damage. Results are compared with an adaptive Luenberger observer, a fixed time-delay observer, and a Kalman Filter. Under its preliminary design, the VIO converges significantly faster than the Luenberger and fixed observer. It performed similarly to the Kalman Filter in terms of convergence, but with greater accuracy.

  11. Hybrid stochastic simulations of intracellular reaction-diffusion systems.

    PubMed

    Kalantzis, Georgios

    2009-06-01

    With the observation that stochasticity is important in biological systems, chemical kinetics have begun to receive wider interest. While the use of Monte Carlo discrete event simulations most accurately capture the variability of molecular species, they become computationally costly for complex reaction-diffusion systems with large populations of molecules. On the other hand, continuous time models are computationally efficient but they fail to capture any variability in the molecular species. In this study a hybrid stochastic approach is introduced for simulating reaction-diffusion systems. We developed an adaptive partitioning strategy in which processes with high frequency are simulated with deterministic rate-based equations, and those with low frequency using the exact stochastic algorithm of Gillespie. Therefore the stochastic behavior of cellular pathways is preserved while being able to apply it to large populations of molecules. We describe our method and demonstrate its accuracy and efficiency compared with the Gillespie algorithm for two different systems. First, a model of intracellular viral kinetics with two steady states and second, a compartmental model of the postsynaptic spine head for studying the dynamics of Ca+2 and NMDA receptors.

  12. Compensation for time delay in flight simulator visual-display systems

    NASA Technical Reports Server (NTRS)

    Crane, D. F.

    1983-01-01

    A piloted aircraft can be viewed as a closed-loop, man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability, and these changes bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. Delay compensation, designed to restore pilot-aircraft system stability, was evaluated in several studies which are reported here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish statistical significance of the results) to a brief evaluation of compensation of a computer-generated-imagery (CGI) visual display system in a full six-degree-of-freedom simulation. The compensation was effective - improvements in pilot performance and workload or aircraft handling-qualities rating (HQR) were observed. Results from recent aircraft handling-qualities research literature which support the compensation design approach are also reviewed.

  13. Observational Tracers of Hot and Cold Gas in Isolated Galaxy Simulations

    NASA Astrophysics Data System (ADS)

    Brzycki, Bryan; Silvia, Devin

    2018-01-01

    We present results from an analysis comparing simulations of isolated spiral galaxies with recent observations of the circumgalactic medium (CGM). As the interface containing inflows and outflows between the interstellar and intergalactic media, the CGM plays an important role in the composition and evolution of galaxies. Using a set of isolated galaxy simulations over different initial conditions and star formation and feedback parameters, we investigate the evolution of CGM gas. Specifically, in light of recent observational studies, we compute the radial column density profiles and covering fractions of various observable ion species (H I, C IV, O VI, Mg II, Si III) for each simulated galaxy. Taking uniformly random sightlines through the CGM of each simulated galaxy, we find the abundance of gas absorbers and analyze their contribution to the overall column density along each sightline. By identifying the prevalence of high column density absorbers, we seek to characterize the distribution and evolution of observable ion species in the CGM. We also highlight a subset of our isolated galaxy simulations that produce and maintain a stable precipitating CGM that fuels high rates of sustained star formation. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  14. Evaluation of tropical Pacific observing systems using NCEP and GFDL ocean data assimilation systems

    NASA Astrophysics Data System (ADS)

    Xue, Yan; Wen, Caihong; Yang, Xiaosong; Behringer, David; Kumar, Arun; Vecchi, Gabriel; Rosati, Anthony; Gudgel, Rich

    2017-08-01

    The TAO/TRITON array is the cornerstone of the tropical Pacific and ENSO observing system. Motivated by the recent rapid decline of the TAO/TRITON array, the potential utility of TAO/TRITON was assessed for ENSO monitoring and prediction. The analysis focused on the period when observations from Argo floats were also available. We coordinated observing system experiments (OSEs) using the global ocean data assimilation system (GODAS) from the National Centers for Environmental Prediction and the ensemble coupled data assimilation (ECDA) from the Geophysical Fluid Dynamics Laboratory for the period 2004-2011. Four OSE simulations were conducted with inclusion of different subsets of in situ profiles: all profiles (XBT, moorings, Argo), all except the moorings, all except the Argo and no profiles. For evaluation of the OSE simulations, we examined the mean bias, standard deviation difference, root-mean-square difference (RMSD) and anomaly correlation against observations and objective analyses. Without assimilation of in situ observations, both GODAS and ECDA had large mean biases and RMSD in all variables. Assimilation of all in situ data significantly reduced mean biases and RMSD in all variables except zonal current at the equator. For GODAS, the mooring data is critical in constraining temperature in the eastern and northwestern tropical Pacific, while for ECDA both the mooring and Argo data is needed in constraining temperature in the western tropical Pacific. The Argo data is critical in constraining temperature in off-equatorial regions for both GODAS and ECDA. For constraining salinity, sea surface height and surface current analysis, the influence of Argo data was more pronounced. In addition, the salinity data from the TRITON buoys played an important role in constraining salinity in the western Pacific. GODAS was more sensitive to withholding Argo data in off-equatorial regions than ECDA because it relied on local observations to correct model biases and

  15. The Galaxy Cluster Merger Catalog: An Online Repository of Mock Observations from Simulated Galaxy Cluster Mergers

    NASA Astrophysics Data System (ADS)

    ZuHone, J. A.; Kowalik, K.; Öhman, E.; Lau, E.; Nagai, D.

    2018-01-01

    We present the “Galaxy Cluster Merger Catalog.” This catalog provides an extensive suite of mock observations and related data for N-body and hydrodynamical simulations of galaxy cluster mergers and clusters from cosmological simulations. These mock observations consist of projections of a number of important observable quantities in several different wavebands, as well as along different lines of sight through each simulation domain. The web interface to the catalog consists of easily browsable images over epoch and projection direction, as well as download links for the raw data and a JS9 interface for interactive data exploration. The data are presented within a consistent format so that comparison between simulations is straightforward. All of the data products are provided in the standard Flexible Image Transport System file format. The data are being stored on the yt Hub (http://hub.yt), which allows for remote access and analysis using a Jupyter notebook server. Future versions of the catalog will include simulations from a number of research groups and a variety of research topics related to the study of interactions of galaxy clusters with each other and with their member galaxies. The catalog is located at http://gcmc.hub.yt.

  16. Observations and simulations of the western United States' hydroclimate

    NASA Astrophysics Data System (ADS)

    Guirguis, Kristen

    While very important from an economical and societal point of view, estimating precipitation in the western United States remains an unsolved and challenging problem. This is due to difficulties in observing and modeling precipitation in complex terrain. This research examines this issue by (i) providing a systematic evaluation of precipitation observations to quantify data uncertainty; and (ii) investigating the ability of the Ocean-Land-Atmosphere Model (OLAM) to simulate the winter hydroclimate in this region. This state-of-the-art, non-hydrostatic model has the capability of simulating simultaneously all scales of motions at various resolutions. This research intercompares nine precipitation datasets commonly used in hydrometeorological research in two ways. First, using principal component analysis, a precipitation climatology is conducted for the western U.S. from which five unique precipitation climates are identified. From this analysis, data uncertainty is shown to be primarily due to differences in (i) precipitation over the Rocky Mountains, (ii) the eastward wet-to-dry precipitation gradient during the cold season, (iii) the North American Monsoon signal, and (iv) precipitation in the desert southwest during spring and summer. The second intercomparison uses these five precipitation regions to provide location-specific assessments of uncertainty, which is shown to be dependent on season, location. Long-range weather forecasts on the order of a season are important for water-scarce regions such as the western U.S. The modeling component of this research looks at the ability of the OLAM to simulate the hydroclimate in the western U.S. during the winter of 1999. Six global simulations are run, each with a different spatial resolution over the western U.S. (360 km down to 11 km). For this study, OLAM is configured as for a long-range seasonal hindcast but with observed sea surface temperatures. OLAM precipitation compares well against observations, and is

  17. Simulations of star-forming molecular clouds: observational predictions

    NASA Astrophysics Data System (ADS)

    Zhang, Shangjia; Hartmann, Lee; Kuznetsova, Aleksandra; Abelardo Zamora, Manuel

    2018-01-01

    Observations of protostellar molecular cloud cores can be used to test theories of star formation. However, observational results can be biased because of limited information: (a) only two spatial dimensions and one velocity dimension can be measured, (b) and cores generally are not spherically symmetric. We use numerical simulations of the formation and collapse of molecular gas with sink particles to make observational predictions. We use the radiative transfer code LIME to predict CO and NH3 channel maps. We find reasonable agreement with observed velocity structures and gradients but occasional large differences depending on viewing angle.

  18. Simulation System for Training in Laparoscopic Surgery

    NASA Technical Reports Server (NTRS)

    Basdogan, Cagatay; Ho, Chih-Hao

    2003-01-01

    A computer-based simulation system creates a visual and haptic virtual environment for training a medical practitioner in laparoscopic surgery. Heretofore, it has been common practice to perform training in partial laparoscopic surgical procedures by use of a laparoscopic training box that encloses a pair of laparoscopic tools, objects to be manipulated by the tools, and an endoscopic video camera. However, the surgical procedures simulated by use of a training box are usually poor imitations of the actual ones. The present computer-based system improves training by presenting a more realistic simulated environment to the trainee. The system includes a computer monitor that displays a real-time image of the affected interior region of the patient, showing laparoscopic instruments interacting with organs and tissues, as would be viewed by use of an endoscopic video camera and displayed to a surgeon during a laparoscopic operation. The system also includes laparoscopic tools that the trainee manipulates while observing the image on the computer monitor (see figure). The instrumentation on the tools consists of (1) position and orientation sensors that provide input data for the simulation and (2) actuators that provide force feedback to simulate the contact forces between the tools and tissues. The simulation software includes components that model the geometries of surgical tools, components that model the geometries and physical behaviors of soft tissues, and components that detect collisions between them. Using the measured positions and orientations of the tools, the software detects whether they are in contact with tissues. In the event of contact, the deformations of the tissues and contact forces are computed by use of the geometric and physical models. The image on the computer screen shows tissues deformed accordingly, while the actuators apply the corresponding forces to the distal ends of the tools. For the purpose of demonstration, the system has been set

  19. Method for simulating discontinuous physical systems

    DOEpatents

    Baty, Roy S.; Vaughn, Mark R.

    2001-01-01

    The mathematical foundations of conventional numerical simulation of physical systems provide no consistent description of the behavior of such systems when subjected to discontinuous physical influences. As a result, the numerical simulation of such problems requires ad hoc encoding of specific experimental results in order to address the behavior of such discontinuous physical systems. In the present invention, these foundations are replaced by a new combination of generalized function theory and nonstandard analysis. The result is a class of new approaches to the numerical simulation of physical systems which allows the accurate and well-behaved simulation of discontinuous and other difficult physical systems, as well as simpler physical systems. Applications of this new class of numerical simulation techniques to process control, robotics, and apparatus design are outlined.

  20. Observer-Based Discrete-Time Nonnegative Edge Synchronization of Networked Systems.

    PubMed

    Su, Housheng; Wu, Han; Chen, Xia

    2017-10-01

    This paper studies the multi-input and multi-output discrete-time nonnegative edge synchronization of networked systems based on neighbors' output information. The communication relationship among the edges of networked systems is modeled by well-known line graph. Two observer-based edge synchronization algorithms are designed, for which some necessary and sufficient synchronization conditions are derived. Moreover, some computable sufficient synchronization conditions are obtained, in which the feedback matrix and the observer matrix are computed by solving the linear programming problems. We finally design several simulation examples to demonstrate the validity of the given nonnegative edge synchronization algorithms.

  1. The terminal area simulation system. Volume 2: Verification cases

    NASA Technical Reports Server (NTRS)

    Proctor, F. H.

    1987-01-01

    The numerical simulation of five case studies are presented and are compared with available data in order to verify the three-dimensional version of the Terminal Area Simulation System (TASS). A spectrum of convective storm types are selected for the case studies. Included are: a High-Plains supercell hailstorm, a small and relatively short-lived High-Plains cumulonimbus, a convective storm which produced the 2 August 1985 DFW microburst, a South Florida convective complex, and a tornadic Oklahoma thunderstorm. For each of the cases the model results compared reasonably well with observed data. In the simulations of the supercell storms many of their characteristic features were modeled, such as the hook echo, BWER, mesocyclone, gust fronts, giant persistent updraft, wall cloud, flanking-line towers, anvil and radar reflectivity overhang, and rightward veering in the storm propagation. In the simulation of the tornadic storm a horseshoe-shaped updraft configuration and cyclic changes in storm intensity and structure were noted. The simulation of the DFW microburst agreed remarkably well with sparse observed data. The simulated outflow rapidly expanded in a nearly symmetrical pattern and was associated with a ringvortex. A South Florida convective complex was simulated and contained updrafts and downdrafts in the form of discrete bubbles. The numerical simulations, in all cases, always remained stable and bounded with no anomalous trends.

  2. Numerical Simulation of Nocturnal Drainage Flows in Idealized Valley-Tributary Systems.

    NASA Astrophysics Data System (ADS)

    O'Steen, Lance B.

    2000-11-01

    Numerical simulations of nocturnal drainage flow and transport in idealized valley-tributary systems are compared with the Atmospheric Science in Complex Terrain (ASCOT) meteorological field data and tracer studies from the Brush Creek valley of western Colorado. Much of the general valley-tributary flow behavior deduced from observations is qualitatively reproduced in the numerical results. The spatially complex, unsteady nature of the tributary flow found in the field data is also seen in the simulations. Oscillations in the simulated tributary flow are similar to some field observations. However, observed oscillations in the valley flow at the mouth of the tributary could not be reproduced in the numerical results. Thus, hypotheses of strongly coupled valley-tributary flow oscillations, based on field data, cannot be supported by these simulations. Along-valley mass flux calculations based on model results for the valley-tributary system indicate an increase of 5%-10% over a valley without a tributary. Enhanced valley mass fluxes were found from 8 km above the tributary to almost the valley mouth. However, the valley mass fluxes for topography with and without a tributary were nearly equal at the valley outflow. ASCOT field data suggested a tributary mass flow contribution of 5%-15% for a Brush Creek tributary of similar drainage area to the model tributary employed here. Numerical simulations of transport in the nocturnal valley-tributary flow strongly support ASCOT tracer studies in the Pack Canyon tributary of Brush Creek. These results suggest that the valley-tributary interaction can significantly increase plume dispersion under stable conditions. Overall, the simulation results presented here indicate that simple terrain geometries are able to capture many of the salient features of drainage flow in real valley-tributary systems.

  3. Multiwavelength mock observations of the WHIM in a simulated galaxy cluster

    NASA Astrophysics Data System (ADS)

    Planelles, Susana; Mimica, Petar; Quilis, Vicent; Cuesta-Martínez, Carlos

    2018-06-01

    About half of the expected total baryon budget in the local Universe is `missing'. Hydrodynamical simulations suggest that most of the missing baryons are located in a mildly overdense, warm-hot intergalactic medium (WHIM), which is difficult to be detected at most wavelengths. In this paper, we explore multiwavelength synthetic observations of a massive galaxy cluster developed in a full Eulerian-adaptive mesh refinement cosmological simulation. A novel numerical procedure is applied on the outputs of the simulation, which are post-processed with a full-radiative transfer code that can compute the change of the intensity at any frequency along the null geodesic of photons. We compare the emission from the whole intergalactic medium and from the WHIM component (defined as the gas with a temperature in the range 105-107 K) at three observational bands associated with thermal X-rays, thermal and kinematic Sunyaev-Zel'dovich effect, and radio emission. The synthetic maps produced by this procedure could be directly compared with existing observational maps and could be used as a guide for future observations with forthcoming instruments. The analysis of the different emissions associated with a high-resolution galaxy cluster is in broad agreement with previous simulated and observational estimates of both gas components.

  4. Integrating Existing Simulation Components into a Cohesive Simulation System

    NASA Technical Reports Server (NTRS)

    McLaughlin, Brian J.; Barrett, Larry K.

    2012-01-01

    A tradition of leveraging the re-use of components to help manage costs has evolved in the development of complex system. This tradition continues on in the Joint Polar Satellite System (JPSS) Program with the cloning of the Suomi National Polar-orbiting Partnership (NPP) satellite for the JPSS-1 mission, including the instrument complement. One benefit of re-use on a mission is the availability of existing simulation assets from the systems that were previously built. An issue arises in the continual shift of technology over a long mission, or multi-mission, lifecycle. As the missions mature, the requirements for the observatory simulations evolve. The challenge in this environment becomes re-using the existing components in that ever-changing landscape. To meet this challenge, the system must: establish an operational architecture that minimizes impacts on the implementation of individual components, consolidate the satisfaction of new high-impact requirements into system-level infrastructure, and build in a long-term view of system adaptation that spans the full lifecycle of the simulation system. The Flight Vehicle Test Suite (FVTS) within the JPSS Program is defining and executing this approach to ensure a robust simulation capability for the JPSS multi-mission environment

  5. Magnetoacoustic Wave Energy from Numerical Simulations of an Observed Sunspot Umbra

    NASA Astrophysics Data System (ADS)

    Felipe, T.; Khomenko, E.; Collados, M.

    2011-07-01

    We aim at reproducing the height dependence of sunspot wave signatures obtained from spectropolarimetric observations through three-dimensional MHD numerical simulations. A magnetostatic sunspot model based on the properties of the observed sunspot is constructed and perturbed at the photosphere, introducing the fluctuations measured with the Si I λ10827 line. The results of the simulations are compared with the oscillations observed simultaneously at different heights from the He I λ10830 line, the Ca II H core, and the Fe I blends in the wings of the Ca II H line. The simulations show a remarkable agreement with the observations. They reproduce the velocity maps and power spectra at the formation heights of the observed lines, as well as the phase and amplification spectra between several pairs of lines. We find that the stronger shocks at the chromosphere are accompanied with a delay between the observed signal and the simulated one at the corresponding height, indicating that shocks shift the formation height of the chromospheric lines to higher layers. Since the simulated wave propagation matches very well the properties of the observed one, we are able to use the numerical calculations to quantify the energy contribution of the magnetoacoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is too low to balance the chromospheric radiative losses. The energy contained at the formation height of the lowermost Si I λ10827 line in the form of slow magnetoacoustic waves is already insufficient to heat the higher layers, and the acoustic energy which reaches the chromosphere is around 3-9 times lower than the required amount of energy. The contribution of the magnetic energy is even lower.

  6. Simulation of Groundwater Flow in the Coastal Plain Aquifer System of Virginia

    USGS Publications Warehouse

    Heywood, Charles E.; Pope, Jason P.

    2009-01-01

    75 percent of the total groundwater withdrawn from Coastal Plain aquifers during the year 2000. Unreported self-supplied withdrawals were simulated in the groundwater model by specifying their probable locations, magnitudes, and aquifer assignments on the basis of a separate study of domestic-well characteristics in Virginia. The groundwater flow model was calibrated to 7,183 historic water-level observations from 497 observation wells with the parameter-estimation codes UCODE-2005 and PEST. Most water-level observations were from the Potomac aquifer system, which permitted a more complex spatial distribution of simulated hydraulic conductivity within the Potomac aquifer than was possible for other aquifers. Zone, function, and pilot-point approaches were used to distribute assigned hydraulic properties within the aquifer system. The good fit (root mean square error = 3.6 feet) of simulated to observed water levels and reasonableness of the estimated parameter values indicate the model is a good representation of the physical groundwater flow system. The magnitudes and temporal and spatial distributions of residuals indicate no appreciable model bias. The model is intended to be useful for predicting changes in regional groundwater levels in the confined aquifer system in response to future pumping. Because the transient release of water stored in low-permeability confining units is simulated, drawdowns resulting from simulated pumping stresses may change substantially through time before reaching steady state. Consequently, transient simulations of water levels at different future times will be more accurate than a steady-state simulation for evaluating probable future aquifer-system responses to proposed pumping.

  7. Interactive Web-based Floodplain Simulation System for Realistic Experiments of Flooding and Flood Damage

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2013-12-01

    Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.

  8. Simulation of Twin Telescopes at Onsala and Wettzell for the VLBI Global Observing System

    NASA Astrophysics Data System (ADS)

    Schönberger, Caroline; Gnilsen, Paul; Böhm, Johannes; Haas, Rüdiger

    2015-04-01

    The VLBI2010 committee of the International VLBI Service for Geodesy and Astrometry (IVS) developed a concept to achieve an improvement of the accuracy of geodetic Very Long Baseline Interferometry (VLBI) to 1 mm for station positions and 0.1 mm/yr for station velocities. This so-called VLBI2010 concept includes broadband observations with fast slewing telescopes and proposes twin telescopes to improve the handling of atmospheric turbulence that has been identified as a limiting factor for geodetic VLBI. There are several VLBI sites that have projects to install a Twin Telescope. The Wettzell Twin Telescope in Germany has already been constructed, and Twin Telescopes will be installed in the coming years at Onsala (Sweden), Ny-Ålesund (Spitsbergen, Norway) and Kazan (Russia). In this study, the Vienna VLBI Software (VieVS) is used to schedule and simulate a global VLBI network following the example of the CONT11 campaign, with and without the Twin Telescopes in Onsala and Wettzell. Different scheduling approaches (e.g., source-based scheduling, Twin Telescope observing in multidirectional mode, Twin Telescopes in continuous mode) were compared by evaluating the numbers of observations and scans as well as baseline length repeatabilities, station positions, Earth orientation parameters, atmospheric parameters and clock estimates. Comparison of the results show an improvement in estimated parameters with Twin Telescopes, especially with the Onsala Twin Telescope in a continuous observing mode and a strategy with four sources observed simultaneously.

  9. Evaluation of a Mesoscale Atmospheric Dispersion Modeling System with Observations from the 1980 Great Plains Mesoscale Tracer Field Experiment. Part I: Datasets and Meteorological Simulations.

    NASA Astrophysics Data System (ADS)

    Moran, Michael D.; Pielke, Roger A.

    1996-03-01

    The Colorado State University mesoscale atmospheric dispersion (MAD) numerical modeling system, which consists of a prognostic mesoscale meteorological model coupled to a mesoscale Lagrangian particle dispersion model, has been used to simulate the transport and diffusion of a perfluorocarbon tracer-gas cloud for one afternoon surface release during the July 1980 Great Plains mesoscale tracer field experiment. Ground-level concentration (GLC) measurements taken along arcs of samplers 100 and 600 km downwind of the release site at Norman, Oklahoma, up to three days after the tracer release were available for comparison. Quantitative measures of a number of significant dispersion characteristics obtained from analysis of the observed tracer cloud's moving GLC `footprint' have been used to evaluate the modeling system's skill in simulating this MAD case.MAD is more dependent upon the spatial and temporal structure of the transport wind field than is short-range atmospheric dispersion. For the Great Plains mesoscale tracer experiment, the observations suggest that the Great Plains nocturnal low-level jet played an important role in transporting and deforming the tracer cloud. A suite of ten two- and three-dimensional numerical meteorological experiments was devised to investigate the relative contributions of topography, other surface inhomogeneities, atmospheric baroclinicity, synoptic-scale flow evolution, and meteorological model initialization time to the structure and evolution of the low-level mesoscale flow field and thus to MAD. Results from the ten mesoscale meteorological simulations are compared in this part of the paper. The predicted wind fields display significant differences, which give rise in turn to significant differences in predicted low-level transport. The presence of an oscillatory ageostrophic component in the observed synoptic low-level winds for this case is shown to complicate initialization of the meteorological model considerably and is the

  10. Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  11. Explicit simulation of a midlatitude Mesoscale Convective System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, G.D.; Cotton, W.R.

    1996-04-01

    We have explicitly simulated the mesoscale convective system (MCS) observed on 23-24 June 1985 during PRE-STORM, the Preliminary Regional Experiment for the Stormscale Operational and Research and Meterology Program. Stensrud and Maddox (1988), Johnson and Bartels (1992), and Bernstein and Johnson (1994) are among the researchers who have investigated various aspects of this MCS event. We have performed this MCS simulation (and a similar one of a tropical MCS; Alexander and Cotton 1994) in the spirit of the Global Energy and Water Cycle Experiment Cloud Systems Study (GCSS), in which cloud-resolving models are used to assist in the formulation andmore » testing of cloud parameterization schemes for larger-scale models. In this paper, we describe (1) the nature of our 23-24 June MCS dimulation and (2) our efforts to date in using our explicit MCS simulations to assist in the development of a GCM parameterization for mesoscale flow branches. The paper is organized as follows. First, we discuss the synoptic situation surrounding the 23-24 June PRE-STORM MCS followed by a discussion of the model setup and results of our simulation. We then discuss the use of our MCS simulation. We then discuss the use of our MCS simulations in developing a GCM parameterization for mesoscale flow branches and summarize our results.« less

  12. Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model

    NASA Astrophysics Data System (ADS)

    Shellito, Peter J.; Small, Eric E.; Livneh, Ben

    2018-03-01

    Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.

  13. ON THE OBSERVATION AND SIMULATION OF SOLAR CORONAL TWIN JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiajia; Wang, Yuming; Zhang, Quanhao

    We present the first observation, analysis, and modeling of solar coronal twin jets, which occurred after a preceding jet. Detailed analysis on the kinetics of the preceding jet reveals its blowout-jet nature, which resembles the one studied in Liu et al. However, the erupting process and kinetics of the twin jets appear to be different from the preceding one. Lacking detailed information on the magnetic fields in the twin jet region, we instead use a numerical simulation using a three-dimensional (3D) MHD model as described in Fang et al., and find that in the simulation a pair of twin jetsmore » form due to reconnection between the ambient open fields and a highly twisted sigmoidal magnetic flux, which is the outcome of the further evolution of the magnetic fields following the preceding blowout jet. Based on the similarity between the synthesized and observed emission, we propose this mechanism as a possible explanation for the observed twin jets. Combining our observation and simulation, we suggest that with continuous energy transport from the subsurface convection zone into the corona, solar coronal twin jets could be generated in the same fashion addressed above.« less

  14. Observing system simulations using synthetic radiances and atmospheric retrievals derived for the AMSU and HIRS in a mesoscale model. [Advanced Microwave Sounding Unit

    NASA Technical Reports Server (NTRS)

    Diak, George R.; Huang, Hung-Lung; Kim, Dongsoo

    1990-01-01

    The paper addresses the concept of synthetic satellite imagery as a visualization and diagnostic tool for understanding satellite sensors of the future and to detail preliminary results on the quality of soundings from the current sensors. Preliminary results are presented on the quality of soundings from the combination of the High-Resolution Infrared Radiometer Sounder and the Advanced Microwave Sounding Unit. Results are also presented on the first Observing System Simulation Experiment using this data in a mesoscale numerical prediction model.

  15. MICROBIOLOGICAL CHARACTERIZATION OF BACTERIA INHABITING A WATER DISTRIBUTION SYSTEM SIMULATOR

    EPA Science Inventory

    The impact of chlorination and chloramination treatments on heterotrophic bacteria (HB) and ammonia oxidizing bacteria (AOB) inhabiting a water distribution system simulator was investigated. Notable changes in bacterial densities were observed during this monitoring study. For e...

  16. Numerical propulsion system simulation

    NASA Technical Reports Server (NTRS)

    Lytle, John K.; Remaklus, David A.; Nichols, Lester D.

    1990-01-01

    The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive. One of the major contributors to the high cost is the need to perform many large scale system tests. Extensive testing is used to capture the complex interactions among the multiple disciplines and the multiple components inherent in complex systems. The objective of the Numerical Propulsion System Simulation (NPSS) is to provide insight into these complex interactions through computational simulations. This will allow for comprehensive evaluation of new concepts early in the design phase before a commitment to hardware is made. It will also allow for rapid assessment of field-related problems, particularly in cases where operational problems were encountered during conditions that would be difficult to simulate experimentally. The tremendous progress taking place in computational engineering and the rapid increase in computing power expected through parallel processing make this concept feasible within the near future. However it is critical that the framework for such simulations be put in place now to serve as a focal point for the continued developments in computational engineering and computing hardware and software. The NPSS concept which is described will provide that framework.

  17. Simulation Framework for Intelligent Transportation Systems

    DOT National Transportation Integrated Search

    1996-10-01

    A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System. The simulator is designed for running on parellel computers and distributed (networked) computer systems, but ca...

  18. Magneto-acoustic wave energy in sunspots: observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Felipe, T.; Khomenko, E.; Collados, M.; Beck, C.

    2011-11-01

    We have reproduced some sunspot wave signatures obtained from spectropolarimetric observations through 3D MHD numericalsimulations. The results of the simulations arecompared with the oscillations observed simultaneously at different heights from the SiI lambda10827Å line, HeI lambda10830Å line, the CaII H core and the FeI blends at the wings of the CaII H line. The simulations show a remarkable agreement with the observations, and we have used them to quantify the energy contribution of the magneto-acoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is 5-10 times lower than the amount needed to balance the chromospheric radiative losses.

  19. Red-light running violation prediction using observational and simulator data.

    PubMed

    Jahangiri, Arash; Rakha, Hesham; Dingus, Thomas A

    2016-11-01

    In the United States, 683 people were killed and an estimated 133,000 were injured in crashes due to running red lights in 2012. To help prevent/mitigate crashes caused by running red lights, these violations need to be identified before they occur, so both the road users (i.e., drivers, pedestrians, etc.) in potential danger and the infrastructure can be notified and actions can be taken accordingly. Two different data sets were used to assess the feasibility of developing red-light running (RLR) violation prediction models: (1) observational data and (2) driver simulator data. Both data sets included common factors, such as time to intersection (TTI), distance to intersection (DTI), and velocity at the onset of the yellow indication. However, the observational data set provided additional factors that the simulator data set did not, and vice versa. The observational data included vehicle information (e.g., speed, acceleration, etc.) for several different time frames. For each vehicle approaching an intersection in the observational data set, required data were extracted from several time frames as the vehicle drew closer to the intersection. However, since the observational data were inherently anonymous, driver factors such as age and gender were unavailable in the observational data set. Conversely, the simulator data set contained age and gender. In addition, the simulator data included a secondary (non-driving) task factor and a treatment factor (i.e., incoming/outgoing calls while driving). The simulator data only included vehicle information for certain time frames (e.g., yellow onset); the data did not provide vehicle information for several different time frames while vehicles were approaching an intersection. In this study, the random forest (RF) machine-learning technique was adopted to develop RLR violation prediction models. Factor importance was obtained for different models and different data sets to show how differently the factors influence the

  20. Discontinuous Observers Design for Finite-Time Consensus of Multiagent Systems With External Disturbances.

    PubMed

    Liu, Xiaoyang; Ho, Daniel W C; Cao, Jinde; Xu, Wenying

    This brief investigates the problem of finite-time robust consensus (FTRC) for second-order nonlinear multiagent systems with external disturbances. Based on the global finite-time stability theory of discontinuous homogeneous systems, a novel finite-time convergent discontinuous disturbed observer (DDO) is proposed for the leader-following multiagent systems. The states of the designed DDO are then used to design the control inputs to achieve the FTRC of nonlinear multiagent systems in the presence of bounded disturbances. The simulation results are provided to validate the effectiveness of these theoretical results.This brief investigates the problem of finite-time robust consensus (FTRC) for second-order nonlinear multiagent systems with external disturbances. Based on the global finite-time stability theory of discontinuous homogeneous systems, a novel finite-time convergent discontinuous disturbed observer (DDO) is proposed for the leader-following multiagent systems. The states of the designed DDO are then used to design the control inputs to achieve the FTRC of nonlinear multiagent systems in the presence of bounded disturbances. The simulation results are provided to validate the effectiveness of these theoretical results.

  1. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    NASA Technical Reports Server (NTRS)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  2. The effect of AGN feedback on the X-ray morphologies of clusters: Simulations vs. observations

    NASA Astrophysics Data System (ADS)

    Chon, Gayoung; Puchwein, Ewald; Böhringer, Hans

    2016-07-01

    Clusters of galaxies probe the large-scale distribution of matter and are a useful tool to test the cosmological models by constraining cosmic structure growth and the expansion of the Universe. It is the scaling relations between mass observables and the true mass of a cluster through which we obtain the cosmological constraints by comparing to theoretical cluster mass functions. These scaling relations are, however, heavily influenced by cluster morphology. The presence of the slight tension in recent cosmological constraints on Ωm and σ8 based on the CMB and clusters has boosted the interests in looking for possible sources for the discrepancy. Therefore we study here the effect of active galactic nucleus (AGN) feedback as one of the major mechanisms modifying the cluster morphology influencing scaling relations. It is known that AGN feedback injects energies up to 1062 erg into the intracluster medium, controls the heating and cooling of a cluster, and re-distributes cold gas from the centre to outer radii. We have also learned that cluster simulations with AGN feedback can reproduce observed cluster properties, for example, the X-ray luminosity, temperature, and cooling rate at the centre better than without the AGN feedback. In this paper using cosmological hydrodynamical simulations we investigate how the AGN feedback changes the X-ray morphology of the simulated systems, and compare this to the observed Representative XMM-Newton Cluster Structure Survey (REXCESS) clusters. We apply two substructure measures, centre shifts (w) and power ratios (e.g. P3/P0), to characterise the cluster morphology, and find that our simulated clusters are more substructured than the observed clusters based on the values of w and P3/P0. We also show that the degree of this discrepancy is affected by the inclusion of AGN feedback. While the clusters simulated with the AGN feedback are in much better agreement with the REXCESS LX-T relation, they are also more substructured

  3. Properties of Turbulence in the Reconnection Exhaust: Numerical Simulations Compared with Observations

    NASA Astrophysics Data System (ADS)

    Pucci, F.; Servidio, S.; Sorriso-Valvo, L.; Olshevsky, V.; Matthaeus, W. H.; Malara, F.; Goldman, M. V.; Newman, D. L.; Lapenta, G.

    2017-05-01

    The properties of the turbulence that develops in the outflows of magnetic reconnection have been investigated using self-consistent plasma simulations, in three dimensions. As commonly observed in space plasmas, magnetic reconnection is characterized by the presence of turbulence. Here we provide a direct comparison of our simulations with reported observations of reconnection events in the magnetotail, investigating the properties of the electromagnetic field and the energy conversion mechanisms. In particular, simulations show the development of a turbulent cascade consistent with spacecraft observations, statistics of the dissipation mechanisms in the turbulent outflows similar to the ones observed in reconnection jets in the magnetotail, and that the properties of turbulence vary as a function of the distance from the reconnecting X-line.

  4. Properties of turbulence in the reconnection exhaust: numerical simulations compared with observations

    NASA Astrophysics Data System (ADS)

    Pucci, Francesco; Servidio, Sergio; Sorriso-Valvo, Luca; Olshevsky, Vyacheslav; Matthaeus, William; Malara, Francesco; Goldman, Martin; Newman, David; Lapenta, Giovanni

    2017-04-01

    The properties of the turbulence which develops in the outflows of magnetic reconnection have been investigated using self-consistent plasma simulations, in three dimensions. As commonly observed in space plasmas, magnetic reconnection is characterized by the presence of turbulence. Here we provide a direct comparison of our simulations with observations of reconnection event in the magnetotail investigating the properties of the electromagnetic field and the energy conversion mechanisms. In particular, simulations show: the development of a turbulent cascade consistent with spacecraft observations, statistics of the the dissipation mechanisms in the turbulent outflows similar to the one observed in reconnection jets in the magnetotail, and that the properties of turbulence vary as a function of the distance from the reconnecting X-line.

  5. Properties of Turbulence in the Reconnection Exhaust: Numerical Simulations Compared with Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pucci, F.; Olshevsky, V.; Lapenta, G.

    2017-05-20

    The properties of the turbulence that develops in the outflows of magnetic reconnection have been investigated using self-consistent plasma simulations, in three dimensions. As commonly observed in space plasmas, magnetic reconnection is characterized by the presence of turbulence. Here we provide a direct comparison of our simulations with reported observations of reconnection events in the magnetotail, investigating the properties of the electromagnetic field and the energy conversion mechanisms. In particular, simulations show the development of a turbulent cascade consistent with spacecraft observations, statistics of the dissipation mechanisms in the turbulent outflows similar to the ones observed in reconnection jets inmore » the magnetotail, and that the properties of turbulence vary as a function of the distance from the reconnecting X-line.« less

  6. Gas kinematics in FIRE simulated galaxies compared to spatially unresolved H I observations

    NASA Astrophysics Data System (ADS)

    El-Badry, Kareem; Bradford, Jeremy; Quataert, Eliot; Geha, Marla; Boylan-Kolchin, Michael; Weisz, Daniel R.; Wetzel, Andrew; Hopkins, Philip F.; Chan, T. K.; Fitts, Alex; Kereš, Dušan; Faucher-Giguère, Claude-André

    2018-06-01

    The shape of a galaxy's spatially unresolved, globally integrated 21-cm emission line depends on its internal gas kinematics: galaxies with rotationally supported gas discs produce double-horned profiles with steep wings, while galaxies with dispersion-supported gas produce Gaussian-like profiles with sloped wings. Using mock observations of simulated galaxies from the FIRE project, we show that one can therefore constrain a galaxy's gas kinematics from its unresolved 21-cm line profile. In particular, we find that the kurtosis of the 21-cm line increases with decreasing V/σ and that this trend is robust across a wide range of masses, signal-to-noise ratios, and inclinations. We then quantify the shapes of 21-cm line profiles from a morphologically unbiased sample of ˜2000 low-redshift, H I-detected galaxies with Mstar = 107-11 M⊙ and compare to the simulated galaxies. At Mstar ≳ 1010 M⊙, both the observed and simulated galaxies produce double-horned profiles with low kurtosis and steep wings, consistent with rotationally supported discs. Both the observed and simulated line profiles become more Gaussian like (higher kurtosis and less-steep wings) at lower masses, indicating increased dispersion support. However, the simulated galaxies transition from rotational to dispersion support more strongly: at Mstar = 108-10 M⊙, most of the simulations produce more Gaussian-like profiles than typical observed galaxies with similar mass, indicating that gas in the low-mass simulated galaxies is, on average, overly dispersion supported. Most of the lower-mass-simulated galaxies also have somewhat lower gas fractions than the median of the observed population. The simulations nevertheless reproduce the observed line-width baryonic Tully-Fisher relation, which is insensitive to rotational versus dispersion support.

  7. Sliding mode control-based linear functional observers for discrete-time stochastic systems

    NASA Astrophysics Data System (ADS)

    Singh, Satnesh; Janardhanan, Sivaramakrishnan

    2017-11-01

    Sliding mode control (SMC) is one of the most popular techniques to stabilise linear discrete-time stochastic systems. However, application of SMC becomes difficult when the system states are not available for feedback. This paper presents a new approach to design a SMC-based functional observer for discrete-time stochastic systems. The functional observer is based on the Kronecker product approach. Existence conditions and stability analysis of the proposed observer are given. The control input is estimated by a novel linear functional observer. This approach leads to a non-switching type of control, thereby eliminating the fundamental cause of chatter. Furthermore, the functional observer is designed in such a way that the effect of process and measurement noise is minimised. Simulation example is given to illustrate and validate the proposed design method.

  8. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  9. Fewer clouds in the Mediterranean: consistency of observations and climate simulations

    PubMed Central

    Sanchez-Lorenzo, Arturo; Enriquez-Alonso, Aaron; Calbó, Josep; González, Josep-Abel; Wild, Martin; Folini, Doris; Norris, Joel R.; Vicente-Serrano, Sergio M.

    2017-01-01

    Clouds play a major role in the climate system, but large uncertainties remain about their decadal variations. Here we report a widespread decrease in cloud cover since the 1970 s over the Mediterranean region, in particular during the 1970 s–1980 s, especially in the central and eastern areas and during springtime. Confidence in these findings is high due to the good agreement between the interannual variations of cloud cover provided by surface observations and several satellite-derived and reanalysis products, although some discrepancies exist in their trends. Climate model simulations of the historical experiment from the Coupled Model Intercomparison Project Phase 5 (CMIP5) also exhibit a decrease in cloud cover over the Mediterranean since the 1970 s, in agreement with surface observations, although the rate of decrease is slightly lower. The observed northward expansion of the Hadley cell is discussed as a possible cause of detected trends. PMID:28148960

  10. DKIST Adaptive Optics System: Simulation Results

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Schmidt, Dirk

    2016-05-01

    The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.

  11. Effects of experimental protocol on global vegetation model accuracy: a comparison of simulated and observed vegetation patterns for Asia

    USGS Publications Warehouse

    Tang, Guoping; Shafer, Sarah L.; Barlein, Patrick J.; Holman, Justin O.

    2009-01-01

    Prognostic vegetation models have been widely used to study the interactions between environmental change and biological systems. This study examines the sensitivity of vegetation model simulations to: (i) the selection of input climatologies representing different time periods and their associated atmospheric CO2 concentrations, (ii) the choice of observed vegetation data for evaluating the model results, and (iii) the methods used to compare simulated and observed vegetation. We use vegetation simulated for Asia by the equilibrium vegetation model BIOME4 as a typical example of vegetation model output. BIOME4 was run using 19 different climatologies and their associated atmospheric CO2 concentrations. The Kappa statistic, Fuzzy Kappa statistic and a newly developed map-comparison method, the Nomad index, were used to quantify the agreement between the biomes simulated under each scenario and the observed vegetation from three different global land- and tree-cover data sets: the global Potential Natural Vegetation data set (PNV), the Global Land Cover Characteristics data set (GLCC), and the Global Land Cover Facility data set (GLCF). The results indicate that the 30-year mean climatology (and its associated atmospheric CO2 concentration) for the time period immediately preceding the collection date of the observed vegetation data produce the most accurate vegetation simulations when compared with all three observed vegetation data sets. The study also indicates that the BIOME4-simulated vegetation for Asia more closely matches the PNV data than the other two observed vegetation data sets. Given the same observed data, the accuracy assessments of the BIOME4 simulations made using the Kappa, Fuzzy Kappa and Nomad index map-comparison methods agree well when the compared vegetation types consist of a large number of spatially continuous grid cells. The results of this analysis can assist model users in designing experimental protocols for simulating vegetation.

  12. Simulating neural systems with Xyce.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting

    2012-12-01

    Sandias parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  13. Realistic Simulations of Coronagraphic Observations with Future Space Telescopes

    NASA Astrophysics Data System (ADS)

    Rizzo, M. J.; Roberge, A.; Lincowski, A. P.; Zimmerman, N. T.; Juanola-Parramon, R.; Pueyo, L.; Hu, M.; Harness, A.

    2017-11-01

    We present a framework to simulate realistic observations of future space-based coronagraphic instruments. This gathers state-of-the-art scientific and instrumental expertise allowing robust characterization of future instrument concepts.

  14. High-Resolution NU-WRF Simulations of a Deep Convective-Precipitation System During MC3E: Part I: Comparisons Between Goddard Microphysics Schemes and Observations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiun-Dar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa

    2016-01-01

    The Goddard microphysics was recently improved by adding a fourth ice class (frozen dropshail). This new 4ICE scheme was developed and tested in the Goddard Cumulus Ensemble (GCE) model for an intense continental squall line and a moderate, less organized continental case. Simulated peak radar reflectivity profiles were improved in intensity and shape for both cases, as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified-Weather Research and Forecasting (NU-WRF) model, modified and evaluated for the same intense squall line, which occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). NU-WRF simulated radar reflectivities, total rainfall, propagation, and convective system structures using the 4ICE scheme modified herein agree as well as or significantly better with observations than the original 4ICE and two previous 3ICE (graupel or hail) versions of the Goddard microphysics. With the modified 4ICE, the bin microphysics-based rain evaporation correction improves propagation and in conjunction with eliminating the unrealistic dry collection of icesnow by hail can replicate the erect, narrow, and intense convective cores. Revisions to the ice supersaturation, ice number concentration formula, and snow size mapping, including a new snow breakup effect, allow the modified 4ICE to produce a stronger, better organized system, more snow, and mimic the strong aggregation signature in the radar distributions. NU-WRF original 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive domain and lateral boundaries.

  15. CLaMS-Ice: Large-scale cirrus cloud simulations in comparison with observations

    NASA Astrophysics Data System (ADS)

    Costa, Anja; Rolf, Christian; Grooß, Jens-Uwe; Spichtinger, Peter; Afchine, Armin; Spelten, Nicole; Dreiling, Volker; Zöger, Martin; Krämer, Martina

    2016-04-01

    Cirrus clouds are an element of uncertainty in the climate system and have received increasing attention since the last IPCC reports. The interactions of different freezing mechanisms, sedimentation rates, updraft velocity fluctuations and other factors that determine the formation and evolution of those clouds is still not fully understood. Thus, a reliable representation of cirrus clouds in models representing real atmospheric conditions is still a challenging task. At last year's EGU, Rolf et al. (2015) introduced the new large-scale microphysical cirrus cloud model CLaMS-Ice: based on trajectories calculated with CLaMS (McKenna et al., 2002 and Konopka et al. 2007), it simulates the development of cirrus clouds relying on the cirrus bulk model by Spichtinger and Gierens (2009). The qualitative agreement between CLaMS-Ice simulations and observations could be demonstrated at that time. Now we present a detailed quantitative comparison between standard ECMWF products, CLaMS-Ice simulations, and in-situ measurements obtained during the ML-Cirrus campaign 2014. We discuss the agreement of the parameters temperature (observational data: BAHAMAS), relative humidity (SHARC), cloud occurrence, cloud particle concentration, ice water content and cloud particle radii (all NIXE-CAPS). Due to the precise trajectories based on ECMWF wind and temperature fields, CLaMS-Ice represents the cirrus cloud vertical and horizontal coverage more accurately than the ECMWF ice water content (IWC) fields. We demonstrate how CLaMS-Ice can be used to evaluate different input settings (e.g. amount of ice nuclei, freezing thresholds, sedimentation settings) that lead to cirrus clouds with the microphysical properties observed during ML-Cirrus (2014).

  16. Evaluation of Global Observations-Based Evapotranspiration Datasets and IPCC AR4 Simulations

    NASA Technical Reports Server (NTRS)

    Mueller, B.; Seneviratne, S. I.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.; Dirmeyer, P.; Fisher, J. B.; Guo, Z.; hide

    2011-01-01

    Quantification of global land evapotranspiration (ET) has long been associated with large uncertainties due to the lack of reference observations. Several recently developed products now provide the capacity to estimate ET at global scales. These products, partly based on observational data, include satellite ]based products, land surface model (LSM) simulations, atmospheric reanalysis output, estimates based on empirical upscaling of eddycovariance flux measurements, and atmospheric water balance datasets. The LandFlux-EVAL project aims to evaluate and compare these newly developed datasets. Additionally, an evaluation of IPCC AR4 global climate model (GCM) simulations is presented, providing an assessment of their capacity to reproduce flux behavior relative to the observations ]based products. Though differently constrained with observations, the analyzed reference datasets display similar large-scale ET patterns. ET from the IPCC AR4 simulations was significantly smaller than that from the other products for India (up to 1 mm/d) and parts of eastern South America, and larger in the western USA, Australia and China. The inter-product variance is lower across the IPCC AR4 simulations than across the reference datasets in several regions, which indicates that uncertainties may be underestimated in the IPCC AR4 models due to shared biases of these simulations.

  17. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems

    PubMed Central

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-01-01

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258

  18. Evaluation of Unified Model Microphysics in High-resolution NWP Simulations Using Polarimetric Radar Observations

    NASA Astrophysics Data System (ADS)

    Johnson, Marcus; Jung, Youngsun; Dawson, Daniel; Supinie, Timothy; Xue, Ming; Park, Jongsook; Lee, Yong-Hee

    2018-07-01

    The UK Met Office Unified Model (UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large-scale weather systems. However, the model has only recently begun running operationally at horizontal grid spacings of ˜1.5 km [e.g., at the UK Met Office and the Korea Meteorological Administration (KMA)]. As its microphysics scheme was originally designed and tuned for large-scale precipitation systems, we investigate the performance of UM microphysics to determine potential inherent biases or weaknesses. Two rainfall cases from the KMA forecasting system are considered in this study: a Changma (quasi-stationary) front, and Typhoon Sanba (2012). The UM output is compared to polarimetric radar observations in terms of simulated polarimetric radar variables. Results show that the UM generally underpredicts median reflectivity in stratiform rain, producing high reflectivity cores and precipitation gaps between them. This is partially due to the diagnostic rain intercept parameter formulation used in the one-moment microphysics scheme. Model drop size is generally both underand overpredicted compared to observations. UM frozen hydrometeors favor generic ice (crystals and snow) rather than graupel, which is reasonable for Changma and typhoon cases. The model performed best with the typhoon case in terms of simulated precipitation coverage.

  19. Comparison of solar photospheric bright points between Sunrise observations and MHD simulations

    NASA Astrophysics Data System (ADS)

    Riethmüller, T. L.; Solanki, S. K.; Berdyugina, S. V.; Schüssler, M.; Martínez Pillet, V.; Feller, A.; Gandorfer, A.; Hirzberger, J.

    2014-08-01

    Bright points (BPs) in the solar photosphere are thought to be the radiative signatures (small-scale brightness enhancements) of magnetic elements described by slender flux tubes or sheets located in the darker intergranular lanes in the solar photosphere. They contribute to the ultraviolet (UV) flux variations over the solar cycle and hence may play a role in influencing the Earth's climate. Here we aim to obtain a better insight into their properties by combining high-resolution UV and spectro-polarimetric observations of BPs by the Sunrise Observatory with 3D compressible radiation magnetohydrodynamical (MHD) simulations. To this end, full spectral line syntheses are performed with the MHD data and a careful degradation is applied to take into account all relevant instrumental effects of the observations. In a first step it is demonstrated that the selected MHD simulations reproduce the measured distributions of intensity at multiple wavelengths, line-of-sight velocity, spectral line width, and polarization degree rather well. The simulated line width also displays the correct mean, but a scatter that is too small. In the second step, the properties of observed BPs are compared with synthetic ones. Again, these are found to match relatively well, except that the observations display a tail of large BPs with strong polarization signals (most likely network elements) not found in the simulations, possibly due to the small size of the simulation box. The higher spatial resolution of the simulations has a significant effect, leading to smaller and more numerous BPs. The observation that most BPs are weakly polarized is explained mainly by the spatial degradation, the stray light contamination, and the temperature sensitivity of the Fe i line at 5250.2 Å. Finally, given that the MHD simulations are highly consistent with the observations, we used the simulations to explore the properties of BPs further. The Stokes V asymmetries increase with the distance to the

  20. Atomistic Simulations of Detonation Instabilities in Condensed Phase Systems

    NASA Astrophysics Data System (ADS)

    Kober, Edward; Heim, Andrew; Germann, Timothy; Jensen, Niels

    2007-06-01

    We report the results of simulations of condensed phase detonation phenomena using a model diatomic system: 2AB -> A2 + B2. The initial set of parameters for this system corresponded to the Model 0 set of C. White et al, which exhibits a steady, Chapman-Jouget (CJ) detonation structure with a reaction zone length of 30-100 å. This has a highly compressed CJ state (V/V0˜0.5) that does not consist of discrete molecular species. The potential form was modified so that a more molecular CJ state resulted, consistent with the models for conventional organic explosives. The new system has a less dense CJ state (V/V0˜0.8), and the reaction zone was substantially extended. The reaction rate fits Arrhenius-type kinetics with an activation energy of ˜2 eV, with a minor density dependence. In contrast, the original Model 0 system had a lower activation energy (˜1 eV) with a stronger density dependence. The new system exhibits quite marked two dimensional instability structures with well-defined wavelengths similar to what has been observed for gas-phase detonations and for nitromethane. Depending on the exothermicity and the width of the periodic simulations, these instabilities can result in either detonation failure or quasi-steady propagation. The observed propagation velocities are several per cent higher than CJ values derived from thermodynamic analyses.

  1. Core analysis of heterogeneous rocks using experimental observations and digital whole core simulation

    NASA Astrophysics Data System (ADS)

    Jackson, S. J.; Krevor, S. C.; Agada, S.

    2017-12-01

    A number of studies have demonstrated the prevalent impact that small-scale rock heterogeneity can have on larger scale flow in multiphase flow systems including petroleum production and CO2sequestration. Larger scale modeling has shown that this has a significant impact on fluid flow and is possibly a significant source of inaccuracy in reservoir simulation. Yet no core analysis protocol has been developed that faithfully represents the impact of these heterogeneities on flow functions used in modeling. Relative permeability is derived from core floods performed at conditions with high flow potential in which the impact of capillary heterogeneity is voided. A more accurate representation would be obtained if measurements were made at flow conditions where the impact of capillary heterogeneity on flow is scaled to be representative of the reservoir system. This, however, is generally impractical due to laboratory constraints and the role of the orientation of the rock heterogeneity. We demonstrate a workflow of combined observations and simulations, in which the impact of capillary heterogeneity may be faithfully represented in the derivation of upscaled flow properties. Laboratory measurements that are a variation of conventional protocols are used for the parameterization of an accurate digital rock model for simulation. The relative permeability at the range of capillary numbers relevant to flow in the reservoir is derived primarily from numerical simulations of core floods that include capillary pressure heterogeneity. This allows flexibility in the orientation of the heterogeneity and in the range of flow rates considered. We demonstrate the approach in which digital rock models have been developed alongside core flood observations for three applications: (1) A Bentheimer sandstone with a simple axial heterogeneity to demonstrate the validity and limitations of the approach, (2) a set of reservoir rocks from the Captain sandstone in the UK North Sea targeted

  2. A multiprocessor operating system simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, G.M.; Campbell, R.H.

    1988-01-01

    This paper describes a multiprocessor operating system simulator that was developed by the authors in the Fall of 1987. The simulator was built in response to the need to provide students with an environment in which to build and test operating system concepts as part of the coursework of a third-year undergraduate operating systems course. Written in C++, the simulator uses the co-routine style task package that is distributed with the AT and T C++ Translator to provide a hierarchy of classes that represents a broad range of operating system software and hardware components. The class hierarchy closely follows thatmore » of the Choices family of operating systems for loosely and tightly coupled multiprocessors. During an operating system course, these classes are refined and specialized by students in homework assignments to facilitate experimentation with different aspects of operating system design and policy decisions. The current implementation runs on the IBM RT PC under 4.3bsd UNIX.« less

  3. A Multiprocessor Operating System Simulator

    NASA Technical Reports Server (NTRS)

    Johnston, Gary M.; Campbell, Roy H.

    1988-01-01

    This paper describes a multiprocessor operating system simulator that was developed by the authors in the Fall semester of 1987. The simulator was built in response to the need to provide students with an environment in which to build and test operating system concepts as part of the coursework of a third-year undergraduate operating systems course. Written in C++, the simulator uses the co-routine style task package that is distributed with the AT&T C++ Translator to provide a hierarchy of classes that represents a broad range of operating system software and hardware components. The class hierarchy closely follows that of the 'Choices' family of operating systems for loosely- and tightly-coupled multiprocessors. During an operating system course, these classes are refined and specialized by students in homework assignments to facilitate experimentation with different aspects of operating system design and policy decisions. The current implementation runs on the IBM RT PC under 4.3bsd UNIX.

  4. A structurally oriented simulation system

    NASA Technical Reports Server (NTRS)

    Aran, Z.

    1973-01-01

    The computer program SOSS (Structurally Oriented Simulation System) is designed to be used as an experimental aid in the study of reliable systems. Basically, SOSS can simulate the structure and behavior of a discrete-time, finite-state, time-invariant system at various levels of structural definition. A general description of the program is given along with its modes of operation, command language of the basic system, future features to be incorporated in SOSS, and an example of usage.

  5. Improvements to information management systems simulator

    NASA Technical Reports Server (NTRS)

    Bilek, R. W.

    1972-01-01

    The performance of personnel in the augmentation and improvement of the interactive IMSIM information management simulation model is summarized. With this augmented model, NASA now has even greater capabilities for the simulation of computer system configurations, data processing loads imposed on these configurations, and executive software to control system operations. Through these simulations, NASA has an extremely cost effective capability for the design and analysis of computer-based data management systems.

  6. A Simulation Based Investigation of High Latency Space Systems Operations

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Moore, Michael; Bielski, Paul; Crues, Edwin Z.

    2017-01-01

    This study was the first in a series of planned tests to use physics-based subsystem simulations to investigate the interactions between a spacecraft's crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation models the life support system of a deep space habitat. It contains models of an environmental control and life support system, an electrical power system, an active thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the subsystems; 2) a mission control center interface with data transport delays up to 15 minute each way; and 3) a real-time simulation test conductor interface used to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission. The NEEMO crew and ground support team performed a number of relevant deep space mission scenarios that included both nominal activities and activities with system malfunctions. While this initial test sequence was focused on test infrastructure and procedures development, the data collected in the study already indicate that long communication delays have notable impacts on the operation of deep space systems. For future human missions beyond cis-lunar, NASA will need to design systems and support tools to meet these challenges. These will be used to train the crew to handle critical malfunctions on their own, to predict malfunctions and assist with vehicle operations. Subsequent more detailed and involved studies will be conducted to continue advancing NASA's understanding of space systems operations across long communications delays.

  7. Observation and simulation of AGW in Space

    NASA Astrophysics Data System (ADS)

    Kunitsyn, Vyacheslav; Kholodov, Alexander; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Vorontsov, Artem

    2014-05-01

    Examples are presented of satellite observations and imaging of AGW and related phenomena in space travelling ionospheric disturbances (TID). The structure of AGW perturbations was reconstructed by satellite radio tomography (RT) based on the signals of Global Navigation Satellite Systems (GNSS). The experiments use different GNSS, both low-orbiting (Russian Tsikada and American Transit) and high-orbiting (GPS, GLONASS, Galileo, Beidou). The examples of RT imaging of TIDs and AGWs from anthropogenic sources such as ground explosions, rocket launching, heating the ionosphere by high-power radio waves are presented. In the latter case, the corresponding AGWs and TIDs were generated in response to the modulation in the power of the heating wave. The natural AGW-like wave disturbances are frequently observed in the atmosphere and ionosphere in the form of variations in density and electron concentration. These phenomena are caused by the influence of the near-space environment, atmosphere, and surface phenomena including long-period vibrations of the Earth's surface, earthquakes, explosions, temperature heating, seisches, tsunami waves, etc. Examples of experimental RT reconstructions of wave disturbances associated with the earthquakes and tsunami waves are presented, and RT images of TIDs caused by the variations in the corpuscular ionization are demonstrated. The results of numerical modeling of AGW generation by some surface and volume sources are discussed. The milli-Hertz AGWs generated by these sources induce perturbations with a typical scale of a few hundred of kilometers at the heights of the middle atmosphere and ionosphere. The numerical modeling is based on the solution of equations of geophysical hydrodynamics. The results of the numerical simulations agree with the observations. The authors acknowledge the support of the Russian Foundation for Basic Research (grants 14-05-00855 and 13-05-01122), grant of the President of Russian Federation MK-2670

  8. Knowledge-based simulation for aerospace systems

    NASA Technical Reports Server (NTRS)

    Will, Ralph W.; Sliwa, Nancy E.; Harrison, F. Wallace, Jr.

    1988-01-01

    Knowledge-based techniques, which offer many features that are desirable in the simulation and development of aerospace vehicle operations, exhibit many similarities to traditional simulation packages. The eventual solution of these systems' current symbolic processing/numeric processing interface problem will lead to continuous and discrete-event simulation capabilities in a single language, such as TS-PROLOG. Qualitative, totally-symbolic simulation methods are noted to possess several intrinsic characteristics that are especially revelatory of the system being simulated, and capable of insuring that all possible behaviors are considered.

  9. Ram Pressure Stripping: Observations Meet Simulations

    NASA Astrophysics Data System (ADS)

    Past, Matthew; Ruszkowski, Mateusz; Sharon, Keren

    2017-01-01

    Ram pressure stripping occurs when a galaxy falls into the potential well of a cluster, removing gas and dust as the galaxy travels through the intracluster medium. This interaction leads to filamentary gas tails stretching behind the galaxy and plays an important role in galaxy evolution. Previously, these “jellyfish” galaxies had only been observed in nearby clusters, but recently, higher redshift (z > 0.3) examples have been found from HST data imaging.Recent work has shown that cosmic rays injected by supernovae can cause galactic disks to thicken due to cosmic ray pressure. We run three-dimensional magneto-hydrodynamical simulations of ram pressure stripping including cosmic rays to compare to previous models. We study how the efficiency of the ram pressure stripping of the gas, and the morphology of the filamentary tails, depend on the magnitude of the cosmic ray pressure support. We generate mock X-ray images and radio polarization data. Simultaneously, we perform an exhaustive search of the HST archive to increase the sample of jellyfish galaxies and compare selected cases to simulations.

  10. Dynamical conditions of ice supersaturation and ice nucleation in convective systems: A comparative analysis between in situ aircraft observations and WRF simulations

    NASA Astrophysics Data System (ADS)

    D'Alessandro, John J.; Diao, Minghui; Wu, Chenglai; Liu, Xiaohong; Chen, Ming; Morrison, Hugh; Eidhammer, Trude; Jensen, Jorgen B.; Bansemer, Aaron; Zondlo, Mark A.; DiGangi, Josh P.

    2017-03-01

    Occurrence frequency and dynamical conditions of ice supersaturation (ISS, where relative humidity with respect to ice (RHi) > 100%) are examined in the upper troposphere around convective activity. Comparisons are conducted between in situ airborne observations and the Weather Research and Forecasting model simulations using four double-moment microphysical schemes at temperatures ≤ -40°C. All four schemes capture both clear-sky and in-cloud ISS conditions. However, the clear-sky (in-cloud) ISS conditions are completely (significantly) limited to the RHi thresholds of the Cooper parameterization. In all of the simulations, ISS occurrence frequencies are higher by 3-4 orders of magnitude at higher updraft speeds (>1 m s-1) than those at the lower updraft speeds when ice water content (IWC) > 0.01 g m-3, while observations show smaller differences up to 1-2 orders of magnitude. The simulated ISS also occurs less frequently at weaker updrafts and downdrafts than observed. These results indicate that the simulations have a greater dependence on stronger updrafts to maintain/generate ISS at higher IWC. At lower IWC (≤0.01 g m-3), simulations unexpectedly show lower ISS frequencies at stronger updrafts. Overall, the Thompson aerosol-aware scheme has the closest magnitudes and frequencies of ISS >20% to the observations, and the modified Morrison has the closest correlations between ISS frequencies and vertical velocity at higher IWC and number density. The Cooper parameterization often generates excessive ice crystals and therefore suppresses the frequency and magnitude of ISS, indicating that it should be initiated at higher ISS (e.g., ≥25%).

  11. Systems simulation for an airport trailing vortex warning system

    NASA Technical Reports Server (NTRS)

    Jeffreys, H. B.

    1972-01-01

    The approach, development, and limited system studies associated with a system simulation for an Airport Trailing Vortex Warning System are documented. The usefulness is shown of a systems engineering approach to the problem of developing a system, as dictated by aircraft vortices, which will increase air-traffic flow in the takeoff/landing corridors of busy airports while maintaining the required safety factor for each operation. The simulation program has been developed in a modular form which permits new, more sophisticated component models, when they become available and are required, to be incorporated into the program with a minimum of program modifications. This report documents a limited system study that has been performed using this Total System Simulation Model. The resulting preliminary system requirements, conclusions, and recommendations are given.

  12. Infrared Spectral Observations While Drilling into a Frozen Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Colaprete, Anthony; Thompson, Sarah; Cook, Amanda; Kleinhenz, Julie

    2014-01-01

    Past and continuing observations indicate an enrichment of volatile materials in lunar polar regions. While these volatiles may be located near the surface, access to them will likely require subsurface sampling, during which it is desirable to monitor the volatile content. In a simulation of such activities, a multilayer lunar simulant was prepared with differing water content, and placed inside a thermal vacuum chamber at Glenn Research Center (GRC). The soil profile was cooled using liquid nitrogen. In addition to the soil, a drill and infrared (IR) spectrometer (1600-3400 nm) were also located in the GRC chamber. We report the spectral observations obtained during a sequence where the drill was repeatedly inserted and extracted, to different depths, at the same location. We observe an overall increase in the spectral signature of water ice over the duration of the test. Additionally, we observe variations in the water ice spectral signature as the drill encounters different layers.

  13. Simulation of Constrained Musculoskeletal Systems in Task Space.

    PubMed

    Stanev, Dimitar; Moustakas, Konstantinos

    2018-02-01

    This paper proposes an operational task space formalization of constrained musculoskeletal systems, motivated by its promising results in the field of robotics. The change of representation requires different algorithms for solving the inverse and forward dynamics simulation in the task space domain. We propose an extension to the direct marker control and an adaptation of the computed muscle control algorithms for solving the inverse kinematics and muscle redundancy problems, respectively. Experimental evaluation demonstrates that this framework is not only successful in dealing with the inverse dynamics problem, but also provides an intuitive way of studying and designing simulations, facilitating assessment prior to any experimental data collection. The incorporation of constraints in the derivation unveils an important extension of this framework toward addressing systems that use absolute coordinates and topologies that contain closed kinematic chains. Task space projection reveals a more intuitive encoding of the motion planning problem, allows for better correspondence between observed and estimated variables, provides the means to effectively study the role of kinematic redundancy, and most importantly, offers an abstract point of view and control, which can be advantageous toward further integration with high level models of the precommand level. Task-based approaches could be adopted in the design of simulation related to the study of constrained musculoskeletal systems.

  14. Simulations of Infrared Radiances Over a Deep Convective Cloud System Observed During TC4: Potential for Enhancing Nocturnal Ice Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Hong, Gang; Ayers, Kirk; Smith, William L., Jr.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol; hide

    2012-01-01

    Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared

  15. Simulations of Infrared Radiances Over a Deep Convective Cloud System Observed During TC4- Potential for Enhancing Nocturnal Ice Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Hong, Gang; Ayers, Jeffrey Kirk; Smith, William L.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol M.; hide

    2012-01-01

    Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared

  16. DDS: The Dental Diagnostic Simulation System.

    ERIC Educational Resources Information Center

    Tira, Daniel E.

    The Dental Diagnostic Simulation (DDS) System provides an alternative to simulation systems which represent diagnostic case studies of relatively limited scope. It may be used to generate simulated case studies in all of the dental specialty areas with case materials progressing through the gamut of the diagnostic process. The generation of a…

  17. Operating system for a real-time multiprocessor propulsion system simulator

    NASA Technical Reports Server (NTRS)

    Cole, G. L.

    1984-01-01

    The success of the Real Time Multiprocessor Operating System (RTMPOS) in the development and evaluation of experimental hardware and software systems for real time interactive simulation of air breathing propulsion systems was evaluated. The Real Time Multiprocessor Operating System (RTMPOS) provides the user with a versatile, interactive means for loading, running, debugging and obtaining results from a multiprocessor based simulator. A front end processor (FEP) serves as the simulator controller and interface between the user and the simulator. These functions are facilitated by the RTMPOS which resides on the FEP. The RTMPOS acts in conjunction with the FEP's manufacturer supplied disk operating system that provides typical utilities like an assembler, linkage editor, text editor, file handling services, etc. Once a simulation is formulated, the RTMPOS provides for engineering level, run time operations such as loading, modifying and specifying computation flow of programs, simulator mode control, data handling and run time monitoring. Run time monitoring is a powerful feature of RTMPOS that allows the user to record all actions taken during a simulation session and to receive advisories from the simulator via the FEP. The RTMPOS is programmed mainly in PASCAL along with some assembly language routines. The RTMPOS software is easily modified to be applicable to hardware from different manufacturers.

  18. Extensible Adaptable Simulation Systems: Supporting Multiple Fidelity Simulations in a Common Environment

    NASA Technical Reports Server (NTRS)

    McLaughlin, Brian J.; Barrett, Larry K.

    2012-01-01

    Common practice in the development of simulation systems is meeting all user requirements within a single instantiation. The Joint Polar Satellite System (JPSS) presents a unique challenge to establish a simulation environment that meets the needs of a diverse user community while also spanning a multi-mission environment over decades of operation. In response, the JPSS Flight Vehicle Test Suite (FVTS) is architected with an extensible infrastructure that supports the operation of multiple observatory simulations for a single mission and multiple mission within a common system perimeter. For the JPSS-1 satellite, multiple fidelity flight observatory simulations are necessary to support the distinct user communities consisting of the Common Ground System development team, the Common Ground System Integration & Test team, and the Mission Rehearsal Team/Mission Operations Team. These key requirements present several challenges to FVTS development. First, the FVTS must ensure all critical user requirements are satisfied by at least one fidelity instance of the observatory simulation. Second, the FVTS must allow for tailoring of the system instances to function in diverse operational environments from the High-security operations environment at NOAA Satellite Operations Facility (NSOF) to the ground system factory floor. Finally, the FVTS must provide the ability to execute sustaining engineering activities on a subset of the system without impacting system availability to parallel users. The FVTS approach of allowing for multiple fidelity copies of observatory simulations represents a unique concept in simulator capability development and corresponds to the JPSS Ground System goals of establishing a capability that is flexible, extensible, and adaptable.

  19. Dynamical simulations of the HR8799 planetary system

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Horner, J.; Carter, A.

    2010-10-01

    HR8799 is a young (20-160 Myr) A-dwarf main sequence star with a debris disc detected by IRAS (InfraRed Astronomical Satellite). In 2008, it was one of two stars around which exoplanets were directly imaged for the first time. The presence of three Jupiter-mass planets around HR8799 provoked much interest in modelling the dynamical stability of the system. Initial simulations indicated that the observed planetary architecture was unstable on timescales much shorter than the lifetime of the star (~105 yr). Subsequent models suggested that the system could be stable if the planets were locked in a 1:2:4 mutual mean motion resonance (MMR). In this work, we have examined the influence of varying orbital eccentricity and the semi-major axis on the stability of the three-planet system, through dynamical simulations using the MERCURY n-body integrator. We find that, in agreement with previous work on this system, the 1:2:4 MMR is the most stable planetary configuration, and that the system stability is dominated by the interaction between the inner pair of planets. In contrast to previous results, we find that with small eccentricities, the three-planet system can be stable for timescales comparable to the system lifetime and, potentially, much longer.

  20. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  1. The Kepler Dichotomy in Planetary Disks: Linking Kepler Observables to Simulations of Late-stage Planet Formation

    NASA Astrophysics Data System (ADS)

    Moriarty, John; Ballard, Sarah

    2016-11-01

    NASA’s Kepler Mission uncovered a wealth of planetary systems, many with planets on short-period orbits. These short-period systems reside around 50% of Sun-like stars and are similarly prevalent around M dwarfs. Their formation and subsequent evolution is the subject of active debate. In this paper, we simulate late-stage, in situ planet formation across a grid of planetesimal disks with varying surface density profiles and total mass. We compare simulation results with observable characteristics of the Kepler sample. We identify mixture models with different primordial planetesimal disk properties that self-consistently recover the multiplicity, radius, period and period ratio, and duration ratio distributions of the Kepler planets. We draw three main conclusions. (1) We favor a “frozen-in” narrative for systems of short-period planets, in which they are stable over long timescales, as opposed to metastable. (2) The “Kepler dichotomy,” an observed phenomenon of the Kepler sample wherein the architectures of planetary systems appear to either vary significantly or have multiple modes, can naturally be explained by formation within planetesimal disks with varying surface density profiles. Finally, (3) we quantify the nature of the “Kepler dichotomy” for both GK stars and M dwarfs, and find that it varies with stellar type. While the mode of planet formation that accounts for high multiplicity systems occurs in 24% ± 7% of planetary systems orbiting GK stars, it occurs in 63% ± 16% of planetary systems orbiting M dwarfs.

  2. Development of space simulation / net-laboratory system

    NASA Astrophysics Data System (ADS)

    Usui, H.; Matsumoto, H.; Ogino, T.; Fujimoto, M.; Omura, Y.; Okada, M.; Ueda, H. O.; Murata, T.; Kamide, Y.; Shinagawa, H.; Watanabe, S.; Machida, S.; Hada, T.

    A research project for the development of space simulation / net-laboratory system was approved by Japan Science and Technology Corporation (JST) in the category of Research and Development for Applying Advanced Computational Science and Technology(ACT-JST) in 2000. This research project, which continues for three years, is a collaboration with an astrophysical simulation group as well as other space simulation groups which use MHD and hybrid models. In this project, we develop a proto type of unique simulation system which enables us to perform simulation runs by providing or selecting plasma parameters through Web-based interface on the internet. We are also developing an on-line database system for space simulation from which we will be able to search and extract various information such as simulation method and program, manuals, and typical simulation results in graphic or ascii format. This unique system will help the simulation beginners to start simulation study without much difficulty or effort, and contribute to the promotion of simulation studies in the STP field. In this presentation, we will report the overview and the current status of the project.

  3. Objectively Optimized Observation Direction System Providing Situational Awareness for a Sensor Web

    NASA Astrophysics Data System (ADS)

    Aulov, O.; Lary, D. J.

    2010-12-01

    There is great utility in having a flexible and automated objective observation direction system for the decadal survey missions and beyond. Such a system allows us to optimize the observations made by suite of sensors to address specific goals from long term monitoring to rapid response. We have developed such a prototype using a network of communicating software elements to control a heterogeneous network of sensor systems, which can have multiple modes and flexible viewing geometries. Our system makes sensor systems intelligent and situationally aware. Together they form a sensor web of multiple sensors working together and capable of automated target selection, i.e. the sensors “know” where they are, what they are able to observe, what targets and with what priorities they should observe. This system is implemented in three components. The first component is a Sensor Web simulator. The Sensor Web simulator describes the capabilities and locations of each sensor as a function of time, whether they are orbital, sub-orbital, or ground based. The simulator has been implemented using AGIs Satellite Tool Kit (STK). STK makes it easy to analyze and visualize optimal solutions for complex space scenarios, and perform complex analysis of land, sea, air, space assets, and shares results in one integrated solution. The second component is target scheduler that was implemented with STK Scheduler. STK Scheduler is powered by a scheduling engine that finds better solutions in a shorter amount of time than traditional heuristic algorithms. The global search algorithm within this engine is based on neural network technology that is capable of finding solutions to larger and more complex problems and maximizing the value of limited resources. The third component is a modeling and data assimilation system. It provides situational awareness by supplying the time evolution of uncertainty and information content metrics that are used to tell us what we need to observe and the

  4. Ground-based Observation System Development for the Moon Hyper-spectral Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Huang, Yu; Wang, Shurong; Li, Zhanfeng; Zhang, Zihui; Hu, Xiuqing; Zhang, Peng

    2017-05-01

    The Moon provides a suitable radiance source for on-orbit calibration of space-borne optical instruments. A ground-based observation system dedicated to the hyper-spectral radiometry of the Moon has been developed for improving and validating the current lunar model. The observation instrument using a dispersive imaging spectrometer is particularly designed for high-accuracy observations of the lunar radiance. The simulation and analysis of the push-broom mechanism is made in detail for lunar observations, and the automated tracking and scanning is well accomplished in different observational condition. A three-month series of hyper-spectral imaging experiments of the Moon have been performed in the wavelength range from 400 to 1000 nm near Lijiang Observatory (Yunnan, China) at phase angles -83°-87°. Preliminary results and data comparison are presented, and it shows the instrument performance and lunar observation capability of this system are well validated. Beyond previous measurements, this observation system provides the entire lunar disk images of continuous spectral coverage by adopting the push-broom mode with special scanning scheme and leads to the further research of lunar photometric model.

  5. The SELGIFS data challenge: generating synthetic observations of CALIFA galaxies from hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Guidi, G.; Casado, J.; Ascasibar, Y.; García-Benito, R.; Galbany, L.; Sánchez-Blázquez, P.; Sánchez, S. F.; Rosales-Ortega, F. F.; Scannapieco, C.

    2018-06-01

    In this work we present a set of synthetic observations that mimic the properties of the Integral Field Spectroscopy (IFS) survey CALIFA, generated using radiative transfer techniques applied to hydrodynamical simulations of galaxies in a cosmological context. The simulated spatially-resolved spectra include stellar and nebular emission, kinematic broadening of the lines, and dust extinction and scattering. The results of the radiative transfer simulations have been post-processed to reproduce the main properties of the CALIFA V500 and V1200 observational setups. The data has been further formatted to mimic the CALIFA survey in terms of field of view size, spectral range and sampling. We have included the effect of the spatial and spectral Point Spread Functions affecting CALIFA observations, and added detector noise after characterizing it on a sample of 367 galaxies. The simulated datacubes are suited to be analysed by the same algorithms used on real IFS data. In order to provide a benchmark to compare the results obtained applying IFS observational techniques to our synthetic datacubes, and test the calibration and accuracy of the analysis tools, we have computed the spatially-resolved properties of the simulations. Hence, we provide maps derived directly from the hydrodynamical snapshots or the noiseless spectra, in a way that is consistent with the values recovered by the observational analysis algorithms. Both the synthetic observations and the product datacubes are public and can be found in the collaboration website http://astro.ft.uam.es/selgifs/data_challenge/.

  6. A Simulation Based Investigation of High Latency Space Systems Operations

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    This study was the first in a series of planned tests to use physics-based subsystem simulations to investigate the interactions between a spacecraft's crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation models the life support system of a deep space habitat. It contains models of an environmental control and life support system, an electrical power system, an active thermal control system, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the subsystems; 2) a mission control center interface with data transport delays up to 15 minute each way; and 3) a real-time simulation test conductor interface used to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission. The NEEMO crew and ground support team performed a number of relevant deep space mission scenarios that included both nominal activities and activities with system malfunctions. While this initial test sequence was focused on test infrastructure and procedures development, the data collected in the study already indicate that long communication delays have notable impacts on the operation of deep space systems. For future human missions beyond cis-lunar, NASA will need to design systems and support tools to meet these challenges. These will be used to train the crew to handle critical malfunctions on their own, to predict malfunctions, and to assist with vehicle operations. Subsequent more detailed and involved studies will be conducted to continue advancing NASA's understanding of space systems operations across long communications delays.

  7. Communication Simulations for Power System Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.

    2013-05-29

    New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systemsmore » will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.« less

  8. Percolation analyses of observed and simulated galaxy clustering

    NASA Astrophysics Data System (ADS)

    Bhavsar, S. P.; Barrow, J. D.

    1983-11-01

    A percolation cluster analysis is performed on equivalent regions of the CFA redshift survey of galaxies and the 4000 body simulations of gravitational clustering made by Aarseth, Gott and Turner (1979). The observed and simulated percolation properties are compared and, unlike correlation and multiplicity function analyses, favour high density (Omega = 1) models with n = - 1 initial data. The present results show that the three-dimensional data are consistent with the degree of filamentary structure present in isothermal models of galaxy formation at the level of percolation analysis. It is also found that the percolation structure of the CFA data is a function of depth. Percolation structure does not appear to be a sensitive probe of intrinsic filamentary structure.

  9. Demonstrating the Alaska Ocean Observing System in Prince William Sound

    NASA Astrophysics Data System (ADS)

    Schoch, G. Carl; McCammon, Molly

    2013-07-01

    The Alaska Ocean Observing System and the Oil Spill Recovery Institute developed a demonstration project over a 5 year period in Prince William Sound. The primary goal was to develop a quasi-operational system that delivers weather and ocean information in near real time to diverse user communities. This observing system now consists of atmospheric and oceanic sensors, and a new generation of computer models to numerically simulate and forecast weather, waves, and ocean circulation. A state of the art data management system provides access to these products from one internet portal at http://www.aoos.org. The project culminated in a 2009 field experiment that evaluated the observing system and performance of the model forecasts. Observations from terrestrial weather stations and weather buoys validated atmospheric circulation forecasts. Observations from wave gages on weather buoys validated forecasts of significant wave heights and periods. There was an emphasis on validation of surface currents forecasted by the ocean circulation model for oil spill response and search and rescue applications. During the 18 day field experiment a radar array mapped surface currents and drifting buoys were deployed. Hydrographic profiles at fixed stations, and by autonomous vehicles along transects, were made to acquire measurements through the water column. Terrestrial weather stations were the most reliable and least costly to operate, and in situ ocean sensors were more costly and considerably less reliable. The radar surface current mappers were the least reliable and most costly but provided the assimilation and validation data that most improved ocean circulation forecasts. We describe the setting of Prince William Sound and the various observational platforms and forecast models of the observing system, and discuss recommendations for future development.

  10. Prediction system of the 1-AU arrival times of CME-associated interplanetary shocks using three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    den, Mitsue; Amo, Hiroyoshi; Sugihara, Kohta; Takei, Toshifumi; Ogawa, Tomoya; Tanaka, Takashi; Watari, Shinichi

    We describe prediction system of the 1-AU arrival times of interplanetary shock waves associated with coromal mass ejections (CMEs). The system is based on modeling of the shock propagation using a three-dimensional adaptive mesh refinement (AMR) code. Once a CME is observed by LASCO/SOHO, firstly ambient solar wind is obtained by numerical simulation, which reproduces the solar wind parameters at that time observed by ACE spacecraft. Then we input the expansion speed and occurrence position data of that CME as initial condtions for an CME model, and 3D simulation of the CME and the shock propagation is perfomed until the shock wave passes the 1-AU. Input the parameters, execution of simulation and output of the result are available on Web, so a person who is not familiar with operation of computer or simulations or is not a researcher can use this system to predict the shock passage time. Simulated CME and shock evolution is visuallized at the same time with simulation and snap shots appear on the web automatically, so that user can follow the propagation. This system is expected to be useful for forecasters of space weather. We will describe the system and simulation model in detail.

  11. The Loci Multidisciplinary Simulation System

    NASA Technical Reports Server (NTRS)

    Luke, Ed

    2002-01-01

    Contents include the following: 1. An overview of the Loci Multidisciplinary Simulation System. 2. Topologically adaptive mesh generation. 3. Multidisciplinary simulations using Loci with the CHEM chemically reacting flow solver.

  12. ICE-COLA: fast simulations for weak lensing observables

    NASA Astrophysics Data System (ADS)

    Izard, Albert; Fosalba, Pablo; Crocce, Martin

    2018-01-01

    Approximate methods to full N-body simulations provide a fast and accurate solution to the development of mock catalogues for the modelling of galaxy clustering observables. In this paper we extend ICE-COLA, based on an optimized implementation of the approximate COLA method, to produce weak lensing maps and halo catalogues in the light-cone using an integrated and self-consistent approach. We show that despite the approximate dynamics, the catalogues thus produced enable an accurate modelling of weak lensing observables one decade beyond the characteristic scale where the growth becomes non-linear. In particular, we compare ICE-COLA to the MICE Grand Challenge N-body simulation for some fiducial cases representative of upcoming surveys and find that, for sources at redshift z = 1, their convergence power spectra agree to within 1 per cent up to high multipoles (i.e. of order 1000). The corresponding shear two point functions, ξ+ and ξ-, yield similar accuracy down to 2 and 20 arcmin respectively, while tangential shear around a z = 0.5 lens sample is accurate down to 4 arcmin. We show that such accuracy is stable against an increased angular resolution of the weak lensing maps. Hence, this opens the possibility of using approximate methods for the joint modelling of galaxy clustering and weak lensing observables and their covariance in ongoing and future galaxy surveys.

  13. Modeling, simulation, and analysis of optical remote sensing systems

    NASA Technical Reports Server (NTRS)

    Kerekes, John Paul; Landgrebe, David A.

    1989-01-01

    Remote Sensing of the Earth's resources from space-based sensors has evolved in the past 20 years from a scientific experiment to a commonly used technological tool. The scientific applications and engineering aspects of remote sensing systems have been studied extensively. However, most of these studies have been aimed at understanding individual aspects of the remote sensing process while relatively few have studied their interrelations. A motivation for studying these interrelationships has arisen with the advent of highly sophisticated configurable sensors as part of the Earth Observing System (EOS) proposed by NASA for the 1990's. Two approaches to investigating remote sensing systems are developed. In one approach, detailed models of the scene, the sensor, and the processing aspects of the system are implemented in a discrete simulation. This approach is useful in creating simulated images with desired characteristics for use in sensor or processing algorithm development. A less complete, but computationally simpler method based on a parametric model of the system is also developed. In this analytical model the various informational classes are parameterized by their spectral mean vector and covariance matrix. These class statistics are modified by models for the atmosphere, the sensor, and processing algorithms and an estimate made of the resulting classification accuracy among the informational classes. Application of these models is made to the study of the proposed High Resolution Imaging Spectrometer (HRIS). The interrelationships among observational conditions, sensor effects, and processing choices are investigated with several interesting results.

  14. Simulation and 'TWINS Observations of the 22 July 2009 Storm

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Buzulukova, Natalia Y.; Chen, Sheng-Hsien; Valek, Phil; Goldstein, Jerry; McComas, David

    2010-01-01

    TWINS is the first mission to perform stereo imaging of the Earth's ring current. The magnetic storm on 22 July 2009 is the largest storm observed since TWINS began routine stereo imaging in June 2008. On 22 July 2009, the Dst dropped to nearly -80nT at 7:00 and 10:00 UT. During the main phase and at the peak of the storm, TWINS 1 and 2 were near apogee and moving from pre-dawn to post-dawn local time. The energetic neutral atom (ENA) imagers on the 2 spacecraft captured the storm intensification and the formation of the partial ring current. The peak of the ENA emissions was seen in the midnight-to-dawn local-time sector. The development of this storm has been simulated using the Comprehensive Ring Current Model (CRCM) to understand and interpret the observed signatures. We perform CRCM runs with constant and time-varying magnetic field. The model calculations are validated by comparing the simulated ENA and ion flux intensities with TWINS ENA images and in-situ ion data from THEMIS satellites. Simulation with static magnetic field produces a strong shielding electric field that skews the ion drift trajectories toward dawn. The model's corresponding peak ENA emissions are always eastward than those in the observed TWINS images. On the other hand, simulation with a dynamic magnetic field gives better spatial agreements with both ENA and insitu particle data, suggesting that temporal variations of the geomagnetic field exert a significant influence upon global ring current ion dynamics.

  15. Simulation and Twins Observations of the 22 July 2009 Storm

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Buzulukova, N.; Chen, S.-H.; Valek, P. W.; Goldstein, J.; McComas, D. J.

    2011-01-01

    TWINS is the first mission to perform stereo imaging of the Earth's ring current. The magnetic storm on 22 July 2009 was at the time the largest storm observed since TWINS began routine stereo imaging in June 2008. On 22 July 2009, the Dst dropped to nearly .80 nT at 0700 and 1000 UT. During the main phase, and at the peak of the storm, TWINS 1 and 2 were near apogee and moving between predawn and postdawn local time. The energetic neutral atom (ENA) imagers on the two spacecraft captured the storm intensification and the formation of the partial ring current. The peak of the high-altitude ENA emissions was seen in the midnight-to-dawn local time sector. The development of this storm has been simulated using the comprehensive ring current model (CRCM) to understand and interpret the observed signatures. We perform CRCM runs with constant and time-varying magnetic field. The model calculations are validated by comparing the simulated ENA and ion flux intensities with TWINS ENA images and in situ ion data from a THEMIS satellite. Simulation with a static magnetic field produces a strong shielding electric field that skews the ion drift trajectories toward dawn. The model's corresponding peak ENA emissions are always more eastward than those in the observed TWINS images. On the other hand, the simulation with a dynamic magnetic field gives better spatial agreement with both ENA and in situ particle data, suggesting that temporal variations of the geomagnetic field exert a significant influence upon global ring current ion dynamics.

  16. Solar simulator for concentrator photovoltaic systems.

    PubMed

    Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2008-09-15

    A solar simulator for measuring performance of large area concentrator photovoltaic (CPV) modules is presented. Its illumination system is based on a Xenon flash light and a large area collimator mirror, which simulates natural sun light. Quality requirements imposed by the CPV systems have been characterized: irradiance level and uniformity at the receiver, light collimation and spectral distribution. The simulator allows indoor fast and cost-effective performance characterization and classification of CPV systems at the production line as well as module rating carried out by laboratories.

  17. Constraining Earth System Models in the Tropics with Multiple Satellite Observations

    NASA Astrophysics Data System (ADS)

    Shi, M.; Liu, J.; Saatchi, S. S.; Chan, S.; Yu, Y.; Zhao, M.

    2016-12-01

    Because of the impacts of cloud and atmospheric aerosol on spectral observations and the saturation of spectral observations over dense forests, the current spectral observations (e.g., Moderate Resolution Imaging Spectroradiometer) have large uncertainties in the tropics. Nevertheless, the backscatter observations from the SeaWinds Scatterometer onboard QuikSCAT (QSCAT) are sensitive to the variations of canopy water content and structure of forest canopy, and are not affected by clouds and atmospheric aerosols. In addition, the lack of sensitivity of the Soil Moisture Active Passive (SMAP) Level 1C brightness temperature (TB) to soil moisture under dense forest canopies (e.g., forests in tropics) makes the SMAP TB data a direct indicator of canopy properties. In this study, we use a variety of new satellite observations, including the QSCAT backscatter observations, the Gravity Recovery and Climate Experiment (GRACE) satellite's observed temporal gravity field variations, and the SMAP Level 1C TB, to constrain the carbon (C) cycle simulated by the Community Land Model version 4.5 BGC (CLM4.5) for the 2005 Amazonia drought and 2015 El Nino. Our results show that the leaf C pool size simulated by CLM4.5 decreases dramatically in southwest Amazonia in the 2005 drought, and recovers slowly afterward (after about 3 years). This result is consistent with the long-term C-recovery after the 2005 Amazonia drought observed by QSCAT. The slow C pool recovery is associated with large fire disturbance and the slow water storage recovery simulated by CLM4.5 and observed by GRACE. We will also discuss the impact of the 2015 El Nino on the tropical C dynamics constrained by SMAP Level 1C data. This study represents an innovative way of using satellite microwave observations to constrain C cycle in an Earth system model.

  18. Confidence Intervals for Error Rates Observed in Coded Communications Systems

    NASA Astrophysics Data System (ADS)

    Hamkins, J.

    2015-05-01

    We present methods to compute confidence intervals for the codeword error rate (CWER) and bit error rate (BER) of a coded communications link. We review several methods to compute exact and approximate confidence intervals for the CWER, and specifically consider the situation in which the true CWER is so low that only a handful, if any, codeword errors are able to be simulated. In doing so, we answer the question of how long an error-free simulation must be run in order to certify that a given CWER requirement is met with a given level of confidence, and discuss the bias introduced by aborting a simulation after observing the first codeword error. Next, we turn to the lesser studied problem of determining confidence intervals for the BER of coded systems. Since bit errors in systems that use coding or higher-order modulation do not occur independently, blind application of a method that assumes independence leads to inappropriately narrow confidence intervals. We present a new method to compute the confidence interval properly, using the first and second sample moments of the number of bit errors per codeword. This is the first method we know of to compute a confidence interval for the BER of a coded or higher-order modulation system.

  19. Future missions for observing Earth's changing gravity field: a closed-loop simulation tool

    NASA Astrophysics Data System (ADS)

    Visser, P. N.

    2008-12-01

    The GRACE mission has successfully demonstrated the observation from space of the changing Earth's gravity field at length and time scales of typically 1000 km and 10-30 days, respectively. Many scientific communities strongly advertise the need for continuity of observing Earth's gravity field from space. Moreover, a strong interest is being expressed to have gravity missions that allow a more detailed sampling of the Earth's gravity field both in time and in space. Designing a gravity field mission for the future is a complicated process that involves making many trade-offs, such as trade-offs between spatial, temporal resolution and financial budget. Moreover, it involves the optimization of many parameters, such as orbital parameters (height, inclination), distinction between which gravity sources to observe or correct for (for example are gravity changes due to ocean currents a nuisance or a signal to be retrieved?), observation techniques (low-low satellite-to-satellite tracking, satellite gravity gradiometry, accelerometers), and satellite control systems (drag-free?). A comprehensive tool has been developed and implemented that allows the closed-loop simulation of gravity field retrievals for different satellite mission scenarios. This paper provides a description of this tool. Moreover, its capabilities are demonstrated by a few case studies. Acknowledgments. The research that is being done with the closed-loop simulation tool is partially funded by the European Space Agency (ESA). An important component of the tool is the GEODYN software, kindly provided by NASA Goddard Space Flight Center in Greenbelt, Maryland.

  20. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    NASA Technical Reports Server (NTRS)

    Varble, Adam; Fridlind, Ann M.; Zipser, Edward J.; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-01-01

    The Tropical Warm Pool.International Cloud Experiment (TWP ]ICE) provided extensive observational data sets designed to initialize, force, and constrain atmospheric model simulations. In this first of a two ]part study, precipitation and cloud structures within nine cloud ]resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Seven of nine simulations overestimate convective area by 20% or more leading to general overestimation of convective rainfall. This is balanced by underestimation of stratiform rainfall by 5% to 50% despite overestimation of stratiform area by up to 65% because of a preponderance of very low stratiform rain rates in all simulations. All simulations fail to reproduce observed radar reflectivity distributions above the melting level in convective regions and throughout the troposphere in stratiform regions. Observed precipitation ]sized ice reaches higher altitudes than simulated precipitation ]sized ice despite some simulations that predict lower than observed top ]of ]atmosphere infrared brightness temperatures. For the simulations that overestimate radar reflectivity aloft, graupel is the cause with one ]moment microphysics schemes whereas snow is the cause with two ]moment microphysics schemes. Differences in simulated radar reflectivity are more highly correlated with differences in mass mean melted diameter (Dm) than differences in ice water content. Dm is largely dependent on the mass ]dimension relationship and gamma size distribution parameters such as size intercept (N0) and shape parameter (m). Having variable density, variable N0, or m greater than zero produces radar reflectivities closest to those observed.

  1. System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle

    Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is beingmore » developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.« less

  2. Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations

    NASA Astrophysics Data System (ADS)

    McCoy, Daniel T.; Field, Paul R.; Schmidt, Anja; Grosvenor, Daniel P.; Bender, Frida A.-M.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Elsaesser, Gregory S.

    2018-04-01

    Aerosol-cloud interactions are a major source of uncertainty in inferring the climate sensitivity from the observational record of temperature. The adjustment of clouds to aerosol is a poorly constrained aspect of these aerosol-cloud interactions. Here, we examine the response of midlatitude cyclone cloud properties to a change in cloud droplet number concentration (CDNC). Idealized experiments in high-resolution, convection-permitting global aquaplanet simulations with constant CDNC are compared to 13 years of remote-sensing observations. Observations and idealized aquaplanet simulations agree that increased warm conveyor belt (WCB) moisture flux into cyclones is consistent with higher cyclone liquid water path (CLWP). When CDNC is increased a larger LWP is needed to give the same rain rate. The LWP adjusts to allow the rain rate to be equal to the moisture flux into the cyclone along the WCB. This results in an increased CLWP for higher CDNC at a fixed WCB moisture flux in both observations and simulations. If observed cyclones in the top and bottom tercile of CDNC are contrasted it is found that they have not only higher CLWP but also cloud cover and albedo. The difference in cyclone albedo between the cyclones in the top and bottom third of CDNC is observed by CERES to be between 0.018 and 0.032, which is consistent with a 4.6-8.3 Wm-2 in-cyclone enhancement in upwelling shortwave when scaled by annual-mean insolation. Based on a regression model to observed cyclone properties, roughly 60 % of the observed variability in CLWP can be explained by CDNC and WCB moisture flux.

  3. Simulating observations with HARMONI: the integral field spectrograph for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Zieleniewski, Simon; Thatte, Niranjan; Kendrew, Sarah; Houghton, Ryan; Tecza, Matthias; Clarke, Fraser; Fusco, Thierry; Swinbank, Mark

    2014-07-01

    With the next generation of extremely large telescopes commencing construction, there is an urgent need for detailed quantitative predictions of the scientific observations that these new telescopes will enable. Most of these new telescopes will have adaptive optics fully integrated with the telescope itself, allowing unprecedented spatial resolution combined with enormous sensitivity. However, the adaptive optics point spread function will be strongly wavelength dependent, requiring detailed simulations that accurately model these variations. We have developed a simulation pipeline for the HARMONI integral field spectrograph, a first light instrument for the European Extremely Large Telescope. The simulator takes high-resolution input data-cubes of astrophysical objects and processes them with accurate atmospheric, telescope and instrumental effects, to produce mock observed cubes for chosen observing parameters. The output cubes represent the result of a perfect data reduc- tion process, enabling a detailed analysis and comparison between input and output, showcasing HARMONI's capabilities. The simulations utilise a detailed knowledge of the telescope's wavelength dependent adaptive op- tics point spread function. We discuss the simulation pipeline and present an early example of the pipeline functionality for simulating observations of high redshift galaxies.

  4. ROBOSIM, a simulator for robotic systems

    NASA Technical Reports Server (NTRS)

    Hinman, Elaine M.; Fernandez, Ken; Cook, George E.

    1991-01-01

    ROBOSIM, a simulator for robotic systems, was developed by NASA to aid in the rapid prototyping of automation. ROBOSIM has allowed the development of improved robotic systems concepts for both earth-based and proposed on-orbit applications while significantly reducing development costs. In a cooperative effort with an area university, ROBOSIM was further developed for use in the classroom as a safe and cost-effective way of allowing students to study robotic systems. Students have used ROBOSIM to study existing robotic systems and systems which they have designed in the classroom. Since an advanced simulator/trainer of this type is beneficial not only to NASA projects and programs but industry and academia as well, NASA is in the process of developing this technology for wider public use. An update on the simulators's new application areas, the improvements made to the simulator's design, and current efforts to ensure the timely transfer of this technology are presented.

  5. Understanding the central kinematics of globular clusters with simulated integrated-light IFU observations

    NASA Astrophysics Data System (ADS)

    Bianchini, Paolo; Norris, Mark A.; van de Ven, Glenn; Schinnerer, Eva

    2015-10-01

    The detection of intermediate-mass black holes in the centres of globular clusters is highly controversial, as complementary observational methods often deliver significantly different results. In order to understand these discrepancies, we develop a procedure to simulate integral field unit (IFU) observations of globular clusters: Simulating IFU Star Cluster Observations (SISCO). The inputs of our software are realistic dynamical models of globular clusters that are then converted in a spectral data cube. We apply SISCO to Monte Carlo cluster simulations with a realistic number of stars and concentrations. Using independent realizations of a given simulation we are able to quantify the stochasticity intrinsic to the problem of observing a partially resolved stellar population with integrated-light spectroscopy. We show that the luminosity-weighted IFU observations can be strongly biased by the presence of a few bright stars that introduce a scatter in the velocity dispersion measurements up to ≃40 per cent around the expected value, preventing any sound assessment of the central kinematic and a sensible interpretation of the presence/absence of an intermediate-mass black hole. Moreover, we illustrate that, in our mock IFU observations, the average kinematic tracer has a mass of ≃0.75 M⊙, only slightly lower than the mass of the typical stars examined in studies of resolved line-of-sight velocities of giant stars. Finally, in order to recover unbiased kinematic measurements we test different masking techniques that allow us to remove the spaxels dominated by bright stars, bringing the scatter down to a level of only a few per cent. The application of SISCO will allow us to investigate state-of-the-art simulations as realistic observations.

  6. Using Real and Simulated TNOs to Constrain the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Kaib, Nathan

    2018-04-01

    Over the past 2-3 decades our understanding of the outer solar system’s history and current state has evolved dramatically. An explosion in the number of detected trans-Neptunian objects (TNOs) coupled with simultaneous advances in numerical models of orbital dynamics has driven this rapid evolution. However, successfully constraining the orbital architecture and evolution of the outer solar system requires accurately comparing simulation results with observational datasets. This process is challenging because observed datasets are influenced by orbital discovery biases as well as TNO size and albedo distributions. Meanwhile, such influences are generally absent from numerical results. Here I will review recent work I and others have undertaken using numerical simulations in concert with catalogs of observed TNOs to constrain the outer solar system’s current orbital architecture and past evolution.

  7. QUANTIFYING OBSERVATIONAL PROJECTION EFFECTS USING MOLECULAR CLOUD SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaumont, Christopher N.; Offner, Stella S.R.; Shetty, Rahul

    2013-11-10

    The physical properties of molecular clouds are often measured using spectral-line observations, which provide the only probes of the clouds' velocity structure. It is hard, though, to assess whether and to what extent intensity features in position-position-velocity (PPV) space correspond to 'real' density structures in position-position-position (PPP) space. In this paper, we create synthetic molecular cloud spectral-line maps of simulated molecular clouds, and present a new technique for measuring the reality of individual PPV structures. Using a dendrogram algorithm, we identify hierarchical structures in both PPP and PPV space. Our procedure projects density structures identified in PPP space into correspondingmore » intensity structures in PPV space and then measures the geometric overlap of the projected structures with structures identified from the synthetic observation. The fractional overlap between a PPP and PPV structure quantifies how well the synthetic observation recovers information about the three-dimensional structure. Applying this machinery to a set of synthetic observations of CO isotopes, we measure how well spectral-line measurements recover mass, size, velocity dispersion, and virial parameter for a simulated star-forming region. By disabling various steps of our analysis, we investigate how much opacity, chemistry, and gravity affect measurements of physical properties extracted from PPV cubes. For the simulations used here, which offer a decent, but not perfect, match to the properties of a star-forming region like Perseus, our results suggest that superposition induces a ∼40% uncertainty in masses, sizes, and velocity dispersions derived from {sup 13}CO (J = 1-0). As would be expected, superposition and confusion is worst in regions where the filling factor of emitting material is large. The virial parameter is most affected by superposition, such that estimates of the virial parameter derived from PPV and PPP information typically

  8. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    NASA Astrophysics Data System (ADS)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  9. Dynamical Conditions of Ice Supersaturation and Ice Nucleation in Convective Systems: A Comparative Analysis Between in Situ Aircraft Observations and WRF Simulations

    NASA Technical Reports Server (NTRS)

    D’Alessandro, John J.; Diao, Minghui; Wu, Chenglai; Liu, Xiaohong; Chen, Ming; Morrison, Hugh; Eidhammer, Trude; Jensen, Jorgen B.; Bansemer, Aaron; Zondlo, Mark A.; hide

    2017-01-01

    Occurrence frequency and dynamical conditions of ice supersaturation (ISS, where relative humidity with respect to ice (RHi) greater than 100%) are examined in the upper troposphere around convective activity. Comparisons are conducted between in situ airborne observations and the Weather Research and Forecasting model simulations using four double-moment microphysical schemes at temperatures less than or or equal to -40degdegC. All four schemes capture both clear-sky and in-cloud ISS conditions. However, the clear-sky (in-cloud) ISS conditions are completely (significantly) limited to the RHi thresholds of the Cooper parameterization. In all of the simulations, ISS occurrence frequencies are higher by approximately 3-4 orders of magnitude at higher updraft speeds (greater than 1 m s(exp -1) than those at the lower updraft speeds when ice water content (IWC) greater than 0.01 gm(exp -3), while observations show smaller differences up to approximately 1-2 orders of magnitude. The simulated ISS also occurs less frequently at weaker updrafts and downdrafts than observed. These results indicate that the simulations have a greater dependence on stronger updrafts to maintain/generate ISS at higher IWC. At lower IWC (less than or equal or 0.01 gm(exp -3), simulations unexpectedly show lower ISS frequencies at stronger updrafts. Overall, the Thompson aerosol-aware scheme has the closest magnitudes and frequencies of ISS greater than 20% to the observations, and the modified Morrison has the closest correlations between ISS frequencies and vertical velocity at higher IWC and number density. The Cooper parameterization often generates excessive ice crystals and therefore suppresses the frequency and magnitude of ISS, indicating that it should be initiated at higher ISS (e.g.,lees than or equal to 25%).

  10. Astrometrical observations of Pluto-Charon system with the automated telescopes of Pulkovo observatory

    NASA Astrophysics Data System (ADS)

    Slesarenko, V. Yu.; Bashakova, E. A.; Devyatkin, A. V.

    2016-03-01

    The space probe "New Horizons" was launched on 19th of January 2006 in order to study Pluto and its moons. Spacecraft performed close fly-by to Pluto on 14th of July 2015 and obtained the most detailed images of Pluto and its moon until this moment. At the same time, observation obtained by the ground-based telescopes may also be helpful for the research of such distant system. Thereby, the Laboratory of observational astrometry of Pulkovo Observatory of RAS made a decision to reprocess observations obtained during last decade. More than 350 positional observations of Pluto-Charon system were carried out with the mirror astrograph ZA-320M at Pulkovo and Maksutov telescope MTM-500M near Kislovodsk. These observations were processed by means of software system APEX-II developed in Pulkovo observatory and numerical simulations were performed to calculate the differences between positions of photocenter and barycenter of Pluto-Charon system.

  11. A robust adaptive observer for a class of singular nonlinear uncertain systems

    NASA Astrophysics Data System (ADS)

    Arefinia, Elaheh; Talebi, Heidar Ali; Doustmohammadi, Ali

    2017-05-01

    This paper proposes a robust adaptive observer for a class of singular nonlinear non-autonomous uncertain systems with unstructured unknown system and derivative matrices, and unknown bounded nonlinearities. Unlike many existing observers, no strong assumption such as Lipschitz condition is imposed on the recommended system. An augmented system is constructed, and the unknown bounds are calculated online using adaptive bounding technique. Considering the continuous nonlinear gain removes the chattering which may appear in practical applications such as analysis of electrical circuits and estimation of interaction force in beating heart robotic-assisted surgery. Moreover, a simple yet precise structure is attained which is easy to implement in many systems with significant uncertainties. The existence conditions of the standard form observer are obtained in terms of linear matrix inequality and the constrained generalised Sylvester's equations, and global stability is ensured. Finally, simulation results are obtained to evaluate the performance of the proposed estimator and demonstrate the effectiveness of the developed scheme.

  12. Simulation of Combustion Systems with Realistic g-Jitter

    NASA Technical Reports Server (NTRS)

    Mell, W. E.; McGrattan, K. B.; Nakamura, Y.; Baum, H. R.

    2001-01-01

    A number of facilities are available for microgravity combustion experiments: aircraft, drop towers, sounding rockets, the space shuttle, and, in the future, the International Space Station (ISS). Acceleration disturbances or g-jitter about the background level of reduced gravity exist in all these microgravity facilities. While g-jitter is routinely measured, a quantitative comparison of the quality of g-jitter among the different microgravity facilities, in terms of its affects on combustion experiments, has not been compiled. Low frequency g-jitter (< 1 Hz) has been repeatedly observed to disturb a number of combustion systems. Guidelines regarding tolerable levels of acceleration disturbances for combustion experiments have been developed for use in the design of ISS experiments. The validity of these guidelines, however, remains unknown. In this project a transient, 3-D numerical model is under development to simulate the effects of realistic g-jitter on a number of combustion systems. The measured acceleration vector or some representation of it can be used as input to the simulation.

  13. : A Scalable and Transparent System for Simulating MPI Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S

    2010-01-01

    is a scalable, transparent system for experimenting with the execution of parallel programs on simulated computing platforms. The level of simulated detail can be varied for application behavior as well as for machine characteristics. Unique features of are repeatability of execution, scalability to millions of simulated (virtual) MPI ranks, scalability to hundreds of thousands of host (real) MPI ranks, portability of the system to a variety of host supercomputing platforms, and the ability to experiment with scientific applications whose source-code is available. The set of source-code interfaces supported by is being expanded to support a wider set of applications, andmore » MPI-based scientific computing benchmarks are being ported. In proof-of-concept experiments, has been successfully exercised to spawn and sustain very large-scale executions of an MPI test program given in source code form. Low slowdowns are observed, due to its use of purely discrete event style of execution, and due to the scalability and efficiency of the underlying parallel discrete event simulation engine, sik. In the largest runs, has been executed on up to 216,000 cores of a Cray XT5 supercomputer, successfully simulating over 27 million virtual MPI ranks, each virtual rank containing its own thread context, and all ranks fully synchronized by virtual time.« less

  14. Properties of the circumgalactic medium in simulations compared to observations

    NASA Astrophysics Data System (ADS)

    Machado, R. E. G.; Tissera, P. B.; Lima Neto, G. B.; Sodré, L.

    2018-01-01

    Context. Galaxies are surrounded by extended gaseous halos that store significant fractions of chemical elements. These are syntethized by the stellar populations and later ejected into the circumgalactic medium (CGM) by different mechanism, of which supernova feedback is considered one of the most relevant. Aims: We aim to explore the properties of this metal reservoir surrounding star-forming galaxies in a cosmological context aiming to investigate the chemical loop between galaxies and their CGM, and the ability of the subgrid models to reproduce observational results. Methods: Using cosmological hydrodynamical simulations, we have analysed the gas-phase chemical contents of galaxies with stellar masses in the range 109-1011 M⊙. We estimated the fractions of metals stored in the different CGM phases, and the predicted O VI and Si III column densities within the virial radius. Results: We find roughly 107 M⊙ of oxygen in the CGM of simulated galaxies having M⋆ 1010 M⊙, in fair agreement with the lower limits imposed by observations. The Moxy is found to correlate with M⋆, at odds with current observational trends but in agreement with other numerical results. The estimated profiles of O VI column density reveal a substantial shortage of that ion, whereas Si III, which probes the cool phase, is overpredicted. Nevertheless, the radial dependences of both ions follow the respective observed profiles. The analysis of the relative contributions of both ions from the hot, warm and cool phases suggests that the warm gas (105 K < T < 106 K) should be more abundant in order to bridge the mismatch with the observations, or alternatively, that more metals should be stored in this gas-phase. These discrepancies provide important information to improve the subgrid physics models. Our findings show clearly the importance of tracking more than one chemical element and the difficulty of simultaneously satisfying the observables that trace the circumgalactic gas at

  15. Novel disturbance-observer-based control for systems with high-order mismatched disturbances

    NASA Astrophysics Data System (ADS)

    Fang, Xing; Liu, Fei; Wang, Zhiguo; Dong, Na

    2018-01-01

    A novel disturbance-observer-based control method is investigated to attenuate the high-order mismatched disturbances. First, a finite-time disturbance observer (FTDO) is proposed to estimate the disturbances as well as the derivatives. By incorporating the outputs of FTDO, the original system is then reconstructed, where the mismatched disturbances are transformed to the matched ones that are compensated by feed-forward algorithm. Moreover, a feedback control law is developed to achieve the stability and tracking performance requirements for the systems. Finally, the proposed composite control method is applied to an unmanned helicopter system. The simulation results demonstrate that the proposed control method exhibits excellent control performance in the presence of high-order matched and mismatched disturbances.

  16. Disturbance observer-based adaptive sliding mode hybrid projective synchronisation of identical fractional-order financial systems

    NASA Astrophysics Data System (ADS)

    Khan, Ayub; Tyagi, Arti

    2018-05-01

    In this paper, we have studied the hybrid projective synchronisation for incommensurate, integer and commensurate fractional-order financial systems with unknown disturbance. To tackle the problem of unknown bounded disturbance, fractional-order disturbance observer is designed to approximate the unknown disturbance. Further, we have introduced simple sliding mode surface and designed adaptive sliding mode controllers incorporating with the designed fractional-order disturbance observer to achieve a bounded hybrid projective synchronisation between two identical fractional-order financial model with different initial conditions. It is shown that the slave system with disturbance can be synchronised with the projection of the master system generated through state transformation. Simulation results are presented to ensure the validity and effectiveness of the proposed sliding mode control scheme in the presence of external bounded unknown disturbance. Also, synchronisation error for commensurate, integer and incommensurate fractional-order financial systems is studied in numerical simulation.

  17. A Comparison of Observed and Simulated 1990 – 2010 U.S. Ozone Trends

    EPA Science Inventory

    In this study, we analyze ozone concentrations from long-term (1990 – 2010) WRF-CMAQ simulations driven by year specific meteorology and emissions. These simulations allow us to compare observed and simulated ozone trends in order to evaluate the model’s ability to pr...

  18. Numerical Propulsion System Simulation Architecture

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia G.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.

  19. An intelligent simulation training system

    NASA Technical Reports Server (NTRS)

    Biegel, John E.

    1990-01-01

    The Department of Industrial Engineering at the University of Central Florida, Embry-Riddle Aeronautical University and General Electric (SCSD) have been funded by the State of Florida to build an Intelligent Simulation Training System. The objective was and is to make the system generic except for the domain expertise. Researchers accomplished this objective in their prototype. The system is modularized and therefore it is easy to make any corrections, expansions or adaptations. The funding by the state of Florida has exceeded $3 million over the past three years and through the 1990 fiscal year. UCF has expended in excess of 15 work years on the project. The project effort has been broken into three major tasks. General Electric provides the simulation. Embry-Riddle Aeronautical University provides the domain expertise. The University of Central Florida has constructed the generic part of the system which is comprised of several modules that perform the tutoring, evaluation, communication, status, etc. The generic parts of the Intelligent Simulation Training Systems (ISTS) are described.

  20. Evaluating performance of risk identification methods through a large-scale simulation of observational data.

    PubMed

    Ryan, Patrick B; Schuemie, Martijn J

    2013-10-01

    There has been only limited evaluation of statistical methods for identifying safety risks of drug exposure in observational healthcare data. Simulations can support empirical evaluation, but have not been shown to adequately model the real-world phenomena that challenge observational analyses. To design and evaluate a probabilistic framework (OSIM2) for generating simulated observational healthcare data, and to use this data for evaluating the performance of methods in identifying associations between drug exposure and health outcomes of interest. Seven observational designs, including case-control, cohort, self-controlled case series, and self-controlled cohort design were applied to 399 drug-outcome scenarios in 6 simulated datasets with no effect and injected relative risks of 1.25, 1.5, 2, 4, and 10, respectively. Longitudinal data for 10 million simulated patients were generated using a model derived from an administrative claims database, with associated demographics, periods of drug exposure derived from pharmacy dispensings, and medical conditions derived from diagnoses on medical claims. Simulation validation was performed through descriptive comparison with real source data. Method performance was evaluated using Area Under ROC Curve (AUC), bias, and mean squared error. OSIM2 replicates prevalence and types of confounding observed in real claims data. When simulated data are injected with relative risks (RR) ≥ 2, all designs have good predictive accuracy (AUC > 0.90), but when RR < 2, no methods achieve 100 % predictions. Each method exhibits a different bias profile, which changes with the effect size. OSIM2 can support methodological research. Results from simulation suggest method operating characteristics are far from nominal properties.

  1. Simulated observations of young gravitationally unstable protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.; Caselli, P.; Ilee, J. D.; Boley, A. C.; Hartquist, T. W.; Durisen, R. H.; Rawlings, J. M. C.

    2013-08-01

    The formation and earliest stages of protoplanetary discs remain poorly constrained by observations. Atacama Large Millimetre/sub-millimetre Array (ALMA) will soon revolutionise this field. Therefore, it is important to provide predictions which will be valuable for the interpretation of future high sensitivity and high angular resolution observations. Here, we present simulated ALMA observations based on radiative transfer modelling of a relatively massive (0.39 M⊙) self-gravitating disc embedded in a 10 M⊙ dense core, with structure similar to the pre-stellar core L1544. We focus on simple species and conclude that C17O 3→2, HCO+ 3→2, OCS 26→25 and H2CO 404→303 lines can be used to probe the disc structure and kinematics at all scales.

  2. System/observer/controller identification toolbox

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Horta, Lucas G.; Phan, Minh

    1992-01-01

    System Identification is the process of constructing a mathematical model from input and output data for a system under testing, and characterizing the system uncertainties and measurement noises. The mathematical model structure can take various forms depending upon the intended use. The SYSTEM/OBSERVER/CONTROLLER IDENTIFICATION TOOLBOX (SOCIT) is a collection of functions, written in MATLAB language and expressed in M-files, that implements a variety of modern system identification techniques. For an open loop system, the central features of the SOCIT are functions for identification of a system model and its corresponding forward and backward observers directly from input and output data. The system and observers are represented by a discrete model. The identified model and observers may be used for controller design of linear systems as well as identification of modal parameters such as dampings, frequencies, and mode shapes. For a closed-loop system, an observer and its corresponding controller gain directly from input and output data.

  3. Coupling of in-situ X-ray Microtomography Observations with Discrete Element Simulations-Application to Powder Sintering

    NASA Astrophysics Data System (ADS)

    Olmos, L.; Bouvard, D.; Martin, C. L.; Bellet, D.; Di Michiel, M.

    2009-06-01

    The sintering of both a powder with a wide particle size distribution (0-63 μm) and of a powder with artificially created pores is investigated by coupling in situ X-ray microtomography observations with Discrete Element simulations. The micro structure evolution of the copper particles is observed by microtomography all along a typical sintering cycle at 1050° C at the European Synchrotron Research Facilities (ESRF, Grenoble, France). A quantitative analysis of the 3D images provides original data on interparticle indentation, coordination and particle displacements throughout sintering. In parallel, the sintering of similar powder systems has been simulated with a discrete element code which incorporates appropriate sintering contact laws from the literature. The initial numerical packing is generated directly from the 3D microtomography images or alternatively from a random set of particles with the same size distribution. The comparison between the information drawn from the simulations and the one obtained by tomography leads to the conclusion that the first method is not satisfactory because real particles are not perfectly spherical as the numerical ones. On the opposite the packings built with the second method show sintering behaviors close to the behaviors of real materials, although particle rearrangement is underestimated by DEM simulations.

  4. Multi-Modal Transportation System Simulation

    DOT National Transportation Integrated Search

    1971-01-01

    THE PRESENT STATUS OF A LABORATORY BEING DEVELOPED FOR REAL-TIME SIMULATION OF COMMAND AND CONTROL FUNCTIONS IN TRANSPORTATION SYSTEMS IS DISCUSSED. DETAILS ARE GIVEN ON THE SIMULATION MODELS AND ON PROGRAMMING TECHNIQUES USED IN DEFINING AND EVALUAT...

  5. Observations and statistical simulations of a proposed solar cycle/QBO/weather relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, M.P.; Dunkerton, T.J.

    1989-08-01

    The 10.7 cm solar flux is observed to be highly correlated with north pole stratospheric temperatures when partitioned according to the phase of the equatorial stratospheric winds (the quasi-biennial oscillation, or QBO). The authors supplement observations with calculations showing that temperatures over most of the northern hemisphere are highly correlated or anticorrelated with north pole temperatures. The observed spatial pattern of solar cycle correlations at high latitudes is shown to be not unique to the solar cycle. The authors present results, similar to the observed solar cycle correlations, with simulated harmonics of various periods replacing the solar cycle. These calculationsmore » demonstrate the correlations at least as high as those for the solar cycle results may be obtained using simulated harmonics.« less

  6. Simulation of DKIST solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Carlisle, Elizabeth; Schmidt, Dirk

    2016-07-01

    Solar adaptive optics (AO) simulations are a valuable tool to guide the design and optimization process of current and future solar AO and multi-conjugate AO (MCAO) systems. Solar AO and MCAO systems rely on extended object cross-correlating Shack-Hartmann wavefront sensors to measure the wavefront. Accurate solar AO simulations require computationally intensive operations, which have until recently presented a prohibitive computational cost. We present an update on the status of a solar AO and MCAO simulation tool being developed at the National Solar Observatory. The simulation tool is a multi-threaded application written in the C++ language that takes advantage of current large multi-core CPU computer systems and fast ethernet connections to provide accurate full simulation of solar AO and MCAO systems. It interfaces with KAOS, a state of the art solar AO control software developed by the Kiepenheuer-Institut fuer Sonnenphysik, that provides reliable AO control. We report on the latest results produced by the solar AO simulation tool.

  7. Observed and Simulated Eddy Diffusivity Upstream of the Drake Passage

    NASA Astrophysics Data System (ADS)

    Tulloch, R.; Ferrari, R. M.; Marshall, J.

    2012-12-01

    Estimates of eddy diffusivity in the Southern Ocean are poorly constrained due to lack of observations. We compare the first direct estimate of isopycnal eddy diffusivity upstream of the Drake Passage (from Ledwell et al. 2011) with a numerical simulation. The estimate is computed from a point tracer release as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). We find that the observational diffusivity estimate of about 500m^2/s at 1500m depth is close to that computed in a data-constrained, 1/20th of a degree simulation of the Drake Passage region. This tracer estimate also agrees with Lagrangian float calculations in the model. The role of mean flow suppression of eddy diffusivity at shallower depths will also be discussed.

  8. Charaterizing the O+ ion plume from Hybrid simulations: comparison to MAVEN observations

    NASA Astrophysics Data System (ADS)

    Modolo, R.; Leblanc, F.; Chaufray, J. Y.; Leclercq, L.; Esteban-Hernandez, R.; Curry, S.; Dong, Y.; Brain, D. A.; Bowers, C.; Luhmann, J. G.; McFadden, J. P.; Halekas, J. S.; Espley, J. R.; Connerney, J. E. P.; Jakosky, B. M.

    2015-12-01

    MAVEN observations show a substantial plume-like distribution of escaping ions from the Martian atmosphere. It represents an important ion escape channel with large fluxes (Brain et al, 2015; Dong et al, 2015, Curry et al, 2015). Such structure is organized by the solar wind convection electric field and it is located in the MSE northward hemisphere. Global hybrid models (eg Modolo et al, 2005, 2012; Kallio et al, 2006; Brecht et al, 2006) reproduce nicely this plume. To further characterize this population, hybrid simulations have been performed with upstream solar wind conditions observed by MAVEN. Simulation results along the spacecraft track present signatures of high energetic O+ ions similar to MAVEN measurements. Comparison of simulated 3D distribution functions of this population are compared to STATIC and SWIA observations. Moreover a comparison of hybrid results with statistical ion fluxes maps derived from MAVEN (Dong et al, 2015; Brain et al, 2015) have been conducted and a reasonable agreement is found .

  9. Convective Systems Over the Japan Sea: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Yoshizaki, Masanori; Shie, Chung-Lin; Kato, Teryuki

    2002-01-01

    Wintertime observations of MCSs (Mesoscale Convective Systems) over the Sea of Japan - 2001 (WMO-01) were collected from January 12 to February 1, 2001. One of the major objectives is to better understand and forecast snow systems and accompanying disturbances and the associated key physical processes involved in the formation and development of these disturbances. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, wind profilers, radiometers, etc.) during WMO-01 provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with winter storms over the Sea of Japan region. WMO-01 also provided estimates of the apparent heat source (Q1) and apparent moisture sink (Q2). The vertical integrals of Q1 and Q2 are equal to the surface precipitation rates. The horizontal and vertical adjective components of Q1 and Q2 can be used as large-scale forcing for the Cloud Resolving Models (CRMs). The Goddard Cumulus Ensemble (GCE) model is a CRM (typically run with a 1-km grid size). The GCE model has sophisticated microphysics and allows explicit interactions between clouds, radiation, and surface processes. It will be used to understand and quantify precipitation processes associated with wintertime convective systems over the Sea of Japan (using data collected during the WMO-01). This is the first cloud-resolving model used to simulate precipitation processes in this particular region. The GCE model-simulated WMO-01 results will also be compared to other GCE model-simulated weather systems that developed during other field campaigns (i.e., South China Sea, west Pacific warm pool region, eastern Atlantic region and central USA).

  10. Investigating mass transfer in symbiotic systems with hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.

    2014-06-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.

  11. The Group on Earth Observations and the Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Achache, J.

    2006-05-01

    The Group on Earth Observations (GEO) is leading a worldwide effort to build a Global Earth Observation System of Systems (GEOSS) over the next 10 years. The GEOSS vision, articulated in its 10-Year Implementation Plan, represents the consolidation of a global scientific and political consensus: the assessment of the state of the Earth requires continuous and coordinated observation of our planet at all scales. GEOSS aims to achieve comprehensive, coordinated and sustained observations of the Earth system in order to improve monitoring of the state of the Earth; increase understanding of Earth processes; and enhance prediction of the behaviour of the Earth system. After the World Summit on Sustainable Development in 2002 highlighted the urgent need for coordinated observations relating to the state of the Earth, GEO was established at the Third Earth Observation Summit in February 2005 and the GEOSS 10-Year Implementation Plan was endorsed. GEO currently involves 60 countries; the European Commission; and 43 international organizations and has begun implementation of the GEOSS 10-Year Implementation Plan. GEO programme activities cover nine societal benefit areas (Disasters; Health; Energy; Climate; Water; Weather; Ecosystems; Agriculture; Biodiversity) and five transverse or crosscutting elements (User Engagement; Architecture; Data Management; Capacity Building; Outreach). All these activities have as their final goal the establishment of the "system of systems" which will yield a broad range of basic societal benefits, including the reduction of loss of life and property from tsunamis, hurricanes, and other natural disasters; improved water resource and energy management; and improved understanding of environmental factors significant to public health. As a "system of systems", GEOSS will work with and build upon existing national, regional, and international systems to provide comprehensive, coordinated Earth observations from thousands of instruments worldwide

  12. AOD trends during 2001-2010 from observations and model simulations

    NASA Astrophysics Data System (ADS)

    Pozzer, Andrea; de Meij, Alexander; Yoon, Jongmin; Astitha, Marina

    2016-04-01

    The trend of aerosol optical depth (AOD) between 2001 and 2010 is estimated globally and regionally from remote sensed observations by the MODIS (Moderate Resolution Imaging Spectroradiometer), MISR (Multi-angle Imaging SpectroRadiometer) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor) satellite sensor. The resulting trends have been compared to model results from the EMAC (ECHAM5/MESSy Atmospheric Chemistry {[1]}), model. Although interannual variability is applied only to anthropogenic and biomass-burning emissions, the model is able to quantitatively reproduce the AOD trends as observed by MODIS, while some discrepancies are found when compared to MISR and SeaWIFS. An additional numerical simulation with the same model was performed, neglecting any temporal change in the emissions, i.e. with no interannual variability for any emission source. It is shown that decreasing AOD trends over the US and Europe are due to the decrease in the (anthropogenic) emissions. On contrary over the Sahara Desert and the Middle East region, the meteorological/dynamical changes in the last decade play a major role in driving the AOD trends. Further, over Southeast Asia, both meteorology and emissions changes are equally important in defining AOD trends {[2]}. Finally, decomposing the regional AOD trends into individual aerosol components reveals that the soluble components are the most dominant contributors to the total AOD, as their influence on the total AOD is enhanced by the aerosol water content. {[1]}: Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., and Kern, B.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci. Model Dev., 3, 717-752, doi:10.5194/gmd-3-717-2010, 2010. {[2]}: Pozzer, A., de Meij, A., Yoon, J., Tost, H., Georgoulias, A. K., and Astitha, M.: AOD trends during 2001-2010 from observations and model simulations, Atmos. Chem. Phys., 15, 5521-5535, doi:10.5194/acp-15-5521-2015, 2015.

  13. High-Resolution NU-WRF Simulations of a Deep Convective-Precipitation System During MC3E. Part 1; Comparisons Between Goddard Microphysics Schemes and Observations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiundar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa

    2015-01-01

    The Goddard microphysics scheme was recently improved by adding a 4th ice class (frozen dropshail). This new 4ICE scheme was implemented and tested in the Goddard Cumulus Ensemble model (GCE) for an intense continental squall line and a moderate,less-organized continental case. Simulated peak radar reflectivity profiles were improved both in intensity and shape for both cases as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified - Weather Research and Forecasting model (NU-WRF) and tested on an intense mesoscale convective system that occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). The NU42WRF simulated radar reflectivities, rainfall intensities, and vertical and horizontal structure using the new 4ICE scheme agree as well as or significantly better with observations than when using previous versions of the Goddard 3ICE (graupel or hail) schemes. In the 4ICE scheme, the bin microphysics-based rain evaporation correction produces more erect convective cores, while modification of the unrealistic collection of ice by dry hail produces narrow and intense cores, allowing more slow-falling snow to be transported rearward. Together with a revised snow size mapping, the 4ICE scheme produces a more horizontally stratified trailing stratiform region with a broad, more coherent light rain area. In addition, the NU-WRF 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive open lateral boundaries

  14. The Lopsidedness of Satellite Galaxy Systems in ΛCDM Simulations

    NASA Astrophysics Data System (ADS)

    Pawlowski, Marcel S.; Ibata, Rodrigo A.; Bullock, James S.

    2017-12-01

    The spatial distribution of satellite galaxies around pairs of galaxies in the Sloan Digital Sky Survey (SDSS) have been found to bulge significantly toward the respective partner. Highly anisotropic, planar distributions of satellite galaxies are in conflict with expectations derived from cosmological simulations. Does the lopsided distribution of satellite systems around host galaxy pairs constitute a similar challenge to the standard model of cosmology? We investigate whether such satellite distributions are present around stacked pairs of hosts extracted from the ΛCDM simulations Millennium-I, Millennium-II, Exploring the Local Volume in Simulations, and Illustris-1. By utilizing this set of simulations covering different volumes, resolutions, and physics, we implicitly test whether a lopsided signal exists for different ranges of satellite galaxy masses, and whether the inclusion of hydrodynamical effects produces significantly different results. All simulations display a lopsidedness similar to the observed situation. The signal is highly significant for simulations containing a sufficient number of hosts and resolved satellite galaxies (up to 5 σ for Millennium-II). We find a projected signal that is up to twice as strong as that reported for the SDSS systems for certain opening angles (∼16% more satellites in the direction between the pair than expected for uniform distributions). Considering that the SDSS signal is a lower limit owing to likely back- and foreground contamination, the ΛCDM simulations appear to be consistent with this particular empirical property of galaxy pairs.

  15. Design of penicillin fermentation process simulation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  16. Longitudinal train dynamics model for a rail transit simulation system

    DOE PAGES

    Wang, Jinghui; Rakha, Hesham A.

    2018-01-01

    The paper develops a longitudinal train dynamics model in support of microscopic railway transportation simulation. The model can be calibrated without any mechanical data making it ideal for implementation in transportation simulators. The calibration and validation work is based on data collected from the Portland light rail train fleet. The calibration procedure is mathematically formulated as a constrained non-linear optimization problem. The validity of the model is assessed by comparing instantaneous model predictions against field observations, and also evaluated in the domains of acceleration/deceleration versus speed and acceleration/deceleration versus distance. A test is conducted to investigate the adequacy of themore » model in simulation implementation. The results demonstrate that the proposed model can adequately capture instantaneous train dynamics, and provides good performance in the simulation test. Thus, the model provides a simple theoretical foundation for microscopic simulators and will significantly support the planning, management and control of railway transportation systems.« less

  17. Longitudinal train dynamics model for a rail transit simulation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jinghui; Rakha, Hesham A.

    The paper develops a longitudinal train dynamics model in support of microscopic railway transportation simulation. The model can be calibrated without any mechanical data making it ideal for implementation in transportation simulators. The calibration and validation work is based on data collected from the Portland light rail train fleet. The calibration procedure is mathematically formulated as a constrained non-linear optimization problem. The validity of the model is assessed by comparing instantaneous model predictions against field observations, and also evaluated in the domains of acceleration/deceleration versus speed and acceleration/deceleration versus distance. A test is conducted to investigate the adequacy of themore » model in simulation implementation. The results demonstrate that the proposed model can adequately capture instantaneous train dynamics, and provides good performance in the simulation test. Thus, the model provides a simple theoretical foundation for microscopic simulators and will significantly support the planning, management and control of railway transportation systems.« less

  18. Simulations of Observations with the Far-Infrared Surveyor: Design Overview and Current Status

    NASA Astrophysics Data System (ADS)

    Jeong, W.; Pak, S.; Lee, H. M.; Kim, S.; Matsuura, M.; Nakagawa, T.; Yamamura, I.; Murakami, H.; Matsuura, S.; Kawada, M.; Kaneda, H.; Shibai, H.

    2000-12-01

    The Far-Infrared Surveyor (FIS) is one of the on-board instruments on the ASTRO-F satellite, which will be launched in early 2004. The first a half year of its mission period of 500 days is dedicated to an all sky survey in four bands between 50 and 200 micron. On the basis of the present hardware specifications and configurations of the FIS, we have written a computer program to simulate the FIS. The program can be used to evaluate the performance of the instrument as well as to produce input for the data reduction system. In this paper, we describe the current status of the program. As an example of the usage of the simulation program, we present the expected observing data for three different detector sampling rates. The functions which should be implemented into the program, in the future, are enumerated.

  19. Observer-based distributed adaptive iterative learning control for linear multi-agent systems

    NASA Astrophysics Data System (ADS)

    Li, Jinsha; Liu, Sanyang; Li, Junmin

    2017-10-01

    This paper investigates the consensus problem for linear multi-agent systems from the viewpoint of two-dimensional systems when the state information of each agent is not available. Observer-based fully distributed adaptive iterative learning protocol is designed in this paper. A local observer is designed for each agent and it is shown that without using any global information about the communication graph, all agents achieve consensus perfectly for all undirected connected communication graph when the number of iterations tends to infinity. The Lyapunov-like energy function is employed to facilitate the learning protocol design and property analysis. Finally, simulation example is given to illustrate the theoretical analysis.

  20. A new reduced-order observer for the synchronization of nonlinear chaotic systems: An application to secure communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro-Ramírez, Joel, E-mail: ingcastro.7@gmail.com; Martínez-Guerra, Rafael, E-mail: rguerra@ctrl.cinvestav.mx; Cruz-Victoria, Juan Crescenciano, E-mail: juancrescenciano.cruz@uptlax.edu.mx

    2015-10-15

    This paper deals with the master-slave synchronization scheme for partially known nonlinear chaotic systems, where the unknown dynamics is considered as the master system and we propose the slave system structure which estimates the unknown states. It introduced a new reduced order observer, using the concept of Algebraic Observability; we applied the results to a Sundarapandian chaotic system, and by means of some numerical simulations we show the effectiveness of the suggested approach. Finally, the proposed observer is utilized for encryption, where encryption key is the master system and decryption key is the slave system.

  1. Development of a Prototype Simulation Executive with Zooming in the Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Afjeh, Abdollah A.

    1995-01-01

    A major difficulty in designing aeropropulsion systems is that of identifying and understanding the interactions between the separate engine components and disciplines (e.g., fluid mechanics, structural mechanics, heat transfer, material properties, etc.). The traditional analysis approach is to decompose the system into separate components with the interaction between components being evaluated by the application of each of the single disciplines in a sequential manner. Here, one discipline uses information from the calculation of another discipline to determine the effects of component coupling. This approach, however, may not properly identify the consequences of these effects during the design phase, leaving the interactions to be discovered and evaluated during engine testing. This contributes to the time and cost of developing new propulsion systems as, typically, several design-build-test cycles are needed to fully identify multidisciplinary effects and reach the desired system performance. The alternative to sequential isolated component analysis is to use multidisciplinary coupling at a more fundamental level. This approach has been made more plausible due to recent advancements in computation simulation along with application of concurrent engineering concepts. Computer simulation systems designed to provide an environment which is capable of integrating the various disciplines into a single simulation system have been proposed and are currently being developed. One such system is being developed by the Numerical Propulsion System Simulation (NPSS) project. The NPSS project, being developed at the Interdisciplinary Technology Office at the NASA Lewis Research Center is a 'numerical test cell' designed to provide for comprehensive computational design and analysis of aerospace propulsion systems. It will provide multi-disciplinary analyses on a variety of computational platforms, and a user-interface consisting of expert systems, data base management and

  2. An analysis of simulated and observed storm characteristics

    NASA Astrophysics Data System (ADS)

    Benestad, R. E.

    2010-09-01

    A calculus-based cyclone identification (CCI) method has been applied to the most recent re-analysis (ERAINT) from the European Centre for Medium-range Weather Forecasts and results from regional climate model (RCM) simulations. The storm frequency for events with central pressure below a threshold value of 960-990hPa were examined, and the gradient wind from the simulated storm systems were compared with corresponding estimates from the re-analysis. The analysis also yielded estimates for the spatial extent of the storm systems, which was also included in the regional climate model cyclone evaluation. A comparison is presented between a number of RCMs and the ERAINT re-analysis in terms of their description of the gradient winds, number of cyclones, and spatial extent. Furthermore, a comparison between geostrophic wind estimated though triangules of interpolated or station measurements of SLP is presented. Wind still represents one of the more challenging variables to model realistically.

  3. Motion Tree Delineates Hierarchical Structure of Protein Dynamics Observed in Molecular Dynamics Simulation

    PubMed Central

    Moritsugu, Kei; Koike, Ryotaro; Yamada, Kouki; Kato, Hiroaki; Kidera, Akinori

    2015-01-01

    Molecular dynamics (MD) simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a “Motion Tree”, to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations. The method was first applied to the MD trajectory of substrate-free adenylate kinase to clarify the usefulness of the Motion Tree, which illustrated a clear-cut dynamics picture of the inter-domain motions involving the ATP/AMP lid and the core domain together with the associated amplitudes and correlations. The comparison of two Motion Trees calculated from MD simulations of ligand-free and -bound glutamine binding proteins clarified changes in inherent dynamics upon ligand binding appeared in both large domains and a small loop that stabilized ligand molecule. Another application to a huge protein, a multidrug ATP binding cassette (ABC) transporter, captured significant increases of fluctuations upon binding a drug molecule observed in both large scale inter-subunit motions and a motion localized at a transmembrane helix, which may be a trigger to the subsequent structural change from inward-open to outward-open states to transport the drug molecule. These applications demonstrated the capabilities of Motion Trees to provide an at-a-glance view of various sizes of functional motions inherent in the complicated MD trajectory. PMID:26148295

  4. Exploring the observational constraints on the simulation of brown carbon

    NASA Astrophysics Data System (ADS)

    Wang, X.; Heald, C. L.; Liu, J.; Weber, R. J.; Campuzano-Jost, P.; Jimenez, J. L.; Schwarz, J. P.; Perring, A. E.

    2017-12-01

    Brown carbon (BrC) is the component of organic aerosols (OA) which strongly absorbs solar radiation in the near-UV range of the spectrum. However the sources, evolution, and optical properties of BrC remain highly uncertain, and therefore constitute a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. Previous modeling studies of BrC optical properties and DRE have been unable to fully evaluate the skill of their simulations, given the lack of direct measurements of organic aerosol absorption. In this study, we develop a global model simulation (GEOS-Chem) of BrC and test it against BrC absorption measurements from two aircraft campaigns in the U.S. (SEAC4RS and DC3). To our knowledge, this is the first study to compare simulated BrC absorption with direct, continuous ambient measurements. We show that the laboratory-based BrC absorption properties from biomass burning overestimate the aircraft measurements of ambient BrC. In addition, applying a photochemical whitening scheme to simulated BrC is better able to represent the observed BrC absorption. These observations are consistent with a mass absorption coefficient (MAC) of freshly emitted biomass burning OA of 0.57m2g-1. Using the RRTMG model integrated with GEOS-Chem, we estimate that the all-sky top-of-atmosphere direct radiative effect (DRE) of OA is -0.350 Wm-2, 10% higher than that without consideration of BrC absorption. Therefore, our best estimate of the absorption DRE of BrC is +0.042 Wm-2. We suggest that the DRE of BrC has been overestimated previously due to the lack of observational constraints from direct measurements as well as neglect of the effects of photochemical whitening.

  5. Observer-based adaptive backstepping control for fractional order systems with input saturation.

    PubMed

    Sheng, Dian; Wei, Yiheng; Cheng, Songsong; Wang, Yong

    2017-07-03

    An observer-based fractional order anti-saturation adaptive backstepping control scheme is proposed for incommensurate fractional order systems with input saturation and partial measurable state in this paper. On the basis of stability analysis, a novel state observer is established first since the only information we could acquire is the system output. In order to compensate the saturation, a series of virtual signals are generated via the construction of fractional order auxiliary system. Afterwards, the controller design is carried out in accordance with the adaptive backstepping control method by introduction of the indirect Lyapunov method. To highlight the effectiveness of the proposed control scheme, simulation examples are demonstrated at last. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Comparing groundwater recharge and storage variability from GRACE satellite observations with observed water levels and recharge model simulations

    NASA Astrophysics Data System (ADS)

    Allen, D. M.; Henry, C.; Demon, H.; Kirste, D. M.; Huang, J.

    2011-12-01

    Sustainable management of groundwater resources, particularly in water stressed regions, requires estimates of groundwater recharge. This study in southern Mali, Africa compares approaches for estimating groundwater recharge and understanding recharge processes using a variety of methods encompassing groundwater level-climate data analysis, GRACE satellite data analysis, and recharge modelling for current and future climate conditions. Time series data for GRACE (2002-2006) and observed groundwater level data (1982-2001) do not overlap. To overcome this problem, GRACE time series data were appended to the observed historical time series data, and the records compared. Terrestrial water storage anomalies from GRACE were corrected for soil moisture (SM) using the Global Land Data Assimilation System (GLDAS) to obtain monthly groundwater storage anomalies (GRACE-SM), and monthly recharge estimates. Historical groundwater storage anomalies and recharge were determined using the water table fluctuation method using observation data from 15 wells. Historical annual recharge averaged 145.0 mm (or 15.9% of annual rainfall) and compared favourably with the GRACE-SM estimate of 149.7 mm (or 14.8% of annual rainfall). Both records show lows and peaks in May and September, respectively; however, the peak for the GRACE-SM data is shifted later in the year to November, suggesting that the GLDAS may poorly predict the timing of soil water storage in this region. Recharge simulation results show good agreement between the timing and magnitude of the mean monthly simulated recharge and the regional mean monthly storage anomaly hydrograph generated from all monitoring wells. Under future climate conditions, annual recharge is projected to decrease by 8% for areas with luvisols and by 11% for areas with nitosols. Given this potential reduction in groundwater recharge, there may be added stress placed on an already stressed resource.

  7. Simulation Of Combat With An Expert System

    NASA Technical Reports Server (NTRS)

    Provenzano, J. P.

    1989-01-01

    Proposed expert system predicts outcomes of combat situations. Called "COBRA", combat outcome based on rules for attrition, system selects rules for mathematical modeling of losses and discrete events in combat according to previous experiences. Used with another software module known as the "Game". Game/COBRA software system, consisting of Game and COBRA modules, provides for both quantitative aspects and qualitative aspects in simulations of battles. COBRA intended for simulation of large-scale military exercises, concepts embodied in it have much broader applicability. In industrial research, knowledge-based system enables qualitative as well as quantitative simulations.

  8. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic x-ray...

  9. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic x-ray...

  10. Space shuttle visual simulation system design study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A recommendation and a specification for the visual simulation system design for the space shuttle mission simulator are presented. A recommended visual system is described which most nearly meets the visual design requirements. The cost analysis of the recommended system covering design, development, manufacturing, and installation is reported. Four alternate systems are analyzed.

  11. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise.

    PubMed

    Brown, Patrick T; Li, Wenhong; Cordero, Eugene C; Mauget, Steven A

    2015-04-21

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.

  12. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise

    PubMed Central

    Brown, Patrick T.; Li, Wenhong; Cordero, Eugene C.; Mauget, Steven A.

    2015-01-01

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20th century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal. PMID:25898351

  13. A Simulation Base Investigation of High Latency Space Systems Operations

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO

  14. Cosimulation of embedded system using RTOS software simulator

    NASA Astrophysics Data System (ADS)

    Wang, Shihao; Duan, Zhigang; Liu, Mingye

    2003-09-01

    Embedded system design often employs co-simulation to verify system's function; one efficient verification tool of software is Instruction Set Simulator (ISS). As a full functional model of target CPU, ISS interprets instruction of embedded software step by step, which usually is time-consuming since it simulates at low-level. Hence ISS often becomes the bottleneck of co-simulation in a complicated system. In this paper, a new software verification tools, the RTOS software simulator (RSS) was presented. The mechanism of its operation was described in a full details. In RSS method, RTOS API is extended and hardware simulator driver is adopted to deal with data-exchange and synchronism between the two simulators.

  15. Whistler Observations on DEMETER Compared with Full Electromagnetic Wave Simulations

    NASA Astrophysics Data System (ADS)

    Compston, A. J.; Cohen, M.; Lehtinen, N. G.; Inan, U.; Linscott, I.; Said, R.; Parrot, M.

    2014-12-01

    Terrestrial Very Low Frequency (VLF) electromagnetic radiation, which strongly impacts the Van Allen radiation belt electron dynamics, is injected across the ionosphere into the Earth's plasmasphere from two primary sources: man-made VLF transmitters and lightning discharges. Numerical models of trans-ionospheric propagation of such waves remain unvalidated, and early models may have overestimated the absorption, hindering a comprehensive understanding of the global impact of VLF waves in the loss of radiation belt electrons. In an attempt to remedy the problem of a lack of accurate trans-ionospheric propagation models, we have used a full electromagnetic wave method (FWM) numerical code to simulate the propagation of lightning-generated whistlers into the magnetosphere and compared the results with whistlers observed on the DEMETER satellite and paired with lightning stroke data from the National Lightning Detection Network (NLDN). We have identified over 20,000 whistlers occuring in 14 different passes of DEMETER over the central United States during the summer of 2009, and 14,000 of those occured within the 2000 km x 2000 km simulation grid we used. As shown in the attached figure, which shows a histogram of the ratio of the simulated whistler energy to the measured whistler energy for the 14,000 whistlers we compared, the simulation tends to slightly underestimate the total whistler energy injected by about 5 dB. However, the simulation underestimates the DEMETER measurements more as one gets further from the source lightning stroke, so since the signal to noise ratio of more distant whistlers will be smaller, possibly additive noise in the DEMETER measurements (which of course is not accounted for in the model) may explain some of the observed discrepancy.

  16. A Cryogenic Fluid System Simulation in Support of Integrated Systems Health Management

    NASA Technical Reports Server (NTRS)

    Barber, John P.; Johnston, Kyle B.; Daigle, Matthew

    2013-01-01

    Simulations serve as important tools throughout the design and operation of engineering systems. In the context of sys-tems health management, simulations serve many uses. For one, the underlying physical models can be used by model-based health management tools to develop diagnostic and prognostic models. These simulations should incorporate both nominal and faulty behavior with the ability to inject various faults into the system. Such simulations can there-fore be used for operator training, for both nominal and faulty situations, as well as for developing and prototyping health management algorithms. In this paper, we describe a methodology for building such simulations. We discuss the design decisions and tools used to build a simulation of a cryogenic fluid test bed, and how it serves as a core technology for systems health management development and maturation.

  17. Simulation framework for intelligent transportation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, T.; Doss, E.; Hanebutte, U.

    1996-10-01

    A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System (ITS). The simulator is designed for running on parallel computers and distributed (networked) computer systems, but can run on standalone workstations for smaller simulations. The simulator currently models instrumented smart vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide two-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphicalmore » user interfaces to support human-factors studies. Realistic modeling of variations of the posted driving speed are based on human factors studies that take into consideration weather, road conditions, driver personality and behavior, and vehicle type. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on parallel computers, such as ANL`s IBM SP-2, for large-scale problems. A novel feature of the approach is that vehicles are represented by autonomous computer processes which exchange messages with other processes. The vehicles have a behavior model which governs route selection and driving behavior, and can react to external traffic events much like real vehicles. With this approach, the simulation is scaleable to take advantage of emerging massively parallel processor (MPP) systems.« less

  18. System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations

    NASA Technical Reports Server (NTRS)

    Nixon, D. D.

    2001-01-01

    Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.

  19. Observing and Simulating Diapycnal Mixing in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Hughes, K.; Klymak, J. M.; Hu, X.; Myers, P. G.; Williams, W. J.; Melling, H.

    2016-12-01

    High-spatial-resolution observations in the central Canadian Arctic Archipelago are analysed in conjunction with process-oriented modelling to estimate the flow pathways among the constricted waterways, understand the nature of the hydraulic control(s), and assess the influence of smaller scale (metres to kilometres) phenomena such as internal waves and topographically induced eddies. The observations repeatedly display isopycnal displacements of 50 m as dense water plunges over a sill. Depth-averaged turbulent dissipation rates near the sill estimated from these observations are typically 10-6-10-5 W kg-1, a range that is three orders of magnitude larger than that for the open ocean. These and other estimates are compared against a 1/12° basin-scale model from which we estimate diapycnal mixing rates using a volume-integrated advection-diffusion equation. Much of the mixing in this simulation is concentrated near constrictions within Barrow Strait and Queens Channel, the latter being our observational site. This suggests the model is capable of capturing topographically induced mixing. However, such mixing is expected to be enhanced in the presence of tides, a process not included in our basin scale simulation or other similar models. Quantifying this enhancement is another objective of our process-oriented modelling.

  20. Dynamic Performance Comparison for MPPT-PV Systems using Hybrid Pspice/Matlab Simulation

    NASA Astrophysics Data System (ADS)

    Aouchiche, N.; Becherif, M.; HadjArab, A.; Aitcheikh, M. S.; Ramadan, H. S.; Cheknane, A.

    2016-10-01

    The power generated by solar photovoltaic (PV) module depends on the surrounding irradiance and temperature. This paper presents a hybrid Matlab™/Pspice™ simulation model of PV system, combined with Cadence software SLPS. The hybridization is performed in order to gain the advantages of both simulation tools such as accuracy and efficiency in both Pspice electronic circuit and Matlab™ mathematical modelling respectively. For this purpose, the PV panel and the boost converter are developed using Pspice™ and hybridized with the mathematical Matlab™ model of maximum power point method controller (MPPT) through SLPS. The main objective is verify the significance of using the proposed hybrid simulation techniques in comparing the different MPPT algorithms such as the perturbation and observation (P&O), incremental of conductance (Inc-Cond) and counter reaction voltage using pilot cell (Pilot-Cell). Various simulations are performed under different atmospheric conditions in order to evaluate the dynamic behaviour for the system under study in terms of stability, efficiency and rapidity.

  1. Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions

    NASA Astrophysics Data System (ADS)

    Piersall, Shannon D.; Anderson, James B.

    1991-07-01

    In applications to several simple reaction systems we have explored a ``direct simulation'' method for predicting and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird, has been found remarkably successful in treating a number of difficult problems in rarefied dynamics. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal distributions, with coupled gas-dynamic and reaction effects, with emission and adsorption of radiation, and with many other effects difficult to treat in any other way. The usual differential equations of chemical kinetics are eliminated. For a bimolecular reaction of the type A+B→C+D with a rate sufficiently low to allow a continued thermal equilibrium of reactants we find that direct simulation reproduces the expected second order kinetics. Simulations for a range of temperatures yield the activation energies expected for the reaction models specified. For faster reactions under conditions leading to a depletion of energetic reactant species, the expected slowing of reaction rates and departures from equilibrium distributions are observed. The minimum sample sizes required for adequate simulations are as low as 1000 molecules for these cases. The calculations are found to be simple and straightforward for the homogeneous systems considered. Although computation requirements may be excessively high for very slow reactions, they are reasonably low for fast reactions, for which nonequilibrium effects are most important.

  2. Participatory ergonomics simulation of hospital work systems: The influence of simulation media on simulation outcome.

    PubMed

    Andersen, Simone Nyholm; Broberg, Ole

    2015-11-01

    Current application of work system simulation in participatory ergonomics (PE) design includes a variety of different simulation media. However, the actual influence of the media attributes on the simulation outcome has received less attention. This study investigates two simulation media: full-scale mock-ups and table-top models. The aim is to compare, how the media attributes of fidelity and affordance influence the ergonomics identification and evaluation in PE design of hospital work systems. The results illustrate, how the full-scale mock-ups' high fidelity of room layout and affordance of tool operation support ergonomics identification and evaluation related to the work system entities space and technologies & tools. The table-top models' high fidelity of function relations and affordance of a helicopter view support ergonomics identification and evaluation related to the entity organization. Furthermore, the study addresses the form of the identified and evaluated conditions, being either identified challenges or tangible design criteria. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. The spiral-compact galaxy pair AM 2208-251: Computer simulations versus observations

    NASA Technical Reports Server (NTRS)

    Klaric, Mario; Byrd, Gene G.

    1990-01-01

    The system AM2208-251 is a roughly edge-on spiral extending east-west with a smaller round compact E system about 60 arcsec east of the spiral nucleus along the major axis of the spiral. Bertola, Huchtmeier, and Zeilinger (1990) have presented optical spectroscopic as well as single dish 21 cm observations of this system. Their spectroscopic data show, via emission lines lambda lambda 3727-29A, a rising rotation curve near the nucleus. These spectroscopic observations may indicate a tidal interaction in the system. In order to learn more about such pairs, the authors simulated the interaction using the computer model developed by Miller (1976 a,b, 1978) and modified by the authors (Byrd 1986, 1987, 1988). To do the simulation they need an idea of the mutual orbits of the two galaxies. Their computer model is a two-dimensional polar N-body program. It consists of a self-gravitating disk of particles, within an inert axially symmetric stabilizing halo potential. The particles are distributed in a 24(radial) by 36(azimuthal) polar grid. Self consistent calculations can be done only within the grid area. The disk is modeled with a finite Mestel disk, where all the particles initially move in circular orbits with constant tangential velocities (Mestel 1963), resulting in a flat rotation curve. The gas particles in the spiral's disk, which make up 30 percent of its mass, collide in the following manner. The number of particles in each bin of the polar grid is counted every time step. If it is greater than a given critical density, all the particles in the bin collide, obtaining in the result the same velocities, equal to the average for the bin. This process produces clumps of gas particles-the star formation sites. The authors suppress the collision in the inner part of the disk (within the circle r = 6) to represent the hole seen in the gas in the nuclear bulge of spirals. They thus avoid spurious effects due to collisions in that region. They also varied the size of

  4. Modular Aero-Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Guo, Ten-Huei

    2006-01-01

    The Modular Aero-Propulsion System Simulation (MAPSS) is a graphical simulation environment designed for the development of advanced control algorithms and rapid testing of these algorithms on a generic computational model of a turbofan engine and its control system. MAPSS is a nonlinear, non-real-time simulation comprising a Component Level Model (CLM) module and a Controller-and-Actuator Dynamics (CAD) module. The CLM module simulates the dynamics of engine components at a sampling rate of 2,500 Hz. The controller submodule of the CAD module simulates a digital controller, which has a typical update rate of 50 Hz. The sampling rate for the actuators in the CAD module is the same as that of the CLM. MAPSS provides a graphical user interface that affords easy access to engine-operation, engine-health, and control parameters; is used to enter such input model parameters as power lever angle (PLA), Mach number, and altitude; and can be used to change controller and engine parameters. Output variables are selectable by the user. Output data as well as any changes to constants and other parameters can be saved and reloaded into the GUI later.

  5. Optimal design of a lagrangian observing system for hydrodynamic surveys in coastal areas

    NASA Astrophysics Data System (ADS)

    Cucco, Andrea; Quattrocchi, Giovanni; Antognarelli, Fabio; Satta, Andrea; Maicu, Francesco; Ferrarin, Christian; Umgiesser, Georg

    2014-05-01

    The optimization of ocean observing systems is a pressing need for scientific research. In particular, the improvement of ocean short-term observing networks is achievable by reducing the cost-benefit ratio of the field campaigns and by increasing the quality of measurements. Numerical modeling is a powerful tool for determining the appropriateness of a specific observing system and for optimizing the sampling design. This is particularly true when observations are carried out in coastal areas and lagoons where, the use satellites is prohibitive due to the water shallowness. For such areas, numerical models are the most efficient tool both to provide a preliminary assess of the local physical environment and to make short -term predictions above its change. In this context, a test case experiment was carried out within an enclosed shallow water areas, the Cabras Lagoon (Sardinia, Italy). The aim of the experiment was to explore the optimal design for a field survey based on the use of coastal lagrangian buoys. A three-dimensional hydrodynamic model based on the finite element method (SHYFEM3D, Umgiesser et al., 2004) was implemented to simulate the lagoon water circulation. The model domain extent to the whole Cabras lagoon and to the whole Oristano Gulf, including the surrounding coastal area. Lateral open boundary conditions were provided by the operational ocean model system WMED and only wind forcing, provided by SKIRON atmospheric model (Kallos et al., 1997), was considered as surface boundary conditions. The model was applied to provide a number of ad hoc scenarios and to explore the efficiency of the short-term hydrodynamic survey. A first field campaign was carried out to investigate the lagrangian circulation inside the lagoon under the main wind forcing condition (Mistral wind from North-West). The trajectories followed by the lagrangian buoys and the estimated lagrangian velocities were used to calibrate the model parameters and to validate the

  6. Large liquid rocket engine transient performance simulation system

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Southwick, R. D.

    1991-01-01

    A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.

  7. Characterizing Observed Limit Cycles in the Cassini Main Engine Guidance Control System

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen; Weitl, Raquel M.

    2011-01-01

    The Cassini spacecraft dynamics-related telemetry during long Main Engine (ME) burns has indicated the presence of stable limit cycles between 0.03-0.04 Hz frequencies. These stable limit cycles cause the spacecraft to possess non-zero oscillating rates for extended periods of time. This indicates that the linear ME guidance control system does not model the complete dynamics of the spacecraft. In this study, we propose that the observed limit cycles in the spacecraft dynamics telemetry appear from a stable interaction between the unmodeled nonlinear elements in the ME guidance control system. Many nonlinearities in the control system emerge from translating the linear engine gimbal actuator (EGA) motion into a spacecraft rotation. One such nonlinearity comes from the gear backlash in the EGA system, which is the focus of this paper. The limit cycle characteristics and behavior can be predicted by modeling this gear backlash nonlinear element via a describing function and studying the interaction of this describing function with the overall dynamics of the spacecraft. The linear ME guidance controller and gear backlash nonlinearity are modeled analytically. The frequency, magnitude, and nature of the limit cycle are obtained from the frequency response of the ME guidance controller and nonlinear element. In addition, the ME guidance controller along with the nonlinearity is simulated. The simulation response contains a limit cycle with similar characterstics as predicted analytically: 0.03-0.04 Hz frequency and stable, sustained oscillations. The analytical and simulated limit cycle responses are compared to the flight telemetry for long burns such as the Saturn Orbit Insertion and Main Engine Orbit Trim Maneuvers. The analytical and simulated limit cycle characteristics compare well with the actual observed limit cycles in the flight telemetry. Both have frequencies between 0.03-0.04 Hz and stable oscillations. This work shows that the stable limit cycles occur

  8. Observing Ice Sublimation From Water-Doped Lunar Simulant at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Teodoro, L. F. A.; Colaprete, A.; Cook, A. M.; Elphic, R.

    2018-01-01

    NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar and permanently shadowed regions. The Near-Infrared Volatile Spectrometer System (NIRVSS) observes while a drill penetrates to a maximum depth of 1 m. Any 10 cm increment of soil identified as containing water ice can be delivered to a heating crucible with the evolved gas delivered to a gas chromatograph / mass spectrometer. NIRVSS consists of two components; a spectrometer box (SB) and bracket assembly (BA), connected by two fiber optic cables. The SB contains separate short- and long-wavelength spectrometers, SW and LW respectively, that collectively span the 1600-3400 nm range. The BA contains an IR emitter (lamp), drill observation camera (DOC, 2048 x 2048 CMOS detector), 8 different wavelength LEDs, and a longwave calibration sensor (LCS) measuring the surface emissivity at four IR wavelengths. Tests of various RP sub-systems have been under-taken in a large cryo-vacuum chamber at Glenn Re-search Center. The chamber accommodates a tube (1.2 m high x 25.4 cm diameter) filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. Thermocouples are embedded at different depths, and also across the surface of the soil tube. In the chamber the tube is cooled with LN2 as the pressure is reduced to approx. 5-6x10(exp -6) Torr. For the May 2016 tests two soil tubes were prepared with initially 2.5 Wt.% water. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment. Table 1 provides a summary of experimental conditions and Figure 1 shows the nominal view of the NIRVSS components, the drill foot, and the top of the soil tube. Once the average soil temperature reached approx. 178 K, drilling commenced. During drilling activities NIRVSS was alternating between obtaining spectra and obtaining images. Here we discuss NIRVSS spectral data obtained during

  9. Observed and Simulated Supercell Demise Depicted by VORTEX2 Observations

    NASA Astrophysics Data System (ADS)

    Letkewicz, Casey Elizabeth

    technique deemed base-state substitution (BSS) was developed to incorporate a varying base-state while maintaining a degree of experimental control. BSS was designed to test the impact of a new horizontally homogeneous base-state environment on storm morphology while maintaining storm-induced perturbations. The thermodynamic and kinematic environment can be independently altered, with modifications incorporated slowly (gradual BSS) or all at once (instant BSS). Trial simulations demonstrated that model stability was maintained and domain-integrated fields were well-behaved. The simulations of the 9 June 2009 supercell were designed to isolate the effects of the changing wind profile from those of the increasingly stable boundary layer. The observed environmental modifications, when gradually incorporated into the model via BSS, were able to reasonably reproduce the observed storm morphology. Overall, the experiments demonstrated that the demise of the supercell was ultimately the result of depleting the updraft's buoyancy. The increasingly stable low-level environment predominately contributed to demise; however, changes to the wind profile also acted to notably impact storm strength and morphology. Analysis of updraft parcels in each experiment demonstrated that the mean source region became elevated over time as the low-level environment stabilized and/or shear and helicity weakened. Consequently, updraft buoyancy was eventually depleted since the drier elevated parcels (with less instability) were more negatively impacted by entrainment. The diagnostic pressure equation was utilized to examine the evolution of vertical accelerations within the simulated storm updraft and explore how storm dynamics evolved as the environment evolved. It was found that changes to nonlinear dynamic acceleration primarily influenced the evolution in total vertical acceleration, though these changes were interconnected with shifts in buoyancy and updraft strength and rotation. The findings of

  10. N-body simulations of planet formation: understanding exoplanet system architectures

    NASA Astrophysics Data System (ADS)

    Coleman, Gavin; Nelson, Richard

    2015-12-01

    Observations have demonstrated the existence of a significant population of compact systems comprised of super-Earths and Neptune-mass planets, and a population of gas giants that appear to occur primarily in either short-period (<10 days) or longer period (>100 days) orbits. The broad diversity of system architectures raises the question of whether or not the same formation processes operating in standard disc models can explain these planets, or if different scenarios are required instead to explain the widely differing architectures. To explore this issue, we present the results from a comprehensive suite of N-body simulations of planetary system formation that include the following physical processes: gravitational interactions and collisions between planetary embryos and planetesimals; type I and II migration; gas accretion onto planetary cores; self-consistent viscous disc evolution and disc removal through photo-evaporation. Our results indicate that the formation and survival of compact systems of super-Earths and Neptune-mass planets occur commonly in disc models where a simple prescription for the disc viscosity is assumed, but such models never lead to the formation and survival of gas giant planets due to migration into the star. Inspired in part by the ALMA observations of HL Tau, and by MHD simulations that display the formation of long-lived zonal flows, we have explored the consequences of assuming that the disc viscosity varies in both time and space. We find that the radial structuring of the disc leads to conditions in which systems of giant planets are able to form and survive. Furthermore, these giants generally occupy those regions of the mass-period diagram that are densely populated by the observed gas giants, suggesting that the planet traps generated by radial structuring of protoplanetary discs may be a necessary ingredient for forming giant planets.

  11. Stratospheric Temperature Changes: Observations and Model Simulations

    NASA Technical Reports Server (NTRS)

    Ramaswamy, V.; Chanin, M.-L.; Angell, J.; Barnett, J.; Gaffen, D.; Gelman, M.; Keckhut, P.; Koshelkov, Y.; Labitzke, K.; Lin, J.-J. R.

    1999-01-01

    This paper reviews observations of stratospheric temperatures that have been made over a period of several decades. Those observed temperatures have been used to assess variations and trends in stratospheric temperatures. A wide range of observation datasets have been used, comprising measurements by radiosonde (1940s to the present), satellite (1979 - present), lidar (1979 - present) and rocketsonde (periods varying with location, but most terminating by about the mid-1990s). In addition, trends have also been assessed from meteorological analyses, based on radiosonde and/or satellite data, and products based on assimilating observations into a general circulation model. Radiosonde and satellite data indicate a cooling trend of the annual-mean lower stratosphere since about 1980. Over the period 1979-1994, the trend is 0.6K/decade. For the period prior to 1980, the radiosonde data exhibit a substantially weaker long-term cooling trend. In the northern hemisphere, the cooling trend is about 0.75K/decade in the lower stratosphere, with a reduction in the cooling in mid-stratosphere (near 35 km), and increased cooling in the upper stratosphere (approximately 2 K per decade at 50 km). Model simulations indicate that the depletion of lower stratospheric ozone is the dominant factor in the observed lower stratospheric cooling. In the middle and upper stratosphere both the well-mixed greenhouse gases (such as CO) and ozone changes contribute in an important manner to the cooling.

  12. Computer simulator for a mobile telephone system

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1981-01-01

    A software simulator was developed to assist NASA in the design of the land mobile satellite service. Structured programming techniques were used by developing the algorithm using an ALCOL-like pseudo language and then encoding the algorithm into FORTRAN 4. The basic input data to the system is a sine wave signal although future plans call for actual sampled voice as the input signal. The simulator is capable of studying all the possible combinations of types and modes of calls through the use of five communication scenarios: single hop systems; double hop, signal gateway system; double hop, double gateway system; mobile to wireline system; and wireline to mobile system. The transmitter, fading channel, and interference source simulation are also discussed.

  13. Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season

    PubMed Central

    Wallace, John M.; Fu, Qiang; Smoliak, Brian V.; Lin, Pu; Johanson, Celeste M.

    2012-01-01

    A suite of the historical simulations run with the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) models forced by greenhouse gases, aerosols, stratospheric ozone depletion, and volcanic eruptions and a second suite of simulations forced by increasing CO2 concentrations alone are compared with observations for the reference interval 1965–2000. Surface air temperature trends are disaggregated by boreal cold (November-April) versus warm (May-October) seasons and by high latitude northern (N: 40°–90 °N) versus southern (S: 60 °S–40 °N) domains. A dynamical adjustment is applied to remove the component of the cold-season surface air temperature trends (over land areas poleward of 40 °N) that are attributable to changing atmospheric circulation patterns. The model simulations do not simulate the full extent of the wintertime warming over the high-latitude Northern Hemisphere continents during the later 20th century, much of which was dynamically induced. Expressed as fractions of the concurrent trend in global-mean sea surface temperature, the relative magnitude of the dynamically induced wintertime warming over domain N in the observations, the simulations with multiple forcings, and the runs forced by the buildup of greenhouse gases only is 7∶2∶1, and roughly comparable to the relative magnitude of the concurrent sea-level pressure trends. These results support the notion that the enhanced wintertime warming over high northern latitudes from 1965 to 2000 was mainly a reflection of unforced variability of the coupled climate system. Some of the simulations exhibit an enhancement of the warming along the Arctic coast, suggestive of exaggerated feedbacks. PMID:22847408

  14. Nurse students learning acute care by simulation - Focus on observation and debriefing.

    PubMed

    Abelsson, Anna; Bisholt, Birgitta

    2017-05-01

    Simulation creates the possibility to experience acute situations during nursing education which cannot easily be achieved in clinical settings. To describe how nursing students learn acute care of patients through simulation exercises, based on observation and debriefing. The study was designed as an observational study inspired by an ethnographic approach. Data was collected through observations and interviews. Data was analyzed using an interpretive qualitative content analysis. Nursing students created space for reflection when needed. There was a positive learning situation when suitable patient scenarios were presented. Observations and discussions with peers gave the students opportunities to identify their own need for knowledge, while also identifying existing knowledge. Reflections could confirm or reject their preparedness for clinical practice. The importance of working in a structured manner in acute care situations became apparent. However, negative feedback to peers was avoided, which led to a loss of learning opportunity. High fidelity simulation training as a method plays an important part in the nursing students' learning. The teacher also plays a key role by asking difficult questions and guiding students towards accurate knowledge. This makes it possible for the students to close knowledge gaps, leading to improved patient safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Design of Simulation Product for Stability of Electric Power System Using Power System Stabilizer and Optimal Control

    NASA Astrophysics Data System (ADS)

    Junaidi, Agus; Hamid, K. Abdul

    2018-03-01

    This paper will discuss the use of optimal control and Power System Stabilizer (PSS) in improving the oscillation of electric power system. Oscillations in the electric power system can occur due to the sudden release of the load (Switcing-Off). The oscillation of an unstable system for a long time causes the equipment to work in an interruption. To overcome this problem, a control device is required that can work effectively in repairing the oscillation. The power system is modeled from the Single Machine Infinite Bus Model (SMIB). The state space equation is used to mathematically model SMIB. SMIB system which is a plant will be formed togetherness state variables (State-Space), using riccati equation then determined the optimal gain as controller plant. Plant is also controlled by Power Stabilizer System using phase compensation method. Using Matlab Software based simulation will be observed response of rotor speed change and rotor angle change for each of the two controlling methods. Simulation results using the Simulink-MATLAB 6.1 software will compare the analysis of the plant state in Open loop state and use the controller. The simulation response shows that the optimal control and PSS can improve the stability of the power system in terms of acceleration to achieve settling-time and Over Shoot improvement. From the results of both methods are able to improve system performance.

  16. Computational simulation of concurrent engineering for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  17. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  18. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Astrophysics Data System (ADS)

    Chamis, C. C.; Singhal, S. N.

    1993-02-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  19. A system for automatic evaluation of simulation software

    NASA Technical Reports Server (NTRS)

    Ryan, J. P.; Hodges, B. C.

    1976-01-01

    Within the field of computer software, simulation and verification are complementary processes. Simulation methods can be used to verify software by performing variable range analysis. More general verification procedures, such as those described in this paper, can be implicitly, viewed as attempts at modeling the end-product software. From software requirement methodology, each component of the verification system has some element of simulation to it. Conversely, general verification procedures can be used to analyze simulation software. A dynamic analyzer is described which can be used to obtain properly scaled variables for an analog simulation, which is first digitally simulated. In a similar way, it is thought that the other system components and indeed the whole system itself have the potential of being effectively used in a simulation environment.

  20. Dynamic Modulation of Human Motor Activity When Observing Actions

    PubMed Central

    Press, Clare; Cook, Jennifer; Blakemore, Sarah-Jayne; Kilner, James

    2012-01-01

    Previous studies have demonstrated that when we observe somebody else executing an action many areas of our own motor systems are active. It has been argued that these motor activations are evidence that we motorically simulate observed actions; this motoric simulation may support various functions such as imitation and action understanding. However, whether motoric simulation is indeed the function of motor activations during action observation is controversial, due to inconsistency in findings. Previous studies have demonstrated dynamic modulations in motor activity when we execute actions. Therefore, if we do motorically simulate observed actions, our motor systems should also be modulated dynamically, and in a corresponding fashion, during action observation. Using magnetoencephalography, we recorded the cortical activity of human participants while they observed actions performed by another person. Here, we show that activity in the human motor system is indeed modulated dynamically during action observation. The finding that activity in the motor system is modulated dynamically when observing actions can explain why studies of action observation using functional magnetic resonance imaging have reported conflicting results, and is consistent with the hypothesis that we motorically simulate observed actions. PMID:21414901

  1. SARDA HITL Simulations: System Performance Results

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam

    2012-01-01

    This presentation gives an overview of the 2012 SARDA human-in-the-loop simulation, and presents a summary of system performance results from the simulation, including delay, throughput and fuel consumption

  2. Trend Estimates of AERONET-Observed and Model-Simulated AOTs Between 1993 and 2013

    NASA Technical Reports Server (NTRS)

    Yoon, J.; Pozzer, A.; Chang, D. Y.; Lelieveld, J.; Kim, J.; Kim, M.; Lee, Y. G.; Koo, J.-H.; Lee, J.; Moon, K. J.

    2015-01-01

    Recently, temporal changes in Aerosol Optical Thickness (AOT) have been investigated based on model simulations, satellite and ground-based observations. Most AOT trend studies used monthly or annual arithmetic means that discard details of the generally right-skewed AOT distributions. Potentially, such results can be biased by extreme values (including outliers). This study additionally uses percentiles (i.e., the lowest 5%, 25%, 50%, 75% and 95% of the monthly cumulative distributions fitted to Aerosol Robotic Network (AERONET)-observed and ECHAM/MESSy Atmospheric Chemistry (EMAC)-model simulated AOTs) that are less affected by outliers caused by measurement error, cloud contamination and occasional extreme aerosol events. Since the limited statistical representativeness of monthly percentiles and means can lead to bias, this study adopts the number of observations as a weighting factor, which improves the statistical robustness of trend estimates. By analyzing the aerosol composition of AERONET-observed and EMAC-simulated AOTs in selected regions of interest, we distinguish the dominant aerosol types and investigate the causes of regional AOT trends. The simulated and observed trends are generally consistent with a high correlation coefficient (R = 0.89) and small bias (slope+/-2(sigma) = 0.75 +/- 0.19). A significant decrease in EMAC-decomposed AOTs by water-soluble compounds and black carbon is found over the USA and the EU due to environmental regulation. In particular, a clear reversal in the AERONET AOT trend percentiles is found over the USA, probably related to the AOT diurnal cycle and the frequency of wildfires. In most of the selected regions of interest, EMAC-simulated trends are mainly attributed to the significant changes of the dominant aerosols; e.g., significant decrease in sea salt and water soluble compounds over Central America, increase in dust over Northern Africa and Middle East, and decrease in black carbon and organic carbon over

  3. Designing a SCADA system simulator for fast breeder reactor

    NASA Astrophysics Data System (ADS)

    Nugraha, E.; Abdullah, A. G.; Hakim, D. L.

    2016-04-01

    SCADA (Supervisory Control and Data Acquisition) system simulator is a Human Machine Interface-based software that is able to visualize the process of a plant. This study describes the results of the process of designing a SCADA system simulator that aims to facilitate the operator in monitoring, controlling, handling the alarm, accessing historical data and historical trend in Nuclear Power Plant (NPP) type Fast Breeder Reactor (FBR). This research used simulation to simulate NPP type FBR Kalpakkam in India. This simulator was developed using Wonderware Intouch software 10 and is equipped with main menu, plant overview, area graphics, control display, set point display, alarm system, real-time trending, historical trending and security system. This simulator can properly simulate the principle of energy flow and energy conversion process on NPP type FBR. This SCADA system simulator can be used as training media for NPP type FBR prospective operators.

  4. 2000 Numerical Propulsion System Simulation Review

    NASA Technical Reports Server (NTRS)

    Lytle, John; Follen, Greg; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac

    2001-01-01

    The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective. high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA'S Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 1999 effort and the actions taken over the past year to

  5. 2001 Numerical Propulsion System Simulation Review

    NASA Technical Reports Server (NTRS)

    Lytle, John; Follen, Gregory; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac

    2002-01-01

    The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA's Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 2000 effort and the actions taken over the past year to

  6. Characteristics of flight simulator visual systems

    NASA Technical Reports Server (NTRS)

    Statler, I. C. (Editor)

    1981-01-01

    The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality.

  7. Interannual Rainfall Variability in North-East Brazil: Observation and Model Simulation

    NASA Astrophysics Data System (ADS)

    Harzallah, A.; Rocha de Aragão, J. O.; Sadourny, R.

    1996-08-01

    The relationship between interannual variability of rainfall in north-east Brazil and tropical sea-surface temperature is studied using observations and model simulations. The simulated precipitation is the average of seven independent realizations performed using the Laboratoire de Météorologie Dynamique atmospheric general model forced by the 1970-1988 observed sea-surface temperature. The model reproduces very well the rainfall anomalies (correlation of 091 between observed and modelled anomalies). The study confirms that precipitation in north-east Brazil is highly correlated to the sea-surface temperature in the tropical Atlantic and Pacific oceans. Using the singular value decomposition method, we find that Nordeste rainfall is modulated by two independent oscillations, both governed by the Atlantic dipole, but one involving only the Pacific, the other one having a period of about 10 years. Correlations between precipitation in north-east Brazil during February-May and the sea-surface temperature 6 months earlier indicate that both modes are essential to estimate the quality of the rainy season.

  8. AOD trends during 2001-2010 from observations and model simulations

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; de Meij, A.; Yoon, J.; Tost, H.; Georgoulias, A. K.; Astitha, M.

    2015-05-01

    The aerosol optical depth (AOD) trend between 2001 and 2010 is estimated globally and regionally from observations and results from simulations with the EMAC (ECHAM5/MESSy Atmospheric Chemistry) model. Although interannual variability is applied only to anthropogenic and biomass-burning emissions, the model is able to quantitatively reproduce the AOD trends as observed by the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite sensor, while some discrepancies are found when compared to MISR (Multi-angle Imaging SpectroRadiometer) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor) observations. Thanks to an additional simulation without any change in emissions, it is shown that decreasing AOD trends over the US and Europe are due to the decrease in the emissions, while over the Sahara Desert and the Middle East region, the meteorological changes play a major role. Over Southeast Asia, both meteorology and emissions changes are equally important in defining AOD trends. Additionally, decomposing the regional AOD trends into individual aerosol components reveals that the soluble components are the most dominant contributors to the total AOD, as their influence on the total AOD is enhanced by the aerosol water content.

  9. Convective Systems over the South China Sea: Cloud-Resolving Model Simulations.

    NASA Astrophysics Data System (ADS)

    Tao, W.-K.; Shie, C.-L.; Simpson, J.; Braun, S.; Johnson, R. H.; Ciesielski, P. E.

    2003-12-01

    The two-dimensional version of the Goddard Cumulus Ensemble (GCE) model is used to simulate two South China Sea Monsoon Experiment (SCSMEX) convective periods [18 26 May (prior to and during the monsoon onset) and 2 11 June (after the onset of the monsoon) 1998]. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum are used as the main forcing in governing the GCE model in a semiprognostic manner. The June SCSMEX case has stronger forcing in both temperature and water vapor, stronger low-level vertical shear of the horizontal wind, and larger convective available potential energy (CAPE).The temporal variation of the model-simulated rainfall, time- and domain-averaged heating, and moisture budgets compares well to those diagnostically determined from soundings. However, the model results have a higher temporal variability. The model underestimates the rainfall by 17% to 20% compared to that based on soundings. The GCE model-simulated rainfall for June is in very good agreement with the Tropical Rainfall Measuring Mission (TRMM), precipitation radar (PR), and the Global Precipitation Climatology Project (GPCP). Overall, the model agrees better with observations for the June case rather than the May case.The model-simulated energy budgets indicate that the two largest terms for both cases are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening). These two terms are opposite in sign, however. The model results also show that there are more latent heat fluxes for the May case. However, more rainfall is simulated for the June case. Net radiation (solar heating and longwave cooling) are about 34% and 25%, respectively, of the net condensation (condensation minus evaporation) for the May and June cases. Sensible heat fluxes do not contribute to rainfall in either of the SCSMEX cases. Two types of organized convective systems, unicell (May case) and multicell (June case), are

  10. Use of Combined A-Train Observations to Validate GEOS Model Simulated Dust Distributions During NAMMA

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.

    2007-01-01

    During August 2006, the NASA African Multidisciplinary Analyses Mission (NAMMA) field experiment was conducted to characterize the structure of African Easterly Waves and their evolution into tropical storms. Mineral dust aerosols affect tropical storm development, although their exact role remains to be understood. To better understand the role of dust on tropical cyclogenesis, we have implemented a dust source, transport, and optical model in the NASA Goddard Earth Observing System (GEOS) atmospheric general circulation model and data assimilation system. Our dust source scheme is more physically based scheme than previous incarnations of the model, and we introduce improved dust optical and microphysical processes through inclusion of a detailed microphysical scheme. Here we use A-Train observations from MODIS, OMI, and CALIPSO with NAMMA DC-8 flight data to evaluate the simulated dust distributions and microphysical properties. Our goal is to synthesize the multi-spectral observations from the A-Train sensors to arrive at a consistent set of optical properties for the dust aerosols suitable for direct forcing calculations.

  11. Supporting New Missions by Observing Simulation Experiments in WACCM-X/GEOS-5 and TIME-GCM: Initial Design, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Yudin, V. A.; England, S.; Liu, H.; Solomon, S. C.; Immel, T. J.; Maute, A. I.; Burns, A. G.; Foster, B.; Wu, Q.; Goncharenko, L. P.

    2013-12-01

    We examine the capability of novel configurations of community models, WACCM-X and TIME-GCM, to support current and forthcoming space-borne missions to monitor the dynamics and composition of the Mesosphere-Thermosphere-Ionosphere (MTI) system. In these configurations the lower atmosphere of WACCM-X is constrained by operational analyses and/or short-term forecasts provided by the Goddard Earth Observing System (GEOS-5) of Global Modeling and Assimilation Office at NASA/GSFC. With the terrestrial weather of GEOS-5 and updated model physics the simulations in the MTI are capable to reproduce observed signatures of the perturbed wave dynamics and ion-neutral coupling during recent stratospheric warming events, short-term, annual and year-to-year variability of prevailing flows, planetary waves, tides, and composition. These 'terrestrial-weather' driven simulations with day-to-day variable solar and geomagnetic inputs can provide background state (first guess) and error statistics for the inverse algorithms of new NASA missions, ICON and GOLD at locations and time of observations in the MTI region. With two different viewing geometries (sun-synchronous and geostationary) of instruments, ICON and GOLD will provide complimentary global observations of temperature, winds and constituents to constrain the first-principle forecast models. This paper will discuss initial design of Observing Simulation Experiments (OSE) in WACCM-X/GEOS-5 and TIME-GCM. As recognized, OSE represent an excellent learning tool for designing and evaluating observing capabilities of novel sensors. They can guide on how to integrate/combine information from different instruments. The choice of assimilation schemes, forecast and observational errors will be discussed along with challenges and perspectives to constrain fast-varying tidal dynamics and their effects in models by combination of sun-synchronous and geostationary observations of ICON and GOLD. We will also discuss how correlative space

  12. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; hide

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  13. Ice shelf basal melt rates around Antarctica from simulations and observations

    NASA Astrophysics Data System (ADS)

    Schodlok, M. P.; Menemenlis, D.; Rignot, E. J.

    2016-02-01

    We introduce an explicit representation of Antarctic ice shelf cavities in the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) ocean retrospective analysis; and compare resulting basal melt rates and patterns to independent estimates from satellite observations. Two simulations are carried out: the first is based on the original ECCO2 vertical discretization; the second has higher vertical resolution particularly at the depth range of ice shelf cavities. The original ECCO2 vertical discretization produces higher than observed melt rates and leads to a misrepresentation of Southern Ocean water mass properties and transports. In general, thicker levels at the base of the ice shelves lead to increased melting because of their larger heat capacity. This strengthens horizontal gradients and circulation within and outside the cavities and, in turn, warm water transports from the shelf break to the ice shelves. The simulation with more vertical levels produces basal melt rates (1735 ± 164 Gt/a) and patterns that are in better agreement with observations. Thinner levels in the sub-ice-shelf cavities improve the representation of a fresh/cold layer at the ice shelf base and of warm/salty water near the bottom, leading to a sharper pycnocline and reduced vertical mixing underneath the ice shelf. Improved water column properties lead to more accurate melt rates and patterns, especially for melt/freeze patterns under large cold-water ice shelves. At the 18 km grid spacing of the ECCO2 model configuration, the smaller, warm-water ice shelves cannot be properly represented, with higher than observed melt rates in both simulations.

  14. Understanding Southern Ocean SST Trends in Historical Simulations and Observations

    NASA Astrophysics Data System (ADS)

    Kostov, Yavor; Ferreira, David; Marshall, John; Armour, Kyle

    2017-04-01

    Historical simulations with CMIP5 global climate models do not reproduce the observed 1979-2014 Southern Ocean (SO) cooling, and most ensemble members predict gradual warming around Antarctica. In order to understand this discrepancy and the mechanisms behind the SO cooling, we analyze output from 19 CMIP5 models. For each ensemble member we estimate the characteristic responses of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions and linear convolution theory, we reconstruct the original CMIP5 simulations of 1979-2014 SO SST trends. We recover the CMIP5 ensemble mean trend, capture the intermodel spread, and reproduce very well the behavior of individual models. We thus suggest that GHG forcing and the SAM are major drivers of the simulated 1979-2014 SO SST trends. In consistence with the seasonal signature of the Antarctic ozone hole, our results imply that the summer (DJF) and fall (MAM) SAM exert a particularly important effect on the SO SST. In some CMIP5 models the SO SST response to SAM partially counteracts the warming due to GHG forcing, while in other ensemble members the SAM-induced SO SST trends complement the warming effect of GHG forcing. The compensation between GHG and SAM-induced SO SST anomalies is model-dependent and is determined by multiple factors. Firstly, CMIP5 models have different characteristic SST step response functions to SAM. Kostov et al. (2016) relate these differences to biases in the models' climatological SO temperature gradients. Secondly, many CMIP5 historical simulations underestimate the observed positive trends in the DJF and MAM seasonal SAM indices. We show that this affects the models' ability to reproduce the observed SO cooling. Last but not least, CMIP5 models differ in their SO SST step response functions to GHG forcing. Understanding the diverse behavior of CMIP5 models helps shed light on the physical processes

  15. Observation and integrated Earth-system science: A roadmap for 2016-2025

    NASA Astrophysics Data System (ADS)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  16. JASMINE simulator

    NASA Astrophysics Data System (ADS)

    Yamada, Yoshiyuki; Gouda, Naoteru; Yano, Taihei; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Suganuma, Masahiro; Niwa, Yoshito; Sako, Nobutada; Hatsutori, Yoichi; Tanaka, Takashi

    2006-06-01

    We explain simulation tools in JASMINE project (JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations into error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented(OO) methodologies are ideal tools for the simulation system of JASMINE(the JASMINE simulator). In this article, we explain the framework of the JASMINE simulator.

  17. Realistic Simulations of Coronagraphic Observations with WFIRST

    NASA Astrophysics Data System (ADS)

    Rizzo, Maxime; Zimmerman, Neil; Roberge, Aki; Lincowski, Andrew; Arney, Giada; Stark, Chris; Jansen, Tiffany; Turnbull, Margaret; WFIRST Science Investigation Team (Turnbull)

    2018-01-01

    We present a framework to simulate observing scenarios with the WFIRST Coronagraphic Instrument (CGI). The Coronagraph and Rapid Imaging Spectrograph in Python (crispy) is an open-source package that can be used to create CGI data products for analysis and development of post-processing routines. The software convolves time-varying coronagraphic PSFs with realistic astrophysical scenes which contain a planetary architecture, a consistent dust structure, and a background field composed of stars and galaxies. The focal plane can be read out by a WFIRST electron-multiplying CCD model directly, or passed through a WFIRST integral field spectrograph model first. Several elementary post-processing routines are provided as part of the package.

  18. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    USGS Publications Warehouse

    Frankel, Arthur; Stephenson, William; Carver, David

    2009-01-01

    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  19. Helmet-mounted display systems for flight simulation

    NASA Technical Reports Server (NTRS)

    Haworth, Loren A.; Bucher, Nancy M.

    1989-01-01

    Simulation scientists are continually improving simulation technology with the goal of more closely replicating the physical environment of the real world. The presentation or display of visual information is one area in which recent technical improvements have been made that are fundamental to conducting simulated operations close to the terrain. Detailed and appropriate visual information is especially critical for nap-of-the-earth helicopter flight simulation where the pilot maintains an 'eyes-out' orientation to avoid obstructions and terrain. This paper describes visually coupled wide field of view helmet-mounted display (WFOVHMD) system technology as a viable visual presentation system for helicopter simulation. Tradeoffs associated with this mode of presentation as well as research and training applications are discussed.

  20. Teaching childbirth with high-fidelity simulation. Is it better observing the scenario during the briefing session?

    PubMed

    Cuerva, Marcos J; Piñel, Carlos S; Martin, Lourdes; Espinosa, Jose A; Corral, Octavio J; Mendoza, Nicolás

    2018-02-12

    The design of optimal courses for obstetric undergraduate teaching is a relevant question. This study evaluates two different designs of simulator-based learning activity on childbirth with regard to respect to the patient, obstetric manoeuvres, interpretation of cardiotocography tracings (CTG) and infection prevention. This randomised experimental study which differs in the content of their briefing sessions consisted of two groups of undergraduate students, who performed two simulator-based learning activities on childbirth. The first briefing session included the observations of a properly performed scenario according to Spanish clinical practice guidelines on care in normal childbirth by the teachers whereas the second group did not include the observations of a properly performed scenario, and the students observed it only after the simulation process. The group that observed a properly performed scenario after the simulation obtained worse grades during the simulation, but better grades during the debriefing and evaluation. Simulator use in childbirth may be more fruitful when the medical students observe correct performance at the completion of the scenario compared to that at the start of the scenario. Impact statement What is already known on this subject? There is a scarcity of literature about the design of optimal high-fidelity simulation training in childbirth. It is known that preparing simulator-based learning activities is a complex process. Simulator-based learning includes the following steps: briefing, simulation, debriefing and evaluation. The most important part of high-fidelity simulations is the debriefing. A good briefing and simulation are of high relevance in order to have a fruitful debriefing session. What do the results of this study add? Our study describes a full simulator-based learning activity on childbirth that can be reproduced in similar facilities. The findings of this study add that high-fidelity simulation training in

  1. Observing complex action sequences: The role of the fronto-parietal mirror neuron system.

    PubMed

    Molnar-Szakacs, Istvan; Kaplan, Jonas; Greenfield, Patricia M; Iacoboni, Marco

    2006-11-15

    A fronto-parietal mirror neuron network in the human brain supports the ability to represent and understand observed actions allowing us to successfully interact with others and our environment. Using functional magnetic resonance imaging (fMRI), we wanted to investigate the response of this network in adults during observation of hierarchically organized action sequences of varying complexity that emerge at different developmental stages. We hypothesized that fronto-parietal systems may play a role in coding the hierarchical structure of object-directed actions. The observation of all action sequences recruited a common bilateral network including the fronto-parietal mirror neuron system and occipito-temporal visual motion areas. Activity in mirror neuron areas varied according to the motoric complexity of the observed actions, but not according to the developmental sequence of action structures, possibly due to the fact that our subjects were all adults. These results suggest that the mirror neuron system provides a fairly accurate simulation process of observed actions, mimicking internally the level of motoric complexity. We also discuss the results in terms of the links between mirror neurons, language development and evolution.

  2. Theory and observations: Model simulations of the period 1955-1985

    NASA Technical Reports Server (NTRS)

    Isaksen, Ivar S. A.; Eckman, R.; Lacis, A.; Ko, Malcolm K. W.; Prather, M.; Pyle, J.; Rodhe, H.; Stordal, Frode; Stolarski, R. S.; Turco, R. P.

    1989-01-01

    The main objective of the theoretical studies presented here is to apply models of stratospheric chemistry and transport in order to understand the processes that control stratospheric ozone and that are responsible for the observed variations. The model calculations are intended to simulate the observed behavior of atmospheric ozone over the past three decades (1955-1985), for which there exists a substantial record of both ground-based and, more recently, satellite measurements. Ozone concentrations in the atmosphere vary on different time scales and for several different causes. The models described here were designed to simulate the effect on ozone of changes in the concentration of such trace gases as CFC, CH4, N2O, and CO2. Changes from year to year in ultraviolet radiation associated with the solar cycle are also included in the models. A third source of variability explicitly considered is the sporadic introduction of large amounts of NO sub x into the stratosphere during atmospheric nuclear tests.

  3. Observational Simulation of Icing in Extreme Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gultepe, Ismail; Heymsfield, Andrew; Agelin-Chaab, Martin; Komar, John; Elfstrom, Garry; Baumgardner, Darrel

    2017-04-01

    Observations and prediction of icing in extreme weather conditions are important for aviation, transportation, and shipping applications, and icing adversely affects the economy. Icing environments can be studied either in the outdoor atmosphere or in the laboratory. There have been several aircraft based in-situ studies related to weather conditions affecting aviation operations, transportation, and marine shipping that includes icing, wind, and turbulence. However, studying severe weather conditions from aircraft observations are limited due to safety and sampling issues, instrumental uncertainties, and even the possibility of aircraft producing its own physical and dynamical effects. Remote sensing based techniques (e.g. retrieval techniques) for studying severe weather conditions represent usually a volume that cannot characterize the important scales and also represents indirect observations. Therefore, laboratory simulations of atmospheric processes can help us better understand the interactions among microphysical and dynamical processes. The Climatic Wind Tunnel (CWT) in ACE at the University of Ontario Institute of Technology (UOIT) has a large semi-open jet test chamber with flow area 7-13 m2 that can precisely control temperatures down to -40°C, and up to 250 km hr-1 wind speeds, for heavy or dry snow conditions with low visibility, similar to ones observed in the Arctic and cold climate regions, or at high altitude aeronautical conditions. In this study, the ACE CWT employed a spray nozzle array suspended in its settling chamber and fed by pressurized water, creating various particle sizes from a few microns up to mm size range. This array, together with cold temperature and high wind speed, enabled simulation of severe weather conditions, including icing, visibility, strong wind and turbulence, ice fog and frost, freezing fog, heavy snow and blizzard conditions. In this study, the test results will be summarized, and their application to aircraft

  4. Model Predictive Flight Control System with Full State Observer using H∞ Method

    NASA Astrophysics Data System (ADS)

    Sanwale, Jitu; Singh, Dhan Jeet

    2018-03-01

    This paper presents the application of the model predictive approach to design a flight control system (FCS) for longitudinal dynamics of a fixed wing aircraft. Longitudinal dynamics is derived for a conventional aircraft. Open loop aircraft response analysis is carried out. Simulation studies are illustrated to prove the efficacy of the proposed model predictive controller using H ∞ state observer. The estimation criterion used in the {H}_{∞} observer design is to minimize the worst possible effects of the modelling errors and additive noise on the parameter estimation.

  5. The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    1999-01-01

    Advances in computational technology and in physics-based modeling are making large scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze ma or propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of design process and to provide the designer with critical information about the components early in the design process. This paper describes the development of the Numerical Propulsion System Simulation (NPSS), a multidisciplinary system of analysis tools that is focussed on extending the simulation capability from components to the full system. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  6. JASMINE simulator

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Gouda, N.; Yano, T.; Sako, N.; Hatsutori, Y.; Tanaka, T.; Yamauchi, M.

    We explain simulation tools in JASMINE project(JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations of error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented(OO) methodologies are ideal tools for the simulation system of JASMINE(the JASMINE simulator). The simulation system should include all objects in JASMINE such as observation techniques, models of instruments and bus design, orbit, data transfer, data analysis etc. in order to resolve all issues which can be expected beforehand and make it easy to cope with some unexpected problems which might occur during the mission of JASMINE. So, the JASMINE Simulator is designed as handling events such as photons from astronomical objects, control signals for devices, disturbances for satellite attitude, by instruments such as mirrors and detectors, successively. The simulator is also applied to the technical demonstration "Nano-JASMINE". The accuracy of ordinary sensor is not enough for initial phase attitude control. Mission instruments may be a good sensor for this purpose. The problem of attitude control in initial phase is a good example of this software because the problem is closely related to both mission instruments and satellite bus systems.

  7. JASMINE Simulator

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Gouda, N.; Yano, T.; Kobayashi, Y.; Suganuma, M.; Tsujimoto, T.; Sako, N.; Hatsutori, Y.; Tanaka, T.

    2006-08-01

    We explain simulation tools in JASMINE project (JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations of error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented (OO) methodologies are ideal tools for the simulation system of JASMINE (the JASMINE simulator). The simulation system should include all objects in JASMINE such as observation techniques, models of instruments and bus design, orbit, data transfer, data analysis etc. in order to resolve all issues which can be expected beforehand and make it easy to cope with some unexpected problems which might occur during the mission of JASMINE. So, the JASMINE Simulator is designed as handling events such as photons from astronomical objects, control signals for devices, disturbances for satellite attitude, by instruments such as mirrors and detectors, successively. The simulator is also applied to the technical demonstration "Nano-JASMINE". The accuracy of ordinary sensor is not enough for initial phase attitude control. Mission instruments may be a good sensor for this purpose. The problem of attitude control in initial phase is a good example of this software because the problem is closely related to both mission instruments and satellite bus systems.

  8. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 1: Deep Convective Updraft Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varble, A. C.; Zipser, Edward J.; Fridlind, Ann

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias.more » Snow reflectivity can exceed 40 dBZ in a two-moment scheme when a constant bulk density of 100 kg m-3 is used. Making snow mass more realistically proportional to area rather than volume should somewhat alleviate this problem. Graupel, unlike snow, produces high biased reflectivity in all simulations. This is associated with large amounts of liquid water above the freezing level in updraft cores. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of large rainwater contents lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. Strong simulated updraft cores are nearly undiluted, with some showing supercell characteristics. Decreasing horizontal grid spacing from 900 meters to 100 meters weakens strong updrafts, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may partly be a product of interactions between convective dynamics, parameterized microphysics, and large-scale environmental biases that promote different convective modes and strengths than observed.« less

  9. Argonne Simulation Framework for Intelligent Transportation Systems

    DOT National Transportation Integrated Search

    1996-01-01

    A simulation framework has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS). The simulator is designed to run on parallel computers and distribu...

  10. Advanced EMT and Phasor-Domain Hybrid Simulation with Simulation Mode Switching Capability for Transmission and Distribution Systems

    DOE PAGES

    Huang, Qiuhua; Vittal, Vijay

    2018-05-09

    Conventional electromagnetic transient (EMT) and phasor-domain hybrid simulation approaches presently exist for trans-mission system level studies. Their simulation efficiency is generally constrained by the EMT simulation. With an increasing number of distributed energy resources and non-conventional loads being installed in distribution systems, it is imperative to extend the hybrid simulation application to include distribution systems and integrated transmission and distribution systems. Meanwhile, it is equally important to improve the simulation efficiency as the modeling scope and complexity of the detailed system in the EMT simulation increases. To meet both requirements, this paper introduces an advanced EMT and phasor-domain hybrid simulationmore » approach. This approach has two main features: 1) a comprehensive phasor-domain modeling framework which supports positive-sequence, three-sequence, three-phase and mixed three-sequence/three-phase representations and 2) a robust and flexible simulation mode switching scheme. The developed scheme enables simulation switching from hybrid simulation mode back to pure phasor-domain dynamic simulation mode to achieve significantly improved simulation efficiency. The proposed method has been tested on integrated transmission and distribution systems. In conclusion, the results show that with the developed simulation switching feature, the total computational time is significantly reduced compared to running the hybrid simulation for the whole simulation period, while maintaining good simulation accuracy.« less

  11. Advanced EMT and Phasor-Domain Hybrid Simulation with Simulation Mode Switching Capability for Transmission and Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qiuhua; Vittal, Vijay

    Conventional electromagnetic transient (EMT) and phasor-domain hybrid simulation approaches presently exist for trans-mission system level studies. Their simulation efficiency is generally constrained by the EMT simulation. With an increasing number of distributed energy resources and non-conventional loads being installed in distribution systems, it is imperative to extend the hybrid simulation application to include distribution systems and integrated transmission and distribution systems. Meanwhile, it is equally important to improve the simulation efficiency as the modeling scope and complexity of the detailed system in the EMT simulation increases. To meet both requirements, this paper introduces an advanced EMT and phasor-domain hybrid simulationmore » approach. This approach has two main features: 1) a comprehensive phasor-domain modeling framework which supports positive-sequence, three-sequence, three-phase and mixed three-sequence/three-phase representations and 2) a robust and flexible simulation mode switching scheme. The developed scheme enables simulation switching from hybrid simulation mode back to pure phasor-domain dynamic simulation mode to achieve significantly improved simulation efficiency. The proposed method has been tested on integrated transmission and distribution systems. In conclusion, the results show that with the developed simulation switching feature, the total computational time is significantly reduced compared to running the hybrid simulation for the whole simulation period, while maintaining good simulation accuracy.« less

  12. Survivability and Abiotic Reactions of Selected Amino Acids in Different Hydrothermal System Simulators

    NASA Astrophysics Data System (ADS)

    Chandru, Kuhan; Imai, Eiichi; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei

    2013-04-01

    We tested the stability and reaction of several amino acids using hydrothermal system simulators: an autoclave and two kinds of flow reactors at 200-250 °C. This study generally showed that there is a variation in the individual amino acids survivability in the simulators. This is mainly attributed to the following factors; heat time, cold quenching exposure, metal ions and also silica. We observed that, in a rapid heating flow reactor, high aggregation and/or condensation of amino acids could occur even during a heat exposure of 2 min. We also monitored their stability in a reflow-type of simulator for 120 min at 20 min intervals. The non-hydrolyzed and hydrolyzed samples for this system showed a similar degradation only in the absence of metal ions.

  13. Tsunami simulation method initiated from waveforms observed by ocean bottom pressure sensors for real-time tsunami forecast; Applied for 2011 Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Tanioka, Yuichiro

    2017-04-01

    After tsunami disaster due to the 2011 Tohoku-oki great earthquake, improvement of the tsunami forecast has been an urgent issue in Japan. National Institute of Disaster Prevention is installing a cable network system of earthquake and tsunami observation (S-NET) at the ocean bottom along the Japan and Kurile trench. This cable system includes 125 pressure sensors (tsunami meters) which are separated by 30 km. Along the Nankai trough, JAMSTEC already installed and operated the cable network system of seismometers and pressure sensors (DONET and DONET2). Those systems are the most dense observation network systems on top of source areas of great underthrust earthquakes in the world. Real-time tsunami forecast has depended on estimation of earthquake parameters, such as epicenter, depth, and magnitude of earthquakes. Recently, tsunami forecast method has been developed using the estimation of tsunami source from tsunami waveforms observed at the ocean bottom pressure sensors. However, when we have many pressure sensors separated by 30km on top of the source area, we do not need to estimate the tsunami source or earthquake source to compute tsunami. Instead, we can initiate a tsunami simulation from those dense tsunami observed data. Observed tsunami height differences with a time interval at the ocean bottom pressure sensors separated by 30 km were used to estimate tsunami height distribution at a particular time. In our new method, tsunami numerical simulation was initiated from those estimated tsunami height distribution. In this paper, the above method is improved and applied for the tsunami generated by the 2011 Tohoku-oki great earthquake. Tsunami source model of the 2011 Tohoku-oki great earthquake estimated using observed tsunami waveforms, coseimic deformation observed by GPS and ocean bottom sensors by Gusman et al. (2012) is used in this study. The ocean surface deformation is computed from the source model and used as an initial condition of tsunami

  14. SU-F-J-178: A Computer Simulation Model Observer for Task-Based Image Quality Assessment in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolly, S; Mutic, S; Anastasio, M

    Purpose: Traditionally, image quality in radiation therapy is assessed subjectively or by utilizing physically-based metrics. Some model observers exist for task-based medical image quality assessment, but almost exclusively for diagnostic imaging tasks. As opposed to disease diagnosis, the task for image observers in radiation therapy is to utilize the available images to design and deliver a radiation dose which maximizes patient disease control while minimizing normal tissue damage. The purpose of this study was to design and implement a new computer simulation model observer to enable task-based image quality assessment in radiation therapy. Methods: A modular computer simulation framework wasmore » developed to resemble the radiotherapy observer by simulating an end-to-end radiation therapy treatment. Given images and the ground-truth organ boundaries from a numerical phantom as inputs, the framework simulates an external beam radiation therapy treatment and quantifies patient treatment outcomes using the previously defined therapeutic operating characteristic (TOC) curve. As a preliminary demonstration, TOC curves were calculated for various CT acquisition and reconstruction parameters, with the goal of assessing and optimizing simulation CT image quality for radiation therapy. Sources of randomness and bias within the system were analyzed. Results: The relationship between CT imaging dose and patient treatment outcome was objectively quantified in terms of a singular value, the area under the TOC (AUTOC) curve. The AUTOC decreases more rapidly for low-dose imaging protocols. AUTOC variation introduced by the dose optimization algorithm was approximately 0.02%, at the 95% confidence interval. Conclusion: A model observer has been developed and implemented to assess image quality based on radiation therapy treatment efficacy. It enables objective determination of appropriate imaging parameter values (e.g. imaging dose). Framework flexibility allows for

  15. Advances and issues from the simulation of planetary magnetospheres with recent supercomputer systems

    NASA Astrophysics Data System (ADS)

    Fukazawa, K.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.

    2016-12-01

    Planetary magnetospheres are very large, while phenomena within them occur on meso- and micro-scales. These scales range from 10s of planetary radii to kilometers. To understand dynamics in these multi-scale systems, numerical simulations have been performed by using the supercomputer systems. We have studied the magnetospheres of Earth, Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations for a long time, however, we have not obtained the phenomena near the limits of the MHD approximation. In particular, we have not studied meso-scale phenomena that can be addressed by using MHD.Recently we performed our MHD simulation of Earth's magnetosphere by using the K-computer which is the first 10PFlops supercomputer and obtained multi-scale flow vorticity for the both northward and southward IMF. Furthermore, we have access to supercomputer systems which have Xeon, SPARC64, and vector-type CPUs and can compare simulation results between the different systems. Finally, we have compared the results of our parameter survey of the magnetosphere with observations from the HISAKI spacecraft.We have encountered a number of difficulties effectively using the latest supercomputer systems. First the size of simulation output increases greatly. Now a simulation group produces over 1PB of output. Storage and analysis of this much data is difficult. The traditional way to analyze simulation results is to move the results to the investigator's home computer. This takes over three months using an end-to-end 10Gbps network. In reality, there are problems at some nodes such as firewalls that can increase the transfer time to over one year. Another issue is post-processing. It is hard to treat a few TB of simulation output due to the memory limitations of a post-processing computer. To overcome these issues, we have developed and introduced the parallel network storage, the highly efficient network protocol and the CUI based visualization tools.In this study, we

  16. The detection of planetary systems from Space Station - A star observation strategy

    NASA Technical Reports Server (NTRS)

    Mascy, Alfred C.; Nishioka, Ken; Jorgensen, Helen; Swenson, Byron L.

    1987-01-01

    A 10-20-yr star-observation program for the Space Station Astrometric Telescope Facility (ATF) is proposed and evaluated by means of computer simulations. The primary aim of the program is to detect stars with planetary systems by precise determination of their motion relative to reference stars. The designs proposed for the ATF are described and illustrated; the basic parameters of the 127 stars selected for the program are listed in a table; spacecraft and science constraints, telescope slewing rates, and the possibility of limiting the program sample to stars near the Galactic equator are discussed; and the effects of these constraints are investigated by simulating 1 yr of ATF operation. Viewing all sky regions, the ATF would have 81-percent active viewing time, observing each star about 200 times (56 h) per yr; only small decrements in this performance would result from limiting the viewing field.

  17. Observationally-based Metrics of Ocean Carbon and Biogeochemical Variables are Essential for Evaluating Earth System Model Projections

    NASA Astrophysics Data System (ADS)

    Russell, J. L.; Sarmiento, J. L.

    2017-12-01

    The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.

  18. Studies and simulations of the DigiCipher system

    NASA Technical Reports Server (NTRS)

    Sayood, K.; Chen, Y. C.; Kipp, G.

    1993-01-01

    During this period the development of simulators for the various high definition television (HDTV) systems proposed to the FCC was continued. The FCC has indicated that it wants the various proposers to collaborate on a single system. Based on all available information this system will look very much like the advanced digital television (ADTV) system with major contributions only from the DigiCipher system. The results of our simulations of the DigiCipher system are described. This simulator was tested using test sequences from the MPEG committee. The results are extrapolated to HDTV video sequences. Once again, some caveats are in order. The sequences used for testing the simulator and generating the results are those used for testing the MPEG algorithm. The sequences are of much lower resolution than the HDTV sequences would be, and therefore the extrapolations are not totally accurate. One would expect to get significantly higher compression in terms of bits per pixel with sequences that are of higher resolution. However, the simulator itself is a valid one, and should HDTV sequences become available, they could be used directly with the simulator. A brief overview of the DigiCipher system is given. Some coding results obtained using the simulator are looked at. These results are compared to those obtained using the ADTV system. These results are evaluated in the context of the CCSDS specifications and make some suggestions as to how the DigiCipher system could be implemented in the NASA network. Simulations such as the ones reported can be biased depending on the particular source sequence used. In order to get more complete information about the system one needs to obtain a reasonable set of models which mirror the various kinds of sources encountered during video coding. A set of models which can be used to effectively model the various possible scenarios is provided. As this is somewhat tangential to the other work reported, the results are included as an

  19. A View on Future Building System Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetter, Michael

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described bymore » coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).« less

  20. SENSOR++: Simulation of Remote Sensing Systems from Visible to Thermal Infrared

    NASA Astrophysics Data System (ADS)

    Paproth, C.; Schlüßler, E.; Scherbaum, P.; Börner, A.

    2012-07-01

    During the development process of a remote sensing system, the optimization and the verification of the sensor system are important tasks. To support these tasks, the simulation of the sensor and its output is valuable. This enables the developers to test algorithms, estimate errors, and evaluate the capabilities of the whole sensor system before the final remote sensing system is available and produces real data. The presented simulation concept, SENSOR++, consists of three parts. The first part is the geometric simulation which calculates where the sensor looks at by using a ray tracing algorithm. This also determines whether the observed part of the scene is shadowed or not. The second part describes the radiometry and results in the spectral at-sensor radiance from the visible spectrum to the thermal infrared according to the simulated sensor type. In the case of earth remote sensing, it also includes a model of the radiative transfer through the atmosphere. The final part uses the at-sensor radiance to generate digital images by using an optical and an electronic sensor model. Using SENSOR++ for an optimization requires the additional application of task-specific data processing algorithms. The principle of the simulation approach is explained, all relevant concepts of SENSOR++ are discussed, and first examples of its use are given, for example a camera simulation for a moon lander. Finally, the verification of SENSOR++ is demonstrated.

  1. Construction of the real patient simulator system.

    PubMed

    Chan, Richard; Sun, C T

    2012-05-01

    Simulation for perfusion education has been used for at least the past 25 years. The earlier models were either electronic (computer games) or fluid dynamic models and provided invaluable adjuncts to perfusion training and education. In 2009, the *North Shore-LIJ Health System at Great Neck, New York, opened an innovative "Bioskill Center" dedicated to simulated virtual reality advanced hands-on surgical training as well as perfusion simulation. Professional cardiac surgical organizations now show great interest in using simulation for training and recertification. Simulation will continue to be the direction for future perfusion training and education. This manuscript introduces a cost-effective system developed from discarded perfusion products and it is not intended to detail the actual lengthy process of its construction.

  2. Simulations as a tool for higher mass resolution spectrometer: Lessons from existing observations

    NASA Astrophysics Data System (ADS)

    Nicolaou, Georgios; Yamauchi, Masatoshi; Nilsson, Hans; Wieser, Martin; Fedorov, Andrei

    2017-04-01

    Scientific requirements of each mission are crucial for the instrument's design. Ion tracing simulations of instruments can be helpful to characterize their performance, identify their limitations and improving the design for future missions. However, simulations provide the best performance in ideal case, and the actual response is determined by many other factors. Therefore, simulations should be compared with observations when possible. Characterizing the actual response of a running instrument gives valuable lessons for the future design of test instruments with the same detection principle before spending resources to build and calibrate them. In this study we use an ion tracing simulation of the Ion Composition Analyser (ICA) on board ROSETTA, in order to characterize its response and to compare it with the observations. It turned out that, due to the complicated unexpected response of the running instrument, the heavy cometary ions and molecules are sometimes difficult to be resolved. However, preliminary simulation of a slightly modified design predicts much higher mass resolution. Even after considering the complicated unexpected response, we safely expect that the modified design can resolve most abundant heavy atomic ions (e.g., O^+) and molecular ions (e.g., N_2+ and O_2^+). We show the simulation results for both designs and ICA data.

  3. Operating system for a real-time multiprocessor propulsion system simulator. User's manual

    NASA Technical Reports Server (NTRS)

    Cole, G. L.

    1985-01-01

    The NASA Lewis Research Center is developing and evaluating experimental hardware and software systems to help meet future needs for real-time, high-fidelity simulations of air-breathing propulsion systems. Specifically, the real-time multiprocessor simulator project focuses on the use of multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost. Operating systems for such hardware configurations are generally not available. A real time multiprocessor operating system (RTMPOS) that supports a variety of multiprocessor configurations was developed at Lewis. With some modification, RTMPOS can also support various microprocessors. RTMPOS, by means of menus and prompts, provides the user with a versatile, user-friendly environment for interactively loading, running, and obtaining results from a multiprocessor-based simulator. The menu functions are described and an example simulation session is included to demonstrate the steps required to go from the simulation loading phase to the execution phase.

  4. Constraining a land-surface model with multiple observations by application of the MPI-Carbon Cycle Data Assimilation System V1.0

    NASA Astrophysics Data System (ADS)

    Schürmann, Gregor J.; Kaminski, Thomas; Köstler, Christoph; Carvalhais, Nuno; Voßbeck, Michael; Kattge, Jens; Giering, Ralf; Rödenbeck, Christian; Heimann, Martin; Zaehle, Sönke

    2016-09-01

    We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS) built around the tangent-linear version of the JSBACH land-surface scheme, which is part of the MPI-Earth System Model v1. The simulated phenology and net land carbon balance were constrained by globally distributed observations of the fraction of absorbed photosynthetically active radiation (FAPAR, using the TIP-FAPAR product) and atmospheric CO2 at a global set of monitoring stations for the years 2005 to 2009. When constrained by FAPAR observations alone, the system successfully, and computationally efficiently, improved simulated growing-season average FAPAR, as well as its seasonality in the northern extra-tropics. When constrained by atmospheric CO2 observations alone, global net and gross carbon fluxes were improved, despite a tendency of the system to underestimate tropical productivity. Assimilating both data streams jointly allowed the MPI-CCDAS to match both observations (TIP-FAPAR and atmospheric CO2) equally well as the single data stream assimilation cases, thereby increasing the overall appropriateness of the simulated biosphere dynamics and underlying parameter values. Our study thus demonstrates the value of multiple-data-stream assimilation for the simulation of terrestrial biosphere dynamics. It further highlights the potential role of remote sensing data, here the TIP-FAPAR product, in stabilising the strongly underdetermined atmospheric inversion problem posed by atmospheric transport and CO2 observations alone. Notwithstanding these advances, the constraint of the observations on regional gross and net CO2 flux patterns on the MPI-CCDAS is limited through the coarse-scale parametrisation of the biosphere model. We expect improvement through a refined initialisation strategy and inclusion of further biosphere observations as constraints.

  5. Simulating North American mesoscale convective systems with a convection-permitting climate model

    NASA Astrophysics Data System (ADS)

    Prein, Andreas F.; Liu, Changhai; Ikeda, Kyoko; Bullock, Randy; Rasmussen, Roy M.; Holland, Greg J.; Clark, Martyn

    2017-10-01

    Deep convection is a key process in the climate system and the main source of precipitation in the tropics, subtropics, and mid-latitudes during summer. Furthermore, it is related to high impact weather causing floods, hail, tornadoes, landslides, and other hazards. State-of-the-art climate models have to parameterize deep convection due to their coarse grid spacing. These parameterizations are a major source of uncertainty and long-standing model biases. We present a North American scale convection-permitting climate simulation that is able to explicitly simulate deep convection due to its 4-km grid spacing. We apply a feature-tracking algorithm to detect hourly precipitation from Mesoscale Convective Systems (MCSs) in the model and compare it with radar-based precipitation estimates east of the US Continental Divide. The simulation is able to capture the main characteristics of the observed MCSs such as their size, precipitation rate, propagation speed, and lifetime within observational uncertainties. In particular, the model is able to produce realistically propagating MCSs, which was a long-standing challenge in climate modeling. However, the MCS frequency is significantly underestimated in the central US during late summer. We discuss the origin of this frequency biases and suggest strategies for model improvements.

  6. Application of control theory to dynamic systems simulation

    NASA Technical Reports Server (NTRS)

    Auslander, D. M.; Spear, R. C.; Young, G. E.

    1982-01-01

    The application of control theory is applied to dynamic systems simulation. Theory and methodology applicable to controlled ecological life support systems are considered. Spatial effects on system stability, design of control systems with uncertain parameters, and an interactive computing language (PARASOL-II) designed for dynamic system simulation, report quality graphics, data acquisition, and simple real time control are discussed.

  7. Interaction of the Climate System and the Solid Earth: Analysis of Observations and Models

    NASA Technical Reports Server (NTRS)

    Bryan, Frank

    2001-01-01

    Under SENH funding we have carried out a number of diverse analyses of interactions of the climate system (atmosphere, ocean, land surface hydrology) with the solid Earth. While the original work plan emphasized analysis of excitation of variations in Earth rotation, with a lesser emphasis on time variable gravity, opportunities that developed during the proposal period in connection with preparations for the GRACE mission led us to a more balanced effort between these two topics. The results of our research are outlined in several topical sections: (1) oceanic excitation of variations in Earth rotation; (2) short period atmosphere-ocean excitation of variations in Earth rotation; (3) analysis of coupled climate system simulation; (4) observing system simulation studies for GRACE mission design; and (5) oceanic response to atmospheric pressure loading.

  8. Asynchronous threat awareness by observer trials using crowd simulation

    NASA Astrophysics Data System (ADS)

    Dunau, Patrick; Huber, Samuel; Stein, Karin U.; Wellig, Peter

    2016-10-01

    The last few years showed that a high risk of asynchronous threats is given in every day life. Especially in large crowds a high probability of asynchronous attacks is evident. High observational abilities to detect threats are desirable. Consequently highly trained security and observation personal is needed. This paper evaluates the effectiveness of a training methodology to enhance performance of observation personnel engaging in a specific target identification task. For this purpose a crowd simulation video is utilized. The study first provides a measurement of the base performance before the training sessions. Furthermore a training procedure will be performed. Base performance will then be compared to the after training performance in order to look for a training effect. A thorough evaluation of both the training sessions as well as the overall performance will be done in this paper. A specific hypotheses based metric is used. Results will be discussed in order to provide guidelines for the design of training for observational tasks.

  9. Predicting System Accidents with Model Analysis During Hybrid Simulation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Fleming, Land D.; Throop, David R.

    2002-01-01

    Standard discrete event simulation is commonly used to identify system bottlenecks and starving and blocking conditions in resources and services. The CONFIG hybrid discrete/continuous simulation tool can simulate such conditions in combination with inputs external to the simulation. This provides a means for evaluating the vulnerability to system accidents of a system's design, operating procedures, and control software. System accidents are brought about by complex unexpected interactions among multiple system failures , faulty or misleading sensor data, and inappropriate responses of human operators or software. The flows of resource and product materials play a central role in the hazardous situations that may arise in fluid transport and processing systems. We describe the capabilities of CONFIG for simulation-time linear circuit analysis of fluid flows in the context of model-based hazard analysis. We focus on how CONFIG simulates the static stresses in systems of flow. Unlike other flow-related properties, static stresses (or static potentials) cannot be represented by a set of state equations. The distribution of static stresses is dependent on the specific history of operations performed on a system. We discuss the use of this type of information in hazard analysis of system designs.

  10. Jupiter System Observer

    NASA Technical Reports Server (NTRS)

    Senske, Dave; Kwok, Johnny

    2008-01-01

    This slide presentation reviews the proposed mission for the Jupiter System Observer. The presentation also includes overviews of the mission timeline, science goals, and spacecraftspecifications for the satellite.

  11. Real time simulation of nonlinear generalized predictive control for wind energy conversion system with nonlinear observer.

    PubMed

    Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand

    2014-01-01

    In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Simulation system architecture design for generic communications link

    NASA Technical Reports Server (NTRS)

    Tsang, Chit-Sang; Ratliff, Jim

    1986-01-01

    This paper addresses a computer simulation system architecture design for generic digital communications systems. It addresses the issues of an overall system architecture in order to achieve a user-friendly, efficient, and yet easily implementable simulation system. The system block diagram and its individual functional components are described in detail. Software implementation is discussed with the VAX/VMS operating system used as a target environment.

  13. Fault detection for discrete-time LPV systems using interval observers

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hui; Yang, Guang-Hong

    2017-10-01

    This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation, fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore, without the need to design the residual evaluation functions and thresholds, the residual intervals generated by the interval observers are used directly for FD decision. Finally, simulation results are presented for showing the effectiveness and superiority of the proposed method.

  14. Java simulations of embedded control systems.

    PubMed

    Farias, Gonzalo; Cervin, Anton; Arzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco

    2010-01-01

    This paper introduces a new Open Source Java library suited for the simulation of embedded control systems. The library is based on the ideas and architecture of TrueTime, a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the performance of control processes which run in a real time environment. Such simulations can improve considerably the learning and design of multitasking real-time systems. The choice of Java increases considerably the usability of our library, because many educators program already in this language. But also because the library can be easily used by Easy Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used in the field of Control Education. EJS allows instructors, students, and researchers with less programming capabilities to create advanced interactive simulations in Java. The paper describes the ideas, implementation, and sample use of the new library both for pure Java programmers and for EJS users. The JTT library and some examples are online available on http://lab.dia.uned.es/jtt.

  15. Java Simulations of Embedded Control Systems

    PubMed Central

    Farias, Gonzalo; Cervin, Anton; Årzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco

    2010-01-01

    This paper introduces a new Open Source Java library suited for the simulation of embedded control systems. The library is based on the ideas and architecture of TrueTime, a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the performance of control processes which run in a real time environment. Such simulations can improve considerably the learning and design of multitasking real-time systems. The choice of Java increases considerably the usability of our library, because many educators program already in this language. But also because the library can be easily used by Easy Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used in the field of Control Education. EJS allows instructors, students, and researchers with less programming capabilities to create advanced interactive simulations in Java. The paper describes the ideas, implementation, and sample use of the new library both for pure Java programmers and for EJS users. The JTT library and some examples are online available on http://lab.dia.uned.es/jtt. PMID:22163674

  16. Development of IR imaging system simulator

    NASA Astrophysics Data System (ADS)

    Xiang, Xinglang; He, Guojing; Dong, Weike; Dong, Lu

    2017-02-01

    To overcome the disadvantages of the tradition semi-physical simulation and injection simulation equipment in the performance evaluation of the infrared imaging system (IRIS), a low-cost and reconfigurable IRIS simulator, which can simulate the realistic physical process of infrared imaging, is proposed to test and evaluate the performance of the IRIS. According to the theoretical simulation framework and the theoretical models of the IRIS, the architecture of the IRIS simulator is constructed. The 3D scenes are generated and the infrared atmospheric transmission effects are simulated using OGRE technology in real-time on the computer. The physical effects of the IRIS are classified as the signal response characteristic, modulation transfer characteristic and noise characteristic, and they are simulated on the single-board signal processing platform based on the core processor FPGA in real-time using high-speed parallel computation method.

  17. Background concentrations for high resolution satellite observing systems of methane

    NASA Astrophysics Data System (ADS)

    Benmergui, J. S.; Propp, A. M.; Turner, A. J.; Wofsy, S. C.

    2017-12-01

    Emerging satellite technologies promise to measure total column dry-air mole fractions of methane (XCH4) at resolutions on the order of a kilometer. XCH4 is linearly related to regional methane emissions through enhancements in the mixed layer, giving these satellites the ability to constrain emissions at unprecedented resolution. However, XCH4 is also sensitive to variability in transport of upwind concentrations (the "background concentration"). Variations in the background concentration are caused by synoptic scale transport in both the free troposphere and the stratosphere, as well as the rate of methane oxidation. Misspecification of the background concentration is aliased onto retrieved emissions as bias. This work explores several methods of specifying the background concentration for high resolution satellite observations of XCH4. We conduct observing system simulation experiments (OSSEs) that simulate the retrieval of emissions in the Barnett Shale using observations from a 1.33 km resolution XCH4 imaging satellite. We test background concentrations defined (1) from an external continental-scale model, (2) using pixels along the edge of the image as a boundary value, (3) using differences between adjacent pixels, and (4) using differences between the same pixel separated by one hour in time. We measure success using the accuracy of the retrieval, the potential for bias induced by misspecification of the background, and the computational expedience of the method. Pathological scenarios are given to each method.

  18. Modeling and HIL Simulation of Flight Conditions Simulating Control System for the Altitude Test Facility

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Shen, Li; Zhang, Tianhong

    2016-12-01

    Simulated altitude test is an essential exploring, debugging, verification and validation means during the development of aero-engine. Free-jet engine test can simulate actual working conditions of aero-engine more realistically than direct-connect engine test but with relatively lower cost compared to propulsion wind tunnel test, thus becoming an important developing area of simulated altitude test technology. The Flight Conditions Simulating Control System (FCSCS) is of great importance to the Altitude Test Facility (ATF) but the development of that is a huge challenge. Aiming at improving the design efficiency and reducing risks during the development of FCSCS for ATFs, a Hardware- in-the-Loop (HIL) simulation system was designed and the mathematical models of key components such as the pressure stabilizing chamber, free-jet nozzle, control valve and aero-engine were built in this paper. Moreover, some HIL simulation experiments were carried out. The results show that the HIL simulation system designed and established in this paper is reasonable and effective, which can be used to adjust control parameters conveniently and assess the software and hardware in the control system immediately.

  19. Passive coherent location system simulation and evaluation

    NASA Astrophysics Data System (ADS)

    Slezák, Libor; Kvasnička, Michael; Pelant, Martin; Vávra, Jiř; Plšek, Radek

    2006-02-01

    Passive Coherent Location (PCL) is going to be important and perspective system of passive location of non cooperative and stealth targets. It works with the sources of irradiation of opportunity. PCL is intended to be a part of mobile Air Command and Control System (ACCS) as a Deployable ACCS Component (DAC). The company ERA works on PCL system parameters verification program by complete PCL simulator development since the year 2003. The Czech DoD takes financial participation on this program. The moving targets scenario, the RCS calculation by method of moment, ground clutter scattering and signal processing method (the bottle neck of the PCL) are available up to now in simulator tool. The digital signal (DSP) processing algorithms are performed both on simulated data and on real data measured at NATO C3 Agency in their Haag experiment. The Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic takes part on the implementation of the DSP algorithms in FPGA. The paper describes the simulator and signal processing structure and results both on simulated and measured data.

  20. Evaluating Transient Global and Regional Model Simulations: Bridging the Model/Observations Information Gap

    NASA Astrophysics Data System (ADS)

    Rutledge, G. K.; Karl, T. R.; Easterling, D. R.; Buja, L.; Stouffer, R.; Alpert, J.

    2001-05-01

    A major transition in our ability to evaluate transient Global Climate Model (GCM) simulations is occurring. Real-time and retrospective numerical weather prediction analysis, model runs, climate simulations and assessments are proliferating from a handful of national centers to dozens of groups across the world. It is clear that it is no longer sufficient for any one national center to develop its data services alone. The comparison of transient GCM results with the observational climate record is difficult for several reasons. One limitation is that the global distributions of a number of basic climate quantities, such as precipitation, are not well known. Similarly, observational limitations exist with model re-analysis data. Both the NCEP/NCAR, and the ECMWF, re-analysis eliminate the problems of changing analysis systems but observational data also contain time-dependant biases. These changes in input data are blended with the natural variability making estimates of true variability uncertain. The need for data homogeneity is critical to study questions related to the ability to evaluate simulation of past climate. One approach to correct for time-dependant biases and data sparse regions is the development and use of high quality 'reference' data sets. The primary U.S. National responsibility for the archive and service of weather and climate data rests with the National Climatic Data Center (NCDC). However, as supercomputers increase the temporal and spatial resolution of both Numerical Weather Prediction (NWP) and GCM models, the volume and varied formats of data presented for archive at NCDC, using current communications technologies and data management techniques is limiting the scientific access of these data. To address this ever expanding need for climate and NWP information, NCDC along with the National Center's for Environmental Prediction (NCEP) have initiated the NOAA Operational Model Archive and Distribution System (NOMADS). NOMADS is a

  1. An OSSE on Mesoscale Model Assimilation of Simulated HIRAD-Observed Hurricane Surface Winds

    NASA Technical Reports Server (NTRS)

    Albers, Cerese; Miller, Timothy; Uhlhorn, Eric; Krishnamurti, T. N.

    2012-01-01

    The hazards of landfalling hurricanes are well known, but progress on improving the intensity forecasts of these deadly storms at landfall has been slow. Many cite a lack of high-resolution data sets taken inside the core of a hurricane, and the lack of reliable measurements in extreme conditions near the surface of hurricanes, as possible reasons why even the most state-of-the-art forecasting models cannot seem to forecast intensity changes better. The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for observing hurricanes, and is operated and researched by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. This instrument?s purpose is to study the wind field of a hurricane, specifically observing surface wind speeds and rain rates, in what has traditionally been the most difficult areas for other instruments to study; the high wind and heavy rain regions. Dr. T. N. Krishnamurti has studied various data assimilation techniques for hurricane and monsoon rain rates, and this study builds off of results obtained from utilizing his style of physical initializations of rainfall observations, but obtaining reliable observations in heavy rain regions has always presented trouble to our research of high-resolution rainfall forecasting. Reliable data from these regions at such a high resolution and wide swath as HIRAD provides is potentially very valuable to mesoscale forecasting of hurricane intensity. This study shows how the data assimilation technique of Ensemble Kalman Filtering (EnKF) in the Weather Research and Forecasting (WRF) model can be used to incorporate wind, and later rain rate, data into a mesoscale model forecast of hurricane intensity. The study makes use of an Observing System Simulation Experiment (OSSE) with a simulated

  2. The Numerical Propulsion System Simulation: An Overview

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    2000-01-01

    Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  3. Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations.

    PubMed

    Mohammed, Ibrahim Nourein; Bolten, John D; Srinivasan, Raghavan; Lakshmi, Venkat

    2018-06-01

    Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region's hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling.

  4. Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations

    PubMed Central

    Mohammed, Ibrahim Nourein; Bolten, John D.; Srinivasan, Raghavan; Lakshmi, Venkat

    2018-01-01

    Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region’s hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling. PMID:29938116

  5. Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts

    NASA Astrophysics Data System (ADS)

    Lin, Charles C. H.; Chen, Chia-Hung; Matsumura, Mitsuru; Lin, Jia-Ting; Kakinami, Yoshihiro

    2017-08-01

    Observations and theoretical modeling of the ionospheric disturbance waves generated by rocket launches are investigated. During the rocket passage, time rate change of total electron content (rTEC) enhancement with the V-shape shock wave signature is commonly observed, followed by acoustic wave disturbances and region of negative rTEC centered along the trajectory. Ten to fifteen min after the rocket passage, delayed disturbance waves appeared and propagated along direction normal to the V-shape wavefronts. These observation features appeared most prominently in the 2016 North Korea rocket launch showing a very distinct V-shape rTEC enhancement over enormous areas along the southeast flight trajectory despite that it was also appeared in the 2009 North Korea rocket launch with the eastward flight trajectory. Numerical simulations using the physical-based nonlinear and nonhydrostatic coupled model of neutral atmosphere and ionosphere reproduce promised results in qualitative agreement with the characteristics of ionospheric disturbance waves observed in the 2009 event by considering the released energy of the rocket exhaust as the disturbance source. Simulations reproduce the shock wave signature of electron density enhancement, acoustic wave disturbances, the electron density depletion due to the rocket-induced pressure bulge, and the delayed disturbance waves. The pressure bulge results in outward neutral wind flows carrying neutrals and plasma away from it and leading to electron density depletions. Simulations further show, for the first time, that the delayed disturbance waves are produced by the surface reflection of the earlier arrival acoustic wave disturbances.

  6. Distributed Adaptive Fuzzy Control for Nonlinear Multiagent Systems Via Sliding Mode Observers.

    PubMed

    Shen, Qikun; Shi, Peng; Shi, Yan

    2016-12-01

    In this paper, the problem of distributed adaptive fuzzy control is investigated for high-order uncertain nonlinear multiagent systems on directed graph with a fixed topology. It is assumed that only the outputs of each follower and its neighbors are available in the design of its distributed controllers. Equivalent output injection sliding mode observers are proposed for each follower to estimate the states of itself and its neighbors, and an observer-based distributed adaptive controller is designed for each follower to guarantee that it asymptotically synchronizes to a leader with tracking errors being semi-globally uniform ultimate bounded, in which fuzzy logic systems are utilized to approximate unknown functions. Based on algebraic graph theory and Lyapunov function approach, using Filippov-framework, the closed-loop system stability analysis is conducted. Finally, numerical simulations are provided to illustrate the effectiveness and potential of the developed design techniques.

  7. Adaptive super-twisting observer for estimation of random road excitation profile in automotive suspension systems.

    PubMed

    Rath, J J; Veluvolu, K C; Defoort, M

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system.

  8. Adaptive Super-Twisting Observer for Estimation of Random Road Excitation Profile in Automotive Suspension Systems

    PubMed Central

    Rath, J. J.; Veluvolu, K. C.; Defoort, M.

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system. PMID:24683321

  9. Simulation of a data archival and distribution system at GSFC

    NASA Technical Reports Server (NTRS)

    Bedet, Jean-Jacques; Bodden, Lee; Dwyer, AL; Hariharan, P. C.; Berbert, John; Kobler, Ben; Pease, Phil

    1993-01-01

    A version-0 of a Data Archive and Distribution System (DADS) is being developed at GSFC to support existing and pre-EOS Earth science datasets and test Earth Observing System Data and Information System (EOSDIS) concepts. The performance of DADS is predicted using a discrete event simulation model. The goals of the simulation were to estimate the amount of disk space needed and the time required to fulfill the DADS requirements for ingestion (14 GB/day) and distribution (48 GB/day). The model has demonstrated that 4 mm and 8 mm stackers can play a critical role in improving the performance of the DADS, since it takes, on average, 3 minutes to manually mount/dismount tapes compared to less than a minute with stackers. With two 4 mm stackers and two 8 mm stackers, and a single operator per shift, the DADS requirements can be met within 16 hours using a total of 9 GB of disk space. When the DADS has no stacker, and the DADS depends entirely on operators to handle the distribution tapes, the simulation has shown that the DADS requirements can still be met within 16 hours, but a minimum of 4 operators per shift were required. The compression/decompression of data sets is very CPU intensive, and relatively slow when performed in software, thereby contributing to an increase in the amount of disk space needed.

  10. Designing and implementing nervous system simulations on LEGO robots.

    PubMed

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-05-25

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.

  11. Designing and Implementing Nervous System Simulations on LEGO Robots

    PubMed Central

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-01-01

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.1 The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum. PMID:23728477

  12. Modelling Middle Infrared Thermal Imagery from Observed or Simulated Active Fire

    NASA Astrophysics Data System (ADS)

    Paugam, R.; Gastellu-Etchegorry, J. P.; Mell, W.; Johnston, J.; Filippi, J. B.

    2016-12-01

    The Fire Radiative Power (FRP) is used in the atmospheric and fire communities to estimate fire emission. For example, the current version of the emission inventory GFAS is using FRP observation from the MODIS sensors to derive daily global distribution of fire emissions. Although the FRP product is widely accepted, most of its theoretical justifications are still based on small scale burns. When up-scaling to large fires effects of view angle, canopy cover, or smoke absorption are still unknown. To cover those questions, we are building a system based on the DART radiative transfer model to simulate the middle infrared radiance emitted by a propagating fire front and propagating in the surrounding scene made of ambient vegetation and plume aerosols. The current version of the system was applied to fire ranging from a 1m2 to 7ha. The 3D fire scene used as input in DART is made of the flame, the vegetation (burnt and unburnt), and the plume. It can be either set up from [i] 3D physical based model scene (ie WFDS, mainly applicable for small scale burn), [ii] coupled 2D fire spread - atmospheric models outputs (eg ForeFire-MesoNH) or [iii] derived from thermal imageries observations (here plume effects are not considered). In the last two cases, as the complexity of physical processes occurring in the flame (in particular soot formation and emission) is not to solved, the flames structures are parameterized with (a) temperature and soot concentration based on empirical derived profiles and (b) 3D triangular shape hull interpolated at the fire front location. Once the 3D fire scene is set up, DART is then used to render thermal imageries in the middle infrared. Using data collected from burns conducted at different scale, the modelled thermal imageries are compared against observations, and effects of view angle are discussed.

  13. Observing System Evaluations Using GODAE Systems

    DTIC Science & Technology

    2009-09-01

    DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution is unlimite 13. SUPPLEMENTARY NOTES 20091228151 14. ABSTRACT Global ocean...forecast systems, developed under the Global Ocean Data Assimilation Experiment (GODAE), are a powerful means of assessing the impact of different...components of the Global Ocean Observing System (GOOS). Using a range of analysis tools and approaches, GODAE systems are useful for quantifying the

  14. The Shock Dynamics of Heterogeneous YSO Jets: 3D Simulations Meet Multi-epoch Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, E. C.; Frank, A.; Hartigan, P.

    High-resolution observations of young stellar object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper, we report results of 3D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions, which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of thesemore » bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a “frothy” emission structure that arises from the presence of the Nonlinear Thin Shell Instability along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non-equilibrium cooling method to produce synthetic emission maps in H α and [S ii]. These are directly compared to multi-epoch Hubble Space Telescope observations of Herbig–Haro jets. We find excellent agreement between features seen in the simulations and the observations in terms of both proper motion and morphologies. Thus we conclude that YSO jets may be dominated by heterogeneous structures and that interactions between these structures and the shocks they produce can account for many details of YSO jet evolution.« less

  15. Design, modeling, simulation and evaluation of a distributed energy system

    NASA Astrophysics Data System (ADS)

    Cultura, Ambrosio B., II

    This dissertation presents the design, modeling, simulation and evaluation of distributed energy resources (DER) consisting of photovoltaics (PV), wind turbines, batteries, a PEM fuel cell and supercapacitors. The distributed energy resources installed at UMass Lowell consist of the following: 2.5kW PV, 44kWhr lead acid batteries and 1500W, 500W & 300W wind turbines, which were installed before year 2000. Recently added to that are the following: 10.56 kW PV array, 2.4 kW wind turbine, 29 kWhr Lead acid batteries, a 1.2 kW PEM fuel cell and 4-140F supercapacitors. Each newly added energy resource has been designed, modeled, simulated and evaluated before its integration into the existing PV/Wind grid-connected system. The Mathematical and Simulink model of each system was derived and validated by comparing the simulated and experimental results. The Simulated results of energy generated from a 10.56kW PV system are in good agreement with the experimental results. A detailed electrical model of a 2.4kW wind turbine system equipped with a permanent magnet generator, diode rectifier, boost converter and inverter is presented. The analysis of the results demonstrates the effectiveness of the constructed simulink model, and can be used to predict the performance of the wind turbine. It was observed that a PEM fuel cell has a very fast response to load changes. Moreover, the model has validated the actual operation of the PEM fuel cell, showing that the simulated results in Matlab Simulink are consistent with the experimental results. The equivalent mathematical equation, derived from an electrical model of the supercapacitor, is used to simulate its voltage response. The model is completely capable of simulating its voltage behavior, and can predict the charge time and discharge time of voltages on the supercapacitor. The bi-directional dc-dc converter was designed in order to connect the 48V battery bank storage to the 24V battery bank storage. This connection was

  16. The GOCE end-to-end system simulator

    NASA Astrophysics Data System (ADS)

    Catastini, G.; Cesare, S.; de Sanctis, S.; Detoma, E.; Dumontel, M.; Floberghagen, R.; Parisch, M.; Sechi, G.; Anselmi, A.

    2003-04-01

    The idea of an end-to-end simulator was conceived in the early stages of the GOCE programme, as an essential tool for assessing the satellite system performance, that cannot be fully tested on the ground. The simulator in its present form is under development at Alenia Spazio for ESA since the beginning of Phase B and is being used for checking the consistency of the spacecraft and of the payload specifications with the overall system requirements, supporting trade-off, sensitivity and worst-case analyses, and preparing and testing the on-ground and in-flight calibration concepts. The software simulates the GOCE flight along an orbit resulting from the application of Earth's gravity field, non-conservative environmental disturbances (atmospheric drag, coupling with Earth's magnetic field, etc.) and control forces/torques. The drag free control forces as well as the attitude control torques are generated by the current design of the dedicated algorithms. Realistic sensor models (star tracker, GPS receiver and gravity gradiometer) feed the control algorithms and the commanded forces are applied through realistic thruster models. The output of this stage of the simulator is a time series of Level-0 data, namely the gradiometer raw measurements and spacecraft ancillary data. The next stage of the simulator transforms Level-0 data into Level-1b (gravity gradient tensor) data, by implementing the following steps: - transformation of raw measurements of each pair of accelerometers into common and differential accelerations - calibration of the common and differential accelerations - application of the post-facto algorithm to rectify the phase of the accelerations and to estimate the GOCE angular velocity and attitude - computation of the Level-1b gravity gradient tensor from calibrated accelerations and estimated angular velocity in different reference frames (orbital, inertial, earth-fixed); computation of the spectral density of the error of the tensor diagonal

  17. Monte Carlo simulation of biomolecular systems with BIOMCSIM

    NASA Astrophysics Data System (ADS)

    Kamberaj, H.; Helms, V.

    2001-12-01

    A new Monte Carlo simulation program, BIOMCSIM, is presented that has been developed in particular to simulate the behaviour of biomolecular systems, leading to insights and understanding of their functions. The computational complexity in Monte Carlo simulations of high density systems, with large molecules like proteins immersed in a solvent medium, or when simulating the dynamics of water molecules in a protein cavity, is enormous. The program presented in this paper seeks to provide these desirable features putting special emphasis on simulations in grand canonical ensembles. It uses different biasing techniques to increase the convergence of simulations, and periodic load balancing in its parallel version, to maximally utilize the available computer power. In periodic systems, the long-ranged electrostatic interactions can be treated by Ewald summation. The program is modularly organized, and implemented using an ANSI C dialect, so as to enhance its modifiability. Its performance is demonstrated in benchmark applications for the proteins BPTI and Cytochrome c Oxidase.

  18. Comparisons Between TIME-GCM/MERRA Simulations and LEO Satellite Observations

    NASA Astrophysics Data System (ADS)

    Hagan, M. E.; Haeusler, K.; Forbes, J. M.; Zhang, X.; Doornbos, E.; Bruinsma, S.; Lu, G.

    2014-12-01

    We report on yearlong National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) simulations where we utilize the recently developed lower boundary condition based on 3-hourly MERRA (Modern-Era Retrospective Analysis for Research and Application) reanalysis data to account for tropospheric waves and tides propagating upward into the model domain. The solar and geomagnetic forcing is based on prevailing geophysical conditions. The simulations show a strong day-to-day variability in the upper thermospheric neutral temperature tidal fields, which is smoothed out quickly when averaging is applied over several days, e.g. up to 50% DE3 amplitude reduction for a 10-day average. This is an important result with respect to tidal diagnostics from satellite observations where averaging over multiple days is inevitable. In order to assess TIME-GCM performance we compare the simulations with measurements from the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellites.

  19. Common modeling system for digital simulation

    NASA Technical Reports Server (NTRS)

    Painter, Rick

    1994-01-01

    The Joint Modeling and Simulation System is a tri-service investigation into a common modeling framework for the development digital models. The basis for the success of this framework is an X-window-based, open systems architecture, object-based/oriented methodology, standard interface approach to digital model construction, configuration, execution, and post processing. For years Department of Defense (DOD) agencies have produced various weapon systems/technologies and typically digital representations of the systems/technologies. These digital representations (models) have also been developed for other reasons such as studies and analysis, Cost Effectiveness Analysis (COEA) tradeoffs, etc. Unfortunately, there have been no Modeling and Simulation (M&S) standards, guidelines, or efforts towards commonality in DOD M&S. The typical scenario is an organization hires a contractor to build hardware and in doing so an digital model may be constructed. Until recently, this model was not even obtained by the organization. Even if it was procured, it was on a unique platform, in a unique language, with unique interfaces, and, with the result being UNIQUE maintenance required. Additionally, the constructors of the model expended more effort in writing the 'infrastructure' of the model/simulation (e.g. user interface, database/database management system, data journalizing/archiving, graphical presentations, environment characteristics, other components in the simulation, etc.) than in producing the model of the desired system. Other side effects include: duplication of efforts; varying assumptions; lack of credibility/validation; and decentralization in policy and execution. J-MASS provides the infrastructure, standards, toolset, and architecture to permit M&S developers and analysts to concentrate on the their area of interest.

  20. Using Simulation to Improve Systems-Based Practices.

    PubMed

    Gardner, Aimee K; Johnston, Maximilian; Korndorffer, James R; Haque, Imad; Paige, John T

    2017-09-01

    Ensuring the safe, effective management of patients requires efficient processes of care within a smoothly operating system in which highly reliable teams of talented, skilled health care providers are able to use the vast array of high-technology resources and intensive care techniques available. Simulation can play a unique role in exploring and improving the complex perioperative system by proactively identifying latent safety threats and mitigating their damage to ensure that all those who work in this critical health care environment can provide optimal levels of patient care. A panel of five experts from a wide range of institutions was brought together to discuss the added value of simulation-based training for improving systems-based aspects of the perioperative service line. Panelists shared the way in which simulation was demonstrated at their institutions. The themes discussed by each panel member were delineated into four avenues through which simulation-based techniques have been used. Simulation-based techniques are being used in (1) testing new clinical workspaces and facilities before they open to identify potential latent conditions; (2) practicing how to identify the deteriorating patient and escalate care in an effective manner; (3) performing prospective root cause analyses to address system weaknesses leading to sentinel events; and (4) evaluating the efficiency and effectiveness of the electronic health record in the perioperative setting. This focused review of simulation-based interventions to test and improve components of the perioperative microsystem, which includes literature that has emerged since the panel's presentation, highlights the broad-based utility of simulation-based technologies in health care. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  1. Digital system for structural dynamics simulation

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.; Lagace, L. J.; Wojnar, M. K.; Glor, C.

    1982-01-01

    State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.

  2. The Loci Multidisciplinary Simulation System Overview and Status

    NASA Technical Reports Server (NTRS)

    Luke, Edward A.; Tong, Xiao-Ling; Tang, Lin

    2002-01-01

    This paper will discuss the Loci system, an innovative tool for developing tightly coupled multidisciplinary three dimensional simulations. This presentation will overview some of the unique capabilities of the Loci system to automate the assembly of numerical simulations from libraries of fundamental computational components. We will discuss the demonstration of the Loci system on coupled fluid-structure problems related to RBCC propulsion systems.

  3. Evaluation of Long-Term Cloud-Resolving Model Simulations Using Satellite Radiance Observations and Multi-Frequency Satellite Simulators

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Zeng, Xiping; Tao, Wei-Kuo; Masunaga, Hirohiko; Olson, William S.; Lang, Stephen

    2008-01-01

    This paper proposes a methodology known as the Tropical Rainfall Measuring Mission (TRMM) Triple-Sensor Three-step Evaluation Framework (T3EF) for the systematic evaluation of precipitating cloud types and microphysics in a cloud-resolving model (CRM). T3EF utilizes multi-frequency satellite simulators and novel statistics of multi-frequency radiance and backscattering signals observed from the TRMM satellite. Specifically, T3EF compares CRM and satellite observations in the form of combined probability distributions of precipitation radar (PR) reflectivity, polarization-corrected microwave brightness temperature (Tb), and infrared Tb to evaluate the candidate CRM. T3EF is used to evaluate the Goddard Cumulus Ensemble (GCE) model for cases involving the South China Sea Monsoon Experiment (SCSMEX) and Kwajalein Experiment (KWAJEX). This evaluation reveals that the GCE properly captures the satellite-measured frequencies of different precipitating cloud types in the SCSMEX case but underestimates the frequencies of deep convective and deep stratiform types in the KWAJEX case. Moreover, the GCE tends to simulate excessively large and abundant frozen condensates in deep convective clouds as inferred from the overestimated GCE-simulated radar reflectivities and microwave Tb depressions. Unveiling the detailed errors in the GCE s performance provides the best direction for model improvements.

  4. Optimum spaceborne computer system design by simulation

    NASA Technical Reports Server (NTRS)

    Williams, T.; Kerner, H.; Weatherbee, J. E.; Taylor, D. S.; Hodges, B.

    1973-01-01

    A deterministic simulator is described which models the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. Its use as a tool to study and determine the minimum computer system configuration necessary to satisfy the on-board computational requirements of a typical mission is presented. The paper describes how the computer system configuration is determined in order to satisfy the data processing demand of the various shuttle booster subsytems. The configuration which is developed as a result of studies with the simulator is optimal with respect to the efficient use of computer system resources.

  5. Comparative ELM study between the observation by ECEI and linear/nonlinear simulation in the KSTAR plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Minwoo; Park, Hyeon K.; Yun, Gunsu; Lee, Jaehyun; Lee, Jieun; Lee, Woochang; Jardin, Stephen; Xu, X. Q.; Kstar Team

    2015-11-01

    The modeling of the Edge-localized-mode (ELM) should be rigorously pursued for reliable and robust ELM control for steady-state long-pulse H-mode operation in ITER as well as DEMO. In the KSTAR discharge #7328, a linear stability of the ELMs is investigated using M3D-C1 and BOUT + + codes. This is achieved by linear simulation for the n = 8 mode structure of the ELM observed by the KSTAR electron cyclotron emission imaging (ECEI) systems. In the process of analysis, variations due to the plasma equilibrium profiles and transport coefficients on the ELM growth rate are investigated and simulation results with the two codes are compared. The numerical simulations are extended to nonlinear phase of the ELM dynamics, which includes saturation and crash of the modes. Preliminary results of the nonlinear simulations are compared with the measured images especially from the saturation to the crash. This work is supported by NRF of Korea under contract no. NRF-2014M1A7A1A03029865, US DoE by LLNL under contract DE-AC52-07NA27344 and US DoE by PPPL under contract DE-AC02-09CH11466.

  6. Hybrid particle-field molecular dynamics simulation for polyelectrolyte systems.

    PubMed

    Zhu, You-Liang; Lu, Zhong-Yuan; Milano, Giuseppe; Shi, An-Chang; Sun, Zhao-Yan

    2016-04-14

    To achieve simulations on large spatial and temporal scales with high molecular chemical specificity, a hybrid particle-field method was proposed recently. This method is developed by combining molecular dynamics and self-consistent field theory (MD-SCF). The MD-SCF method has been validated by successfully predicting the experimentally observable properties of several systems. Here we propose an efficient scheme for the inclusion of electrostatic interactions in the MD-SCF framework. In this scheme, charged molecules are interacting with the external fields that are self-consistently determined from the charge densities. This method is validated by comparing the structural properties of polyelectrolytes in solution obtained from the MD-SCF and particle-based simulations. Moreover, taking PMMA-b-PEO and LiCF3SO3 as examples, the enhancement of immiscibility between the ion-dissolving block and the inert block by doping lithium salts into the copolymer is examined by using the MD-SCF method. By employing GPU-acceleration, the high performance of the MD-SCF method with explicit treatment of electrostatics facilitates the simulation study of many problems involving polyelectrolytes.

  7. Observed Structure and Characteristics of Cold Pools over Tropical Oceans using Vector Wind Retrievals and WRF simulations

    NASA Astrophysics Data System (ADS)

    Garg, P.; Nesbitt, S. W.; Lang, T. J.; Chronis, T.; Thayer, J. D.; Hence, D. A.

    2017-12-01

    Cold pools generated in the wake of convective activity can enhance the surface sensible heat flux, latent heat flux, and also changes in evaporation out of, and fresh water flux into, the ocean. Recent studies have shown that over the open ocean, cold pool outflow boundaries and their intersections can organize and initiate a spectrum of deep convective clouds, which is a key driver of shallow and deep convection over conditionally-unstable tropical oceans. The primary goal of this study is to understand the structure and characteristics of cold pools over the tropical oceans using observations. With the idea that cold pools will have strong wind gradients at their boundaries, we use ASCAT vector wind retrievals. We identify regions of steep gradients in wind vectors as gradient features (GFs), akin to cold pools. Corresponding to these GFs, sensible and latent heat fluxes were calculated using the observed winds and background temperatures from MERRA-2 reanalysis. To evaluate the proposed technique, cold pools were observed using S-PolKa radar from the DYNAMO/AMIE field campaign in the Indian Ocean for the period of 1 October 2011 to 31 March 2012 and were compared with ASCAT GFs. To relate the thermodynamic and kinematic characteristics of observed and simulated cold pools, simulations were carried out on WRF on a 3-km domain explicitly. The areas of cold pools were identified in the models using virtual temperature (Tv), which is a direct measure of air density, while GFs were identified using model simulated winds. Quantitative measures indicate that GFs are highly correspondent with model-simulated cold pools. In global measurements of cold pools from 2007-2015, it is possible to examine the characteristics of GFs across all tropical ocean basins, and relate them to meteorological conditions, as well as the characteristics of the parent precipitation systems. Our results indicate that while there is a general relationship between the amount of precipitation

  8. System Diagnostic Builder - A rule generation tool for expert systems that do intelligent data evaluation. [applied to Shuttle Mission Simulator

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph; Burke, Roger

    1993-01-01

    Consideration is given to the System Diagnostic Builder (SDB), an automated knowledge acquisition tool using state-of-the-art AI technologies. The SDB employs an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert. Thus, data are captured from the subject system, classified, and used to drive the rule generation process. These rule bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The knowledge bases captured from the Shuttle Mission Simulator can be used as black box simulations by the Intelligent Computer Aided Training devices. The SDB can also be used to construct knowledge bases for the process control industry, such as chemical production or oil and gas production.

  9. Investigating Microphysics of Intracluster Medium with Advanced Hydrodynamic Simulations and X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Markevitch, Maxim

    Clusters of galaxies are the largest virialized mass concentrations in the Universe, and have long been recognized as sensitive cosmological probes. It is becoming increasingly clear that to realize their full potential for cosmology, we need to drastically reduce uncertainties in the cluster mass estimates and their relation to various cluster observables that arise from our lack of knowledge of the microphysics of the intracluster medium (ICM). Such ICM properties as thermal conductivity, viscosity, strength and structure of the magnetic fields, the energy in the cosmic ray components and electron-ion equilibration rates are very uncertain. Each of these can have a significant impact on the cluster thermal balance and the quantities that we observe in the X-ray, SZ, and radio bands. Theoretical estimates of thermal conductivity and viscosity are particularly uncertain -- by orders of magnitude. The heat can be conducted only along the magnetic field lines, but by some estimates, even along the lines it can be effectively suppressed by small- scale field fluctuations. Even less understood is the physical nature and the magnitude of viscosity, which bears directly on the ICM heating and mixing processes and the damping of turbulence. We have identified a method to constrain these quantities by contrasting high-quality X-ray observations of merging clusters with our high-resolution magnetohydrodynamic simulations that would follow the evolution of the magnetic field and include various levels of anisotropic conduction and viscosity. Thermal conduction can best be constrained by comparing X-ray temperature maps for several well-observed merging clusters with the maps for their simulated analogs. The conduction at interesting levels is expected to erase any small-scale temperature nonuniformities on timescales comparable to that of the merger. Currently, the most readily observable effect of viscosity is the suppression of instabilities in the cluster `cold fronts

  10. Comparison of Tropical and Extratropical Gust Factors Using Observed and Simulated Data

    NASA Astrophysics Data System (ADS)

    Edwards, R. P.; Schroeder, J. L.

    2011-12-01

    Questions of whether differences exist between tropical cyclone (TC) and extratropical (ET) wind have been the subject of considerable debate. This study will focus on the behavior of the gust factor (GF), the ratio of a peak wind speed of a certain duration and a mean wind speed of a certain duration, for three types of data: TC, ET, and simulated. For this project, the Universal Spectrum, a normalized, averaged spectrum for wind, was un-normalized and used to create simulated wind speed time series at a variety of wind speeds. Additional time series were created after modifying the spectrum to simulate the additional low-frequency energy observed in the TC wind spectrum as well as the reduction of high-frequency energy caused by a mechanical anemometer. The T and ET data used for this study were collected by Texas Tech University's mobile towers as part of various field efforts since 1998. Before comparisons were made, the database was divided into four roughness regimes based on the roughness length to ensure that differences observed in the turbulence statistics are not caused by differences in upstream terrain. The mean GF for the TC data set (open roughness regime), 1.49, was slightly higher than the ET value of 1.44 (Table 1). The distributions of GFs from each data type show similarities in shape between the base-simulated and ET data sets and between the TC and modified-simulated data set (Figure 1). These similarities are expected given the spectral similarities between the TC and modified-simulated data sets, namely additional low-frequency energy relative to the ET and base-simulated data. These findings suggest that the higher amount of low-frequency energy present in the tropical wind spectrum is partially responsible for the resulting higher GF for the tropical cyclone data. However, the modest increase in GF from the base to the modified simulated data suggest that there are more factors at work.

  11. Modelling dust polarization observations of molecular clouds through MHD simulations

    NASA Astrophysics Data System (ADS)

    King, Patrick K.; Fissel, Laura M.; Chen, Che-Yu; Li, Zhi-Yun

    2018-03-01

    The BLASTPol observations of Vela C have provided the most detailed characterization of the polarization fraction p and dispersion in polarization angles S for a molecular cloud. We compare the observed distributions of p and S with those obtained in synthetic observations of simulations of molecular clouds, assuming homogeneous grain alignment. We find that the orientation of the mean magnetic field relative to the observer has a significant effect on the p and S distributions. These distributions for Vela C are most consistent with synthetic observations where the mean magnetic field is close to the line of sight. Our results point to apparent magnetic disorder in the Vela C molecular cloud, although it can be due to either an inclination effect (i.e. observing close to the mean field direction) or significant field tangling from strong turbulence/low magnetization. The joint correlations of p with column density and of S with column density for the synthetic observations generally agree poorly with the Vela C joint correlations, suggesting that understanding these correlations requires a more sophisticated treatment of grain alignment physics.

  12. Observation and integrated Earth-system science: A roadmap for 2016–2025

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, V.

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types ofmore » observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016–2025 and some of the issues to be faced. Observations that are organized on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  13. Revisiting the stellar velocity ellipsoid-Hubble-type relation: observations versus simulations

    NASA Astrophysics Data System (ADS)

    Pinna, F.; Falcón-Barroso, J.; Martig, M.; Martínez-Valpuesta, I.; Méndez-Abreu, J.; van de Ven, G.; Leaman, R.; Lyubenova, M.

    2018-04-01

    The stellar velocity ellipsoid (SVE) in galaxies can provide important information on the processes that participate in the dynamical heating of their disc components (e.g. giant molecular clouds, mergers, spiral density waves, and bars). Earlier findings suggested a strong relation between the shape of the disc SVE and Hubble type, with later-type galaxies displaying more anisotropic ellipsoids and early types being more isotropic. In this paper, we revisit the strength of this relation using an exhaustive compilation of observational results from the literature on this issue. We find no clear correlation between the shape of the disc SVE and morphological type, and show that galaxies with the same Hubble type display a wide range of vertical-to-radial velocity dispersion ratios. The points are distributed around a mean value and scatter of σz/σR = 0.7 ± 0.2. With the aid of numerical simulations, we argue that different mechanisms might influence the shape of the SVE in the same manner and that the same process (e.g. mergers) does not have the same impact in all the galaxies. The complexity of the observational picture is confirmed by these simulations, which suggest that the vertical-to-radial axis ratio of the SVE is not a good indicator of the main source of disc heating. Our analysis of those simulations also indicates that the observed shape of the disc SVE may be affected by several processes simultaneously and that the signatures of some of them (e.g. mergers) fade over time.

  14. RAM simulation model for SPH/RSV systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, J.C.; Primm, A.H.; Nelson, S.C.

    1995-12-31

    The US Army`s Project Manager, Crusader is sponsoring the development of technologies that apply to the Self-Propelled Howitzer (SPH), formerly the Advanced Field Artillery System (AFAS), and Resupply Vehicle (RSV), formerly the Future Armored Resupply Vehicle (FARV), weapon system. Oak Ridge National Laboratory (ORNL) is currently performing developmental work in support of the SPH/PSV Crusader system. Supportive analyses of reliability, availability, and maintainability (RAM) aspects were also performed for the SPH/RSV effort. During FY 1994 and FY 1995 OPNL conducted a feasibility study to demonstrate the application of simulation modeling for RAM analysis of the Crusader system. Following completion ofmore » the feasibility study, a full-scale RAM simulation model of the Crusader system was developed for both the SPH and PSV. This report provides documentation for the simulation model as well as instructions in the proper execution and utilization of the model for the conduct of RAM analyses.« less

  15. Comparing cosmological hydrodynamic simulations with observations of high- redshift galaxy formation

    NASA Astrophysics Data System (ADS)

    Finlator, Kristian Markwart

    We use cosmological hydrodynamic simulations to study the impact of outflows and radiative feedback on high-redshift galaxies. For outflows, we consider simulations that assume (i) no winds, (ii) a "constant-wind" model in which the mass-loading factor and outflow speed are constant, and (iii) "momentum-driven" winds in which both parameters vary smoothly with mass. In order to treat radiative feedback, we develop a moment-based radiative transfer technique that operates in both post-processing and coupled radiative hydrodynamic modes. We first ask how outflows impact the broadband spectral energy distributions (SEDs) of six observed reionization-epoch galaxies. Simulations reproduce five regardless of the outflow prescription, while the sixth suggests an unusually bursty star formation history. We conclude that (i) simulations broadly account for available constraints on reionization-epoch galaxies, (ii) individual SEDs do not constrain outflows, and (iii) SED comparisons efficiently isolate objects that challenge simulations. We next study how outflows impact the galaxy mass metallicity relation (MZR). Momentum-driven outflows uniquely reproduce observations at z = 2. In this scenario, galaxies obey two equilibria: (i) The rate at which a galaxy processes gas into stars and outflows tracks its inflow rate; and (ii) The gas enrichment rate owing to star formation balances the dilution rate owing to inflows. Combining these conditions indicates that the MZR is dominated by the (instantaneous) variation of outflows with mass, with more-massive galaxies driving less gas into outflows per unit stellar mass formed. Turning to radiative feedback, we use post-processing simulations to study the topology of reionization. Reionization begins in overdensities and then "leaks" directly into voids, with filaments reionizing last owing to their high density and low emissivity. This result conflicts with previous findings that voids ionize last. We argue that it owes to the

  16. The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    The restructuring of the NASA Earth Observing System (EOS), designed to provide comprehensive long term observations from space of changes occurring on the Earth from natural and human causes in order to have a sound scientific basis for policy decisions on protection of the future, is reported. In response to several factors, the original program approved in the fiscal year 1991 budget was restructured and somewhat reduced in scope. The resulting program uses three different sized launch vehicles to put six different spacecraft in orbit in the first phase, followed by two replacement launches for each of five of the six satellites to maintain a long term observing capability to meet the needs of global climate change research and other science objectives. The EOS system, including the space observatories, the data and information system, and the interdisciplinary global change research effort, are approved and proceeding. Elements of EOS are already in place, such as the research investigations and initial data system capabilities. The flights of precursor satellite and Shuttle missions, the ongoing data analysis, and the evolutionary enhancements to the integrated Earth science data management capabilities are all important building blocks to the full EOS program.

  17. Evaluation of simulated biospheric carbon dioxide fluxes and atmospheric concentrations using global in situ observations

    NASA Astrophysics Data System (ADS)

    Philip, S.; Johnson, M. S.; Potter, C. S.; Genovese, V. B.

    2016-12-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in

  18. System Simulation by Recursive Feedback: Coupling A Set of Stand-Alone Subsystem Simulations

    NASA Technical Reports Server (NTRS)

    Nixon, Douglas D.; Hanson, John M. (Technical Monitor)

    2002-01-01

    Recursive feedback is defined and discussed as a framework for development of specific algorithms and procedures that propagate the time-domain solution for a dynamical system simulation consisting of multiple numerically coupled self-contained stand-alone subsystem simulations. A satellite motion example containing three subsystems (other dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Centralized and distributed versions of coupling structure have been addressed. Numerical results are evaluated by direct comparison with a standard total-system simultaneous-solution approach.

  19. Simulations of VLBI observations of a geodetic satellite providing co-location in space

    NASA Astrophysics Data System (ADS)

    Anderson, James M.; Beyerle, Georg; Glaser, Susanne; Liu, Li; Männel, Benjamin; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald

    2018-02-01

    We performed Monte Carlo simulations of very-long-baseline interferometry (VLBI) observations of Earth-orbiting satellites incorporating co-located space-geodetic instruments in order to study how well the VLBI frame and the spacecraft frame can be tied using such measurements. We simulated observations of spacecraft by VLBI observations, time-of-flight (TOF) measurements using a time-encoded signal in the spacecraft transmission, similar in concept to precise point positioning, and differential VLBI (D-VLBI) observations using angularly nearby quasar calibrators to compare their relative performance. We used the proposed European Geodetic Reference Antenna in Space (E-GRASP) mission as an initial test case for our software. We found that the standard VLBI technique is limited, in part, by the present lack of knowledge of the absolute offset of VLBI time to Coordinated Universal Time at the level of microseconds. TOF measurements are better able to overcome this problem and provide frame ties with uncertainties in translation and scale nearly a factor of three smaller than those yielded from VLBI measurements. If the absolute time offset issue can be resolved by external means, the VLBI results can be significantly improved and can come close to providing 1 mm accuracy in the frame tie parameters. D-VLBI observations with optimum performance assumptions provide roughly a factor of two higher uncertainties for the E-GRASP orbit. We additionally simulated how station and spacecraft position offsets affect the frame tie performance.

  20. An Open Simulation System Model for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1995-01-01

    A model for a generic and open environment for running multi-code or multi-application simulations - called the open Simulation System Model (OSSM) - is proposed and defined. This model attempts to meet the requirements of complex systems like the Numerical Propulsion Simulator System (NPSS). OSSM places no restrictions on the types of applications that can be integrated at any state of its evolution. This includes applications of different disciplines, fidelities, etc. An implementation strategy is proposed that starts with a basic prototype, and evolves over time to accommodate an increasing number of applications. Potential (standard) software is also identified which may aid in the design and implementation of the system.

  1. Coronal Mass Ejections and Dimmings: A Comparative Study using MHD Simulations and SDO Observations

    NASA Astrophysics Data System (ADS)

    Jin, M.; Cheung, C. M. M.; DeRosa, M. L.; Nitta, N.; Schrijver, K.

    2017-12-01

    Solar coronal dimmings have been observed extensively in the past two decades. Due to their close association with coronal mass ejections (CMEs), there is a critical need to improve our understanding of the physical processes that cause dimmings and determine their relationship with CMEs. In this study, we investigate coronal dimmings by combining simulation and observational efforts. By utilizing a data-driven global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we simulate coronal dimmings resulting from different CME energetics and flux rope configurations. We synthesize the emissions of different EUV spectral bands/lines and compare with SDO/AIA and EVE observations. A detailed analysis of simulation and observation data suggests that although the transient dimming / brightening patterns could relate to plasma heating processes (either by adiabatic compression or reconnection), the long-lasting "core" and "remote" (also known as "secondary") dimmings both originate from regions with open/quasi-open fields and are caused by mass loss process. The mass loss in the remote dimming region is induced by CME-driven shock. Using metrics such as dimming depth, dimming slope, and recovery time, we investigate the relationship between dimmings and CME properties (e.g., CME mass, CME speed) in the simulation. Our result suggests that coronal dimmings encode important information about CME energetics, CME-driven shock properties, and magnetic configuration of erupting flux ropes. We also discuss how our knowledge about solar coronal dimmings could be extended to the study of stellar CMEs, which may prove important for exoplanet atmospheres and habitability but which are currently not observable.

  2. Using a simulation assistant in modeling manufacturing systems

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, S. X.; Wolfsberger, John W.

    1988-01-01

    Numerous simulation languages exist for modeling discrete event processes, and are now ported to microcomputers. Graphic and animation capabilities were added to many of these languages to assist the users build models and evaluate the simulation results. With all these languages and added features, the user is still plagued with learning the simulation language. Futhermore, the time to construct and then to validate the simulation model is always greater than originally anticipated. One approach to minimize the time requirement is to use pre-defined macros that describe various common processes or operations in a system. The development of a simulation assistant for modeling discrete event manufacturing processes is presented. A simulation assistant is defined as an interactive intelligent software tool that assists the modeler in writing a simulation program by translating the modeler's symbolic description of the problem and then automatically generating the corresponding simulation code. The simulation assistant is discussed with emphasis on an overview of the simulation assistant, the elements of the assistant, and the five manufacturing simulation generators. A typical manufacturing system will be modeled using the simulation assistant and the advantages and disadvantages discussed.

  3. Arctic daily temperature and precipitation extremes: Observed and simulated physical behavior

    NASA Astrophysics Data System (ADS)

    Glisan, Justin Michael

    Simulations using a six-member ensemble of Pan-Arctic WRF (PAW) were produced on two Arctic domains with 50-km resolution to analyze precipitation and temperature extremes for various periods. The first study used a domain developed for the Regional Arctic Climate Model (RACM). Initial simulations revealed deep atmospheric circulation biases over the northern Pacific Ocean, manifested in pressure, geopotential height, and temperature fields. Possible remedies to correct these large biases, such as modifying the physical domain or using different initial/boundary conditions, were unsuccessful. Spectral (interior) nudging was introduced as a way of constraining the model to be more consistent with observed behavior. However, such control over numerical model behavior raises concerns over how much nudging may affect unforced variability and extremes. Strong nudging may reduce or filter out extreme events, since the nudging pushes the model toward a relatively smooth, large-scale state. The question then becomes---what is the minimum spectral nudging needed to correct biases while not limiting the simulation of extreme events? To determine this, we use varying degrees of spectral nudging, using WRF's standard nudging as a reference point during January and July 2007. Results suggest that there is a marked lack of sensitivity to varying degrees of nudging. Moreover, given that nudging is an artificial forcing applied in the model, an important outcome of this work is that nudging strength apparently can be considerably smaller than WRF's standard strength and still produce reliable simulations. In the remaining studies, we used the same PAW setup to analyze daily precipitation extremes simulated over a 19-year period on the CORDEX Arctic domain for winter and summer. We defined these seasons as the three-month period leading up to and including the climatological sea ice maximum and minimum, respectively. Analysis focused on four North American regions defined using

  4. Argonne simulation framework for intelligent transportation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, T.; Doss, E.; Hanebutte, U.

    1996-04-01

    A simulation framework has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS). The simulator is designed to run on parallel computers and distributed (networked) computer systems; however, a version for a stand alone workstation is also available. The ITS simulator includes an Expert Driver Model (EDM) of instrumented ``smart`` vehicles with in-vehicle navigation units. The EDM is capable of performing optimal route planning and communicating with Traffic Management Centers (TMC). A dynamic road map data base is sued for optimum route planning, where the data is updated periodically tomore » reflect any changes in road or weather conditions. The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces that includes human-factors studies to support safety and operational research. Realistic modeling of variations of the posted driving speed are based on human factor studies that take into consideration weather, road conditions, driver`s personality and behavior and vehicle type. The simulator has been developed on a distributed system of networked UNIX computers, but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of the developed simulator is that vehicles will be represented by autonomous computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. Vehicle processes interact with each other and with ITS components by exchanging messages. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.« less

  5. Holodeck: Telepresence Dome Visualization System Simulations

    NASA Technical Reports Server (NTRS)

    Hite, Nicolas

    2012-01-01

    This paper explores the simulation and consideration of different image-projection strategies for the Holodeck, a dome that will be used for highly immersive telepresence operations in future endeavors of the National Aeronautics and Space Administration (NASA). Its visualization system will include a full 360 degree projection onto the dome's interior walls in order to display video streams from both simulations and recorded video. Because humans innately trust their vision to precisely report their surroundings, the Holodeck's visualization system is crucial to its realism. This system will be rigged with an integrated hardware and software infrastructure-namely, a system of projectors that will relay with a Graphics Processing Unit (GPU) and computer to both project images onto the dome and correct warping in those projections in real-time. Using both Computer-Aided Design (CAD) and ray-tracing software, virtual models of various dome/projector geometries were created and simulated via tracking and analysis of virtual light sources, leading to the selection of two possible configurations for installation. Research into image warping and the generation of dome-ready video content was also conducted, including generation of fisheye images, distortion correction, and the generation of a reliable content-generation pipeline.

  6. Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    NASA Technical Reports Server (NTRS)

    Montag, Bruce C.; Bishop, Alfred M.; Redfield, Joe B.

    1989-01-01

    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power.

  7. Sliding mode disturbance observer-based control of a twin rotor MIMO system.

    PubMed

    Rashad, Ramy; El-Badawy, Ayman; Aboudonia, Ahmed

    2017-07-01

    This work proposes a robust tracking controller for a helicopter laboratory setup known as the twin rotor MIMO system (TRMS) using an integral sliding mode controller. To eliminate the discontinuity in the control signal, the controller is augmented by a sliding mode disturbance observer. The actuator dynamics is handled using a backstepping approach which is applicable due to the continuous chattering-free nature of the command signals generated using the disturbance observer based controller. To avoid the complexity of analytically differentiating the command signals, a first order sliding mode differentiator is used. Stability analysis of the closed loop system and the ultimate boundedness of the tracking error is proved using Lyapunov stability arguments. The proposed controller is validated by several simulation studies and is compared to other schemes in the literature. Experimental results using a hardware-in-the-loop system validate the robustness and effectiveness of the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. GIANT MOLECULAR CLOUD FORMATION IN DISK GALAXIES: CHARACTERIZING SIMULATED VERSUS OBSERVED CLOUD CATALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benincasa, Samantha M.; Pudritz, Ralph E.; Wadsley, James

    We present the results of a study of simulated giant molecular clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 10{sup 4} M{sub ☉} and 10{sup 7} M{sub ☉}. We compare our simulated cloud population to two observational surveys: the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulatedmore » cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary—a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud-cloud gravitational encounters. We also find that the rate at which potentially star-forming gas accumulates within dense regions—wherein n{sub thresh} ≥ 10{sup 4} cm{sup –3}—is 3% per 10 Myr, in clouds of roughly 10{sup 6} M{sub ☉}. This suggests that star formation rates in observed clouds are related to the rates at which gas can be accumulated into dense subregions within GMCs via filamentary flows. The most internally well-resolved clouds are chosen for listing in a catalog of simulated GMCs—the first of its kind. The cataloged clouds are available as an extracted data set from the global simulation.« less

  9. The power spectrum of solar convection flows from high-resolution observations and 3D simulations

    NASA Astrophysics Data System (ADS)

    Yelles Chaouche, L.; Moreno-Insertis, F.; Bonet, J. A.

    2014-03-01

    Context. Understanding solar surface magnetoconvection requires the study of the Fourier spectra of the velocity fields. Nowadays, observations are available that resolve very small spatial scales, well into the subgranular range, almost reaching the scales routinely resolved in numerical magnetoconvection simulations. Comparison of numerical and observational data at present can provide an assessment of the validity of the observational proxies. Aims: Our aims are: (1) to obtain Fourier spectra for the photospheric velocity fields using the spectropolarimetric observations with the highest spatial resolution so far (~120 km), thus reaching for the first time spatial scales well into the subgranular range; (2) to calculate corresponding Fourier spectra from realistic 3D numerical simulations of magnetoconvection and carry out a proper comparison with their observational counterparts considering the residual instrumental degradation in the observational data; and (3) to test the observational proxies on the basis of the numerical data alone, by comparing the actual velocity field in the simulations with synthetic observations obtained from the numerical boxes. Methods: (a) For the observations, data from the SUNRISE/IMaX spectropolarimeter are used. (b) For the simulations, we use four series of runs obtained with the STAGGER code for different average signed vertical magnetic field values (0, 50, 100, and 200 G). Spectral line profiles are synthesized from the numerical boxes for the same line observed by IMaX (Fe I 5250.2 Å) and degraded to match the performance of the IMaX instrument. Proxies for the velocity field are obtained via Dopplergrams (vertical component) and local correlation tracking (LCT, for the horizontal component). Fourier power spectra are calculated and a comparison between the synthetic and observational data sets carried out. (c) For the internal comparison of the numerical data, velocity values on constant optical depth surfaces are used

  10. Development of an Intelligent Monitoring and Control System for a Heterogeneous Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Afjeh, Abdollah A.; Lewandowski, Henry; Homer, Patrick T.; Schlichting, Richard D.

    1996-01-01

    The NASA Numerical Propulsion System Simulation (NPSS) project is exploring the use of computer simulation to facilitate the design of new jet engines. Several key issues raised in this research are being examined in an NPSS-related research project: zooming, monitoring and control, and support for heterogeneity. The design of a simulation executive that addresses each of these issues is described. In this work, the strategy of zooming, which allows codes that model at different levels of fidelity to be integrated within a single simulation, is applied to the fan component of a turbofan propulsion system. A prototype monitoring and control system has been designed for this simulation to support experimentation with expert system techniques for active control of the simulation. An interconnection system provides a transparent means of connecting the heterogeneous systems that comprise the prototype.

  11. Optimum spaceborne computer system design by simulation

    NASA Technical Reports Server (NTRS)

    Williams, T.; Weatherbee, J. E.; Taylor, D. S.

    1972-01-01

    A deterministic digital simulation model is described which models the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. Use of the model as a tool in configuring a minimum computer system for a typical mission is demonstrated. The configuration which is developed as a result of studies with the simulator is optimal with respect to the efficient use of computer system resources, i.e., the configuration derived is a minimal one. Other considerations such as increased reliability through the use of standby spares would be taken into account in the definition of a practical system for a given mission.

  12. Numerical Propulsion System Simulation: An Overview

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    2000-01-01

    The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive and time consuming. One of the main contributors to the high cost and lengthy time is the need to perform many large-scale hardware tests and the inability to integrate all appropriate subsystems early in the design process. The NASA Glenn Research Center is developing the technologies required to enable simulations of full aerospace propulsion systems in sufficient detail to resolve critical design issues early in the design process before hardware is built. This concept, called the Numerical Propulsion System Simulation (NPSS), is focused on the integration of multiple disciplines such as aerodynamics, structures and heat transfer with computing and communication technologies to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS, as illustrated, is to be a "numerical test cell" that enables full engine simulation overnight on cost-effective computing platforms. There are several key elements within NPSS that are required to achieve this capability: 1) clear data interfaces through the development and/or use of data exchange standards, 2) modular and flexible program construction through the use of object-oriented programming, 3) integrated multiple fidelity analysis (zooming) techniques that capture the appropriate physics at the appropriate fidelity for the engine systems, 4) multidisciplinary coupling techniques and finally 5) high performance parallel and distributed computing. The current state of development in these five area focuses on air breathing gas turbine engines and is reported in this paper. However, many of the technologies are generic and can be readily applied to rocket based systems and combined cycles currently being considered for low-cost access-to-space applications. Recent accomplishments include: (1) the development of an industry-standard engine cycle analysis program and plug 'n play

  13. The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) - Part 1: Model description and pre-industrial simulation

    NASA Astrophysics Data System (ADS)

    Law, Rachel M.; Ziehn, Tilo; Matear, Richard J.; Lenton, Andrew; Chamberlain, Matthew A.; Stevens, Lauren E.; Wang, Ying-Ping; Srbinovsky, Jhan; Bi, Daohua; Yan, Hailin; Vohralik, Peter F.

    2017-07-01

    Earth system models (ESMs) that incorporate carbon-climate feedbacks represent the present state of the art in climate modelling. Here, we describe the Australian Community Climate and Earth System Simulator (ACCESS)-ESM1, which comprises atmosphere (UM7.3), land (CABLE), ocean (MOM4p1), and sea-ice (CICE4.1) components with OASIS-MCT coupling, to which ocean and land carbon modules have been added. The land carbon model (as part of CABLE) can optionally include both nitrogen and phosphorous limitation on the land carbon uptake. The ocean carbon model (WOMBAT, added to MOM) simulates the evolution of phosphate, oxygen, dissolved inorganic carbon, alkalinity and iron with one class of phytoplankton and zooplankton. We perform multi-centennial pre-industrial simulations with a fixed atmospheric CO2 concentration and different land carbon model configurations (prescribed or prognostic leaf area index). We evaluate the equilibration of the carbon cycle and present the spatial and temporal variability in key carbon exchanges. Simulating leaf area index results in a slight warming of the atmosphere relative to the prescribed leaf area index case. Seasonal and interannual variations in land carbon exchange are sensitive to whether leaf area index is simulated, with interannual variations driven by variability in precipitation and temperature. We find that the response of the ocean carbon cycle shows reasonable agreement with observations. While our model overestimates surface phosphate values, the global primary productivity agrees well with observations. Our analysis highlights some deficiencies inherent in the carbon models and where the carbon simulation is negatively impacted by known biases in the underlying physical model and consequent limits on the applicability of this model version. We conclude the study with a brief discussion of key developments required to further improve the realism of our model simulation.

  14. Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions

    NASA Astrophysics Data System (ADS)

    Dalsøren, Stig B.; Myhre, Gunnar; Hodnebrog, Øivind; Myhre, Cathrine Lund; Stohl, Andreas; Pisso, Ignacio; Schwietzke, Stefan; Höglund-Isaksson, Lena; Helmig, Detlev; Reimann, Stefan; Sauvage, Stéphane; Schmidbauer, Norbert; Read, Katie A.; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Wallasch, Markus

    2018-03-01

    Ethane and propane are the most abundant non-methane hydrocarbons in the atmosphere. However, their emissions, atmospheric distribution, and trends in their atmospheric concentrations are insufficiently understood. Atmospheric model simulations using standard community emission inventories do not reproduce available measurements in the Northern Hemisphere. Here, we show that observations of pre-industrial and present-day ethane and propane can be reproduced in simulations with a detailed atmospheric chemistry transport model, provided that natural geologic emissions are taken into account and anthropogenic fossil fuel emissions are assumed to be two to three times higher than is indicated in current inventories. Accounting for these enhanced ethane and propane emissions results in simulated surface ozone concentrations that are 5-13% higher than previously assumed in some polluted regions in Asia. The improved correspondence with observed ethane and propane in model simulations with greater emissions suggests that the level of fossil (geologic + fossil fuel) methane emissions in current inventories may need re-evaluation.

  15. Analyzing the uncertainty of ensemble-based gridded observations in land surface simulations and drought assessment

    NASA Astrophysics Data System (ADS)

    Ahmadalipour, Ali; Moradkhani, Hamid

    2017-12-01

    Hydrologic modeling is one of the primary tools utilized for drought monitoring and drought early warning systems. Several sources of uncertainty in hydrologic modeling have been addressed in the literature. However, few studies have assessed the uncertainty of gridded observation datasets from a drought monitoring perspective. This study provides a hydrologic modeling oriented analysis of the gridded observation data uncertainties over the Pacific Northwest (PNW) and its implications on drought assessment. We utilized a recently developed 100-member ensemble-based observed forcing data to simulate hydrologic fluxes at 1/8° spatial resolution using Variable Infiltration Capacity (VIC) model, and compared the results with a deterministic observation. Meteorological and hydrological droughts are studied at multiple timescales over the basin, and seasonal long-term trends and variations of drought extent is investigated for each case. Results reveal large uncertainty of observed datasets at monthly timescale, with systematic differences for temperature records, mainly due to different lapse rates. The uncertainty eventuates in large disparities of drought characteristics. In general, an increasing trend is found for winter drought extent across the PNW. Furthermore, a ∼3% decrease per decade is detected for snow water equivalent (SWE) over the PNW, with the region being more susceptible to SWE variations of the northern Rockies than the western Cascades. The agricultural areas of southern Idaho demonstrate decreasing trend of natural soil moisture as a result of precipitation decline, which implies higher appeal for anthropogenic water storage and irrigation systems.

  16. Comparison of PARASOL Observations with Polarized Reflectances Simulated Using Different Ice Habit Mixtures

    NASA Technical Reports Server (NTRS)

    Cole, Benjamin H.; Yang, Ping; Baum, Bryan A.; Riedi, Jerome; Labonnote, Laurent C.; Thieuleux, Francois; Platnick, Steven

    2012-01-01

    Insufficient knowledge of the habit distribution and the degree of surface roughness of ice crystals within ice clouds is a source of uncertainty in the forward light scattering and radiative transfer simulations required in downstream applications involving these clouds. The widely used MODerate Resolution Imaging Spectroradiometer (MODIS) Collection 5 ice microphysical model assumes a mixture of various ice crystal shapes with smooth-facets except aggregates of columns for which a moderately rough condition is assumed. When compared with PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) polarized reflection data, simulations of polarized reflectance using smooth particles show a poor fit to the measurements, whereas very rough-faceted particles provide an improved fit to the polarized reflectance. In this study a new microphysical model based on a mixture of 9 different ice crystal habits with severely roughened facets is developed. Simulated polarized reflectance using the new ice habit distribution is calculated using a vector adding-doubling radiative transfer model, and the simulations closely agree with the polarized reflectance observed by PARASOL. The new general habit mixture is also tested using a spherical albedo differences analysis, and surface roughening is found to improve the consistency of multi-angular observations. It is suggested that an ice model incorporating an ensemble of different habits with severely roughened surfaces would potentially be an adequate choice for global ice cloud retrievals.

  17. DCMS: A data analytics and management system for molecular simulation.

    PubMed

    Kumar, Anand; Grupcev, Vladimir; Berrada, Meryem; Fogarty, Joseph C; Tu, Yi-Cheng; Zhu, Xingquan; Pandit, Sagar A; Xia, Yuni

    Molecular Simulation (MS) is a powerful tool for studying physical/chemical features of large systems and has seen applications in many scientific and engineering domains. During the simulation process, the experiments generate a very large number of atoms and intend to observe their spatial and temporal relationships for scientific analysis. The sheer data volumes and their intensive interactions impose significant challenges for data accessing, managing, and analysis. To date, existing MS software systems fall short on storage and handling of MS data, mainly because of the missing of a platform to support applications that involve intensive data access and analytical process. In this paper, we present the database-centric molecular simulation (DCMS) system our team developed in the past few years. The main idea behind DCMS is to store MS data in a relational database management system (DBMS) to take advantage of the declarative query interface ( i.e. , SQL), data access methods, query processing, and optimization mechanisms of modern DBMSs. A unique challenge is to handle the analytical queries that are often compute-intensive. For that, we developed novel indexing and query processing strategies (including algorithms running on modern co-processors) as integrated components of the DBMS. As a result, researchers can upload and analyze their data using efficient functions implemented inside the DBMS. Index structures are generated to store analysis results that may be interesting to other users, so that the results are readily available without duplicating the analysis. We have developed a prototype of DCMS based on the PostgreSQL system and experiments using real MS data and workload show that DCMS significantly outperforms existing MS software systems. We also used it as a platform to test other data management issues such as security and compression.

  18. Autonomous aerial observations to extend and complement the Earth Observing System: a science-driven systems-oriented approach

    NASA Astrophysics Data System (ADS)

    Sandford, Stephen P.; Harrison, F. W.; Langford, John; Johnson, James W.; Qualls, Garry; Emmitt, David; Jones, W. Linwood; Shugart, Herman H., Jr.

    2004-12-01

    The current Earth observing capability depends primarily on spacecraft missions and ground-based networks to provide the critical on-going observations necessary for improved understanding of the Earth system. Aircraft missions play an important role in process studies but are limited to relatively short-duration flights. Suborbital observations have contributed to global environmental knowledge by providing in-depth, high-resolution observations that space-based and in-situ systems are challenged to provide; however, the limitations of aerial platforms - e.g., limited observing envelope, restrictions associated with crew safety and high cost of operations have restricted the suborbital program to a supporting role. For over a decade, it has been recognized that autonomous aerial observations could potentially be important. Advances in several technologies now enable autonomous aerial observation systems (AAOS) that can provide fundamentally new observational capability for Earth science and applications and thus lead scientists and engineers to rethink how suborbital assets can best contribute to Earth system science. Properly developed and integrated, these technologies will enable new Earth science and operational mission scenarios with long term persistence, higher-spatial and higher-temporal resolution at lower cost than space or ground based approaches. This paper presents the results of a science driven, systems oriented study of broad Earth science measurement needs. These needs identify aerial mission scenarios that complement and extend the current Earth Observing System. These aerial missions are analogous to space missions in their complexity and potential for providing significant data sets for Earth scientists. Mission classes are identified and presented based on science driven measurement needs in atmospheric, ocean and land studies. Also presented is a nominal concept of operations for an AAOS: an innovative set of suborbital assets that

  19. Tactical Aviation Mission System Simulation Situational Awareness Project

    DTIC Science & Technology

    2004-04-01

    prototyping and exercising human-machine systems and for measuring the impact of new technologies in a dynamic simulation environment. Theoretical...31 2.4.1 The Impact of an ERSTA-Like System on the CH-146 Mission Commander...was proven to be an effective platform for prototyping and exercising systems and for measuring the impact of new technologies in a dynamic simulation

  20. A Unique Software System For Simulation-to-Flight Research

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Hutchinson, Brian K.

    2001-01-01

    "Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.

  1. Sea Surface Salinity Variability from Simulations and Observations: Preparing for Aquarius

    NASA Technical Reports Server (NTRS)

    Jacob, S. Daniel; LeVine, David M.

    2010-01-01

    Oceanic fresh water transport has been shown to play an important role in the global hydrological cycle. Sea surface salinity (SSS) is representative of the surface fresh water fluxes and the upcoming Aquarius mission scheduled to be launched in December 2010 will provide excellent spatial and temporal SSS coverage to better estimate the net exchange. In most ocean general circulation models, SSS is relaxed to climatology to prevent model drift. While SST remains a well observed variable, relaxing to SST reduces the range of SSS variability in the simulations (Fig.1). The main objective of the present study is to simulate surface tracers using a primitive equation ocean model for multiple forcing data sets to identify and establish a baseline SSS variability. The simulated variability scales are compared to those from near-surface argo salinity measurements.

  2. Adaptive System Modeling for Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Thomas, Justin

    2011-01-01

    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  3. Discrete-time state estimation for stochastic polynomial systems over polynomial observations

    NASA Astrophysics Data System (ADS)

    Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.

    2018-07-01

    This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.

  4. Simulating CO2 profiles using NIES TM and comparison with HIAPER Pole-to-Pole Observations

    NASA Astrophysics Data System (ADS)

    Song, C.; Maksyutov, S.; Belikov, D.; Takagi, H.; Shu, J.

    2015-03-01

    We present a study on validation of the National Institute for Environmental Studies Transport Model (NIES TM) by comparing to observed vertical profiles of atmospheric CO2. The model uses a hybrid sigma-isentropic (σ-θ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly in the stratosphere. The model transport is driven by reanalyzed meteorological fields and designed to simulate seasonal and diurnal cycles, synoptic variations, and spatial distributions of atmospheric chemical constituents in the troposphere. The model simulations were run for biosphere, fossil fuel, air-ocean exchange, biomass burning and inverse correction fluxes of carbon dioxide (CO2) by GOSAT Level 4 product. We compared the NIES TM simulated fluxes with data from the HIAPER Pole-to-Pole Observations (HIPPO) Merged 10 s Meteorology, Atmospheric Chemistry, and Aerosol Data, including HIPPO-1, HIPPO-2 and HIPPO-3 from 128.0° E to -84.0° W, and 87.0° N to -67.2° S. The simulation results were compared with CO2 observations made in January and November 2009, and March and April 2010. The analysis attests that the model is good enough to simulate vertical profiles with errors generally within 1-2 ppmv, except for the lower stratosphere in the Northern Hemisphere high latitudes.

  5. Duality quantum algorithm efficiently simulates open quantum systems

    PubMed Central

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  6. Simulation, Design Abstraction, and SystemC

    ERIC Educational Resources Information Center

    Harcourt, Ed

    2007-01-01

    SystemC is a system-level design and simulation language based on C++. We've been using SystemC for computer organization and design projects for the past several years. Because SystemC is embedded in C++ it contains the powerful abstraction mechanisms of C++ not found in traditional hardware description languages, such as support for…

  7. Studies with a reconstituted muscle glycolytic system. The anaerobic glycolytic response to simulated tetanic contraction

    PubMed Central

    Scopes, Robert K.

    1974-01-01

    By using a reconstituted glycolytic system and a highly active adenosine triphosphatase (ATPase), the metabolism during muscular tetanic contraction was simulated and observed. With an ATPase activity somewhat greater than can be maintained in muscle tissue, phosphocreatine was rapidly and completely utilized, lactate production commenced about 5s after the ATPase was added and after 15s adenine nucleotides were lost through deamination to IMP. By 40s, all metabolism ceased because of complete loss of adenine mononucleotides. With a lower ATPase activity, glycolytic regeneration of ATP was capable of maintaining the ATP concentration at its initial value and even by 80s, only one-half of the phosphocreatine had been utilized. No deamination occurred in this time. It is suggested that the metabolic events observed in the simulated system are basically the same as occur in muscle doing heavy work. PMID:4275706

  8. Low-frequency waves at comet 67P/Churyumov-Gerasimenko. Observations compared to numerical simulations

    NASA Astrophysics Data System (ADS)

    Koenders, C.; Perschke, C.; Goetz, C.; Richter, I.; Motschmann, U.; Glassmeier, K. H.

    2016-10-01

    Context. A new type of low-frequency wave was detected by the magnetometer of the Rosetta Plasma Consortium at the comet during the initial months after the arrival of the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. This large-amplitude, nearly continuous wave activity is observed in the frequency range from 30 mHz to 80 mHz where 40 mHz to 50 mHz is the dominant frequency. This type of low frequency is not closely related to the gyrofrequency of newborn cometary ions, which differs from previous wave activity observed in the interaction region of comets with the solar wind. Aims: This work aims to reveal a global view on the wave activity region using simulations of the comet-solar wind interaction region. Parameters, such as wavelength, propagation direction, and propagation patterns, are within the focus of this study. While the Rosetta observations only provide local information, numerical simulations provide further information on the global wave properties. Methods: Standard hybrid simulations were applied to the comet-solar wind interaction scenario. In the model, the ions were described as particles, which allows us to describe kinetic processes of the ions. The electrons were described as a fluid. Results: The simulations exhibit a threefold wave structure of the interaction region. A Mach cone and a Whistler wing are observed downstream of the comet. The third kind of wave activity found are low-frequency waves at 97 mHz, which corresponds to the waves observed by Richter et al. (2015, Ann. Geophys., 33, 1031). These waves are caused by the initial pick-up of the cometary ions that are perpendicular to the solar wind flow and in the interplanetary magnetic field direction. The associated electric current becomes unstable. The simulations show that wave activity is only detectable in the + E hemisphere and that the Mach cone and whistler wings need to be distinguished from the newly found instability driven wave activity. The movie associated to

  9. Evaluation of UTLS Carbon Monoxide Simulations in GMI and GEOS-Chem Chemical Transport Models using Aura MLS Observations

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Jiang, Jonathan H.; Murray, Lee T.; Damon, Megan R.; Su, Hui; Livesey, Nathaniel J.

    2016-01-01

    This study evaluates the distribution and variation of carbon monoxide (CO) in the upper troposphere and lower stratosphere (UTLS) during 2004-2012 as simulated by two chemical transport models, using the latest version of Aura Microwave Limb Sounder (MLS) observations. The simulated spatial distributions, temporal variations and vertical transport of CO in the UTLS region are compared with those observed by MLS. We also investigate the impact of surface emissions and deep convection on CO concentrations in the UTLS over different regions, using both model simulations and MLS observations. Global Modeling Initiative (GMI) and GEOS-Chem simulations of UTLS CO both show similar spatial distributions to observations. The global mean CO values simulated by both models agree with MLS observations at 215 and 147 hPa, but are significantly underestimated by more than 40% at 100 hPa. In addition, the models underestimate the peak CO values by up to 70% at 100 hPa, 60% at 147 hPa and 40% at 215 hPa, with GEOS-Chem generally simulating more CO at 100 hPa and less CO at 215 hPa than GMI. The seasonal distributions of CO simulated by both models are in better agreement with MLS in the Southern Hemisphere (SH) than in the Northern Hemisphere (NH), with disagreements between model and observations over enhanced CO regions such as southern Africa. The simulated vertical transport of CO shows better agreement with MLS in the tropics and the SH subtropics than the NH subtropics. We also examine regional variations in the relationships among surface CO emission, convection and UTLS CO concentrations. The two models exhibit emission-convection- CO relationships similar to those observed by MLS over the tropics and some regions with enhanced UTLS CO.

  10. The systems biology simulation core algorithm

    PubMed Central

    2013-01-01

    Background With the increasing availability of high dimensional time course data for metabolites, genes, and fluxes, the mathematical description of dynamical systems has become an essential aspect of research in systems biology. Models are often encoded in formats such as SBML, whose structure is very complex and difficult to evaluate due to many special cases. Results This article describes an efficient algorithm to solve SBML models that are interpreted in terms of ordinary differential equations. We begin our consideration with a formal representation of the mathematical form of the models and explain all parts of the algorithm in detail, including several preprocessing steps. We provide a flexible reference implementation as part of the Systems Biology Simulation Core Library, a community-driven project providing a large collection of numerical solvers and a sophisticated interface hierarchy for the definition of custom differential equation systems. To demonstrate the capabilities of the new algorithm, it has been tested with the entire SBML Test Suite and all models of BioModels Database. Conclusions The formal description of the mathematics behind the SBML format facilitates the implementation of the algorithm within specifically tailored programs. The reference implementation can be used as a simulation backend for Java™-based programs. Source code, binaries, and documentation can be freely obtained under the terms of the LGPL version 3 from http://simulation-core.sourceforge.net. Feature requests, bug reports, contributions, or any further discussion can be directed to the mailing list simulation-core-development@lists.sourceforge.net. PMID:23826941

  11. Photometric and polarimetric observations and model simulations of (216) Kleopatra

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Shinokawa, K.; Yoshida, F.; Mukai, T.; Ip, W. H.; Kawabata, K.

    2004-10-01

    We performed photometric and polarimetric observations, on November 8 and 9, 1999, of an M-type main belt asteroid, (216) Kleopatra by using the HBS spectropolarimeter installed at Dodaira observatory, National Astronomical Observatory of Japan (NAOJ). Photometric amplitude of lightcurve in the V band was 0.12 mag, and the averaged degree of polarization was -1.01±0.1%. It seems that the polarimetric data might also show a slight change in the degree of polarization ( ~0.2%) at the second minimum of the photometric lightcurve, but we could not confirm that the feature was real because of the large errors of data. With the assumption that the surface is uniform, we have carried out lightcurve simulations based on shape models by Ostro et al. (2000), Tanga et al. (2001) and Roche binary (Cellino et al., 1985). The results of simulations were compared to the configurations of lightcurves which had been obtained at different 4 geometric positions (1980, 1982, 1987 and 1999). The model by Cellino et al. (1985) reproduced almost all the data points without the 1987 observations within ~0.05 mag., which is the best result among the 3 models. The model by Tanga et al. (2001) well reproduced the lightcurves, but failed in reproducing the 1982 amplitude (difference Δdiff ~ 0 2 mag.). We also confirmed that the model by Ostro et al. (2000) could not explain the observed lightcurves.

  12. Are Physics-Based Simulators Ready for Prime Time? Comparisons of RSQSim with UCERF3 and Observations.

    NASA Astrophysics Data System (ADS)

    Milner, K. R.; Shaw, B. E.; Gilchrist, J. J.; Jordan, T. H.

    2017-12-01

    Probabilistic seismic hazard analysis (PSHA) is typically performed by combining an earthquake rupture forecast (ERF) with a set of empirical ground motion prediction equations (GMPEs). ERFs have typically relied on observed fault slip rates and scaling relationships to estimate the rate of large earthquakes on pre-defined fault segments, either ignoring or relying on expert opinion to set the rates of multi-fault or multi-segment ruptures. Version 3 of the Uniform California Earthquake Rupture Forecast (UCERF3) is a significant step forward, replacing expert opinion and fault segmentation with an inversion approach that matches observations better than prior models while incorporating multi-fault ruptures. UCERF3 is a statistical model, however, and doesn't incorporate the physics of earthquake nucleation, rupture propagation, and stress transfer. We examine the feasibility of replacing UCERF3, or components therein, with physics-based rupture simulators such as the Rate-State Earthquake Simulator (RSQSim), developed by Dieterich & Richards-Dinger (2010). RSQSim simulations on the UCERF3 fault system produce catalogs of seismicity that match long term rates on major faults, and produce remarkable agreement with UCERF3 when carried through to PSHA calculations. Averaged over a representative set of sites, the RSQSim-UCERF3 hazard-curve differences are comparable to the small differences between UCERF3 and its predecessor, UCERF2. The hazard-curve agreement between the empirical and physics-based models provides substantial support for the PSHA methodology. RSQSim catalogs include many complex multi-fault ruptures, which we compare with the UCERF3 rupture-plausibility metrics as well as recent observations. Complications in generating physically plausible kinematic descriptions of multi-fault ruptures have thus far prevented us from using UCERF3 in the CyberShake physics-based PSHA platform, which replaces GMPEs with deterministic ground motion simulations. RSQSim

  13. The multinomial simulation algorithm for discrete stochastic simulation of reaction-diffusion systems.

    PubMed

    Lampoudi, Sotiria; Gillespie, Dan T; Petzold, Linda R

    2009-03-07

    The Inhomogeneous Stochastic Simulation Algorithm (ISSA) is a variant of the stochastic simulation algorithm in which the spatially inhomogeneous volume of the system is divided into homogeneous subvolumes, and the chemical reactions in those subvolumes are augmented by diffusive transfers of molecules between adjacent subvolumes. The ISSA can be prohibitively slow when the system is such that diffusive transfers occur much more frequently than chemical reactions. In this paper we present the Multinomial Simulation Algorithm (MSA), which is designed to, on the one hand, outperform the ISSA when diffusive transfer events outnumber reaction events, and on the other, to handle small reactant populations with greater accuracy than deterministic-stochastic hybrid algorithms. The MSA treats reactions in the usual ISSA fashion, but uses appropriately conditioned binomial random variables for representing the net numbers of molecules diffusing from any given subvolume to a neighbor within a prescribed distance. Simulation results illustrate the benefits of the algorithm.

  14. The Application of Observational Practice and Educational Networking in Simulation-Based and Distributed Medical Education Contexts.

    PubMed

    Welsher, Arthur; Rojas, David; Khan, Zain; VanderBeek, Laura; Kapralos, Bill; Grierson, Lawrence E M

    2018-02-01

    Research has revealed that individuals can improve technical skill performance by viewing demonstrations modeled by either expert or novice performers. These findings support the development of video-based observational practice communities that augment simulation-based skill education and connect geographically distributed learners. This study explores the experimental replicability of the observational learning effect when demonstrations are sampled from a community of distributed learners and serves as a context for understanding learner experiences within this type of training protocol. Participants from 3 distributed medical campuses engaged in a simulation-based learning study of the elliptical excision in which they completed a video-recorded performance before being assigned to 1 of 3 groups for a 2-week observational practice intervention. One group observed expert demonstrations, another observed novice demonstrations, and the third observed a combination of both. Participants returned for posttesting immediately and 1 month after the intervention. Participants also engaged in interviews regarding their perceptions of the usability and relevance of video-based observational practice to clinical education. Checklist (P < 0.0001) and global rating (P < 0.0001) measures indicate that participants, regardless of group assignment, improved after the intervention and after a 1-month retention period. Analyses revealed no significant differences between groups. Qualitative analyses indicate that participants perceived the observational practice platform to be usable, relevant, and potentially improved with enhanced feedback delivery. Video-based observational practice involving expert and/or novice demonstrations enhances simulation-based skill learning in a group of geographically distributed trainees. These findings support the use of Internet-mediated observational learning communities in distributed and simulation-based medical education contexts.

  15. Dshell++: A Component Based, Reusable Space System Simulation Framework

    NASA Technical Reports Server (NTRS)

    Lim, Christopher S.; Jain, Abhinandan

    2009-01-01

    This paper describes the multi-mission Dshell++ simulation framework for high fidelity, physics-based simulation of spacecraft, robotic manipulation and mobility systems. Dshell++ is a C++/Python library which uses modern script driven object-oriented techniques to allow component reuse and a dynamic run-time interface for complex, high-fidelity simulation of spacecraft and robotic systems. The goal of the Dshell++ architecture is to manage the inherent complexity of physicsbased simulations while supporting component model reuse across missions. The framework provides several features that support a large degree of simulation configurability and usability.

  16. Simulated and observed 2010 floodwater elevations in the Pawcatuck and Wood Rivers, Rhode Island

    USGS Publications Warehouse

    Zarriello, Phillip J.; Straub, David E.; Smith, Thor E.

    2014-01-01

    Heavy, persistent rains from late February through March 2010 caused severe flooding that set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models of Pawcatuck River (26.9 miles) and Wood River (11.6 miles) were updated from the most recent approved U.S. Department of Homeland Security-Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) for specified flows and boundary conditions. The hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) using steady-state simulations and incorporate new field-survey data at structures, high resolution land-surface elevation data, and updated flood flows from a related study. The models were used to simulate the 0.2-percent annual exceedance probability (AEP) flood, which is the AEP determined for the 2010 flood in the Pawcatuck and Wood Rivers. The simulated WSEs were compared to high-water mark (HWM) elevation data obtained in a related study following the March–April 2010 flood, which included 39 HWMs along the Pawcatuck River and 11 HWMs along the Wood River. The 2010 peak flow generally was larger than the 0.2-percent AEP flow, which, in part, resulted in the FIS and updated model WSEs to be lower than the 2010 HWMs. The 2010 HWMs for the Pawcatuck River averaged about 1.6 feet (ft) higher than the 0.2-percent AEP WSEs simulated in the updated model and 2.5 ft higher than the WSEs in the FIS. The 2010 HWMs for the Wood River averaged about 1.3 ft higher than the WSEs simulated in the updated model and 2.5 ft higher than the WSEs in the FIS. The improved agreement of the updated simulated water elevations to observed 2010 HWMs provides a measure of the hydraulic model performance, which indicates the updated models better represent flooding at other AEPs than the existing FIS models.

  17. Simulation of diurnal thermal energy storage systems: Preliminary results

    NASA Astrophysics Data System (ADS)

    Katipamula, S.; Somasundaram, S.; Williams, H. R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system; and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  18. Stochastic simulation in systems biology

    PubMed Central

    Székely, Tamás; Burrage, Kevin

    2014-01-01

    Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest. PMID:25505503

  19. The simulating social mind: the role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders.

    PubMed

    Oberman, Lindsay M; Ramachandran, Vilayanur S

    2007-03-01

    The mechanism by which humans perceive others differs greatly from how humans perceive inanimate objects. Unlike inanimate objects, humans have the distinct property of being "like me" in the eyes of the observer. This allows us to use the same systems that process knowledge about self-performed actions, self-conceived thoughts, and self-experienced emotions to understand actions, thoughts, and emotions in others. The authors propose that internal simulation mechanisms, such as the mirror neuron system, are necessary for normal development of recognition, imitation, theory of mind, empathy, and language. Additionally, the authors suggest that dysfunctional simulation mechanisms may underlie the social and communicative deficits seen in individuals with autism spectrum disorders.

  20. LSD (Landing System Development) Impact Simulation

    NASA Astrophysics Data System (ADS)

    Ullio, R.; Riva, N.; Pellegrino, P.; Deloo, P.

    2012-07-01

    In the frame of the Exploration Programs, a soft landing on the planet surface is foreseen. To ensure a successful final landing phase, a landing system by using leg tripod design landing legs with adequate crushable damping system was selected, capable of absorbing the residual velocities (vertical, horizontal and angular) at touch- down, insuring stability. TAS-I developed a numerical non linear dynamic methodology for the landing impact simulation of the Lander system by using a commercial explicit finite element analysis code (i.e. Altair RADIOSS). In this paper the most significant FE modeling approaches and results of the analytical simulation of landing impact are reported, especially with respect to the definition of leg dimensioning loads and the design update of selected parts (if necessary).

  1. Analysis of Cloud-resolving Simulations of a Tropical Mesoscale Convective System Observed during TWP-ICE: Vertical Fluxes and Draft Properties in Convective and Stratiform Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann

    2012-10-02

    We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadingsmore » differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.« less

  2. Quasi-real-time end-to-end simulations of ELT-scale adaptive optics systems on GPUs

    NASA Astrophysics Data System (ADS)

    Gratadour, Damien

    2011-09-01

    Our team has started the development of a code dedicated to GPUs for the simulation of AO systems at the E-ELT scale. It uses the CUDA toolkit and an original binding to Yorick (an open source interpreted language) to provide the user with a comprehensive interface. In this paper we present the first performance analysis of our simulation code, showing its ability to provide Shack-Hartmann (SH) images and measurements at the kHz scale for VLT-sized AO system and in quasi-real-time (up to 70 Hz) for ELT-sized systems on a single top-end GPU. The simulation code includes multiple layers atmospheric turbulence generation, ray tracing through these layers, image formation at the focal plane of every sub-apertures of a SH sensor using either natural or laser guide stars and centroiding on these images using various algorithms. Turbulence is generated on-the-fly giving the ability to simulate hours of observations without the need of loading extremely large phase screens in the global memory. Because of its performance this code additionally provides the unique ability to test real-time controllers for future AO systems under nominal conditions.

  3. Comparison of Magnetospheric Magnetic Field Variations at Quasi-Zenith Orbit Based on Michibiki Observation and REPPU Global MHD Simulation

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Nagatsuma, T.; Den, M.; Nakamizo, A.; Matsumoto, H.; Tanaka, T.

    2017-12-01

    We are developing a numerical simulator for future space weather forecast using magnetosphere-ionosphere coupling global MHD simulation called REPPU (REProduce Plasma Universe) code. We investigate the validity of the MHD simulation result as compared with observation. In this study we simulate some events including both quiet and disturbed geomagnetic conditions using OMNIWeb solar wind data. The simulation results are compared with magnetic field observations from Michibiki satellite, which is on the quasi-zenith orbit (QZO). In quiet geomagnetic condition, magnetic field variations at QZO obtained from simulation results have good consistency as compared correspondence with those from Michibiki observation. In disturbed geomagnetic condition in which the Dst < -20 nT, however, V component of magnetic field variations from simulation results tend to deviate from observations especially at the night side. We consider that this deviation during disturbed geomagnetic condition might be due to tail and/or ring current enhancement which is already suggested by many other MHD simulation studies as compared with the magnetic field observation at geosynchronous orbit. In this presentation, we will discuss the cause of this discrepancy in more detail with studying the relationship between the magnetic field deviation and some parameters such as Dst and solar wind.

  4. Assessment of NASA GISS CMIP5 ModelE simulated clouds and TOA radiation budgets using satellite observations over the southern mid-latitudes

    NASA Astrophysics Data System (ADS)

    Stanfield, Ryan Evan

    Past, current, and future climates have been simulated by the National Aeronautics and Space Administration (NASA) Goddard Institute for Space Studies (GISS) ModelE Global Circulation Model (GCM) and summarized by the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC, AR4). New simulations from the updated CMIP5 version of the NASA GISS ModelE GCM were recently released to the public community during the summer of 2011 and will be included in the upcoming IPCC AR5 ensemble of simulations. Due to the recent nature of these simulations, they have not yet been extensively validated against observations. To assess the NASA GISS-E2-R GCM, model simulated clouds and cloud properties are compared to observational cloud properties derived from the Clouds and Earth's Radiant Energy System (CERES) project using MODerate Resolution Imaging Spectroradiometer (MODIS) data for the period of March 2000 through December 2005. Over the 6-year period, the global average modeled cloud fractions are within 1% of observations. However, further study however shows large regional biases between the GCM simulations and CERES-MODIS observations. The southern mid-latitudes (SML) were chosen as a focus region due to model errors across multiple GCMs within the recent phase 5 of the Coupled Model Intercomparison Project (CMIP5). Over the SML, the GISS GCM undersimulates total cloud fraction over 20%, but oversimulates total water path by 2 g m-2. Simulated vertical cloud distributions over the SML when compared to both CERES-MODIS and CloudSat/CALIPSO observations show a drastic undersimulation of low level clouds by the GISS GCM, but higher fractions of thicker clouds. To assess the impact of GISS simulated clouds on the TOA radiation budgets, the modeled TOA radiation budgets are compared to CERES EBAF observations. Because modeled low-level cloud fraction is much lower than observed over the SML, modeled reflected shortwave (SW) flux at the TOA is 13 W m -2 lower and

  5. BAYESIAN TECHNIQUES FOR COMPARING TIME-DEPENDENT GRMHD SIMULATIONS TO VARIABLE EVENT HORIZON TELESCOPE OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Junhan; Marrone, Daniel P.; Chan, Chi-Kwan

    2016-12-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore themore » robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.« less

  6. Bayesian Techniques for Comparing Time-dependent GRMHD Simulations to Variable Event Horizon Telescope Observations

    NASA Astrophysics Data System (ADS)

    Kim, Junhan; Marrone, Daniel P.; Chan, Chi-Kwan; Medeiros, Lia; Özel, Feryal; Psaltis, Dimitrios

    2016-12-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore the robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.

  7. Algorithm for Simulating Atmospheric Turbulence and Aeroelastic Effects on Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Ercole, Anthony V.; Cardullo, Frank M.; Kelly, Lon C.; Houck, Jacob A.

    2012-01-01

    Atmospheric turbulence produces high frequency accelerations in aircraft, typically greater than the response to pilot input. Motion system equipped flight simulators must present cues representative of the aircraft response to turbulence in order to maintain the integrity of the simulation. Currently, turbulence motion cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. This report presents a new turbulence motion cueing algorithm, referred to as the augmented turbulence channel. Like the previous turbulence algorithms, the output of the channel only augments the vertical degree of freedom of motion. This algorithm employs a parallel aircraft model and an optional high bandwidth cueing filter. Simulation of aeroelastic effects is also an area where frequency content must be preserved by the cueing algorithm. The current aeroelastic implementation uses a similar secondary channel that supplements the primary motion cue. Two studies were conducted using the NASA Langley Visual Motion Simulator and Cockpit Motion Facility to evaluate the effect of the turbulence channel and aeroelastic model on pilot control input. Results indicate that the pilot is better correlated with the aircraft response, when the augmented channel is in place.

  8. Numerical propulsion system simulation: An interdisciplinary approach

    NASA Technical Reports Server (NTRS)

    Nichols, Lester D.; Chamis, Christos C.

    1991-01-01

    The tremendous progress being made in computational engineering and the rapid growth in computing power that is resulting from parallel processing now make it feasible to consider the use of computer simulations to gain insights into the complex interactions in aerospace propulsion systems and to evaluate new concepts early in the design process before a commitment to hardware is made. Described here is a NASA initiative to develop a Numerical Propulsion System Simulation (NPSS) capability.

  9. Numerical propulsion system simulation - An interdisciplinary approach

    NASA Technical Reports Server (NTRS)

    Nichols, Lester D.; Chamis, Christos C.

    1991-01-01

    The tremendous progress being made in computational engineering and the rapid growth in computing power that is resulting from parallel processing now make it feasible to consider the use of computer simulations to gain insights into the complex interactions in aerospace propulsion systems and to evaluate new concepts early in the design process before a commitment to hardware is made. Described here is a NASA initiative to develop a Numerical Propulsion System Simulation (NPSS) capability.

  10. Numerical Propulsion System Simulation (NPSS): An Award Winning Propulsion System Simulation Tool

    NASA Technical Reports Server (NTRS)

    Stauber, Laurel J.; Naiman, Cynthia G.

    2002-01-01

    The Numerical Propulsion System Simulation (NPSS) is a full propulsion system simulation tool used by aerospace engineers to predict and analyze the aerothermodynamic behavior of commercial jet aircraft, military applications, and space transportation. The NPSS framework was developed to support aerospace, but other applications are already leveraging the initial capabilities, such as aviation safety, ground-based power, and alternative energy conversion devices such as fuel cells. By using the framework and developing the necessary components, future applications that NPSS could support include nuclear power, water treatment, biomedicine, chemical processing, and marine propulsion. NPSS will dramatically reduce the time, effort, and expense necessary to design and test jet engines. It accomplishes that by generating sophisticated computer simulations of an aerospace object or system, thus enabling engineers to "test" various design options without having to conduct costly, time-consuming real-life tests. The ultimate goal of NPSS is to create a numerical "test cell" that enables engineers to create complete engine simulations overnight on cost-effective computing platforms. Using NPSS, engine designers will be able to analyze different parts of the engine simultaneously, perform different types of analysis simultaneously (e.g., aerodynamic and structural), and perform analysis in a more efficient and less costly manner. NPSS will cut the development time of a new engine in half, from 10 years to 5 years. And NPSS will have a similar effect on the cost of development: new jet engines will cost about a billion dollars to develop rather than two billion. NPSS is also being applied to the development of space transportation technologies, and it is expected that similar efficiencies and cost savings will result. Advancements of NPSS in fiscal year 2001 included enhancing the NPSS Developer's Kit to easily integrate external components of varying fidelities, providing

  11. Rover Attitude and Pointing System Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam

    2009-01-01

    The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.

  12. Simulations of Galactic polarized synchrotron emission for Epoch of Reionization observations

    NASA Astrophysics Data System (ADS)

    Spinelli, M.; Bernardi, G.; Santos, M. G.

    2018-06-01

    The detection of the redshifted cosmological 21 cm line signal requires the removal of the Galactic and extragalactic foreground emission, which is orders of magnitude brighter anywhere in the sky. Foreground cleaning methods currently used are efficient in removing spectrally smooth components. However, they struggle in the presence of not spectrally smooth contamination that is, therefore, potentially the most dangerous one. An example of this is the polarized synchrotron emission, which is Faraday rotated by the interstellar medium and leaks into total intensity due to instrumental imperfections. In this work we present new full-sky simulations of this polarized synchrotron emission in the 50 - 200 MHz range, obtained from the observed properties of diffuse polarized emission at low frequencies. The simulated polarized maps are made publicly available, aiming to provide more realistic templates to simulate the effect of instrumental leakage and the effectiveness of foreground separation techniques.

  13. System Engineering Strategy for Distributed Multi-Purpose Simulation Architectures

    NASA Technical Reports Server (NTRS)

    Bhula, Dlilpkumar; Kurt, Cindy Marie; Luty, Roger

    2007-01-01

    This paper describes the system engineering approach used to develop distributed multi-purpose simulations. The multi-purpose simulation architecture focuses on user needs, operations, flexibility, cost and maintenance. This approach was used to develop an International Space Station (ISS) simulator, which is called the International Space Station Integrated Simulation (ISIS)1. The ISIS runs unmodified ISS flight software, system models, and the astronaut command and control interface in an open system design that allows for rapid integration of multiple ISS models. The initial intent of ISIS was to provide a distributed system that allows access to ISS flight software and models for the creation, test, and validation of crew and ground controller procedures. This capability reduces the cost and scheduling issues associated with utilizing standalone simulators in fixed locations, and facilitates discovering unknowns and errors earlier in the development lifecycle. Since its inception, the flexible architecture of the ISIS has allowed its purpose to evolve to include ground operator system and display training, flight software modification testing, and as a realistic test bed for Exploration automation technology research and development.

  14. The Photochemical Reflectance Index from Directional Cornfield Reflectances: Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Cheng, Yen-Ben; Middleton, Elizabeth M.; Zhang, Qingyuan; Corp, Lawrence A.; Dandois, Jonathan; Kustas, William P.

    2012-01-01

    The two-layer Markov chain Analytical Canopy Reflectance Model (ACRM) was linked with in situ hyperspectral leaf optical properties to simulate the Photochemical Reflectance Index (PRI) for a corn crop canopy at three different growth stages. This is an extended study after a successful demonstration of PRI simulations for a cornfield previously conducted at an early vegetative growth stage. Consistent with previous in situ studies, sunlit leaves exhibited lower PRI values than shaded leaves. Since sunlit (shaded) foliage dominates the canopy in the reflectance hotspot (coldspot), the canopy PRI derived from field hyperspectral observations displayed sensitivity to both view zenith angle and relative azimuth angle at all growth stages. Consequently, sunlit and shaded canopy sectors were most differentiated when viewed along the azimuth matching the solar principal plane. These directional PRI responses associated with sunlit/shaded foliage were successfully reproduced by the ACRM. As before, the simulated PRI values from the current study were closer to in situ values when both sunlit and shaded leaves were utilized as model input data in a two-layer mode, instead of a one-layer mode with sunlit leaves only. Model performance as judged by correlation between in situ and simulated values was strongest for the mature corn crop (r = 0.87, RMSE = 0.0048), followed by the early vegetative stage (r = 0.78; RMSE = 0.0051) and the early senescent stage (r = 0.65; RMSE = 0.0104). Since the benefit of including shaded leaves in the scheme varied across different growth stages, a further analysis was conducted to investigate how variable fractions of sunlit/shaded leaves affect the canopy PRI values expected for a cornfield, with implications for 20 remote sensing monitoring options. Simulations of the sunlit to shaded canopy ratio near 50/50 +/- 10 (e.g., 60/40) matching field observations at all growth stages were examined. Our results suggest in the importance of the

  15. Comparisons of Spectra from 3D Kinetic Meteor PIC Simulations with Theory and Observations

    NASA Astrophysics Data System (ADS)

    Oppenheim, M. M.; Tarnecki, L. K.

    2017-12-01

    Meteoroids smaller than a grain of sand have significant impacts on the composition, chemistry, and dynamics of the atmosphere. The processes by which they turbulently diffuse can be studied using collisional kinetic particle-in-cell (PIC) simulations. Spectral analysis is a valuable tool for comparing such simulations of turbulent, non-specular meteor trails with observations. We present three types of spectral information: full spectra along the trail in k-ω space, spectral widths at common radar frequencies, and power as a function of angle with respect to B. These properties can be compared to previously published data. Zhou et al. (2004) use radar theory to predict the power observed by a radar as a function of the angle between the meteor trail and the radar beam and the size of field-aligned irregularities (FAI) within the trail. Close et al. (2008) present observations of meteor trails from the ALTAIR radar, including power returned as a function of angle off B for a small sample of meteors. Close et al. (2008) and Zhou et al. (2004) both suggest a power drop off of 2-3 dB per degree off perpendicular to B. We compare results from our simulations with both theory and observations for a range of conditions, including trail altitude and incident neutral wind speed. For 1m waves, power fell off by 1-3 dB per degree off perpendicular to B. These comparisons help determine if small-scale simulations accurately capture the behavior of real meteors.

  16. Evaluation of Cloud-Resolving and Limited Area Model Intercomparison Simulations Using TWP-ICE Observations. Part 2 ; Precipitation Microphysics

    NASA Technical Reports Server (NTRS)

    Varble, Adam; Zipser, Edward J.; Fridland, Ann M.; Zhu, Ping; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher

    2014-01-01

    Ten 3-D cloud-resolving model (CRM) simulations and four 3-D limited area model (LAM) simulations of an intense mesoscale convective system observed on 23-24 January 2006 during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, colocated UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rainwater contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (mu) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes but lower RWCs. Two-moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and, thus, may have issues balancing raindrop formation, collision-coalescence, and raindrop breakup. Assuming a mu of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing mu to have values greater than 0 may improve excessive size sorting in two-moment schemes. Underpredicted stratiform rain rates are associated with underpredicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. A limited domain size also prevents a large, well-developed stratiform region like the one observed from developing in CRMs, although LAMs also fail to produce such a region.

  17. Enabling parallel simulation of large-scale HPC network systems

    DOE PAGES

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.; ...

    2016-04-07

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks usedmore » in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations« less

  18. Enabling parallel simulation of large-scale HPC network systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks usedmore » in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations« less

  19. A Process for Comparing Dynamics of Distributed Space Systems Simulations

    NASA Technical Reports Server (NTRS)

    Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.

    2009-01-01

    The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.

  20. Compact, self-contained enhanced-vision system (EVS) sensor simulator

    NASA Astrophysics Data System (ADS)

    Tiana, Carlo

    2007-04-01

    We describe the model SIM-100 PC-based simulator, for imaging sensors used, or planned for use, in Enhanced Vision System (EVS) applications. Typically housed in a small-form-factor PC, it can be easily integrated into existing out-the-window visual simulators for fixed-wing or rotorcraft, to add realistic sensor imagery to the simulator cockpit. Multiple bands of infrared (short-wave, midwave, extended-midwave and longwave) as well as active millimeter-wave RADAR systems can all be simulated in real time. Various aspects of physical and electronic image formation and processing in the sensor are accurately (and optionally) simulated, including sensor random and fixed pattern noise, dead pixels, blooming, B-C scope transformation (MMWR). The effects of various obscurants (fog, rain, etc.) on the sensor imagery are faithfully represented and can be selected by an operator remotely and in real-time. The images generated by the system are ideally suited for many applications, ranging from sensor development engineering tradeoffs (Field Of View, resolution, etc.), to pilot familiarization and operational training, and certification support. The realistic appearance of the simulated images goes well beyond that of currently deployed systems, and beyond that required by certification authorities; this level of realism will become necessary as operational experience with EVS systems grows.