Sample records for observationally based surface

  1. Observation duration analysis for Earth surface features from a Moon-based platform

    NASA Astrophysics Data System (ADS)

    Ye, Hanlin; Guo, Huadong; Liu, Guang; Ren, Yuanzhen

    2018-07-01

    Earth System Science is a discipline that performs holistic and comprehensive research on various components of the Earth. One of a key issue for the Earth monitoring and observation is to enhance the observation duration, the time intervals during which the Earth surface features can be observed by sensors. In this work, we propose to utilise the Moon as an Earth observation platform. Thanks to the long distance between the Earth and the Moon, and the vast space on the lunar surface which is suitable for sensor installation, this Earth observation platform could have large spatial coverage, long temporal duration, and could perform multi-layer detection of the Earth. The line of sight between a proposed Moon-based platform and the Earth will change with different lunar surface positions; therefore, in this work, the position of the lunar surface was divided into four regions, including one full observation region and three incomplete observation regions. As existing methods are not able to perform global-scale observations, a Boolean matrix method was established to calculate the necessary observation durations from a Moon-based platform. Based on Jet Propulsion Laboratory (JPL) ephemerides and Earth Orientation Parameters (EOP), a formula was developed to describe the geometrical relationship between the Moon-based platform and Earth surface features in the unified spatial coordinate system and the unified time system. In addition, we compared the observation geometries at different positions on the lunar surface and two parameters that are vital to observation duration calculations were considered. Finally, an analysis method was developed. We found that the observation duration of a given Earth surface feature shows little difference regardless of sensor position within the full observation region. However, the observation duration for sensors in the incomplete observation regions is reduced by at least half. In summary, our results demonstrate the suitability

  2. Advancing land surface model development with satellite-based Earth observations

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  3. Global surface-based cloud observation for ISCCP

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Visual observations of cloud cover are hindered at night due to inadequate illumination of the clouds. This usually leads to an underestimation of the average cloud cover at night, especially for the amounts of middle and high clouds, in climatologies on surface observations. The diurnal cycles of cloud amounts, if based on all the surface observations, are therefore in error, but they can be obtained more accurately if the nighttime observations are screened to select those made under sufficient moonlight. Ten years of nighttime weather observations from the northern hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 degrees or from a partial moon at higher elevation, or twilight from the sun less than 9 degrees below the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. Cloud cover is greater at night than during the day over the open oceans far from the continents, particularly in summer. However, near noon maxima are still evident in the coastal regions, so that the global annual average oceanic cloud cover is still slightly greater during the day than at night, by 0.3%. Over land, where daytime maxima are still obtained but with reduced amplitude, average cloud cover is 3.3% greater during the daytime. The diurnal cycles of total cloud cover we obtain are compared with those of ISCCP for a

  4. Hyperspectral Observations of Land Surfaces Using Ground-based, Airborne, and Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Knuteson, R. O.; Best, F. A.; Revercomb, H. E.; Tobin, D. C.

    2006-12-01

    The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) has helped pioneer the use of high spectral resolution infrared spectrometers for application to atmospheric and surface remote sensing. This paper is focused on observations of land surface infrared emission from high spectral resolution measurements collected over the past 15 years using airborne, ground-based, and satellite platforms. The earliest data was collected by the High-resolution Interferometer Sounder (HIS), an instrument designed in the 1980s for operation on the NASA ER-2 high altitude aircraft. The HIS was replaced in the late 1990s by the Scanning-HIS instrument which has flown on the NASA ER-2, WB-57, DC-8, and Scaled Composites Proteus aircraft and continues to support field campaigns, such as those for EOS Terra, Aqua, and Aura validation. Since 1995 the UW-SSEC has fielded a ground-based Atmospheric Emitted Radiance Interferometer (AERI) in a research vehicle (the AERIBAGO) which has allowed for direct field measurements of land surface emission from a height of about 16 ft above the ground. Several ground-based and aircraft campaigns were conducted to survey the region surrounding the ARM Southern Great Plains site in north central Oklahoma. The ground- based AERIBAGO has also participated in surface emissivity campaigns in the Western U.S.. Since 2002, the NASA Atmospheric InfraRed Sounder (AIRS) has provided similar measurements from the Aqua platform in an afternoon sun-synchronous polar orbit. Ground-based and airborne observations are being used to validate the land surface products derived from the AIRS observations. These cal/val activities are in preparation for similar measurements anticipated from the operational Cross-track InfraRed Sounder (CrIS) on the NPOESS Preparatory Platform (NPP), expected to be launched in 2008. Moreover, high spectral infrared observations will soon be made by the Infrared Atmospheric Sounder Interferometer (IASI) on the

  5. Surface-based observations of volcanic emissions to the stratosphere

    NASA Astrophysics Data System (ADS)

    Hofmann, Dave; Barnes, John; Dutton, Ellsworth; Deshler, Terry; Jäger, Horst; Keen, Richard; Osborn, Mary

    Long-term, surface-based observations of the stratospheric aerosol layer are presented and compared. These include three LIDAR aerosol backscatter measurements, at Mauna Loa Observatory (Hawaii), Langley Research Center (Virginia), and Garmisch-Partenkirchen (Germany); balloonborne in situ particle concentration measurements at Laramie, Wyoming, solar visible transmission measurements at Mauna Loa Observatory; aerosol optical depth measurements at South Pole Station and Mauna Loa Observatory; and lunar eclipse optical depth determinations, which is a globally integrating technique. Surface-based measurements have provided a useful historical record of volcanic effects on the stratospheric aerosol and the agreement between the various techniques is very good. However, some uncertainties exist when the stratosphere is relatively free of volcanic aerosol and some of the techniques are not able to easily resolve the very small amount of aerosol from natural and/or anthropogenic sources. The lunar eclipse data, which go back to the late 1800s, suggest that the Pinatubo eruption in 1991 probably perturbed the stratospheric aerosol layer at least as much as that of Krakatau in 1883. This is an important observation as it is one of the few ways to accurately compare the stratospheric effects of eruptions prior to modern measurements that began in the late 1950s. At the time of this writing (September 2002) the stratosphere appears to be at background with the lowest level of aerosol observed since the layer was discovered in 1959.

  6. Polarimetric Observations of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Kim, S.

    2017-12-01

    Polarimetric images contain valuable information on the lunar surface such as grain size and porosity of the regolith, from which one can estimate the space weathering environment on the lunar surface. Surprisingly, polarimetric observation has never been conducted from the lunar orbit before. A Wide-Angle Polarimetric Camera (PolCam) has been recently selected as one of three Korean science instruments onboard the Korea Pathfinder Lunar Orbiter (KPLO), which is aimed to be launched in 2019/2020 as the first Korean lunar mission. PolCam will obtain 80 m-resolution polarimetric images of the whole lunar surface between -70º and +70º latitudes at 320, 430 and 750 nm bands for phase angles up to 115º. I will also discuss previous polarimetric studies on the lunar surface based on our ground-based observations.

  7. Surface composition of Europa based on VLT observations

    NASA Astrophysics Data System (ADS)

    Ligier, N.; Poulet, F.; Carter, J.

    2016-12-01

    Jupiter's moon Europa may harbor a global salty ocean under an 80-170 km thick outer layer consisting of an icy crust (Anderson et al. 1998). Meanwhile, the 10-50 My old surface, dated by cratering rates (Pappalardo et al. 1999) implies rapid surface recycling and reprocessing that could result in tectonic activity (Kattenhorn et al. 2014) and plumes (Roth et al. 2014). The surface could thus exhibit fingerprints of chemical species, as minerals characteristics of an ocean-mantle interaction and/or organics of exobiological interest, directly originating from the subglacial ocean. In order to re-investigate the composition of Europa's surface, a global mapping campaign of the satellite was performed with the near-infrared integral field spectrograph SINFONI on the Very Large Telescope (VLT) in Chile. The high spectral binning of this instrument (0.5 nm) and large signal noise ratio in comparison to previous observations are adequate to detect sharp absorptions in the wavelength range 1.45-2.45 μm. In addition, the spatially resolved spectra we obtained over five epochs nearly cover the entire surface of Europa with a pixel scale of 12.5 by 25 m.a.s ( 35 by 70 km on Europa's surface), thus permitting a global scale study. Several icy and non-icy compounds were detected and mapped at <100 km resolution. They are unevenly distributed on the moon's surface. Amorphous and crystalline water ice are both present and, in spite of a particularly strong amorphization process likely engendered by the Io plasma torus, the crystalline form is found to be approximately twice as abundant as the amorphous ice based on the analysis of the 1.65 μm band. If the surface is dominated by small and mid-sized water ice grains (25-200 μm), crystalline water-ice grains exhibit spatial inhomogeneities in their distribution. The sulfuric acid hydrate distribution exhibits the typical "bullseye" feature on the trailing hemisphere. The presence of Mg-bearing chlorinated salts (chloride

  8. Neural Network-Based Retrieval of Surface and Root Zone Soil Moisture using Multi-Frequency Remotely-Sensed Observations

    NASA Astrophysics Data System (ADS)

    Hamed Alemohammad, Seyed; Kolassa, Jana; Prigent, Catherine; Aires, Filipe; Gentine, Pierre

    2017-04-01

    Knowledge of root zone soil moisture is essential in studying plant's response to different stress conditions since plant photosynthetic activity and transpiration rate are constrained by the water available through their roots. Current global root zone soil moisture estimates are based on either outputs from physical models constrained by observations, or assimilation of remotely-sensed microwave-based surface soil moisture estimates with physical model outputs. However, quality of these estimates are limited by the accuracy of the model representations of physical processes (such as radiative transfer, infiltration, percolation, and evapotranspiration) as well as errors in the estimates of the surface parameters. Additionally, statistical approaches provide an alternative efficient platform to develop root zone soil moisture retrieval algorithms from remotely-sensed observations. In this study, we present a new neural network based retrieval algorithm to estimate surface and root zone soil moisture from passive microwave observations of SMAP satellite (L-band) and AMSR2 instrument (X-band). SMAP early morning observations are ideal for surface soil moisture retrieval. AMSR2 mid-night observations are used here as an indicator of plant hydraulic properties that are related to root zone soil moisture. The combined observations from SMAP and AMSR2 together with other ancillary observations including the Solar-Induced Fluorescence (SIF) estimates from GOME-2 instrument provide necessary information to estimate surface and root zone soil moisture. The algorithm is applied to observations from the first 18 months of SMAP mission and retrievals are validated against in-situ observations and other global datasets.

  9. Surface Soil Moisture Estimates Across China Based on Multi-satellite Observations and A Soil Moisture Model

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Yang, Tao; Ye, Jinyin; Li, Zhijia; Yu, Zhongbo

    2017-04-01

    Soil moisture is a key variable that regulates exchanges of water and energy between land surface and atmosphere. Soil moisture retrievals based on microwave satellite remote sensing have made it possible to estimate global surface (up to about 10 cm in depth) soil moisture routinely. Although there are many satellites operating, including NASA's Soil Moisture Acitive Passive mission (SMAP), ESA's Soil Moisture and Ocean Salinity mission (SMOS), JAXA's Advanced Microwave Scanning Radiometer 2 mission (AMSR2), and China's Fengyun (FY) missions, key differences exist between different satellite-based soil moisture products. In this study, we applied a single-channel soil moisture retrieval model forced by multiple sources of satellite brightness temperature observations to estimate consistent daily surface soil moisture across China at a spatial resolution of 25 km. By utilizing observations from multiple satellites, we are able to estimate daily soil moisture across the whole domain of China. We further developed a daily soil moisture accounting model and applied it to downscale the 25-km satellite-based soil moisture to 5 km. By comparing our estimated soil moisture with observations from a dense observation network implemented in Anhui Province, China, our estimated soil moisture results show a reasonably good agreement with the observations (RMSE < 0.1 and r > 0.8).

  10. Applications of Land Surface Temperature from Microwave Observations

    USDA-ARS?s Scientific Manuscript database

    Land surface temperature (LST) is a key input for physically-based retrieval algorithms of hydrological states and fluxes. Yet, it remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observation...

  11. Improve observation-based ground-level ozone spatial distribution by compositing satellite and surface observations: A simulation experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhong; Wang, Yuhang; Crawford, James; Cheng, Ye; Li, Jianfeng

    2018-05-01

    Obtaining the full spatial coverage of daily surface ozone fields is challenging because of the sparsity of the surface monitoring network and the difficulty in direct satellite retrievals of surface ozone. We propose an indirect satellite retrieval framework to utilize the information from satellite-measured column densities of tropospheric NO2 and CH2O, which are sensitive to the lower troposphere, to derive surface ozone fields. The method is applicable to upcoming geostationary satellites with high-quality NO2 and CH2O measurements. To prove the concept, we conduct a simulation experiment using a 3-D chemical transport model for July 2011 over the eastern US. The results show that a second order regression using both NO2 and CH2O column densities can be an effective predictor for daily maximum 8-h average ozone. Furthermore, this indirect retrieval approach is shown to be complementary to spatial interpolation of surface observations, especially in regions where the surface sites are sparse. Combining column observations of NO2 and CH2O with surface site measurements leads to an improved representation of surface ozone over simple kriging, increasing the R2 value from 0.53 to 0.64 at a surface site distance of 252 km. The improvements are even more significant with larger surface site distances. The simulation experiment suggests that the indirect satellite retrieval technique can potentially be a useful tool to derive the full spatial coverage of daily surface ozone fields if satellite observation uncertainty is moderate.

  12. Estimating Global Impervious Surface based on Social-economic Data and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Zhang, K.; Xue, X.; Hong, Y.

    2016-12-01

    Impervious surface areas around the globe are expanding and significantly altering the surface energy balance, hydrology cycle and ecosystem services. Many studies have underlined the importance of impervious surface, r from hydrological modeling to contaminant transport monitoring and urban development estimation. Therefore accurate estimation of the global impervious surface is important for both physical and social sciences. Given the limited coverage of high spatial resolution imagery and ground survey, using satellite remote sensing and geospatial data to estimate global impervious areas is a practical approach. Based on the previous work of area-weighted imperviousness for north branch of the Chicago River provided by HDR, this study developed a method to determine the percentage of impervious surface using latest global land cover categories from multi-source satellite observations, population density and gross domestic product (GDP) data. Percent impervious surface at 30-meter resolution were mapped. We found that 1.33% of the CONUS (105,814 km2) and 0.475% of the land surface (640,370km2) are impervious surfaces. To test the utility and practicality of the proposed method, National Land Cover Database (NLCD) 2011 percent developed imperviousness for the conterminous United States was used to evaluate our results. The average difference between the derived imperviousness from our method and the NLCD data across CONUS is 1.14%, while difference between our results and the NLCD data are within ±1% over 81.63% of the CONUS. The distribution of global impervious surface map indicates that impervious surfaces are primarily concentrated in China, India, Japan, USA and Europe where are highly populated and/or developed. This study proposes a straightforward way of mapping global imperviousness, which can provide useful information for hydrologic modeling and other applications.

  13. Global observation-based diagnosis of soil moisture control on land surface flux partition

    NASA Astrophysics Data System (ADS)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  14. Surface Soil Moisture Memory Estimated from Models and SMAP Observations

    NASA Astrophysics Data System (ADS)

    He, Q.; Mccoll, K. A.; Li, C.; Lu, H.; Akbar, R.; Pan, M.; Entekhabi, D.

    2017-12-01

    Soil moisture memory(SMM), which is loosely defined as the time taken by soil to forget an anomaly, has been proved to be important in land-atmosphere interaction. There are many metrics to calculate the SMM timescale, for example, the timescale based on the time-series autocorrelation, the timescale ignoring the soil moisture time series and the timescale which only considers soil moisture increment. Recently, a new timescale based on `Water Cycle Fraction' (Kaighin et al., 2017), in which the impact of precipitation on soil moisture memory is considered, has been put up but not been fully evaluated in global. In this study, we compared the surface SMM derived from SMAP observations with that from land surface model simulations (i.e., the SMAP Nature Run (NR) provided by the Goddard Earth Observing System, version 5) (Rolf et al., 2014). Three timescale metrics were used to quantify the surface SMM as: T0 based on the soil moisture time series autocorrelation, deT0 based on the detrending soil moisture time series autocorrelation, and tHalf based on the Water Cycle Fraction. The comparisons indicate that: (1) there are big gaps between the T0 derived from SMAP and that from NR (2) the gaps get small for deT0 case, in which the seasonality of surface soil moisture was removed with a moving average filter; (3) the tHalf estimated from SMAP is much closer to that from NR. The results demonstrate that surface SMM can vary dramatically among different metrics, while the memory derived from land surface model differs from the one from SMAP observation. tHalf, with considering the impact of precipitation, may be a good choice to quantify surface SMM and have high potential in studies related to land atmosphere interactions. References McColl. K.A., S.H. Alemohammad, R. Akbar, A.G. Konings, S. Yueh, D. Entekhabi. The Global Distribution and Dynamics of Surface Soil Moisture, Nature Geoscience, 2017 Reichle. R., L. Qing, D.L. Gabrielle, A. Joe. The "SMAP_Nature_v03" Data

  15. Constraining storm-scale forecasts of deep convective initiation with surface weather observations

    NASA Astrophysics Data System (ADS)

    Madaus, Luke

    Successfully forecasting when and where individual convective storms will form remains an elusive goal for short-term numerical weather prediction. In this dissertation, the convective initiation (CI) challenge is considered as a problem of insufficiently resolved initial conditions and dense surface weather observations are explored as a possible solution. To better quantify convective-scale surface variability in numerical simulations of discrete convective initiation, idealized ensemble simulations of a variety of environments where CI occurs in response to boundary-layer processes are examined. Coherent features 1-2 hours prior to CI are found in all surface fields examined. While some features were broadly expected, such as positive temperature anomalies and convergent winds, negative temperature anomalies due to cloud shadowing are the largest surface anomaly seen prior to CI. Based on these simulations, several hypotheses about the required characteristics of a surface observing network to constrain CI forecasts are developed. Principally, these suggest that observation spacings of less than 4---5 km would be required, based on correlation length scales. Furthermore, it is anticipated that 2-m temperature and 10-m wind observations would likely be more relevant for effectively constraining variability than surface pressure or 2-m moisture observations based on the magnitudes of observed anomalies relative to observation error. These hypotheses are tested with a series of observing system simulation experiments (OSSEs) using a single CI-capable environment. The OSSE results largely confirm the hypotheses, and with 4-km and particularly 1-km surface observation spacing, skillful forecasts of CI are possible, but only within two hours of CI time. Several facets of convective-scale assimilation, including the need for properly-calibrated localization and problems from non-Gaussian ensemble estimates of the cloud field are discussed. Finally, the characteristics

  16. Ground-based Spectroscopic Observation of Jovian Surface Structures by Using the Portable Spectrometer.

    NASA Astrophysics Data System (ADS)

    Iwasaki, K.; Ito, H.; Tabe, I.; Hirota, S.; Suzuki, H.

    2017-12-01

    Stripe patterns called belts or zones with various colors persist on Jovian surface. Anticyclonic vortices called an oval with various scales and colors are maintained and drifted in the boundary between zones and belts. Some ovals have different colors despite they are formed simultaneously in the same latitude region. Color changes of ovals after an interaction with other ovals have been also reported [Sánchez-Lavega et al., JGR, 2013]. The great red spot (GRS) is one of the most remarkable structures in the Jupiter and recognized since 300 years ago by sketch and photographic observations. Recently, NASA spacecraft, JUNO has revealed more complex and fine features with various colors. A close relationship between dynamics of Jovian atmosphere and local colors is well known [Sánchez-Lavega et al., JGR, 2013] though detailed mechanisms connecting them are not fully understood. Thus, the color of the each structures is thought to be one of the keys to investigate dynamics of the Jovian atmosphere. In this study, ground-based spectroscopic observations focusing on Jovian surface structures have been conducted since December 2015. The observation is carried out by combining a telescope with a small unit for spectroscopy consists of a CCD camera and a spectrometer. The spectrometer can measure a spectrum of a selected area within an image data simultaneously obtained by the CCD camera. Dimensions and weight of the spectroscopy are only 18cm × 14cm × 4cm and 300 g, respectively. This high portability of the spectrometer enables flexible observations; we can bring the spectrometer to a public observatory which has a large telescope in a location with high clear skies rate in desired observation period. The spectra are converted and corrected to an absolute radiance at the top of atmosphere, by using a radiometric calibration data obtained with an integrating sphere and measured extinction coefficients of the local atmosphere. In this talk, temporal variations in the

  17. Using microwave observations to estimate land surface temperature during cloudy conditions

    USDA-ARS?s Scientific Manuscript database

    Land surface temperature (LST), a key ingredient for physically-based retrieval algorithms of hydrological states and fluxes, remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observations and...

  18. Surface Reflectance of Mars Observed by CRISM-MRO: 1. Multi-angle Approach for Retrieval of Surface Reflectance from CRISM Observations (mars-reco)

    NASA Technical Reports Server (NTRS)

    Ceamanos, Xavier; Doute, S.; Fernando, J.; Pinet, P.; Lyapustin, A.

    2013-01-01

    This article addresses the correction for aerosol effects in near-simultaneous multiangle observations acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter. In the targeted mode, CRISM senses the surface of Mars using 11 viewing angles, which allow it to provide unique information on the scattering properties of surface materials. In order to retrieve these data, however, appropriate strategies must be used to compensate the signal sensed by CRISM for aerosol contribution. This correction is particularly challenging as the photometric curve of these suspended particles is often correlated with the also anisotropic photometric curve of materials at the surface. This article puts forward an innovative radiative transfer based method named Multi-angle Approach for Retrieval of Surface Reflectance from CRISM Observations (MARS-ReCO). The proposed method retrieves photometric curves of surface materials in reflectance units after removing aerosol contribution. MARS-ReCO represents a substantial improvement regarding previous techniques as it takes into consideration the anisotropy of the surface, thus providing more realistic surface products. Furthermore, MARS-ReCO is fast and provides error bars on the retrieved surface reflectance. The validity and accuracy of MARS-ReCO is explored in a sensitivity analysis based on realistic synthetic data. According to experiments, MARS-ReCO provides accurate results (up to 10 reflectance error) under favorable acquisition conditions. In the companion article, photometric properties of Martian materials are retrieved using MARS-ReCO and validated using in situ measurements acquired during the Mars Exploration Rovers mission.

  19. Spatiotemporal Variations in the Difference between Satellite-observed Land Surface Temperature and Station-based Near-surface Air Temperature

    NASA Astrophysics Data System (ADS)

    Lian, X.

    2016-12-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature ( ). Using satellite observations and in-situ station-based datasets, we conducted a global-scale assessment of the spatial, seasonal, and interannual variations in the difference between daytime maximum LST and daytime maximum ( , LST - ) during 2003-2014. Spatially, LST is generally higher than over arid and sparsely vegetated regions in the mid-low latitudes, but LST is lower than in the tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the mid-latitudes and boreal regions. The seasonality in the mid-latitudes is a result of the asynchronous responses of LST and to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. At an interannual scale, only a small proportion of the land surface displays a statistically significant trend (P <0.05) due to the short time span of current measurements. Our study identified substantial spatial heterogeneity and seasonality in , as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface temperature changes using remote sensing, particularly in remote regions.

  20. A scheme for computing surface layer turbulent fluxes from mean flow surface observations

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Storch, J.

    1978-01-01

    A physical model and computational scheme are developed for generating turbulent surface stress, sensible heat flux and humidity flux from mean velocity, temperature and humidity at some fixed height in the atmospheric surface layer, where conditions at this reference level are presumed known from observations or the evolving state of a numerical atmospheric circulation model. The method is based on coupling the Monin-Obukov surface layer similarity profiles which include buoyant stability effects on mean velocity, temperature and humidity to a force-restore formulation for the evolution of surface soil temperature to yield the local values of shear stress, heat flux and surface temperature. A self-contained formulation is presented including parameterizations for solar and infrared radiant fluxes at the surface. Additional parameters needed to implement the scheme are the thermal heat capacity of the soil per unit surface area, surface aerodynamic roughness, latitude, solar declination, surface albedo, surface emissivity and atmospheric transmissivity to solar radiation.

  1. Surface-Based Observations of Contrail Occurrence Over the US, Apr. 1993 to Apr. 1994

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Ayers, J. Kirk; Weaver, Steven P.

    1997-01-01

    Surface observers stationed at 19 U.S. Air Force Bases and Army Air Stations recorded the daytime occurrence of contrails and cloud fraction on an hourly basis for the period April 1993 through April 1994. Each observation uses one of four main categories to report contrails as unobserved, non-persistent, persistent, and indeterminate. Additional classification includes the co-occurrence of cirrus with each report. The data cover much of the continental U.S. including locations near major commercial air routes. The mean annual frequency of occurrence in unobstructed viewing conditions is 13 percent for these sites. Contrail occurrence varied substantially with location and season. Most contrails occurred during the winter months and least during the summer with a pronounced minimum during July. Although nocturnal observations are not available, it appears that the contrails have a diurnal variation that peaks during mid morning over most areas. Contrails were most often observed in areas near major commercial air corridors and least often over areas far removed from the heaviest air traffic. A significant correlation exists between mean contrail frequency and aircraft fuel usage above 7 km suggesting predictive potential for assessing future contrail effects on climate.

  2. Evaluation of surface layer flux parameterizations using in-situ observations

    NASA Astrophysics Data System (ADS)

    Katz, Jeremy; Zhu, Ping

    2017-09-01

    Appropriate calculation of surface turbulent fluxes between the atmosphere and the underlying ocean/land surface is one of the major challenges in geosciences. In practice, the surface turbulent fluxes are estimated from the mean surface meteorological variables based on the bulk transfer model combined with the Monnin-Obukhov Similarity (MOS) theory. Few studies have been done to examine the extent to which such a flux parameterization can be applied to different weather and surface conditions. A novel validation method is developed in this study to evaluate the surface flux parameterization using in-situ observations collected at a station off the coast of Gulf of Mexico. The main findings are: (a) the theoretical prediction that uses MOS theory does not match well with those directly computed from the observations. (b) The largest spread in exchange coefficients is shown in strong stable conditions with calm winds. (c) Large turbulent eddies, which depend strongly on the mean flow pattern and surface conditions, tend to break the constant flux assumption in the surface layer.

  3. Cloud vertical distribution from combined surface and space radar-lidar observations at two Arctic atmospheric observatories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yinghui; Shupe, Matthew D.; Wang, Zhien

    Detailed and accurate vertical distributions of cloud properties (such as cloud fraction, cloud phase, and cloud water content) and their changes are essential to accurately calculate the surface radiative flux and to depict the mean climate state. Surface and space-based active sensors including radar and lidar are ideal to provide this information because of their superior capability to detect clouds and retrieve cloud microphysical properties. In this study, we compare the annual cycles of cloud property vertical distributions from space-based active sensors and surface-based active sensors at two Arctic atmospheric observatories, Barrow and Eureka. Based on the comparisons, we identifymore » the sensors' respective strengths and limitations, and develop a blended cloud property vertical distribution by combining both sets of observations. Results show that surface-based observations offer a more complete cloud property vertical distribution from the surface up to 11 km above mean sea level (a.m.s.l.) with limitations in the middle and high altitudes; the annual mean total cloud fraction from space-based observations shows 25-40 % fewer clouds below 0.5 km than from surface-based observations, and space-based observations also show much fewer ice clouds and mixed-phase clouds, and slightly more liquid clouds, from the surface to 1 km. In general, space-based observations show comparable cloud fractions between 1 and 2 km a.m.s.l., and larger cloud fractions above 2 km a.m.s.l. than from surface-based observations. A blended product combines the strengths of both products to provide a more reliable annual cycle of cloud property vertical distributions from the surface to 11 km a.m.s.l. This information can be valuable for deriving an accurate surface radiative budget in the Arctic and for cloud parameterization evaluation in weather and climate models. Cloud annual cycles show similar evolutions in total cloud fraction and ice cloud fraction, and lower liquid

  4. Cloud vertical distribution from combined surface and space radar-lidar observations at two Arctic atmospheric observatories

    DOE PAGES

    Liu, Yinghui; Shupe, Matthew D.; Wang, Zhien; ...

    2017-05-16

    Detailed and accurate vertical distributions of cloud properties (such as cloud fraction, cloud phase, and cloud water content) and their changes are essential to accurately calculate the surface radiative flux and to depict the mean climate state. Surface and space-based active sensors including radar and lidar are ideal to provide this information because of their superior capability to detect clouds and retrieve cloud microphysical properties. In this study, we compare the annual cycles of cloud property vertical distributions from space-based active sensors and surface-based active sensors at two Arctic atmospheric observatories, Barrow and Eureka. Based on the comparisons, we identifymore » the sensors' respective strengths and limitations, and develop a blended cloud property vertical distribution by combining both sets of observations. Results show that surface-based observations offer a more complete cloud property vertical distribution from the surface up to 11 km above mean sea level (a.m.s.l.) with limitations in the middle and high altitudes; the annual mean total cloud fraction from space-based observations shows 25-40 % fewer clouds below 0.5 km than from surface-based observations, and space-based observations also show much fewer ice clouds and mixed-phase clouds, and slightly more liquid clouds, from the surface to 1 km. In general, space-based observations show comparable cloud fractions between 1 and 2 km a.m.s.l., and larger cloud fractions above 2 km a.m.s.l. than from surface-based observations. A blended product combines the strengths of both products to provide a more reliable annual cycle of cloud property vertical distributions from the surface to 11 km a.m.s.l. This information can be valuable for deriving an accurate surface radiative budget in the Arctic and for cloud parameterization evaluation in weather and climate models. Cloud annual cycles show similar evolutions in total cloud fraction and ice cloud fraction, and lower liquid

  5. Lunar Observer Laser Altimeter observations for lunar base site selection

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Bufton, Jack L.

    1992-01-01

    One of the critical datasets for optimal selection of future lunar landing sites is local- to regional-scale topography. Lunar base site selection will require such data for both engineering and scientific operations purposes. The Lunar Geoscience Orbiter or Lunar Observer is the ideal precursory science mission from which to obtain this required information. We suggest that a simple laser altimeter instrument could be employed to measure local-scale slopes, heights, and depths of lunar surface features important to lunar base planning and design. For this reason, we have designed and are currently constructing a breadboard of a Lunar Observer Laser Altimeter (LOLA) instrument capable of acquiring contiguous-footprint topographic profiles with both 30-m and 300-m along-track resolution. This instrument meets all the severe weight, power, size, and data rate limitations imposed by Observer-class spacecraft. In addition, LOLA would be capable of measuring the within-footprint vertical roughness of the lunar surface, and the 1.06-micron relative surface reflectivity at normal incidence. We have used airborne laser altimeter data for a few representative lunar analog landforms to simulate and analyze LOLA performance in a 100-km lunar orbit. We demonstrate that this system in its highest resolution mode (30-m diameter footprints) would quantify the topography of all but the very smallest lunar landforms. At its global mapping resolution (300-m diameter footprints), LOLA would establish the topographic context for lunar landing site selection by providing the basis for constructing a 1-2 km spatial resolution global, geodetic topographic grid that would contain a high density of observations (e.g., approximately 1000 observations per each 1 deg by 1 deg cell at the lunar equator). The high spatial and vertical resolution measurements made with a LOLA-class instrument on a precursory Lunar Observer would be highly synergistic with high-resolution imaging datasets, and

  6. Automation of surface observations program

    NASA Technical Reports Server (NTRS)

    Short, Steve E.

    1988-01-01

    At present, surface weather observing methods are still largely manual and labor intensive. Through the nationwide implementation of Automated Surface Observing Systems (ASOS), this situation can be improved. Two ASOS capability levels are planned. The first is a basic-level system which will automatically observe the weather parameters essential for aviation operations and will operate either with or without supplemental contributions by an observer. The second is a more fully automated, stand-alone system which will observe and report the full range of weather parameters and will operate primarily in the unattended mode. Approximately 250 systems are planned by the end of the decade. When deployed, these systems will generate the standard hourly and special long-line transmitted weather observations, as well as provide continuous weather information direct to airport users. Specific ASOS configurations will vary depending upon whether the operation is unattended, minimally attended, or fully attended. The major functions of ASOS are data collection, data processing, product distribution, and system control. The program phases of development, demonstration, production system acquisition, and operational implementation are described.

  7. Dielectric properties of Asteroid Vesta's surface as constrained by Dawn VIR observations

    NASA Astrophysics Data System (ADS)

    Palmer, Elizabeth M.; Heggy, Essam; Capria, Maria T.; Tosi, Federico

    2015-12-01

    Earth and orbital-based radar observations of asteroids provide a unique opportunity to characterize surface roughness and the dielectric properties of their surfaces, as well as potentially explore some of their shallow subsurface physical properties. If the dielectric and topographic properties of asteroid's surfaces are defined, one can constrain their surface textural characteristics as well as potential subsurface volatile enrichment using the observed radar backscatter. To achieve this objective, we establish the first dielectric model of asteroid Vesta for the case of a dry, volatile-poor regolith-employing an analogy to the dielectric properties of lunar soil, and adjusted for the surface densities and temperatures deduced from Dawn's Visible and InfraRed mapping spectrometer (VIR). Our model suggests that the real part of the dielectric constant at the surface of Vesta is relatively constant, ranging from 2.3 to 2.5 from the night- to day-side of Vesta, while the loss tangent shows slight variation as a function of diurnal temperature, ranging from 6 × 10-3 to 8 × 10-3. We estimate the surface porosity to be ∼55% in the upper meter of the regolith, as derived from VIR observations. This is ∼12% higher than previous estimation of porosity derived from previous Earth-based X- and S-band radar observation. We suggest that the radar backscattering properties of asteroid Vesta will be mainly driven by the changes in surface roughness rather than potential dielectric variations in the upper regolith in the X- and S-band.

  8. Coarse Scale In Situ Albedo Observations over Heterogeneous Land Surfaces and Validation Strategy

    NASA Astrophysics Data System (ADS)

    Xiao, Q.; Wu, X.; Wen, J.; BAI, J., Sr.

    2017-12-01

    To evaluate and improve the quality of coarse-pixel land surface albedo products, validation with ground measurements of albedo is crucial over the spatially and temporally heterogeneous land surface. The performance of albedo validation depends on the quality of ground-based albedo measurements at a corresponding coarse-pixel scale, which can be conceptualized as the "truth" value of albedo at coarse-pixel scale. The wireless sensor network (WSN) technology provides access to continuously observe on the large pixel scale. Taking the albedo products as an example, this paper was dedicated to the validation of coarse-scale albedo products over heterogeneous surfaces based on the WSN observed data, which is aiming at narrowing down the uncertainty of results caused by the spatial scaling mismatch between satellite and ground measurements over heterogeneous surfaces. The reference value of albedo at coarse-pixel scale can be obtained through an upscaling transform function based on all of the observations for that pixel. We will devote to further improve and develop new method that that are better able to account for the spatio-temporal characteristic of surface albedo in the future. Additionally, how to use the widely distributed single site measurements over the heterogeneous surfaces is also a question to be answered. Keywords: Remote sensing; Albedo; Validation; Wireless sensor network (WSN); Upscaling; Heterogeneous land surface; Albedo truth at coarse-pixel scale

  9. Ocean Surface Carbon Dioxide Fugacity Observed from Space

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu

    2014-01-01

    We have developed and validated a statistical model to estimate the fugacity (or partial pressure) of carbon dioxide (CO2) at sea surface (pCO2sea) from space-based observations of sea surface temperature (SST), chlorophyll, and salinity. More than a quarter million in situ measurements coincident with satellite data were compiled to train and validate the model. We have produced and made accessible 9 years (2002-2010) of the pCO2sea at 0.5 degree resolutions daily over the global ocean. The results help to identify uncertainties in current JPL Carbon Monitoring System (CMS) model-based and bottom-up estimates over the ocean. The utility of the data to reveal multi-year and regional variability of the fugacity in relation to prevalent oceanic parameters is demonstrated.

  10. Surface Snow Density of East Antarctica Derived from In-Situ Observations

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zhang, S.; Du, W.; Chen, J.; Xie, H.; Tong, X.; Li, R.

    2018-04-01

    Models based on physical principles or semi-empirical parameterizations have used to compute the firn density, which is essential for the study of surface processes in the Antarctic ice sheet. However, parameterization of surface snow density is often challenged by the description of detailed local characterization. In this study we propose to generate a surface density map for East Antarctica from all the filed observations that are available. Considering that the observations are non-uniformly distributed around East Antarctica, obtained by different methods, and temporally inhomogeneous, the field observations are used to establish an initial density map with a grid size of 30 × 30 km2 in which the observations are averaged at a temporal scale of five years. We then construct an observation matrix with its columns as the map grids and rows as the temporal scale. If a site has an unknown density value for a period, we will set it to 0 in the matrix. In order to construct the main spatial and temple information of surface snow density matrix we adopt Empirical Orthogonal Function (EOF) method to decompose the observation matrix and only take first several lower-order modes, because these modes already contain most information of the observation matrix. However, there are a lot of zeros in the matrix and we solve it by using matrix completion algorithm, and then we derive the time series of surface snow density at each observation site. Finally, we can obtain the surface snow density by multiplying the modes interpolated by kriging with the corresponding amplitude of the modes. Comparative analysis have done between our surface snow density map and model results. The above details will be introduced in the paper.

  11. Surface slope characteristics from Thermal Emission Spectrometer emission phase function observations

    NASA Astrophysics Data System (ADS)

    Edwards, C. S.; Bandfield, J. L.; Christensen, P. R.

    2006-12-01

    It is possible to obtain surface roughness characteristics, by measuring a single surface from multiple emission angles and azimuths in the thermal infrared. Surfaces will have different temperatures depending on their orientation relative to the sun. A different proportion of sunlit versus shaded surfaces will be in the field of view based on the viewing orientation, resulting in apparent temperature differences. This difference in temperature can be utilized to calculate the slope characteristics for the observed area. This technique can be useful for determining surface slope characteristics not resolvable by orbital imagery. There are two main components to this model, a surface DEM, in this case a synthetic, two dimensional sine wave surface, and a thermal model (provided by H. Kieffer). Using albedo, solar longitude, slope, azimuth, along with several other parameters, the temperature for each cell of the DEM is calculated using the thermal model. A temperature is then predicted using the same observation geometries as the Thermal Emission Spectrometer (TES) observations. A temperature difference is calculated for the two complementary viewing azimuths and emission angles from the DEM. These values are then compared to the observed temperature difference to determine the surface slope. This method has been applied to TES Emission Phase Function (EPF) observations for both the spectrometer and bolometer data, with a footprint size of 10s of kilometers. These specialized types of TES observations measure nearly the same surface from several angles. Accurate surface kinetic temperatures are obtained after the application of an atmospheric correction for the TES bolometer and/or spectrometer. Initial results include an application to the northern circumpolar dunes. An average maximum slope of ~33 degrees has been obtained, which makes physical sense since this is near the angle of repose for sand sized particles. There is some scatter in the data from separate

  12. Tropospheric ozone in the western Pacific Rim: Analysis of satellite and surface-based observations along with comprehensive 3-D model simulations

    NASA Technical Reports Server (NTRS)

    Young, Sun-Woo; Carmichael, Gregory R.

    1994-01-01

    Tropospheric ozone production and transport in mid-latitude eastern Asia is studied. Data analysis of surface-based ozone measurements in Japan and satellite-based tropospheric column measurements of the entire western Pacific Rim are combined with results from three-dimensional model simulations to investigate the diurnal, seasonal and long-term variations of ozone in this region. Surface ozone measurements from Japan show distinct seasonal variation with a spring peak and summer minimum. Satellite studies of the entire tropospheric column of ozone show high concentrations in both the spring and summer seasons. Finally, preliminary model simulation studies show good agreement with observed values.

  13. Inference of Surface Chemical and Physical Properties Using Mid-Infrared (MIR) Spectral Observations

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    2016-01-01

    Reflected or emitted energy from solid surfaces in the solar system can provide insight into thermo-physical and chemical properties of the surface materials. Measurements have been obtained from instruments located on Earth-based telescopes and carried on several space missions. The characteristic spectral features commonly observed in Mid-Infrared (MIR) spectra of minerals will be reviewed, along with methods used for compositional interpretations of MIR emission spectra. The influence of surface grain size, and space weathering processes on MIR emissivity spectra will also be discussed. Methods used for estimating surface temperature, emissivity, and thermal inertias from MIR spectral observations will be reviewed.

  14. Estimation of Multiple Parameters over Vegetated Surfaces by Integrating Optical-Thermal Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Ma, H.

    2016-12-01

    Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface parameters are generally parameter-specific algorithms and are based on instantaneous physical models, which result in spatial, temporal and physical inconsistencies in current global products. Besides, optical and Thermal Infrared (TIR) remote sensing observations are usually separated to use based on different models , and the Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal that mixes both reflected and emitted fluxes. In this paper, we proposed a unified algorithm for simultaneously retrieving a total of seven land surface parameters, including Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Temperature (LST), surface emissivity, downward and upward longwave radiation, by exploiting remote sensing observations from visible to TIR domain based on a common physical Radiative Transfer (RT) model and a data assimilation framework. The coupled PROSPECT-VISIR and 4SAIL RT model were used for canopy reflectance modeling. At first, LAI was estimated using a data assimilation method that combines MODIS daily reflectance observation and a phenology model. The estimated LAI values were then input into the RT model to simulate surface spectral emissivity and surface albedo. Besides, the background albedo and the transmittance of solar radiation, and the canopy albedo were also calculated to produce FAPAR. Once the spectral emissivity of seven MODIS MIR to TIR bands were retrieved, LST can be estimated from the atmospheric corrected surface radiance by exploiting an optimization method. At last, the upward longwave radiation were estimated using the retrieved LST, broadband emissivity (converted from spectral emissivity) and the downward longwave

  15. OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, C. R.; Mainzer, A.; Masiero, J.

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emittedmore » flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.« less

  16. ATLAS-3 correlative measurement opportunities with UARS and surface observations

    NASA Technical Reports Server (NTRS)

    Harrison, Edwin F.; Denn, Fred M.; Gibson, Gary G.

    1995-01-01

    The third ATmospheric Laboratory for Applications and Science (ATLAS-3) mission was flown aboard the Space Shuttle launched on November 3, 1994. The mission length was approximately 10 days and 22 hours. The ATLAS-3 Earth-viewing instruments provided a large number of measurements which were nearly coincident with observations from experiments on the Upper Atmosphere Research Satellite (UARS). Based on ATLAS-3 instrument operating schedules, simulations were performed to determine when and where correlative measurements occurred between ATLAS and UARS instruments, and between ATLAS and surface observations. Results of these orbital and instrument simulations provide valuable information for scientists to compare measurements between various instruments on the two satellites and at selected surface sites.

  17. ALMA observation of Ceres' Surface Temperature.

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Li, J. Y.; Sykes, M. V.; Ip, W. H.; Lai, I.; Moullet, A.

    2016-12-01

    Ceres, the largest object in the main asteroid belt, has been mapped by the Dawn spacecraft. The mapping includes measuring surface temperatures using the Visible and Infrared (VIR) spectrometer at high spatial resolution. However, the VIR instrument has a long wavelength cutoff at 5 μm, which prevents the accurate measurement of surface temperatures below 180 K. This restricts temperature determinations to low and mid-latitudes at mid-day. Observations from the Atacama Large Millimeter/submillimeter Array (ALMA) [1], while having lower spatial resolution, are sensitive to the full range of surface temperatures that are expected at Ceres. Forty reconstructed images at 75 km/beam resolution were acquired of Ceres that were consistent with a low thermal inertia surface. The diurnal temperature profiles were compared to the KRC thermal model [2, 3], which has been extensively used for Mars [e.g. 4, 5]. Variations in temperature as a function of local time are observed and are compared to predictions from the KRC model. The model temperatures are converted to radiance (Jy/Steradian) and are corrected for near-surface thermal gradients and limb effects for comparison to observations. Initial analysis is consistent with the presence of near-surface water ice in the north polar region. The edge of the ice table is between 50° and 70° North Latitude, consistent with the enhanced detection of hydrogen by the Dawn GRaND instrument [6]. Further analysis will be presented. This work is supported by the NASA Solar System Observations Program. References: [1] Wootten A. et al. (2015) IAU General Assembly, Meeting #29, #2237199 [2] Kieffer, H. H., et al. (1977) JGR, 82, 4249-4291. [3] Kieffer, Hugh H., (2013) Journal of Geophysical Research: Planets, 118(3), 451-470. [4] Titus, T. N., H. H. Kieffer, and P. N. Christensen (2003) Science, 299, 1048-1051. [5] Fergason, R. L. et al. (2012) Space Sci. Rev, 170, 739-773[6] Prettyman, T. et al. (2016) LPSC 47, #2228.

  18. Regional Geoid Modeling Compared to Ocean Surface Observations

    NASA Astrophysics Data System (ADS)

    Roman, D. R.; Saleh, J.; Wang, Y. M.

    2007-05-01

    Aerogravity over a limited coastal region of the northern Gulf of Mexico enhanced and rectified the local gravity field signal. In turn, these data improved the derived geoid height model based on comparison with dynamic ocean topography (DOT) and tide gage information at eleven stations. Additionally, lidar observations were analyzed along nearly 50 profiles to estimate the reliability of these models into the offshore region. The overall comparison shows dm-level agreement between the various geoid and DOT models and ocean surface observations. An approximate 30 cm bias must still be explained; however, the results of this study point to the potential for further cooperative studies between oceanographers and geodesists.

  19. A unified model for surface electrocatalysis based on observations with enzymes.

    PubMed

    Hexter, Suzannah V; Esterle, Thomas F; Armstrong, Fraser A

    2014-06-28

    Despite being so large, many enzymes are not only excellent electrocatalysts - making possible chemical transformations under almost reversible conditions - but they also facilitate our understanding of electrocatalysis by allowing complex processes to be dissected systematically. The electrocatalytic voltammograms obtained for enzymes attached to an electrode expose fundamental aspects of electrocatalysis that can be addressed in ways that are not available to conventional molecular or surface electrocatalysts. The roles of individual components, each characterisable by diffraction or spectroscopy, can be tested and optimised by genetic engineering. Importantly, unlike small-molecule electrocatalysts (RMM < 1000) that are structurally well-defined but invariably altered by being attached to a surface, the enzyme is a giant, multi-component assembly in which the active site is buried and relatively insensitive to the presence of the electrode and solvent interface. A central assertion is that for a given driving force (electrode potential) a true catalyst has no influence on the direction of the reaction; consequently, 'catalytic bias', i.e. the common observation that an enzyme or indeed any electrocatalyst operates preferentially in one direction, must arise from secondary effects beyond the elementary catalytic cycle. This Perspective highlights and extends a general model for electrocatalysis by surface-confined enzymes, and explains how two secondary effects control the bias: (i) the electrode potential at which electrons enter or leave the catalytic cycle; (ii) potential-dependent interconversions between states of the catalyst differing in catalytic activity due to changes in the composition and arrangements of atoms. The model, which is easily applied to enzymes that have been studied recently, highlights important considerations for understanding and developing surface-confined electrocatalysts.

  20. Observation of topological superconductivity on the surface of an iron-based superconductor

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Yaji, Koichiro; Hashimoto, Takahiro; Ota, Yuichi; Kondo, Takeshi; Okazaki, Kozo; Wang, Zhijun; Wen, Jinsheng; Gu, G. D.; Ding, Hong; Shin, Shik

    2018-04-01

    Topological superconductors are predicted to host exotic Majorana states that obey non-Abelian statistics and can be used to implement a topological quantum computer. Most of the proposed topological superconductors are realized in difficult-to-fabricate heterostructures at very low temperatures. By using high-resolution spin-resolved and angle-resolved photoelectron spectroscopy, we find that the iron-based superconductor FeTe1–xSex (x = 0.45; superconducting transition temperature Tc = 14.5 kelvin) hosts Dirac-cone–type spin-helical surface states at the Fermi level; the surface states exhibit an s-wave superconducting gap below Tc. Our study shows that the surface states of FeTe0.55Se0.45 are topologically superconducting, providing a simple and possibly high-temperature platform for realizing Majorana states.

  1. Assimilation of Freeze - Thaw Observations into the NASA Catchment Land Surface Model

    NASA Technical Reports Server (NTRS)

    Farhadi, Leila; Reichle, Rolf H.; DeLannoy, Gabrielle J. M.; Kimball, John S.

    2014-01-01

    The land surface freeze-thaw (F-T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, we developed an F-T assimilation algorithm for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F-T state in the GEOS-5 Catchment land surface model. The F-T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F-T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F-T observations. The assimilation of perfect (error-free) F-T observations reduced the root-mean-square errors (RMSE) of surface temperature and soil temperature by 0.206 C and 0.061 C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7 percent and 3.1 percent, respectively). For a maximum classification error (CEmax) of 10 percent in the synthetic F-T observations, the F-T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178 C and 0.036 C, respectively. For CEmax=20 percent, the F-T assimilation still reduces the RMSE of model surface temperature estimates by 0.149 C but yields no improvement over the model soil temperature estimates. The F-T assimilation scheme is being developed to exploit planned operational F-T products from the NASA Soil Moisture Active Passive (SMAP) mission.

  2. Optimizing weather radar observations using an adaptive multiquadric surface fitting algorithm

    NASA Astrophysics Data System (ADS)

    Martens, Brecht; Cabus, Pieter; De Jongh, Inge; Verhoest, Niko

    2013-04-01

    Real time forecasting of river flow is an essential tool in operational water management. Such real time modelling systems require well calibrated models which can make use of spatially distributed rainfall observations. Weather radars provide spatial data, however, since radar measurements are sensitive to a large range of error sources, often a discrepancy between radar observations and ground-based measurements, which are mostly considered as ground truth, can be observed. Through merging ground observations with the radar product, often referred to as data merging, one may force the radar observations to better correspond to the ground-based measurements, without losing the spatial information. In this paper, radar images and ground-based measurements of rainfall are merged based on interpolated gauge-adjustment factors (Moore et al., 1998; Cole and Moore, 2008) or scaling factors. Using the following equation, scaling factors (C(xα)) are calculated at each position xα where a gauge measurement (Ig(xα)) is available: Ig(xα)+-? C (xα) = Ir(xα)+ ? (1) where Ir(xα) is the radar-based observation in the pixel overlapping the rain gauge and ? is a constant making sure the scaling factor can be calculated when Ir(xα) is zero. These scaling factors are interpolated on the radar grid, resulting in a unique scaling factor for each pixel. Multiquadric surface fitting is used as an interpolation algorithm (Hardy, 1971): C*(x0) = aTv + a0 (2) where C*(x0) is the prediction at location x0, the vector a (Nx1, with N the number of ground-based measurements used) and the constant a0 parameters describing the surface and v an Nx1 vector containing the (Euclidian) distance between each point xα used in the interpolation and the point x0. The parameters describing the surface are derived by forcing the surface to be an exact interpolator and impose that the sum of the parameters in a should be zero. However, often, the surface is allowed to pass near the observations (i

  3. Integrating Satellite, Radar and Surface Observation with Time and Space Matching

    NASA Astrophysics Data System (ADS)

    Ho, Y.; Weber, J.

    2015-12-01

    The Integrated Data Viewer (IDV) from Unidata is a Java™-based software framework for analyzing and visualizing geoscience data. It brings together the ability to display and work with satellite imagery, gridded data, surface observations, balloon soundings, NWS WSR-88D Level II and Level III RADAR data, and NOAA National Profiler Network data, all within a unified interface. Applying time and space matching on the satellite, radar and surface observation datasets will automatically synchronize the display from different data sources and spatially subset to match the display area in the view window. These features allow the IDV users to effectively integrate these observations and provide 3 dimensional views of the weather system to better understand the underlying dynamics and physics of weather phenomena.

  4. Impacts of land cover transitions on surface temperature in China based on satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhen; Liang, Shunlin

    2018-02-01

    China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short

  5. Observation of topological superconductivity on the surface of an iron-based superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Yaji, Koichiro; Hashimoto, Takahiro

    Topological superconductors are predicted to host exotic Majorana states that obey non-Abelian statistics and can be used to implement a topological quantum computer. Most of the proposed topological superconductors are realized in difficult-to-fabricate heterostructures at very low temperatures. By using high-resolution spin-resolved and angle-resolved photoelectron spectroscopy, we find that the iron-based superconductor FeTe 1–xSe x (x = 0.45; superconducting transition temperature T c = 14.5 kelvin) hosts Dirac-cone–type spin-helical surface states at the Fermi level; the surface states exhibit an s-wave superconducting gap below T c. Thus, our study shows that the surface states of FeTe 0.55Se 0.45 are topologicallymore » superconducting, providing a simple and possibly high-temperature platform for realizing Majorana states.« less

  6. Observation of topological superconductivity on the surface of an iron-based superconductor

    DOE PAGES

    Zhang, Peng; Yaji, Koichiro; Hashimoto, Takahiro; ...

    2018-03-08

    Topological superconductors are predicted to host exotic Majorana states that obey non-Abelian statistics and can be used to implement a topological quantum computer. Most of the proposed topological superconductors are realized in difficult-to-fabricate heterostructures at very low temperatures. By using high-resolution spin-resolved and angle-resolved photoelectron spectroscopy, we find that the iron-based superconductor FeTe 1–xSe x (x = 0.45; superconducting transition temperature T c = 14.5 kelvin) hosts Dirac-cone–type spin-helical surface states at the Fermi level; the surface states exhibit an s-wave superconducting gap below T c. Thus, our study shows that the surface states of FeTe 0.55Se 0.45 are topologicallymore » superconducting, providing a simple and possibly high-temperature platform for realizing Majorana states.« less

  7. Observation of surface layering in a nonmetallic liquid

    NASA Astrophysics Data System (ADS)

    Mo, Haiding; Evmenenko, Guennadi; Kewalramani, Sumit; Kim, Kyungil; Dutta, Pulak; Ehrlich, Steven

    2006-03-01

    Non-monotonic density profiles (layers) have previously been observed at the free surfaces of many metallic liquids, but not in isotropic dielectric liquids. Whether the presence of an electron gas is necessary for surface layering has been the subject of debate. Until recently, MD simulations have suggested that layering at free liquid interface may be a generic phenomenon and is not limited to the metallic liquids^1. The theories predict that if normal liquids can be cooled down to temperatures low enough, layering structure should be observed experimentally. However, this is difficult for most molecular liquids because these liquids freeze well above the temperature necessary for observing the layering structure. By studying the surface structure of liquid TEHOS (tetrakis(2-ethylhexoxy)silane), which combines relatively low freezing point and high boiling point compared to that of most molecular liquids, we have observed the evidence of layering at the free interface of liquid TEHOS using x-ray reflectivity. When cooled to T/Tc 0.25 (well above the bulk freezing point, Tc is the critical temperature of TEHOS), the surface roughness drops sharply and density oscillations appear near the surface. Lateral ordering of the surface layers is liquid-like, just as at liquid metal surfaces. 1. E. Chac'on and P. Tarazona, Phys. Rev. Lett. 91 166103-1 (2003)

  8. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  9. Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations

    NASA Technical Reports Server (NTRS)

    Reichle, R. H.

    2010-01-01

    Root zone soil moisture controls the land-atmosphere exchange of water and energy and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments we assimilate synthetic surface soil moisture observations into four different models (Catchment, Mosaic, Noah and CLM) using the Ensemble Kalman Filter. We demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Our experiments also suggest that (faced with unknown true subsurface physics) overestimating surface to root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Finally, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.

  10. Direct Observation of Domain-Wall Surface Tension by Deflating or Inflating a Magnetic Bubble

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Vernier, Nicolas; Zhao, Weisheng; Yu, Haiming; Vila, Laurent; Zhang, Yue; Ravelosona, Dafiné

    2018-02-01

    The surface energy of a magnetic domain wall (DW) strongly affects its static and dynamic behaviors. However, this effect is seldom directly observed, and some of the related phenomena are not well understood. Moreover, a reliable method to quantify the DW surface energy is still absent. Here, we report a series of experiments in which the DW surface energy becomes a dominant parameter. We observe that a semicircular magnetic domain bubble can spontaneously collapse under the Laplace pressure induced by DW surface energy. We further demonstrate that the surface energy can lead to a geometrically induced pinning when the DW propagates in a Hall cross or from a nanowire into a nucleation pad. Based on these observations, we develop two methods to quantify the DW surface energy, which can be very helpful in the estimation of intrinsic parameters such as Dzyaloshinskii-Moriya interactions or exchange stiffness in magnetic ultrathin films.

  11. Global Surface Thermal Inertia Derived from Dawn VIR Observations

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Becker, K. J.; Anderson, J.; Capria, M.; Tosi, F.; Prettyman, T. H.; De Sanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.; McCord, T. B.; Li, J. Y.; Russell, C. T.; Raymond, C. A.

    2012-12-01

    Comparisons of surface temperatures, derived from Dawn [1] Visible and Infrared Mapping Spectrometer (VIR-MS) [2] observations , to thermal models suggest that Vesta generally has a low-thermal-inertia surface, between 25 and 35 J m^-2 K^-1 s^-½, consistent with a thick layer of fine-grain material [3]. Temperatures were calculated using a Bayesian approach to nonlinear inversion as described by Tosi et al. [4]. In order to compare observed temperatures of Vesta to model calculations, several geometric and photometric parameters must be known or estimated. These include local mean solar time, latitude, local slope, bond bolometric albedo, and the effective emissivity at 5μm. Local time, latitude, and local slope are calculated using the USGS ISIS software system [5]. We employ a multi-layered thermal-diffusion model called 'KRC' [6], which has been used extensively in the study of Martian thermophysical properties. This thermal model is easily modified for use with Vesta by replacing the Martian ephemeris input with the Vesta ephemeris and disabling the atmosphere. This model calculates surface temperatures throughout an entire Vesta year for specific sets of slope, azimuth, latitude and elevation, and a range of albedo and thermal-inertia values. The ranges of albedo and thermal inertia values create temperature indices that are closely matched to the dates and times observed by VIR. Based on observed temperatures and best-fit KRC thermal models, estimates of the annual mean surface temperatures were found to range from 176 K - 188 K for flat zenith-facing equatorial surfaces, but these temperatures can drop as low as 112 K for polar-facing slopes at mid-latitudes. [7] In this work, we will compare observed temperatures of the surface of Vesta (using data acquired by Dawn VIR-MS [2] during the approach, survey, high-altitude mapping and departure phases) to model temperature results using the KRC thermal model [5]. Where possible, temperature observations from

  12. Low-mode internal tides and balanced dynamics disentanglement in altimetric observations: Synergy with surface density observations

    NASA Astrophysics Data System (ADS)

    Ponte, Aurélien L.; Klein, Patrice; Dunphy, Michael; Le Gentil, Sylvie

    2017-03-01

    The performance of a tentative method that disentangles the contributions of a low-mode internal tide on sea level from that of the balanced mesoscale eddies is examined using an idealized high resolution numerical simulation. This disentanglement is essential for proper estimation from sea level of the ocean circulation related to balanced motions. The method relies on an independent observation of the sea surface water density whose variations are 1/dominated by the balanced dynamics and 2/correlate with variations of potential vorticity at depth for the chosen regime of surface-intensified turbulence. The surface density therefore leads via potential vorticity inversion to an estimate of the balanced contribution to sea level fluctuations. The difference between instantaneous sea level (presumably observed with altimetry) and the balanced estimate compares moderately well with the contribution from the low-mode tide. Application to realistic configurations remains to be tested. These results aim at motivating further developments of reconstruction methods of the ocean dynamics based on potential vorticity dynamics arguments. In that context, they are particularly relevant for the upcoming wide-swath high resolution altimetric missions (SWOT).

  13. Observation of topological superconductivity on the surface of an iron-based superconductor.

    PubMed

    Zhang, Peng; Yaji, Koichiro; Hashimoto, Takahiro; Ota, Yuichi; Kondo, Takeshi; Okazaki, Kozo; Wang, Zhijun; Wen, Jinsheng; Gu, G D; Ding, Hong; Shin, Shik

    2018-04-13

    Topological superconductors are predicted to host exotic Majorana states that obey non-Abelian statistics and can be used to implement a topological quantum computer. Most of the proposed topological superconductors are realized in difficult-to-fabricate heterostructures at very low temperatures. By using high-resolution spin-resolved and angle-resolved photoelectron spectroscopy, we find that the iron-based superconductor FeTe 1- x Se x ( x = 0.45; superconducting transition temperature T c = 14.5 kelvin) hosts Dirac-cone-type spin-helical surface states at the Fermi level; the surface states exhibit an s-wave superconducting gap below T c Our study shows that the surface states of FeTe 0.55 Se 0.45 are topologically superconducting, providing a simple and possibly high-temperature platform for realizing Majorana states. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Titan's Surface Composition from Cassini VIMS Solar Occultation Observations

    NASA Astrophysics Data System (ADS)

    McCord, Thomas; Hayne, Paul; Sotin, Christophe

    2013-04-01

    Titan's surface is obscured by a thick absorbing and scattering atmosphere, allowing direct observation of the surface within only a few spectral win-dows in the near-infrared, complicating efforts to identify and map geologi-cally important materials using remote sensing IR spectroscopy. We there-fore investigate the atmosphere's infrared transmission with direct measure-ments using Titan's occultation of the Sun as well as Titan's reflectance measured at differing illumination and observation angles observed by Cas-sini's Visual and Infrared Mapping Spectrometer (VIMS). We use two im-portant spectral windows: the 2.7-2.8-mm "double window" and the broad 5-mm window. By estimating atmospheric attenuation within these windows, we seek an empirical correction factor that can be applied to VIMS meas-urements to estimate the true surface reflectance and map inferred composi-tional variations. Applying the empirical corrections, we correct the VIMS data for the viewing geometry-dependent atmospheric effects to derive the 5-µm reflectance and 2.8/2.7-µm reflectance ratio. We then compare the cor-rected reflectances to compounds proposed to exist on Titan's surface. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scattering in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass < 3.0. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scatter-ing in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass < 3.0. The narrow 2.75-mm absorption feature, dividing the window into two sub-windows, present in all on-planet measurements is not present in the occultation data, and its strength is reduced at the cloud tops, suggesting the responsible molecule is concentrated in the lower troposphere or on the sur-face. Our empirical correction to Titan's surface reflectance yields properties shifted closer to water ice for the majority of the low

  15. Plasmon Surface Polariton Dispersion by Direct Optical Observation.

    ERIC Educational Resources Information Center

    Swalen, J. D.; And Others

    1980-01-01

    Describes several simple experiments that can be used to observe directly the dispersion curve of plasmon surface polaritons (PSP) on flat metal surfaces. A method is described of observing the increonental change in the wave vector of the PSP due to coatings that differ in thickness by a few nanometers. (Author/CS)

  16. Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature

    NASA Technical Reports Server (NTRS)

    Mintz, Y.; Walker, G. K.

    1993-01-01

    The global fields of normal monthly soil moisture and land surface evapotranspiration are derived with a simple water budget model that has precipitation and potential evapotranspiration as inputs. The precipitation is observed and the potential evapotranspiration is derived from the observed surface air temperature with the empirical regression equation of Thornthwaite (1954). It is shown that at locations where the net surface radiation flux has been measured, the potential evapotranspiration given by the Thornthwaite equation is in good agreement with those obtained with the radiation-based formulations of Priestley and Taylor (1972), Penman (1948), and Budyko (1956-1974), and this provides the justification for the use of the Thornthwaite equation. After deriving the global fields of soil moisture and evapotranspiration, the assumption is made that the potential evapotranspiration given by the Thornthwaite equation and by the Priestley-Taylor equation will everywhere be about the same; the inverse of the Priestley-Taylor equation is used to obtain the normal monthly global fields of net surface radiation flux minus ground heat storage. This and the derived evapotranspiration are then used in the equation for energy conservation at the surface of the earth to obtain the global fields of normal monthly sensible heat flux from the land surface to the atmosphere.

  17. OSCAR/Surface: Metadata for the WMO Integrated Observing System WIGOS

    NASA Astrophysics Data System (ADS)

    Klausen, Jörg; Pröscholdt, Timo; Mannes, Jürg; Cappelletti, Lucia; Grüter, Estelle; Calpini, Bertrand; Zhang, Wenjian

    2016-04-01

    The World Meteorological Organization (WMO) Integrated Global Observing System (WIGOS) is a key WMO priority underpinning all WMO Programs and new initiatives such as the Global Framework for Climate Services (GFCS). It does this by better integrating WMO and co-sponsored observing systems, as well as partner networks. For this, an important aspect is the description of the observational capabilities by way of structured metadata. The 17th Congress of the Word Meteorological Organization (Cg-17) has endorsed the semantic WIGOS metadata standard (WMDS) developed by the Task Team on WIGOS Metadata (TT-WMD). The standard comprises of a set of metadata classes that are considered to be of critical importance for the interpretation of observations and the evolution of observing systems relevant to WIGOS. The WMDS serves all recognized WMO Application Areas, and its use for all internationally exchanged observational data generated by WMO Members is mandatory. The standard will be introduced in three phases between 2016 and 2020. The Observing Systems Capability Analysis and Review (OSCAR) platform operated by MeteoSwiss on behalf of WMO is the official repository of WIGOS metadata and an implementation of the WMDS. OSCAR/Surface deals with all surface-based observations from land, air and oceans, combining metadata managed by a number of complementary, more domain-specific systems (e.g., GAWSIS for the Global Atmosphere Watch, JCOMMOPS for the marine domain, the WMO Radar database). It is a modern, web-based client-server application with extended information search, filtering and mapping capabilities including a fully developed management console to add and edit observational metadata. In addition, a powerful application programming interface (API) is being developed to allow machine-to-machine metadata exchange. The API is based on an ISO/OGC-compliant XML schema for the WMDS using the Observations and Measurements (ISO19156) conceptual model. The purpose of the

  18. Spatiotemporal Variability in Observations of Urban Mixed-Layer Heights from Surface-based Lidar Systems during DISCOVER-AQ 2011

    NASA Astrophysics Data System (ADS)

    Lewis, J. R.; Banks, R. F.; Berkoff, T.; Welton, E. J.; Joseph, E.; Thompson, A. M.; Decola, P.; Hegarty, J. D.

    2015-12-01

    Accurate characterization of the planetary boundary layer height is crucial for numerical weather prediction, estimating pollution emissions and modeling air quality. More so, given the increasing trend in global urban populations, there is a growing need to improve our understanding of the urban boundary layer structure and development. The Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality (DISCOVER-AQ) 2011 field campaign, which took place in the Baltimore-Washington DC region, offered a unique opportunity to study boundary layer processes in an urban area using a geographically dense collection of surface-based lidar systems (see figure). Lidars use aerosols as tracers for atmospheric boundary layer dynamics with high vertical and temporal resolutions. In this study, we use data from two permanent Micropulse Lidar Network (MPLNET) sites and five field deployed Micropulse lidar (MPL) systems in order to observe spatiotemporal variations in the daytime mixed layer height. We present and compare lidar-derived retrievals of the mixed layer height using two different methods. The first method uses the wavelet covariance transform and a "fuzzy logic" attribution scheme in order to determine the mixed layer height. The second method uses an objective approach utilizing a time-adaptive extended Kalman filter. Independent measurements of the boundary layer height are obtained using profiles from ozonesonde launches at the Beltsville and Edgewood sites for comparison with lidar observations.

  19. Observations of Strong Surface Radar Ducts over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.; Goroch, Andreas K.; Rogers, David P.

    1999-09-01

    Ducting of microwave radiation is a common phenomenon over the oceans. The height and strength of the duct are controlling factors for radar propagation and must be determined accurately to assess propagation ranges. A surface evaporation duct commonly forms due to the large gradient in specific humidity just above the sea surface; a deeper surface-based or elevated duct frequently is associated with the sudden change in temperature and humidity across the boundary layer inversion.In April 1996 the U.K. Meteorological Office C-130 Hercules research aircraft took part in the U.S. Navy Ship Antisubmarine Warfare Readiness/Effectiveness Measuring exercise (SHAREM-115) in the Persian Gulf by providing meteorological support and making measurements for the study of electromagnetic and electro-optical propagation. The boundary layer structure over the Gulf is influenced strongly by the surrounding desert landmass. Warm dry air flows from the desert over the cooler waters of the Gulf. Heat loss to the surface results in the formation of a stable internal boundary layer. The layer evolves continuously along wind, eventually forming a new marine atmospheric boundary layer. The stable stratification suppresses vertical mixing, trapping moisture within the layer and leading to an increase in refractive index and the formation of a strong boundary layer duct. A surface evaporation duct coexists with the boundary layer duct.In this paper the authors present aircraft- and ship-based observations of both the surface evaporation and boundary layer ducts. A series of sawtooth aircraft profiles map the boundary layer structure and provide spatially distributed estimates of the duct depth. The boundary layer duct is found to have considerable spatial variability in both depth and strength, and to evolve along wind over distances significant to naval operations (100 km). The depth of the evaporation duct is derived from a bulk parameterization based on Monin-Obukhov similarity theory

  20. Lightning climatology over Jakarta, Indonesia, based on long-term surface operational, satellite, and campaign observations

    NASA Astrophysics Data System (ADS)

    Mori, Shuichi; Wu, Peiming; Yamanaka, Manabu D.; Hattori, Miki; Hamada, Jun-Ichi; Arbain, Ardhi A.; Lestari, Sopia; Sulistyowati, Reni; Syamsudin, Fadli

    2016-04-01

    Lightning frequency over Indonesian Maritime Continent (MC) is quite high (Petersen and Rutledge 2001, Christian et al. 2003, Takayabu 2006, etc). In particular, Bogor (south of Jakarta, west Jawa) had 322 days of lightning in one year (Guinness Book in 1988). Lightning causes serious damage on nature and society over the MC; forest fore, power outage, inrush/surge currents on many kinds of electronics. Lightning climatology and meso-scale characteristics of thunderstorm over the MC, in particular over Jakarta, where social damage is quite serious, were examined. We made Statistical analysis of lightning and thunderstorm based on TRMM Lightning Image Sensor (LIS) and Global Satellite Mapping of Precipitation (GSMaP) together with long-term operational surface observation data (SYNOP) in terms of diurnal, intraseasonal, monsoonal, and interannual variations. In addition, we carried out a campaign observation in February 2015 in Bogor to obtain meso-scale structure and dynamics of thunderstorm over Jakarta to focus on graupel and other ice phase particles inside by using an X-band dual-polarimetric (DP) radar. Recently, Virts et al. (2013a, b) showed comprehensive lightning climatology based on the World Wide Lightning Location Network (WWLLN). However, they also reported problems with its detection efficiency (< 10%) and small sampling frequency (< 0.1% of the time fly over tropics) by satellites. Therefore, we firstly examine in situ lightning data based on SYNOP observed by the Indonesian Agency for Meteorology, Climatology, and Geophysics (BMKG) because lightning is quite local and sporadic phenomena. We've started to analyze lightning characteristics over Jakarta region based on SYNOP as the ground truth data and GSMaP. Variability of lightning frequency around Jakarta was affected much by local conditions, e.g., topography (elevation) and proximity to the coastline. We confirmed the lightning frequency and its diurnal variation around Jakarta were much

  1. Spatiotemporal variations in the difference between satellite-observed daily maximum land surface temperature and station-based daily maximum near-surface air temperature

    NASA Astrophysics Data System (ADS)

    Lian, Xu; Zeng, Zhenzhong; Yao, Yitong; Peng, Shushi; Wang, Kaicun; Piao, Shilong

    2017-02-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature (Tair). Using satellite observations and in situ station-based data sets, we conducted a global-scale assessment of the spatial and seasonal variations in the difference between daily maximum LST and daily maximum Tair (δT, LST - Tair) during 2003-2014. Spatially, LST is generally higher than Tair over arid and sparsely vegetated regions in the middle-low latitudes, but LST is lower than Tair in tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, δT is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the midlatitudes and boreal regions. The seasonality in the midlatitudes is a result of the asynchronous responses of LST and Tair to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. Our study identified substantial spatial heterogeneity and seasonality in δT, as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface air temperature changes using remote sensing, particularly in remote regions.

  2. Sensitivity analysis of observed reflectivity to ice particle surface roughness using MISR satellite observations

    NASA Astrophysics Data System (ADS)

    Bell, A.; Hioki, S.; Wang, Y.; Yang, P.; Di Girolamo, L.

    2016-12-01

    Previous studies found that including ice particle surface roughness in forward light scattering calculations significantly reduces the differences between observed and simulated polarimetric and radiometric observations. While it is suggested that some degree of roughness is desirable, the appropriate degree of surface roughness to be assumed in operational cloud property retrievals and the sensitivity of retrieval products to this assumption remains uncertain. In an effort to extricate this ambiguity, we will present a sensitivity analysis of space-borne multi-angle observations of reflectivity, to varying degrees of surface roughness. This process is two fold. First, sampling information and statistics of Multi-angle Imaging SpectroRadiometer (MISR) sensor data aboard the Terra platform, will be used to define the most coming viewing observation geometries. Using these defined geometries, reflectivity will be simulated for multiple degrees of roughness using results from adding-doubling radiative transfer simulations. Sensitivity of simulated reflectivity to surface roughness can then be quantified, thus yielding a more robust retrieval system. Secondly, sensitivity of the inverse problem will be analyzed. Spherical albedo values will be computed by feeding blocks of MISR data comprising cloudy pixels over ocean into the retrieval system, with assumed values of surface roughness. The sensitivity of spherical albedo to the inclusion of surface roughness can then be quantified, and the accuracy of retrieved parameters can be determined.

  3. CYGNSS Surface Wind Observations and Surface Flux Estimates within Low-Latitude Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Crespo, J.; Posselt, D. J.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, aims to improve estimates of surface wind speeds over the tropical oceans. While CYGNSS's core mission is to provide better estimates of surface winds within the core of tropical cyclones, previous research has shown that the constellation, with its orbital inclination of 35°, also has the ability to observe numerous extratropical cyclones that form in the lower latitudes. Along with its high spatial and temporal resolution, CYGNSS can provide new insights into how extratropical cyclones develop and evolve, especially in the presence of thick clouds and precipitation. We will demonstrate this by presenting case studies of multiple extratropical cyclones observed by CYGNSS early on in its mission in both Northern and Southern Hemispheres. By using the improved estimates of surface wind speeds from CYGNSS, we can obtain better estimates of surface latent and sensible heat fluxes within and around extratropical cyclones. Surface heat fluxes, driven by surface winds and strong vertical gradients of water vapor and temperature, play a key role in marine cyclogenesis as they increase instability within the boundary layer and may contribute to extreme marine cyclogenesis. In the past, it has been difficult to estimate surface heat fluxes from space borne instruments, as these fluxes cannot be observed directly from space, and deficiencies in spatial coverage and attenuation from clouds and precipitation lead to inaccurate estimates of surface flux components, such as surface wind speeds. While CYGNSS only contributes estimates of surface wind speeds, we can combine this data with other reanalysis and satellite data to provide improved estimates of surface sensible and latent heat fluxes within and around extratropical cyclones and throughout the entire CYGNSS mission.

  4. Evaluation on surface current observing network of high frequency ground wave radars in the Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Yin, Xunqiang; Shi, Junqiang; Qiao, Fangli

    2018-05-01

    Due to the high cost of ocean observation system, the scientific design of observation network becomes much important. The current network of the high frequency radar system in the Gulf of Thailand has been studied using a three-dimensional coastal ocean model. At first, the observations from current radars have been assimilated into this coastal model and the forecast results have improved due to the data assimilation. But the results also show that further optimization of the observing network is necessary. And then, a series of experiments were carried out to assess the performance of the existing high frequency ground wave radar surface current observation system. The simulated surface current data in three regions were assimilated sequentially using an efficient ensemble Kalman filter data assimilation scheme. The experimental results showed that the coastal surface current observation system plays a positive role in improving the numerical simulation of the currents. Compared with the control experiment without assimilation, the simulation precision of surface and subsurface current had been improved after assimilated the surface currents observed at current networks. However, the improvement for three observing regions was quite different and current observing network in the Gulf of Thailand is not effective and a further optimization is required. Based on these evaluations, a manual scheme has been designed by discarding the redundant and inefficient locations and adding new stations where the performance after data assimilation is still low. For comparison, an objective scheme based on the idea of data assimilation has been obtained. Results show that all the two schemes of observing network perform better than the original network and optimal scheme-based data assimilation is much superior to the manual scheme that based on the evaluation of original observing network in the Gulf of Thailand. The distributions of the optimal network of radars could be a

  5. Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day-night MODIS observations

    NASA Astrophysics Data System (ADS)

    Guzinski, R.; Anderson, M. C.; Kustas, W. P.; Nieto, H.; Sandholt, I.

    2013-02-01

    The Dual Temperature Difference (DTD) model, introduced by Norman et al. (2000), uses a two source energy balance modelling scheme driven by remotely sensed observations of diurnal changes in land surface temperature (LST) to estimate surface energy fluxes. By using a time differential temperature measurement as input, the approach reduces model sensitivity to errors in absolute temperature retrieval. The original formulation of the DTD required an early morning LST observation (approximately 1 h after sunrise) when surface fluxes are minimal, limiting application to data provided by geostationary satellites at sub-hourly temporal resolution. The DTD model has been applied primarily during the active growth phase of agricultural crops and rangeland vegetation grasses, and has not been rigorously evaluated during senescence or in forested ecosystems. In this paper we present modifications to the DTD model that enable applications using thermal observation from polar orbiting satellites, such as Terra and Aqua, with day and night overpass times over the area of interest. This allows the application of the DTD model in high latitude regions where large viewing angles preclude the use of geostationary satellites, and also exploits the higher spatial resolution provided by polar orbiting satellites. A method for estimating nocturnal surface fluxes and a scheme for estimating the fraction of green vegetation are developed and evaluated. Modification for green vegetation fraction leads to significantly improved estimation of the heat fluxes from the vegetation canopy during senescence and in forests. Land-cover based modifications to the Priestley-Taylor scheme, used to estimate transpiration fluxes, are explored based on prior findings for conifer forests. When the modified DTD model is run with LST measurements acquired with the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua satellites, generally satisfactory agreement with field

  6. Cloud layer thicknesses from a combination of surface and upper-air observations

    NASA Technical Reports Server (NTRS)

    Poore, Kirk D.; Wang, Junhong; Rossow, William B.

    1995-01-01

    Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.

  7. A Novel Concept for Observing Land-Surface-Atmosphere Feedback Based on a Synergy of Scanning Lidar Systems

    NASA Astrophysics Data System (ADS)

    Wulfmeyer, V.; Turner, D. D.; Mauder, M.; Behrendt, A.; Ingwersen, J.; Streck, T.

    2015-12-01

    Improved simulations of land-surface-atmosphere interaction are fundamental for improving weather forecast and climate models. This requires observations of 2D fields of surface fluxes and the 3D structure of the atmospheric boundary layer simultaneously. A novel strategy is introduced for studying land-surface exchange and entrainment processes in the convective boundary layer (CBL) over complex terrain by means of a new generation of remote sensing systems. The sensor synergy consists of scanning Doppler lidar (DL), water-vapor differential absorption lidar (WVDIAL), and temperature rotational Raman lidar (TRRL) systems supported by surface in-situ measurements. The 2D measurements of surface fluxes are realized by the operation of a DL, a WVDIAL, and a TRRL along the same line-of-sight (LOS) in a range-height-indicator (RHI) mode whereas the other DL is performing a series of cross track RHI scans along this LOS. This new setup enables us to determine the friction velocity as well as surface sensible and latent heat fluxes by closing the complete set of Monin-Obukhov similarity relationships under a variety of surface layer stability conditions and different land cover and soil properties. As this closure is performed at all DL crossing points along the LOS, this is a strategy towards a 2D mapping of surface fluxes entirely based on remote sensing systems. Further details are presented at the conference. The second configuration is the simultaneous vertical profiling of vertical wind, humidity and temperature by DL, WVDIAL and TRRL so that latent heat and sensible heat flux profiles as well as a variety of different turbulent moments can be measured in the CBL. Consequently, by alternating of RHI scanning and vertical pointing modes, entrainment fluxes and surface fluxes can be measured almost simultaneously. This novel strategy has been realized for the first time during the Surface Atmospheric Boundary Layer Exchange (SABLE) campaign in the Kraichgau region

  8. Observed Local Impacts of Global Irrigation on Surface Temperature

    NASA Astrophysics Data System (ADS)

    Chen, L.; Dirmeyer, P.

    2017-12-01

    Agricultural irrigation has significant potential for altering local climate through reducing soil albedo, increasing evapotranspiration, and enabling greater leaf area. Numerous studies using regional or global climate models have demonstrated the cooling effects of irrigation on mean and extreme temperature, especially over regions where irrigation is extensive. However, these model-based results have not been validated due to the limitations of observational datasets. In this study, multiple satellite-based products, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Soil Moisture Active Passive (SMAP) data sets, are used to isolate and quantify the local impacts of irrigation on surface climate over the irrigated regions, which are derived from the Global Map of Irrigation Areas (GMIA). The relationships among soil moisture, albedo, evapotranspiration, and surface temperature are explored. Strong evaporative cooling of irrigation on daytime surface temperature is found over the arid and semi-arid regions, such as California's Central Valley, the Great Plains, and central Asia. However, the cooling effects are less evident in most areas of eastern China, India, and the Lower Mississippi River Basin in spite of extensive irrigation over these regions. Results are also compared with irrigation experiments using the Community Earth System Model (CESM) to assess the model's ability to represent land-atmosphere interactions in regards to irrigation.

  9. Surface Observation Climatic Summaries for Nellis AFB, Nevada

    DTIC Science & Technology

    1992-05-01

    DISTRIBUTION OF THIS DOMWI! TO THE PUBLIC AT LARGE, OR BY THE DEFENSE TECHNICAL IMKNMTI1M CENTER (DTIC) TO THE NATIOAL T•ECICRL INFO TION SERVICE (NTS). JOSEPH...DOCUMENTS FORMERLY KNOW AS THE REVISED UNIFON4 StlMMRRY OF SURFACE OBSERVATIONS (RUSSW) AND THE LIMITED SURFACE OBSERVATIONS CLIMATIC SWSU.R (LISOCS...RECORD (POR). -SUMMARY OF DAY- (SOD) INFOEATIOR IS SUMMARIZED )FRO ALL AVAILABLE DATA IN THE OL-A, USARETJC CLIMATIC DATABASE. 14. SUBJECT TOM

  10. Space-Based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Fiore, Arlene M.; VanDonkelaar, Aaron

    2004-01-01

    We present a novel capability in satellite remote sensing with implications for air pollution control strategy. We show that the ratio of formaldehyde columns to tropospheric nitrogen dioxide columns is an indicator of the relative sensitivity of surface ozone to emissions of nitrogen oxides (NO(x) = NO + NO2) and volatile organic compounds (VOCs). The diagnosis from these space-based observations is highly consistent with current understanding of surface ozone chemistry based on in situ observations. The satellite-derived ratios indicate that surface ozone is more sensitive to emissions of NO(x) than of VOCs throughout most continental regions of the Northern Hemisphere during summer. Exceptions include Los Angeles and industrial areas of Germany. A seasonal transition occurs in the fall when surface ozone becomes less sensitive to NOx and more sensitive to VOCs.

  11. Detecting surface runoff location in a small catchment using distributed and simple observation method

    NASA Astrophysics Data System (ADS)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall

  12. Sample-Based Surface Coloring

    PubMed Central

    Bürger, Kai; Krüger, Jens; Westermann, Rüdiger

    2011-01-01

    In this paper, we present a sample-based approach for surface coloring, which is independent of the original surface resolution and representation. To achieve this, we introduce the Orthogonal Fragment Buffer (OFB)—an extension of the Layered Depth Cube—as a high-resolution view-independent surface representation. The OFB is a data structure that stores surface samples at a nearly uniform distribution over the surface, and it is specifically designed to support efficient random read/write access to these samples. The data access operations have a complexity that is logarithmic in the depth complexity of the surface. Thus, compared to data access operations in tree data structures like octrees, data-dependent memory access patterns are greatly reduced. Due to the particular sampling strategy that is employed to generate an OFB, it also maintains sample coherence, and thus, exhibits very good spatial access locality. Therefore, OFB-based surface coloring performs significantly faster than sample-based approaches using tree structures. In addition, since in an OFB, the surface samples are internally stored in uniform 2D grids, OFB-based surface coloring can efficiently be realized on the GPU to enable interactive coloring of high-resolution surfaces. On the OFB, we introduce novel algorithms for color painting using volumetric and surface-aligned brushes, and we present new approaches for particle-based color advection along surfaces in real time. Due to the intermediate surface representation we choose, our method can be used to color polygonal surfaces as well as any other type of surface that can be sampled. PMID:20616392

  13. Open Surface Solar Irradiance Observations - A Challenge

    NASA Astrophysics Data System (ADS)

    Menard, Lionel; Nüst, Daniel; Jirka, Simon; Maso, Joan; Ranchin, Thierry; Wald, Lucien

    2015-04-01

    The newly started project ConnectinGEO funded by the European Commission aims at improving the understanding on which environmental observations are currently available in Europe and subsequently providing an informational basis to close gaps in diverse observation networks. The project complements supporting actions and networking activities with practical challenges to test and improve the procedures and methods for identifying observation data gaps, and to ensure viability in real world scenarios. We present a challenge on future concepts for building a data sharing portal for the solar energy industry as well as the state of the art in the domain. Decision makers and project developers of solar power plants have identified the Surface Solar Irradiance (SSI) and its components as an important factor for their business development. SSI observations are crucial in the process of selecting suitable locations for building new plants. Since in-situ pyranometric stations form a sparse network, the search for locations starts with global satellite data and is followed by the deployment of in-situ sensors in selected areas for at least one year. To form a convincing picture, answers must be sought in the conjunction of these EO systems, and although companies collecting SSI observations are willing to share this information, the means to exchange in-situ measurements across companies and between stakeholders in the market are still missing. We present a solution for interoperable exchange of SSI data comprising in-situ time-series observations as well as sensor descriptions based on practical experiences from other domains. More concretely, we will apply concepts and implementations of the Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC). The work is based on an existing spatial data infrastructure (SDI), which currently comprises metadata, maps and coverage data, but no in-situ observations yet. This catalogue is already registered in the

  14. Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations

    NASA Astrophysics Data System (ADS)

    Kucera, Paul; Steinson, Martin

    2016-04-01

    Accurate and reliable real-time monitoring and dissemination of observations of surface weather conditions is critical for a variety of societal applications. Applications that provide local and regional information about temperature, precipitation, moisture, and winds, for example, are important for agriculture, water resource monitoring, health, and monitoring of hazard weather conditions. In many regions in Africa (and other global locations), surface weather stations are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The US National Weather Service (NWS) International Activities Office (IAO) in partnership with University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR) and funded by the United States Agency for International Development (USAID) Office of Foreign Disaster Assistance (OFDA) has started an initiative to develop and deploy low-cost weather instrumentation in sparsely observed regions of the world. The goal is to provide observations for environmental monitoring, and early warning alert systems that can be deployed at weather services in developing countries. Instrumentation is being designed using innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. The initial effort is focused on designing a surface network using GIS-based tools, deploying an initial network in Zambia, and providing training to Zambia Meteorological Department (ZMD) staff. The presentation will provide an overview of the project concepts, design of the low cost instrumentation, and initial experiences deploying a surface network deployment in Zambia.

  15. Surface flow observations from a gauge-cam station on the Tiber river

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Porfiri, Maurizio; Petroselli, Andrea; Grimaldi, Salvatore

    2016-04-01

    Understanding the kinematic organization of natural water bodies is central to hydrology and environmental engineering practice. Reliable and continuous flow observations are essential to comprehend flood generation and propagation mechanisms, erosion dynamics, sediment transport, and drainage network evolution. In engineering practice, flood warning systems largely rely on real-time discharge measurements, and flow velocity monitoring is important for the design and management of hydraulic structures, such as reservoirs and hydropower plants. Traditionally, gauging stations have been equipped with water level meters, and stage-discharge relationships (rating curves) have been established through few direct discharge measurements. Only in rare instances, monitoring stations have integrated radar technology for local measurement of surface flow velocity. Establishing accurate rating curves depends on the availability of a comprehensive range of discharge values, including measurements recorded during extreme events. However, discharge values during high-flow events are often difficult or even impossible to obtain, thereby hampering the reliability of discharge predictions. Fully remote observations have been enabled in the past ten years through optics-based velocimetry techniques. Such methodologies enable the estimation of the surface flow velocity field over extended regions from the motion of naturally occurring debris or floaters dragged by the current. Resting on the potential demonstrated by such approaches, here, we present a novel permanent gauge-cam station for the observation of the flow velocity field in the Tiber river. This new station captures one-minute videos every 10 minutes over an area of up to 20.6 × 15.5m2. In a feasibility study, we demonstrate that experimental images analyzed via particle tracking velocimetry and particle image velocimetry can be used to obtain accurate surface flow velocity estimations in close agreement with radar records

  16. Development of a Graphical User Interface to Visualize Surface Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R.L.

    1998-07-13

    Thousands of worldwide observing stations provide meteorological information near the earth's surface as often as once each hour. This surface data may be plotted on geographical maps to provide the meteorologist useful information regarding weather patterns for a region of interest. This report describes the components and applications of a graphical user interface which have been developed to visualize surface observations at any global location and time of interest.

  17. Near-surface bulk densities of asteroids derived from dual-polarization radar observations

    NASA Astrophysics Data System (ADS)

    Virkki, A.; Taylor, P. A.; Zambrano-Marin, L. F.; Howell, E. S.; Nolan, M. C.; Lejoly, C.; Rivera-Valentin, E. G.; Aponte, B. A.

    2017-09-01

    We present a new method to constrain the near-surface bulk density and surface roughness of regolith on asteroid surfaces using planetary radar measurements. The number of radar observations has increased rapidly during the last five years, allowing us to compare and contrast the radar scattering properties of different small-body populations and compositional types. This provides us with new opportunities to investigate their near-surface physical properties such as the chemical composition, bulk density, porosity, or the structural roughness in the scale of centimeters to meters. Because the radar signal can penetrate into a planetary surface up to a few decimeters, radar can reveal information that is hidden from other ground-based methods, such as optical and infrared measurements. The near-surface structure of asteroids and comets in centimeter-to-meter scale is essential information for robotic and human space missions, impact threat mitigation, and understanding the history of these bodies as well as the formation of the whole Solar System.

  18. Observing hydrological processes: recent advancements in surface flow monitoring through image analysis

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Grimaldi, Salvatore

    2017-04-01

    Recently, several efforts have been devoted to the design and development of innovative, and often unintended, approaches for the acquisition of hydrological data. Among such pioneering techniques, this presentation reports recent advancements towards the establishment of a novel noninvasive and potentially continuous methodology based on the acquisition and analysis of images for spatially distributed observations of the kinematics of surface waters. The approach aims at enabling rapid, affordable, and accurate surface flow monitoring of natural streams. Flow monitoring is an integral part of hydrological sciences and is essential for disaster risk reduction and the comprehension of natural phenomena. However, water processes are inherently complex to observe: they are characterized by multiscale and highly heterogeneous phenomena which have traditionally demanded sophisticated and costly measurement techniques. Challenges in the implementation of such techniques have also resulted in lack of hydrological data during extreme events, in difficult-to-access environments, and at high temporal resolution. By combining low-cost yet high-resolution images and several velocimetry algorithms, noninvasive flow monitoring has been successfully conducted at highly heterogeneous scales, spanning from rills to highly turbulent streams, and medium-scale rivers, with minimal supervision by external users. Noninvasive image data acquisition has also afforded observations in high flow conditions. Latest novelties towards continuous flow monitoring at the catchment scale have entailed the development of a remote gauge-cam station on the Tiber River and integration of flow monitoring through image analysis with unmanned aerial systems (UASs) technology. The gauge-cam station and the UAS platform both afford noninvasive image acquisition and calibration through an innovative laser-based setup. Compared to traditional point-based instrumentation, images allow for generating surface

  19. Exploring Mercury's Surface-Bound Exosphere with the Mercury Atmospheric and Surface Composition Spectrometer: AN Overview of Observations during the First Messenger Flyby

    NASA Astrophysics Data System (ADS)

    McClintock, W. E.; Bradley, E. T.; Izenberg, N. R.; Killen, R. M.; Kochte, M. C.; Lankton, M. R.; Mouawad, N.; Sprague, A. L.; Vervack, R. J.

    2008-12-01

    Mercury's surface-bound exosphere is the interface between the planet's surface and the external stimuli that interact with it. Its composition and structure are controlled by surface, magnetosphere, and solar-wind processes. Prior to the MESSENGER mission the exosphere was known to contain H, He, and O from Mariner 10 observations, as well as Na, K, and Ca that were discovered during ground-based observations. Na has been extensively studied since its discovery in 1985, including observations of a neutral Na tail first reported in 2002. Undetected species, including Mg, Fe, Al, and S, are also expected to exist in the exosphere. MESSENGER's initial flyby of Mercury, which occurred on January 14, 2008, offered the first opportunity to measure the planet's neutral tail from space. As the spacecraft approached the planet from the nightside, the UltraViolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) scanned the tail beginning at altitudes of 24,500 km behind Mercury's nightside surface and covering a region of space approximately three planet diameters tall and centered on the Sun-Mercury line. The UVVS measured emissions from Na during the entire observation. It also observed neutral hydrogen beginning approximately 5,000 km above the nightside surface. The spatial distributions of both species were seen to be asymmetric, with enhanced densities occurring in the northern hemisphere. UVVS observations of Ca, which were made as the spacecraft traversed the nightside exosphere, exhibited enhanced emission toward the dawn terminator, with north-south behavior similar to that of Na and H. These observations suggest that the relatively high-energy source processes that give rise to species observed in the tail were localized near the northern and morning hemispheres during the flyby. This inference is supported by magnetic field observations made with the MESSENGER Magnetometer, which observed a strong

  20. Cassini/VIMS observes rough surfaces on Titan's Punga Mare in specular reflection.

    PubMed

    Barnes, Jason W; Sotin, Christophe; Soderblom, Jason M; Brown, Robert H; Hayes, Alexander G; Donelan, Mark; Rodriguez, Sebastien; Mouélic, Stéphane Le; Baines, Kevin H; McCord, Thomas B

    Cassini /VIMS high-phase specular observations of Titan's north pole during the T85 flyby show evidence for isolated patches of rough liquid surface within the boundaries of the sea Punga Mare. The roughness shows typical slopes of 6°±1°. These rough areas could be either wet mudflats or a wavy sea. Because of their large areal extent, patchy geographic distribution, and uniform appearance at low phase, we prefer a waves interpretation. Applying theoretical wave calculations based on Titan conditions our slope determination allows us to infer winds of 0.76±0.09 m/s and significant wave heights of [Formula: see text] cm at the time and locations of the observation. If correct, these would represent the first waves seen on Titan's seas, and also the first extraterrestrial sea-surface waves in general.

  1. Observed surface wind speed declining induced by urbanization in East China

    NASA Astrophysics Data System (ADS)

    Li, Zhengquan; Song, Lili; Ma, Hao; Xiao, Jingjing; Wang, Kuo; Chen, Lian

    2018-02-01

    Monthly wind data from 506 meteorological stations and ERA-Interim reanalysis during 1991-2015, are used to examine the surface wind trend over East China. Furthermore, combining the urbanization information derived from the DMSP/OLS nighttime light data during 1992-2013, the effects of urbanization on surface wind change are investigated by applying the observation minus reanalysis (OMR) method. The results show that the observed surface wind speed over East China is distinctly weakening with a rate of -0.16 m s-1 deca-1 during 1991-2015, while ERA-Interim wind speed does not have significant decreasing or increasing trend in the same period. The observed surface wind declining is mainly attributed to underlying surface changes of stations observational areas that were mostly induced by the urbanization in East China. Moreover, the wind declining intensity is closely related to the urbanization rhythms. The OMR annual surface wind speeds of Rhythm-VS, Rhythm-S, Rhythm-M, Rhythm-F and Rhythm-VF, have decreasing trends with the rates of -0.02 to -0.09, -0.16 to -0.26, -0.22 to -0.30, -0.26 to -0.36 and -0.33 to -0.51 m s-1 deca-1, respectively. The faster urbanization rhythm is, the stronger wind speed weakening presents. Additionally urban expansion is another factor resulted in the observed surface wind declining.

  2. Field and LiDAR observations of the Hector Mine California 1999 surface rupture

    NASA Astrophysics Data System (ADS)

    Sousa, F.; Akciz, S. O.; Harvey, J. C.; Hudnut, K. W.; Lynch, D. K.; Scharer, K. M.; Stock, J. M.; Witkosky, R.; Kendrick, K. J.; Wespestad, C.

    2014-12-01

    We report new field- and computer-based investigations of the surface rupture of the October 16, 1999 Hector Mine Earthquake. Since May 2012, in cooperation with the United States Marine Corps Air Ground Combat Center (MCAGCC) at Twentynine Palms, CA, our team has been allowed ground and aerial access to the entire surface rupture. We have focused our new field-based research and imagery analysis along the ~10 kilometer-long maximum slip zone (MSZ) which roughly corresponds to the zone of >4 meter dextral horizontal offset. New data include: 1) a 1 km wide aerial LiDAR survey along the entire surface rupture (@ 10 shots/m2, May 2012, www.opentopography.org); 2) terrestrial LiDAR surveys at 5 sites within the MSZ (@ >1000 shots/m2, April 2014); 3) low altitude aerial photography and ground based photography of the entire MSZ; 4) a ground-truthed database of 87 out of the 94 imagery-based offset measurements made within the MSZ; and 5) a database of 50 new field-based offset measurements made within the MSZ by our team on the ground, 31 of which have also been made on the computer (Ladicaoz) with both the 2000 LiDAR data (@ 0.5 m DEM resolution; Chen et al, in review) and 2012 LiDAR data (@ 35 cm DEM resolution; our team). New results to date include 1) significant variability (> 2 m) in horizontal offsets measured along short distances of the surface rupture (~100 m) within segments of the surface rupture that are localized to a single fault strand; 2) strong dependence of decadal scale fault scarp preservation on local lithology (bedrock vs. alluvial fan vs. fine sediment) and geomorphology (uphill vs. downhill facing scarp); 3) newly observed offset features which were never measured during the post-event field response; 4) newly observed offset features too small to be resolved in airborne LiDAR data (< 1 m); 5) nearly 25% of LiDAR imagery-based measurements that were later ground-truthed were judged by our team to warrant removal from the database due to

  3. Evaluation of Surface Flux Parameterizations with Long-Term ARM Observations

    DOE PAGES

    Liu, Gang; Liu, Yangang; Endo, Satoshi

    2013-02-01

    Surface momentum, sensible heat, and latent heat fluxes are critical for atmospheric processes such as clouds and precipitation, and are parameterized in a variety of models ranging from cloud-resolving models to large-scale weather and climate models. However, direct evaluation of the parameterization schemes for these surface fluxes is rare due to limited observations. This study takes advantage of the long-term observations of surface fluxes collected at the Southern Great Plains site by the Department of Energy Atmospheric Radiation Measurement program to evaluate the six surface flux parameterization schemes commonly used in the Weather Research and Forecasting (WRF) model and threemore » U.S. general circulation models (GCMs). The unprecedented 7-yr-long measurements by the eddy correlation (EC) and energy balance Bowen ratio (EBBR) methods permit statistical evaluation of all six parameterizations under a variety of stability conditions, diurnal cycles, and seasonal variations. The statistical analyses show that the momentum flux parameterization agrees best with the EC observations, followed by latent heat flux, sensible heat flux, and evaporation ratio/Bowen ratio. The overall performance of the parameterizations depends on atmospheric stability, being best under neutral stratification and deteriorating toward both more stable and more unstable conditions. Further diagnostic analysis reveals that in addition to the parameterization schemes themselves, the discrepancies between observed and parameterized sensible and latent heat fluxes may stem from inadequate use of input variables such as surface temperature, moisture availability, and roughness length. The results demonstrate the need for improving the land surface models and measurements of surface properties, which would permit the evaluation of full land surface models.« less

  4. Derivation of Mars Surface Scattering Properties from OMEGA Spot Pointing Observations

    NASA Astrophysics Data System (ADS)

    Pinet, P. C.; Daydou, Y.; Cord, A.; Chevrel, S. C.; Poulet, F.; Erard, S.; Bibring, J.-P.; Langevin, Y.; Melchiorri, R.; Bellucci, G.; Altieri, F.; Arvidson, R. E.; OMEGA Co-Investigator Team

    2005-03-01

    OMEGA emission phase function (EPF) observation shows that one may access from orbit to geology-driven surface scattering properties such as surface roughness. It has implications for spectroscopic interpretation and for CRISM observations to come.

  5. ISCCP Cloud Properties Associated with Standard Cloud Types Identified in Individual Surface Observations

    NASA Technical Reports Server (NTRS)

    Hahn, Carole J.; Rossow, William B.; Warren, Stephen G.

    1999-01-01

    Individual surface weather observations from land stations and ships are compared with individual cloud retrievals of the International Satellite Cloud Climatology Project (ISCCP), Stage C1, for an 8-year period (1983-1991) to relate cloud optical thicknesses and cloud-top pressures obtained from satellite data to the standard cloud types reported in visual observations from the surface. Each surface report is matched to the corresponding ISCCP-C1 report for the time of observation for the 280x280-km grid-box containing that observation. Classes of the surface reports are identified in which a particular cloud type was reported present, either alone or in combination with other clouds. For each class, cloud amounts from both surface and C1 data, base heights from surface data, and the frequency-distributions of cloud-top pressure (p(sub c) and optical thickness (tau) from C1 data are averaged over 15-degree latitude zones, for land and ocean separately, for 3-month seasons. The frequency distribution of p(sub c) and tau is plotted for each of the surface-defined cloud types occurring both alone and with other clouds. The average cloud-top pressures within a grid-box do not always correspond well with values expected for a reported cloud type, particularly for the higher clouds Ci, Ac, and Cb. In many cases this is because the satellites also detect clouds within the grid-box that are outside the field of view of the surface observer. The highest average cloud tops are found for the most extensive cloud type, Ns, averaging 7 km globally and reaching 9 km in the ITCZ. Ns also has the greatest average retrieved optical thickness, tau approximately equal 20. Cumulonimbus clouds may actually attain far greater heights and depths, but do not fill the grid-box. The tau-p(sub c) distributions show features that distinguish the high, middle, and low clouds reported by the surface observers. However, the distribution patterns for the individual low cloud types (Cu, Sc, St

  6. Observational study of surface wind along a sloping surface over mountainous terrain during winter

    NASA Astrophysics Data System (ADS)

    Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk

    2018-03-01

    The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.

  7. Titan's Surface Temperatures Maps from Cassini - CIRS Observations

    NASA Astrophysics Data System (ADS)

    Cottini, Valeria; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Samuelson, R. E.; Irwin, P. G. J.; Flasar, F. M.

    2009-09-01

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 μm (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the instrument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature profile by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). In future, application of our methodology over wide areas should greatly increase the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp. 1136-1150, 2008. Rodgers, C. D.: "Inverse Methods For Atmospheric Sounding: Theory and Practice". World Scientific, Singapore, 2000. Jennings, D.E., et al.: "Titan's Surface Brightness Temperatures." Ap. J. L., Vol. 691, pp. L103-L

  8. Rigidly rotating zero-angular-momentum observer surfaces in the Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Frolov, Andrei V.; Frolov, Valeri P.

    2014-12-01

    A stationary observer in the Kerr spacetime has zero angular momentum if their angular velocity ω has a particular value, which depends on the position of the observer. Worldlines of such zero-angular-momentum observers (ZAMOs) with the same value of the angular velocity ω form a three-dimensional surface, which has the property that the Killing vectors generating time translation and rotation are tangent to it. We call such a surface a rigidly rotating ZAMO surface. This definition allows for a natural generalization to the surfaces inside the black hole, where ZAMO trajectories formally become spacelike. A general property of such a surface is that there exist linear combinations of the Killing vectors with constant coefficients which make them orthogonal on it. In this paper we discuss properties of the rigidly rotating ZAMO surfaces both outside and inside the black hole and the relevance of these objects to a couple of interesting physical problems.

  9. Asteroid surface mineralogy: Evidence from earth-based telescope observations

    NASA Technical Reports Server (NTRS)

    Mccord, T. B.

    1978-01-01

    The interpretation of asteroid reflectance spectrophotometry in terms of mineralogical types gives inferred mineral assemblages for about 60 asteroids. Asteroid surface materials are compared with similar materials that make up many meteorites. The absence of asteroids with spectra that match identically the ordinary chondrites is noted.

  10. Land Surface Model Biases and their Impacts on the Assimilation of Snow-related Observations

    NASA Astrophysics Data System (ADS)

    Arsenault, K. R.; Kumar, S.; Hunter, S. M.; Aman, R.; Houser, P. R.; Toll, D.; Engman, T.; Nigro, J.

    2007-12-01

    Some recent snow modeling studies have employed a wide range of assimilation methods to incorporate snow cover or other snow-related observations into different hydrological or land surface models. These methods often include taking both model and observation biases into account throughout the model integration. This study focuses more on diagnosing the model biases and presenting their subsequent impacts on assimilating snow observations and modeled snowmelt processes. In this study, the land surface model, the Community Land Model (CLM), is used within the Land Information System (LIS) modeling framework to show how such biases impact the assimilation of MODIS snow cover observations. Alternative in-situ and satellite-based observations are used to help guide the CLM LSM in better predicting snowpack conditions and more realistic timing of snowmelt for a western US mountainous region. Also, MODIS snow cover observation biases will be discussed, and validation results will be provided. The issues faced with inserting or assimilating MODIS snow cover at moderate spatial resolutions (like 1km or less) will be addressed, and the impacts on CLM will be presented.

  11. Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day-night MODIS observations

    NASA Astrophysics Data System (ADS)

    Guzinski, R.; Anderson, M. C.; Kustas, W. P.; Nieto, H.; Sandholt, I.

    2013-07-01

    The Dual Temperature Difference (DTD) model, introduced by Norman et al. (2000), uses a two source energy balance modelling scheme driven by remotely sensed observations of diurnal changes in land surface temperature (LST) to estimate surface energy fluxes. By using a time-differential temperature measurement as input, the approach reduces model sensitivity to errors in absolute temperature retrieval. The original formulation of the DTD required an early morning LST observation (approximately 1 h after sunrise) when surface fluxes are minimal, limiting application to data provided by geostationary satellites at sub-hourly temporal resolution. The DTD model has been applied primarily during the active growth phase of agricultural crops and rangeland vegetation grasses, and has not been rigorously evaluated during senescence or in forested ecosystems. In this paper we present modifications to the DTD model that enable applications using thermal observations from polar orbiting satellites, such as Terra and Aqua, with day and night overpass times over the area of interest. This allows the application of the DTD model in high latitude regions where large viewing angles preclude the use of geostationary satellites, and also exploits the higher spatial resolution provided by polar orbiting satellites. A method for estimating nocturnal surface fluxes and a scheme for estimating the fraction of green vegetation are developed and evaluated. Modification for green vegetation fraction leads to significantly improved estimation of the heat fluxes from the vegetation canopy during senescence and in forests. When the modified DTD model is run with LST measurements acquired with the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua satellites, generally satisfactory agreement with field measurements is obtained for a number of ecosystems in Denmark and the United States. Finally, regional maps of energy fluxes are produced for the Danish

  12. Why do modelled and observed surface wind stress climatologies differ in the trade wind regions?

    NASA Astrophysics Data System (ADS)

    Simpson, I.; Bacmeister, J. T.; Sandu, I.; Rodwell, M. J.

    2017-12-01

    Global climate models (GCMs) exhibit stronger easterly zonal surface wind stress and near surface winds in the Northern Hemisphere (NH) trade winds than observationally constrained reanalyses or other observational products. A comparison, between models and reanalyses, of the processes that contribute to the zonal mean, vertically integrated balance of momentum, reveals that this wind stress discrepancy cannot be explained by either the resolved dynamics or parameterized tendencies that are common to each. Rather, a substantial residual exists in the momentum balance of the reanalyses, pointing toward a role for the analysis increments. Indeed, they are found to systematically weaken the NH near surface easterlies in winter, thereby reducing the surface wind stress. Similar effects are found in the Southern Hemisphere and further analysis of the spatial structure and seasonality of these increments, demonstrates that they act to weaken the near surface flow over much of the low latitude oceans in both summer and winter. This suggests an erroneous /missing process in GCMs that constitutes a missing drag on the low level zonal flow over oceans. Either this indicates a mis-representation of the drag between the surface and the atmosphere, or a missing internal atmospheric process that amounts to an additional drag on the low level zonal flow. If the former is true, then observation based surface stress products, which rely on similar drag formulations to GCMs, may be underestimating the strength of the easterly surface wind stress.

  13. Constraining the Sensitivity of Amazonian Rainfall with Observations of Surface Temperature

    NASA Astrophysics Data System (ADS)

    Dolman, A. J.; von Randow, C.; de Oliveira, G. S.; Martins, G.; Nobre, C. A.

    2016-12-01

    Earth System models generally do a poor job in predicting Amazonian rainfall, necessitating the need to look for observational constraints on their predictability. We use observed surface temperature and precipitation of the Amazon and a set of 21 CMIP5 models to derive an observational constraint of the sensitivity of rainfall to surface temperature (dP/dT). From first principles such a relation between the surface temperature of the earth and the amount of precipitation through the surface energy balance should exist, particularly in the tropics. When de-trended anomalies in surface temperature and precipitation from a set of datasets are plotted, a clear linear relation between surface temperature and precipitation appears. CMIP5 models show a similar relation with relatively cool models having a larger sensitivity, producing more rainfall. Using the ensemble of models and the observed surface temperature we were able to derive an emerging constraint, reducing the dPdt sensitivity of the CMIP5 model from -0.75 mm day-1 0C-1 (+/- 0.54 SD) to -0.77 mm day-1 0C-1 with a reduced uncertainty of about a factor 5. dPdT from the observation is -0.89 mm day-1 0C-1 . We applied the method to wet and dry season separately noticing that in the wet season we shifted the mean and reduced uncertainty, while in the dry season we very much reduced uncertainty only. The method can be applied to other model simulations such as specific deforestation scenarios to constrain the sensitivity of rainfall to surface temperature. We discuss the implications of the constrained sensitivity for future Amazonian predictions.

  14. Observations of Mercury's Surface-Bounded Exosphere from Orbit: Results from the Mercury Atmospheric and Surface Composition Spectrometer aboard the MESSENGER Spacecraft

    NASA Astrophysics Data System (ADS)

    McClintock, W. E.; Burger, M. H.; Cassidy, T. A.; Killen, R. M.; Merkel, A. W.; Sarantos, M.; Solomon, S. C.; Vervack, R. J., Jr.

    2015-12-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS), on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, conducted orbital observations of Mercury's dayside and nightside exosphere from 29 March 2011 to the end of the mission on 30 April 2015. Over slightly more than four Earth-years, MASCS measured emission profiles versus altitude for calcium (Ca), sodium (Na), and magnesium (Mg) at a daily cadence. These species exhibit different spatial distributions, suggesting distinct source processes. MASCS observed seasonal variations in all three species that are remarkably repeatable from one Mercury year to the next, and did so consistently during the entire 17-Mercury-year duration of the orbital phase of the mission. Whereas MASCS has characterized the seasonal variation, it has provided, at best, only weak evidence for the episodic behavior observed in ground-based studies of Na. Joint analyses of MASCS observations and surface precipitation patterns for energetic particles inferred from observations by the Energetic Particle Spectrometer (EPS) and the Fast Imaging Plasma Spectrometer (FIPS) on MESSENGER have not yielded clear correlations. This lack of correlation may be due in part to the MASCS observational geometries. MASCS has conducted a number of searches for other, weakly emitting species. Hydrogen data from the orbital phase are consistent with profiles observed during MESSENGER's flybys of Mercury. Oxygen detections have proven elusive, and the previously reported observation with a brightness of 4 R may only be an upper limit. Ongoing analysis of weak species data suggests that additional species are present.

  15. Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.

    2016-12-01

    The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud

  16. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    NASA Astrophysics Data System (ADS)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  17. Lunar Surface Habitat Configuration Assessment: Methodology and Observations

    NASA Technical Reports Server (NTRS)

    Carpenter, Amanda

    2008-01-01

    The Lunar Habitat Configuration Assessment evaluated the major habitat approaches that were conceptually developed during the Lunar Architecture Team II Study. The objective of the configuration assessment was to identify desired features, operational considerations, and risks to derive habitat requirements. This assessment only considered operations pertaining to the lunar surface and did not consider all habitat conceptual designs developed. To examine multiple architectures, the Habitation Focus Element Team defined several adequate concepts which warranted the need for a method to assess the various configurations. The fundamental requirement designed into each concept included the functional and operational capability to support a crew of four on a six-month lunar surface mission; however, other conceptual aspects were diverse in comparison. The methodology utilized for this assessment consisted of defining figure of merits, providing relevant information, and establishing a scoring system. In summary, the assessment considered the geometric configuration of each concept to determine the complexity of unloading, handling, mobility, leveling, aligning, mating to other elements, and the accessibility to the lunar surface. In theory, the assessment was designed to derive habitat requirements, potential technology development needs and identify risks associated with living and working on the lunar surface. Although the results were more subjective opposed to objective, the assessment provided insightful observations for further assessments and trade studies of lunar surface habitats. This overall methodology and resulting observations will be describe in detail and illustrative examples will be discussed.

  18. Ground-based Observations for the Asteroid Itokawa

    NASA Astrophysics Data System (ADS)

    Ishiguro, M.; Tholen, D. J.; Hasegawa, S.; Abe, M.; Sekiguchi, T.; Ostro, S. J.; Kaasalainen, M.

    Apollo-type near-Earth asteroid (25143) Itokawa is a target of the asteroid explorer "HAYABUSA" launched in May 2003. On March 29, 2001, Itokawa was close to the Earth at a minimum distance of 0.038 AU. During the apparition, vigorous ground-based observations have performed. Multi-band photometry (e.g. ECAS and Johnson-Cousins photometric system) and spectroscopy in visible and near-infrared revealed that Itokawa is classified as an S(IV)-type asteroid, and the surface composition is like an anhydrous ordinary chondrite. The extensive photometric campaign data indicate that the rotation is retrograde (i.e., the pole orientation of the asteroid is south of the ecliptic plane) and its rotational period is 12 hr. From the mid-infrared observation, Itokawa is found to be a sub-km size. Detail three dimensional model was constructed based on both the radar observations and the optical lightcurve. Moreover, the bulk density determined by radar observations is 2.5 g/cc. Generally, the results obtained by optical, infrared and radar observations are consistent with each other. These observational results provide constraints on the thermal and optical design of Hayabusa spacecraft and its scientific devices. In this paper, we review these results mentioned above. In addition, we are planning to introduce the latest results obtained during the apparition in 2004.

  19. Lunar Surface Properties from Diviner Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Hayne, Paul; Paige, David; Greenhagen, Benjamin; Bandfield, Joshua; Siegler, Matthew; Lucey, Paul

    2015-04-01

    The thermal behavior of planetary bodies can reveal information about fundamental processes shaping their surfaces and interiors. Diviner [1] has been mapping the Moon's diurnal temperatures since the Lunar Reconnaissance Orbiter (LRO) arrived in 2009, yielding new insights into regolith formation [2, 3], the distribution of volatiles [4, 5], lunar volcanism [6, 7, 8], and impact processes [9]. The Moon's cooling during eclipse provides complementary information on the physical properties of the uppermost surface layer, which can be used to further investigate these and other processes. We used data from Diviner's seven thermal infrared spectral channels to measure surface temperatures before, during and after the 8 Oct., 2014 eclipse. In its standard nadir-pushbroom mode, Diviner maps surface temperatures in a ~6-km swath with a spatial resolution of ~250 m. Using Diviner's independent scanning capability [11], we also targeted two regions of interest on sequential orbits to create a time series of thermal observations: 1) Kepler crater (-38°E, 8°N) and 2) an unnamed nighttime "cold spot" (-33.3°E, 3°N). Pre-eclipse surface temperatures in these regions were ~380 K. As a relatively young Copernican-aged impact crater, Kepler was selected to investigate the abundance and size distribution of rocks in the ejecta and interior. Lunar nighttime "cold spots" are anomalous features around very young impact craters, extending for up to hundreds of crater radii, notable for their low temperatures in the Diviner nighttime data [9]. Although their origins are not fully explained, they are likely the result of in-situ disruption and decompression of regolith during the impact process. The selected cold spot (one of hundreds or even thousands on the lunar surface) was located with good viewing ge- ometry from LRO, and had a diameter of ~10 km surrounding a crater < 1 km in diameter. At Kepler crater, we observed dramatic differences in the amount of cooling related to the

  20. Incoming Shortwave Fluxes at the Surface--A Comparison of GCM Results with Observations.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1994-01-01

    Evidence is presented that the exam surface net radiation calculated in general circulation models at continental surfaces is mostly due to excess incoming shortwave fluxes. Based on long-term observations from 22 worldwide inland stations and results from four general circulation models the overestimate in models of 20% (11 W m2) in net radiation on an annual basis compares with 6% (9 W m2) for shortwave fluxes for the same 22 locations, or 9% (18 W m2) for a larger set of 93 stations (71 having shortwave fluxes only). For annual fluxes, these differences appear to be significant.

  1. Observations of near-surface fresh layers during SPURS-2

    NASA Astrophysics Data System (ADS)

    Drushka, Kyla; E Asher, William; Thompson, Elizabeth; Jessup, Andrew T.; Clark, Dan

    2017-04-01

    One of the primary objectives of the ongoing SPURS-2 program is to understand the fate of rainfall deposited on the sea surface. Rain produces stable near-surface fresh layers that persist for O(1-10) hours. The depth, strength, and lifetime of surface fresh layers are known to be related to the local rain and wind conditions, but available observational data are too sparse to allow definitive quantification of cause-and-effect relationships. In this paper, the formation and evolution of rain-formed fresh layers are examined using observations of near-surface salinity made during the 2016 SPURS-2 field experiment, which took place in the Intertropical Convergence Zone of the eastern tropical Pacific Ocean in August-September 2016. During 2016 SPURS-2, over 30 rain events were captured with the Surface Salinity Profiler (SSP), a towed platform that measures salinity and temperature at five discrete depths in the upper meter of the ocean. Differences in salinity measured by the SSP at depths of 0.02 m and at 1 m are correlated with local meteorological conditions. The field results show that the salinity difference increases linearly with rain rate, a result that is consistent with calculations done with a one-dimensional ocean turbulence model. The field data also demonstrate that there is an inverse correlation between wind speed and the vertical salinity difference, which is also consistent with numerical models. The implications of these results are discussed in the context of satellite salinity observations and the representation of rainfall events in climate models.

  2. New surface-based observations of the environment beneath Pine Island Glacier ice shelf

    NASA Astrophysics Data System (ADS)

    Bindschadler, Robert; Truffer, Martin; Stanton, Tim; Peters, Leo; Shortt, Mike; Pomraning, Dale; Stockel, Jim; Shaw, Bill; Steinarson, Einar; Anandakrishnan, Sridhar; Wilson, Kiya; Holland, David; Bushuk, Mitch; Behar, Alberto; Cocaud, Cedric; Stam, Christina

    2013-04-01

    Extensive surface, sub-shelf cavity and seabed observations of the Pine Island Glacier (PIG) ice shelf environment were collected by a surface field team during the 2012-13 austral summer. Three sites aligned along a central, flow-aligned surface valley were occupied for about one week each during which two hot-water holes were drilled at each site. In one hole, a mast-mounted set of oceanographic sensors recorded water temperature, current and salinity in the few meters immediately below the ice-shelf bottom. In the other hole, a similarly instrumented profiler was deployed to make quasi-daily vertical transects of the sub-shelf cavity by rising and sinking along a cable suspended in the cavity. These instruments are already returning data that provide direct rates of heat and momentum transfer in the boundary layer, basal melt rates and the temporal variation of water movements on daily and longer time scales. Shallow cores of the sea bed and a photographic record of the drill holes, ocean cavity and sea bed were also collected at two of the drill sites. The geophysics program was spatially much broader and consisted of phase-sensitive radars to measure basal melt rates and active seismic instrumentation to explore the character of the sea bed. Continuous profiling between the drill sites established the previously discovered ("Autosub") sea bed ridge is asymmetric with a steeper downstream face. Spot measurements upstream of the drill sites were reached by helicopter and refined the shape of the ocean cavity where extensive melt rates were measured. The field work is concluding as this abstract is being submitted, so most results are not yet available, but will be included in the presentation as first results emerge.

  3. Experimental Observation of Dark Solitons on Water Surface

    DTIC Science & Technology

    2016-06-13

    Experimental observation of dark solitons on water surface A. Chabchoub1,∗, O. Kimmoun2, H. Branger3, N. Hoffmann1, D. Proment4, M. Onorato4,5, and N...The shape and width of the soliton depend on the water depth, carrier frequency and the amplitude of the background wave. The experimental data...partic- ular, the governing equation describing the dynamics of weakly nonlinear and quasi -monochromatic waves prop- agating on the surface of water with

  4. Modeling and validation of photometric characteristics of space targets oriented to space-based observation.

    PubMed

    Wang, Hongyuan; Zhang, Wei; Dong, Aotuo

    2012-11-10

    A modeling and validation method of photometric characteristics of the space target was presented in order to track and identify different satellites effectively. The background radiation characteristics models of the target were built based on blackbody radiation theory. The geometry characteristics of the target were illustrated by the surface equations based on its body coordinate system. The material characteristics of the target surface were described by a bidirectional reflectance distribution function model, which considers the character of surface Gauss statistics and microscale self-shadow and is obtained by measurement and modeling in advance. The contributing surfaces of the target to observation system were determined by coordinate transformation according to the relative position of the space-based target, the background radiation sources, and the observation platform. Then a mathematical model on photometric characteristics of the space target was built by summing reflection components of all the surfaces. Photometric characteristics simulation of the space-based target was achieved according to its given geometrical dimensions, physical parameters, and orbital parameters. Experimental validation was made based on the scale model of the satellite. The calculated results fit well with the measured results, which indicates the modeling method of photometric characteristics of the space target is correct.

  5. Hubble Observes Surface of Titan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.

    Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.

    Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.

    Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much

  6. Redox-induced surface stress of polypyrrole-based actuators.

    PubMed

    Tabard-Cossa, Vincent; Godin, Michel; Grütter, Peter; Burgess, Ian; Lennox, R B

    2005-09-22

    We measure the surface stress induced by electrochemical transformations of a thin conducting polymer film. One side of a micromechanical cantilever-based sensor is covered with an electropolymerized dodecyl benzenesulfonate-doped polypyrrole (PPyDBS) film. The microcantilever serves as both the working electrode (in a conventional three-electrode cell configuration) and as the mechanical transducer for simultaneous, in situ, and real-time measurements of the current and interfacial stress changes. A compressive change in surface stress of about -2 N/m is observed when the conducting polymer is electrochemically switched between its oxidized (PPy+) and neutral (PPy0) state by cyclic voltammetry. The surface stress sensor's response during the anomalous first reductive scan is examined. The effect of long-term cycling on the mechanical transformation ability of PPy(DBS) films in both surfactant and halide-based electrolytes is also discussed. We have identified two main competing origins of surface stress acting on the PPy(DBS)/ gold-coated microcantilever: one purely mechanical due to the volume change of the conducting polymer, and a second charge-induced, owing to the interaction of anions of the supporting electrolyte with the gold surface.

  7. Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation.

    PubMed

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-25

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η(2) for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr's hydrodynamic theory.

  8. Antarctic cloud and surface properties: Satellite observations and climate implications

    NASA Astrophysics Data System (ADS)

    Berque, Joannes

    2004-12-01

    The radiative effect of clouds in the Antarctic, although small at the top of the atmosphere, is very large within the surface-atmosphere system, and influences a variety of climate processes on a global scale. Because field observations are difficult in the Antarctic interior, satellite observations may be especially valuable in this region; but the remote sensing of clouds and surface properties over the high ice sheets is problematic due to the lack of radiometric contrast between clouds and the snow. A radiative transfer model of the Antarctic snow-atmosphere system is developed, and a new method is proposed for the examination of the problem of cloud properties retrieval from multi-spectral measurements. Key limitations are identified, and a method is developed to overcome them. Using data from the Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Agency (NOAA) polar orbiters, snow grain size is retrieved over the course of a summer. Significant variability is observed, and it appears related to major precipitation events. A radiative transfer model and a single-column model are used to evaluate the impact of this variability on the Antarctic plateau. The range of observed grain size induces changes of up to 30 Wm-2 on the absorption of shortwave radiation in both models. Cloud properties are then retrieved in summertime imagery of the South Pole. Comparison of model to observations over a wide range of cloud optical depths suggests that this method allows the meaningful interpretation of AVHRR radiances in terms of cloud properties over the Antarctic plateau. The radiative effect of clouds at the top of the atmosphere is evaluated over the South Pole with ground-based lidar observations and data from Clouds and the Earth Radiant Energy System (CERES) onboard NASA's Terra satellite. In accord with previous work, results indicate that the shortwave and net effect are one of cooling throughout the year, while the longwave

  9. How to most effectively expand the global surface ozone observing network

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.

    2016-02-01

    Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere-biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12-17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under-observed. The current network is unlikely to see the impact of the El Niño-Southern Oscillation (ENSO) but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which

  10. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  11. Peculiar surface behavior of some ionic liquids based on active pharmaceutical ingredients

    NASA Astrophysics Data System (ADS)

    Restolho, José; Mata, José Luis; Saramago, Benilde

    2011-02-01

    The ionic liquids based on biologically active cations and anions, commonly designated by ionic liquids based on active pharmaceutical ingredients (ILs-APIs), are interesting compounds for use in pharmaceutical applications. Lidocaine docusate, ranitidine docusate, and didecyldimethylammonium ibuprofen are examples of promising ILs-APIs that were recently synthesized. They were submitted to biological testing and calorimetric measurements, but nothing is known about their surface properties. In this work, we measured the surface tension and the contact angles on both hydrophilic and hydrophobic surfaces in a temperature range as wide as possible. Based on the wettability data, the polarity fractions were estimated using the Fowkes theory. The peculiar surface behavior observed was tentatively attributed to the presence of mesophases.

  12. Aerosol loading in the Southeastern United States: reconciling surface and satellite observations

    NASA Astrophysics Data System (ADS)

    Ford, B.; Heald, C. L.

    2013-09-01

    We investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (AOD) (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. (2009) previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ∼35% of fine particulate matter (smaller than 2.5 μm in aerodynamic diameter, PM2.5) and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but underrepresents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere (below 700 hPa), which cannot be explained by vertical mixing, we conclude that the discrepancy is due to a missing source of aerosols above the surface layer in summer.

  13. Short-Period Surface Wave Based Seismic Event Relocation

    NASA Astrophysics Data System (ADS)

    White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.

    2017-12-01

    Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.

  14. Evaluation of improved operational standard tropospheric NO2 retrievals from Ozone Monitoring Instrument using in situ and surface-based NO2 observations

    NASA Astrophysics Data System (ADS)

    Celarier, E. A.; Lamsal, L.; Krotkov, N. A.; Bucsela, E. J.; Herman, J. R.; Dickerson, R. R.; He, H.; Brent, L. C.; Retscher, C.; Swartz, W. H.; Gleason, J. F.

    2011-12-01

    Nitrogen oxides are key actors in air quality and climate change. Column observations of tropospheric NO2 from the nadir-veiwing satellite sensors have been widely used to understand sources and chemistry of NOx. We have implemented several improvements to the operational algorithm developed at NASA GSFC and retrieved tropospheric NO2. Here we evaluate the new product using in situ surface measurements at the SEARCH, AQS/EPA, and NAPS networks, in situ aircraft (DISCOVER-AQ and RAMMPP), and ground-based PANDORA and DOAS measurements. The agreement among these data is within the uncertainty of measurements. The new OMI tropospheric NO2 product available at high spatial resolution is valuable to evaluate chemical transport models, to examine spatial and temporal pattern of NOx emissions, to provide top-down constraints to surface NOx emissions, and to estimate NOx lifetimes.

  15. Aerosol loading in the Southeastern United States: reconciling surface and satellite observations

    NASA Astrophysics Data System (ADS)

    Ford, B.; Heald, C. L.

    2013-04-01

    We investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. (2009) previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere (below 700 hPa), which cannot be explained by vertical mixing; we conclude that the discrepancy is due to a missing source of aerosols above the surface in summer.

  16. Surface stress-based biosensors.

    PubMed

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Spatial and Temporal Variations of Surface Characteristics on the Greenland Ice Sheet as Derived from Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Anderson, Mark; Rowe, Clinton; Kuivinen, Karl; Mote, Thomas

    1996-01-01

    The primary goals of this research were to identify and begin to comprehend the spatial and temporal variations in surface characteristics of the Greenland ice sheet using passive microwave observations, physically-based models of the snowpack and field observations of snowpack and firn properties.

  18. Understanding and Reconciling Differences in Surface and Satellite-Based Lower Troposphere Temperatures

    NASA Astrophysics Data System (ADS)

    Hausfather, Z.; Thorne, P.; Mears, C. A.

    2017-12-01

    One of the main remaining uncertainties in global temperatures over the past few decades is the disagreement between surface and microwave sounding unit (MSU) satellite-based observations of the lower troposphere. Reconciling these will prove an important step in improving our understanding of modern climate change, and help resolve an issue that has been frequently brought to the attention of policymakers and highlighted as a reason to distrust climate observations. To assess differences between surface and satellite records, we examine data from radiosondes, from atmospheric reanalysis, from numerous different satellites, from surface observations over the land and ocean, and from global climate models. Controlling for spatial coverage, we determine where these datasets agree and disagree, isolate the differences, and identify for common factors to explain the divergences. We find large systemic differences between surface and lower troposphere warming in MSU/AMSU records compared to radiosondes, reanalysis products, and climate models that suggest possible residual inhomogeneities in satellite records. We further show that no reasonable subset of surface temperature records exhibits as little warming over the last two decades as satellite observations, suggesting that inhomogeneities in the surface record are very likely not responsible for the divergence.

  19. Enhancing our Understanding of Snowfall Modes with Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; Kulie, M.; Petersen, W. A.; Bliven, L. F.; Wood, N.

    2016-12-01

    Snowfall can be broadly categorized into deep and shallow events based on the vertical distribution of the precipitating ice. Remotely sensed data refine these precipitation categories and aid in discerning the underlying macro- and microphysical mechanisms. The unique patterns in the remotely sensed instruments observations can potentially connect distinct modes of snowfall to specific processes. Though satellites can observe and recognize these patterns in snowfall, these measurements are limited - particularly in cases of shallow and light precipitation, as the snow may be too close to the surface or below the detection limits of the instrumentation. By enhancing satellite measurements with ground-based instrumentation, whether with limited-term field campaigns or long-term strategic sites, we can further our understanding and assumptions about different snowfall modes and how they are measured from spaceborne instruments. Presented are three years of data from a ground-based instrument suite consisting of a MicroRain Radar (MRR; optimized for snow events) and a Precipitation Imaging Package (PIP). These instruments are located at the Marquette, Michigan National Weather Service Weather Forecast Office to: a) use coincident meteorological measurements and observations to enhance our understanding of the thermodynamic drivers and b) showcase these instruments in an operational setting to enhance forecasts of shallow snow events. Three winters of MRR and PIP measurements are partitioned, based on meteorological surface observations, into two-dimensional histograms of reflectivity and particle size distribution data. These statistics improve our interpretation of deep versus shallow precipitation. Additionally, these statistical techniques are applied to similar datasets from Global Precipitation Measurement field campaigns for further insight into cloud and precipitation macro- and microphysical processes.

  20. Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah

    2014-01-01

    Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.

  1. Surface Observation Climatic Summaries for Ansbach AHP/Katterbach, Germany

    DTIC Science & Technology

    1992-05-01

    SURFACE OBSERVATIONS CLIMATIC SWUMWN (LISOCS). EXISTING RUSSWOS AND LISOCS WILL CONTINUE IN USE , BUT WILL EVENTUALLY BE BY A 8OCS. 12A. DISTRIBUTION...OBSERVATION CLIMATIC 8UMW*IY). RUSSWOS AND LISOCS NOW IN EXISTENCE WILL CON- TIhUE TO BE USED UNTIL THEY ARE EVENTUALLY REPLACED BY SOCS. THIS PIODUCT...LOCATION A AT ASHEVILLE, NC 28901-2723. HERE, CLIMATOLOGISTS USE STATE-OF-THE-ART COM- PUTER TECHNOLOGY TO SUMMARIZE WEATHER OBSERVATIONS COLLECTED

  2. Utility of Satellite Magnetic Observations for Estimating Near-Surface Magnetic Anomalies

    NASA Technical Reports Server (NTRS)

    Kim, Hyung Rae; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo; Park, Chan Hong

    2003-01-01

    Regional to continental scale magnetic anomaly maps are becoming increasingly available from airborne, shipborne, and terrestrial surveys. Satellite data are commonly considered to fill the coverage gaps in regional compilations of these near-surface surveys. For the near-surface Antarctic magnetic anomaly map being produced by the Antarctic Digital Magnetic Anomaly Project (ADMAP), we show that near-surface magnetic anomaly estimation is greatly enhanced by the joint inversion of the near-surface data with the satellite observations relative to the conventional technique such as minimum curvature. Orsted observations are especially advantageous relative to the Magsat data that have order-of-magnitude greater measurement errors, albeit at much lower orbital altitudes. CHAMP is observing the geomagnetic field with the same measurement accuracy as the Orsted mission, but at the lower orbital altitudes covered by Magsat. Hence, additional significant improvement in predicting near-surface magnetic anomalies can result as these CHAMP data are available. Our analysis also suggests that considerable new insights on the magnetic properties of the lithosphere may be revealed by a further order-of-magnitude improvement in the accuracy of the magnetometer measurements at minimum orbital altitude.

  3. Estimating surface soil moisture from SMAP observations using a neural network technique

    USDA-ARS?s Scientific Manuscript database

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to June 2016 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observ...

  4. Cassini First Radio Science Observations of Titan's Atmosphere and Surface

    NASA Astrophysics Data System (ADS)

    Marouf, Essam A.; Flasar, F. M.; French, R. G.; Kliore, A. J.; Nagy, A. F.; Rappaport, N. J.; Schinder, P. J.; McGhee, C. A.; Simpson, R.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Goltz, G.; Fleischman, D.; Kahan, D.; Rochblatt, D.

    2006-09-01

    The first two Cassini radio occultations of Titan's atmosphere occurred on March 18 (T12) and May 20 (T14), 2006. The atmosphere was probed on the ingress and egress sides, yielding observations at four mid-southern latitudes. Titan's surface was also probed using bistatic-scattering during the inbound period on T12 and the inbound and outbound periods on T14. In all cases, quasi-monochromatic S-, X-, and Ka-bands RCP signals (13, 3.6, and 0.94 cm-wavelength, respectively) were transmitted from Cassini. Both the RCP and LCP signal components were observed at multiple ground receiving stations of the NASA/DSN. Demanding spacecraft maneuvers to point the Cassini high-gain antenna to virtual Earth during the occultations, and to track the specular region on Titan's surface during the bistatic observations were successfully implemented. For the first time ever, quasi-specular bistatic scattering surface echo is detected on both the inbound and outbound T14 observations. Although weak, an X-band RCP and LCP reflected spectral components are clearly detectable. Their total power ratio determines the refractive index of the regions probed and its likely nature (liquid vs solid). The echo appears consistent with reflection from localized hydrocarbon liquid regions embedded in mostly nonspecularly reflecting terrain. The atmospheric refracted S and X signals were tracked down to Titan's surface. The Ka signal was consistently extinguished by atmospheric absorption at about 10 km above the surface. Observed changes of signal frequency is used to recover the refractivity profiles of the neutral atmosphere, hence determine the corresponding temperature-pressure profiles assuming 100% N2 composition. Changes of signal strength, corrected to remove refractive defocusing, reveals both small-scale and large-scale effects. The former is likely due to gravity waves, turbulence, and layers. The latter exhibits remarkable wavelength dependence and is likely caused by dispersive N2-N2

  5. How Well Can Infrared Sounders Observe the Atmosphere and Surface Through Clouds?

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.

  6. Observation of local cloud and moisture feedbacks over high ocean and desert surface temperatures

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1995-01-01

    New data on clouds and moisture, made possible by reanalysis of weather satellite observations, show that the atmosphere reacts to warm clusters of very high sea surface temperatures in the western Pacific Ocean with increased moisture, cloudiness, and convection, suggesting a negative feedback limiting the sea surface temperature rise. The reverse was observed over dry and hot deserts where both moisture and cloudiness decrease, suggesting a positive feedback perpetuating existing desert conditions. In addition, the observations show a common critical surface temperature for both oceans and land; the distribution of atmospheric moisture is observed to reach a maximum value when the daily surface temperatures approach 304 +/- 1 K. These observations reveal complex dynamic-radiative interactions where multiple processes act simultaneously at the surface as well as in the atmosphere to regulate the feedback processes.

  7. The Use of CASES-97 Observations to Assess and Parameterize the Impact of Land-Surface Heterogeneity on Area-Average Surface Heat Fluxes for Large-Scale Coupled Atmosphere-Hydrology Models

    NASA Technical Reports Server (NTRS)

    Chen, Fei; Yates, David; LeMone, Margaret

    2001-01-01

    To understand the effects of land-surface heterogeneity and the interactions between the land-surface and the planetary boundary layer at different scales, we develop a multiscale data set. This data set, based on the Cooperative Atmosphere-Surface Exchange Study (CASES97) observations, includes atmospheric, surface, and sub-surface observations obtained from a dense observation network covering a large region on the order of 100 km. We use this data set to drive three land-surface models (LSMs) to generate multi-scale (with three resolutions of 1, 5, and 10 kilometers) gridded surface heat flux maps for the CASES area. Upon validating these flux maps with measurements from surface station and aircraft, we utilize them to investigate several approaches for estimating the area-integrated surface heat flux for the CASES97 domain of 71x74 square kilometers, which is crucial for land surface model development/validation and area water and energy budget studies. This research is aimed at understanding the relative contribution of random turbulence versus organized mesoscale circulations to the area-integrated surface flux at the scale of 100 kilometers, and identifying the most important effective parameters for characterizing the subgrid-scale variability for large-scale atmosphere-hydrology models.

  8. Polysaccharide-based antibiofilm surfaces.

    PubMed

    Junter, Guy-Alain; Thébault, Pascal; Lebrun, Laurent

    2016-01-01

    Surface treatment by natural or modified polysaccharide polymers is a promising means to fight against implant-associated biofilm infections. The present review focuses on polysaccharide-based coatings that have been proposed over the last ten years to impede biofilm formation on material surfaces exposed to bacterial contamination. Anti-adhesive and bactericidal coatings are considered. Besides classical hydrophilic coatings based on hyaluronic acid and heparin, the promising anti-adhesive properties of the algal polysaccharide ulvan are underlined. Surface functionalization by antimicrobial chitosan and derivatives is extensively surveyed, in particular chitosan association with other polysaccharides in layer-by-layer assemblies to form both anti-adhesive and bactericidal coatings. Bacterial contamination of surfaces, leading to biofilm formation, is a major problem in fields as diverse as medicine, first, but also food and cosmetics. Many prophylactic strategies have emerged to try to eliminate or reduce bacterial adhesion and biofilm formation on surfaces of materials exposed to bacterial contamination, in particular implant materials. Polysaccharides are widely distributed in nature. A number of these natural polymers display antibiofilm properties. Hence, surface treatment by natural or modified polysaccharides is a promising means to fight against implant-associated biofilm infections. The present manuscript is an in-depth look at polysaccharide-based antibiofilm surfaces that have been proposed over the last ten years. This review, which is a novelty compared to published literature, will bring well documented and updated information to readers of Acta Biomaterialia. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Observation of surface plasmon polaritons in 2D electron gas of surface electron accumulation in InN nanostructures.

    PubMed

    Madapu, Kishore K; Sivadasan, A K; Baral, Madhusmita; Dhara, Sandip

    2018-07-06

    Recently, heavily doped semiconductors have been emerging as an alternative to low-loss plasmonic materials. InN, belonging to the group III nitrides, possesses the unique property of surface electron accumulation (SEA), which provides a 2D electron gas (2DEG) system. In this report, we demonstrated the surface plasmon properties of InN nanoparticles originating from SEA using the real-space mapping of the surface plasmon fields for the first time. The SEA is confirmed by Raman studies, which are further corroborated by photoluminescence and photoemission spectroscopic studies. The frequency of 2DEG corresponding to SEA is found to be in the THz region. The periodic fringes are observed in the near-field scanning optical microscopic images of InN nanostructures. The observed fringes are attributed to the interference of propagated and back-reflected surface plasmon polaritons (SPPs). The observation of SPPs is solely attributed to the 2DEG corresponding to the SEA of InN. In addition, a resonance kind of behavior with the enhancement of the near-field intensity is observed in the near-field images of InN nanostructures. Observation of SPPs indicates that InN with SEA can be a promising THz plasmonic material for light confinement.

  10. Observation of surface plasmon polaritons in 2D electron gas of surface electron accumulation in InN nanostructures

    NASA Astrophysics Data System (ADS)

    Madapu, Kishore K.; Sivadasan, A. K.; Baral, Madhusmita; Dhara, Sandip

    2018-07-01

    Recently, heavily doped semiconductors have been emerging as an alternative to low-loss plasmonic materials. InN, belonging to the group III nitrides, possesses the unique property of surface electron accumulation (SEA), which provides a 2D electron gas (2DEG) system. In this report, we demonstrated the surface plasmon properties of InN nanoparticles originating from SEA using the real-space mapping of the surface plasmon fields for the first time. The SEA is confirmed by Raman studies, which are further corroborated by photoluminescence and photoemission spectroscopic studies. The frequency of 2DEG corresponding to SEA is found to be in the THz region. The periodic fringes are observed in the near-field scanning optical microscopic images of InN nanostructures. The observed fringes are attributed to the interference of propagated and back-reflected surface plasmon polaritons (SPPs). The observation of SPPs is solely attributed to the 2DEG corresponding to the SEA of InN. In addition, a resonance kind of behavior with the enhancement of the near-field intensity is observed in the near-field images of InN nanostructures. Observation of SPPs indicates that InN with SEA can be a promising THz plasmonic material for light confinement.

  11. Surface Curvature Relation to Protein Adsorption for Carbon-based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Gu, Zonglin; Yang, Zaixing; Chong, Yu; Ge, Cuicui; Weber, Jeffrey K.; Bell, David R.; Zhou, Ruhong

    2015-06-01

    The adsorption of proteins onto carbon-based nanomaterials (CBNs) is dictated by hydrophobic and π-π interactions between aliphatic and aromatic residues and the conjugated CBN surface. Accordingly, protein adsorption is highly sensitive to topological constraints imposed by CBN surface structure; in particular, adsorption capacity is thought to increase as the incident surface curvature decreases. In this work, we couple Molecular Dynamics (MD) simulations with fluorescence spectroscopy experiments to characterize this curvature dependence in detail for the model protein bovine serum albumin (BSA). By studying BSA adsorption onto carbon nanotubes of increasing radius (featuring descending local curvatures) and a flat graphene sheet, we confirm that adsorption capacity is indeed enhanced on flatter surfaces. Naïve fluorescence experiments featuring multi-walled carbon nanotubes (MWCNTs), however, conform to an opposing trend. To reconcile these observations, we conduct additional MD simulations with MWCNTs that match those prepared in experiments; such simulations indicate that increased mass to surface area ratios in multi-walled systems explain the observed discrepancies. In reduction, our work substantiates the inverse relationship between protein adsorption capacity and surface curvature and further demonstrates the need for subtle consideration in experimental and simulation design.

  12. A framework for global diurnally-resolved observations of Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Ghent, Darren; Remedios, John

    2014-05-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Being a key boundary condition in land surface models, which determine the surface to atmosphere fluxes of heat, water and carbon; thus influencing cloud cover, precipitation and atmospheric chemistry predictions within Global models, the requirement for global diurnal observations of LST is well founded. Earth Observation satellites offer an opportunity to obtain global coverage of LST, with the appropriate exploitation of data from multiple instruments providing a capacity to resolve the diurnal cycle on a global scale. Here we present a framework for the production of global, diurnally resolved, data sets for LST which is a key request from users of LST data. We will show how the sampling of both geostationary and low earth orbit data sets could conceptually be employed to build combined, multi-sensor, pole-to-pole data sets. Although global averages already exist for individual instruments and merging of geostationary based LST is already being addressed operationally (Freitas, et al., 2013), there are still a number of important challenges to overcome. In this presentation, we will consider three of the issues still open in LST remote sensing: 1) the consistency amongst retrievals; 2) the clear-sky bias and its quantification; and 3) merging methods and the propagation of uncertainties. For example, the combined use of both geostationary earth orbit (GEO) and low earth orbit (LEO) data, and both infra-red and microwave data are relatively unexplored but are necessary to make the most progress. Hence this study will suggest what is state-of-the-art and how considerable advances can be made, accounting also for recent improvements in techniques and data quality. The GlobTemperature initiative under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013

  13. Photospheric Observations of Surface and Body Modes in Solar Magnetic Pores

    NASA Astrophysics Data System (ADS)

    Keys, Peter H.; Morton, Richard J.; Jess, David B.; Verth, Gary; Grant, Samuel D. T.; Mathioudakis, Mihalis; Mackay, Duncan H.; Doyle, John G.; Christian, Damian J.; Keenan, Francis P.; Erdélyi, Robertus

    2018-04-01

    Over the past number of years, great strides have been made in identifying the various low-order magnetohydrodynamic wave modes observable in a number of magnetic structures found within the solar atmosphere. However, one aspect of these modes that has remained elusive, until now, is their designation as either surface or body modes. This property has significant implications for how these modes transfer energy from the waveguide to the surrounding plasma. Here, for the first time to our knowledge, we present conclusive, direct evidence of these wave characteristics in numerous pores that were observed to support sausage modes. As well as outlining methods to detect these modes in observations, we make estimates of the energies associated with each mode. We find surface modes more frequently in the data, as well as that surface modes appear to carry more energy than those displaying signatures of body modes. We find frequencies in the range of ∼2–12 mHz, with body modes as high as 11 mHz, but we do not find surface modes above 10 mHz. It is expected that the techniques we have applied will help researchers search for surface and body signatures in other modes and in differing structures from those presented here.

  14. Estimating Morning Change in Land Surface Temperature from MODIS Day/Night Observations: Applications for Surface Energy Balance Modeling.

    PubMed

    Hain, Christopher R; Anderson, Martha C

    2017-10-16

    Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required to attain near-global coverage (60°N to 60°S). While these LST observations are available from polar-orbiting sensors, providing global coverage at higher spatial resolutions, the temporal sampling (twice daily observations) can pose significant limitations. For example, the Atmosphere Land Exchange Inverse (ALEXI) surface energy balance model, used for monitoring evapotranspiration and drought, requires an observation of the morning change in LST - a quantity not directly observable from polar-orbiting sensors. Therefore, we have developed and evaluated a data-mining approach to estimate the mid-morning rise in LST from a single sensor (2 observations per day) of LST from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the Aqua platform. In general, the data-mining approach produced estimates with low relative error (5 to 10%) and statistically significant correlations when compared against geostationary observations. This approach will facilitate global, near real-time applications of ALEXI at higher spatial and temporal coverage from a single sensor than currently achievable with current geostationary datasets.

  15. Stable near-surface ocean salinity stratifications due to evaporation observed during STRASSE

    NASA Astrophysics Data System (ADS)

    Asher, William E.; Jessup, Andrew T.; Clark, Dan

    2014-05-01

    Under conditions with a large solar flux and low wind speed, a stably stratified warm layer forms at the ocean surface. Evaporation can then lead to an increase in salinity in the warm layer. A large temperature gradient will decrease density enough to counter the density increase caused by the salinity increase, forming a stable positive salinity anomaly at the surface. If these positive salinity anomalies are large in terms of the change in salinity from surface to the base of the gradient, if their areal coverage is a significant fraction of the satellite footprint, and if they persist long enough to be in the satellite field of view, they could be relevant for calibration and validation of L-band microwave salinity measurements. A towed, surface-following profiler was deployed from the N/O Thalassa during the Subtropical Atlantic Surface Salinity Experiment (STRASSE). The profiler measured temperature and conductivity in the surface ocean at depths of 10, 50, and 100 cm. The measurements show that positive salinity anomalies are common at the ocean surface for wind speeds less than 4 m s-1 when the average daily insolation is >300 W m-2 and the sea-to-air latent heat flux is greater than zero. A semiempirical model predicts the observed dependence of measured anomalies on environmental conditions. However, the model results and the field data suggest that these ocean surface salinity anomalies are not large enough in terms of the salinity difference to significantly affect microwave radiometric measurements of salinity.

  16. Observation of Sea Ice Surface Thermal States Under Cloud Cover

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Perovich, D. K.; Gow, A. J.; Kwok, R.; Barber, D. G.; Comiso, J. C.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Clouds interfere with the distribution of short-wave and long-wave radiations over sea ice, and thereby strongly affect the surface energy balance in polar regions. To evaluate the overall effects of clouds on climatic feedback processes in the atmosphere-ice-ocean system, the challenge is to observe sea ice surface thermal states under both clear sky and cloudy conditions. From laboratory experiments, we show that C-band radar (transparent to clouds) backscatter is very sensitive to the surface temperature of first-year sea ice. The effect of sea ice surface temperature on the magnitude of backscatter change depends on the thermal regimes of sea ice thermodynamic states. For the temperature range above the mirabilite (Na2SO4.10H20) crystallization point (-8.2 C), C-band data show sea ice backscatter changes by 8-10 dB for incident angles from 20 to 35 deg at both horizontal and vertical polarizations. For temperatures below the mirabilite point but above the crystallization point of MgCl2.8H2O (-18.0 C), relatively strong backwater changes between 4-6 dB are observed. These backscatter changes correspond to approximately 8 C change in temperature for both cases. The backscattering mechanism is related to the temperature which determines the thermodynamic distribution of brine volume in the sea ice surface layer. The backscatter is positively correlated to temperature and the process is reversible with thermodynamic variations such as diurnal insolation effects. From two different dates in May 1993 with clear and overcast conditions determined by the Advanced Very High Resolution Radiometer (AVHRR), concurrent Earth Resources Satellite 1 (ERS-1) C-band ice observed with increases in backscatter over first-year sea ice, and verified by increases in in-situ sea ice surface temperatures measured at the Collaborative-Interdisciplinary Cryosphere Experiment (C-ICE) site.

  17. Estimating Long Term Surface Soil Moisture in the GCIP Area From Satellite Microwave Observations

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Vrije; VandeGriend, Adriaan A.

    2000-01-01

    Soil moisture is an important component of the water and energy balances of the Earth's surface. Furthermore, it has been identified as a parameter of significant potential for improving the accuracy of large-scale land surface-atmosphere interaction models. However, accurate estimates of surface soil moisture are often difficult to make, especially at large spatial scales. Soil moisture is a highly variable land surface parameter, and while point measurements are usually accurate, they are representative only of the immediate site which was sampled. Simple averaging of point values to obtain spatial means often leads to substantial errors. Since remotely sensed observations are already a spatially averaged or areally integrated value, they are ideally suited for measuring land surface parameters, and as such, are a logical input to regional or larger scale land process models. A nine-year database of surface soil moisture is being developed for the Central United States from satellite microwave observations. This region forms much of the GCIP study area, and contains most of the Mississippi, Rio Grande, and Red River drainages. Daytime and nighttime microwave brightness temperatures were observed at a frequency of 6.6 GHz, by the Scanning Multichannel Microwave Radiometer (SMMR), onboard the Nimbus 7 satellite. The life of the SMMR instrument spanned from Nov. 1978 to Aug. 1987. At 6.6 GHz, the instrument provided a spatial resolution of approximately 150 km, and an orbital frequency over any pixel-sized area of about 2 daytime and 2 nighttime passes per week. Ground measurements of surface soil moisture from various locations throughout the study area are used to calibrate the microwave observations. Because ground measurements are usually only single point values, and since the time of satellite coverage does not always coincide with the ground measurements, the soil moisture data were used to calibrate a regional water balance for the top 1, 5, and 10 cm

  18. Options to Improve Rain Snow Parameterization in Surface Based Models

    NASA Astrophysics Data System (ADS)

    Feiccabrino, J. M.

    2017-12-01

    Precipitation phase determination is of upmost importance in a number of surface based hydrological, ecological, and safety models. However, precipitation phase at Earth's surface is a result of cloud and atmospheric properties not measured by surface weather stations. Nonetheless, they can be inferred from the available surface datum. This study uses 681,620 weather observations with air temperatures between -3 and 5°C and identified precipitation occurring at the time of the observation to determine simple, yet accurate, thresholds for precipitation phase determination schemes (PPDS). This dataset represents 38% and 42% of precipitation observations over a 16 year period for 85 Swedish, and 84 Norwegian weather stations. The misclassified precipitation (error) from PPDS using AT, dew-point temperature (DT) and wet-bulb temperature (WB) thresholds were compared using a single threshold PPDS. The Norwegian observations between -3 and 5°C resulted in 11.64%, 11.21%, and 8.42% error for DT (-0.2°C), AT (1.2°C), and WB (0.3°C) thresholds respectively. Individual station thresholds had a range of -0.7 to 1.2°C, -1.2 to 0.9°C, and -0.1 to 2.5°C for WB, DP, and AT respectively. To address threshold variance while decreasing error, weather stations were grouped into nine landscape categories; windward (WW) ocean, WW coast, WW fjord, WW hill, WW mountain, leeward (LW) mountain, LW hill, LW rolling hills, and LW coast. Landscape classification was based on location relative to the Scandinavian Mountains, and the % water or range of elevation within 15KM. Within landscapes, stations share similar land atmosphere exchanges which differ from other landscapes. These differences change optimal thresholds for PPDS between landscapes. Also tested were threshold temperature affects based on assumed atmospheric differences for the following observation groups; 1.) occurring before and after an air mass boundary, 2.) with different water temperatures and/or NAO phases, 3

  19. Simultaneous inversion of multiple land surface parameters from MODIS optical-thermal observations

    NASA Astrophysics Data System (ADS)

    Ma, Han; Liang, Shunlin; Xiao, Zhiqiang; Shi, Hanyu

    2017-06-01

    Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface variables usually focus on individual parameters separately even from the same satellite observations, resulting in inconsistent products. Moreover, no efforts have been made to generate global products from integrated observations from the optical to Thermal InfraRed (TIR) spectrum. Particularly, Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal, which contains both reflected and emitted radiation. In this paper, we propose a unified algorithm for simultaneously retrieving six land surface parameters - Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Emissivity (LSE), Land Surface Temperature (LST), and Upwelling Longwave radiation (LWUP) by exploiting MODIS visible-to-TIR observations. We incorporate a unified physical radiative transfer model into a data assimilation framework. The MODIS visible-to-TIR time series datasets include the daily surface reflectance product and MIR-to-TIR surface radiance, which are atmospherically corrected from the MODIS data using the Moderate Resolution Transmittance program (MODTRAN, ver. 5.0). LAI was first estimated using a data assimilation method that combines MODIS daily reflectance data and a LAI phenology model, and then the LAI was input to the unified radiative transfer model to simulate spectral surface reflectance and surface emissivity for calculating surface broadband albedo and emissivity, and FAPAR. LST was estimated from the MIR-TIR surface radiance data and the simulated emissivity, using an iterative optimization procedure. Lastly, LWUP was estimated using the LST and surface emissivity. The retrieved six parameters were extensively validated across six representative sites with

  20. Automated classification of articular cartilage surfaces based on surface texture.

    PubMed

    Stachowiak, G P; Stachowiak, G W; Podsiadlo, P

    2006-11-01

    In this study the automated classification system previously developed by the authors was used to classify articular cartilage surfaces with different degrees of wear. This automated system classifies surfaces based on their texture. Plug samples of sheep cartilage (pins) were run on stainless steel discs under various conditions using a pin-on-disc tribometer. Testing conditions were specifically designed to produce different severities of cartilage damage due to wear. Environmental scanning electron microscope (SEM) (ESEM) images of cartilage surfaces, that formed a database for pattern recognition analysis, were acquired. The ESEM images of cartilage were divided into five groups (classes), each class representing different wear conditions or wear severity. Each class was first examined and assessed visually. Next, the automated classification system (pattern recognition) was applied to all classes. The results of the automated surface texture classification were compared to those based on visual assessment of surface morphology. It was shown that the texture-based automated classification system was an efficient and accurate method of distinguishing between various cartilage surfaces generated under different wear conditions. It appears that the texture-based classification method has potential to become a useful tool in medical diagnostics.

  1. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE PAGES

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.; ...

    2016-07-18

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  2. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  3. TOLNet Data Format for Lidar Ozone Profile & Surface Observations

    NASA Astrophysics Data System (ADS)

    Chen, G.; Aknan, A. A.; Newchurch, M.; Leblanc, T.

    2015-12-01

    The Tropospheric Ozone Lidar Network (TOLNet) is an interagency initiative started by NASA, NOAA, and EPA in 2011. TOLNet currently has six Lidars and one ozonesonde station. TOLNet provides high-resolution spatio-temporal measurements of tropospheric (surface to tropopause) ozone and aerosol vertical profiles to address fundamental air-quality science questions. The TOLNet data format was developed by TOLNet members as a community standard for reporting ozone profile observations. The development of this new format was primarily based on the existing NDAAC (Network for the Detection of Atmospheric Composition Change) format and ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) format. The main goal is to present the Lidar observations in self-describing and easy-to-use data files. The TOLNet format is an ASCII format containing a general file header, individual profile headers, and the profile data. The last two components repeat for all profiles recorded in the file. The TOLNet format is both human and machine readable as it adopts standard metadata entries and fixed variable names. In addition, software has been developed to check for format compliance. To be presented is a detailed description of the TOLNet format protocol and scanning software.

  4. Surface similarity-based molecular query-retrieval

    PubMed Central

    Singh, Rahul

    2007-01-01

    Background Discerning the similarity between molecules is a challenging problem in drug discovery as well as in molecular biology. The importance of this problem is due to the fact that the biochemical characteristics of a molecule are closely related to its structure. Therefore molecular similarity is a key notion in investigations targeting exploration of molecular structural space, query-retrieval in molecular databases, and structure-activity modelling. Determining molecular similarity is related to the choice of molecular representation. Currently, representations with high descriptive power and physical relevance like 3D surface-based descriptors are available. Information from such representations is both surface-based and volumetric. However, most techniques for determining molecular similarity tend to focus on idealized 2D graph-based descriptors due to the complexity that accompanies reasoning with more elaborate representations. Results This paper addresses the problem of determining similarity when molecules are described using complex surface-based representations. It proposes an intrinsic, spherical representation that systematically maps points on a molecular surface to points on a standard coordinate system (a sphere). Molecular surface properties such as shape, field strengths, and effects due to field super-positioningcan then be captured as distributions on the surface of the sphere. Surface-based molecular similarity is subsequently determined by computing the similarity of the surface-property distributions using a novel formulation of histogram-intersection. The similarity formulation is not only sensitive to the 3D distribution of the surface properties, but is also highly efficient to compute. Conclusion The proposed method obviates the computationally expensive step of molecular pose-optimisation, can incorporate conformational variations, and facilitates highly efficient determination of similarity by directly comparing molecular surfaces

  5. The three-class ideal observer for univariate normal data: Decision variable and ROC surface properties

    PubMed Central

    Edwards, Darrin C.; Metz, Charles E.

    2012-01-01

    Although a fully general extension of ROC analysis to classification tasks with more than two classes has yet to be developed, the potential benefits to be gained from a practical performance evaluation methodology for classification tasks with three classes have motivated a number of research groups to propose methods based on constrained or simplified observer or data models. Here we consider an ideal observer in a task with underlying data drawn from three univariate normal distributions. We investigate the behavior of the resulting ideal observer’s decision variables and ROC surface. In particular, we show that the pair of ideal observer decision variables is constrained to a parametric curve in two-dimensional likelihood ratio space, and that the decision boundary line segments used by the ideal observer can intersect this curve in at most six places. From this, we further show that the resulting ROC surface has at most four degrees of freedom at any point, and not the five that would be required, in general, for a surface in a six-dimensional space to be non-degenerate. In light of the difficulties we have previously pointed out in generalizing the well-known area under the ROC curve performance metric to tasks with three or more classes, the problem of developing a suitable and fully general performance metric for classification tasks with three or more classes remains unsolved. PMID:23162165

  6. The linkage between stratospheric water vapor and surface temperature in an observation-constrained coupled general circulation model

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Su, Hui; Jiang, Jonathan H.; Livesey, Nathaniel J.; Santee, Michelle L.; Froidevaux, Lucien; Read, William G.; Anderson, John

    2017-04-01

    We assess the interactions between stratospheric water vapor (SWV) and surface temperature during the past two decades using satellite observations and the Community Earth System Model (CESM). From 1992 to 2013, to first order, the observed SWV exhibited three distinct piece-wise trends: a steady increase from 1992 to 2000, an abrupt drop from 2000 to 2004, and a gradual recovery after 2004, while the global-mean surface temperature experienced a strong increase until 2000 and a warming hiatus after 2000. The atmosphere-only CESM shows that the seasonal variation of tropical-mean (30°S-30°N) SWV is anticorrelated with that of the tropical-mean sea surface temperature (SST), while the correlation between the tropical SWV and SST anomalies on the interannual time scale is rather weak. By nudging the modeled SWV to prescribed profiles in coupled atmosphere-slab ocean experiments, we investigate the impact of SWV variations on surface temperature change. We find that a uniform 1 ppmv (0.5 ppmv) SWV increase (decrease) leads to an equilibrium global mean surface warming (cooling) of 0.12 ± 0.05 °C (-0.07 ± 0.05 °C). Sensitivity experiments show that the equilibrium response of global mean surface temperature to SWV perturbations over the extratropics is larger than that over the tropics. The observed sudden drop of SWV from 2000 to 2004 produces a global mean surface cooling of about -0.048 ± 0.041 °C, which suggests that a persistent change in SWV would make an imprint on long-term variations of global-mean surface temperature. A constant linear increase in SWV based on the satellite-observed rate of SWV change yields a global mean surface warming of 0.03 ± 0.01 °C/decade over a 50-year period, which accounts for about 19 % of the observed surface temperature increase prior to the warming hiatus. In the same experiment, trend analyses during different periods reveal a multi-year adjustment of surface temperature before the response to SWV forcing becomes

  7. Direct Observation of Twisted Surface skyrmions in Bulk Crystals

    NASA Astrophysics Data System (ADS)

    Zhang, S. L.; van der Laan, G.; Wang, W. W.; Haghighirad, A. A.; Hesjedal, T.

    2018-06-01

    Magnetic skyrmions in noncentrosymmetric helimagnets with Dn symmetry are Bloch-type magnetization swirls with a helicity angle of ±9 0 ° . At the surface of helimagnetic thin films below a critical thickness, a twisted skyrmion state with an arbitrary helicity angle has been proposed; however, its direct experimental observation has remained elusive. Here, we show that circularly polarized resonant elastic x-ray scattering is able to unambiguously measure the helicity angle of surface skyrmions, providing direct experimental evidence that a twisted skyrmion surface state also exists in bulk systems. The exact surface helicity angles of twisted skyrmions for both left- and right-handed chiral bulk Cu2 OSeO3 , in the single as well as in the multidomain skyrmion lattice state, are determined, revealing their detailed internal structure. Our findings suggest that a skyrmion surface reconstruction is a universal phenomenon, stemming from the breaking of translational symmetry at the interface.

  8. Experimental Observation of Bohr’s Nonlinear Fluidic Surface Oscillation

    PubMed Central

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η2 for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr’s hydrodynamic theory. PMID:26803911

  9. The SIR-B observations of microwave backscatter dependence on soil moisture, surface roughness, and vegetation covers

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Shiue, J. C.; Engman, E. T.; Rusek, M.; Steinmeier, C.

    1986-01-01

    An experiment was conducted from an L-band SAR aboard Space Shuttle Challenger in October 1984 to study the microwave backscatter dependence on soil moisture, surface roughness, and vegetation cover. The results based on the analyses of an image obtained at 21-deg incidence angle show a positive correlatlion between scattering coefficient and soil moisture content, with a sensitivity comparable to that derived from the ground radar measurements reported by Ulaby et al. (1978). The surface roughness strongly affects the microwave backscatter. A factor of two change in the standard deviation of surface roughness height gives a corresponding change of about 8 dB in the scattering coefficient. The microwave backscatter also depends on the vegetation types. Under the dry soil conditions, the scattering coefficient is observed to change from about -24 dB for an alfalfa or lettuce field to about -17 dB for a mature corn field. These results suggest that observations with a SAR system of multiple frequencies and polarizations are required to unravel the effects of soil moisture, surface roughness, and vegetation cover.

  10. The use of radar and visual observations to characterize the surface structure of the planet Mercury

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Kobrick, M.; Jurgens, R. F.

    1985-01-01

    An analysis is conducted of available topographic profiles and scattering parameters derived from earth-based S- and X-band radar observations of Mercury, in order to determine the nature and origin of regional surface variations and structures that are typical of the planet. Attention is given to the proposal that intercrater plains on Mercury formed from extensive volcanic flooding during bombardment, so that most craters were formed on a partially molten surface and were thus obliterated, together with previously formed tectonic features.

  11. Locating potential biosignatures on Europa from surface geology observations.

    PubMed

    Figueredo, Patricio H; Greeley, Ronald; Neuer, Susanne; Irwin, Louis; Schulze-Makuch, Dirk

    2003-01-01

    We evaluated the astrobiological potential of the major classes of geologic units on Europa with respect to possible biosignatures preservation on the basis of surface geology observations. These observations are independent of any formational model and therefore provide an objective, though preliminary, evaluation. The assessment criteria include high mobility of material, surface concentration of non-ice components, relative youth, textural roughness, and environmental stability. Our review determined that, as feature classes, low-albedo smooth plains, smooth bands, and chaos hold the highest potential, primarily because of their relative young age, the emplacement of low-viscosity material, and indications of material exchange with the subsurface. Some lineaments and impact craters may be promising sites for closer study despite the comparatively lower astrobiological potential of their classes. This assessment will be expanded by multidisciplinary examination of the potential for habitability of specific features.

  12. Quantifying the Uncertainties of Reanalyzed Arctic Cloud-radiation Properties Using Satellite-surface Observations

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Dong, X.; Xi, B.; Dolinar, E. K.; Stanfield, R.

    2015-12-01

    Cloud and radiation processes are very important issues in Arctic climate system. Reanalyses have proved to be the essential tools to study extreme weather and climate events, especially in data-sparse region like the Arctic. Before using reanalyses products, their strengths and uncertainties should be identified. In this study, five recent reanalyses (JRA55, 20CR V2c, CFSR, ERA-Interim and MERRA) are compared with NASA CERES satellite observations with respect of cloud fraction (CF), top-of-atmosphere (TOA) and surface longwave (LW)/shortwave (SW) radiation fluxes during the period of 03/2000-02/2012 over the Arctic (70-90°N). 20CR V2c, CFSR, ERA-Interim and MERRA overestimate CFs, particularly during the cold season, with the positive biases of annual means from +9.6% (MERRA) to +22.9% (20CR V2c). Only JRA55 can represent its overall seasonal variation and spatial distribution but with large negative biases (nearly -15%). All reanalyses can well capture the seasonal trend of TOA SW/LW upwelling fluxes. However, in all-sky condition, all of them show positive biases of TOA SW upwelling flux along northern and eastern coasts in Greenland during the warm season (JJA). There is a good agreement between reanalyses and observation in seasonal cycle of net TOA cloud radiative effects (CRE), which are calculated by TOA SW/LW fluxes. The spatial distributions of net TOA CRE in warm season show that only JRA55 and ERA-Interim are relatively consistent with their reanalyzed CFs. As for the surface radiation, the satellite-derived results were firstly validated by Baseline Surface Radiation Network (BSRN) ground-based observations. It illustrates that average biases of satellite retrievals are +9.85 W/m2 for surface downward SW flux and +0.39 W/m2 for downward LW flux in warm season within the Arctic. The seasonal variation of SW/LW fluxes can be well represented by four of five reanalyses except MERRA. Reanalyzed surface downward SW flux in JRA55, CFSR and ERA-Interim are

  13. Application of Environmental Scanning Electron Microscope-Nanomanipulation System on Spheroplast Yeast Cells Surface Observation.

    PubMed

    Rad, Maryam Alsadat; Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2017-01-01

    The preparation and observations of spheroplast W303 cells are described with Environmental Scanning Electron Microscope (ESEM). The spheroplasting conversion was successfully confirmed qualitatively, by the evaluation of the morphological change between the normal W303 cells and the spheroplast W303 cells, and quantitatively, by determining the spheroplast conversion percentage based on the OD 800 absorbance data. From the optical microscope observations as expected, the normal cells had an oval shape whereas spheroplast cells resemble a spherical shape. This was also confirmed under four different mediums, that is, yeast peptone-dextrose (YPD), sterile water, sorbitol-EDTA-sodium citrate buffer (SCE), and sorbitol-Tris-Hcl-CaCl 2 (CaS). It was also observed that the SCE and CaS mediums had a higher number of spheroplast cells as compared to the YPD and sterile water mediums. The OD 800 absorbance data also showed that the whole W303 cells were fully converted to the spheroplast cells after about 15 minutes. The observations of the normal and the spheroplast W303 cells were then performed under an environmental scanning electron microscope (ESEM). The normal cells showed a smooth cell surface whereas the spheroplast cells had a bleb-like surface after the loss of its integrity when removing the cell wall.

  14. Terrestrial water storage variations and surface vertical deformation derived from GPS and GRACE observations in Nepal and Himalayas

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Shen, W.; Hwang, C.

    2015-12-01

    As an elastic Earth, the surface vertical deformation is in response to hydrological mass change on or near Earth's surface. The continuous GPS (CGPS) records show surface vertical deformations which are significant information to estimate the variation of terrestrial water storage. We compute the loading deformations at GPS stations based on synthetic models of seasonal water load distribution and then invert the synthetic GPS data for surface mass distribution. We use GRACE gravity observations and hydrology models to evaluate seasonal water storage variability in Nepal and Himalayas. The coherence among GPS inversion results, GRACE and hydrology models indicate that GPS can provide quantitative estimates of terrestrial water storage variations by inverting the surface deformation observations. The annual peak-to-peak surface mass change derived from GPS and GRACE results reveal seasonal loads oscillations of water, snow and ice. Meanwhile, the present uplifting of Nepal and Himalayas indicates the hydrology mass loss. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).

  15. Continental-scale water fluxes from continuous GPS observations of Earth surface loading

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Agnew, D. C.; Cayan, D. R.

    2015-12-01

    After more than a decade of observing annual oscillations of Earth's surface from seasonal snow and water loading, continuous GPS is now being used to model time-varying terrestrial water fluxes on the local and regional scale. Although the largest signal is typically due to the seasonal hydrological cycle, GPS can also measure subtle surface deformation caused by sustained wet and dry periods, and to estimate the spatial distribution of the underlying terrestrial water storage changes. The next frontier is expanding this analysis to the continental scale and paving the way for incorporating GPS models into the National Climate Assessment and into the observational infrastructure for national water resource management. This will require reconciling GPS observations with predictions from hydrological models and with remote sensing observations from a suite of satellite instruments (e.g. GRACE, SMAP, SWOT). The elastic Earth response which transforms surface loads into vertical and horizontal displacements is also responsible for the contamination of loading observations by tectonic and anthropogenic transients, and we discuss these and other challenges to this new application of GPS.

  16. Observational study of atmospheric surface layer and coastal weather in northern Qatar

    NASA Astrophysics Data System (ADS)

    Samanta, Dhrubajyoti; Sadr, Reza

    2016-04-01

    Atmospheric surface layer is the interaction medium between atmosphere and Earth's surface. Better understanding of its turbulence nature is essential in characterizing the local weather, climate variability and modeling of turbulent exchange processes. The importance of Middle East region, with its unique geographical, economical and weather condition is well recognized. However, high quality micrometeorological observational studies are rare in this region. Here we show experimental results from micrometeorological observations from an experimental site in the coastal region of Qatar during August-December 2015. Measurements of winds are obtained from three sonic anemometers installed on a 9 m tower placed at Al Ghariyah beach in northern Qatar (26.08 °N, 51.36 °E). Different surface layer characteristics is analyzed and compared with earlier studies in equivalent weather conditions. Monthly statistics of wind speed, wind direction, temperature, humidity and heat index are made from concurrent observations from sonic anemometer and weather station to explore variations with surface layer characteristics. The results also highlights potential impact of sea breeze circulation on local weather and atmospheric turbulence. The observed daily maximum temperature and heat index during morning period may be related to sea breeze circulations. Along with the operational micrometeorological observation system, a camera system and ultrasonic wave measurement system are installed recently in the site to study coastline development and nearshore wave dynamics. Overall, the complete observational set up is going to provide new insights about nearshore wind dynamics and wind-wave interaction in Qatar.

  17. Interactive Computing and Processing of NASA Land Surface Observations Using Google Earth Engine

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Bell, Jordan

    2016-01-01

    Google's Earth Engine offers a "big data" approach to processing large volumes of NASA and other remote sensing products. h\\ps://earthengine.google.com/ Interfaces include a Javascript or Python-based API, useful for accessing and processing over large periods of record for Landsat and MODIS observations. Other data sets are frequently added, including weather and climate model data sets, etc. Demonstrations here focus on exploratory efforts to perform land surface change detection related to severe weather, and other disaster events.

  18. 10-Year Observations of Cloud and Surface Longwave Radiation at Ny-Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Yeo, H.; Kim, S. W.; Kim, B. M.; Kim, J. H.; Shiobara, M.; Choi, T. J.; Son, S. W.; Kim, M. H.; Jeong, J. H.; Kim, S. J.

    2015-12-01

    Arctic clouds play a key role in surface radiation budget and may influence sea ice and snow melting. In this study, 10-year (2004-2013) observations of cloud from Micro-Pulse Lidar (MPL) and surface longwave (LW) radiation at Ny-Ålesund, Svalbard are analyzed to investigate cloud radiative effect. The cloud fraction (CF) derived from MPL shows distinct monthly variation, having higher CF (0.90) in summer and lower CF (0.79) in winter. Downward longwave radiation (DLW) during wintertime (Nov., Dec., Jan., and Feb.) decreases as cloud base height (CBH) increases. The DLW for CBH < 1km (264.7±35.4 W m-2) is approximately 1.46 times larger than that for cloud-free (181.8±25.8 W m-2) conditions. The temperature difference (ΔT) and DLW difference (ΔDLW), which are calculated as the difference of monthly mean temperature and DLW between all-sky and cloud-free conditions, are positively correlated (R2 = 0.83). This implies that an increase of DLW may influence surface warming, which can result in snow and sea ice melting. However, dramatic changes in surface temperature, cloud and DLW are observed with a time scale of a few days. The averaged surface temperature on the presence of low-level clouds (CBH < 2km) and under cloud-free conditions are estimated to be -6.9±6.1°C and -14.5±5.7°C, respectively. The duration of low-level clouds, showing relatively high DLW and high surface temperature, is about 2.5 days. This suggests that DLW induced by low-level clouds may not have a critical effect on surface temperature rising and sea ice melting.

  19. A framework for global diurnally-resolved observations of Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Remedios, J.; Pinnock, S.

    2013-12-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Being a key boundary condition in land surface models, which determine the surface to atmosphere fluxes of heat, water and carbon; thus influencing cloud cover, precipitation and atmospheric chemistry predictions within Global models, the requirement for global diurnal observations of LST is well founded. Earth Observation satellites offer an opportunity to obtain global coverage of LST, with the appropriate exploitation of data from multiple instruments providing a capacity to resolve the diurnal cycle on a global scale. Here we present a framework for the production of global, diurnally resolved, data sets for LST which is a key request from users of LST data. We will show how the sampling of both geostationary and low earth orbit data sets could conceptually be employed to build combined, multi-sensor, pole-to-pole data sets. Although global averages already exist for individual instruments and merging of geostationary based LST is already being addressed operationally (Freitas, et al., 2013), there are still a number of important challenges to overcome. In this presentation, we will consider three of the issues still open in LST remote sensing: 1) the consistency amongst retrievals; 2) the clear-sky bias and its quantification; and 3) merging methods and the propagation of uncertainties. For example, the combined use of both geostationary earth orbit (GEO) and low earth orbit (LEO) data, and both infra-red and microwave data are relatively unexplored but are necessary to make the most progress. Hence this study will suggest what is state-of-the-art and how considerable advances can be made, accounting also for recent improvements in techniques and data quality. The GlobTemperature initiative under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013

  20. Surface topography estimated by inversion of satellite gravity gradiometry observations

    NASA Astrophysics Data System (ADS)

    Ramillien, Guillaume

    2015-04-01

    An integration of mass elements is presented for evaluating the six components of the 2-order gravity tensor (i.e., second derivatives of the Newtonian mass integral for the gravitational potential) created by an uneven sphere topography consisting of juxtaposed vertical prisms. The method is based on Legendre polynomial series with the originality of taking elastic compensation of the topography by the Earth's surface into account. The speed of computation of the polynomial series increases logically with the observing altitude from the source of anomaly. Such a forward modelling can be easily used for reduction of observed gravity gradient anomalies by the effects of any spherical interface of density. Moreover, an iterative least-square inversion of the observed gravity tensor values Γαβ is proposed to estimate a regional set of topographic heights. Several tests of recovery have been made by considering simulated gradiometry anomaly data, and for varying satellite altitudes and a priori levels of accuracy. In the case of GOCE-type gradiometry anomalies measured at an altitude of ~300 km, the search converges down to a stable and smooth topography after 20-30 iterations while the final r.m.s. error is ~100 m. The possibility of cumulating satellite information from different orbit geometries is also examined for improving the prediction.

  1. Diurnal Variations of Titan's Surface Temperatures From Cassini -CIRS Observations

    NASA Astrophysics Data System (ADS)

    Cottini, Valeria; Nixon, Conor; Jennings, Don; Anderson, Carrie; Samuelson, Robert; Irwin, Patrick; Flasar, F. Michael

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 m (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the in-strument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature pro-file by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). The application of our methodology over wide areas has increased the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. In particular we had the chance to look for diurnal variations in surface temperature around the equator: a trend with slowly increasing temperature toward the late afternoon reveals that diurnal temperature changes are present on Titan surface. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp

  2. Comparison of land-surface humidity between observations and CMIP5 models

    NASA Astrophysics Data System (ADS)

    Dunn, Robert; Willett, Kate; Ciavarella, Andrew; Stott, Peter; Jones, Gareth

    2017-04-01

    We compare the latest observational land-surface humidity dataset, HadISDH, with the CMIP5 model archive spatially and temporally over the period 1973-2015. None of the CMIP5 models or experiments capture the observed temporal behaviour of the globally averaged relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea-surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed and historical model climatologies show that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends are relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the Tropics, and very little at high atitudes. The observed temporal behaviour appears to be a robust climate feature rather than observational error. It has been previously documented and is theoretically consistent with faster warming rates over land compared to oceans. Thus, the poor replication in the models, especially in the atmosphere only model, leads to questions over future projections of impacts related to changes in surface relative humidity.

  3. Intense deformation field at oceanic front inferred from directional sea surface roughness observations

    NASA Astrophysics Data System (ADS)

    Rascle, Nicolas; Molemaker, Jeroen; Marié, Louis; Nouguier, Frédéric; Chapron, Bertrand; Lund, Björn; Mouche, Alexis

    2017-06-01

    Fine-scale current gradients at the ocean surface can be observed by sea surface roughness. More specifically, directional surface roughness anomalies are related to the different horizontal current gradient components. This paper reports results from a dedicated experiment during the Lagrangian Submesoscale Experiment (LASER) drifter deployment. A very sharp front, 50 m wide, is detected simultaneously in drifter trajectories, sea surface temperature, and sea surface roughness. A new observational method is applied, using Sun glitter reflections during multiple airplane passes to reconstruct the multiangle roughness anomaly. This multiangle anomaly is consistent with wave-current interactions over a front, including both cross-front convergence and along-front shear with cyclonic vorticity. Qualitatively, results agree with drifters and X-band radar observations. Quantitatively, the sharpness of roughness anomaly suggests intense current gradients, 0.3 m s-1 over the 50 m wide front. This work opens new perspectives for monitoring intense oceanic fronts using drones or satellite constellations.

  4. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving

  5. Soil moisture sensing with aircraft observations of the diurnal range of surface temperature

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Blanchard, B.; Anderson, A.; Wang, V.

    1977-01-01

    Aircraft observations of the surface temperature were made by measurements of the thermal emission in the 8-14 micrometers band over agricultural fields around Phoenix, Arizona. The diurnal range of these surface temperature measurements were well correlated with the ground measurement of soil moisture in the 0-2 cm layer. The surface temperature observations for vegetated fields were found to be within 1 or 2 C of the ambient air temperature indicating no moisture stress. These results indicate that for clear atmospheric conditions remotely sensed surface temperatures are a reliable indicator of soil moisture conditions and crop status.

  6. Direct observation of a surface resonance state and surface band inversion control in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ehlen, N.; Sanna, A.; Senkovskiy, B. V.; Petaccia, L.; Fedorov, A. V.; Profeta, G.; Grüneis, A.

    2018-01-01

    We report a Cs-doping-induced band inversion and the direct observation of a surface resonance state with an elliptical Fermi surface in black phosphorus (BP) using angle-resolved photoemission spectroscopy. By selectively inducing a higher electron concentration (1.7 ×1014cm-2 ) in the topmost layer, the changes in the Coulomb potential are sufficiently large to cause surface band inversion between the parabolic valence band of BP and a parabolic surface state around the Γ point of the BP Brillouin zone. Tight-binding calculations reveal that band gap openings at the crossing points in the two high-symmetry directions of the Brillouin zone require out-of-plane hopping and breaking of the glide mirror symmetry. Ab initio calculations are in very good agreement with the experiment if a stacking fault on the BP surface is taken into account. The demonstrated level of control over the band structure suggests the potential application of few-layer phosphorene in topological field-effect transistors.

  7. Assimilation of gridded terrestrial water storage observations from GRACE into a land surface model

    NASA Astrophysics Data System (ADS)

    Girotto, Manuela; De Lannoy, Gabriëlle J. M.; Reichle, Rolf H.; Rodell, Matthew

    2016-05-01

    Observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have a coarse resolution in time (monthly) and space (roughly 150,000 km2 at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This work proposes a variant of existing ensemble-based GRACE-TWS data assimilation schemes. The new algorithm differs in how the analysis increments are computed and applied. Existing schemes correlate the uncertainty in the modeled monthly TWS estimates with errors in the soil moisture profile state variables at a single instant in the month and then apply the increment either at the end of the month or gradually throughout the month. The proposed new scheme first computes increments for each day of the month and then applies the average of those increments at the beginning of the month. The new scheme therefore better reflects submonthly variations in TWS errors. The new and existing schemes are investigated here using gridded GRACE-TWS observations. The assimilation results are validated at the monthly time scale, using in situ measurements of groundwater depth and soil moisture across the U.S. The new assimilation scheme yields improved (although not in a statistically significant sense) skill metrics for groundwater compared to the open-loop (no assimilation) simulations and compared to the existing assimilation schemes. A smaller impact is seen for surface and root-zone soil moisture, which have a shorter memory and receive smaller increments from TWS assimilation than groundwater. These results motivate future efforts to combine GRACE-TWS observations with observations that are more sensitive to surface soil moisture, such as L-band brightness temperature observations from Soil Moisture Ocean Salinity (SMOS) or Soil Moisture Active Passive

  8. Assimilation of Gridded Terrestrial Water Storage Observations from GRACE into a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela; De Lannoy, Gabrielle J. M.; Reichle, Rolf H.; Rodell, Matthew

    2016-01-01

    Observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have a coarse resolution in time (monthly) and space (roughly 150,000 km(sup 2) at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This work proposes a variant of existing ensemble-based GRACE-TWS data assimilation schemes. The new algorithm differs in how the analysis increments are computed and applied. Existing schemes correlate the uncertainty in the modeled monthly TWS estimates with errors in the soil moisture profile state variables at a single instant in the month and then apply the increment either at the end of the month or gradually throughout the month. The proposed new scheme first computes increments for each day of the month and then applies the average of those increments at the beginning of the month. The new scheme therefore better reflects submonthly variations in TWS errors. The new and existing schemes are investigated here using gridded GRACE-TWS observations. The assimilation results are validated at the monthly time scale, using in situ measurements of groundwater depth and soil moisture across the U.S. The new assimilation scheme yields improved (although not in a statistically significant sense) skill metrics for groundwater compared to the open-loop (no assimilation) simulations and compared to the existing assimilation schemes. A smaller impact is seen for surface and root-zone soil moisture, which have a shorter memory and receive smaller increments from TWS assimilation than groundwater. These results motivate future efforts to combine GRACE-TWS observations with observations that are more sensitive to surface soil moisture, such as L-band brightness temperature observations from Soil Moisture Ocean Salinity (SMOS) or Soil Moisture Active

  9. The 26 May 2006 Yogyakarta earthquake fault observed by seismic data and satellite data based surface features

    NASA Astrophysics Data System (ADS)

    Anggraini, Ade; Sobiesiak, Monika; Walter, Thomas R.

    2010-05-01

    The Mw 6.3 May 26, 2006 Yogyakarta Earthquake caused severe damage and claimed thousands lives in the Yogyakarta Special Province and Klaten District of Central Java Province. The nearby Opak River fault was thought to be the source of this earthquake disaster. However, no significant surface movement was observed along the fault which could confirm that this fault was really the source of the earthquake. To investigate the earthquake source and to understand the earthquake mechanism, a rapid response team of the German Task Force for Earthquake, together with the Seismological Division of Badan Meteorologi Klimatologi dan Geofisika and Gadjah Mada University in Yogyakarta, had installed a temporary seismic network of 12 short period seismometers. More than 3000 aftershocks were recorded during the 3-month campaign. Here we present the result of several hundred processed aftershocks. We used integrated software package GIANTPitsa to pick P and S phases manually and HYPO71 to determine the hypocenters. HypoDD software was used for hypocenters relocation to obtain high precision aftershock locations. Our aftershock distribution shows a system of lineaments in southwest-northeast direction, about 10 km east to Opak River fault, at 5-18 km depth. The b-value map from the aftershocks shows that the main lineaments have relatively low b-value at the middle part which suggests this part is still under stress. We also observe several aftershock clusters cutting these lineaments in nearly perpendicular direction. To verify the interpretation of our aftershocks analysis, we will overlay it on surface feature we delineate from satellite data. Hopefully our result will give significant contribution to understand the near surface fault systems around Yogyakarta Area in order to mitigate similar earthquake hazard in the future.

  10. History of surface weather observations in the United States

    NASA Astrophysics Data System (ADS)

    Fiebrich, Christopher A.

    2009-04-01

    In this paper, the history of surface weather observations in the United States is reviewed. Local weather observations were first documented in the 17th Century along the East Coast. For many years, the progression of a weather observation from an initial reading to dissemination remained a slow and laborious process. The number of observers remained small and unorganized until agencies including the Surgeon General, Army, and General Land Office began to request regular observations at satellite locations in the 1800s. The Smithsonian was responsible for first organizing a large "network" of volunteer weather observers across the nation. These observers became the foundation for today's Cooperative Observer network. As applications of weather data continued to grow and users required the data with an ever-decreasing latency, automated weather networks saw rapid growth in the later part of the 20th century. Today, the number of weather observations across the U.S. totals in the tens of thousands due largely to privately-owned weather networks and amateur weather observers who submit observations over the internet.

  11. On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: an assessment using satellite-based observations

    NASA Astrophysics Data System (ADS)

    Alexandri, G.; Georgoulias, A. K.; Zanis, P.; Katragkou, E.; Tsikerdekis, A.; Kourtidis, K.; Meleti, C.

    2015-07-01

    In this work, we assess the ability of RegCM4 regional climate model to simulate surface solar radiation (SSR) patterns over Europe. A decadal RegCM4 run (2000-2009) was implemented and evaluated against satellite-based observations from the Satellite Application Facility on Climate Monitoring (CM SAF) showing that the model simulates adequately the SSR patterns over the region. The bias between RegCM4 and CM SAF is +1.54 % for MFG (Meteosat First Generation) and +3.34 % for MSG (Meteosat Second Generation) observations. The relative contribution of parameters that determine the transmission of solar radiation within the atmosphere to the deviation appearing between RegCM4 and CM SAF SSR is also examined. Cloud macrophysical and microphysical properties such as cloud fractional cover (CFC), cloud optical thickness (COT) and cloud effective radius (Re) from RegCM4 are evaluated against data from CM SAF. The same procedure is repeated for aerosol optical properties such as aerosol optical depth (AOD), asymmetry factor (ASY) and single scattering albedo (SSA), as well as other parameters including surface broadband albedo (ALB) and water vapor amount (WV) using data from MACv1 aerosol climatology, from CERES satellite sensors and from ERA-Interim reanalysis. It is shown here that the good agreement between RegCM4 and satellite-based SSR observations can be partially attributed to counteracting effects among the above mentioned parameters. The contribution of each parameter to the RegCM4-CM SAF SSR deviations is estimated with the combined use of the aforementioned data and a radiative transfer model (SBDART). CFC, COT and AOD are the major determinants of these deviations; however, the other parameters also play an important role for specific regions and seasons.

  12. An Ab Initio Based Potential Energy Surface for Water

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  13. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    NASA Astrophysics Data System (ADS)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  14. Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model

    NASA Astrophysics Data System (ADS)

    Shellito, Peter J.; Small, Eric E.; Livneh, Ben

    2018-03-01

    Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.

  15. Summary of Meteorological Observations, Surface (SMOS), Kingsville, Texas.

    DTIC Science & Technology

    1984-09-01

    of surface C weather observation. The six parts are: Part A - Wather Conditions/ Atmospheric Phenn. Part S1 - Preci pitatien/Spofal 1/Snow, Depth... WATHER SERVICE SU2VACl WINDS AMMOIC MMD86AW MPW OFU ~AHOY hUam~W _______________ 41±low kI&K GO!PtO I2 Ci I~. I~JT2. C,. 2.& . W 1. -S . S 64~ E - S

  16. Evaluation on newly developed high resolution of surface solar radiation from MTSAT observations for the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Niu, X.; Yang, K.; Tang, W.; Qin, J.

    2015-12-01

    Neither surface measurement nor existing remote sensing products of the Surface Solar Radiation (SSR) can meet the application requirements of hydrological and land process modeling in the Tibetan Plateau (TP). High resolution (hourly; 0.1⁰) of SSR estimates have been derived recently from the geostationary satellite observations - the Multi-functional Transport Satellite (MTSAT). This SSR estimation is based on updating an existing physical model, the UMD-SRB (University of Maryland Surface Radiation Budget) which is the basis of the well-known GEWEX-SRB model. In the updated framework introduced is the high-resolution Global Land Surface Broadband Albedo Product (GLASS) with spatial continuity. The developed SSR estimates are demonstrated at different temporal resolutions over the TP and are evaluated against ground observations and other satellite products from: (1) China Meteorological Administration (CMA) radiation stations in TP; (2) three TP radiation stations contributed from the Institute of Tibetan Plateau Research; (3) and the universal used satellite products (i.e. ISCCP-FD, GEWEX-SRB) in relatively low spatial resolution (0.5º-2.5º) and temporal resolution (3-hourly, daily, or monthly).

  17. Estimating daily time series of streamflow using hydrological model calibrated based on satellite observations of river water surface width: Toward real world applications.

    PubMed

    Sun, Wenchao; Ishidaira, Hiroshi; Bastola, Satish; Yu, Jingshan

    2015-05-01

    Lacking observation data for calibration constrains applications of hydrological models to estimate daily time series of streamflow. Recent improvements in remote sensing enable detection of river water-surface width from satellite observations, making possible the tracking of streamflow from space. In this study, a method calibrating hydrological models using river width derived from remote sensing is demonstrated through application to the ungauged Irrawaddy Basin in Myanmar. Generalized likelihood uncertainty estimation (GLUE) is selected as a tool for automatic calibration and uncertainty analysis. Of 50,000 randomly generated parameter sets, 997 are identified as behavioral, based on comparing model simulation with satellite observations. The uncertainty band of streamflow simulation can span most of 10-year average monthly observed streamflow for moderate and high flow conditions. Nash-Sutcliffe efficiency is 95.7% for the simulated streamflow at the 50% quantile. These results indicate that application to the target basin is generally successful. Beyond evaluating the method in a basin lacking streamflow data, difficulties and possible solutions for applications in the real world are addressed to promote future use of the proposed method in more ungauged basins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Quantifying Spatial and Seasonal Variability in Atmospheric Ammonia with In Situ and Space-Based Observations

    NASA Technical Reports Server (NTRS)

    Pinder, Robert W.; Walker, John T.; Bash, Jesse O.; Cady-Pereira, Karen E.; Henze, Daven K.; Luo, Mingzhao; Osterman, Gregory B.; Shepard, Mark W.

    2011-01-01

    Ammonia plays an important role in many biogeochemical processes, yet atmospheric mixing ratios are not well known. Recently, methods have been developed for retrieving NH3 from space-based observations, but they have not been compared to in situ measurements. We have conducted a field campaign combining co-located surface measurements and satellite special observations from the Tropospheric Emission Spectrometer (TES). Our study includes 25 surface monitoring sites spanning 350 km across eastern North Carolina, a region with large seasonal and spatial variability in NH3. From the TES spectra, we retrieve a NH3 representative volume mixing ratio (RVMR), and we restrict our analysis to times when the region of the atmosphere observed by TES is representative of the surface measurement. We find that the TES NH3 RVMR qualitatively captures the seasonal and spatial variability found in eastern North Carolina. Both surface measurements and TES NH3 show a strong correspondence with the number of livestock facilities within 10 km of the observation. Furthermore, we find that TES H3 RVMR captures the month-to-month variability present in the surface observations. The high correspondence with in situ measurements and vast spatial coverage make TES NH3 RVMR a valuable tool for understanding regional and global NH3 fluxes.

  19. High-resolution CO2 and CH4 flux inverse modeling combining GOSAT, OCO-2 and ground-based observations

    NASA Astrophysics Data System (ADS)

    Maksyutov, S. S.; Oda, T.; Saito, M.; Ito, A.; Janardanan Achari, R.; Sasakawa, M.; Machida, T.; Kaiser, J. W.; Belikov, D.; Valsala, V.; O'Dell, C.; Yoshida, Y.; Matsunaga, T.

    2017-12-01

    We develop a high-resolution CO2 and CH4 flux inversion system that is based on the Lagrangian-Eulerian coupled tracer transport model, and is designed to estimate surface fluxes from atmospheric CO2 and CH4 data observed by the GOSAT and OCO-2 satellites and by global in-situ networks, including observation in Siberia. We use the Lagrangian particle dispersion model (LPDM) FLEXPART to estimate the surface flux footprints for each observation at 0.1-degree spatial resolution for three days of transport. The LPDM is coupled to a global atmospheric tracer transport model (NIES-TM). The adjoint of the coupled transport model is used in an iterative optimization procedure based on either quasi-Newtonian algorithm or singular value decomposition. Combining surface and satellite data for use in inversion requires correcting for biases present in satellite observation data, that is done in a two-step procedure. As a first step, bi-weekly corrections to prior flux fields are estimated for the period of 2009 to 2015 from in-situ CO2 and CH4 data from global observation network, included in Obspack-GVP (for CO2), WDCGG (CH4) and JR-STATION datasets. High-resolution prior fluxes were prepared for anthropogenic emissions (ODIAC and EDGAR), biomass burning (GFAS), and the terrestrial biosphere. The terrestrial biosphere flux was constructed using a vegetation mosaic map and separate simulations of CO2 fluxes by the VISIT model for each vegetation type present in a grid. The prior flux uncertainty for land is scaled proportionally to monthly mean GPP by the MODIS product for CO2 and EDGAR emissions for CH4. Use of the high-resolution transport leads to improved representation of the anthropogenic plumes, often observed at continental continuous observation sites. OCO-2 observations are aggregated to 1 second averages, to match the 0.1 degree resolution of the transport model. Before including satellite observations in the inversion, the monthly varying latitude-dependent bias is

  20. Modelling of XCO₂ Surfaces Based on Flight Tests of TanSat Instruments.

    PubMed

    Zhang, Li Li; Yue, Tian Xiang; Wilson, John P; Wang, Ding Yi; Zhao, Na; Liu, Yu; Liu, Dong Dong; Du, Zheng Ping; Wang, Yi Fu; Lin, Chao; Zheng, Yu Quan; Guo, Jian Hong

    2016-11-01

    The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km² and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO₂) surface based on flight test data which measured the near- and short-wave infrared (NIR) reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO₂ in the flight area using the limited flight test data and the approximate surface of XCO₂, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM) platform to fill the gaps where there is no information on XCO₂ in the flight test area, which takes the approximate surface of XCO₂ as its driving field and the XCO₂ observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO₂ were constructed with HASM based on the flight's observations. The results showed that the mean XCO₂ in the flight test area is about 400 ppm and that XCO₂ over urban areas is much higher than in other places. Compared with OCO-2's XCO₂, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO₂ surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  1. Evaluating Surface Radiation Fluxes Observed From Satellites in the Southeastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Pinker, R. T.; Zhang, B.; Weller, R. A.; Chen, W.

    2018-03-01

    This study is focused on evaluation of current satellite and reanalysis estimates of surface radiative fluxes in a climatically important region. It uses unique observations from the STRATUS Ocean Reference Station buoy in a region of persistent marine stratus clouds 1,500 km off northern Chile during 2000-2012. The study shows that current satellite estimates are in better agreement with buoy observations than model outputs at a daily time scale and that satellite data depict well the observed annual cycle in both shortwave and longwave surface radiative fluxes. Also, buoy and satellite estimates do not show any significant trend over the period of overlap or any interannual variability. This verifies the stability and reliability of the satellite data and should make them useful to examine El Niño-Southern Oscillation variability influences on surface radiative fluxes at the STRATUS site for longer periods for which satellite record is available.

  2. Estimation and correction of different flavors of surface observation biases in ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Lorente-Plazas, Raquel; Hacker, Josua P.; Collins, Nancy; Lee, Jared A.

    2017-04-01

    The impact of assimilating surface observations has been shown in several publications, for improving weather prediction inside of the boundary layer as well as the flow aloft. However, the assimilation of surface observations is often far from optimal due to the presence of both model and observation biases. The sources of these biases can be diverse: an instrumental offset, errors associated to the comparison of point-based observations and grid-cell average, etc. To overcome this challenge, a method was developed using the ensemble Kalman filter. The approach consists on representing each observation bias as a parameter. These bias parameters are added to the forward operator and they extend the state vector. As opposed to the observation bias estimation approaches most common in operational systems (e.g. for satellite radiances), the state vector and parameters are simultaneously updated by applying the Kalman filter equations to the augmented state. The method to estimate and correct the observation bias is evaluated using observing system simulation experiments (OSSEs) with the Weather Research and Forecasting (WRF) model. OSSEs are constructed for the conventional observation network including radiosondes, aircraft observations, atmospheric motion vectors, and surface observations. Three different kinds of biases are added to 2-meter temperature for synthetic METARs. From the simplest to more sophisticated, imposed biases are: (1) a spatially invariant bias, (2) a spatially varying bias proportional to topographic height differences between the model and the observations, and (3) bias that is proportional to the temperature. The target region characterized by complex terrain is the western U.S. on a domain with 30-km grid spacing. Observations are assimilated every 3 hours using an 80-member ensemble during September 2012. Results demonstrate that the approach is able to estimate and correct the bias when it is spatially invariant (experiment 1). More

  3. Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Kumar, Sujay V.; Mahanama, P. P.; Koster, Randal D.; Liu, Q.

    2010-01-01

    Land surface (or "skin") temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. Here we assimilate LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) into the Noah and Catchment (CLSM) land surface models using an ensemble-based, off-line land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LST typically exhibit different mean values and variability. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation ("open loop") are comparable to each other and superior to that of ISCCP retrievals. For LST, RMSE values are 4.9 K (CLSM), 5.6 K (Noah), and 7.6 K (ISCCP), and anomaly correlation coefficients (R) are 0.62 (CLSM), 0.61 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over open loop) of up to 0.7 K in RMSE and 0.05 in anomaly R. The skill of surface turbulent flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models.

  4. Surface Observation Climatic Summaries for Myrtle Beach AFB, South Carolina.

    DTIC Science & Technology

    1992-02-01

    UNLIMITED DISTRIBUTION OF THIS DOCUMENT TO THE PUBLIC AT LARGE, OR BY THE DEFENSE TECHNICAL INMFOM ON CENTER (DTIC) TO THE fiATICVAL TECHNICAL INFOAm9... THE oNANDER Distribution I Availability Codes SCITEN A. - .4MDist Avail andIor SCMTECHNICAL I Dt Special 2 8 S ;E 1992 d.I USA MTAC/D8--92/269 - Page...PRODUCT REPLACED TWO USAFETAC DOCUMENTS FORMERLY NNONN AS THE REVISED UNIFORM SUM=RY OF SURFACE OBSERVATIONS (RUSSTO) AND THE LIMITED SURFACE

  5. Degree of Ice Particle Surface Roughness Inferred from Polarimetric Observations

    NASA Technical Reports Server (NTRS)

    Hioki, Souichiro; Yang, Ping; Baum, Bryan A.; Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Riedi, Jerome

    2016-01-01

    The degree of surface roughness of ice particles within thick, cold ice clouds is inferred from multidirectional, multi-spectral satellite polarimetric observations over oceans, assuming a column-aggregate particle habit. An improved roughness inference scheme is employed that provides a more noise-resilient roughness estimate than the conventional best-fit approach. The improvements include the introduction of a quantitative roughness parameter based on empirical orthogonal function analysis and proper treatment of polarization due to atmospheric scattering above clouds. A global 1-month data sample supports the use of a severely roughened ice habit to simulate the polarized reflectivity associated with ice clouds over ocean. The density distribution of the roughness parameter inferred from the global 1- month data sample and further analyses of a few case studies demonstrate the significant variability of ice cloud single-scattering properties. However, the present theoretical results do not agree with observations in the tropics. In the extra-tropics, the roughness parameter is inferred but 74% of the sample is out of the expected parameter range. Potential improvements are discussed to enhance the depiction of the natural variability on a global scale.

  6. Validation of NH3 satellite observations by ground-based FTIR measurements

    NASA Astrophysics Data System (ADS)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  7. Towards High Spa-Temporal Resolution Estimates of Surface Radiative Fluxes from Geostationary Satellite Observations for the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Niu, X.; Yang, K.; Tang, W.; Qin, J.

    2014-12-01

    Surface Solar Radiation (SSR) plays an important role of the hydrological and land process modeling, which particularly contributes more than 90% to the total melt energy for the Tibetan Plateau (TP) ice melting. Neither surface measurement nor existing remote sensing products can meet that requirement in TP. The well-known satellite products (i.e. ISCCP-FD and GEWEX-SRB) are in relatively low spatial resolution (0.5º-2.5º) and temporal resolution (3-hourly, daily, or monthly). The objective of this study is to develop capabilities to improved estimates of SSR in TP based on geostationary satellite observations from the Multi-functional Transport Satellite (MTSAT) with high spatial (0.05º) and temporal (hourly) resolution. An existing physical model, the UMD-SRB (University of Maryland Surface Radiation Budget) which is the basis of the GEWEX-SRB model, is re-visited to improve SSR estimates in TP. The UMD-SRB algorithm transforms TOA radiances into broadband albedos in order to infer atmospheric transmissivity which finally determines the SSR. Specifically, main updates introduced in this study are: implementation at 0.05º spatial resolution at hourly intervals integrated to daily and monthly time scales; and improvement of surface albedo model by introducing the most recently developed Global Land Surface Broadband Albedo Product (GLASS) based on MODIS data. This updated inference scheme will be evaluated against ground observations from China Meteorological Administration (CMA) radiation stations and three TP radiation stations contributed from the Institute of Tibetan Plateau Research.

  8. Decadal variability of surface incident solar radiation over China: Observations, satellite retrievals, and reanalyses

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun; Ma, Qian; Li, Zhijun; Wang, Jiankai

    2015-07-01

    Existing studies have shown that observed surface incident solar radiation (Rs) over China may have important inhomogeneity issues. This study provides metadata and reference data to homogenize observed Rs, from which the decadal variability of Rs over China can be accurately derived. From 1958 to 1990, diffuse solar radiation (Rsdif) and direct solar radiation (Rsdir) were measured separately, and Rs was calculated as their sum. The pyranometers used to measure Rsdif had a strong sensitivity drift problem, which introduced a spurious decreasing trend into the observed Rsdif and Rs data, whereas the observed Rsdir did not suffer from this sensitivity drift problem. From 1990 to 1993, instruments and measurement methods were replaced and measuring stations were restructured in China, which introduced an abrupt increase in the observed Rs. Intercomparisons between observation-based and model-based Rs performed in this research show that sunshine duration (SunDu)-derived Rs is of high quality and can be used as reference data to homogenize observed Rs data. The homogenized and adjusted data of observed Rs combines the advantages of observed Rs in quantifying hourly to monthly variability and SunDu-derived Rs in depicting decadal variability and trend. Rs averaged over 105 stations in China decreased at -2.9 W m-2 per decade from 1961 to 1990 and remained stable afterward. This decadal variability is confirmed by the observed Rsdir and diurnal temperature ranges, and can be reproduced by high-quality Earth System Models. However, neither satellite retrievals nor reanalyses can accurately reproduce such decadal variability over China.

  9. Cluster observations of Shear-mode surface waves diverging from Geomagnetic Tail reconnection

    NASA Astrophysics Data System (ADS)

    Dai, L.; Wygant, J. R.; Dombeck, J. P.; Cattell, C. A.; Thaller, S. A.; Mouikis, C.; Balogh, A.; Reme, H.

    2010-12-01

    We present the first Cluster spacecraft study of the intense (δB/B~0.5, δE/VAB~0.5) equatorial plane surface waves diverging from magnetic reconnection in the geomagnetic tail at ~17 Re. Using phase lag analysis with multi-spacecraft measurements, we quantitatively determine the wavelength and phase velocity of the waves with spacecraft frame frequencies from 0.03 Hz to 1 Hz and wavelengths from much larger (4Re) than to comparable to the H+ gyroradius (~300km). The phase velocities track the strong variations in the equatorial plane projection of the reconnection outflow velocity perpendicular to the magnetic field. The propagation direction and wavelength of the observed surface waves resemble those of flapping waves of the magnetotail current sheet, suggesting a same origin shared by both of these waves. The observed waves appear ubiquitous in the outflows near magnetotail reconnection. Evidence is found that the observed waves are associated with velocity shear in reconnection outflows. Analysis shows that observed waves are associated with strong field-aligned Alfvenic Poynting flux directed away from the reconnection region toward Earth. These observations present a scenario in which the observed surface waves are driven and convected through a velocity-shear type instability by high-speed (~1000km) reconnection outflows tending to slow down due to power dissipation through Poynting flux. The mapped Poynting flux (100ergs/cm2s) and longitudinal scales (10-100 km) to 100km altitude suggest that the observed waves and their motions are an important boundary condition for night-side aurora. Figure: a) The BX-GSM in the geomagnetic tail current sheet. b) The phase difference wavelet spectrum between Bz_GSM from SC2 and SC3, used to determine the wave phase velocity, is correlated with the reconnection outflow velocity (represented by H+ VX-GSM) c) The spacecraft trajectory through magnetotail reconnection. d) The observed equatorial plane surface wave

  10. Texture- and deformability-based surface recognition by tactile image analysis.

    PubMed

    Khasnobish, Anwesha; Pal, Monalisa; Tibarewala, D N; Konar, Amit; Pal, Kunal

    2016-08-01

    Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material

  11. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    NASA Astrophysics Data System (ADS)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  12. Global Albedo Variations on Mars from Recent MRO/MARCI and Other Space-Based Observations

    NASA Astrophysics Data System (ADS)

    Bell, J. F., III; Wellington, D. F.

    2017-12-01

    Dramatic changes in Mars surface albedo have been quantified by telescopic, orbital, and surface-based observations over the last 40 years. These changes provide important inputs for global and mesoscale climate models, enabling characterization of seasonal and secular variations in the distribution of mobile surface materials (dust, sand) in the planet's current climate regime. Much of the modern record of dust storms and albedo changes comes from synoptic-scale global imaging from the Viking Orbiter, Mars Global Surveyor (MGS), Hubble Space Telescope (HST), and Mars Reconnaissance Orbiter (MRO) missions, as well as local-scale observations from long-lived surface platforms like the Spirit and Opportunity rovers. Here we focus on the substantial time history of global-scale images acquired from the MRO Mars Color Imager (MARCI). MARCI is a wide-angle multispectral imager that acquires daily coverage of most of the surface at up to 1 km/pixel. MARCI has been in orbit since 2006, providing six Mars years of continuous surface and atmospheric observations, and building on the nearly five previous Mars years of global-scale imaging from the MGS Mars Orbiter Camera Wide Angle (MOC/WA) imager, which operated from 1997 to 2006. While many of the most significant MARCI-observed changes in the surface albedo are the result of large dust storms, other regions experience seasonal darkening events that repeat with different degrees of annual regularity. Some of these are associated with local dust storms, while for others, frequent surface changes take place with no associated evidence for dust storms, suggesting action by seasonally-variable winds and/or small-scale storms/dust devils too small to resolve. Discrete areas of dramatic surface changes across widely separated regions of Tharsis and in portions of Solis Lacus and Syrtis Major are among the regions where surface changes have been observed without a direct association to specific detectable dust storm events

  13. Observation of surface dark photovoltaic solitons.

    PubMed

    Yang, Xi; Chen, Weiqiang; Yao, Peng; Zhang, Tianhao; Tian, Jianguo; Xu, Jingjun

    2013-02-25

    Surface dark solitons in photovoltaic nonlinear media are reported. Taking advantage of diffusion and photovoltaic nonlinearities we demonstrated the surface dark solitons and their behaviors near surface theoretically and experimentally in LiNbO₃ crystal. It is very interesting that surface dark soliton is just half of dark soliton in bulk. Another interesting thing is that transverse modulation instability can be perfectly suppressed by surface dark soliton in virtue of surface. In addition, surface waveguides were written successfully utilizing surface dark soliton.

  14. Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model

    NASA Technical Reports Server (NTRS)

    Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; hide

    2012-01-01

    In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.

  15. Sensitivity of surface meteorological analyses to observation networks

    NASA Astrophysics Data System (ADS)

    Tyndall, Daniel Paul

    A computationally efficient variational analysis system for two-dimensional meteorological fields is developed and described. This analysis approach is most efficient when the number of analysis grid points is much larger than the number of available observations, such as for large domain mesoscale analyses. The analysis system is developed using MATLAB software and can take advantage of multiple processors or processor cores. A version of the analysis system has been exported as a platform independent application (i.e., can be run on Windows, Linux, or Macintosh OS X desktop computers without a MATLAB license) with input/output operations handled by commonly available internet software combined with data archives at the University of Utah. The impact of observation networks on the meteorological analyses is assessed by utilizing a percentile ranking of individual observation sensitivity and impact, which is computed by using the adjoint of the variational surface assimilation system. This methodology is demonstrated using a case study of the analysis from 1400 UTC 27 October 2010 over the entire contiguous United States domain. The sensitivity of this approach to the dependence of the background error covariance on observation density is examined. Observation sensitivity and impact provide insight on the influence of observations from heterogeneous observing networks as well as serve as objective metrics for quality control procedures that may help to identify stations with significant siting, reporting, or representativeness issues.

  16. Data base on physical observations of near-Earth asteroids and establishment of a network to coordinate observations of newly discovered near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Chapman, C. R.; Campins, H.

    1990-01-01

    This program consists of two tasks: (1) development of a data base of physical observations of near-earth asteroids and establishment of a network to coordinate observations of newly discovered earth-approaching asteroids; and (2) a simulation of the surface of low-activity comets. Significant progress was made on task one and, and task two was completed during the period covered by this progress report.

  17. Modelling Ground Based X- and Ku-Band Observations of Tundra Snow

    NASA Astrophysics Data System (ADS)

    Kasurak, A.; King, J. M.; Kelly, R. E.

    2012-12-01

    As part of a radar-based remote sensing field experiment in Churchill, Manitoba ground based Ku- and X-band scatterometers were deployed to observe changing tundra snowpack conditions from November 2010 to March 2011. The research is part of the validation effort for the Cold Regions Hydrology High-resolution Observatory (CoReH2O) mission, a candidate in the European Space Agency's Earth Explorer program. This paper focuses on the local validation of the semi-empirical radiative transfer (sRT) model proposed for use in snow property retrievals as part of the CoReH2O mission. In this validation experiment, sRT was executed in the forward mode, simulating backscatter to assess the ability of the model. This is a necessary precursor to any inversion attempt. Two experiments are considered, both conducted in a hummocky tundra environment with shallow snow cover. In both cases, scatterometer observations were acquired over a field of view of approximately 10 by 20 meters. In the first experiment, radar observations were made of a snow field and then repeated after the snow had been removed. A ground-based scanning LiDAR system was used to characterize the spatial variability of snow depth through measurements of the snow and ground surface. Snow properties were determined in the field of view from two snow pits, 12 density core measurements, and Magnaprobe snow depth measurements. In the second experiment, a site was non-destructively observed from November through March, with snow properties measured out-of-scene, to characterize the snow evolution response. The model results from sRT fit the form of the observations from the two scatterometer field experiments but do not capture the backscatter magnitude. A constant offset for the season of 5 dB for X-band co- and cross-polarization response was required to match observations, in addition to a 3 dB X- and Ku-band co-polarization offset after the 6th of December. To explain these offsets, it is recognized that the two

  18. Observation of oscillatory relaxation in the Sn-terminated surface of epitaxial rock-salt SnSe { 111 } topological crystalline insulator

    NASA Astrophysics Data System (ADS)

    Jin, Wencan; Dadap, Jerry; Osgood, Richard; Vishwanath, Suresh; Lien, Huai-Hsun; Chaney, Alexander; Xing, Huili; Liu, Jianpeng; Kong, Lingyuan; Ma, Junzhang; Qian, Tian; Ding, Hong; Sadowski, Jerzy; Dai, Zhongwei; Pohl, Karsten; Lou, Rui; Wang, Shancai; Liu, Xinyu; Furdyna, Jacek

    Topological crystalline insulators have been recently observed in rock-salt SnSe { 111 } thin films. Previous studies have suggested that the Se-terminated surface of this thin film with hydrogen passivation is a preferred configuration. In this work, synchrotron-based angle-resolved photoemission spectroscopy, along with density functional theory calculations, are used to demonstrate conclusively that a rock-salt SnSe { 111 } thin film has a stable Sn-terminated surface. These observations are supported by low energy electron diffraction (LEED) intensity-voltage measurements and dynamical LEED calculations, which further show that the Sn-terminated SnSe { 111 } thin film has undergone an oscillatory surface structural relaxation. In sharp contrast to the Se-terminated counterpart, the Dirac surface state in the Sn-terminated SnSe { 111 } thin film yields a high Fermi velocity, 0 . 50 ×106 m/s, which may lead to high-speed electronic device applications. DOE No. DE-FG 02-04-ER-46157.

  19. Suzaku observations of low surface brightness cluster Abell 1631

    NASA Astrophysics Data System (ADS)

    Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori

    2018-04-01

    We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r < 0.1 r200) are found to be flatter and higher (≳400 keV cm2). The observed bolometric luminosity is approximately three times lower than that expected from the luminosity-temperature relation in previous studies of relaxed clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.

  20. Suzaku observations of low surface brightness cluster Abell 1631

    NASA Astrophysics Data System (ADS)

    Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori

    2018-06-01

    We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r < 0.1 r200) are found to be flatter and higher (≳400 keV cm2). The observed bolometric luminosity is approximately three times lower than that expected from the luminosity-temperature relation in previous studies of relaxed clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.

  1. Wave breaking induced surface wakes and jets observed during a bora event

    NASA Astrophysics Data System (ADS)

    Jiang, Qingfang; Doyle, James D.

    2005-09-01

    An observational and modeling study of a bora event that occurred during the field phase of the Mesoscale Alpine Programme is presented. Research aircraft in-situ measurements and airborne remote-sensing observations indicate the presence of strong low-level wave breaking and alternating surface wakes and jets along the Croatian coastline over the Adriatic Sea. The observed features are well captured by a high-resolution COAMPS simulation. Analysis of the observations and modeling results indicate that the long-extending wakes above the boundary layer are induced by dissipation associated with the low-level wave breaking, which locally tends to accelerate the boundary layer flow beneath the breaking. Farther downstream of the high peaks, a hydraulic jump occurs in the boundary layer, which creates surface wakes. Downstream of lower-terrain (passes), the boundary layer flow stays strong, resembling supercritical flow.

  2. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development

    NASA Astrophysics Data System (ADS)

    Ouma, Yashon O.

    2016-01-01

    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of ;Big Data; in Earth observation. Because of the ;Big Data; issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  3. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    PubMed

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  4. Observational estimation of radiative feedback to surface air temperature over Northern High Latitudes

    NASA Astrophysics Data System (ADS)

    Hwang, Jiwon; Choi, Yong-Sang; Kim, WonMoo; Su, Hui; Jiang, Jonathan H.

    2018-01-01

    The high-latitude climate system contains complicated, but largely veiled physical feedback processes. Climate predictions remain uncertain, especially for the Northern High Latitudes (NHL; north of 60°N), and observational constraint on climate modeling is vital. This study estimates local radiative feedbacks for NHL based on the CERES/Terra satellite observations during March 2000-November 2014. The local shortwave (SW) and longwave (LW) radiative feedback parameters are calculated from linear regression of radiative fluxes at the top of the atmosphere on surface air temperatures. These parameters are estimated by the de-seasonalization and 12-month moving average of the radiative fluxes over NHL. The estimated magnitudes of the SW and the LW radiative feedbacks in NHL are 1.88 ± 0.73 and 2.38 ± 0.59 W m-2 K-1, respectively. The parameters are further decomposed into individual feedback components associated with surface albedo, water vapor, lapse rate, and clouds, as a product of the change in climate variables from ERA-Interim reanalysis estimates and their pre-calculated radiative kernels. The results reveal the significant role of clouds in reducing the surface albedo feedback (1.13 ± 0.44 W m-2 K-1 in the cloud-free condition, and 0.49 ± 0.30 W m-2 K-1 in the all-sky condition), while the lapse rate feedback is predominant in LW radiation (1.33 ± 0.18 W m-2 K-1). However, a large portion of the local SW and LW radiative feedbacks were not simply explained by the sum of these individual feedbacks.

  5. Asian Dust Weather Categorization with Satellite and Surface Observations

    NASA Technical Reports Server (NTRS)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  6. In-situ tomographic observation of tissue surface during laser ablation

    NASA Astrophysics Data System (ADS)

    Haruna, Masamitsu; Konoshita, Ryuh; Ohmi, Masato; Kunizawa, Naomi; Miyachi, Mayumi

    2001-07-01

    In laser ablation of tissues, tomography of the tissue surface is necessary for measurement of the crater depth and observation of damage of the surrounding tissue. We demonstrate here OCT images of craters made by UV laser ablation of different tissues. The maximum depth of a crater is found among several OCT images, and then the ablation rate is determined. The conventional OCT of the spatial resolution of 15 μm was used in our experiment, but OCT of the resolution of the order of 1 μm is required because the ablation rate is usually a few microns per pulse. Such a high-resolution OCT is also demonstrated in this paper, where the light source is a halogen lamp. Combination of laser ablation and OCT will lead to in situ tomographic observation of tissue surface during laser ablation, which should allow us to develop new laser surgeries.

  7. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    NASA Technical Reports Server (NTRS)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  8. Osan AB, Korea. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1982-06-14

    USAFETAC SURFACE WINDS2 AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 1471220 OSAN AS KO 73-S1 FED...BRANCHusAF’TAC SURFACE WINDS AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 47122’ OSAN AS KO 73-81 NOV _RLL

  9. Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission

    DOE PAGES

    Kassianov, Evgueni; Barnard, James; Flynn, Connor; ...

    2017-07-12

    Tower-based data combined with high-resolution satellite products have been used to produce surface albedo at various spatial scales over land. Because tower-based albedo data are available at only a few sites, surface albedos using these combined data are spatially limited. Moreover, tower-based albedo data are not representative of highly heterogeneous regions. To produce areal-averaged and spectrally-resolved surface albedo for regions with various degrees of surface heterogeneity, we have developed a transmission-based retrieval and demonstrated its feasibility for relatively homogeneous land surfaces. Here we demonstrate its feasibility for a highly heterogeneous coastal region. We use the atmospheric transmission measured during amore » 19-month period (June 2009 – December 2010) by a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (0.415, 0.5, 0.615, 0.673 and 0.87 µm) at the Department of Energy’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) site located on Graciosa Island. We compare the MFRSR-retrieved areal-averaged surface albedo with albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations, and also a composite-based albedo. Lastly, we demonstrate that these three methods produce similar spectral signatures of surface albedo; however, the MFRSR-retrieved albedo, is higher on average (≤0.04) than the MODIS-based areal-averaged surface albedo and the largest difference occurs in winter.« less

  10. Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni; Barnard, James; Flynn, Connor

    Tower-based data combined with high-resolution satellite products have been used to produce surface albedo at various spatial scales over land. Because tower-based albedo data are available at only a few sites, surface albedos using these combined data are spatially limited. Moreover, tower-based albedo data are not representative of highly heterogeneous regions. To produce areal-averaged and spectrally-resolved surface albedo for regions with various degrees of surface heterogeneity, we have developed a transmission-based retrieval and demonstrated its feasibility for relatively homogeneous land surfaces. Here we demonstrate its feasibility for a highly heterogeneous coastal region. We use the atmospheric transmission measured during amore » 19-month period (June 2009 – December 2010) by a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (0.415, 0.5, 0.615, 0.673 and 0.87 µm) at the Department of Energy’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) site located on Graciosa Island. We compare the MFRSR-retrieved areal-averaged surface albedo with albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations, and also a composite-based albedo. Lastly, we demonstrate that these three methods produce similar spectral signatures of surface albedo; however, the MFRSR-retrieved albedo, is higher on average (≤0.04) than the MODIS-based areal-averaged surface albedo and the largest difference occurs in winter.« less

  11. Surface NO2 fields derived from joint use of OMI and GOME-2A observations with EMEP model output

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Svendby, Tove; Stebel, Kerstin

    2016-04-01

    Nitrogen dioxide (NO2) is one of the most prominent air pollutants. Emitted primarily by transport and industry, NO2 has a major impact on health and economy. In contrast to the very sparse network of air quality monitoring stations, satellite data of NO2 is ubiquitous and allows for quantifying the NO2 levels worldwide. However, one drawback of satellite-derived NO2 products is that they provide solely an estimate of the entire tropospheric column, whereas what is generally needed for air quality applications are the concentrations of NO2 near the surface. Here we derive surface NO2 concentration fields from OMI and GOME-2A tropospheric column products using the EMEP chemical transport model as auxiliary information. The model is used for providing information of the boundary layer contribution to the total tropospheric column. For preparation of deriving the surface product, a comprehensive model-based analysis of the spatial and temporal patterns of the NO2 surface-to-column ratio in Europe was carried out for the year 2011. The results from this analysis indicate that the spatial patterns of the surface-to-column ratio vary only slightly. While the highest ratio values can be found in some shipping lanes, the spatial variability of the ratio in some of the most polluted areas of Europe is not very high. Some but not all urban agglomeration shows high ratio values. Focusing on the temporal behavior, the analysis showed that the European-wide average ratio varies throughout the year. The surface-to-column ratio increases from January all the way through April when it reaches its maximum, then decreases relatively rapidly to average levels and then stays mostly constant throughout the summer. The minimum ratio is observed in December. The knowledge gained from analyzing the spatial and temporal patterns of the surface-to-column ratio was then used to produce surface NO2 products from the daily NO2 data for OMI and GOME-2A. This was carried out using two methods

  12. Numerical and Observational Investigations of Long-Lived Mcs-Induced Severe Surface Wind Events: the Derecho

    NASA Astrophysics Data System (ADS)

    Schmidt, Jerome Michael

    This study addresses the production of sustained, straight-line, severe surface winds associated with mesoscale convective systems (MCSs) of extratropical origin otherwise known as derechos. The physical processes which govern the observed derecho characteristics are identified and their possible forcing mechanisms are determined. Detailed observations of two derechos are presented along with simulations using the Colorado State University Regional Atmospheric Modeling System (CSU-RAMS). The observations revealed a derecho environment characterized by strong vertical wind shear through the depth of the troposphere and large values of convective available potential energy (CAPE). The thermodynamic environment of the troposphere in each case had a distinct three-layer structure consisting of: (i) a surface-based stable layer of 1-to-2 km in depth, (ii) an elevated well -mixed layer of 2-4 km in depth, and (iii) an upper tropospheric layer of intermediate stability that extended to the tropopause. Two primary sets of simulations were performed to assess the impact of the observed environmental profiles on the derecho structure, propagation, and longevity. The first set consisted of nested-grid regional-scale simulations initialized from the standard NMC analyses on a domain having relatively coarse horizontal resolution (75 km). The second set of simulations consisted of two and three-dimensional experiments initialized in a horizontally homogeneous environment having a relatively fine horizontal resolution (2 km) and explicit microphysics. The results from these experiments indicate the importance of convectively -induced gravity waves on the MCS structure, propagation, longevity, and severe surface wind development. The sensitivity of the simulated convection and gravity waves to variations in the vertical wind shear and moisture profiles are described. Detailed Doppler radar analyses and 3-D simulations of a severe, bow echo squall line are presented which reveal

  13. Yield Estimation for Semipalatinsk Underground Nuclear Explosions Using Seismic Surface-wave Observations at Near-regional Distances

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.

    - A statistical procedure is described for estimating the yields of underground nuclear tests at the former Soviet Semipalatinsk test site using the peak amplitudes of short-period surface waves observed at near-regional distances (Δ < 150 km) from these explosions. This methodology is then applied to data recorded from a large sample of the Semipalatinsk explosions, including the Soviet JVE explosion of September 14, 1988, and it is demonstrated that it provides seismic estimates of explosion yield which are typically within 20% of the yields determined for these same explosions using more accurate, non-seismic techniques based on near-source observations.

  14. Near Field Ocean Surface Waves Acoustic Radiation Observation and Modeling

    NASA Astrophysics Data System (ADS)

    Ardhuin, F.; Peureux, C.; Royer, J. Y.

    2016-12-01

    The acoustic noise generation by nonlinearly interacting surface gravity waves has been studied for a long time both theoretically and experimentally [Longuet-Higgins 1951]. The associated far field noise is continuously measured by a vast network of seismometers at the ocean bottom and on the continents. It can especially be used to infer the time variability of short ocean waves statistics [Peureux and Ardhuin 2016]. However, better quantitative estimates of the latter are made difficult due to a poor knowledge of the Earth's crust characteristics, whose coupling with acoustic modes can affect large uncertainties to the frequency response at the bottom of the ocean.The pressure field at depths less than an acoustic wave length to the surface is made of evanescent modes which vanish away from their sources (near field) [Cox and Jacobs 1989]. For this reason, they are less affected by the ocean bottom composition. This near field is recorded and analyzed in the frequency range 0.1 to 0.5 Hz approximately, at two locations : at a shallow site in the North-East Atlantic continental shelf and a deep water site in the Southern Indian ocean, where pressure measurements are performed at the ocean bottom (ca. 100 m) and at 300 m water depth respectively. Evanescent and propagating Rayleigh modes are compared against theoretical predictions. Comparisons against surface waves hindcast based on WAVEWATCH(R) III modeling framework help assessing its performances and can be used to help future model improvements.References Longuet-Higgins, M. S., A Theory of the Origin of Microseisms, Philos. Trans. Royal Soc. A, 1950, 243, 1-3. Peureux, C. and Ardhuin, F., Ocean bottom pressure records from the Cascadia array and short surface gravity waves, J. Geophys. Res. Oceans, 2016, 121, 2862-2873. Cox, C. S. & Jacobs, D. C., Cartesian diver observations of double frequency pressure fluctuations in the upper levels of the ocean, Geophys. Res. Lett., 1989, 16, 807-810.

  15. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)

    NASA Astrophysics Data System (ADS)

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-01

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  16. Groundbased near-IR observations of the surface of Venus

    NASA Technical Reports Server (NTRS)

    Meadows, V. S.; Crisp, D.; Allen, D. A.

    1992-01-01

    regions of lower emission correspond closely to the high-altitude surface regions of Beta Regio and Aphrodite Terra. The images can potentially reveal the near-infrared emissiveity of the surface of Venus, thereby complementing Magellan radar reflectivity and ground based radio emissivity measurements. The contrast ratio between highlands and plains is much smaller than would be expected for blackbody radiation from the surface along. Unlike at radio wavelengths, where the atmosphere is essentially transparent, at near-infrared wavelengths the atmosphere emits, absorbs, and scatters radiation, and can modify the observed topographically induced contrasts. The additional radiation from the atmosphere reduces the contrast, and further modification would be expected if terrain at different altitudes has different emissivities. A fit to our data therefore requires, and may constrain, a model of the lowest scale height of the atmosphere.

  17. Summary of Meteorological Observations, Surface (SMOS), El Toro, California

    DTIC Science & Technology

    1983-10-01

    SURFACE WINDS DETACHMENT ASHEVILLE. NC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) EL TIPO , CALIrQO𔃾IA 73-’.? A ir, U~~tiAL...OF WiND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) ... 112L. E L TIPO , ALIODkI1A 71-q2 r ALL wEANCP _______ MEAN 11-11 6.S 7.A 1.U 11.W6 17.21 n...nTa IO STyVIO. *..M YUOnb0U T-mp. WIT BULl TEMPERATUIE DEPRESSION fF) TOTAL TOTAL 0 1- 2 3 -4 - j 8 9 10 11-12113 14,11516117. 18119 270:i21 . 2 23

  18. The TOAR database on observations of surface ozone (and more)

    NASA Astrophysics Data System (ADS)

    Schultz, M. G.; Schröder, S.; Cooper, O. R.; Galbally, I. E.; Petropavlovskikh, I. V.; von Schneidemesser, E.; Tanimoto, H.; Elshorbany, Y. F.; Naja, M. K.; Seguel, R. J.

    2017-12-01

    In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues. Cooperation among many data centers and individual researchers worldwide made it possible to build the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. This presentation will provide a summary of the TOAR surface observations database including recent additions of ozone precursor and meteorological data. We will demonstrate how the database can be accessed and the data can be used, and we will discuss its limitations and the potential for closing some of teh remaining data gaps.

  19. Constraining a Coastal Ocean Model by Surface Observations Using an Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    De Mey, P. J.; Ayoub, N. K.

    2016-02-01

    We explore the impact of assimilating sea surface temperature (SST) and sea surface height (SSH) observations in the Bay of Biscay (North-East Atlantic). The study is conducted in the SYMPHONIE coastal circulation model (Marsaleix et al., 2009) on a 3kmx3km grid, with 43 sigma levels. Ensembles are generated by perturbing the wind forcing to analyze the model error subspace spanned by its response to wind forcing uncertainties. The assimilation method is a 4D Ensemble Kalman Filter algorithm with localization. We use the SDAP code developed in the team (https://sourceforge.net/projects/sequoia-dap/). In a first step before the assimilation of real observations, we set up an Ensemble twin experiment protocol where a nature run as well as noisy pseudo-observations of SST and SSH are generated from an Ensemble member (later discarded from the assimilative Ensemble). Our objectives are to assess (1) the adequacy of the choice of error source and perturbation strategy and (2) how effective the surface observational constraint is at constraining the surface and subsurface fields. We first illustrate characteristics of the error subspace generated by the perturbation strategy. We then show that, while the EnKF solves a single seamless problem regardless of the region within our domain, the nature and effectiveness of the data constraint over the shelf differ from those over the abyssal plain.

  20. Ensemble-sensitivity Analysis Based Observation Targeting for Mesoscale Convection Forecasts and Factors Influencing Observation-Impact Prediction

    NASA Astrophysics Data System (ADS)

    Hill, A.; Weiss, C.; Ancell, B. C.

    2017-12-01

    The basic premise of observation targeting is that additional observations, when gathered and assimilated with a numerical weather prediction (NWP) model, will produce a more accurate forecast related to a specific phenomenon. Ensemble-sensitivity analysis (ESA; Ancell and Hakim 2007; Torn and Hakim 2008) is a tool capable of accurately estimating the proper location of targeted observations in areas that have initial model uncertainty and large error growth, as well as predicting the reduction of forecast variance due to the assimilated observation. ESA relates an ensemble of NWP model forecasts, specifically an ensemble of scalar forecast metrics, linearly to earlier model states. A thorough investigation is presented to determine how different factors of the forecast process are impacting our ability to successfully target new observations for mesoscale convection forecasts. Our primary goals for this work are to determine: (1) If targeted observations hold more positive impact over non-targeted (i.e. randomly chosen) observations; (2) If there are lead-time constraints to targeting for convection; (3) How inflation, localization, and the assimilation filter influence impact prediction and realized results; (4) If there exist differences between targeted observations at the surface versus aloft; and (5) how physics errors and nonlinearity may augment observation impacts.Ten cases of dryline-initiated convection between 2011 to 2013 are simulated within a simplified OSSE framework and presented here. Ensemble simulations are produced from a cycling system that utilizes the Weather Research and Forecasting (WRF) model v3.8.1 within the Data Assimilation Research Testbed (DART). A "truth" (nature) simulation is produced by supplying a 3-km WRF run with GFS analyses and integrating the model forward 90 hours, from the beginning of ensemble initialization through the end of the forecast. Target locations for surface and radiosonde observations are computed 6, 12, and

  1. Comparison of land surface humidity between observations and CMIP5 models

    NASA Astrophysics Data System (ADS)

    Dunn, Robert J. H.; Willett, Kate M.; Ciavarella, Andrew; Stott, Peter A.

    2017-08-01

    We compare the latest observational land surface humidity dataset, HadISDH, with the latest generation of climate models extracted from the CMIP5 archive and the ERA-Interim reanalysis over the period 1973 to present. The globally averaged behaviour of HadISDH and ERA-Interim are very similar in both humidity measures and air temperature, on decadal and interannual timescales. The global average relative humidity shows a gradual increase from 1973 to 2000, followed by a steep decline in recent years. The observed specific humidity shows a steady increase in the global average during the early period but in the later period it remains approximately constant. None of the CMIP5 models or experiments capture the observed behaviour of the relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed climatologies with those from historical model runs shows that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra-tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends is relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the tropics and very little at high latitudes. The observed drying in mid-latitudes is present at a much lower magnitude in the CMIP5 models. Relationships between temperature and humidity anomalies (T-q and T-rh) show good agreement for specific humidity between models and observations, and between the models themselves, but much poorer for relative humidity. The T-q correlation from the models is more steeply positive than

  2. Seasonal and Interannual Variations of Ice Sheet Surface Elevation at the Summit of Greenland: Observed and Modeled

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Jun, Li; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observed seasonal and interannual variations in the surface elevation over the summit of the Greenland ice sheet are modeled using a new temperature-dependent formulation of firn-densification and observed accumulation variations. The observed elevation variations are derived from ERS (European Remote Sensing)-1 and ERS-2 radar altimeter data for the period between April 1992 and April 1999. A multivariate linear/sine function is fitted to an elevation time series constructed from elevation differences measured by radar altimetry at orbital crossovers. The amplitude of the seasonal elevation cycle is 0.25 m peak-to-peak, with a maximum in winter and a minimum in summer. Inter-annually, the elevation decreases to a minimum in 1995, followed by an increase to 1999, with an overall average increase of 4.2 cm a(exp -1) for 1992 to 1999. Our densification formulation uses an initial field-density profile, the AWS (automatic weather station) surface temperature record, and a temperature-dependent constitutive relation for the densification that is based on laboratory measurements of crystal growth rates. The rate constant and the activation energy commonly used in the Arrhenius-type constitutive relation for firn densification are also temperature dependent, giving a stronger temperature and seasonal amplitudes about 10 times greater than previous densification formulations. Summer temperatures are most important, because of the strong non-linear dependence on temperature. Much of firn densification and consequent surface lowering occurs within about three months of the summer season, followed by a surface build-up from snow accumulation until spring. Modeled interannual changes of the surface elevation, using the AWS measurements of surface temperature and accumulation and results of atmospheric modeling of precipitation variations, are in good agreement with the altimeter observations. In the model, the surface elevation decreases about 20 cm over the seven years due

  3. Venus Surface Composition Constrained by Observation and Experiment

    NASA Astrophysics Data System (ADS)

    Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne

    2017-11-01

    New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to

  4. Estimating Evapotranspiration Using an Observation Based Terrestrial Water Budget

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; McWilliams, Eric B.; Famiglietti, James S.; Beaudoing, Hiroko K.; Nigro, Joseph

    2011-01-01

    Evapotranspiration (ET) is difficult to measure at the scales of climate models and climate variability. While satellite retrieval algorithms do exist, their accuracy is limited by the sparseness of in situ observations available for calibration and validation, which themselves may be unrepresentative of 500m and larger scale satellite footprints and grid pixels. Here, we use a combination of satellite and ground-based observations to close the water budgets of seven continental scale river basins (Mackenzie, Fraser, Nelson, Mississippi, Tocantins, Danube, and Ubangi), estimating mean ET as a residual. For any river basin, ET must equal total precipitation minus net runoff minus the change in total terrestrial water storage (TWS), in order for mass to be conserved. We make use of precipitation from two global observation-based products, archived runoff data, and TWS changes from the Gravity Recovery and Climate Experiment satellite mission. We demonstrate that while uncertainty in the water budget-based estimates of monthly ET is often too large for those estimates to be useful, the uncertainty in the mean annual cycle is small enough that it is practical for evaluating other ET products. Here, we evaluate five land surface model simulations, two operational atmospheric analyses, and a recent global reanalysis product based on our results. An important outcome is that the water budget-based ET time series in two tropical river basins, one in Brazil and the other in central Africa, exhibit a weak annual cycle, which may help to resolve debate about the strength of the annual cycle of ET in such regions and how ET is constrained throughout the year. The methods described will be useful for water and energy budget studies, weather and climate model assessments, and satellite-based ET retrieval optimization.

  5. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations

    NASA Astrophysics Data System (ADS)

    Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L.

    2014-12-01

    We have developed a novel framework ("Tan-Tracker") for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations and the surface CO2 fluxes as part of the large state vector to be simultaneously estimated from assimilation of atmospheric CO2 observations. Compared to most modern top-down flux inversion approaches, where only surface fluxes are considered as control variables, one major advantage of our joint data assimilation system is that, in principle, no assumption on perfect transport models is needed. In addition, the possibility for Tan-Tracker to use a complete dynamic model to consistently describe the time evolution of CO2 surface fluxes (CFs) and the atmospheric CO2 concentrations represents a better use of observation information for recycling the analyses at each assimilation step in order to improve the forecasts for the following assimilations. An experimental Tan-Tracker system has been built based on a complete augmented dynamical model, where (1) the surface atmosphere CO2 exchanges are prescribed by using a persistent forecasting model for the scaling factors of the first-guess net CO2 surface fluxes and (2) the atmospheric CO2 transport is simulated by using the GEOS-Chem three-dimensional global chemistry transport model. Observing system simulation experiments (OSSEs) for assimilating synthetic in situ observations of surface CO2 concentrations are carefully designed to evaluate the effectiveness of the Tan-Tracker system. In particular, detailed comparisons are made with its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation

  6. Limited Surface Observations Climatic Summary (LISOCS), Bo Baker AAF, Germany.

    DTIC Science & Technology

    1987-11-01

    MSC 0109711 N 47 46 1011 36 ELEV 2350 FT EDOT PARTS 1 - 5 HOURS SUMMARIZED: 0600 - 2100 LST PERIOD 01 RECORD : HOURLY OBSERVATIONS; NOv 76 - OCT 86...LIMITED SURFACE OS.RATIONS CLINAIIC SUNMAIES--LISOCS ASkVILLL NC 20501 HOURLY gSCKVauIOMSs ALL RECORD O4 RECORD SPECIaL OBSERVaTIONS RECORDED ON TPE...MEIWA STATIONS i|SININS IN JAN 19081 AND SYNOPTIC WEPORTING STATIONS RECORDED ON TH4E AN$ F0DAS 10110A AND TRARSMI 1ED LONGLINE ONLY TE HIGHEST ORDEP OF

  7. Description of surface transport in the region of the Belizean Barrier Reef based on observations and alternative high-resolution models

    NASA Astrophysics Data System (ADS)

    Lindo-Atichati, D.; Curcic, M.; Paris, C. B.; Buston, P. M.

    2016-10-01

    The gains from implementing high-resolution versus less costly low-resolution models to describe coastal circulation are not always clear, often lacking statistical evaluation. Here we construct a hierarchy of ocean-atmosphere models operating at multiple scales within a 1 × 1° domain of the Belizean Barrier Reef (BBR). The various components of the atmosphere-ocean models are evaluated with in situ observations of surface drifters, wind and sea surface temperature. First, we compare the dispersion and velocity of 55 surface drifters released in the field in summer 2013 to the dispersion and velocity of simulated drifters under alternative model configurations. Increasing the resolution of the ocean model (from 1/12° to 1/100°, from 1 day to 1 h) and atmosphere model forcing (from 1/2° to 1/100°, from 6 h to 1 h), and incorporating tidal forcing incrementally reduces discrepancy between simulated and observed velocities and dispersion. Next, in trying to understand why the high-resolution models improve prediction, we find that resolving both the diurnal sea-breeze and semi-diurnal tides is key to improving the Lagrangian statistics and transport predictions along the BBR. Notably, the model with the highest ocean-atmosphere resolution and with tidal forcing generates a higher number of looping trajectories and sub-mesoscale coherent structures that are otherwise unresolved. Finally, simulations conducted with this model from June to August of 2013 show an intensification of the velocity fields throughout the summer and reveal a mesoscale anticyclonic circulation around Glovers Reef, and sub-mesoscale cyclonic eddies formed in the vicinity of Columbus Island. This study provides a general framework to assess the best surface transport prediction from alternative ocean-atmosphere models using metrics derived from high frequency drifters' data and meteorological stations.

  8. OMI Satellite and Ground-Based Pandora Observations and Their Application to Surface NO2 Estimations at Terrestrial and Marine Sites

    NASA Astrophysics Data System (ADS)

    Kollonige, Debra E.; Thompson, Anne M.; Josipovic, Miroslav; Tzortziou, Maria; Beukes, Johan P.; Burger, Roelof; Martins, Douglas K.; van Zyl, Pieter G.; Vakkari, Ville; Laakso, Lauri

    2018-01-01

    The Pandora spectrometer that uses direct-Sun measurements to derive total column amounts of gases provides an approach for (1) validation of satellite instruments and (2) monitoring of total column (TC) ozone (O3) and nitrogen dioxide (NO2). We use for the first time Pandora and Ozone Monitoring Instrument (OMI) observations to estimate surface NO2 over marine and terrestrial sites downwind of urban pollution and compared with in situ measurements during campaigns in contrasting regions: (1) the South African Highveld (at Welgegund, 26°34'10″S, 26°56'21″E, 1,480 m asl, 120 km southwest of the Johannesburg-Pretoria megacity) and (2) shipboard U.S. mid-Atlantic coast during the 2014 Deposition of Atmospheric Nitrogen to Coastal Ecosystems (DANCE) cruise. In both cases, there were no local NOx sources but intermittent regional pollution influences. For TC NO2, OMI and Pandora difference is 20%, with Pandora higher most times. Surface NO2 values estimated from OMI and Pandora columns are compared to in situ NO2 for both locations. For Welgegund, the planetary boundary layer (PBL) height, used in converting column to surface NO2 value, has been estimated by three methods: co-located Atmospheric Infrared Sounder (AIRS) observations; a model simulation; and radiosonde data from Irene, 150 km northeast of the site. AIRS PBL heights agree within 10% of radiosonde-derived values. Absolute differences between Pandora- and OMI-estimated surface NO2 and the in situ data are better at the terrestrial site ( 0.5 ppbv and 1 ppbv or greater, respectively) than under clean marine air conditions, with differences usually >3 ppbv. Cloud cover and PBL variability influence these estimations.

  9. Shallow-to-Deep Convection Transition over Land: Atmospheric and surface controls inferred from long-term ground-based observations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Klein, S. A.

    2016-12-01

    Warm-season decade-long observations are used to investigate mechanisms controlling the transition from shallow to deep convection over land. The data are from the DOE Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. The study focuses on two questions: 1) what environmental parameters differ between the two convective regimes: fair-weather shallow cumulus versus late-afternoon deep convection, especially in the late morning a few hours before deep convection begins? And 2) Do convective regimes such as fair-weather shallow cumulus and late-afternoon deep convection have any preferences over soil moisture conditions (dry or wet) and soil moisture heterogeneities? It is found that a more humid environment immediately above the boundary layer is present before the start of late afternoon heavy precipitation events. Greater boundary layer inhomogeneity in moist static energy, temperature, moisture, and horizontal wind before precipitation begins is correlated to larger rain rates at the initial stage of precipitation. Late-afternoon deep convection tends to prefer drier soil conditions with larger surface heterogeneity. This observational study helps our understanding of convective responses to different environmental factors especially surface versus atmospheric controls. This work leads to the establishment of composite cases of different continental convective regimes for large-eddy simulations and single-column tests of climate model parameterizations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-698972

  10. Gallium arsenide based surface plasmon resonance for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Patil, Harshada; Sane, Vani; Sriram, G.; Indumathi, T. S; Sharan, Preeta

    2015-07-01

    The recent trends in the semiconductor and microwave industries has enabled the development of scalable microfabrication technology which produces a superior set of performance as against its counterparts. Surface Plasmon Resonance (SPR) based biosensors are a special class of optical sensors that become affected by electromagnetic waves. It is found that bio-molecular recognition element immobilized on the SPR sensor surface layer reveals a characteristic interaction with various sample solutions during the passage of light. The present work revolves around developing painless glucose monitoring systems using fluids containing glucose like saliva, urine, sweat or tears instead of blood samples. Non-invasive glucose monitoring has long been simulated using label free detection mechanisms and the same concept is adapted. In label-free detection, target molecules are not labeled or altered, and are detected in their natural forms. Label-free detection mechanisms involves the measurement of refractive index (RI) change induced by molecular interactions. These interactions relates the sample concentration or surface density, instead of total sample mass. After simulation it has been observed that the result obtained is highly accurate and sensitive. The structure used here is SPR sensor based on channel waveguide. The tools used for simulation are RSOFT FULLWAVE, MEEP and MATLAB etc.

  11. Sliding mode output feedback control based on tracking error observer with disturbance estimator.

    PubMed

    Xiao, Lingfei; Zhu, Yue

    2014-07-01

    For a class of systems who suffers from disturbances, an original output feedback sliding mode control method is presented based on a novel tracking error observer with disturbance estimator. The mathematical models of the systems are not required to be with high accuracy, and the disturbances can be vanishing or nonvanishing, while the bounds of disturbances are unknown. By constructing a differential sliding surface and employing reaching law approach, a sliding mode controller is obtained. On the basis of an extended disturbance estimator, a creative tracking error observer is produced. By using the observation of tracking error and the estimation of disturbance, the sliding mode controller is implementable. It is proved that the disturbance estimation error and tracking observation error are bounded, the sliding surface is reachable and the closed-loop system is robustly stable. The simulations on a servomotor positioning system and a five-degree-of-freedom active magnetic bearings system verify the effect of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Evaluation of Global Observations-Based Evapotranspiration Datasets and IPCC AR4 Simulations

    NASA Technical Reports Server (NTRS)

    Mueller, B.; Seneviratne, S. I.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.; Dirmeyer, P.; Fisher, J. B.; Guo, Z.; hide

    2011-01-01

    Quantification of global land evapotranspiration (ET) has long been associated with large uncertainties due to the lack of reference observations. Several recently developed products now provide the capacity to estimate ET at global scales. These products, partly based on observational data, include satellite ]based products, land surface model (LSM) simulations, atmospheric reanalysis output, estimates based on empirical upscaling of eddycovariance flux measurements, and atmospheric water balance datasets. The LandFlux-EVAL project aims to evaluate and compare these newly developed datasets. Additionally, an evaluation of IPCC AR4 global climate model (GCM) simulations is presented, providing an assessment of their capacity to reproduce flux behavior relative to the observations ]based products. Though differently constrained with observations, the analyzed reference datasets display similar large-scale ET patterns. ET from the IPCC AR4 simulations was significantly smaller than that from the other products for India (up to 1 mm/d) and parts of eastern South America, and larger in the western USA, Australia and China. The inter-product variance is lower across the IPCC AR4 simulations than across the reference datasets in several regions, which indicates that uncertainties may be underestimated in the IPCC AR4 models due to shared biases of these simulations.

  13. Nondestructive optical testing of the materials surface structure based on liquid crystals

    NASA Astrophysics Data System (ADS)

    Tomilin, M. G.; Stafeev, S. K.

    2011-08-01

    Thin layers of nematic liquid crystals (NLCs) may be used as recording media for visualizing structural and microrelief defects, distribution of low power physical fields and modifications of the surface. NLCs are more sensitive in comparison with cholesteric and smectic LCs having super molecular structures. The detecting properties of NLCs are based on local layers deformation, induced by surface fields and observed in polarizing microscope. The structural surface defects or physical field's distribution are dramatically change the distribution of surface tension. Surface defects recording becomes possible if NLC deformed structure is illuminated in transparent or reflective modes and observed in optical polarizing microscope and appearing image is compared with background structure. In this case one observes not the real defect but the local deformation in NLCs. The theory was developed to find out the real size of defects. The resolution of NLC layer is more than 2000 lines/mm. The fields of NLC application are solid crystals symmetry, minerals, metals, semiconductors, polymers and glasses structure inhomogeneities and optical coatings defects detecting. The efficiency of NLC method in biophotonics is illustrated by objective detecting cancer tissues character and visualizing the interaction traces of grippe viruses with antibodies. NLCs may detect solvent components structure in tea, wine and perfume giving unique information of their structure. It presents diagnostic information alternative to dyes and fluorescence methods. For the first time the structures of some juices and beverages are visualized to illustrate the unique possibilities of NLCs.

  14. Modeling and observational occurrences of near-surface drainage in Utopia Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Costard, F.; Sejourne, A.; Kargel, J.; Godin, E.

    2016-12-01

    During the past 15 years, evidence for an ice-rich planet Mars has rapidly mounted, become increasingly varied in terms of types of deposits and types of observational data, and has become more widespread across the surface. The mid-latitudes of Mars, especially Utopia Planitia, show many types of interesting landforms similar to those in periglacial landscapes on Earth that suggest the presence of ice-rich permafrost. These include thermal contraction polygonal networks, scalloped terrains similar to thermokarst pits, debris flows, small mounds like pingos and rock glaciers. Here, we address questions concerning the influence of meltwater in the Utopia Planitia (UP) landscape using analogs of near-surface melting and drainage along ice-wedge troughs on Bylot Island, northern Canada. In Utopia Planitia, based on the identification of sinuous channel-like pits within polygonal networks, we suggest that episodic underground melting was possible under severe periglacial climate conditions. In UP, the collapse pattern and morphology of unconnected sinuous elongated pits that follow the polygon crack are similar to underground melting in Bylot Island (Nunavut, Canada). Based on this terrestrial analogue, we develop a thermal model that consists of a thick insulating dusty layer over ice-saturated dust during a period of slight climatic warming relative to today's climate. In the model, the melting point is reached at depths down to 150 m. We suggest that small-scale melting could have occurred below ground within ground-ice polygonal fractures and pooled in underground cavities. Then the water may have been released episodically causing mechanical erosion as well as undermining and collapse. After melting, the dry surface dusty layer might have been blown away, thus exposing the degraded terrain of the substrate layer.

  15. Advances in Assimilation of Satellite-Based Passive Microwave Observations for Soil-Moisture Estimation

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Pauwels, Valentijn; Reichle, Rolf H.; Draper, Clara; Koster, Randy; Liu, Qing

    2012-01-01

    Satellite-based microwave measurements have long shown potential to provide global information about soil moisture. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS, [1]) mission as well as the future National Aeronautics and Space Administration (NASA) Soil Moisture Active and Passive (SMAP, [2]) mission measure passive microwave emission at L-band frequencies, at a relatively coarse (40 km) spatial resolution. In addition, SMAP will measure active microwave signals at a higher spatial resolution (3 km). These new L-band missions have a greater sensing depth (of -5cm) compared with past and present C- and X-band microwave sensors. ESA currently also disseminates retrievals of SMOS surface soil moisture that are derived from SMOS brightness temperature observations and ancillary data. In this research, we address two major challenges with the assimilation of recent/future satellite-based microwave measurements: (i) assimilation of soil moisture retrievals versus brightness temperatures for surface and root-zone soil moisture estimation and (ii) scale-mismatches between satellite observations, models and in situ validation data.

  16. Surveying the Lunar Surface for New Craters with Mini-RF/Goldstone X-Band Bistatic Observations

    NASA Astrophysics Data System (ADS)

    Cahill, J. T.; Patterson, G.; Turner, F. S.; Morgan, G.; Stickle, A. M.; Speyerer, E. J.; Espiritu, R. C.; Thomson, B. J.

    2017-12-01

    A multi-look temporal imaging survey by Speyerer et al. (2016) using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) has highlighted detectable and frequent impact bombardment processes actively modifying the lunar surface. Over 220 new resolvable impacts have been detected since NASA's Lunar Reconnaissance Orbiter (LRO) entered orbit around the Moon, at a flux that is substantially higher than anticipated from previous studies (Neukum et al., 2001). The Miniature Radio Frequency (Mini-RF) instrument aboard LRO is a hybrid dual-polarized synthetic aperture radar (SAR) that now operates in concert with the Arecibo Observatory (AO) and the Goldstone deep space communications complex 34-meter antenna DSS-13 to collect S- and X-band (12.6 and 4.2 cm, respectively) bistatic radar data of the Moon, respectively. Here we targeted some of the larger (>30 m) craters identified by Speyerer et al. (2016) and executed bistatic X-band radar observations both to evaluate our ability to detect and resolve these impact features and further characterize the spatial extent and material size of their ejecta outside optical wavelengths. Data acquired during Mini-RF monostatic operations, when the transmitter was active, show no coverage of the regions in question before or after two of the new impacts occurred. This makes Mini-RF and Earth-based bistatic observations all the more valuable for examination of these fresh new geologic features. Preliminary analyses of Arecibo/Greenbank and Mini-RF/Goldstone observations are unable to resolve the new crater cavities (due to our current resolving capability of 100 m/px), but they further confirm lunar surface roughness changes occurred between 2008 and 2017. Mini-RF X-band observations show newly ejected material was dispersed on the order of 100-300 meters from the point of impact. Scattering observed in the X-band data suggests the presence of rocky ejecta 4 - 45 cm in diameter on the surface and buried to depths of

  17. Observation of low-frequency acoustic surface waves in the nocturnal boundary layer.

    PubMed

    Talmadge, Carrick L; Waxler, Roger; Di, Xiao; Gilbert, Kenneth E; Kulichkov, Sergey

    2008-10-01

    A natural terrain surface, because of its porosity, can support an acoustic surface wave that is a mechanical analog of the familiar vertically polarized surface wave in AM radio transmission. At frequencies of several hundred hertz, the acoustic surface wave is attenuated over distances of a few hundred meters. At lower frequencies (e.g., below approximately 200 Hz) the attenuation is much less, allowing surface waves to propagate thousands of meters. At night, a low-frequency surface wave is generally present at long ranges even when downward refraction is weak. Thus, surface waves represent a ubiquitous nighttime transmission mode that exists even when other transmission modes are weak or absent. Data from recent nighttime field experiments and theoretical calculations are presented, demonstrating the persistence of the surface wave under different meteorological conditions. The low-frequency surface wave described here is the "quasiharmonical" tail observed previously in nighttime measurements but not identified by S. Kulichkov and his colleagues (Chunchuzov, I. P. et al. 1990. "On acoustical impulse propagation in a moving inhomogeneous atmospheric layer," J. Acoust. Soc. Am. 88, 455-461).

  18. Surface layer and bloom dynamics observed with the Prince William Sound Autonomous Profiler

    NASA Astrophysics Data System (ADS)

    Campbell, R. W.

    2016-02-01

    As part of a recent long term monitoring effort, deployments of a WETLabs Autonomous Moored Profiler (AMP) began Prince William Sound (PWS) in 2013. The PWS AMP consists of a positively buoyant instrument frame, with a winch and associated electronics that profiles the frame from a park depth (usually 55 m) to the surface by releasing and retrieving a thin UHMWPE tether; it generally conducts a daily cast and measures temperature, salinity, chlorophyll-a fluorescence, turbidity, and oxygen and nitrate concentrations. Upward and downward looking ADCPs are mounted on a float below the profiler, and an in situ plankton imager is in development and will be installed in 2016. Autonomous profilers are a relatively new technology, and early deployments experienced a number of failures from which valuable lessons may be learned. Nevertheless, an unprecedented time series of the seasonal biogeochemical procession in the surface waters coastal Gulf of Alaska was collected in 2014 and 2015. The northern Gulf of Alaska has experienced a widespread warm anomaly since early 2014, and surface layer temperature anomalies in PWS were strongly positive during winter 2014. The spring bloom observed by the profiler began 2-3 weeks earlier than average, with surface nitrate depleted by late April. Although surface temperatures were still above average in 2015, bloom timing was much later, with a short vigorous bloom in late April and a subsurface bloom in late May that coincided with significant nitrate drawdown. As well as the vernal blooms, wind-driven upwelling events lead to several small productivity pulses that were evident in changes in nitrate and oxygen concentrations, and chlorophyll-a fluorescence. As well as providing a mechanistic understanding of surface layer biogeochemistry, high frequency observations such as these put historical observations in context, and provide new insights into the scales of variability in the annual cycles of the surface ocean in the North

  19. Sea Surface Salinity Variability from Simulations and Observations: Preparing for Aquarius

    NASA Technical Reports Server (NTRS)

    Jacob, S. Daniel; LeVine, David M.

    2010-01-01

    Oceanic fresh water transport has been shown to play an important role in the global hydrological cycle. Sea surface salinity (SSS) is representative of the surface fresh water fluxes and the upcoming Aquarius mission scheduled to be launched in December 2010 will provide excellent spatial and temporal SSS coverage to better estimate the net exchange. In most ocean general circulation models, SSS is relaxed to climatology to prevent model drift. While SST remains a well observed variable, relaxing to SST reduces the range of SSS variability in the simulations (Fig.1). The main objective of the present study is to simulate surface tracers using a primitive equation ocean model for multiple forcing data sets to identify and establish a baseline SSS variability. The simulated variability scales are compared to those from near-surface argo salinity measurements.

  20. Low-Computation Strategies for Extracting CO2 Emission Trends from Surface-Level Mixing Ratio Observations

    NASA Astrophysics Data System (ADS)

    Shusterman, A.; Kim, J.; Lieschke, K.; Newman, C.; Cohen, R. C.

    2017-12-01

    Global momentum is building for drastic, regulated reductions in greenhouse gas emissions over the coming decade. With this increasing regulation comes a clear need for increasingly sophisticated monitoring, reporting, and verification (MRV) strategies capable of enforcing and optimizing emissions-related policy, particularly as it applies to urban areas. Remote sensing and/or activity-based emission inventories can offer MRV insights for entire sectors or regions, but are not yet sophisticated enough to resolve unexpected trends in specific emitters. Urban surface monitors can offer the desired proximity to individual greenhouse gas sources, but due to the densely-packed nature of typical urban landscapes, surface observations are rarely representative of a single source. Most previous efforts to decompose these complex signals into their contributing emission processes have involved inverse atmospheric modeling techniques, which are computationally intensive and believed to depend heavily on poorly understood a priori estimates of error covariance. Here we present a number of transparent, low-computation approaches for extracting source-specific emissions estimates from signals with a variety of nearfield influences. Using observations from the first several years of the BErkeley Atmospheric CO2 Observation Network (BEACO2N), we demonstrate how to exploit strategic pairings of monitoring "nodes," anomalous wind conditions, and well-understood temporal variations to hone in on specific CO2 sources of interest. When evaluated against conventional, activity-based bottom-up emission inventories, these strategies are seen to generate quantitatively rigorous emission estimates. With continued application as the BEACO2N data set grows in time and space, these approaches offer a promising avenue for optimizing greenhouse gas mitigation strategies into the future.

  1. Wind-driven changes of surface current, temperature, and chlorophyll observed by satellites north of New Guinea

    NASA Astrophysics Data System (ADS)

    Radenac, Marie-Hélène; Léger, Fabien; Messié, Monique; Dutrieux, Pierre; Menkes, Christophe; Eldin, Gérard

    2016-04-01

    Satellite observations of wind, sea level and derived currents, sea surface temperature (SST), and chlorophyll are used to expand our understanding of the physical and biological variability of the ocean surface north of New Guinea. Based on scarce cruise and mooring data, previous studies differentiated a trade wind situation (austral winter) when the New Guinea Coastal Current (NGCC) flows northwestward and a northwest monsoon situation (austral summer) when a coastal upwelling develops and the NGCC reverses. This circulation pattern is confirmed by satellite observations, except in Vitiaz Strait where the surface northwestward flow persists. We find that intraseasonal and seasonal time scale variations explain most of the variance north of New Guinea. SST and chlorophyll variabilities are mainly driven by two processes: penetration of Solomon Sea waters and coastal upwelling. In the trade wind situation, the NGCC transports cold Solomon Sea waters through Vitiaz Strait in a narrow vein hugging the coast. Coastal upwelling is generated in westerly wind situations (westerly wind event, northwest monsoon). Highly productive coastal waters are advected toward the equator and, during some westerly wind events, toward the eastern part of the warm pool. During El Niño, coastal upwelling events and northward penetration of Solomon Sea waters combine to influence SST and chlorophyll anomalies.

  2. Surface-based prostate registration with biomechanical regularization

    NASA Astrophysics Data System (ADS)

    van de Ven, Wendy J. M.; Hu, Yipeng; Barentsz, Jelle O.; Karssemeijer, Nico; Barratt, Dean; Huisman, Henkjan J.

    2013-03-01

    Adding MR-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound by using MRUS registration. A common approach is to use surface-based registration. We hypothesize that biomechanical modeling will better control deformation inside the prostate than a regular surface-based registration method. We developed a novel method by extending a surface-based registration with finite element (FE) simulation to better predict internal deformation of the prostate. For each of six patients, a tetrahedral mesh was constructed from the manual prostate segmentation. Next, the internal prostate deformation was simulated using the derived radial surface displacement as boundary condition. The deformation field within the gland was calculated using the predicted FE node displacements and thin-plate spline interpolation. We tested our method on MR guided MR biopsy imaging data, as landmarks can easily be identified on MR images. For evaluation of the registration accuracy we used 45 anatomical landmarks located in all regions of the prostate. Our results show that the median target registration error of a surface-based registration with biomechanical regularization is 1.88 mm, which is significantly different from 2.61 mm without biomechanical regularization. We can conclude that biomechanical FE modeling has the potential to improve the accuracy of multimodal prostate registration when comparing it to regular surface-based registration.

  3. Conceptual Research of Lunar-based Earth Observation for Polar Glacier Motion

    NASA Astrophysics Data System (ADS)

    Ruan, Zhixing; Liu, Guang; Ding, Yixing

    2016-07-01

    The ice flow velocity of glaciers is important for estimating the polar ice sheet mass balance, and it is of great significance for studies into rising sea level under the background of global warming. However so far the long-term and global measurements of these macro-scale motion processes of the polar glaciers have hardly been achieved by Earth Observation (EO) technique from the ground, aircraft or satellites in space. This paper, facing the demand for space technology for large-scale global environmental change observation,especially the changes of polar glaciers, and proposes a new concept involving setting up sensors on the lunar surface and using the Moon as a platform for Earth observation, transmitting the data back to Earth. Lunar-based Earth observation, which enables the Earth's large-scale, continuous, long-term dynamic motions to be measured, is expected to provide a new solution to the problems mentioned above. According to the pattern and characteristics of polar glaciers motion, we will propose a comprehensive investigation of Lunar-based Earth observation with synthetic aperture radar (SAR). Via theoretical modeling and experimental simulation inversion, intensive studies of Lunar-based Earth observation for the glacier motions in the polar regions will be implemented, including the InSAR basics theory, observation modes of InSAR and optimization methods of their key parameters. It will be of a great help to creatively expand the EO technique system from space. In addition, they will contribute to establishing the theoretical foundation for the realization of the global, long-term and continuous observation for the glacier motion phenomena in the Antarctic and the Arctic.

  4. Atlas-based segmentation technique incorporating inter-observer delineation uncertainty for whole breast

    NASA Astrophysics Data System (ADS)

    Bell, L. R.; Dowling, J. A.; Pogson, E. M.; Metcalfe, P.; Holloway, L.

    2017-01-01

    Accurate, efficient auto-segmentation methods are essential for the clinical efficacy of adaptive radiotherapy delivered with highly conformal techniques. Current atlas based auto-segmentation techniques are adequate in this respect, however fail to account for inter-observer variation. An atlas-based segmentation method that incorporates inter-observer variation is proposed. This method is validated for a whole breast radiotherapy cohort containing 28 CT datasets with CTVs delineated by eight observers. To optimise atlas accuracy, the cohort was divided into categories by mean body mass index and laterality, with atlas’ generated for each in a leave-one-out approach. Observer CTVs were merged and thresholded to generate an auto-segmentation model representing both inter-observer and inter-patient differences. For each category, the atlas was registered to the left-out dataset to enable propagation of the auto-segmentation from atlas space. Auto-segmentation time was recorded. The segmentation was compared to the gold-standard contour using the dice similarity coefficient (DSC) and mean absolute surface distance (MASD). Comparison with the smallest and largest CTV was also made. This atlas-based auto-segmentation method incorporating inter-observer variation was shown to be efficient (<4min) and accurate for whole breast radiotherapy, with good agreement (DSC>0.7, MASD <9.3mm) between the auto-segmented contours and CTV volumes.

  5. Incorporating TPC observed parameters and QuikSCAT surface wind observations into hurricane initialization using 4D-VAR approaches

    NASA Astrophysics Data System (ADS)

    Park, Kyungjeen

    This study aims to develop an objective hurricane initialization scheme which incorporates not only forecast model constraints but also observed features such as the initial intensity and size. It is based on the four-dimensional variational (4D-Var) bogus data assimilation (BDA) scheme originally proposed by Zou and Xiao (1999). The 4D-Var BDA consists of two steps: (i) specifying a bogus sea level pressure (SLP) field based on parameters observed by the Tropical Prediction Center (TPC) and (ii) assimilating the bogus SLP field under a forecast model constraint to adjust all model variables. This research focuses on improving the specification of the bogus SLP indicated in the first step. Numerical experiments are carried out for Hurricane Bonnie (1998) and Hurricane Gordon (2000) to test the sensitivity of hurricane track and intensity forecasts to specification of initial vortex. Major results are listed below: (1) A linear regression model is developed for determining the size of initial vortex based on the TPC observed radius of 34kt. (2) A method is proposed to derive a radial profile of SLP from QuikSCAT surface winds. This profile is shown to be more realistic than ideal profiles derived from Fujita's and Holland's formulae. (3) It is found that it takes about 1 h for hurricane prediction model to develop a conceptually correct hurricane structure, featuring a dominant role of hydrostatic balance at the initial time and a dynamic adjustment in less than 30 minutes. (4) Numerical experiments suggest that track prediction is less sensitive to the specification of initial vortex structure than intensity forecast. (5) Hurricane initialization using QuikSCAT-derived initial vortex produced a reasonably good forecast for hurricane landfall, with a position error of 25 km and a 4-h delay at landfalling. (6) Numerical experiments using the linear regression model for the size specification considerably outperforms all the other formulations tested in terms of the

  6. Analyzing the uncertainty of ensemble-based gridded observations in land surface simulations and drought assessment

    NASA Astrophysics Data System (ADS)

    Ahmadalipour, Ali; Moradkhani, Hamid

    2017-12-01

    Hydrologic modeling is one of the primary tools utilized for drought monitoring and drought early warning systems. Several sources of uncertainty in hydrologic modeling have been addressed in the literature. However, few studies have assessed the uncertainty of gridded observation datasets from a drought monitoring perspective. This study provides a hydrologic modeling oriented analysis of the gridded observation data uncertainties over the Pacific Northwest (PNW) and its implications on drought assessment. We utilized a recently developed 100-member ensemble-based observed forcing data to simulate hydrologic fluxes at 1/8° spatial resolution using Variable Infiltration Capacity (VIC) model, and compared the results with a deterministic observation. Meteorological and hydrological droughts are studied at multiple timescales over the basin, and seasonal long-term trends and variations of drought extent is investigated for each case. Results reveal large uncertainty of observed datasets at monthly timescale, with systematic differences for temperature records, mainly due to different lapse rates. The uncertainty eventuates in large disparities of drought characteristics. In general, an increasing trend is found for winter drought extent across the PNW. Furthermore, a ∼3% decrease per decade is detected for snow water equivalent (SWE) over the PNW, with the region being more susceptible to SWE variations of the northern Rockies than the western Cascades. The agricultural areas of southern Idaho demonstrate decreasing trend of natural soil moisture as a result of precipitation decline, which implies higher appeal for anthropogenic water storage and irrigation systems.

  7. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    NASA Technical Reports Server (NTRS)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  8. Planetary surface characterization from dual-polarization radar observations

    NASA Astrophysics Data System (ADS)

    Virkki, Anne; Planetary Radar Team of the Arecibo Observatory

    2017-10-01

    We present a new method to investigate the physical properties of planetary surfaces using dual-polarization radar measurements. The number of radar observations has increased radically during the last five years, allowing us to compare the radar scattering properties of different small-body populations and compositional types. There has also been progress in the laboratory studies of the materials that are relevant to asteroids and comets.In a typical planetary radar measurement a circularly polarized signal is transmitted using a frequency of 2380 MHz (wavelength of 12.6 cm) or 8560 MHz (3.5 cm). The echo is received simultaneously in the same circular (SC) and the opposite circular (OC) polarization as the transmitted signal. The delay and doppler frequency of the signal give highly accurate astrometric information, and the intensity and the polarization are suggestive of the physical properties of the target's near-surface.The radar albedo describes the radar reflectivity of the target. If the effective near-surface is smooth and homogeneous in the wavelength-scale, the echo is received fully in the OC polarization. Wavelength-scale surface roughness or boulders within the effective near-surface volume increase the received echo power in both polarizations. However, there is a lack in the literature describing exactly how the physical properties of the target affect the radar albedo in each polarization, or how they can be derived from the radar measurements.To resolve this problem, we utilize the information that the diffuse components of the OC and SC parts are correlated when the near-surface contains wavelength-scale scatterers such as boulders. A linear least-squares fit to the detected values of OC and SC radar albedos allows us to separate the diffusely scattering part from the quasi-specular part. Combined with the spectro-photometric information of the target and laboratory studies of the permittivity-density dependence, the method provides us with a

  9. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    NASA Astrophysics Data System (ADS)

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-10-01

    Ocean currents play a key role in Earth's climate - they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.

  10. Intrinsic Charge Trapping Observed as Surface Potential Variations in diF-TES-ADT Films.

    PubMed

    Hoffman, Benjamin C; McAfee, Terry; Conrad, Brad R; Loth, Marsha A; Anthony, John E; Ade, Harald W; Dougherty, Daniel B

    2016-08-24

    Spatial variations in surface potential are measured with Kelvin probe force microscopy for thin films of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophenes (diF-TES-ADT) grown on SiO2 and silane-treated SiO2 substrates by organic molecular beam deposition. The variations are observed both between and within grains of the polycrystalline organic film and are quantitatively different than electrostatic variations on the substrate surfaces. The skewness of surface potential distributions is larger on SiO2 than on HMDS-treated substrates. This observation is attributed to the impact of substrate functionalization on minimizing intrinsic crystallographic defects in the organic film that can trap charge.

  11. On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: an assessment using satellite-based observations

    NASA Astrophysics Data System (ADS)

    Alexandri, G.; Georgoulias, A. K.; Zanis, P.; Katragkou, E.; Tsikerdekis, A.; Kourtidis, K.; Meleti, C.

    2015-11-01

    In this work, we assess the ability of RegCM4 regional climate model to simulate surface solar radiation (SSR) patterns over Europe. A decadal RegCM4 run (2000-2009) was implemented and evaluated against satellite-based observations from the Satellite Application Facility on Climate Monitoring (CM SAF), showing that the model simulates adequately the SSR patterns over the region. The SSR bias between RegCM4 and CM SAF is +1.5 % for MFG (Meteosat First Generation) and +3.3 % for MSG (Meteosat Second Generation) observations. The relative contribution of parameters that determine the transmission of solar radiation within the atmosphere to the deviation appearing between RegCM4 and CM SAF SSR is also examined. Cloud macrophysical and microphysical properties such as cloud fractional cover (CFC), cloud optical thickness (COT) and cloud effective radius (Re) from RegCM4 are evaluated against data from CM SAF. Generally, RegCM4 underestimates CFC by 24.3 % and Re for liquid/ice clouds by 36.1 %/28.3 % and overestimates COT by 4.3 %. The same procedure is repeated for aerosol optical properties such as aerosol optical depth (AOD), asymmetry factor (ASY) and single-scattering albedo (SSA), as well as other parameters, including surface broadband albedo (ALB) and water vapor amount (WV), using data from MACv1 aerosol climatology, from CERES satellite sensors and from ERA-Interim reanalysis. It is shown here that the good agreement between RegCM4 and satellite-based SSR observations can be partially attributed to counteracting effects among the above mentioned parameters. The potential contribution of each parameter to the RegCM4-CM SAF SSR deviations is estimated with the combined use of the aforementioned data and a~radiative transfer model (SBDART). CFC, COT and AOD are the major determinants of these deviations on a monthly basis; however, the other parameters also play an important role for specific regions and seasons. Overall, for the European domain, CFC, COT and

  12. Flight Deck Surface Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.

    2017-01-01

    Surface Trajectory-Based Operations (STBO) is a future concept for surface operations where time requirements are incorporated into taxi operations to support surface planning and coordination. Pilot-in-the-loop flight deck simulations have been conducted to study flight deck displays algorithms to aid pilots in complying with the time requirements of time-based taxi operations (i.e., at discrete locations in 3 12 D operations or at all points along the route in 4DT operations). The results of these studies (conformance, time-of-arrival error, eye-tracking data, and safety ratings) are presented. Flight deck simulation work done in collaboration with DLR is described. Flight deck research issues in future auto-taxi operations are also introduced.

  13. Triton's surface properties - A preliminary analysis from ground-based, Voyager photopolarimeter subsystem, and laboratory measurements

    NASA Technical Reports Server (NTRS)

    Buratti, B. J.; Lane, A. L.; Gibson, J.; Burrows, H.; Nelson, R. M.; Bliss, D.; Smythe, W.; Garkanian, V.; Wallis, B.

    1991-01-01

    The surface properties of Triton were investigated using data from the ground-based and Voyager photopolarimeter subsystem (PPS) observations of Triton's phase curve. The results indicate that Triton has a high single-scattering albedo (0.96 +/-0.01 at 0.75 micron) and an unusually compacted surface, possibly similar to that of Europa. Results also suggest that Triton's single-particle phase function and the macroscopically rough character of its surface are similar to those of most other icy satellites.

  14. Fast surface-based travel depth estimation algorithm for macromolecule surface shape description.

    PubMed

    Giard, Joachim; Alface, Patrice Rondao; Gala, Jean-Luc; Macq, Benoît

    2011-01-01

    Travel Depth, introduced by Coleman and Sharp in 2006, is a physical interpretation of molecular depth, a term frequently used to describe the shape of a molecular active site or binding site. Travel Depth can be seen as the physical distance a solvent molecule would have to travel from a point of the surface, i.e., the Solvent-Excluded Surface (SES), to its convex hull. Existing algorithms providing an estimation of the Travel Depth are based on a regular sampling of the molecule volume and the use of the Dijkstra's shortest path algorithm. Since Travel Depth is only defined on the molecular surface, this volume-based approach is characterized by a large computational complexity due to the processing of unnecessary samples lying inside or outside the molecule. In this paper, we propose a surface-based approach that restricts the processing to data defined on the SES. This algorithm significantly reduces the complexity of Travel Depth estimation and makes possible the analysis of large macromolecule surface shape description with high resolution. Experimental results show that compared to existing methods, the proposed algorithm achieves accurate estimations with considerably reduced processing times.

  15. New gridded database of clear-sky solar radiation derived from ground-based observations over Europe

    NASA Astrophysics Data System (ADS)

    Bartok, Blanka; Wild, Martin; Sanchez-Lorenzo, Arturo; Hakuba, Maria Z.

    2017-04-01

    Since aerosols modify the entire energy balance of the climate system through different processes, assessments regarding aerosol multiannual variability are highly required by the climate modelling community. Because of the scarcity of long-term direct aerosol measurements, the retrieval of aerosol data/information from other type of observations or satellite measurements are very relevant. One approach frequently used in the literature is analyze of the clear-sky solar radiation which offer a better overview of changes in aerosol content. In the study first two empirical methods are elaborated in order to separate clear-sky situations from observed values of surface solar radiation available at the World Radiation Data Center (WRDC), St. Petersburg. The daily data has been checked for temporal homogeneity by applying the MASH method (Szentimrey, 2003). In the first approach, clear sky situations are detected based on clearness index, namely the ratio of the surface solar radiation to the extraterrestrial solar irradiation. In the second approach the observed values of surface solar radiation are compared to the climatology of clear-sky surface solar radiation calculated by the MAGIC radiation code (Muller et al. 2009). In both approaches the clear-sky radiation values highly depend on the applied thresholds. In order to eliminate this methodological error a verification of clear-sky detection is envisaged through a comparison with the values obtained by a high time resolution clear-sky detection and interpolation algorithm (Long and Ackermann, 2000) making use of the high quality data from the Baseline Surface Radiation Network (BSRN). As the consequences clear-sky data series are obtained for 118 European meteorological stations. Next a first attempt has been done in order to interpolate the point-wise clear-sky radiation data by applying the MISH (Meteorological Interpolation based on Surface Homogenized Data Basis) method for the spatial interpolation of

  16. Estimation of surface-level PM concentration based on aerosol type classification and near-surface AOD over Korea

    NASA Astrophysics Data System (ADS)

    Kim, Kwanchul; Noh, Youngmin; Lee, Kwon H.

    2016-04-01

    Surface-level PM distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of aerosol type classification and near-surface AOD over Jeju, Korea. For this purpose, data from various instruments such as satellites, sunphotometer, and Micro-pulse Lidar (MPL) was used during March 2008 and October 2009. Initial analyses of comparison with sunphotometer AOD and PM concentration showed some relatively poor relationship over Jeju, Korea. Since the AERONET L2 data has significant number of observations with high AOT values paired to low surface-level PM values, which were believed to be the effect of long-rage transport aerosols like as Asian dust and biomass burning. Stronger correlations (exceeding R = 0.8) were obtained by screening long-rage transport aerosols and calculating near-surface AOT considering aerosol profiles data from MPL and HYSPLIT air mass trajectory. The relationship found between corrected satellite observed AOD and surface-level PM concentration over Jeju is very similar. An approach to reduce the discrepancy between satellite observed AOD and PM concentration is demonstrated by tuning thresholds used to detect aerosol type from sunphotometer inversion data. Finally, the satellite observed AOD-surface PM concentration correlation is significantly improved. Our study clearly demonstrates that satellite observed AOD is a good surrogate for monitoring PM air quality over Korea.

  17. A System for Monitoring and Forecasting Land Surface Phenology Using Time Series of JPSS VIIRS Observations and Its Applications

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Yu, Y.; Liu, L.

    2015-12-01

    Land surface phenology quantifies seasonal dynamics of vegetation properties including the timing and magnitude of vegetation greenness from satellite observations. Over the last decade, historical time series of AVHRR and MODIS data has been used to characterize the seasonal and interannual variation in terrestrial ecosystems and their responses to a changing and variable climate. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on board the operational JPSS satellites provides land surface observations in a timely fashion, which has the capability to monitor phenological development in near real time. This capability is particularly important for assisting agriculture, natural resource management, and land modeling for weather prediction systems. Here we introduce a system to monitor in real time and forecast in the short term phenological development based on daily VIIRS observations available with a one-day latency. The system integrates a climatological land surface phenology from long-term MODIS data and available VIIRS observations to simulate a set of potential temporal trajectories of greenness development at a given time and pixel. The greenness trajectories, which are qualified using daily two-band Enhanced Vegetation Index (EVI2), are applied to identify spring green leaf development and autumn color foliage status in real time and to predict the occurrence of future phenological events. This system currently monitors vegetation development across the North America every three days and makes prediction to 10 days ahead. We further introduce the applications of near real time spring green leaf and fall color foliage. Specifically, this system is used for tracing the crop progress across the United States, guiding the field observations in US National Phenology Network, servicing tourists for the observation of color fall foliage, and parameterizing seasonal surface physical conditions for numerical weather prediction models.

  18. Observations, models, and mechanisms of failure of surface rocks surrounding planetary surface loads

    NASA Technical Reports Server (NTRS)

    Schultz, R. A.; Zuber, M. T.

    1994-01-01

    Geophysical models of flexural stresses in an elastic lithosphere due to an axisymmetric surface load typically predict a transition with increased distance from the center of the load of radial thrust faults to strike-slip faults to concentric normal faults. These model predictions are in conflict with the absence of annular zones of strike-slip faults around prominent loads such as lunar maria, Martian volcanoes, and the Martian Tharsis rise. We suggest that this paradox arises from difficulties in relating failure criteria for brittle rocks to the stress models. Indications that model stresses are inappropriate for use in fault-type prediction include (1) tensile principal stresses larger than realistic values of rock tensile strength, and/or (2) stress differences significantly larger than those allowed by rock-strength criteria. Predictions of surface faulting that are consistent with observations can be obtained instead by using tensile and shear failure criteria, along with calculated stress differences and trajectories, with model stress states not greatly in excess of the maximum allowed by rock fracture criteria.

  19. On the ability of RegCM4 to simulate surface solar radiation patterns over Europe: An assessment using satellite-based observations

    NASA Astrophysics Data System (ADS)

    Alexandri, Georgia; Georgoulias, Aristeidis K.; Zanis, Prodromos; Tsikerdekis, Athanasios; Katragkou, Eleni; Kourtidis, Konstantinos; Meleti, Charikleia

    2015-04-01

    We assess here the ability of RegCM4 to simulate the surface solar radiation (SSR) patterns over the European domain. For the needs of this work, a decadal (1999-2009) simulation was implemented at a horizontal resolution of 50km using the first year as a spin-up. The model is driven by emissions from CMIP5 while ERA-interim data were used as lateral boundary conditions. The RegCM4 SSR fields were validated against satellite-based SSR observations from Meteosat First Generation (MFG) and Meteosat Second Generation (MSG) sensors (CM SAF SIS product). The RegCM4 simulations slightly overestimate SSR compared to CM SAF over Europe with the bias being +1.54% in case of MFG (2000-2005) and +3.34% in case of MSG (2006-2009). SSR from RegCM4 is much closer to SSR from CM SAF over land (bias of -1.59% for MFG and +0.66% for MSG) than over ocean (bias of +7.20% for MFG and 8.07% for MSG). In order to understand the reasons of this bias, we proceeded to a detailed assessment of various parameters that define the SSR levels (cloud fractional cover - CFC, cloud optical thickness - COT, cloud droplet effective radius - Re, aerosol optical thickness - AOD, asymmetry factor - ASY, single scattering albedo - SSA, water vapor - WV and surface albedo - ALB). We validated the simulated CFC, COT and Re from RegCM4 against satellite-based observations from MSG and we found that RegCM4 significantly underestimates CFC and Re, and overestimates COT over Europe. The aerosol-related parameters from RegCM4 were compared with values from the aerosol climatology taken into account within CM SAF SSR estimates. AOD is significantly underestimated in our simulations which leads to a positive SSR bias. The RegCM4 WV and ALB were compared with WV values from ERA-interim and ALB climatological observations from CERES which are also taken into account within CM SAF SSR estimates. Finally, with the use of a radiative transfer model (SBDART) we manage to quantify the relative contribution of each of

  20. Cumulative effects of electrode and dielectric surface modifications on pentacene-based transistors

    NASA Astrophysics Data System (ADS)

    Devynck, Mélanie; Tardy, Pascal; Wantz, Guillaume; Nicolas, Yohann; Vellutini, Luc; Labrugère, Christine; Hirsch, Lionel

    2012-01-01

    Surface modifications of the dielectric and the metal of pentacene-based field effect transistors using self-assembled monolayer (SAM) were studied. First, a low interfacial trap density and pentacene 2D-growth were favored by the nonpolar and low surface energy of octadecyltrichlorosilane-based SAM. This treatment leaded to increased mobility up to 0.4 cm2 V-1 s-1 and no observable hysteresis on transfer curves. Second, reduced hole injection barrier and contact resistance were achieved by fluorinated thiols deposited on gold contacts resulting in an increased mobility up to 0.6 cm2 V-1 s-1. Finally, a high mobility of 2.6 cm2 V-1 s-1 was achieved by cumulative effects of both treatments.

  1. Observation-based estimation of aerosol-induced reduction of planetary boundary layer height

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Sun, Jianning; Ding, Aijun; Wang, Minghuai; Guo, Weidong; Fu, Congbin

    2017-09-01

    Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 Wm-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m.

  2. Process-based upscaling of surface-atmosphere exchange

    NASA Astrophysics Data System (ADS)

    Keenan, T. F.; Prentice, I. C.; Canadell, J.; Williams, C. A.; Wang, H.; Raupach, M. R.; Collatz, G. J.; Davis, T.; Stocker, B.; Evans, B. J.

    2015-12-01

    Empirical upscaling techniques such as machine learning and data-mining have proven invaluable tools for the global scaling of disparate observations of surface-atmosphere exchange, but are not based on a theoretical understanding of the key processes involved. This makes spatial and temporal extrapolation outside of the training domain difficult at best. There is therefore a clear need for the incorporation of knowledge of ecosystem function, in combination with the strength of data mining. Here, we present such an approach. We describe a novel diagnostic process-based model of global photosynthesis and ecosystem respiration, which is directly informed by a variety of global datasets relevant to ecosystem state and function. We use the model framework to estimate global carbon cycling both spatially and temporally, with a specific focus on the mechanisms responsible for long-term change. Our results show the importance of incorporating process knowledge into upscaling approaches, and highlight the effect of key processes on the terrestrial carbon cycle.

  3. Arecibo radar observations of Mars surface characteristics in the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Simpson, R. A.; Tyler, G. L.; Campbell, D. B.

    1978-01-01

    Mars surface characteristics at and near the Viking Chryse and Tritonis Lacus landing areas were determined by radio scatter using the 12.6-cm radar at the Arecibo Observatory during 1975-76. Interpretation of each power spectrum suggests rms surface tilts of 4 deg at the final A1WNW (47.9 deg W, 22.5 deg N) site, 5 deg near the original A1 site, and 6 deg between the two. At the back-up site (A2) surface-roughness estimates were about 4 deg. Striking changes in surface texture have been found near the eastern bases of Tharsis Montes and Albor Tholus, each volcanic feature marking the western boundary of very smooth surface units. The roughness sensed at 1- to 100-m scales by radar appears to be relatively independent of the surface units defined at large scale lengths by photogeologists. Radar properties thus provide an additional means by which planetary surfaces may be characterized.

  4. Inverse Modeling of Hydrologic Parameters Using Surface Flux and Runoff Observations in the Community Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu; Hou, Zhangshuan; Huang, Maoyi

    2013-12-10

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC) - Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find thatmore » using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent - as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to the different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.« less

  5. Satellite Type Estination from Ground-based Photometric Observation

    NASA Astrophysics Data System (ADS)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  6. Low Cloud Type over the Ocean from Surface Observations. Part III: Relationship to Vertical Motion and the Regional Surface Synoptic Environment.

    NASA Astrophysics Data System (ADS)

    Norris, Joel R.; Klein, Stephen A.

    2000-01-01

    Composite large-scale dynamical fields contemporaneous with low cloud types observed at midlatitude Ocean Weather Station (OWS) C and eastern subtropical OWS N are used to establish representative relationships between low cloud type and the synoptic environment. The composites are constructed by averaging meteorological observations of surface wind and sea level pressure from volunteering observing ships (VOS) and analyses of sea level pressure, 1000-mb wind, and 700-mb pressure vertical velocity from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis project on those dates and times of day when a particular low cloud type was reported at the OWS.VOS and NCEP results for OWS C during summer show that bad-weather stratus occurs with strong convergence and ascent slightly ahead of a surface low center and trough. Cumulus-under-stratocumulus and moderate and large cumulus occur with divergence and subsidence in the cold sector of an extratropical cyclone. Both sky-obscuring fog and no-low-cloud typically occur with southwesterly flow from regions of warmer sea surface temperature and differ primarily according to slight surface convergence and stronger warm advection in the case of sky-obscuring fog or surface divergence and weaker warm advection in the case of no-low-cloud. Fair-weather stratus and ordinary stratocumulus are associated with a mixture of meteorological conditions, but differ with respect to vertical motion in the environment. Fair-weather stratus occurs most commonly in the presence of slight convergence and ascent, while stratocumulus often occurs in the presence of divergence and subsidence.Surface divergence and estimated subsidence at the top of the boundary layer are calculated from VOS observations. At both OWS C and OWS N during summer and winter these values are large for ordinary stratocumulus, less for cumulus-under-stratocumulus, and least (and sometimes slightly negative) for

  7. A Modeling Framework for Inference of Surface Emissions Using Mobile Observations

    NASA Astrophysics Data System (ADS)

    Fasoli, B.; Mitchell, L.; Crosman, E.; Mendoza, D. L.; Lin, J. C.

    2016-12-01

    Our ability to quantify surface emissions depends on the precision of observations and the spatial density of measurement networks. Mobile measurement techniques offer a cost effective strategy for quantifying atmospheric conditions over space without requiring a dense network of in-situ sites. However, interpretation of these data and inversion of dispersed measurements to estimate surface emissions can be difficult. We introduce a framework using the Stochastic Time-Inverted Lagrangian Transport (STILT) model that assimilates both spatially resolved observations and an emissions inventory to better estimate surface fluxes. Salt Lake City is a unique laboratory for the study of urban carbon emissions. It is the only U.S. city that utilizes light-rail trains to continuously measure high frequency carbon dioxide (CO2) and methane (CH4); it is home to one of the longest and most spatially resolved high precision CO2 measurement networks (air.utah.edu); and it is one of four cities in the world for which the Hestia anthropogenic emissions inventory has been produced which characterizes CO2 emissions at the scale of individual buildings and roadways. Using these data and modeling resources, we evaluate spatially resolved CO2 measurements and transported CO2 emissions on hourly timescales at a dense spatial resolution across Salt Lake City.

  8. Boundary layer transition observations on a body of revolution with surface heating and cooling in water

    NASA Astrophysics Data System (ADS)

    Arakeri, V. H.

    1980-04-01

    Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. (1970).

  9. The French contribution to the voluntary observing ships network of sea surface salinity

    NASA Astrophysics Data System (ADS)

    Alory, G.; Delcroix, T.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; Maes, C.; Morrow, R.; Perrier, J.; Reverdin, G.; Roubaud, F.

    2015-11-01

    Sea Surface Salinity (SSS) is an essential climate variable that requires long term in situ observation. The French SSS Observation Service (SSS-OS) manages a network of Voluntary Observing Ships equipped with thermosalinographs (TSG). The network is global though more concentrated in the tropical Pacific and North Atlantic oceanic basins. The acquisition system is autonomous with real time transmission and is regularly serviced at harbor calls. There are distinct real time and delayed time processing chains. Real time processing includes automatic alerts to detect potential instrument problems, in case raw data are outside of climatic limits, and graphical monitoring tools. Delayed time processing relies on a dedicated software for attribution of data quality flags by visual inspection, and correction of TSG time series by comparison with daily water samples and collocated Argo data. A method for optimizing the automatic attribution of quality flags in real time, based on testing different thresholds for data deviation from climatology and retroactively comparing the resulting flags to delayed time flags, is presented. The SSS-OS real time data feed the Coriolis operational oceanography database, while the research-quality delayed time data can be extracted for selected time and geographical ranges through a graphical web interface. Delayed time data have been also combined with other SSS data sources to produce gridded files for the Pacific and Atlantic oceans. A short review of the research activities conducted with such data is given. It includes observation-based process-oriented and climate studies from regional to global scale as well as studies where in situ SSS is used for calibration/validation of models, coral proxies or satellite data.

  10. The French Contribution to the Voluntary Observing Ships Network of Sea Surface Salinity

    NASA Astrophysics Data System (ADS)

    Delcroix, T. C.; Alory, G.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S. E.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; Maes, C.; Morrow, R.; Perrier, J.; Reverdin, G. P.; Roubaud, F.

    2016-02-01

    Sea Surface Salinity (SSS) is an essential climate variable that requires long term in situ observation. The French SSS Observation Service (SSS-OS) manages a network of Voluntary Observing Ships equipped with thermosalinographs (TSG). The network is global though more concentrated in the tropical Pacific and North Atlantic oceanic basins. The acquisition system is autonomous with real time transmission and is regularly serviced at harbor calls. There are distinct real time and delayed time processing chains. Real time processing includes automatic alerts to detect potential instrument problems, in case raw data are outside of climatic limits, and graphical monitoring tools. Delayed time processing relies on a dedicated software for attribution of data quality flags by visual inspection, and correction of TSG time series by comparison with daily water samples and collocated Argo data. A method for optimizing the automatic attribution of quality flags in real time, based on testing different thresholds for data deviation from climatology and retroactively comparing the resulting flags to delayed time flags, is presented. The SSS-OS real time data feed the Coriolis operational oceanography database, while the research-quality delayed time data can be extracted for selected time and geographical ranges through a graphical web interface. Delayed time data have been also combined with other SSS data sources to produce gridded files for the Pacific and Atlantic oceans. A short review of the research activities conducted with such data is given. It includes observation-based process-oriented and climate studies from regional to global scale as well as studies where in situ SSS is used for calibration/validation of models, coral proxies or satellite data.

  11. Biomechanical Properties of Murine Meniscus Surface via AFM-based Nanoindentation

    PubMed Central

    Li, Qing; Doyran, Basak; Gamer, Laura W.; Lu, X. Lucas; Qin, Ling; Ortiz, Christine; Grodzinsky, Alan J.; Rosen, Vicki; Han, Lin

    2015-01-01

    This study aimed to quantify the biomechanical properties of murine meniscus surface. Atomic force microscopy (AFM)-based nanoindentation was performed on the central region, proximal side of menisci from 6- to 24-week old male C57BL/6 mice using microspherical tips (Rtip ≈ 5 μm) in PBS. A unique, linear correlation between indentation depth, D, and response force, F, was found on menisci from all age groups. This non-Hertzian behavior is likely due to the dominance of tensile resistance by the collagen fibril bundles on meniscus surface that are mostly aligned along the circumferential direction observed on 12-week old menisci. The indentation resistance was calculated as both the effective stiffness, Sind = dF/dD, and the effective modulus, Eind, via the isotropic Hertz model. Values of Sind and Eind were found to depend on indentation rate, suggesting the existence of poro-viscoelasticity. These values do not significantly vary with anatomical sites, lateral versus medial compartments, or mouse age. In addition, Eind of meniscus surface (e.g., 6.1 ± 0.8 MPa for 12 weeks of age, mean ± SEM, n = 13) was found to be significantly higher than those of meniscus surfaces in other species, and of murine articular cartilage surface (1.4 ± 0.1 MPa, n = 6). In summary, these results provided the first direct mechanical knowledge of murine knee meniscus tissues. We expect this understanding to serve as a mechanics-based benchmark for further probing the developmental biology and osteoarthritis symptoms of meniscus in various murine models. PMID:25817332

  12. Randolph AFB, San Antonio, Texas. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    DTIC Science & Technology

    1976-03-19

    FoRM ARE oUsoIII ’, " ’ . . . " " -,, ’:,,,:t."," *4 -- ".°" "- . . . " ’ * "- : ; Ir , ( DATA PROCESSING BRANCH EtAC/USAF SURFACE WINDS AIR" WATHER ...FORM ARI OS$Oitlt_ ___ _zT z __ __ ___......- ___ _ _ _ .4. .. . II DATA PROCESSIN G BRASFCH FTAC/USAF SURFACE WINDS AiR WATHER SERVICE/MAC PERCENTAGE...SURFACE WINDS 1 A/R WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) ( 12911- RANDOLPH AFBJTEXAS/SAN

  13. Satellite-based climate data records of surface solar radiation from the CM SAF

    NASA Astrophysics Data System (ADS)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface

  14. Tangible display systems: direct interfaces for computer-based studies of surface appearance

    NASA Astrophysics Data System (ADS)

    Darling, Benjamin A.; Ferwerda, James A.

    2010-02-01

    When evaluating the surface appearance of real objects, observers engage in complex behaviors involving active manipulation and dynamic viewpoint changes that allow them to observe the changing patterns of surface reflections. We are developing a class of tangible display systems to provide these natural modes of interaction in computer-based studies of material perception. A first-generation tangible display was created from an off-the-shelf laptop computer containing an accelerometer and webcam as standard components. Using these devices, custom software estimated the orientation of the display and the user's viewing position. This information was integrated with a 3D rendering module so that rotating the display or moving in front of the screen would produce realistic changes in the appearance of virtual objects. In this paper, we consider the design of a second-generation system to improve the fidelity of the virtual surfaces rendered to the screen. With a high-quality display screen and enhanced tracking and rendering capabilities, a secondgeneration system will be better able to support a range of appearance perception applications.

  15. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaojun; Department of Biotechnology, Nanchang University, Nanchang, Jiangxi 330031; Chen, Yuan

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM)more » has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.« less

  16. Viewing Mercury's Surface-bound Exosphere from Orbit: Eighteen Months of Observations by the Mercury Atmospheric and Surface Composition Spectrometer aboard the MESSENGER Spacecraft

    NASA Astrophysics Data System (ADS)

    McClintock, W. E.; Benna, M.; Burger, M. H.; Cassidy, T.; Killen, R. M.; Merkel, A. W.; Sarantos, M.; Solomon, S. C.; Sprague, A. L.; Vervack, R. J.

    2012-12-01

    Prior to the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, Mercury's surface-bounded exosphere was known to contain H and He, observed by Mariner 10, as well as Na, K, and Ca, observed from the ground. The exosphere is the interface between the planet's surface and the surrounding space environment. Its composition and structure are controlled by interactions among the surface, magnetosphere, solar wind, sunlight, and impacting meteoroids. When species are liberated from the surface with sufficient energy, they can be accelerated by solar radiation pressure to form an anti-sunward tail. During three flybys en route to orbit, the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) aboard MESSENGER discovered Mg in the tail and detected Ca+ in a narrow region centered ~ 2.5 Mercury radii anti-sunward of the planet's terminator. UVVS began routine orbital observations of both the dayside and nightside exosphere on March 29, 2011. It regularly measures altitude profiles for all previously detected neutral species with the exception of He and K. The former has no emission features within the UVVS wavelength range (115-600 nm), and the latter has only one relatively weak feature there. A single component of Ca is usually observed at lower altitudes (~2000 km) and exhibits the strong equatorial, dawn enhancement observed during the flybys. Mg distributions exhibit two components. The more energetic component has been detected at high altitudes, up to 4000 km above the surface on both the dayside and nightside, and shows a dawn enhancement similar to Ca. Dayside distributions of Na exhibit two components with e-folding heights comparable to profiles above the poles obtained during the third flyby. Concentrations of all three species exhibit seasonal variability. The best studied of these is Na, for which maximum dayside density occurs at a Mercury true anomaly angle

  17. Global shortwave energy budget at the earth's surface from ERBE observations

    NASA Technical Reports Server (NTRS)

    Breon, Francois-Marie; Frouin, Robert

    1994-01-01

    A method is proposed to compute the net solar (shortwave) irradiance at the earth's surface from Earth Radiation Budget Experiment (ERBE) data in the S4 format. The S4 data are monthly averaged broadband planetary albedo collected at selected times during the day. Net surface shortwave irradiance is obtained from the shortwave irradiance incident at the top of the atmosphere (known) by subtracting both the shortwave energy flux reflected by the earth-atmosphere system (measured) and the energy flux absorbed by the atmosphere (modeled). Precalculated atmospheric- and surface-dependent functions that characterize scattering and absorption in the atmosphere are used, which makes the method easily applicable and computationally efficient. Four surface types are distinguished, namely, ocean, vegetation, desert, and snow/ice. Over the tropical Pacific Ocean, the estimates based on ERBE data compare well with those obtained from International Satellite Cloud Climatology Project (ISCCP) B3 data. For the 9 months analyzed the linear correlation coefficient and the standard difference between the two datasets are 0.95 and 14 W/sq m (about 6% of the average shortwave irradiance), respectively, and the bias is 15 W/sq m (higher ERBE values). The bias, a strong function of ISCCP satellite viewing zenith angle, is mostly in the ISCCP-based estimates. Over snow/ice, vegetation, and desert no comparison is made with other satellite-based estimates, but theoretical calculations using the discrete ordinate method suggest that over highly reflective surfaces (snow/ice, desert) the model, which accounts crudely for multiple reflection between the surface and clouds, may substantially overestimate the absorbed solar energy flux at the surface, especially when clouds are optically thick. The monthly surface shortwave irradiance fields produced for 1986 exhibit the main features characteristic of the earth's climate. As found in other studies, our values are generally higher than

  18. Atomic Force Microscope Observation of Growth and Defects on As-Grown (111) 3C-SiC Mesa Surfaces

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Trunek, Andrew J.; Powell, J. Anthony

    2004-01-01

    This paper presents experimental atomic force microscope (AFM) observations of the surface morphology of as-grown (111) silicon-face 3C-SiC mesa heterofilms. Wide variations in 3C surface step structure are observed as a function of film growth conditions and film defect content. The vast majority of as-grown 3C-SiC surfaces consisted of trains of single bilayer height (0.25 nm) steps. Macrostep formation (i.e., step-bunching) was rarely observed, and then only on mesa heterofilms with extended crystal defects. As supersaturation is lowered by decreasing precursor concentration, terrace nucleation on the top (111) surface becomes suppressed, sometimes enabling the formation of thin 3C-SiC film surfaces completely free of steps. For thicker films, propagation of steps inward from mesa edges is sometimes observed, suggesting that enlarging 3C mesa sidewall facets begin to play an increasingly important role in film growth. The AFM observation of stacking faults (SF's) and 0.25 nm Burgers vector screw component growth spirals on the as-grown surface of defective 3C films is reported.

  19. Coleman AAF, Germany (West). Limited Surface Observations Climatic Summary (LISOCS).

    DTIC Science & Technology

    1983-08-10

    the provenance of the number (e.g., HSC 999999) which will appear on future OL-A standard products. -No II USAFETAC LIMITED SURFACE OBSERVATIONS...7 ,L A A L A - AAv STATION Y MONTH P_ ’C"NTAI.C FCrEu:uvCY OF OCCUPPENCE OF wEATE’ N TIZSN ~rOM HOUqLY OdSEOVATIONS RAIN FREEZING SNOW 1OF SMORE DUST

  20. Land surface energy budget during dry spells: global CMIP5 AMIP simulations vs. satellite observations

    NASA Astrophysics Data System (ADS)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Folwell, Sonja S.

    2015-04-01

    During extended periods without rain (dry spells), the soil can dry out due to vegetation transpiration and soil evaporation. At some point in this drying cycle, land surface conditions change from energy-limited to water-limited evapotranspiration, and this is accompanied by an increase of the ground and overlying air temperatures. Regionally, the characteristics of this transition determine the influence of soil moisture on air temperature and rainfall. Global Climate Models (GCMs) disagree on where and how strongly the surface energy budget is limited by soil moisture. Flux tower observations are improving our understanding of these dry down processes, but typical heterogeneous landscapes are too sparsely sampled to ascertain a representative regional response. Alternatively, satellite observations of land surface temperature (LST) provide indirect information about the surface energy partition at 1km resolution globally. In our study, we analyse how well the dry spell dynamics of LST are represented by GCMs across the globe. We use a spatially and temporally aggregated diagnostic to describe the composite response of LST during surface dry down in rain-free periods in distinct climatic regions. The diagnostic is derived from daytime MODIS-Terra LST observations and bias-corrected meteorological re-analyses, and compared against the outputs of historical climate simulations of seven models running the CMIP5 AMIP experiment. Dry spell events are stratified by antecedent precipitation, land cover type and geographic regions to assess the sensitivity of surface warming rates to soil moisture levels at the onset of a dry spell for different surface and climatic zones. In a number of drought-prone hot spot regions, we find important differences in simulated dry spell behaviour, both between models, and compared to observations. These model biases are likely to compromise seasonal forecasts and future climate projections.

  1. Surface engineering approaches to micropattern surfaces for cell-based assays.

    PubMed

    Falconnet, Didier; Csucs, Gabor; Grandin, H Michelle; Textor, Marcus

    2006-06-01

    The ability to produce patterns of single or multiple cells through precise surface engineering of cell culture substrates has promoted the development of cellular bioassays that provide entirely new insights into the factors that control cell adhesion to material surfaces, cell proliferation, differentiation and molecular signaling pathways. The ability to control shape and spreading of attached cells and cell-cell contacts through the form and dimension of the cell-adhesive patches with high precision is important. Commitment of stem cells to different specific lineages depends strongly on cell shape, implying that controlled microenvironments through engineered surfaces may not only be a valuable approach towards fundamental cell-biological studies, but also of great importance for the design of cell culture substrates for tissue engineering. Furthermore, cell patterning is an important tool for organizing cells on transducers for cell-based sensing and cell-based drug discovery concepts. From a material engineering standpoint, patterning approaches have greatly profited by combining microfabrication technologies, such as photolithography, with biochemical functionalization to present to the cells biological cues in spatially controlled regions where the background is rendered non-adhesive ("non-fouling") by suitable chemical modification. The focus of this review is on the surface engineering aspects of biologically motivated micropatterning of two-dimensional (flat) surfaces with the aim to provide an introductory overview and critical assessment of the many techniques described in the literature. In particular, the importance of non-fouling surface chemistries, the combination of hard and soft lithography with molecular assembly techniques as well as a number of less well known, but useful patterning approaches, including direct cell writing, are discussed.

  2. Evaluation of Oceanic Surface Observation for Reproducing the Upper Ocean Structure in ECHAM5/MPI-OM

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Zheng, Fei; Zhu, Jiang

    2017-12-01

    Better constraints of initial conditions from data assimilation are necessary for climate simulations and predictions, and they are particularly important for the ocean due to its long climate memory; as such, ocean data assimilation (ODA) is regarded as an effective tool for seasonal to decadal predictions. In this work, an ODA system is established for a coupled climate model (ECHAM5/MPI-OM), which can assimilate all available oceanic observations using an ensemble optimal interpolation approach. To validate and isolate the performance of different surface observations in reproducing air-sea climate variations in the model, a set of observing system simulation experiments (OSSEs) was performed over 150 model years. Generally, assimilating sea surface temperature, sea surface salinity, and sea surface height (SSH) can reasonably reproduce the climate variability and vertical structure of the upper ocean, and assimilating SSH achieves the best results compared to the true states. For the El Niño-Southern Oscillation (ENSO), assimilating different surface observations captures true aspects of ENSO well, but assimilating SSH can further enhance the accuracy of ENSO-related feedback processes in the coupled model, leading to a more reasonable ENSO evolution and air-sea interaction over the tropical Pacific. For ocean heat content, there are still limitations in reproducing the long time-scale variability in the North Atlantic, even if SSH has been taken into consideration. These results demonstrate the effectiveness of assimilating surface observations in capturing the interannual signal and, to some extent, the decadal signal but still highlight the necessity of assimilating profile data to reproduce specific decadal variability.

  3. Evaluation of atmospheric dust prediction models using ground-based observations

    NASA Astrophysics Data System (ADS)

    Terradellas, Enric; María Baldasano, José; Cuevas, Emilio; Basart, Sara; Huneeus, Nicolás; Camino, Carlos; Dundar, Cinhan; Benincasa, Francesco

    2013-04-01

    An important step in numerical prediction of mineral dust is the model evaluation aimed to assess its performance to forecast the atmospheric dust content and to lead to new directions in model development and improvement. The first problem to address the evaluation is the scarcity of ground-based routine observations intended for dust monitoring. An alternative option would be the use of satellite products. They have the advantage of a large spatial coverage and a regular availability. However, they do have numerous drawbacks that make the quantitative retrievals of aerosol-related variables difficult and imprecise. This work presents the use of different ground-based observing systems for the evaluation of dust models in the Regional Center for Northern Africa, Middle East and Europe of the World Meteorological Organization (WMO) Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS). The dust optical depth at 550 nm forecast by different models is regularly compared with the AERONET measurements of Aerosol Optical Depth (AOD) for 40 selected stations. Photometric measurements are a powerful tool for remote sensing of the atmosphere allowing retrieval of aerosol properties, such as AOD. This variable integrates the contribution of different aerosol types, but may be complemented with spectral information that enables hypotheses about the nature of the particles. Comparison is restricted to cases with low Ångström exponent values in order to ensure that coarse mineral dust is the dominant aerosol type. Additionally to column dust load, it is important to evaluate dust surface concentration and dust vertical profiles. Air quality monitoring stations are the main source of data for the evaluation of surface concentration. However they are concentrated in populated and industrialized areas around the Mediterranean. In the present contribution, results of different models are compared with observations of PM10 from the Turkish air quality network for

  4. HST observations of globular clusters in M 31. 1: Surface photometry of 13 objects

    NASA Technical Reports Server (NTRS)

    Pecci, F. Fusi; Battistini, P.; Bendinelli, O.; Bonoli, F.; Cacciari, C.; Djorgovski, S.; Federici, L.; Ferraro, F. R.; Parmeggiani, G.; Weir, N.

    1994-01-01

    We present the initial results of a study of globular clusters in M 31, using the Faint Object Camera (FOC) on the Hubble Space Telescope (HST). The sample of objects consists of 13 clusters spanning a range of properties. Three independent image deconvolution techniques were used in order to compensate for the optical problems of the HST, leading to mutually fully consistent results. We present detailed tests and comparisons to determine the reliability and limits of these deconvolution methods, and conclude that high-quality surface photometry of M 31 globulars is possible with the HST data. Surface brightness profiles have been extracted, and core radii, half-light radii, and central surface brightness values have been measured for all of the clusters in the sample. Their comparison with the values from ground-based observations indicates the later to be systematically and strongly biased by the seeing effects, as it may be expected. A comparison of the structural parameters with those of the Galactic globulars shows that the structural properties of the M 31 globulars are very similar to those of their Galactic counterparts. A candidate for a post-core-collapse cluster, Bo 343 = G 105, has been already identified from these data; this is the first such detection in the M 31 globular cluster system.

  5. On the Direct Assimilation of Along-track Sea Surface Height Observations into a Free-surface Ocean Model Using a Weak Constraints Four Dimensional Variational (4dvar) Method

    NASA Astrophysics Data System (ADS)

    Ngodock, H.; Carrier, M.; Smith, S. R.; Souopgui, I.; Martin, P.; Jacobs, G. A.

    2016-02-01

    The representer method is adopted for solving a weak constraints 4dvar problem for the assimilation of ocean observations including along-track SSH, using a free surface ocean model. Direct 4dvar assimilation of SSH observations along the satellite tracks requires that the adjoint model be integrated with Dirac impulses on the right hand side of the adjoint equations for the surface elevation equation. The solution of this adjoint model will inevitably include surface gravity waves, and it constitutes the forcing for the tangent linear model (TLM) according to the representer method. This yields an analysis that is contaminated by gravity waves. A method for avoiding the generation of the surface gravity waves in the analysis is proposed in this study; it consists of removing the adjoint of the free surface from the right hand side (rhs) of the free surface mode in the TLM. The information from the SSH observations will still propagate to all other variables via the adjoint of the balance relationship between the barotropic and baroclinic modes, resulting in the correction to the surface elevation. Two assimilation experiments are carried out in the Gulf of Mexico: one with adjoint forcing included on the rhs of the TLM free surface equation, and the other without. Both analyses are evaluated against the assimilated SSH observations, SSH maps from Aviso and independent surface drifters, showing that the analysis that did not include adjoint forcing in the free surface is more accurate. This study shows that when a weak constraint 4dvar approach is considered for the assimilation of along-track SSH observations using a free surface model, with the aim of correcting the mesoscale circulation, an independent model error should not be assigned to the free surface.

  6. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  7. A new CM SAF Solar Surface Radiation Climate Data Set derived from Meteosat Satellite Observations

    NASA Astrophysics Data System (ADS)

    Trentmann, J.; Mueller, R. W.; Pfeifroth, U.; Träger-Chatterjee, C.; Cremer, R.

    2014-12-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. It is mandatory to monitor this part of the earth's energy balance, and thus gain insights on the state and variability of the climate system. In addition, data sets of the surface solar radiation have received increased attention over the recent years as an important source of information for the planning of solar energy applications. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. Here we present SARAH (Solar Surface Radiation Dataset - Heliosat), i.e. the new CM SAF Solar Surface Radiation data set based on Meteosat satellite observations. SARAH provides instantaneous, daily- and monthly-averaged data of the effective cloud albedo (CAL), the direct normalized solar radiation (DNI) and the solar irradiance (SIS) from 1983 to 2013 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05 deg allowing for detailed regional studies, and are available in netcdf-format at no cost without restrictions at www.cmsaf.eu. We provide an overview of the data sets, including a validation against reference measurements from the BSRN and GEBA surface station networks.

  8. Turbulence Kinetic Energy budget during the afternoon transition - Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    NASA Astrophysics Data System (ADS)

    Nilsson, E.; Lohou, F.; Lothon, M.; Pardyjak, E.; Mahrt, L.; Darbieu, C.

    2015-11-01

    The decay of turbulence kinetic energy (TKE) and its budget in the afternoon period from mid-day until zero buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign for 10 Intensive Observation Period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and meso-scale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near surface production of TKE is compensated by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of -0.69 was found for the afternoon period. For comparison with previous results, the TKE budget terms are normalized with

  9. Turbulence kinetic energy budget during the afternoon transition - Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    NASA Astrophysics Data System (ADS)

    Nilsson, Erik; Lohou, Fabienne; Lothon, Marie; Pardyjak, Eric; Mahrt, Larry; Darbieu, Clara

    2016-07-01

    The decay of turbulence kinetic energy (TKE) and its budget in the afternoon period from midday until zero-buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign for 10 intensive observation period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and mesoscale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near-surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near-surface production of TKE is compensated for by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of -0.69 was found for the afternoon period. For comparison with previous results, the TKE budget terms are normalized with

  10. River Discharge and Bathymetry Estimation from Hydraulic Inversion of Surface Currents and Water Surface Elevation Observations

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2015-12-01

    We developed an inversion model for river bathymetry and discharge estimation based on measurements of surface currents, water surface elevation and shoreline coordinates. The model uses a simplification of the 2D depth-averaged steady shallow water equations based on a streamline following system of coordinates and assumes spatially uniform bed friction coefficient and eddy viscosity. The spatial resolution of the predicted bathymetry is related to the resolution of the surface currents measurements. The discharge is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The inversion model was tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID. The measurements were obtained in August 2010 when the discharge was about 223 m3/s and the maximum river depth was about 6.5 m. Surface currents covering a 10 km reach with 8 m spatial resolution were estimated from airborne infrared video and were converted to depth-averaged currents using acoustic Doppler current profiler (ADCP) measurements along eight cross-stream transects. The streamwise profile of the water surface elevation was measured using real-time kinematic GPS from a drifting platform. The value of the friction coefficient was obtained from forward calibration simulations that minimized the difference between the predicted and measured velocity and water level along the river thalweg. The predicted along/cross-channel water depth variation was compared to the depth measured with a multibeam echo sounder. The rms error between the measured and predicted depth along the thalweg was found to be about 60cm and the estimated discharge was 5% smaller than the discharge measured by the ADCP.

  11. Greenland surface albedo changes in July 1981-2012 from satellite observations

    NASA Astrophysics Data System (ADS)

    He, Tao; Liang, Shunlin; Yu, Yunyue; Wang, Dongdong; Gao, Feng; Liu, Qiang

    2013-12-01

    Significant melting events over Greenland have been observed over the past few decades. This study presents an analysis of surface albedo change over Greenland using a 32-year consistent satellite albedo product from the global land surface satellite (GLASS) project together with ground measurements. Results show a general decreasing trend of surface albedo from 1981 to 2012 (-0.009 ± 0.002 decade-1, p < 0.01). However, a large decrease has occurred since 2000 (-0.028 ± 0.008 decade-1, p < 0.01) with most significant decreases at elevations between 1000 and 1500 m (-0.055 decade-1, p < 0.01) which may be associated with surface temperature increases. The surface radiative forcing from albedo changes is 2.73 W m-2 decade-1 and 3.06 W m-2 decade-1 under full-sky and clear-sky conditions, respectively, which indicates that surface albedo changes are likely to have a larger impact on the surface shortwave radiation budget than that caused by changes in the atmosphere over Greenland. A comparison made between satellite albedo products and data output from the Coupled Model Inter-comparison Project 5 (CMIP5) general circulation models (GCMs) shows that most of the CMIP5 models do not detect the significantly decreasing trends of albedo in recent decades. This suggests that more efforts are needed to improve our understanding and simulation of climate change at high latitudes.

  12. Isotachophoresis-Based Surface Immunoassay.

    PubMed

    Paratore, Federico; Zeidman Kalman, Tal; Rosenfeld, Tally; Kaigala, Govind V; Bercovici, Moran

    2017-07-18

    In the absence of amplification methods for proteins, the immune-detection of low-abundance proteins using antibodies is fundamentally limited by binding kinetic rates. Here, we present a new class of surface-based immunoassays in which protein-antibody reaction is accelerated by isotachophoresis (ITP). We demonstrate the use of ITP to preconcentrate and deliver target proteins to a surface decorated with specific antibodies, where effective utilization of the focused sample is achieved by modulating the driving electric field (stop-and-diffuse ITP mode) or applying a counter flow that opposes the ITP motion (counterflow ITP mode). Using enhanced green fluorescent protein (EGFP) as a model protein, we carry out an experimental optimization of the ITP-based immunoassay and demonstrate a 1300-fold improvement in limit of detection compared to a standard immunoassay, in a 6 min protein-antibody reaction. We discuss the design of buffer chemistries for other protein systems and, in concert with experiments, provide full analytical solutions for the two operation modes, elucidating the interplay between reaction, diffusion, and accumulation time scales and enabling the prediction and design of future immunoassays.

  13. The Cryospheres of Mars and Ceres - What thermal observations tell us about near surface ice.

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Li, J. Y.; Moullet, A.

    2017-12-01

    Mars and Ceres both have near surface water ice that forms a cryosphere at polar latitudes. Gamma ray and neutron observations have provided important constraints on the location and depths of the cryosphere for both planetary bodies, but these observations have very low spatial resolution [e.g. 1, 2]. Thermal observations, which are also sensitive to the presence of a near-surface cryosphere as demonstrated by several studies of Mars [e.g. 3, 4], provide additional constraints. Thermal observations can identify depth to the cryosphere (as long as it is within a few thermal skin depths) and water-ice stability. This presentation will compare both the similarities and the differences of these two planetary cryospheres, as well as the thermal observations from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) [5], the Atacama Large Millimeter/submillimeter Array (ALMA) [6], and publically available Dawn Visible Infrared spectrometer (VIR) [7]. The KRC thermal model [8] will use these observed surface temperatures to constrain depths to near surface ice (i.e. the cyropshere). References: [1] Feldman et al., 2002, Science, 297(5578), 75-78. [2] Prettyman et al., 2017, Science, 355(6320), 55-59. [3] Titus et al., 2003, Science, 299(5609), 1048-1051 [4] Mellon et al., 2008, JGR, 113(E12), CiteID E00A25. [5] Christensen et al., 1998, Science, 279(5357), 1692. [6] Wootten A. et al. (2015) IAU General Assembly, Meeting #29, #2237199 [7] de Santis et al., 2011, Space Science Reviews, 163(1-4), 329-369. [8] Kieffer, 2013, JGR, 118, Issue 3, pp. 451-470.

  14. Psychophysically based model of surface gloss perception

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.; Pellacini, Fabio; Greenberg, Donald P.

    2001-06-01

    In this paper we introduce a new model of surface appearance that is based on quantitative studies of gloss perception. We use image synthesis techniques to conduct experiments that explore the relationships between the physical dimensions of glossy reflectance and the perceptual dimensions of glossy appearance. The product of these experiments is a psychophysically-based model of surface gloss, with dimensions that are both physically and perceptually meaningful and scales that reflect our sensitivity to gloss variations. We demonstrate that the model can be used to describe and control the appearance of glossy surfaces in synthesis images, allowing prediction of gloss matches and quantification of gloss differences. This work represents some initial steps toward developing psychophyscial models of the goniometric aspects of surface appearance to complement widely-used colorimetric models.

  15. Observation of radiative surface plasmons in metal-oxide-metal tunnel junctions

    NASA Technical Reports Server (NTRS)

    Donohue, J. F.; Yang, E. Y.

    1986-01-01

    A peak in the UV region of the spectrum of light emitted from metal-oxide-metal (MOM) tunnel junctions has been observed at room temperature. Both the amplitude and wavelength of the peak are sensitive to applied junction bias. The UV peak corresponds to the normal or radiative surface plasmon mode while a visible peak, also present in the present spectra and reported in past MOM literature, is due to the tangential or nonradiative mode. The radiative mode requires no surface roughness or gratings for photon coupling. The results show that it is possible to obtain radiative surface plasmon production followed by a direct decay into photons with MOM tunnel diodes. A MOM diode with a double anode structure is found to emit light associated only with the nonradiative mode. The thickness dependence of the UV peak, along with the experimental results of the double anode MOM diode and the ratio of the UV peak to visible peak, support the contention that the UV light emission is indeed due to the radiative surface plasmon.

  16. Three-and-a-Half Mars Years of Surface Albedo Changes Observed by the Mars Reconnaissance Orbiter MARCI Investigation

    NASA Astrophysics Data System (ADS)

    Wellington, D. F.; Bell, J. F.

    2013-12-01

    The Mars Color Imager (MARCI) wide-angle camera aboard the Mars Reconnaissance Orbiter (MRO) has gathered over three-and-a-half Mars years' worth of observations at approximately 1 km/pixel resolution. The MARCI instrument has seven bands in the ultraviolet, visible, and near-infrared, five of which (the longer wavelength 420, 550, 600, 650, and 750 nm bands) are amenable to observations of surface albedo (the two short-wave ultraviolet bands are primarily intended for ozone measurements). MRO's near-polar orbit and MARCI's wide angle field-of-view (180°) allows it to make almost daily observations of large portions of the planet. As a global multi-year dataset, the MARCI observations are well-suited to examining surface albedo changes on both local and regional scales, including investigating any repeatability and seasonality in such changes. Because Mars displays considerable interannual variability, long-term continuous observations such as MARCI's are necessary in order to adequately describe and distinguish typical surface variance from unusual and longer-term secular changes. We have produced time-lapse animations of sections of the Martian surface from calibrated, map-projected, and mosaicked MARCI observations, altogether comprising the surface of Mars within +/- 65 degrees of the equator. These animations show many albedo changes that have occurred on the surface since 2006, including changes in traditionally variable regions such as Syrtis Major, Alcyonius, Hyblaeus, and Cerberus, as well as a dramatic brightening of Propontis and variations in the appearance and orientation of mesoscale linear streaks in Amazonis. Many regions show alternating periods of dust deposition and removal that, while not producing a persistent change in the surface albedo, nevertheless yield information on the local near-surface conditions that drive these variations. We present a descriptive classification of the types and locations of surface albedo changes observed on Mars

  17. Sensitivity of Spacebased Microwave Radiometer Observations to Ocean Surface Evaporation

    NASA Technical Reports Server (NTRS)

    Liu, Timothy W.; Li, Li

    2000-01-01

    Ocean surface evaporation and the latent heat it carries are the major components of the hydrologic and thermal forcing on the global oceans. However, there is practically no direct in situ measurements. Evaporation estimated from bulk parameterization methods depends on the quality and distribution of volunteer-ship reports which are far less than satisfactory. The only way to monitor evaporation with sufficient temporal and spatial resolutions to study global environment changes is by spaceborne sensors. The estimation of seasonal-to-interannual variation of ocean evaporation, using spacebased measurements of wind speed, sea surface temperature (SST), and integrated water vapor, through bulk parameterization method,s was achieved with reasonable success over most of the global ocean, in the past decade. Because all the three geophysical parameters can be retrieved from the radiance at the frequencies measured by the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, the feasibility of retrieving evaporation directly from the measured radiance was suggested and demonstrated using coincident brightness temperatures observed by SMMR and latent heat flux computed from ship data, in the monthly time scale. However, the operational microwave radiometers that followed SMMR, the Special Sensor Microwave/Imager (SSM/I), lack the low frequency channels which are sensitive to SST. This low frequency channels are again included in the microwave imager (TMI) of the recently launched Tropical Rain Measuring Mission (TRMM). The radiance at the frequencies observed by both TMI and SSM/I were simulated through an atmospheric radiative transfer model using ocean surface parameters and atmospheric temperature and humidity profiles produced by the reanalysis of the European Center for Medium Range Weather Forecast (ECMWF). From the same ECMWF data set, coincident evaporation is computed using a surface layer turbulent transfer model. The sensitivity of the radiance to

  18. Comparing Vesta's Surface Roughness to the Moon Using Bistatic Radar Observations by the Dawn Mission

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Kofman, W. W.; Moghaddam, M.

    2015-12-01

    The first orbital bistatic radar (BSR) observations of a small body have been conducted opportunistically by NASA's Dawn spacecraft at Asteroid Vesta using the telecommunications antenna aboard Dawn to transmit and the Deep Space Network 70-meter antennas on Earth to receive. Dawn's high-gain communications antenna continuously transmitted right-hand circularly polarized radio waves (4-cm wavelength), and due to the opportunistic nature of the experiment, remained in a fixed orientation pointed toward Earth throughout each BSR observation. As a consequence, Dawn's transmitted radio waves scattered from Vesta's surface just before and after each occultation of the Dawn spacecraft behind Vesta, resulting in surface echoes at highly oblique incidence angles of greater than 85 degrees, and a small Doppler shift of ~2 Hz between the carrier signal and surface echoes from Vesta. We analyze the power and Doppler spreading of Vesta's surface echoes to assess surface roughness, and find that Vesta's area-normalized radar cross section ranges from -8 to -17 dB, which is notably much stronger than backscatter radar cross section values reported for the Moon's limbs (-20 to -35 dB). However, our measurements correspond to the forward scattering regime--such that at high incidence, radar waves are expected to scatter more weakly from a rough surface in the backscatter direction than that which is scattered forward. Using scattering models of rough surfaces observed at high incidence, we report on the relative roughness of Vesta's surface as compared to the Moon and icy Galilean satellites. Through this, we assess the dominant processes that have influenced Vesta's surface roughness at centimeter and decimeter scales, which are in turn applicable to assisting future landing, sampling and orbital missions of other small bodies.

  19. Global Monitoring of Martian Surface Albedo Changes from Orbital Observations

    NASA Astrophysics Data System (ADS)

    Geissler, P.; Enga, M.; Mukherjee, P.

    2013-12-01

    Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place

  20. Investigate the complex process in particle-fluid based surface generation technology using reactive molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Han, Xuesong; Li, Haiyan; Zhao, Fu

    2017-07-01

    Particle-fluid based surface generation process has already become one of the most important materials processing technology for many advanced materials such as optical crystal, ceramics and so on. Most of the particle-fluid based surface generation technology involves two key process: chemical reaction which is responsible for surface softening; physical behavior which is responsible for materials removal/deformation. Presently, researchers cannot give a reasonable explanation about the complex process in the particle-fluid based surface generation technology because of the small temporal-spatial scale and the concurrent influence of physical-chemical process. Molecular dynamics (MD) method has already been proved to be a promising approach for constructing effective model of atomic scale phenomenon and can serve as a predicting simulation tool in analyzing the complex surface generation mechanism and is employed in this research to study the essence of surface generation. The deformation and piles of water molecule is induced with the feeding of abrasive particle which justifies the property mutation of water at nanometer scale. There are little silica molecule aggregation or materials removal because the water-layer greatly reduce the strength of mechanical interaction between particle and materials surface and minimize the stress concentration. Furthermore, chemical effect is also observed at the interface: stable chemical bond is generated between water and silica which lead to the formation of silconl and the reaction rate changes with the amount of water molecules in the local environment. Novel ring structure is observed in the silica surface and it is justified to be favored of chemical reaction with water molecule. The siloxane bond formation process quickly strengthened across the interface with the feeding of abrasive particle because of the compressive stress resulted by the impacting behavior.

  1. Comparison of Satellite Observations of Nitrogen Dioxide to Surface Monitor Nitrogen Dioxide Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; Pippin, Margaret R.; Pierce, R. Bradley; Neil, Doreen O.; Lingenfelser, Gretchen; Szykman, James J.

    2006-01-01

    Nitrogen dioxide is one of the U. S. EPA s criteria pollutants, and one of the main ingredients needed for the production of ground-level ozone. Both ozone and nitrogen dioxide cause severe public health problems. Existing satellites have begun to produce observational data sets for nitrogen dioxide. Under NASAs Earth Science Applications Program, we examined the relationship between satellite observations and surface monitor observations of this air pollutant to examine if the satellite data can be used to facilitate a more capable and integrated observing network. This report provides a comparison of satellite tropospheric column nitrogen dioxide to surface monitor nitrogen dioxide concentration for the period from September 1996 through August 1997 at more than 300 individual locations in the continental US. We found that the spatial resolution and observation time of the satellite did not capture the variability of this pollutant as measured at ground level. The tools and processes developed to conduct this study will be applied to the analysis of advanced satellite observations. One advanced instrument has significantly better spatial resolution than the measurements studied here and operates with an afternoon overpass time, providing a more representative distribution for once-per-day sampling of this photochemically active atmospheric constituent.

  2. Observations During GRIP from HIRAD: Ocean Surface Wind Speed and Rain Rate

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Jones, L.; Ruf, C. S.; Uhlhorn, E. W.; Bailey, M. C.; Buckley, C. D.; Simmons, D. E.; Johnstone, S.; Peterson, A.; hide

    2011-01-01

    HIRAD (Hurricane Imaging Radiometer) flew on the WB-57 during NASA's GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be inferred. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years. The advantage of HIRAD over SFMR is that HIRAD can observe a +/- 60-degree swath, rather than a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. To the extent possible, comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  3. Observations and simulations of microplastic marine debris in the ocean surface boundary layer

    NASA Astrophysics Data System (ADS)

    Kukulka, T.; Brunner, K.; Proskurowski, G. K.; Lavender Law, K. L.

    2016-02-01

    Motivated by observations of buoyant microplastic marine debris (MPMD) in the ocean surface boundary layer (OSBL), this study applies a large eddy simulation model and a parametric one-dimensional column model to examine vertical distributions of MPMD. MPMD is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant whose distribution is subject to upper ocean turbulence. The models capture wind-driven turbulence, Langmuir turbulence (LT), and enhanced turbulent kinetic energy input due to breaking waves (BW). Model results are only consistent with MPMD observations if LT effects are included. Neither BW nor shear-driven turbulence is capable of deeply submerging MPMD, suggesting that the observed vertical MPMD distributions are a characteristic signature of wave-driven LT. Thus, this study demonstrates that LT substantially increases turbulent transport in the OSBL, resulting in deep submergence of buoyant tracers. The parametric model is applied to eleven years of observations in the North Atlantic and North Pacific subtropical gyres to show that surface measurements substantially underestimate MPMD concentrations by a factor of three to thirteen.

  4. Carbon-based nanostructured surfaces for enhanced phase-change cooling

    NASA Astrophysics Data System (ADS)

    Selvaraj Kousalya, Arun

    To maintain acceptable device temperatures in the new generation of electronic devices under development for high-power applications, conventional liquid cooling schemes will likely be superseded by multi-phase cooling solutions to provide substantial enhancement to the cooling capability. The central theme of the current work is to investigate the two-phase thermal performance of carbon-based nanostructured coatings in passive and pumped liquid-vapor phase-change cooling schemes. Quantification of the critical parameters that influence thermal performance of the carbon nanostructured boiling surfaces presented herein will lead to improved understanding of the underlying evaporative and boiling mechanisms in such surfaces. A flow boiling experimental facility is developed to generate consistent and accurate heat transfer performance curves with degassed and deionized water as the working fluid. New means of boiling heat transfer enhancement by altering surface characteristics such as surface energy and wettability through light-surface interactions is explored in this work. In this regard, carbon nanotube (CNT) coatings are exposed to low-intensity irradiation emitted from a light emitting diode and the subcooled flow boiling performance is compared against a non-irradiated CNT-coated copper surface. A considerable reduction in surface superheat and enhancement in average heat transfer coefficient is observed. In another work involving CNTs, the thermal performance of CNT-integrated sintered wick structures is evaluated in a passively cooled vapor chamber. A physical vapor deposition process is used to coat the CNTs with varying thicknesses of copper to promote surface wetting with the working fluid, water. Thermal performance of the bare sintered copper powder sample and the copper-functionalized CNT-coated sintered copper powder wick samples is compared using an experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber

  5. Observations-based GPP estimates

    NASA Astrophysics Data System (ADS)

    Joiner, J.; Yoshida, Y.; Jung, M.; Tucker, C. J.; Pinzon, J. E.

    2017-12-01

    We have developed global estimates of gross primary production based on a relatively simple satellite observations-based approach using reflectance data from the MODIS instruments in the form of vegetation indices that provide information about photosynthetic capacity at both high temporal and spatial resolution and combined with information from chlorophyll solar-induced fluorescence from the Global Ozone Monitoring Experiment-2 instrument that is noisier and available only at lower temporal and spatial scales. We compare our gross primary production estimates with those from eddy covariance flux towers and show that they are competitive with more complicated extrapolated machine learning gross primary production products. Our results provide insight into the amount of variance in gross primary production that can be explained with satellite observations data and also show how processing of the satellite reflectance data is key to using it for accurate GPP estimates.

  6. Prospects for Near Ultraviolet Astronomical Observations from the Lunar Surface — LUCI

    NASA Astrophysics Data System (ADS)

    Mathew, J.; Kumar, B.; Sarpotdar, M.; Suresh, A.; Nirmal, K.; Sreejith, A. G.; Safonova, M.; Murthy, J.; Brosch, N.

    2018-04-01

    We have explored the prospects for UV observations from the lunar surface and developed a UV telescope (LUCI-Lunar Ultraviolet Cosmic Imager) to put on the Moon, with the aim to detect bright UV transients such as SNe, novae, TDE, etc.

  7. Full 2D observation of water surface elevation from SWOT under different flow conditions

    NASA Astrophysics Data System (ADS)

    Domeneghetti, Alessio; Schumann, Guy; Rui, Wei; Durand, Michael; Pavelsky, Tamlin

    2016-04-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA, Centre National d'Etudes Spatiales (CNES, France), the Canadian Space Agency, and the Space Agency of the UK that will provide a first global, high-resolution observation of ocean and terrestrial water surface heights. Characterized by an observation swath of 120 km and an orbit repeat interval of about 21 days, SWOT will provide unprecedented bi-dimensional observations of rivers wider than 50-100 m. Despite many research activities that have investigated potential uses of remotely sensed data from SWOT, potentials and limitations of the spatial observations provided by the satellite mission for flood modeling still remain poorly understood and investigated. In this study we present a first analysis of the spatial observation of water surface elevation that is expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 200-500 m in width and a floodplain that can be as wide as 5 km and that is delimited by a system of major embankments. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2d model built with detailed topographic and bathymetric information (LiDAR, 2 m resolution), while the simulation of the spatial observation sensed by SWOT is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow reproduced by means of the quasi-2d numerical model) this work provides a first characterization of the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. By referring to a real river reach the analysis provides a credible example of the type of spatial observations that will be available after launch of SWOT and offers a first

  8. Development of gridded solar radiation data over Belgium based on Meteosat and in-situ observations

    NASA Astrophysics Data System (ADS)

    Journée, Michel; Vanderveken, Gilles; Bertrand, Cédric

    2013-04-01

    Knowledge on solar resources is highly important for all forms of solar energy applications. With the recent development in solar-based technologies national meteorological services are faced with increasing demands for high-quality and reliable site-time specific solar resource information. Traditionally, solar radiation is observed by means of networks of meteorological stations. Costs for installation and maintenance of such networks are very high and national networks comprise only few stations. Consequently the availability of ground-based solar radiation measurements has proven to be spatially and temporally inadequate for many applications. To overcome such a limitation, a major effort has been undertaken at the Royal Meteorological Institute of Belgium (RMI) to provide the solar energy industry, the electricity sector, governments, and renewable energy organizations and institutions with the most suitable and accurate information on the solar radiation resources at the Earth's surface over the Belgian territory. Only space-based observations can deliver a global coverage of the solar irradiation impinging on horizontal surface at the ground level. Because only geostationary data allow to capture the diurnal cycle of the solar irradiance at the Earth's surface, a method that combines information from Meteosat Second Generation satellites and ground-measurement has been implemented at RMI to generate high resolution solar products over Belgium on an operational basis. Besides these new products, the annual and seasonal variability of solar energy resource was evaluated, solar radiation climate zones were defined and the recent trend in solar radiation was characterized.

  9. Lunar base surface mission operations. Lunar Base Systems Study (LBSS) task 4.1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The purpose was to perform an analysis of the surface operations associated with a human-tended lunar base. Specifically, the study defined surface elements and developed mission manifests for a selected base scenario, determined the nature of surface operations associated with this scenario, generated a preliminary crew extravehicular and intravehicular activity (EVA/IVA) time resource schedule for conducting the missions, and proposed concepts for utilizing remotely operated equipment to perform repetitious or hazardous surface tasks. The operations analysis was performed on a 6 year period of human-tended lunar base operation prior to permanent occupancy. The baseline scenario was derived from a modified version of the civil needs database (CNDB) scenario. This scenario emphasizes achievement of a limited set of science and exploration objectives while emplacing the minimum habitability elements required for a permanent base.

  10. Two decades [1992-2012] of surface wind analyses based on satellite scatterometer observations

    NASA Astrophysics Data System (ADS)

    Desbiolles, Fabien; Bentamy, Abderrahim; Blanke, Bruno; Roy, Claude; Mestas-Nuñez, Alberto M.; Grodsky, Semyon A.; Herbette, Steven; Cambon, Gildas; Maes, Christophe

    2017-04-01

    Surface winds (equivalent neutral wind velocities at 10 m) from scatterometer missions since 1992 have been used to build up a 20-year climate series. Optimal interpolation and kriging methods have been applied to continuously provide surface wind speed and direction estimates over the global ocean on a regular grid in space and time. The use of other data sources such as radiometer data (SSM/I) and atmospheric wind reanalyses (ERA-Interim) has allowed building a blended product available at 1/4° spatial resolution and every 6 h from 1992 to 2012. Sampling issues throughout the different missions (ERS-1, ERS-2, QuikSCAT, and ASCAT) and their possible impact on the homogeneity of the gridded product are discussed. In addition, we assess carefully the quality of the blended product in the absence of scatterometer data (1992 to 1999). Data selection experiments show that the description of the surface wind is significantly improved by including the scatterometer winds. The blended winds compare well with buoy winds (1992-2012) and they resolve finer spatial scales than atmospheric reanalyses, which make them suitable for studying air-sea interactions at mesoscale. The seasonal cycle and interannual variability of the product compare well with other long-term wind analyses. The product is used to calculate 20-year trends in wind speed, as well as in zonal and meridional wind components. These trends show an important asymmetry between the southern and northern hemispheres, which may be an important issue for climate studies.

  11. Observed Reduction In Surface Solar Radiation - Aerosol Forcing Versus Cloud Feedback?

    NASA Astrophysics Data System (ADS)

    Liepert, B.

    The solar radiation reaching the ground is a key parameter for the climate system. It drives the hydrological cycle and numerous biological processes. Surface solar radi- ation revealed an estimated 7W/m2 or 4% decline at sites worldwide from 1961 to 1990. The strongest decline occurred at the United States sites with 19W/m2 or 10%. Increasing air pollution and hence direct and indirect aerosol effect, as we know today can only explain part of the reduction in solar radiation. Increasing cloud optical thick- ness - possibly due to global warming - is a more likely explanation for the observed reduction in solar radiation in the United States. The analysis of surface solar radiation data will be shown and compared with GCM results of the direct and indirect aerosol effect. It will be argued that the residual declines in surface solar radiation is likely due to cloud feedback.

  12. K-band observations of boxy bulges - I. Morphology and surface brightness profiles

    NASA Astrophysics Data System (ADS)

    Bureau, M.; Aronica, G.; Athanassoula, E.; Dettmar, R.-J.; Bosma, A.; Freeman, K. C.

    2006-08-01

    In this first paper of a series on the structure of boxy and peanut-shaped (B/PS) bulges, Kn-band observations of a sample of 30 edge-on spiral galaxies are described and discussed. Kn-band observations best trace the dominant luminous galactic mass and are minimally affected by dust. Images, unsharp-masked images, as well as major-axis and vertically summed surface brightness profiles are presented and discussed. Galaxies with a B/PS bulge tend to have a more complex morphology than galaxies with other bulge types, more often showing centred or off-centred X structures, secondary maxima along the major-axis and spiral-like structures. While probably not uniquely related to bars, those features are observed in three-dimensional N-body simulations of barred discs and may trace the main bar orbit families. The surface brightness profiles of galaxies with a B/PS bulge are also more complex, typically containing three or more clearly separated regions, including a shallow or flat intermediate region (Freeman Type II profiles). The breaks in the profiles offer evidence for bar-driven transfer of angular momentum and radial redistribution of material. The profiles further suggest a rapid variation of the scaleheight of the disc material, contrary to conventional wisdom but again as expected from the vertical resonances and instabilities present in barred discs. Interestingly, the steep inner region of the surface brightness profiles is often shorter than the isophotally thick part of the galaxies, itself always shorter than the flat intermediate region of the profiles. The steep inner region is also much more prominent along the major-axis than in the vertically summed profiles. Similarly to other recent work but contrary to the standard `bulge + disc' model (where the bulge is both thick and steep), we thus propose that galaxies with a B/PS bulge are composed of a thin concentrated disc (a disc-like bulge) contained within a partially thick bar (the B/PS bulge), itself

  13. Observed Changes at the Surface of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ortmeyer, M.; Rigor, I.

    2004-12-01

    The Arctic has long been considered a harbinger of global climate change since simulations with global climate models predict that if the concentration of CO2 in the atmosphere doubles, the Arctic would warm by more than 5°C, compared to a warming of 2°C for subpolar regions (Manabe et al., 1991). And indeed, studies of the observational records show polar amplification of the warming trends (e.g. Serreze and Francis, 2004). These temperature trends are accompanied by myriad concurrent changes in Arctic climate. One of the first indicators of Arctic climate change was found by Walsh et al. (1996) using sea level pressure (SLP) data from the International Arctic Buoy Programme (IABP, http://iabp.apl.washington.edu). In this study, they showed that SLP over the Arctic Ocean decreased by over 4 hPa from 1979 - 1994. The decreases in SLP (winds) over the Arctic Ocean, forced changes in the circulation of sea ice and the surface ocean currents such that the Beaufort Gyre is reduced in size and speed (e.g. Rigor et al., 2002). Data from the IABP has also been assimilated into the global surface air temperature (SAT) climatologies (e.g. Jones et al. 1999), and the IABP SAT analysis shows that the temperature trends noted over land extend out over the Arctic Ocean. Specifically, Rigor et al. (2000) found warming trends in SAT over the Arctic Ocean during win¬ter and spring, with values as high as 2°C/decade in the eastern Arctic during spring. It should be noted that many of the changes in Arctic climate were first observed or explained using data from the IABP. The observations from IABP have been one of the cornerstones for environmental forecasting and studies of climate and climate change. These changes have a profound impact on wildlife and people. Many species and cultures depend on the sea ice for habitat and subsistence. Thus, monitoring the Arctic Ocean is crucial not only for our ability to detect climate change, but also to improve our understanding of the

  14. Acid base properties of cyanobacterial surfaces I: Influences of growth phase and nitrogen metabolism on cell surface reactivity

    NASA Astrophysics Data System (ADS)

    Lalonde, S. V.; Smith, D. S.; Owttrim, G. W.; Konhauser, K. O.

    2008-03-01

    Significant efforts have been made to elucidate the chemical properties of bacterial surfaces for the purposes of refining surface complexation models that can account for their metal sorptive behavior under diverse conditions. However, the influence of culturing conditions on surface chemical parameters that are modeled from the potentiometric titration of bacterial surfaces has received little regard. While culture age and metabolic pathway have been considered as factors potentially influencing cell surface reactivity, statistical treatments have been incomplete and variability has remained unconfirmed. In this study, we employ potentiometric titrations to evaluate variations in bacterial surface ligand distributions using live cells of the sheathless cyanobacterium Anabaena sp. strain PCC 7120, grown under a variety of batch culture conditions. We evaluate the ability for a single set of modeled parameters, describing acid-base surface properties averaged over all culture conditions tested, to accurately account for the ligand distributions modeled for each individual culture condition. In addition to considering growth phase, we assess the role of the various assimilatory nitrogen metabolisms available to this organism as potential determinants of surface reactivity. We observe statistically significant variability in site distribution between the majority of conditions assessed. By employing post hoc Tukey-Kramer analysis for all possible pair-wise condition comparisons, we conclude that the average parameters are inadequate for the accurate chemical description of this cyanobacterial surface. It was determined that for this Gram-negative bacterium in batch culture, ligand distributions were influenced to a greater extent by nitrogen assimilation pathway than by growth phase.

  15. A physically based model of global freshwater surface temperature

    NASA Astrophysics Data System (ADS)

    Beek, Ludovicus P. H.; Eikelboom, Tessa; Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  16. Empirical Relationships Among Magnitude and Surface Rupture Characteristics of Strike-Slip Faults: Effect of Fault (System) Geometry and Observation Location, Dervided From Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Arrowsmith, J.

    2007-12-01

    In order to determine the magnitude of pre-historic earthquakes, surface rupture length, average and maximum surface displacement are utilized, assuming that an earthquake of a specific size will cause surface features of correlated size. The well known Wells and Coppersmith (1994) paper and other studies defined empirical relationships between these and other parameters, based on historic events with independently known magnitude and rupture characteristics. However, these relationships show relatively large standard deviations and they are based only on a small number of events. To improve these first-order empirical relationships, the observation location relative to the rupture extent within the regional tectonic framework should be accounted for. This however cannot be done based on natural seismicity because of the limited size of datasets on large earthquakes. We have developed the numerical model FIMozFric, based on derivations by Okada (1992) to create synthetic seismic records for a given fault or fault system under the influence of either slip- or stress boundary conditions. Our model features A) the introduction of an upper and lower aseismic zone, B) a simple Coulomb friction law, C) bulk parameters simulating fault heterogeneity, and D) a fault interaction algorithm handling the large number of fault patches (typically 5,000-10,000). The joint implementation of these features produces well behaved synthetic seismic catalogs and realistic relationships among magnitude and surface rupture characteristics which are well within the error of the results by Wells and Coppersmith (1994). Furthermore, we use the synthetic seismic records to show that the relationships between magntiude and rupture characteristics are a function of the observation location within the regional tectonic framework. The model presented here can to provide paleoseismologists with a tool to improve magnitude estimates from surface rupture characteristics, by incorporating the

  17. Surface-Potential-Based Metal-Oxide-Silicon-Varactor Model for RF Applications

    NASA Astrophysics Data System (ADS)

    Miyake, Masataka; Sadachika, Norio; Navarro, Dondee; Mizukane, Yoshio; Matsumoto, Kenji; Ezaki, Tatsuya; Miura-Mattausch, Mitiko; Mattausch, Hans Juergen; Ohguro, Tatsuya; Iizuka, Takahiro; Taguchi, Masahiko; Kumashiro, Shigetaka; Miyamoto, Shunsuke

    2007-04-01

    We have developed a surface-potential-based metal-oxide-silicon (MOS)-varactor model valid for RF applications up to 200 GHz. The model enables the calculation of the MOS-varactor capacitance seamlessly from the depletion region to the accumulation region and explicitly considers the carrier-response delay causing a non-quasi-static (NQS) effect. It has been observed that capacitance reduction due to this non-quasi-static effect limits the MOS-varactor application to an RF regime.

  18. Constraining the physical properties of compositionally distinctive surfaces on Mars from overlapping THEMIS observations

    NASA Astrophysics Data System (ADS)

    Ahern, A.; Rogers, D.

    2017-12-01

    Better constraints on the physical properties (e.g. grain size, rock abundance, cohesion, porosity and amount of induration) of Martian surface materials can lead to greater understanding of outcrop origin (e.g. via sedimentary, effusive volcanic, pyroclastic processes). Many outcrop surfaces on Mars likely contain near-surface (<3 cm) vertical heterogeneity in physical properties due to thin sediment cover, induration, and physical weathering, that can obscure measurement of the bulk thermal conductivity of the outcrop materials just below. Fortunately, vertical heterogeneity within near-surface materials can result in unique, and possibly predictable, diurnal and seasonal temperature patterns. The KRC thermal model has been utilized in a number of previous studies to predict thermal inertia of surface materials on Mars. Here we use KRC to model surface temperatures from overlapping Mars Odyssey THEMIS surface temperature observations that span multiple seasons and local times, in order to constrain both the nature of vertical heterogeneity and the underlying outcrop thermal inertia for various spectrally distinctive outcrops on Mars. We utilize spectral observations from TES and CRISM to constrain the particle size of the uppermost surface. For this presentation, we will focus specifically on chloride-bearing units in Terra Sirenum and Meridiani Planum, as well as mafic and feldspathic bedrock locations with distinct spectral properties, yet uncertain origins, in Noachis Terra and Nili Fossae. We find that many of these surfaces exhibit variations in apparent thermal inertia with season and local time that are consistent with low thermal inertia materials overlying higher thermal inertia substrates. Work is ongoing to compare surface temperature measurements with modeled two-layer scenarios in order to constrain the top layer thickness and bottom layer thermal inertia. The information will be used to better interpret the origins of these distinctive outcrops.

  19. Devices based on surface plasmon interference filters

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2001-01-01

    Devices based on surface plasmon filters having at least one metal-dielectric interface to support surface plasmon waves. A multi-layer-coupled surface plasmon notch filter is provided to have more than two symmetric metal-dielectric interfaces coupled with one another to produce a transmission spectral window with desired spectral profile and bandwidth. Such notch filters can form various color filtering devices for color flat panel displays.

  20. Dry etching, surface passivation and capping processes for antimonide based photodetectors

    NASA Astrophysics Data System (ADS)

    Dutta, Partha; Langer, Jeffery; Bhagwat, Vinay; Juneja, Jasbir

    2005-05-01

    III-V antimonide based devices suffer from leakage currents. Surface passivation and subsequent capping of the surfaces are absolutely essential for any practical applicability of antimonide based devices. The quest for a suitable surface passivation technology is still on. In this paper, we will present some of the promising recent developments in this area based on dry etching of GaSb based homojunction photodiodes structures followed by various passivation and capping schemes. We have developed a damage-free, universal dry etching recipe based on unique ratios of Cl2/BCl3/CH4/Ar/H2 in ECR plasma. This novel dry plasma process etches all III-V compounds at different rates with minimal damage to the side walls. In GaSb based photodiodes, an order of magnitude lower leakage current, improved ideality factor and higher responsivity has been demonstrated using this recipe compared to widely used Cl2/Ar and wet chemical etch recipes. The dynamic zero bias resistance-area product of the Cl2/BCl3/CH4/Ar/H2 etched diodes (830 Ω cm2) is higher than the Cl2/Ar (300 Ω cm2) and wet etched (330 Ω cm2) diodes. Ammonium sulfide has been known to passivate surfaces of III-V compounds. In GaSb photodiodes, the leakage current density reduces by a factor of 3 upon sulfur passivation using ammonium sulfide. However, device performance degrades over a period of time in the absence of any capping or protective layer. Silicon Nitride has been used as a cap layer by various researchers. We have found that by using silicon nitride caps, the devices exhibit higher leakage than unpassivated devices probably due to plasma damage during SiNx deposition. We have experimented with various polymers for capping material. It has been observed that ammonium sulfide passivation when combined with parylene capping layer (150 Å), devices retain their improved performance for over 4 months.

  1. Myrtle Beach AFB South Carolina. Revised Uniform Summary of Surface Weather Observations. Parts A-F

    DTIC Science & Technology

    1975-07-03

    DATA PROCESSING BRNCm2 TAC/USAF SURFACE WINDS AIP wATHER SERVIC/?AL PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS...TRANS MONI, ALL WATHER 1200-1400 CLAM MUES (L.$,t.) ( CONDITION SPEED MEAN (KNTS) i’ 4-6 7. 10 11. 16 17.21 22 .27 28 . 33 34.40 41 .47 48 • !5 ;t56...PRUCESSING BRANCH 2ETAC/USAF SURFACE WINDSAIR wATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 13717

  2. Robust passive control for a class of uncertain neutral systems based on sliding mode observer.

    PubMed

    Liu, Zhen; Zhao, Lin; Kao, Yonggui; Gao, Cunchen

    2017-01-01

    The passivity-based sliding mode control (SMC) problem for a class of uncertain neutral systems with unmeasured states is investigated. Firstly, a particular non-fragile state observer is designed to generate the estimations of the system states, based upon which a novel integral-type sliding surface function is established for the control process. Secondly, a new sufficient condition for robust asymptotic stability and passivity of the resultant sliding mode dynamics (SMDs) is obtained in terms of linear matrix inequalities (LMIs). Thirdly, the finite-time reachability of the predesigned sliding surface is ensured by resorting to a novel adaptive SMC law. Finally, the validity and superiority of the scheme are justified via several examples. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Effect of artificial aging on the surface roughness and microhardness of resin-based materials.

    PubMed

    Santos, M Jacinta M C; Rêgo, Heleine Maria Chagas; Mukhopadhyay, Anuradha; El Najjar, Mai; Santos, Gildo C

    2016-01-01

    This study sought to verify the effects of aging on the surface roughness (Ra) and microhardness (Knoop hardness number [KHN]) of resin-based restorative materials protected with a surface sealer. Disc specimens of 2 resin-modified glass ionomers (RMGIs) and 1 composite resin (CR) were fabricated in a metal mold. Specimens of each material were divided into 1 group that was covered with surface sealer and 1 group that was not. Both groups of each material were then subdivided according to whether they were stored (aged) in cola or distilled water. Surface roughness and KHN values were obtained from each specimen before and after storage. After aging of the specimens, significantly higher Ra values were observed in the 2 RMGIs when they were not covered with a surface sealer, while the CR was not affected. The KHN values varied by materials and storage conditions (with and without a surface sealer). All the groups with a surface sealer exhibited increased Ra values after aging.

  4. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures.

    PubMed

    Müller, Frank A; Kunz, Clemens; Gräf, Stephan

    2016-06-15

    Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.

  5. Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations

    NASA Astrophysics Data System (ADS)

    Niiler, Pearn P.; Maximenko, Nikolai A.; McWilliams, James C.

    2003-11-01

    The 1992-2002 time-mean absolute sea level distribution of the global ocean is computed for the first time from observations of near-surface velocity. For this computation, we use the near-surface horizontal momentum balance. The velocity observed by drifters is used to compute the Coriolis force and the force due to acceleration of water parcels. The anomaly of horizontal pressure gradient is derived from satellite altimetry and corrects the temporal bias in drifter data distribution. NCEP reanalysis winds are used to compute the force due to Ekman currents. The mean sea level gradient force, which closes the momentum balance, is integrated for mean sea level. We find that our computation agrees, within uncertainties, with the sea level computed from the geostrophic, hydrostatic momentum balance using historical mean density, except in the Antarctic Circumpolar Current. A consistent horizontally and vertically dynamically balanced, near-surface, global pressure field has now been derived from observations.

  6. Role of subsurface physics in the assimilation of surface soil moisture observations

    USDA-ARS?s Scientific Manuscript database

    Soil moisture controls the exchange of water and energy between the land surface and the atmosphere and exhibits memory that may be useful for climate prediction at monthly time scales. Though spatially distributed observations of soil moisture are increasingly becoming available from remotely sense...

  7. Tensile bond strength of silicone-based soft denture liner to two chemically different denture base resins after various surface treatments.

    PubMed

    Akin, Hakan; Tugut, Faik; Guney, Umit; Kirmali, Omer; Akar, Turker

    2013-01-01

    This study evaluated the effect of various surface treatments on the tensile bond strength of a silicone-based soft denture liner to two chemically different denture base resins, heat-cured polymethyl methacrylate (PMMA), and light-activated urethane dimethacrylate or Eclipse denture base resin. PMMA test specimens were fabricated and relined with a silicone-based soft denture liner (group AC). Eclipse test specimens were prepared according to the manufacturer's recommendation. Before they were relined with a silicone-based soft denture liner, each received one of three surface treatments: untreated (control, group EC), Eclipse bonding agent applied (group EB), and laser-irradiated (group EL). Tensile bond strength tests (crosshead speed = 5 mm/min) were performed for all specimens, and the results were analyzed using the analysis of variance followed by Tukey's test (p = 0.05). Eclipse denture base and PMMA resins presented similar bond strengths to the silicone-based soft denture liner. The highest mean force was observed in group EL specimens, and the tensile bond strengths in group EL were significantly different (p < 0.05) from those in the other groups.

  8. Top-Down CO Emissions Based On IASI Observations and Hemispheric Constraints on OH Levels

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Stavrakou, T.; Bauwens, M.; George, M.; Hurtmans, D.; Coheur, P.-F.; Clerbaux, C.; Sweeney, C.

    2018-02-01

    Assessments of carbon monoxide emissions through inverse modeling are dependent on the modeled abundance of the hydroxyl radical (OH) which controls both the primary sink of CO and its photochemical source through hydrocarbon oxidation. However, most chemistry transport models (CTMs) fall short of reproducing constraints on hemispherically averaged OH levels derived from methylchloroform (MCF) observations. Here we construct five different OH fields compatible with MCF-based analyses, and we prescribe those fields in a global CTM to infer CO fluxes based on Infrared Atmospheric Sounding Interferometer (IASI) CO columns. Each OH field leads to a different set of optimized emissions. Comparisons with independent data (surface, ground-based remotely sensed, aircraft) indicate that the inversion adopting the lowest average OH level in the Northern Hemisphere (7.8 × 105 molec cm-3, ˜18% lower than the best estimate based on MCF measurements) provides the best overall agreement with all tested observation data sets.

  9. External Surface Changes Observed on the International Space Station (ISS) Through 2012

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2012-01-01

    As the International Space Station (ISS) surpasses 13 years of on-orbit operation, 11 of those years continuously inhabited, external surfaces of the vehicle have shown a wide variety of visible environmental effects. Throughout, the ISS program has maintained a significant effort to routinely document the vehicle external surface condition and to monitor those changes with time. The impacts of micrometeoroids and orbital debris, surface changes from molecular contamination of various sources, and the effects of ultraviolet radiation and atomic oxygen have all been noted. The tremendous size and complexity of the ISS vehicle has yielded a wide variety of observations of interest to the spacecraft materials engineer concerning long-term, low earth orbit (LEO) space environmental effects (SEE). In addition, inadvertent materials substitutions have been identified because of these environmental effects, as well as inadequate contamination control practices likely occurring during hardware manufacture and assembly. Some of the observations from our photography are purely artifacts of the unusual lighting conditions and environments that exist in space. A compilation of ISS on-orbit photography representing all of these aspects is presented, demonstrating the various SEE and their impacts as a function of time in LEO, including interpretations of those effects.

  10. Characterizing the Diurnal Cycle of Land Surface Temperature and Evapotranspiration at High Spatial Resolution Using Thermal Observations from sUAS.

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Drewry, D.; Johnson, W. R.

    2017-12-01

    The surface temperature of plant canopies is an important indicator of the stomatal regulation of plant water use and the associated water flux from plants to atmosphere (evapotranspiration (ET)). Remotely sensed thermal observations using compact, low-cost, lightweight sensors from small unmanned aerial systems (sUAS) have the potential to provide surface temperature (ST) and ET estimates at unprecedented spatial and temporal resolutions, allowing us to characterize the intra-field diurnal variations in canopy ST and ET for a variety of vegetation systems. However, major challenges exist for obtaining accurate surface temperature estimates from low-cost uncooled microbolometer-type sensors. Here we describe the development of calibration methods using thermal chamber experiments, taking into account the ambient optics and sensor temperatures, and applying simple models of spatial non-uniformity correction to the sensor focal-plane-array. We present a framework that can be used to derive accurate surface temperatures using radiometric observations from low-cost sensors, and demonstrate this framework using a sUAS-mounted sensor across a diverse set of calibration and vegetation targets. Further, we demonstrate the use of the Surface Temperature Initiated Closure (STIC) model for computing spatially explicit, high spatial resolution ET estimates across several well-monitored agricultural systems, as driven by sUAS acquired surface temperatures. STIC provides a physically-based surface energy balance framework for the simultaneous retrieval of the surface and atmospheric vapor conductances and surface energy fluxes, by physically integrating radiometric surface temperature information into the Penman-Monteith equation. Results of our analysis over agricultural systems in Ames, IA and Davis, CA demonstrate the power of this approach for quantifying the intra-field spatial variability in the diurnal cycle of plant water use at sub-meter resolutions.

  11. Global surface temperature change analysis based on MODIS data in recent twelve years

    NASA Astrophysics Data System (ADS)

    Mao, K. B.; Ma, Y.; Tan, X. L.; Shen, X. Y.; Liu, G.; Li, Z. L.; Chen, J. M.; Xia, L.

    2017-01-01

    Global surface temperature change is one of the most important aspects in global climate change research. In this study, in order to overcome shortcomings of traditional observation methods in meteorology, a new method is proposed to calculate global mean surface temperature based on remote sensing data. We found that (1) the global mean surface temperature was close to 14.35 °C from 2001 to 2012, and the warmest and coldest surface temperatures of the global in the recent twelve years occurred in 2005 and 2008, respectively; (2) the warmest and coldest surface temperatures on the global land surface occurred in 2005 and 2001, respectively, and on the global ocean surface in 2010 and 2008, respectively; and (3) in recent twelve years, although most regions (especially the Southern Hemisphere) are warming, global warming is yet controversial because it is cooling in the central and eastern regions of Pacific Ocean, northern regions of the Atlantic Ocean, northern regions of China, Mongolia, southern regions of Russia, western regions of Canada and America, the eastern and northern regions of Australia, and the southern tip of Africa. The analysis of daily and seasonal temperature change indicates that the temperature change is mainly caused by the variation of orbit of celestial body. A big data model based on orbit position and gravitational-magmatic change of celestial body with the solar or the galactic system should be built and taken into account for climate and ecosystems change at a large spatial-temporal scale.

  12. Evaluating the two-source energy balance model using local thermal and surface flux observations in a strongly advective irrigated agricultural area

    NASA Astrophysics Data System (ADS)

    Kustas, William P.; Alfieri, Joseph G.; Anderson, Martha C.; Colaizzi, Paul D.; Prueger, John H.; Evett, Steven R.; Neale, Christopher M. U.; French, Andrew N.; Hipps, Lawrence E.; Chávez, José L.; Copeland, Karen S.; Howell, Terry A.

    2012-12-01

    Application and validation of many thermal remote sensing-based energy balance models involve the use of local meteorological inputs of incoming solar radiation, wind speed and air temperature as well as accurate land surface temperature (LST), vegetation cover and surface flux measurements. For operational applications at large scales, such local information is not routinely available. In addition, the uncertainty in LST estimates can be several degrees due to sensor calibration issues, atmospheric effects and spatial variations in surface emissivity. Time differencing techniques using multi-temporal thermal remote sensing observations have been developed to reduce errors associated with deriving the surface-air temperature gradient, particularly in complex landscapes. The Dual-Temperature-Difference (DTD) method addresses these issues by utilizing the Two-Source Energy Balance (TSEB) model of Norman et al. (1995) [1], and is a relatively simple scheme requiring meteorological input from standard synoptic weather station networks or mesoscale modeling. A comparison of the TSEB and DTD schemes is performed using LST and flux observations from eddy covariance (EC) flux towers and large weighing lysimeters (LYs) in irrigated cotton fields collected during BEAREX08, a large-scale field experiment conducted in the semi-arid climate of the Texas High Plains as described by Evett et al. (2012) [2]. Model output of the energy fluxes (i.e., net radiation, soil heat flux, sensible and latent heat flux) generated with DTD and TSEB using local and remote meteorological observations are compared with EC and LY observations. The DTD method is found to be significantly more robust in flux estimation compared to the TSEB using the remote meteorological observations. However, discrepancies between model and measured fluxes are also found to be significantly affected by the local inputs of LST and vegetation cover and the representativeness of the remote sensing observations with

  13. The Potential of Time Series Based Earth Observation for the Monitoring of Large River Deltas

    NASA Astrophysics Data System (ADS)

    Kuenzer, C.; Leinenkugel, P.; Huth, J.; Ottinger, M.; Renaud, F.; Foufoula-Georgiou, E.; Vo Khac, T.; Trinh Thi, L.; Dech, S.; Koch, P.; Le Tissier, M.

    2015-12-01

    Although river deltas only contribute 5% to the overall land surface, nearly six hundred million people live in these complex social-ecological environments, which combine a variety of appealing locational advantages. In many countries deltas provide the major national contribution to agricultural and industrial production. At the same time these already very dynamic environments are exposed to a variety of threats, including the disturbance and replacement of valuable ecosystems, increasing water, soil, and air pollution, human induced land subsidence, sea level rise, as well upstream developments impacting water and sediment supplies. A constant monitoring of delta systems is thus of utmost relevance for understanding past and current land surface change and anticipating possible future developments. We present the potential of Earth Observation based analyses and derived novel information products that can play a key role in this context. Along with the current trend of opening up numerous satellite data archives go increasing capabilities to explore big data. Whereas in past decades remote sensing data were analysed based on the spectral-reflectance-defined 'finger print' of individual surfaces, we mainly exploit the 'temporal fingerprints' of our land surface in novel pathways of data analyses at differing spatial-, and temporally-dense scales. Following our results on an Earth Observation based characterization of large deltas globally, we present in depth results from the Mekong Delta in Vietnam, the Yellow River Delta in China, the Niger Delta in Nigeria, as well as additional deltas, focussing on the assessment of river delta flood and inundation dynamics, river delta coastline dynamics, delta morphology dynamics including the quantification of erosion and accretion processes, river delta land use change and trends, as well as the monitoring of compliance to environmental regulations.

  14. Observation of the adsorption and desorption of vibrationally excited molecules on a metal surface

    NASA Astrophysics Data System (ADS)

    Shirhatti, Pranav R.; Rahinov, Igor; Golibrzuch, Kai; Werdecker, Jörn; Geweke, Jan; Altschäffel, Jan; Kumar, Sumit; Auerbach, Daniel J.; Bartels, Christof; Wodtke, Alec M.

    2018-06-01

    The most common mechanism of catalytic surface chemistry is that of Langmuir and Hinshelwood (LH). In the LH mechanism, reactants adsorb, become thermalized with the surface, and subsequently react. The measured vibrational (relaxation) lifetimes of molecules adsorbed at metal surfaces are in the range of a few picoseconds. As a consequence, vibrational promotion of LH chemistry is rarely observed, with the exception of LH reactions occurring via a molecular physisorbed intermediate. Here, we directly detect adsorption and subsequent desorption of vibrationally excited CO molecules from a Au(111) surface. Our results show that CO (v = 1) survives on a Au(111) surface for 1 × 10-10 s. Such long vibrational lifetimes for adsorbates on metal surfaces are unexpected and pose an interesting challenge to the current understanding of vibrational energy dissipation on metal surfaces. They also suggest that vibrational promotion of surface chemistry might be more common than is generally believed.

  15. [An operational remote sensing algorithm of land surface evapotranspiration based on NOAA PAL dataset].

    PubMed

    Hou, Ying-Yu; He, Yan-Bo; Wang, Jian-Lin; Tian, Guo-Liang

    2009-10-01

    Based on the time series 10-day composite NOAA Pathfinder AVHRR Land (PAL) dataset (8 km x 8 km), and by using land surface energy balance equation and "VI-Ts" (vegetation index-land surface temperature) method, a new algorithm of land surface evapotranspiration (ET) was constructed. This new algorithm did not need the support from meteorological observation data, and all of its parameters and variables were directly inversed or derived from remote sensing data. A widely accepted ET model of remote sensing, i. e., SEBS model, was chosen to validate the new algorithm. The validation test showed that both the ET and its seasonal variation trend estimated by SEBS model and our new algorithm accorded well, suggesting that the ET estimated from the new algorithm was reliable, being able to reflect the actual land surface ET. The new ET algorithm of remote sensing was practical and operational, which offered a new approach to study the spatiotemporal variation of ET in continental scale and global scale based on the long-term time series satellite remote sensing images.

  16. Bayesian Modeling of Perceived Surface Slant from Actively-Generated and Passively-Observed Optic Flow

    PubMed Central

    Caudek, Corrado; Fantoni, Carlo; Domini, Fulvio

    2011-01-01

    We measured perceived depth from the optic flow (a) when showing a stationary physical or virtual object to observers who moved their head at a normal or slower speed, and (b) when simulating the same optic flow on a computer and presenting it to stationary observers. Our results show that perceived surface slant is systematically distorted, for both the active and the passive viewing of physical or virtual surfaces. These distortions are modulated by head translation speed, with perceived slant increasing directly with the local velocity gradient of the optic flow. This empirical result allows us to determine the relative merits of two alternative approaches aimed at explaining perceived surface slant in active vision: an “inverse optics” model that takes head motion information into account, and a probabilistic model that ignores extra-retinal signals. We compare these two approaches within the framework of the Bayesian theory. The “inverse optics” Bayesian model produces veridical slant estimates if the optic flow and the head translation velocity are measured with no error; because of the influence of a “prior” for flatness, the slant estimates become systematically biased as the measurement errors increase. The Bayesian model, which ignores the observer's motion, always produces distorted estimates of surface slant. Interestingly, the predictions of this second model, not those of the first one, are consistent with our empirical findings. The present results suggest that (a) in active vision perceived surface slant may be the product of probabilistic processes which do not guarantee the correct solution, and (b) extra-retinal signals may be mainly used for a better measurement of retinal information. PMID:21533197

  17. Io’s volcanoes at high spatial, spectral, and temporal resolution from ground-based observations

    NASA Astrophysics Data System (ADS)

    de Kleer, Katherine R.; de Pater, Imke

    2017-10-01

    Io’s dynamic volcanic eruptions provide a laboratory for studying large-scale volcanism on a body vastly different from Earth, and for unraveling the connections between tidal heating and the geological activity it powers. Ground-based near-infrared observatories allow for high-cadence, long-time-baseline observing programs using diverse instrumentation, and yield new information into the nature and variability of this activity. I will summarize results from four years of ground-based observations of Io’s volcanism, including: (1) A multi-year cadence observing campaign using adaptive optics on 8-10 meter telescopes, which places constraints on tidal heating models through sampling the spatial distribution of Io’s volcanic heat flow, and provides estimates of the occurrence rate of Io’s most energetic eruptions; (2) High-spectral-resolution (R~25,000) studies of Io’s volcanic SO gas emission at 1.7 microns, which resolves this rovibronic line into its different branches, and thus contains detailed information on the temperature and thermal state of the gas; and (3) The highest-spatial-resolution map ever produced of the entire Loki Patera, a 20,000 km2 volcanic feature on Io, derived from adaptive-optics observations of an occultation of Io by Europa. The map achieves a spatial resolution of ~10 km and indicates compositional differences across the patera. These datasets both reveal specific characteristics of Io’s individual eruptions, and provide clues into the sub-surface systems connecting Io’s tidally-heated interior to its surface expressions of volcanism.

  18. Thermal development of latent fingermarks on porous surfaces--further observations and refinements.

    PubMed

    Song, Di Fei; Sommerville, Daniel; Brown, Adam G; Shimmon, Ronald G; Reedy, Brian J; Tahtouh, Mark

    2011-01-30

    In a further study of the thermal development of fingermarks on paper and similar surfaces, it is demonstrated that direct contact heating of the substrate using coated or ceramic surfaces at temperatures in excess of 230°C produces results superior to those obtained using hot air. Fingermarks can also be developed in this way on other cellulose-based substrates such as wood and cotton fabric, though ridge detail is difficult to obtain in the latter case. Fluorescence spectroscopy indicates that the phenomena observed during the thermal development of fingermarks can be reproduced simply by heating untreated white copy paper or filter paper, or these papers treated with solutions of sodium chloride or alanine. There is no evidence to suggest that the observed fluorescence of fingermarks heated on paper is due to a reaction of fingermark constituents on or with the paper. Instead, we maintain that the ridge contrast observed first as fluorescence, and later as brown charring, is simply an acceleration of the thermal degradation of the paper. Thermal degradation of cellulose, a major constituent of paper and wood, is known to give rise to a fluorescent product if sufficient oxygen is available [1-5]. However, the absence of atmospheric oxygen has only a slight effect on the thermal development of fingermarks, indicating that there is sufficient oxygen already present in paper to allow the formation of the fluorescent and charred products. In a depletion study comparing thermal development of fingermarks on paper with development using ninhydrin, the thermal technique was found to be as sensitive as ninhydrin for six out of seven donors. When thermal development was used in sequence with ninhydrin and DFO, it was found that only fingermarks that had been developed to the fluorescent stage (a few seconds of heating) could subsequently be developed with the other reagents. In the reverse sequence, no useful further development was noted for fingermarks that were

  19. Verification of land-atmosphere coupling in forecast models, reanalyses and land surface models using flux site observations.

    PubMed

    Dirmeyer, Paul A; Chen, Liang; Wu, Jiexia; Shin, Chul-Su; Huang, Bohua; Cash, Benjamin A; Bosilovich, Michael G; Mahanama, Sarith; Koster, Randal D; Santanello, Joseph A; Ek, Michael B; Balsamo, Gianpaolo; Dutra, Emanuel; Lawrence, D M

    2018-02-01

    We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.

  20. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures

    PubMed Central

    Müller, Frank A.; Kunz, Clemens; Gräf, Stephan

    2016-01-01

    Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces. PMID:28773596

  1. Anomalous surface potential behavior observed in InN by photoassisted Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoxiao; Wei, Jiandong; Wang, Xinqiang; Wang, Ping; Li, Shunfeng; Waag, Andreas; Li, Mo; Zhang, Jian; Ge, Weikun; Shen, Bo

    2017-05-01

    Lattice-polarity dependence of InN surface photovoltage has been identified by an anomalous surface potential behavior observed via photoassisted Kelvin probe force microscopy. Upon above bandgap light illumination in the ambient atmosphere, the surface photovoltage of the In-polar InN shows a pronounced decrease, while that of the N-polar one keeps almost constant. Those different behaviors between N-polar and In-polar surfaces are attributed to a polarity-related surface reactivity, which is found not to be influenced by Mg-doping. These findings provide a simple and non-destructive approach to determine the lattice polarity and allow us to suggest that the In-polar InN, especially that with buried p-type conduction, should be chosen for sensing application.

  2. Effect of temperature on the acid-base properties of the alumina surface: microcalorimetry and acid-base titration experiments.

    PubMed

    Morel, Jean-Pierre; Marmier, Nicolas; Hurel, Charlotte; Morel-Desrosiers, Nicole

    2006-06-15

    Sorption reactions on natural or synthetic materials that can attenuate the migration of pollutants in the geosphere could be affected by temperature variations. Nevertheless, most of the theoretical models describing sorption reactions are at 25 degrees C. To check these models at different temperatures, experimental data such as the enthalpies of sorption are thus required. Highly sensitive microcalorimeters can now be used to determine the heat effects accompanying the sorption of radionuclides on oxide-water interfaces, but enthalpies of sorption cannot be extracted from microcalorimetric data without a clear knowledge of the thermodynamics of protonation and deprotonation of the oxide surface. However, the values reported in the literature show large discrepancies and one must conclude that, amazingly, this fundamental problem of proton binding is not yet resolved. We have thus undertaken to measure by titration microcalorimetry the heat effects accompanying proton exchange at the alumina-water interface at 25 degrees C. Based on (i) the surface sites speciation provided by a surface complexation model (built from acid-base titrations at 25 degrees C) and (ii) results of the microcalorimetric experiments, calculations have been made to extract the enthalpic variations associated respectively to first and second deprotonation of the alumina surface. Values obtained are deltaH1 = 80+/-10 kJ mol(-1) and deltaH2 = 5+/-3 kJ mol(-1). In a second step, these enthalpy values were used to calculate the alumina surface acidity constants at 50 degrees C via the van't Hoff equation. Then a theoretical titration curve at 50 degrees C was calculated and compared to the experimental alumina surface titration curve. Good agreement between the predicted acid-base titration curve and the experimental one was observed.

  3. Eigenvalue-Based Polarimetric Model for Interpreting Sea Surface Scattering with and without Oil Slicks

    NASA Astrophysics Data System (ADS)

    Buono, Andrea; Nunziata, Ferdinando; Migliaccio, Maurizio

    2016-08-01

    In this paper, microwave sea surface scattering with and without oil slicks is investigated using synthetic aperture radar (SAR) fully-polarimetric (FP) and compact- polarimetric (CP) data. They show similar trends but subtle differences apply over sea surface that are here analyzed by a new physically-based approach. The model predicts that differences between FP and CP architectures, and among CP modes, are due to the different mapping between polarimetric observables and eigenvalues. This theoretical rationale is verified using actual FP SAR data and emulated CP SAR measurements.

  4. Surface atmosphere exchange in dry and a wet regime over the Ganges valley: a comprehensive investigation with direct observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Sathyanadh, Anusha; Prabhakaran, Thara; Karipot, Anandakumar

    2017-04-01

    Land atmosphere interactions in the Ganges Valley basin is a topic of significant importance as it is most vulnerable region due to extreme weather, air pollution, etc. The complete energy balance observations over this region was conducted as part of the CAIPEEX-IGOC (Cloud Aerosol Interaction and Precipitation Enhancement Experiment - Integrated Ground based Observational Campaign) experiment for an entire year. These observations give first insight into the partitioning of energy in this vulnerable environment during the dry and wet regimes, which are typically part of the intraseasonal oscillations during the Indian monsoon season. These transitions wet-dry and dry-wet are poorly represented in GCMs and is the motivation for the detailed investigation here. Observations conducted with micrometeorological tower instrumented with eddy covariance sensors, radiation balance, soil heat flux measurements, microwave radiometer, sodar, radiosonde data are used in the present study. A set of numerical investigations of different Planetary Boundary Layer (PBL) schemes is also carried out to investigate features of the diurnal cycle during the wet and dry regimes. General behaviour of both local and nonlocal PBL schemes found from the investigation is to accomplish enhanced mixing, leading to a deeper PBL in the valley. However, observations give clear evidence of residual boundary layer characterised by a weak stratification, playing a key role in the exchange of PBL air mass with that of free atmosphere. Impact of changes in parameterization and controlling factors on the PBL height are investigated. Case studies for a dry phase during the incidence of a heat wave and a wet phase during a land depression are presented. Observed diurnal features of the surface meteorological parameters including the surface energy budget components were well captured by local and nonlocal PBL schemes during both the cases. Vertical profiles of temperature, mixing ratio and winds from

  5. Linking Landsat observations with MODIS derived Land Surface Phenology data to map agricultural expansion and contraction in Russia

    NASA Astrophysics Data System (ADS)

    Caliskan, S.; de Beurs, K.

    2010-12-01

    Direct human impacts on the land surface are especially pronounced in agricultural regions that cover a substantial portion of the global land surface: 12% of the terrestrial surface is under active agricultural management. Crops display phenologies distinct from natural vegetation; the growing seasons are often shifted in time, crop establishment is generally fast and the vegetation is rapidly removed at harvest. Previously we have demonstrated that agricultural land abandonment alters land surface phenology sufficiently to be detectable from a time series of coarse resolution imagery. With land surface phenology models based on accumulated growing degree-days (AGDD) and AVHRR NDVI, we demonstrated that abandoned croplands covered with native grasses and weeds typically greened-up and peaked sooner than active croplands. Here we present an expansion of these analyses for the MODIS time period with the ultimate goal to map agricultural abandonment and expansion in European Russia from 2000 to 2010. We used the 8-day, 1km L3 Land Surface Temperature data (MOD11A2) to generate the accumulated growing degree days and the 16-day L3 Nadir BRDF-Adjusted reflectance data at 500m resolution (MCD43A4) to calculate NDVI. We calculated phenological metrics based on three methods: 1) Double-logistic models such as those applied to produce the standard MODIS phenology product (MOD12Q2); 2) A combination of NDII and NDVI; this method has been shown to provide start/end of season measurement closest to field observations in snowy areas; and 3) A quadratic model linking accumulated growing degree days and vegetation indices which we successfully applied in agricultural areas of Kazakhstan and semi-arid Africa. We selected Landsat imagery for two vastly different regions in Russia and present a Landsat-guided probabilistic detection of abandoned and active croplands for all available years of the MODIS image time series (2000-2010). For each region, we selected at least two images

  6. A Vegetation Correction Methodology for Time Series Based Soil Moisture Retrieval From C-band Radar Observations

    NASA Technical Reports Server (NTRS)

    Joseph, Alicia T.; O'Neil, P. E.; vanderVelde, R.; Gish, T.

    2008-01-01

    A methodology is presented to correct backscatter (sigma(sup 0)) observations for the effect of vegetation. The proposed methodology is based on the concept that the ratio of the surface scattering over the total amount of scattering (sigma(sup 0)(sub soil)/sigma(sup 0)) is only affected by the vegetation and can be described as a function of the vegetation water content. Backscatter observations sigma(sup 0) from the soil are not influenced by vegetation. Under bare soil conditions (sigma(sup 0)(sub soil)/sigma(sup 0)) equals 1. Under low to moderate biomass and soil moisture conditions, vegetation affects the observed sigma(sup 0) through absorption of the surface scattering and contribution of direct scattering by the vegetation itself. Therefore, the contribution of the surface scattering is smaller than the observed total amount of scattering and decreases as the biomass increases. For dense canopies scattering interactions between the soil surface and vegetation elements (e.g. leaves and stems) also become significant. Because these higher order scattering mechanisms are influenced by the soil surface, an increase in (sigma(sup 0)(sub soil)/sigma(sup 0)) may be observed as the biomass increases under densely vegetated conditions. This methodology is applied within the framework of time series based approach for the retrieval of soil moisture. The data set used for this investigation has been collected during a campaign conducted at USDA's Optimizing Production Inputs for Economic and Environmental Enhancement OPE-3) experimental site in Beltsville, Maryland (USA). This campaign took place during the corn growth cycle from May 10th to 0ctober 2nd, 2002. In this period the corn crops reached a vegetation water content of 5.1 kg m(exp -2) at peak biomass and a soil moisture range varying between 0.00 to 0.26 cubic cm/cubic cm. One of the deployed microwave instruments operated was a multi-frequency (C-band (4.75 GHz) and L-band (1.6 GHz)) quad-polarized (HH, HV

  7. NC-AFM observation of atomic scale structure of rutile-type TiO2(110) surface prepared by wet chemical process.

    PubMed

    Namai, Yoshimichi; Matsuoka, Osamu

    2006-04-06

    We succeeded in observing the atomic scale structure of a rutile-type TiO2(110) single-crystal surface prepared by the wet chemical method of chemical etching in an acid solution and surface annealing in air. Ultrahigh vacuum noncontact atomic force microscopy (UHV-NC-AFM) was used for observing the atomic scale structures of the surface. The UHV-NC-AFM measurements at 450 K, which is above a desorption temperature of molecularly adsorbed water on the TiO2(110) surface, enabled us to observe the atomic scale structure of the TiO2(110) surface prepared by the wet chemical method. In the UHV-NC-AFM measurements at room temperature (RT), however, the atomic scale structure of the TiO2(110) surface was not observed. The TiO2(110) surface may be covered with molecularly adsorbed water after the surface was prepared by the wet chemical method. The structure of the TiO2(110) surface that was prepared by the wet chemical method was consistent with the (1 x 1) bulk-terminated model of the TiO2(110) surface.

  8. Liquid Hydrocarbons on Titan's Surface? How Cassini ISS Observations Fit into the Story (So Far)

    NASA Technical Reports Server (NTRS)

    Turtle, E. P.; Dawson, D. D.; Fussner, S.; Hardegree-Ullman, E.; Ewen, A. S.; Perry, J.; Porco, C. C.; West, R. A.

    2005-01-01

    Titan is the only satellite in our Solar System with a substantial atmosphere, the origins and evolution of which are still not well understood. Its primary (greater than 90%) component is nitrogen, with a few percent methane and lesser amounts of other species. Methane and ethane are stable in the liquid state under the temperature and pressure conditions in Titan s lower atmosphere and at the surface; indeed, clouds, likely composed of methane, have been detected. Photochemical processes acting in the atmosphere convert methane into more complex hydrocarbons, creating Titan s haze and destroying methane over relatively short timescales. Therefore, it has been hypothesized that Titan s surface has reservoirs of liquid methane which serve to resupply the atmosphere. Early observations of Titan s surface revealed albedo patterns which have been interpreted as dark hydrocarbon liquids occupying topographically low regions between higher-standing exposures of bright, water-ice bedrock, although this is far from being the only explanation for the observed albedo contrast. Observations made by the Imaging Science Subsystem during Cassini's approach to Saturn and its first encounters with Titan show the bright and dark regions in greater detail but have yet to resolve the question of whether there are liquids on the surface.

  9. Kaguya observations of the lunar wake in the terrestrial foreshock: Surface potential change by bow-shock reflected ions

    NASA Astrophysics Data System (ADS)

    Nishino, Masaki N.; Harada, Yuki; Saito, Yoshifumi; Tsunakawa, Hideo; Takahashi, Futoshi; Yokota, Shoichiro; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2017-09-01

    There forms a tenuous region called the wake behind the Moon in the solar wind, and plasma entry/refilling into the wake is a fundamental problem of the lunar plasma science. High-energy ions and electrons in the foreshock of the Earth's magnetosphere were detected at the lunar surface in the Apollo era, but their effects on the lunar night-side environment have never been studied. Here we show the first observation of bow-shock reflected protons by Kaguya (SELENE) spacecraft in orbit around the Moon, confirming that solar wind plasma reflected at the terrestrial bow shock can easily access the deepest lunar wake when the Moon stays in the foreshock (We name this mechanism 'type-3 entry'). In a continuous type-3 event, low-energy electron beams from the lunar night-side surface are not obvious even though the spacecraft location is magnetically connected to the lunar surface. On the other hand, in an intermittent type-3 entry event, the kinetic energy of upward-going field-aligned electron beams decreases from ∼ 80 eV to ∼ 20 eV or electron beams disappear as the bow-shock reflected ions come accompanied by enhanced downward electrons. According to theoretical treatment based on electric current balance at the lunar surface including secondary electron emission by incident electron and ion impact, we deduce that incident ions would be accompanied by a few to several times higher flux of an incident electron flux, which well fits observed downward fluxes. We conclude that impact by the bow-shock reflected ions and electrons raises the electrostatic potential of the lunar night-side surface.

  10. Local, Regional, and Global Albedo Variations on Mars From Recent Space-Based Observations: Implications for Future Human Explorers

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Wellington, D. F.

    2017-06-01

    We describe recent as well as historic albedo variations on Mars as observed by space-based telescopes, orbiters, and surface missions, and speculate that some regions might offer fewer dust-related problems for future human explorers than others.

  11. Is fault surface roughness indicative of fault mechanisms? Observations from experimental Limestone faults

    NASA Astrophysics Data System (ADS)

    Sagy, A.; Tesei, T.; Collettini, C.

    2016-12-01

    Geometrical irregularity of contacting surfaces is a fundamental factor controlling friction and energy dissipation during sliding. We performed direct shear experiments on 20x20 cm limestone surfaces by applying constant normal load (40-200 kN) and sliding velocity 1-300 µm/s. Before shearing, the surfaces were polished with maximal measured amplitudes of less than 0.1 mm. After shear, elongated islands of shear zones are observed, characterized by grooves ploughed into the limestone surfaces and by layers of fine grain wear. These structures indicate that the contact areas during shear are scattered and occupy a limited portion of the entire surface area. The surfaces was scanned by a laser profilometer that measures topography using 640 parallel beams in a single run, offer up to 10 µm accuracy and working ranges of 200 mm. Two distinctive types of topographical end members are defined: rough wavy sections and smooth polished ones. The rough zones display ridges with typical amplitudes of 0.1-1 mm that cross the grooves perpendicular to the slip direction. These features are associated with penetrative brittle damage and with fragmentation. The smoother zones display reflective mirror-like surfaces bordered by topographical sharp steps at heights of 0.3-0.5 mm. These sections are localized inside the wear layer or between the wear layer and the host rock, and are not associated with observed penetrative damage. Preliminary statistical analysis suggests that the roughness of the ridges zones can be characterized using a power-low relationship between profile length and mean roughness, with relatively high values of Hurst exponents (e.g. H > 0.65) parallel to the slip direction. The polished zones, on the other hand, corresponded to lower values of Hurst exponents (e.g. H ≤ 0.6). Both structural and roughness measurements indicate that the distinctive topographic variations on the surfaces reflect competing mechanical processes which occur simultaneously

  12. Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel

    Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less

  13. Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd

    DOE PAGES

    Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel; ...

    2016-11-07

    Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less

  14. Electrostatic interaction based approach to thrombin detection by surface-enhanced Raman spectroscopy.

    PubMed

    Hu, Juan; Zheng, Peng-Cheng; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin; Liu, Guo-Kun

    2009-01-01

    We have developed an electrostatic interaction based biosensor for thrombin detection using surface-enhanced Raman spectroscopy (SERS). This method utilized the electrostatic interaction between capture (thrombin aptamer) and probe (crystal violet, CV) molecules. The specific interaction between thrombin and aptamer could weaken the electrostatic barrier effect from the negative charged aptamer SAMs to the diffusion process of the positively charged CV from the bulk solution to the Au nanoparticle surface. Therefore, the more the bound thrombin, the more the CV molecules near the Au nanoparticle surface and the stronger the observed Raman signal of CV, provided the Raman detections were set at the same time point for each case. This procedure presented a highly specific selectivity and a linear detection of thrombin in the range from 0.1 nM to 10 nM with a detection limit of about 20 pM and realized the thrombin detection in human blood serum solution directly. The electrostatic interaction based technique provides an easy and fast-responding optical platform for a "signal-on" detection of proteins, which might be applicable for the real time assay of proteins.

  15. The Surface Energy Balance at Local and Regional Scales-A Comparison of General Circulation Model Results with Observations.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Krummel, P. B.; Kowalczyk, E. A.

    1993-06-01

    Aspects of the mean monthly energy balance at continental surfaces are examined by appeal to the results of general circulation model (GCM) simulations, climatological maps of surface fluxes, and direct observations. Emphasis is placed on net radiation and evaporation for (i) five continental regions (each approximately 20°×150°) within Africa, Australia, Eurasia, South America, and the United States; (ii) a number of continental sites in both hemispheres. Both the mean monthly values of the local and regional fluxes and the mean monthly diurnal cycles of the local fluxes are described. Mostly, GCMs tend to overestimate the mean monthly levels of net radiation by about 15% -20% on an annual basis, for observed annual values in the range 50 to 100 Wm2. This is probably the result of several deficiencies, including (i) continental surface albedos being undervalued in a number of the models, resulting in overestimates of the net shortwave flux at the surface (though this deficiency is steadily being addressed by modelers); (ii) incoming shortwave fluxes being overestimated due to uncertainties in cloud schemes and clear-sky absorption; (iii) land-surface temperatures being under-estimated resulting in an underestimate of the outgoing longwave flux. In contrast, and even allowing for the poor observational base for evaporation, there is no obvious overall bias in mean monthly levels of evaporation determined in GCMS, with one or two exceptions. Rather, and far more so than with net radiation, there is a wide range in values of evaporation for all regions investigated. For continental regions and at times of the year of low to moderate rainfall, there is a tendency for the simulated evaporation to be closely related to the precipitation-this is not surprising. In contrast, for regions where there is sufficient or excessive rainfall, the evaporation tends to follow the behavior of the net radiation. Again, this is not surprising given the close relation between

  16. Inference of effective river properties from remotely sensed observations of water surface

    NASA Astrophysics Data System (ADS)

    Garambois, Pierre-André; Monnier, Jérôme

    2015-05-01

    The future SWOT mission (Surface Water and Ocean Topography) will provide cartographic measurements of inland water surfaces (elevation, widths and slope) at an unprecedented spatial and temporal resolution. Given synthetic SWOT like data, forward flow models of hierarchical-complexity are revisited and few inverse formulations are derived and assessed for retrieving the river low flow bathymetry, roughness and discharge (A0, K, Q) . The concept of an effective low flow bathymetry A0 (the real one being never observed) and roughness K , hence an effective river dynamics description, is introduced. The few inverse models elaborated for inferring (A0, K, Q) are analyzed in two contexts: (1) only remotely sensed observations of the water surface (surface elevation, width and slope) are available; (2) one additional water depth measurement (or estimate) is available. The inverse models elaborated are independent of data acquisition dynamics; they are assessed on 91 synthetic test cases sampling a wide range of steady-state river flows (the Froude number varying between 0.05 and 0.5 for 1 km reaches) and in the case of a flood on the Garonne River (France) characterized by large spatio-temporal variabilities. It is demonstrated that the most complete shallow-water like model allowing to separate the roughness and bathymetry terms is the so-called low Froude model. In Case (1), the resulting RMSE on infered discharges are on the order of 15% for first guess errors larger than 50%. An important feature of the present inverse methods is the fairly good accuracy of the discharge Q obtained, while the identified roughness coefficient K includes the measurement errors and the misfit of physics between the real flow and the hypothesis on which the inverse models rely; the later neglecting the unobserved temporal variations of the flow and the inertia effects. A compensation phenomena between the indentifiedvalues of K and the unobserved bathymetry A0 is highlighted, while the

  17. The Changing Surface of Saturn's Titan: Cassini Observations Suggest Active Cryovolcanism

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.

    2008-12-01

    R. M. Nelson(1), L. Kamp(1), R. M. C. Lopes(1), D. L. Matson(1), S. D. Wall(1), R. L. Kirk(2), K. L Mitchell(1), G. Mitri(1), B. W. Hapke(3), M. D. Boryta(4), F. E. Leader(1) , W. D. Smythe(1), K. H. Baines(1), R. Jauman(5), C. Sotin(1), R. N. Clark(6), D. P. Cruikshank(7) , P. Drossart(9), B. J. Buratti(1) , J.Lunine(8), M. Combes(9), G. Bellucci(10), J.-P. Bibring(11), F. Capaccioni(10), P. Cerroni(10), A. Coradini(10), V. Formisano(10), G Filacchione(10), R. Y. Langevin(11), T. B. McCord(12), V. Mennella(13), P. D. Nicholson(14) , B. Sicardy(8) 1-JPL, 4800 Oak Grove Drive, Pasadena CA 91109, 2-USGS, Flagstaff, 3-U Pittsburgh, 4-Mt. Sac Col, 5- DLR, Berlin, 6-USGS Denver, 7-NASA AMES, 8-U Paris-Meudon, 9-Obs de Paris, 10-ISFI-CNR Rome, 11-U Paris -Sud. Orsay, 12-Bear Flt Cntr Winthrop WA, 13-Obs Capodimonte Naples, 14-Cornell U. Several Instruments on the Cassini Saturn Orbiter have been observing the surface of Saturn's moon Titan since mid 2004. The Visual and Infrared Mapping Spectrometer (VIMS) reports that regions near 26oS, 78oW (region 1) and 7oS, 138oW (region 2) exhibit photometric changes consistent with on-going surface activity. These regions are photometrically variable with time(1). Cassini Synthetic Aperture Rader (SAR) has investigated these regions and reports that both of these regions exhibit morphologies consistent with cryovolcanism (2). VIMS observed region 1 eight times and reported that on two occasions the region brightened two-fold and then decreased again on timescales of several weeks. Region 2 was observed on four occasions (Tb-Dec13/2004 ,T8-Oct27/2005, T10-Jan15/2006, T12-Mar18/2006) and exhibited a pronounced change in I/F betweenT8 and T10. Our photometric analysis finds that both regions do not exhibit photometric properties consistent with atmospheric phenomena such as tropospheric clouds. These changes must be at or very near the surface. Radar images of these regions reveal morphology that is consistent with cryovolcanoes. We

  18. Development and testing of instrumentation for ship-based UAV measurements of ocean surface processes and the marine atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Statom, N.; Melville, W. K.

    2012-12-01

    We have developed instrumentation packages for unmanned aerial vehicles (UAVs) to measure ocean surface processes along with momentum fluxes and latent, sensible, and radiative heat fluxes in the marine atmospheric boundary layer (MABL). The packages have been flown over land on BAE Manta C1s and over water on Boeing-Insitu ScanEagles. The low altitude required for accurate surface flux measurements (< 30 m) is below the typical safety limit of manned research aircraft; however, with advances in laser altimeters, small-aircraft flight control, and real-time kinematic differential GPS, low-altitude flight is now within the capability of small UAV platforms. Fast-response turbulence, hygrometer, and temperature probes permit turbulent flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Onboard laser altimetry and high-resolution visible and infrared video permit observations of surface waves and fine-scale (O(10) cm) ocean surface temperature structure. Flight tests of payloads aboard ScanEagle UAVs were conducted in April 2012 at the Naval Surface Warfare Center Dahlgren Division (Dahlgren, VA), where measurements of water vapor, heat, and momentum fluxes were made from low-altitude (31-m) UAV flights over water (Potomac River). ScanEagles are capable of ship-based launch and recovery, which can extend the reach of research vessels and enable scientific measurements out to ranges of O(10-100) km and altitudes up to 5 km. UAV-based atmospheric and surface observations can complement observations of surface and subsurface phenomena made from a research vessel and avoid the well-known problems of vessel interference in MABL measurements. We present a description of the instrumentation, summarize results from flight tests, and discuss potential applications of these UAVs for ship-based MABL studies.

  19. Observationally derived rise in methane surface forcing mediated by water vapour trends

    NASA Astrophysics Data System (ADS)

    Feldman, D. R.; Collins, W. D.; Biraud, S. C.; Risser, M. D.; Turner, D. D.; Gero, P. J.; Tadić, J.; Helmig, D.; Xie, S.; Mlawer, E. J.; Shippert, T. R.; Torn, M. S.

    2018-04-01

    Atmospheric methane (CH4) mixing ratios exhibited a plateau between 1995 and 2006 and have subsequently been increasing. While there are a number of competing explanations for the temporal evolution of this greenhouse gas, these prominent features in the temporal trajectory of atmospheric CH4 are expected to perturb the surface energy balance through radiative forcing, largely due to the infrared radiative absorption features of CH4. However, to date this has been determined strictly through radiative transfer calculations. Here, we present a quantified observation of the time series of clear-sky radiative forcing by CH4 at the surface from 2002 to 2012 at a single site derived from spectroscopic measurements along with line-by-line calculations using ancillary data. There was no significant trend in CH4 forcing between 2002 and 2006, but since then, the trend in forcing was 0.026 ± 0.006 (99.7% CI) W m2 yr-1. The seasonal-cycle amplitude and secular trends in observed forcing are influenced by a corresponding seasonal cycle and trend in atmospheric CH4. However, we find that we must account for the overlapping absorption effects of atmospheric water vapour (H2O) and CH4 to explain the observations fully. Thus, the determination of CH4 radiative forcing requires accurate observations of both the spatiotemporal distribution of CH4 and the vertically resolved trends in H2O.

  20. Preliminary SEM Observations on the Surface of Elastomeric Impression Materials after Immersion or Ozone Disinfection

    PubMed Central

    Prombonas, Anthony; Yannikakis, Stavros; Karampotsos, Thanasis; Katsarou, Martha-Spyridoula; Drakoulis, Nikolaos

    2016-01-01

    Introduction Surface integrity of dental elastomeric impression materials that are subjected to disinfection is of major importance for the quality of the final prosthetic restorations. Aim The aim of this qualitative Scanning Electronic Microscopy (SEM) study was to reveal the effects of immersion or ozone disinfection on the surface of four dental elastomeric impression materials. Materials and Methods Four dental elastomeric impression material brands were used (two vinyl polysiloxane silicones, one polyether, and one vinyl polyether silicone). Total of 32 specimens were fabricated, eight from each impression material. Specimens were immersion (0.525% sodium hypochlorite solution or 0.3% benzalkonium chloride solution) or ozone disinfected or served as controls and examined with SEM. Results Surface degradation was observed on several speci-mens disinfected with 0.525% sodium hypochlorite solution. Similar wavy-wrinkling surface structures were observed in almost all specimens, when treated either with 0.3% benzalkonium chloride solution or ozone. Conclusion The SEM images obtained from this study revealed that both immersion disinfectants and ozone show similar impression material surface alterations. Ozone seems to be non-inferior as compared to immersion disinfectants, but superior as to environmental protection. PMID:28208993

  1. Tile-based rigidization surface parametric design study

    NASA Astrophysics Data System (ADS)

    Giner Munoz, Laura; Luntz, Jonathan; Brei, Diann; Kim, Wonhee

    2018-03-01

    Inflatable technologies have proven useful in consumer goods as well as in more recent applications including civil structures, aerospace, medical, and robotics. However, inflatable technologies are typically lacking in their ability to provide rigid structural support. Particle jamming improves upon this by providing structures which are normally flexible and moldable but become rigid when air is removed. Because these are based on an airtight bladder filled with loose particles, they always occupy the full volume of its rigid state, even when not rigidized. More recent developments in layer jamming have created thin, compact rigidizing surfaces replacing the loose volume of particles with thinly layered surface materials. Work in this area has been applied to several specific applications with positive results but have not generally provided the broader understanding of the rigidization performance as a function of design parameters required for directly adapting layer rigidization technology to other applications. This paper presents a parametric design study of a new layer jamming vacuum rigidization architecture: tile-based vacuum rigidization. This form of rigidization is based on layers of tiles contained within a thin vacuum bladder which can be bent, rolled, or otherwise compactly stowed, but when deployed flat, can be vacuumed and form a large, flat, rigid plate capable of supporting large forces both localized and distributed over the surface. The general architecture and operation detailing rigidization and compliance mechanisms is introduced. To quantitatively characterize the rigidization behavior, prototypes rigidization surfaces are fabricated and an experimental technique is developed based on a 3-point bending test. Performance evaluation metrics are developed to describe the stiffness, load-bearing capacity, and internal slippage of tested prototypes. A set of experimental parametric studies are performed to better understand the impact of

  2. Observation of a nodal chain with Dirac surface states in Ti B2

    NASA Astrophysics Data System (ADS)

    Yi, C.-J.; Lv, B. Q.; Wu, Q. S.; Fu, B.-B.; Gao, X.; Yang, M.; Peng, X.-L.; Li, M.; Huang, Y.-B.; Richard, P.; Shi, M.; Li, G.; Yazyev, Oleg V.; Shi, Y.-G.; Qian, T.; Ding, H.

    2018-05-01

    Topological nodal-line semimetals (TNLSMs) are characterized by symmetry-protected band crossings extending along one-dimensional lines in momentum space. The nodal lines exhibit a variety of possible configurations, such as nodal ring, nodal link, nodal chain, and nodal knot. Here, using angle-resolved photoemission spectroscopy, we observe nodal rings on the orthogonal kz=0 and kx=0 planes of the Brillouin zone in Ti B2 . The nodal rings connect with each other on the intersecting line Γ-K of the orthogonal planes forming a remarkable nodal-chain structure. Furthermore, we observe surface states (SSs) on the (001) cleaved surface, which are consistent with the calculated SSs considering the contribution from both Ti and B terminations. The calculated SSs have novel Dirac-cone-like band structures, which are distinct from the usual drumhead SSs with a single flatband proposed in other TNLSMs.

  3. MMS Observations and Hybrid Simulations of Surface Ripples at a Marginally Quasi-Parallel Shock

    NASA Astrophysics Data System (ADS)

    Gingell, Imogen; Schwartz, Steven J.; Burgess, David; Johlander, Andreas; Russell, Christopher T.; Burch, James L.; Ergun, Robert E.; Fuselier, Stephen; Gershman, Daniel J.; Giles, Barbara L.; Goodrich, Katherine A.; Khotyaintsev, Yuri V.; Lavraud, Benoit; Lindqvist, Per-Arne; Strangeway, Robert J.; Trattner, Karlheinz; Torbert, Roy B.; Wei, Hanying; Wilder, Frederick

    2017-11-01

    Simulations and observations of collisionless shocks have shown that deviations of the nominal local shock normal orientation, that is, surface waves or ripples, are expected to propagate in the ramp and overshoot of quasi-perpendicular shocks. Here we identify signatures of a surface ripple propagating during a crossing of Earth's marginally quasi-parallel (θBn˜45∘) or quasi-parallel bow shock on 27 November 2015 06:01:44 UTC by the Magnetospheric Multiscale (MMS) mission and determine the ripple's properties using multispacecraft methods. Using two-dimensional hybrid simulations, we confirm that surface ripples are a feature of marginally quasi-parallel and quasi-parallel shocks under the observed solar wind conditions. In addition, since these marginally quasi-parallel and quasi-parallel shocks are expected to undergo a cyclic reformation of the shock front, we discuss the impact of multiple sources of nonstationarity on shock structure. Importantly, ripples are shown to be transient phenomena, developing faster than an ion gyroperiod and only during the period of the reformation cycle when a newly developed shock ramp is unaffected by turbulence in the foot. We conclude that the change in properties of the ripple observed by MMS is consistent with the reformation of the shock front over a time scale of an ion gyroperiod.

  4. A Climatology of Dust-Emission Events over North Africa Based on 27 Years of Surface Observations

    NASA Astrophysics Data System (ADS)

    Cowie, S.; Knippertz, P.; Schepanski, K.

    2012-04-01

    The huge quantity of mineral dust emitted annually from North Africa makes this area crucial to the global dust cycle. Once in the atmosphere, dust aerosols have a significant impact on the global radiation budget, clouds, the carbon cycle and can even act as a fertilizer to rain forests in South America. Current model estimates of dust production from North Africa are uncertain. At the heart of this problem is insufficient understanding of key dust emitting processes such as haboobs (cold pools generated through evaporation of convective precipitation), low-level jets (LLJs), and dry convection (dust devils and dust plumes). Scarce observations in this region, in particular in the Sahara, make model evaluation difficult. This work uses long-term surface observations from the MIDAS data set (~120 stations in the arid part of North Africa) to explore the diurnal, seasonal, decadal and geographical variations in dust emission events and their associated wind thresholds. The threshold values are determined from probability density functions of observed 10-minute anemomenter wind speeds. Emission events are defined using the present weather codes (WW) of SYNOP reports. These codes represent events of smaller intensity such as "Dust or sand raised by wind" to severe dust storms. During the 27-year study period (1984-2011) stations are required to have a minimum of 1000 dust observations to be included in the analysis. Dust emission frequency (DEF) is calculated for different time intervals (e.g. monthly, 3-hourly) taking into account the different number of measurements available at each station. North of 25°N a maximum during March-May is evident and relatively consistent over the whole North African region. Wind-speed thresholds for dust emission north of 25°N are higher than south of 25°N in the Sahel, where station-to-station variability is larger, and enhanced DEF activity during February-March is observed. The variability in this region is closely linked to the

  5. Breast surface estimation for radar-based breast imaging systems.

    PubMed

    Williams, Trevor C; Sill, Jeff M; Fear, Elise C

    2008-06-01

    Radar-based microwave breast-imaging techniques typically require the antennas to be placed at a certain distance from or on the breast surface. This requires prior knowledge of the breast location, shape, and size. The method proposed in this paper for obtaining this information is based on a modified tissue sensing adaptive radar algorithm. First, a breast surface detection scan is performed. Data from this scan are used to localize the breast by creating an estimate of the breast surface. If required, the antennas may then be placed at specified distances from the breast surface for a second tumor-sensing scan. This paper introduces the breast surface estimation and antenna placement algorithms. Surface estimation and antenna placement results are demonstrated on three-dimensional breast models derived from magnetic resonance images.

  6. Surface characterization based on optical phase shifting interferometry

    DOEpatents

    Mello, Michael , Rosakis; Ares, J [Altadena, CA

    2011-08-02

    Apparatus, techniques and systems for implementing an optical interferometer to measure surfaces, including mapping of instantaneous curvature or in-plane and out-of-plane displacement field gradients of a sample surface based on obtaining and processing four optical interferograms from a common optical reflected beam from the sample surface that are relatively separated in phase by .pi./2.

  7. Inverse modeling of CO2 sources and sinks using satellite observations of CO2 from TES and surface flask measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nassar, Ray; Jones, DBA; Kulawik, SS

    2011-01-01

    We infer CO2 surface fluxes using satellite observations of mid-tropospheric CO2 from the Tropospheric Emission Spectrometer (TES) and measurements of CO2 from surface flasks in a time-independent inversion analysis based on the GEOS-Chem model. Using TES CO2 observations over oceans, spanning 40 S 40 N, we find that the horizontal and vertical coverage of the TES and flask data are complementary. This complementarity is demonstrated by combining the datasets in a joint inversion, which provides better constraints than from either dataset alone, when a posteriori CO2 distributions are evaluated against independent ship and aircraft CO2 data. In particular, the jointmore » inversion offers improved constraints in the tropics where surface measurements are sparse, such as the tropical forests of South America. Aggregating the annual surface-to-atmosphere fluxes from the joint inversion for the year 2006 yields 1.13 0.21 PgC for the global ocean, 2.77 0.20 PgC for the global land biosphere and 3.90 0.29 PgC for the total global natural flux (defined as the sum of all biospheric, oceanic, and biomass burning contributions but excluding CO2 emissions from fossil fuel combustion). These global ocean and global land fluxes are shown to be near the median of the broad range of values from other inversion results for 2006. To achieve these results, a bias in TES CO2 in the Southern Hemisphere was assessed and corrected using aircraft flask data, and we demonstrate that our results have low sensitivity to variations in the bias correction approach. Overall, this analysis suggests that future carbon data assimilation systems can benefit by integrating in situ and satellite observations of CO2 and that the vertical information provided by satellite observations of mid-tropospheric CO2 combined with measurements of surface CO2, provides an important additional constraint for flux inversions.« less

  8. An OSEE Based Portable Surface Contamination Monitor

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.

    1997-01-01

    Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique based on the principle of Optically Stimulated Electron Emission (OSEE) has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it's non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be output to an external computer for archiving or analysis.

  9. Estimation of regional surface CO2 fluxes with GOSAT observations using two inverse modeling approaches

    NASA Astrophysics Data System (ADS)

    Maksyutov, Shamil; Takagi, Hiroshi; Belikov, Dmitry A.; Saeki, Tazu; Zhuravlev, Ruslan; Ganshin, Alexander; Lukyanov, Alexander; Yoshida, Yukio; Oshchepkov, Sergey; Bril, Andrey; Saito, Makoto; Oda, Tomohiro; Valsala, Vinu K.; Saito, Ryu; Andres, Robert J.; Conway, Thomas; Tans, Pieter; Yokota, Tatsuya

    2012-11-01

    Inverse estimation of surface C02 fluxes is performed with atmospheric transport model using ground-based and GOSAT observations. The NIES-retrieved C02 column mixing (Xc02) and column averaging kernel are provided by GOSAT Level 2 product v. 2.0 and PPDF-DOAS method. Monthly mean C02 fluxes for 64 regions are estimated together with a global mean offset between GOSAT data and ground-based data. We used the fixed-lag Kalman filter to infer monthly fluxes for 42 sub-continental terrestrial regions and 22 oceanic basins. We estimate fluxes and compare results obtained by two inverse modeling approaches. In basic approach adopted in GOSAT Level4 product v. 2.01, we use aggregation of the GOSAT observations into monthly mean over 5x5 degree grids, fluxes are estimated independently for each region, and NIES atmospheric transport model is used for forward simulation. In the alternative method, the model-observation misfit is estimated for each observation separately and fluxes are spatially correlated using EOF analysis of the simulated flux variability similar to geostatistical approach, while transport simulation is enhanced by coupling with a Lagrangian transport model Flexpart. Both methods use using the same set of prior fluxes and region maps. Daily net ecosystem exchange (NEE) is predicted by the Vegetation Integrative Simulator for Trace gases (VISIT) optimized to match seasonal cycle of the atmospheric C02 . Monthly ocean-atmosphere C02 fluxes are produced with an ocean pC02 data assimilation system. Biomass burning fluxes were provided by the Global Fire Emissions Database (GFED); and monthly fossil fuel C02 emissions are estimated with ODIAC inventory. The results of analyzing one year of the GOSAT data suggest that when both GOSAT and ground-based data are used together, fluxes in tropical and other remote regions with lower associated uncertainties are obtained than in the analysis using only ground-based data. With version 2.0 of L2 Xc02 the fluxes appear

  10. Scanning Electron Microscope Observations of Marine Microorganisms on Surfaces Coated with Antifouling Paints.

    DTIC Science & Technology

    1981-06-01

    sessile marine inverte- brates in Monterey harbor. Veliger 17 (supplement): 1-35. 1977. The nature of primary organic films in the marine environment and...I A10A4h 605 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/S 11/3 SCANING ELECTRON MICROSCOPE OBSERVATIONS OF MARINE MICROORANI-E-C(U) UNLSSIFIED N*2...Scanning Electron Microscope Observations Master’s thesis; of Marine Microorganisms on Surfaces June 1981 Coated with Ant ifouling Paints 6.PERFORMING

  11. Geologic interpretation of new observations of the surface of Venus

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Malin, M. C.

    1977-01-01

    New radar observations of the surface of Venus provide further evidence of a diverse and complex geologic evolution. The radar bright feature 'Beta' (24 deg N, 85 deg W) is seen to be a 700 km diameter region elevated a maximum of approximately 10 km relative to its surroundings with a 60 x 90 km wide depression at its summit. 'Beta' is interpreted to be a large volcanic construct, analogous to terrestrial and Martian shield volcanoes. Two large, quasi-circular areas of low reflectivity, examples of a class of features interpreted to be impact basins by previous investigators who were without the benefit of actual topographic information, are shown in altimetry maps to be depressions. Thus the term 'basin' can be applied, although we urge a non-genetic usage until more complete understanding of their origin is achieved through analysis of future observations.

  12. An investigation of the observability of ocean-surface parameters using GEOS-3 backscatter data

    NASA Technical Reports Server (NTRS)

    Miller, L. S.; Priester, R. W.

    1978-01-01

    The degree to which ocean surface roughness can be synoptically observed through use of the information extracted from the GEOS-3 backscattered waveform data was evaluated. Algorithms are given for use in estimating the radar sensed waveheight distribution or ocean-surface impulse response. Other factors discussed include comparisons between theoretical and experimental radar cross section values, sea state bias effects, spatial variability of significant waveheight data, and sensor-related considerations.

  13. LOTOS: A Proposed Lower Tropospheric Observing System from the Land Surface through the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Cohn, S. A.; Lee, W. C.; Carbone, R. E.; Oncley, S.; Brown, W. O. J.; Spuler, S.; Horst, T. W.

    2015-12-01

    Advances in sensor capabilities, but also in electronics, optics, RF communication, and off-the-grid power are enabling new measurement paradigms. NCAR's Earth Observing Laboratory (EOL) is considering new sensors, new deployment modes, and integrated observing strategies to address challenges in understanding within the atmospheric boundary layer and the underlying coupling to the land surface. Our vision is of a network of deployable observing sites, each with a suite of complementary instruments that measure surface-atmosphere exchange, and the state and evolution of the boundary layer. EOL has made good progress on distributed surface energy balance and flux stations, and on boundary layer remote sensing of wind and water vapor, all suitable for deployments of combined instruments and as network of such sites. We will present the status of the CentNet surface network development, the 449-MHz modular wind profiler, and a water vapor and temperature profiling differential absorption lidar (DIAL) under development. We will further present a concept for a test bed to better understand the value of these and other possible instruments in forming an instrument suite flexible for multiple research purposes.

  14. Local surface curvature analysis based on reflection estimation

    NASA Astrophysics Data System (ADS)

    Lu, Qinglin; Laligant, Olivier; Fauvet, Eric; Zakharova, Anastasia

    2015-07-01

    In this paper, we propose a novel reflection based method to estimate the local orientation of a specular surface. For a calibrated scene with a fixed light band, the band is reflected by the surface to the image plane of a camera. Then the local geometry between the surface and reflected band is estimated. Firstly, in order to find the relationship relying the object position, the object surface orientation and the band reflection, we study the fundamental theory of the geometry between a specular mirror surface and a band source. Then we extend our approach to the spherical surface with arbitrary curvature. Experiments are conducted with mirror surface and spherical surface. Results show that our method is able to obtain the local surface orientation merely by measuring the displacement and the form of the reflection.

  15. Shortwave surface radiation network for observing small-scale cloud inhomogeneity fields

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Kalisch, John; Macke, Andreas

    2016-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. In this paper, we provide the details of this unique setup of the pyranometer network, data processing, quality control, and uncertainty assessment under variable conditions. Some exemplary days with clear, broken cloudy, and overcast skies were explored to assess the spatiotemporal observations from the network along with other collocated radiation and sky imager measurements available during the HOPE period.

  16. Surface layer characteristics derived from fast-response micrometeorological observations over a mountain peak in the central Himalayas

    NASA Astrophysics Data System (ADS)

    Solanki, Raman; Dhaka, Surendra; Rajeev, Kunjukrishnapillai; Singh, Narendra; Nadimpally, Kirankumar

    Diurnal evolution of atmospheric boundary layer over hilly terrains is highly complex and least understood. Fast-response micrometeorological observations carried out at Manora Peak, Nainital (29.2°N, 79.3°E, 1960 m ASL), a hill station located in the Central Himalayas during March-2013 to February-2014 has been used to investigate diurnal variations in the surface layer characteristics, energy budget and atmospheric circulation over complex terrains. This study mainly employs tower-based sonic anemometer observations (25 Hz) carried out at two levels (12 m and 27 m above the ground level) which are used to derive the variations of zonal, meridional and vertical winds, virtual temperature, momentum flux, turbulent kinetic energy, and Monin-Obukhov stability parameter during fair-weather conditions. In general, this station is manifested by warm and dry conditions as well as relatively high wind speed during pre-monsoon season (March-May); while highly moist conditions prevail during the summer monsoon season (June-September). The sensible heat flux (SHF) undergoes a prominent diurnal variation during winter and pre-monsoon seasons with peak values (200 to 400 Wm-2) occurring between 11-15 Local Time (LT) and weakly negative values (typically -20 Wm-2) during night, the latter indicating a downward transfer of heat from atmosphere to surface. The noon-time peak values systematically increases from winter to pre-monsoon season. Remarkably, the large noon-time values of SHF observed during the pre-monsoon season over this station (peak SHF of more than 400 Wm-2 during May) arise from the forced lifting of air masses, caused by the prevailing horizontal winds that blow perpendicular to the mountain. The intricate details of the surface layer parameters and fluxes over this site will assist in investigating how such a complex topography influences the flux generation process.

  17. Multi-scale Drivers of Variations in Atmospheric Evaporative Demand Based on Observations and Physically-based Modeling

    NASA Astrophysics Data System (ADS)

    Peng, L.; Sheffield, J.; Li, D.

    2015-12-01

    Evapotranspiration (ET) is a key link between the availability of water resources and climate change and climate variability. Variability of ET has important environmental and socioeconomic implications for managing hydrological hazards, food and energy production. Although there have been many observational and modeling studies of ET, how ET has varied and the drivers of the variations at different temporal scales remain elusive. Much of the uncertainty comes from the atmospheric evaporative demand (AED), which is the combined effect of radiative and aerodynamic controls. The inconsistencies among modeled AED estimates and the limited observational data may originate from multiple sources including the limited time span and uncertainties in the data. To fully investigate and untangle the intertwined drivers of AED, we present a spectrum analysis to identify key controls of AED across multiple temporal scales. We use long-term records of observed pan evaporation for 1961-2006 from 317 weather stations across China and physically-based model estimates of potential evapotranspiration (PET). The model estimates are based on surface meteorology and radiation derived from reanalysis, satellite retrievals and station data. Our analyses show that temperature plays a dominant role in regulating variability of AED at the inter-annual scale. At the monthly and seasonal scales, the primary control of AED shifts from radiation in humid regions to humidity in dry regions. Unlike many studies focusing on the spatial pattern of ET drivers based on a traditional supply and demand framework, this study underlines the importance of temporal scales when discussing controls of ET variations.

  18. Surface Enrichment in Equimolar Mixtures of Non-Functionalized and Functionalized Imidazolium-Based Ionic Liquids.

    PubMed

    Heller, Bettina S J; Kolbeck, Claudia; Niedermaier, Inga; Dommer, Sabine; Schatz, Jürgen; Hunt, Patricia; Maier, Florian; Steinrück, Hans-Peter

    2018-04-12

    For equimolar mixtures of ionic liquids with imidazolium-based cations of very different electronic structure, we observe very pronounced surface enrichment effects by angle-resolved X-ray photoelectron spectroscopy (XPS). For a mixture with the same anion, that is, 1-methyl-3-octylimidazolium hexafluorophosphate+1,3-di(methoxy)imidazolium hexafluorophosphate ([C 8 C 1 Im][PF 6 ]+[(MeO) 2 Im][PF 6 ]), we find a strong enrichment of the octyl chain-containing [C 8 C 1 Im] + cation and a corresponding depletion of the [(MeO) 2 Im] + cation in the topmost layer. For a mixture with different cations and anions, that is, [C 8 C 1 Im][Tf 2 N]+[(MeO) 2 Im][PF 6 ], we find both surface enrichment of the [C 8 C 1 Im] + cation and the [Tf 2 N] - (bis[(trifluoromethyl)sulfonyl]imide) anion, while [(MeO) 2 Im] + and [PF 6 ] - are depleted from the surface. We propose that the observed behavior in these mixtures is due to a lowering of the surface tension by the enriched components. Interestingly, we observe pronounced differences in the chemical shifts of the imidazolium ring signals of the [(MeO) 2 Im] + cations as compared to the non-functionalized cations. Calculations of the electronic structure and the intramolecular partial charge distribution of the cations contribute to interpreting these shifts for the two different cations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Improving land surface emissivty parameter for land surface models using portable FTIR and remote sensing observation in Taklimakan Desert

    NASA Astrophysics Data System (ADS)

    Liu, Yongqiang; Mamtimin, Ali; He, Qing

    2014-05-01

    Because land surface emissivity (ɛ) has not been reliably measured, global climate model (GCM) land surface schemes conventionally set this parameter as simply assumption, for example, 1 as in the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) model, 0.96 for soil and wetland in the Global and Regional Assimilation and Prediction System (GRAPES) Common Land Model (CoLM). This is the so-called emissivity assumption. Accurate broadband emissivity data are needed as model inputs to better simulate the land surface climate. It is demonstrated in this paper that the assumption of the emissivity induces errors in modeling the surface energy budget over Taklimakan Desert where ɛ is far smaller than original value. One feasible solution to this problem is to apply the accurate broadband emissivity into land surface models. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument has routinely measured spectral emissivities in six thermal infrared bands. The empirical regression equations have been developed in this study to convert these spectral emissivities to broadband emissivity required by land surface models. In order to calibrate the regression equations, using a portable Fourier Transform infrared (FTIR) spectrometer instrument, crossing Taklimakan Desert along with highway from north to south, to measure the accurate broadband emissivity. The observed emissivity data show broadband ɛ around 0.89-0.92. To examine the impact of improved ɛ to radiative energy redistribution, simulation studies were conducted using offline CoLM. The results illustrate that large impacts of surface ɛ occur over desert, with changes up in surface skin temperature, as well as evident changes in sensible heat fluxes. Keywords: Taklimakan Desert, surface broadband emissivity, Fourier Transform infrared spectrometer, MODIS, CoLM

  20. Observations of the Evolution of Turbulent Dissipation within the Ocean Surface Boundary Layer: an OSMOSIS study

    NASA Astrophysics Data System (ADS)

    Lucas, N. S.; Allen, J.; Belcher, S. E.; Boyd, T.; Brannigan, L.; Inall, M.; Palmer, M.; Polton, J.; Rippeth, T. P.

    2016-02-01

    This study presents a new 9.5 day dataset showing the evolution of the Ocean Surface Boundary Layer (OSBL) and dissipation of turbulence kinetic energy (TKE), carried out as part of OSMOSIS[i], at a location in the North East Atlantic Ocean in September 2012. The TKE dissipation measurements were made using three methods; (i) repeated profiling between 100m and the surface by an Ocean Microstructure glider, (ii) three series of profiles made using a loosely tethered velocity microstructure glider and (iii) a moored pulse-pulse coherent high frequency ADCP. Supporting measurements show the evolution of the water column structure, including surface wave measurements from a TRIAXYS wave buoy. This data shows two distinct regimes; the first, spanning 4 days with relatively low winds, displays a distinct diurnal cycle with the deepening of the active mixing layer during the night which shoaled during the day. The second spanned a significant storm, (with maximum winds speeds reaching 20 m s-1 and significant wave heights reaching 6 m), during which, rather than a deepening of the mixed layer as predicted by classical theory, the primary effect was a broadening of the transition layer, similar to that found by Dohan and Davies (2011). During the storm, significant dissipation was observed throughout the surface mixed layer and into the transition layer, driving fluxes of heat downwards through the base of the surface mixed layer. [i] Ocean Surface Mixing and Submesoscale Interaction Study Dohan, K. & Davis, R.E., 2011. Mixing in the Transition Layer during Two Storm Events. Journal of Physical Oceanography. 41 (1). pp. 42-66.

  1. Experimental observation of standing interfacial waves induced by surface waves in muddy water

    NASA Astrophysics Data System (ADS)

    Maxeiner, Eric; Dalrymple, Robert A.

    2011-09-01

    A striking feature has been observed in a laboratory wave tank with a thin layer of clear water overlying a layer of mud. A piston-type wave maker is used to generate long monochromatic surface waves in a tank with a layer of kaolinite clay at the bottom. The wave action on the mud causes the clay particles to rise from the bottom into the water column, forming a lutocline. As the lutocline approaches the water surface, a set of standing interfacial waves form on the lutocline. The interfacial wave directions are oriented nearly orthogonal to the surface wave direction. The interfacial waves, which sometimes cover the entire length and width of the tank, are also temporally subharmonic as the phase of the interfacial wave alternates with each passing surface wave crest. These interfacial waves are the result of a resonant three-wave interaction involving the surface wave train and the two interfacial wave trains. The interfacial waves are only present when the lutocline is about 3 cm of the water surface and they can be sufficiently nonlinear as to exhibit superharmonics and a breaking-type of instability.

  2. Compressive Strength of Cometary Surfaces Derived from Radar Observations

    NASA Astrophysics Data System (ADS)

    ElShafie, A.; Heggy, E.

    2014-12-01

    Landing on a comet nucleus and probing it, mechanically using harpoons, penetrometers and drills, and electromagnetically using low frequency radar waves is a complex task that will be tackled by the Rosetta mission for Comet 67P/Churyumov-Gerasimenko. The mechanical properties (i.e. density, porosity and compressive strength) and the electrical properties (i.e. the real and imaginary parts of the dielectric constant) of the comet nucleus, constrain both the mechanical and electromagnetic probing capabilities of Rosetta, as well as the choice of landing site, the safety of the landing, and subsurface data interpretation. During landing, the sounding radar data that will be collected by Rosetta's CONSERT experiment can be used to probe the comet's upper regolith layer by assessing its dielectric properties, which are then inverted to retrieve the surface mechanical properties. These observations can help characterize the mechanical properties of the landing site, which will optimize the operation of the anchor system. In this effort, we correlate the mechanical and electrical properties of cometary analogs to each other, and derive an empirical model that can be used to retrieve density, porosity and compressive strength from the dielectric properties of the upper regolith inverted from CONSERT observations during the landing phase. In our approach we consider snow as a viable cometary material analog due to its low density and its porous nature. Therefore, we used the compressive strength and dielectric constant measurements conducted on snow at a temperature of 250 K and a density range of 0.4-0.9 g/cm3 in order to investigate the relation between compressive strength and dielectric constant under cometary-relevant density range. Our results suggest that compressive strength increases linearly as function of the dielectric constant over the observed density range mentioned above. The minimum and maximum compressive strength of 0.5 and 4.5 MPa corresponded to a

  3. Analysis of observed surface ozone in the dry season over Eastern Thailand during 1997-2012

    NASA Astrophysics Data System (ADS)

    Assareh, Nosha; Prabamroong, Thayukorn; Manomaiphiboon, Kasemsan; Theramongkol, Phunsak; Leungsakul, Sirakarn; Mitrjit, Nawarat; Rachiwong, Jintarat

    2016-09-01

    This study analyzed observed surface ozone (O3) in the dry season over a long-term period of 1997-2012 for the eastern region of Thailand and incorporated several technical tools or methods in investigating different aspects of O3. The focus was the urbanized and industrialized coastal areas recently recognized as most O3-polluted areas. It was found that O3 is intensified most in the dry-season months when meteorological conditions are favorable to O3 development. The diurnal variations of O3 and its precursors show the general patterns of urban background. From observational O3 isopleth diagrams and morning ratios of non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NOx), the chemical regime of O3 formation was identified as VOC-sensitive, and the degree of VOC sensitivity tends to increase over the years, suggesting emission control on VOC to be suitable for O3 management. Both total oxidant analysis and back-trajectory modeling (together with K-means clustering) indicate the potential role of regional transport or influence in enhancing surface O3 level over the study areas. A meteorological adjustment with generalized linear modeling was performed to statistically exclude meteorological effects on the variability of O3. Local air-mass recirculation factor was included in the modeling to support the coastal application. The derived trends in O3 based on the meteorological adjustment were found to be significantly positive using a Mann-Kendall test with block bootstrapping.

  4. Observed modes of sea surface temperature variability in the South Pacific region

    NASA Astrophysics Data System (ADS)

    Saurral, Ramiro I.; Doblas-Reyes, Francisco J.; García-Serrano, Javier

    2018-02-01

    The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.

  5. Development and validation of satellite-based estimates of surface visibility

    NASA Astrophysics Data System (ADS)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2016-02-01

    A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V < 30 km), low (2 km ≤ V < 10 km), and poor (V < 2 km) visibilities and shows the most skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear-sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  6. Development and validation of satellite based estimates of surface visibility

    NASA Astrophysics Data System (ADS)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V < 30 km), Low (2 km ≤ V < 10 km) and Poor (V < 2 km) visibilities and shows the most skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  7. History of Martian Surface Changes Observed by Mars Global Surveyor

    NASA Astrophysics Data System (ADS)

    Geissler, P. E.; Enga, M.; Mukherjee, P.

    2009-12-01

    The changing appearance of Mars has fascinated observers for centuries, yet much is still unknown about the winds and sediments that alter the albedo of vast areas of the planet’s surface. A variety of aeolian processes contribute to the deposition and erosion of dust on Mars, with distinct causes and timescales that vary with season and location. Over decadal timescales, these processes act to alter the planetary albedo distribution enough to significantly impact the climate and global circulation of winds on Mars (Geissler, JGR 110, E02001, 2005; Fenton et al., Nature 446, 646, 2007). We are documenting the extent and frequency of Martian surface changes by analyzing the rich record of observations made by the Mars Global Surveyor mission. We are currently completing a time-series of global mosaics produced from wide angle MOC images showing in detail how the planet’s surface changed in appearance between early 1999 and late 2006, a period of 4 Martian years. The MOC mosaics reveal a surprising range of temporal behavior among variable features in different regions of Mars. Episodic dust deposition followed by episodic clearing can be seen in Syrtis Major. Gradual erosion by persistent seasonal winds can be seen in many equatorial areas such as southern Alcyonius. Gradual erosion by dust-devils is prevalent at higher latitudes and notably in Nilosyrtis, where the albedo boundary dividing the high albedo tropics from the dark terrain to the north is slowly advancing southwards onto brighter terrain. Solis Planum, a high plateau south of the Valles Marineris, changes on a nearly continuous basis. Many of the moving albedo boundaries (such as those at Oxia Palus and the Southern tropical dark band) display high albedo margins that may be aprons of dust swept away by the advancing erosion. The data also show clear evidence for dust deposition onto already dust-covered regions, a phenomenon that was suspected but not demonstrated by Geissler (2005). The final MOC

  8. Understanding Regolith Physical Properties of Atmosphereless Solar System Bodies Based on Remote Sensing Photopolarimetric Observations: Evidence for Europa's Porous Surface

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K. S.; Shkuratov, Y.; Psarev, V.; Vandervoort, K.; Kroner, D. O.; Nebedum, A.; Vides, C.; Quinones, J.

    2017-12-01

    We studied the polarization and reflective properties of a suite of planetary regolith analogues with physical characteristics that might be expected to be found on a high albedo atmosphereless solar system body (ASSB). The angular scattering properties of thirteen well-sorted particle size fractions of aluminum oxide (Al2O3) were measured in the laboratory with a goniometric photopolarimeter (GPP) of unique design. Our results provide insight in support of efforts to understand the unusual reflectance and negative polarization behavior observed near small phase angles that has been reported over several decades on highly reflective ASSBs such as the asteroids 44 Nysa, 64 Angelina (Harris et al., 1989) and the Galilean satellites Io, Europa and Ganymede (Rosenbush et al., 1997; Mishchenko et al., 2006). Our measurements are consistent with the hypothesis that the surfaces of these ASSBs effectively scatter electromagnetic radiation as if they were extremely fine grained with void space > 95%, and grain sizes of the order <= λvis. This portends consequences for efforts to deploy surface landers on high ASSB's such as Europa. A spacecraft landing on Europa's surface would require wheel or footpads that would protect it from settling deeply into the surface. These results also have relevance to the field of terrestrial geo-engineering particularly to proposals for modifying Earth's radiation balance by injecting high albedo Al2O3 particulates into Earth's atmosphere for the purpose of Solar Radiation Management by reflecting sunlight back into space hence, offsetting the global warming effects of anthropogenic greenhouse gas emissions such as carbon dioxide(Teller et al., 1997). This work partially supported by the Cassini Saturn Orbiter Progrem Harris et al., 1989 . Icarus 81, 365-374. Mishchenko et al., 2006 Applied Optics, 45, 4459-4463. Rosenbush et al, 1997, Astrophys. J. 487, 402-414. Teller et al., 1997. UCRL-JC-128715.

  9. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    NASA Astrophysics Data System (ADS)

    Zhang, Sibo; Calvet, Jean-Christophe; Darrozes, José; Roussel, Nicolas; Frappart, Frédéric; Bouhours, Gilles

    2018-03-01

    This work assesses the estimation of surface volumetric soil moisture (VSM) using the global navigation satellite system interferometric reflectometry (GNSS-IR) technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m). The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere) land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 = 0.86 and RMSE = 0.04 m3 m-3). It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  10. Effect of repair resin type and surface treatment on the repair strength of polyamide denture base resin.

    PubMed

    Gundogdu, Mustafa; Yanikoglu, Nuran; Bayindir, Funda; Ciftci, Hilal

    2015-01-01

    The purpose of the present study was to evaluate the effects of different repair resins and surface treatments on the repair strength of a polyamide denture base material. Polyamide resin specimens were prepared and divided into nine groups according to the surface treatments and repair materials. The flexural strengths were measured with a 3-point bending test. Data were analyzed with a 2-way analysis of variance, and the post-hoc Tukey test (α=0.05). The effects of the surface treatments on the surface of the polyamide resin were examined using scanning electron microscopy. The repair resins and surface treatments significantly affected the repair strength of the polyamide denture base material (p<0.05); however, no significant differences were observed interaction between the factors (p>0.05). The flexural strength of the specimens repaired with the polyamide resin was significantly higher than that of those repaired with the heat-polymerized and autopolymerizing acrylic resins.

  11. Theoretical study of the adsorption of DNA bases on the acidic external surface of montmorillonite.

    PubMed

    Mignon, Pierre; Sodupe, Mariona

    2012-01-14

    In the present study, DFT periodic plane wave calculations, at the PBE-D level of theory, were carried out to investigate the interaction of DNA nucleobases with acidic montmorillonite. The surface model was considered in its octahedral (Osub) and tetrahedral (Tsub) substituted forms, known to have different acidic properties. The adsorption of adenine, guanine and cytosine was considered in both orthogonal and coplanar orientations with the surface, interacting with the proton via a given heteroatom. In almost all considered cases, adsorption involved the spontaneous proton transfer to the nucleobase, with a more pronounced character in the Osub structures. The binding energy is about 10 kcal mol(-1) larger for Osub than for Tsub complexes mainly due to the larger acidity in Osub surfaces and due to the better stabilization by H-bond contacts between the negatively charged surface and the protonated base. The binding energy of coplanar orientations of the base is observed to be as large as the orthogonal ones due to a balance between electrostatic and dispersion contributions. Finally the binding of guanine and adenine on the acidic surface amounts to 50 kcal mol(-1) while that of cytosine rises to 44 kcal mol(-1).

  12. Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model

    NASA Astrophysics Data System (ADS)

    Chen, Huaizhen; Zhang, Guangzhi

    2018-03-01

    Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.

  13. Observed seasonal and interannual variability of the near-surface thermal structure of the Arabian Sea Warm Pool

    NASA Astrophysics Data System (ADS)

    Rao, R. R.; Ramakrishna, S. S. V. S.

    2017-06-01

    The observed seasonal and interannual variability of near-surface thermal structure of the Arabian Sea Warm Pool (ASWP) is examined utilizing a reanalysis data set for the period 1990-2008. During a year, the ASWP progressively builds from February, reaches its peak by May only in the topmost 60 m water column. The ASWP Index showed a strong seasonal cycle with distinct interannual signatures. The years with higher (lower) sea surface temperature (SST) and larger (smaller) spatial extent are termed as strong (weak) ASWP years. The differences in the magnitude and spatial extent of thermal structure between the strong and weak ASWP regimes are seen more prominently in the topmost 40 m water column. The heat content values with respect to 28 °C isotherm (HC28) are relatively higher (lower) during strong (weak) ASWP years. Even the secondary peak in HC28 seen during the preceding November-December showed higher (lower) magnitude during the strong ASWP (weak) years. The influence of the observed variability in the surface wind field, surface net air-sea heat flux, near-surface mixed layer thickness, sea surface height (SSH) anomaly, depth of 20 °C isotherm and barrier layer thickness is examined to explain the observed differences in the near-surface thermal structure of the ASWP between strong and weak regimes. The surface wind speed is much weaker in particular during the preceding October and February-March corresponding to the strong ASWP years when compared to those of the weak ASWP years implying its important role. Both stronger winter cooling during weak ASWP years and stronger pre-monsoon heating during strong ASWP years through the surface air-sea heat fluxes contribute to the observed sharp contrast in the magnitudes of both the regimes of the ASWP. The upwelling Rossby wave during the preceding summer monsoon, post-monsoon and winter seasons is stronger corresponding to the weak ASWP regime when compared to the strong ASWP regime resulting in greater

  14. Investigating Surface and Near-Surface Bushfire Fuel Attributes: A Comparison between Visual Assessments and Image-Based Point Clouds

    PubMed Central

    Spits, Christine; Wallace, Luke; Reinke, Karin

    2017-01-01

    Visual assessment, following guides such as the Overall Fuel Hazard Assessment Guide (OFHAG), is a common approach for assessing the structure and hazard of varying bushfire fuel layers. Visual assessments can be vulnerable to imprecision due to subjectivity between assessors, while emerging techniques such as image-based point clouds can offer land managers potentially more repeatable descriptions of fuel structure. This study compared the variability of estimates of surface and near-surface fuel attributes generated by eight assessment teams using the OFHAG and Fuels3D, a smartphone method utilising image-based point clouds, within three assessment plots in an Australian lowland forest. Surface fuel hazard scores derived from underpinning attributes were also assessed. Overall, this study found considerable variability between teams on most visually assessed variables, resulting in inconsistent hazard scores. Variability was observed within point cloud estimates but was, however, on average two to eight times less than that seen in visual estimates, indicating greater consistency and repeatability of this method. It is proposed that while variability within the Fuels3D method may be overcome through improved methods and equipment, inconsistencies in the OFHAG are likely due to the inherent subjectivity between assessors, which may be more difficult to overcome. This study demonstrates the capability of the Fuels3D method to efficiently and consistently collect data on fuel hazard and structure, and, as such, this method shows potential for use in fire management practices where accurate and reliable data is essential. PMID:28425957

  15. Investigating Surface and Near-Surface Bushfire Fuel Attributes: A Comparison between Visual Assessments and Image-Based Point Clouds.

    PubMed

    Spits, Christine; Wallace, Luke; Reinke, Karin

    2017-04-20

    Visual assessment, following guides such as the Overall Fuel Hazard Assessment Guide (OFHAG), is a common approach for assessing the structure and hazard of varying bushfire fuel layers. Visual assessments can be vulnerable to imprecision due to subjectivity between assessors, while emerging techniques such as image-based point clouds can offer land managers potentially more repeatable descriptions of fuel structure. This study compared the variability of estimates of surface and near-surface fuel attributes generated by eight assessment teams using the OFHAG and Fuels3D, a smartphone method utilising image-based point clouds, within three assessment plots in an Australian lowland forest. Surface fuel hazard scores derived from underpinning attributes were also assessed. Overall, this study found considerable variability between teams on most visually assessed variables, resulting in inconsistent hazard scores. Variability was observed within point cloud estimates but was, however, on average two to eight times less than that seen in visual estimates, indicating greater consistency and repeatability of this method. It is proposed that while variability within the Fuels3D method may be overcome through improved methods and equipment, inconsistencies in the OFHAG are likely due to the inherent subjectivity between assessors, which may be more difficult to overcome. This study demonstrates the capability of the Fuels3D method to efficiently and consistently collect data on fuel hazard and structure, and, as such, this method shows potential for use in fire management practices where accurate and reliable data is essential.

  16. A method of extracting impervious surface based on rule algorithm

    NASA Astrophysics Data System (ADS)

    Peng, Shuangyun; Hong, Liang; Xu, Quanli

    2018-02-01

    The impervious surface has become an important index to evaluate the urban environmental quality and measure the development level of urbanization. At present, the use of remote sensing technology to extract impervious surface has become the main way. In this paper, a method to extract impervious surface based on rule algorithm is proposed. The main ideas of the method is to use the rule-based algorithm to extract impermeable surface based on the characteristics and the difference which is between the impervious surface and the other three types of objects (water, soil and vegetation) in the seven original bands, NDWI and NDVI. The steps can be divided into three steps: 1) Firstly, the vegetation is extracted according to the principle that the vegetation is higher in the near-infrared band than the other bands; 2) Then, the water is extracted according to the characteristic of the water with the highest NDWI and the lowest NDVI; 3) Finally, the impermeable surface is extracted based on the fact that the impervious surface has a higher NDWI value and the lowest NDVI value than the soil.In order to test the accuracy of the rule algorithm, this paper uses the linear spectral mixed decomposition algorithm, the CART algorithm, the NDII index algorithm for extracting the impervious surface based on six remote sensing image of the Dianchi Lake Basin from 1999 to 2014. Then, the accuracy of the above three methods is compared with the accuracy of the rule algorithm by using the overall classification accuracy method. It is found that the extraction method based on the rule algorithm is obviously higher than the above three methods.

  17. Influence of short chain organic acids and bases on the wetting properties and surface energy of submicrometer ceramic powders.

    PubMed

    Neirinck, Bram; Soccol, Dimitri; Fransaer, Jan; Van der Biest, Omer; Vleugels, Jef

    2010-08-15

    The effect of short chained organic acids and bases on the surface energy and wetting properties of submicrometer alumina powder was assessed. The surface chemistry of treated powders was determined by means of Diffuse Reflectance Infrared Fourier Transform spectroscopy and compared to untreated powder. The wetting of powders was measured using a modified Washburn method, based on the use of precompacted powder samples. The geometric factor needed to calculate the contact angle was derived from measurements of the porous properties of the powder compacts. Contact angle measurements with several probe liquids before and after modification allowed a theoretical estimation of the surface energy based on the surface tension component theory. Trends in the surface energy components were linked to observations in infrared spectra. The results showed that the hydrophobic character of the precompacted powder depends on both the chain length and polar group of the modifying agent. Copyright 2010 Elsevier Inc. All rights reserved.

  18. An Iterative, Geometric, Tilt Correction Method for Radiation and Albedo Observed by Automatic Weather Stations on Snow-Covered Surfaces: Application to Greenland

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zender, C. S.; van As, D.; Smeets, P.; van den Broeke, M.

    2015-12-01

    Surface melt and mass loss of Greenland Ice Sheet may play crucial roles in global climate change due to their positive feedbacks and large fresh water storage. With few other regular meteorological observations available in this extreme environment, measurements from Automatic Weather Stations (AWS) are the primary data source for the surface energy budget studies, and for validating satellite observations and model simulations. However, station tilt, due to surface melt and compaction, results in considerable biases in the radiation and thus albedo measurements by AWS. In this study, we identify the tilt-induced biases in the climatology of surface radiative flux and albedo, and then correct them based on geometrical principles. Over all the AWS from the Greenland Climate Network (GC-Net), the Kangerlussuaq transect (K-transect) and the Programme for Monitoring of the Greenland Ice Sheet (PROMICE), only ~15% of clear days have the correct solar noon time, with the largest bias to be 3 hours. Absolute hourly biases in the magnitude of surface insolation can reach up to 200 W/m2, with daily average exceeding 100 W/m2. The biases are larger in the accumulation zone due to the systematic tilt at each station, although variabilities of tilt angles are larger in the ablation zone. Averaged over the whole Greenland Ice Sheet in the melting season, the absolute bias in insolation is ~23 W/m2, enough to melt 0.51 m snow water equivalent. We estimate the tilt angles and their directions by comparing the simulated insolation at a horizontal surface with the observed insolation by these tilted AWS under clear-sky conditions. Our correction reduces the RMSE against satellite measurements and reanalysis by ~30 W/m2 relative to the uncorrected data, with correlation coefficients over 0.95 for both references. The corrected diurnal changes of albedo are more smooth, with consistent semi-smiling patterns (see Fig. 1). The seasonal cycles and annual variabilities of albedo are in

  19. Sublimation of Exposed Snow Queen Surface Water Ice as Observed by the Phoenix Mars Lander

    NASA Astrophysics Data System (ADS)

    Markiewicz, W. J.; Keller, H. U.; Kossacki, K. J.; Mellon, M. T.; Stubbe, H. F.; Bos, B. J.; Woida, R.; Drube, L.; Leer, K.; Madsen, M. B.; Goetz, W.; El Maarry, M. R.; Smith, P.

    2008-12-01

    One of the first images obtained by the Robotic Arm Camera on the Mars Phoenix Lander was that of the surface beneath the spacecraft. This image, taken on sol 4 (Martian day) of the mission, was intended to check the stability of the footpads of the lander and to document the effect the retro-rockets had on the Martian surface. Not completely unexpected the image revealed an oval shaped, relatively bright and apparently smooth object, later named Snow Queen, surrounded by the regolith similar to that already seen throughout the landscape of the landing site. The object was suspected to be the surface of the ice table uncovered by the blast of the retro-rockets during touchdown. High resolution HiRISE images of the landing site from orbit, show a roughly circular dark region of about 40 m diameter with the lander in the center. A plausible explanation for this region being darker than the rest of the visible Martian Northern Planes (here polygonal patterns) is that a thin layer of the material ejected by the retro-rockets covered the original surface. Alternatively the thrusters may have removed the fine surface dust during the last stages of the descent. A simple estimate requires that about 10 cm of the surface material underneath the lander is needed to be ejected and redistributed to create the observed dark circular region. 10 cm is comparable to 4-5 cm predicted depth at which the ice table was expected to be found at the latitude of the Phoenix landing site. The models also predicted that exposed water ice should sublimate at a rate not faster but probably close to 1 mm per sol. Snow Queen was further documented on sols 5, 6 and 21 with no obvious changes detected. The following time it was imaged was on sol 45, 24 sols after the previous observation. This time some clear changes were obvious. Several small cracks, most likely due to thermal cycling and sublimation of water ice appeared. Nevertheless, the bulk of Snow Queen surface remained smooth. The next

  20. Toward all weather, long record, and real-time land surface temperature retrievals from microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Jimenez, Carlos; Prigent, Catherine; Aires, Filipe; Ermida, Sofia

    2017-04-01

    The land surface temperature can be estimated from satellite passive microwave observations, with limited contamination from the clouds as compared to the infrared satellite retrievals. With ˜60% cloud cover in average over the globe, there is a need for "all weather," long record, and real-time estimates of land surface temperature (Ts) from microwaves. A simple yet accurate methodology is developed to derive the land surface temperature from microwave conical scanner observations, with the help of pre-calculated land surface microwave emissivities. The method is applied to the Special Sensor Microwave/Imagers (SSM/I) and the Earth observation satellite (EOS) Advanced Microwave Scanning Radiometer (AMSR-E) observations?, regardless of the cloud cover. The SSM/I results are compared to infrared estimates from International Satellite Cloud Climatology Project (ISCCP) and from Advanced Along Track Scanning Radiometer (AATSR), under clear-sky conditions. Limited biases are observed (˜0.5 K for both comparisons) with a root-mean-square difference (RMSD) of ˜5 K, to be compared to the RMSE of ˜3.5 K between ISCCP et AATSR. AMSR-E results are compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky estimates. As both instruments are on board the same satellite, this reduces the uncertainty associated to the observations match-up, resulting in a lower RMSD of ˜ 4K. The microwave Ts is compared to in situ Ts time series from a collection of ground stations over a large range of environments. For 22 stations available in the 2003-2004 period, SSM/I Ts agrees very well for stations in vegetated environments (down to RMSD of ˜2.5 K for several stations), but the retrieval methodology encounters difficulties under cold conditions due to the large variability of snow and ice surface emissivities. For 10 stations in the year 2010, AMSR-E presents an all-station mean RMSD of ˜4.0 K with respect tom the ground Ts. Over the same stations, MODIS

  1. Observation of Wood's anomalies on surface gravity waves propagating on a channel.

    PubMed

    Schmessane, Andrea

    2016-09-01

    I report on experiments demonstrating the appearance of Wood's anomalies in surface gravity waves propagating along a channel with a submerged obstacle. Space-time measurements of surface gravity waves allow one to compute the stationary complex field of the wave and the amplitude growth of localized and propagative modes over all the entire channel, including the scattering region. This allows one to access the near and far field dynamics, which constitute a new and complementary way of observation of mode resonances of the incoming wave displaying Wood's anomalies. Transmission coefficient, dispersion relations and normalized wave energy of the incoming wave and the excited mode are measured and found to be in good agreement with theoretical predictions.

  2. Topographic Effects on the Surface Emissivity of a Mountainous Area Observed by a Spaceborne Microwave Radiometer

    PubMed Central

    Pulvirenti, Luca; Pierdicca, Nazzareno; Marzano, Frank S.

    2008-01-01

    A simulation study to understand the influence of topography on the surface emissivity observed by a satellite microwave radiometer is carried out. We analyze the effects due to changes in observation angle, including the rotation of the polarization plane. A mountainous area in the Alps (Northern Italy) is considered and the information on the relief extracted from a digital elevation model is exploited. The numerical simulation refers to a radiometric image, acquired by a conically-scanning radiometer similar to AMSR-E, i.e., flying at 705 km of altitude with an observation angle of 55°. To single out the impact on surface emissivity, scattering of the radiation due to the atmosphere or neighboring elevated surfaces is not considered. C and X bands, for which atmospheric effects are negligible, and Ka band are analyzed. The results indicate that the changes in the local observation angle tend to lower the apparent emissivity of a radiometric pixel with respect to the corresponding flat surface characteristics. The effect of the rotation of the polarization plane enlarges (vertical polarization), or attenuates (horizontal polarization) this decrease. By doing some simplifying assumptions for the radiometer antenna, the conclusion is that the microwave emissivity at vertical polarization is underestimated, whilst the opposite occurs for horizontal polarization, except for Ka band, for which both under- and overprediction may occur. A quantification of the differences with respect to a flat soil and an approximate evaluation of their impact on soil moisture retrieval are yielded. PMID:27879773

  3. Tissue response to surface-treated tantalum implants: preliminary observations in primates.

    PubMed

    Meenaghan, M A; Natiella, J R; Moresi, J L; Flynn, H E; Wirth, J E; Baier, R E

    1979-07-01

    Samples of capacitor grade tantalum were surface-treated by a variety of methods. These surface treatments allowed testing of the same basic material which was mill-finished, metallurgically polished, electrochemically oxidized, sintered with a porous surface, and glow-discharged. Surface characterization was accomplished by contact angle measurements, Scanning Electron Microscopy, energy-dispensed x-ray analysis, and internal reflection spectroscopy. Subsequent to characterization, the material was surgically implanted in the subperiosteal region of the mandible, the buccal mucosa, and the subcutaneous paravertebral region of the back of Macaca speciosa (stumptail monkey). The tissue reaction at intervals of up to three weeks was evaluated morphologically and ultrastructurally. Significant differences in tissue response were noted at the interfaces with glow-discharge-treated versus lower surface energy samples. Adjacent to the glow-discharge-treated implants, two distinct tissue zones were identified. Zone No. 1, nearest the implant, exhibited an increased cellularity. This consisted of 4-5 layers of highly active mesenchymal cells or fibroblast-like cells with spindle-shaped nuclei and prominent cytoplasmic features. At various foci along the interface, hyperchromatic nuclear forms were noted to project into the space left by removal of the implant. These observations, coupled with a predominance of intercellular ground-substance material and less collagen at the interface, may indicate some form of bioadhesion. The deeper Zone No. 2 was 2-3 times as thick consisted of typical fibroblastic cells with a lamellar configuration, bordered by an occasional delicate-lined space. Independent of implantation site or surface texture, all other implants showed occasional multinucleated giant cells and a decrease in the cellular character of Zone No. 1. Both zones were reduced in thickness and composed of more mature fibroblasts. Some specimens exhibited intracytoplasmic

  4. Different structural morphologies of the two surfaces in some Co-based amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Bordin, G.; Buttino, G.

    1992-12-01

    In nearly zero magnetostriction Co-based Metglas amorphous ribbons, the anomalous Hall effect is used to investigate the behaviour of the surfaces (dull or shiny). The electronic transport properties of a double-layer film, where one of the two layers examined is ferromagnetic and amorphous, and the other is a non-magnetic film, are interpreted on the basis of the mean free path method of Bergmann and Fuchs-Sondheimer theory. The results obtained confirm the different structural morphology of the amorphous surfaces (dull or shiny) already observed by means of bending effects on the initial permeability that depends on the way of winding the ribbons in toroidal samples of the same amorphous materials.

  5. Some effects on SPM based surface measurement

    NASA Astrophysics Data System (ADS)

    Wenhao, Huang; Yuhang, Chen

    2005-01-01

    The scanning probe microscope (SPM) has been used as a powerful tool for nanotechnology, especially in surface nanometrology. However, there are a lot of false images and modifications during the SPM measurement on the surfaces. This is because of the complex interaction between the SPM tip and the surface. The origin is not only due to the tip material or shape, but also to the structure of the sample. So people are paying much attention to draw true information from the SPM images. In this paper, we present some simulation methods and reconstruction examples for the microstructures and surface roughness based on SPM measurement. For example, in AFM measurement, we consider the effects of tip shape and dimension, also the surface topography distribution in both height and space. Some simulation results are compared with other measurement methods to verify the reliability.

  6. Comparative Evaluation of Vacuum-based Surface Sampling ...

    EPA Pesticide Factsheets

    Journal Article Following a biological contamination incident, collection of surface samples is necessary to determine the extent and level of contamination, and to deem an area safe for reentry upon decontamination. Current sampling strategies targeting Bacillus anthracis spores prescribe vacuum-based methods for rough and/or porous surfaces. In this study, four commonly-used B. anthracis spore sampling devices (vacuum socks, 37 mm 0.8 µm MCE filter cassettes, 37 mm 0.3 µm PTFE filter cassettes, and 3MTM forensic filters) were comparatively evaluated for their ability to recover surface-associated spores. The vacuum sock device was evaluated at two sampling speeds (slow and fast), resulting in five total methods evaluated. Aerosolized spores (~105 cm-2) of a surrogate Bacillus species (Bacillus atrophaeus) were allowed to settle onto three material types (concrete, carpet, and upholstery). Ten replicate samples were collected using each vacuum method, from each of the three material types. In addition, stainless steel (i.e., nonporous) surfaces inoculated simultaneously were sampled with pre-moistened wipes. Recoveries from wipes of steel surfaces were utilized to verify the inoculum, and to normalize vacuum-based recoveries across trials. Recovery (CFU cm-2) and relative recovery (vacuum recovery/wipe recovery) were determined for each method and material type. Relative recoveries were compared by one-way and three-way ANOVA. Data analysis by one-

  7. Titan's ground-based observations in the near-infrared.

    NASA Astrophysics Data System (ADS)

    Negrao, A.; Coustenis, A.; Hirtzig, M.; Lellouch, E.; Maillard, J.-P.; Rannou, P.; Gendron, E.; Drossart, P.; Combes, M.; Schmitt, B.

    We have observed Titan from 1991 to 2005 between 0.8 and 2.5 microns with the Fourier Transform Spectrometer (FTS) at the Canada France Hawaii Telescope (CFHT) and the NACO adaptive optics system, at the ESO Very Large Telescope (VLT). The CFHT dataset allows us (by applying a microphysical and radiative transfer model) to explore five methane windows at 0.94, 1.08, 1.28, 1.58 and 2 microns at different longitudes and resolutions for a disk average. We will also present a selected sample of the spectra we acquired with VLT/NACO on January 16, 2005, in the K band between 2.03 and 2.40 micron (Negrão et al., 2006b). Our spectra, taken with adaptive optics, include the Huygens landing site and surrounding dark and bright areas. A comparative study of the methane absorption coefficients currently available from different sources was also performed demonstrating the great sensitivity of surface inferences to this model parameter. Based on our results, we recommend the methane absorption coefficients produced by Boudon et al. (2006) and Irwin et al. (2006) for future studies of Titan. The analysis of the data yields information on the atmosphere and surface properties. We find our data to be compatible with mixtures of water ice and tholin but have strong indication for the presence of an additional as yet unidentified component (or components) for which we offer a spectral description. The analysis of the VLT/NACO data seem to indicate a strong decrease of Titan's surface albedo between 2.03 and 2.12 microns in the Huygens landing site area. This is compatible with the presence of ices such as CH4 and H2 O at the surface. References: Negrão, A., et al. 2006a. Titan's surface albedo variations over a Titan season from near-infrared CFHT/FTS spectra Plan. Space Sci., in press; 1 Negrão, A., et al. 2006b. 2 micron spectroscopy of Huygens probe landing site on Titan with VLT/NACO. J. Geophys. Res. Planets, in press; Boudon, V., et al., 2006. The Vibrational Levels of

  8. Urban surface energy fluxes based on remotely-sensed data and micrometeorological measurements over the Kansai area, Japan

    NASA Astrophysics Data System (ADS)

    Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.

    2017-12-01

    The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.

  9. Sea Surface Wakes Observed by Spaceborne SAR in the Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Li, Xiaoming; Lehner, Susanne; Jacobsen, Sven

    2014-11-01

    In the paper, we present some X-band spaceborne synthetic aperture radar (SAR) TerraSAR-X (TS-X) images acquired at the offshore wind farms in the North Sea and the East China Sea. The high spatial resolution SAR images show different sea surface wake patterns downstream of the offshore wind turbines. The analysis suggests that there are major two types of wakes among the observed cases. The wind turbine wakes generated by movement of wind around wind turbines are the most often observed cases. In contrast, due to the strong local tidal currents in the near shore wind farm sites, the tidal current wakes induced by tidal current impinging on the wind turbine piles are also observed in the high spatial resolution TS-X images. The discrimination of the two types of wakes observed in the offshore wind farms is also described in the paper.

  10. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in Jul. and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 Jul. 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  11. Variations in Near-Infrared Emissivity of Venus Surface Observed by the Galileo Near-Infrared Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Hashimoto, G. L.; Roos-Serote, M.; Sugita, S.

    2004-11-01

    We evaluate the spatial variation of venusian surface emissivity at a near-infrared wavelength using multispectral images obtained by the Near-Infrared Mapping Spectrometer (NIMS) on board the Galileo spacecraft. The Galileo made a close flyby to Venus in February 1990. During this flyby, NIMS observed the nightside of Venus with 17 spectral channels, which includes the well-known spectral windows at 1.18, 1.74, and 2.3 μ m. The surface emissivity is evaluated at 1.18 μ m, at which thermal radiation emitted from the planetary surface could be detected. To analyze the NIMS observations, synthetic spectra have been generated by means of a line-by-line radiative transfer program which includes both scattering and absorption. We used the discrete ordinate method to calculate the spectra of vertically inhomogeneous plane-parallel atmosphere. Gas opacity is calculated based on the method of Pollack et al. (1993), though binary absorption coefficients for continuum opacity are adjusted to achieve an acceptable fit to the NIMS data. We used Mie scattering theory and a cloud model developed by Pollack et al. (1993) to determine the single scattering albedo and scattering phase function of the cloud particles. The vertical temperature profile of Venus International Reference Atmosphere (VIRA) is used in all our calculations. The procedure of the analysis is the followings. We first made a correction for emission angle. Then, a modulation of emission by the cloud opacities is removed using simultaneously measured 1.74 and 2.3 μ m radiances. The resulting images are correlated with the topographic map of Magellan. To search for variations in surface emissivity, this cloud corrected images are divided by synthetic radiance maps that were created from the Magellan data. This work has been supported by The 21st Century COE Program of Origin and Evolution of Planetary Systems of Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  12. Ship-based Observations of Turbulence and Stratocumulus Cloud Microphysics in the SE Pacific Ocean from the VOCALS Field Program

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Williams, C.; Grachev, A. A.; Brewer, A.; Choukulkar, A.

    2013-12-01

    The VAMOS (VOCALS) field program involved deployment of several measurement systems based on ships, land and aircraft over the SE Pacific Ocean. The NOAA Ship Ronald H. Brown was the primary platform for surface based measurements which included the High Resolution Doppler Lidar (HRDL) and the motion-stabilized 94-GHz cloud Doppler radar (W-band radar). In this paper, the data from the W-band radar will be used to study the turbulent and microphysical structure of the stratocumulus clouds prevalent in the region. The radar data consists of a 3 Hz time series of radar parameters (backscatter coefficient, mean Doppler shift, and Doppler width) at 175 range gates (25-m spacing). Several statistical methods to de-convolve the turbulent velocity and gravitational settling velocity are examined and an optimized algorithm is developed. 20 days of observations are processed to examine in-cloud profiles of mean turbulent statistics (vertical velocity variance, skewness, dissipation rate) in terms of surface fluxes and estimates of entrainment and cloudtop radiative cooling. The clean separation of turbulent and fall velocities will allow us to compute time-averaged drizzle-drop size spectra within and below the cloud that are significantly superior to previous attempts with surface-based marine cloud radar observations.

  13. Regional and seasonal estimates of fractional storm coverage based on station precipitation observations

    NASA Technical Reports Server (NTRS)

    Gong, Gavin; Entekhabi, Dara; Salvucci, Guido D.

    1994-01-01

    Simulated climates using numerical atmospheric general circulation models (GCMs) have been shown to be highly sensitive to the fraction of GCM grid area assumed to be wetted during rain events. The model hydrologic cycle and land-surface water and energy balance are influenced by the parameter bar-kappa, which is the dimensionless fractional wetted area for GCM grids. Hourly precipitation records for over 1700 precipitation stations within the contiguous United States are used to obtain observation-based estimates of fractional wetting that exhibit regional and seasonal variations. The spatial parameter bar-kappa is estimated from the temporal raingauge data using conditional probability relations. Monthly bar-kappa values are estimated for rectangular grid areas over the contiguous United States as defined by the Goddard Institute for Space Studies 4 deg x 5 deg GCM. A bias in the estimates is evident due to the unavoidably sparse raingauge network density, which causes some storms to go undetected by the network. This bias is corrected by deriving the probability of a storm escaping detection by the network. A Monte Carlo simulation study is also conducted that consists of synthetically generated storm arrivals over an artificial grid area. It is used to confirm the bar-kappa estimation procedure and to test the nature of the bias and its correction. These monthly fractional wetting estimates, based on the analysis of station precipitation data, provide an observational basis for assigning the influential parameter bar-kappa in GCM land-surface hydrology parameterizations.

  14. Estimation of soft sediment thickness in Kuala Lumpur based on microtremor observation data

    NASA Astrophysics Data System (ADS)

    Chiew, Chang Chyau; Cheah, Yi Ben; Tan, Chin Guan; Lau, Tze Liang

    2017-10-01

    Seismic site effect is one of the major concerns in earthquake engineering. Soft ground tends to amplify the seismic wave in surficial geological layers. The determination of soft ground thickness on the surface layers of the earth is an important input for seismic hazard assessment. This paper presents an easy and convenient approach to estimate the soft sediment thickness at the site using microtremor observation technique. A total number of 133 survey points were conducted in selected sites around Kuala Lumpur area using a microtremor measuring instrument, but only 103 survey points contributed to the seismic microzonation and sediment thickness plots. The bedrock of Kuala Lumpur area is formed by Kenny Hill Formation, limestone, granite, and the Hawthornden Schist; however, the thickness of surface soft ground formed by alluvial deposits, mine tailings, and residual soils remains unknown. Hence, the predominant frequency of the ground in each site was determined based on Nakamura method. A total number of 14 sites with known depth to bedrock from the supply of geotechnical reports in the study area were determined. An empirical correlation was developed to relate the ground predominant frequency and soft ground thickness. This correlation may contribute to local soil underlying the subsurface of Kuala Lumpur area. The finding provides an important relationship for engineers to estimate the soft ground thickness in Kuala Lumpur area based on the dynamic characteristics of the ground measured from microtremor observation.

  15. Hurlburt Field, Florida. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1982-09-20

    SURFACE WEATHER OBSERVATIONS 2 2 SEP W ISJRLSURT FLD FL MSC #747770 E 30 26 w o86 41 FLU ELEV 38 FT FRT PARTS A-F POR FROM HOURLY OBS: JAN 67 - DEC 70...amounts and extreme valuesl; C) Surface winds; (D) Ceiling versus Visibility; Sky Cover; ( E )-Psychrometric Summaries (daily maximum and minimum...for this station: PART A WEATHER CONDITIONS PART E DAILY MAX, MIN, & MEAN TEMP ATMOSPHERIC PHENOMENA EXTREME MAX & MIN TEMP PART I PRECIPITATION

  16. Satellite-based GNSS-R observations from TDS-1 for soil moisture studies in agricultural vegetation landscapes

    NASA Astrophysics Data System (ADS)

    Liu, P. W.; Clarizia, M. P.; Judge, J.; Camps, A.; Ruf, C. S.; Bongiovanni, T. E.

    2015-12-01

    Soil moisture (SM) is a critical factor governing the water and energy fluxes at the land surface that are important for near-term climate forecasting, drought monitoring, crop yield estimation, and better water resources management. Remotely sensed observations at microwave frequencies are the most sensitive to changes of water in the soil. Particularly, frequencies at L-band (1-2 GHz) have been widely used for SM studies under the vegetated land covers because of their minimal atmospheric interference and attenuation by vegetation, allowing observations from the soil surface. In addition to current satellite based microwave sensors, such as the Soil Moisture Active Passive (SMAP) missions, the Global Navigation Satellite System-Reflectometry technique is capable of observing the GNSS signal reflected from the terrain that contains combined information of soil and vegetation characteristics. The technique has recently attracted attention for global SM monitoring because its receiver is small in size and light weight and can be on board the low orbit, small satellites with low power consumption and low cost. Therefore the GNSS-R remote sensing may lead to affordable multi-satellite constellations that enable improved temporal resolution for highly dynamic hydrologic conditions. The current UK Technology Demonstration Satellite (TDS-1) has been providing global GNSS-R observations since September 2014 for experimental purposes and the receiver is accessed and operated for 2 days during every 8-day cycle. In the near future, the NASA Cyclone GNSS (CYGNSS) mission, scheduled to be launched in 2016, will consist of 8 satellites observing GPS L1 signal at a frequency of 1.5754 GHz with a spatial resolution of 10-25 km and a temporal resolution of < 12 hours. The goal of this study is to understand the impacts of SM and characteristics of agricultural vegetation on the forward scattering mechanisms of satellite-based GNSS-R observations. The GNSS-R observations from TDS

  17. Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds

    NASA Astrophysics Data System (ADS)

    Sutton, Adrienne J.; Sabine, Christopher L.; Feely, Richard A.; Cai, Wei-Jun; Cronin, Meghan F.; McPhaden, Michael J.; Morell, Julio M.; Newton, Jan A.; Noh, Jae-Hoon; Ólafsdóttir, Sólveig R.; Salisbury, Joseph E.; Send, Uwe; Vandemark, Douglas C.; Weller, Robert A.

    2016-09-01

    One of the major challenges to assessing the impact of ocean acidification on marine life is detecting and interpreting long-term change in the context of natural variability. This study addresses this need through a global synthesis of monthly pH and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater partial pressure of CO2 and pH collected together since as early as 2010. Mooring observations suggest open ocean subtropical and subarctic sites experience present-day surface pH and Ωarag conditions outside the bounds of preindustrial variability throughout most, if not all, of the year. In general, coastal mooring sites experience more natural variability and thus, more overlap with preindustrial conditions; however, present-day Ωarag conditions surpass biologically relevant thresholds associated with ocean acidification impacts on Mytilus californianus (Ωarag < 1.8) and Crassostrea gigas (Ωarag < 2.0) larvae in the California Current Ecosystem (CCE) and Mya arenaria larvae in the Gulf of Maine (Ωarag < 1.6). At the most variable mooring locations in coastal systems of the CCE, subseasonal conditions approached Ωarag = 1. Global and regional models and data syntheses of ship-based observations tended to underestimate seasonal variability compared to mooring observations. Efforts such as this to characterize all patterns of pH and Ωarag variability and change at key locations are fundamental to assessing present-day biological impacts of ocean acidification, further improving experimental design to interrogate organism response under real-world conditions, and improving predictive models and vulnerability assessments seeking to quantify the broader impacts of ocean acidification.

  18. Direct observation of surface-state thermal oscillations in SmB6 oscillators

    NASA Astrophysics Data System (ADS)

    Casas, Brian; Stern, Alex; Efimkin, Dmitry K.; Fisk, Zachary; Xia, Jing

    2018-01-01

    SmB6 is a mixed valence Kondo insulator that exhibits a sharp increase in resistance following an activated behavior that levels off and saturates below 4 K. This behavior can be explained by the proposal of SmB6 representing a new state of matter, a topological Kondo insulator, in which a Kondo gap is developed, and topologically protected surface conduction dominates low-temperature transport. Exploiting its nonlinear dynamics, a tunable SmB6 oscillator device was recently demonstrated, where a small dc current generates large oscillating voltages at frequencies from a few Hz to hundreds of MHz. This behavior was explained by a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. However, a crucial aspect of this model, the predicted temperature oscillation in the surface state, has not been experimentally observed to date. This is largely due to the technical difficulty of detecting an oscillating temperature of the very thin surface state. Here we report direct measurements of the time-dependent surface-state temperature in SmB6 with a RuO2 microthermometer. Our results agree quantitatively with the theoretically simulated temperature waveform, and hence support the validity of the oscillator model, which will provide accurate theoretical guidance for developing future SmB6 oscillators at higher frequencies.

  19. Near-surface Salinity and Temperature structure Observed with Dual-Sensor Drifters in the Subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, S.; Volkov, D.; Goni, G. J.; Lumpkin, R.; Foltz, G. R.

    2017-12-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.

  20. Near-surface salinity and temperature structure observed with dual-sensor drifters in the subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, Shenfu; Volkov, Denis; Goni, Gustavo; Lumpkin, Rick; Foltz, Gregory R.

    2017-07-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.

  1. Response mechanism for surface acoustic wave gas sensors based on surface-adsorption.

    PubMed

    Liu, Jiansheng; Lu, Yanyan

    2014-04-16

    A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introduced to depict the adsorption behavior of gas on the detector surface. By combining the two methods, we obtain a theoretical model for the response mechanism of SAW gas sensors. By using a commercial SAW gas chromatography (GC) analyzer, an experiment is performed to measure the frequency shifts caused by different concentration of dimethyl methylphosphonate (DMMP). The parameters in the model are given by fitting the experimental results and the theoretical curve agrees well with the experimental data.

  2. Response Mechanism for Surface Acoustic Wave Gas Sensors Based on Surface-Adsorption

    PubMed Central

    Liu, Jiansheng; Lu, Yanyan

    2014-01-01

    A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introduced to depict the adsorption behavior of gas on the detector surface. By combining the two methods, we obtain a theoretical model for the response mechanism of SAW gas sensors. By using a commercial SAW gas chromatography (GC) analyzer, an experiment is performed to measure the frequency shifts caused by different concentration of dimethyl methylphosphonate (DMMP). The parameters in the model are given by fitting the experimental results and the theoretical curve agrees well with the experimental data. PMID:24743157

  3. Characterization of optical-surface-imaging-based spirometry for respiratory surrogating in radiotherapy

    PubMed Central

    Li, Guang; Huang, Hailiang; Chen, Qing; Gaebler, Carl P.; Lin, Tiffany; Yuan, Amy; Rimner, Andreas; Mechalakos, James

    2016-01-01

    Purpose: To provide a comprehensive characterization of a novel respiratory surrogate that uses optical surface imaging (OSI) for accurate tidal volume (TV) measurement, dynamic airflow (TV′) calculation, and quantitative breathing pattern (BP) estimation during free breathing (FB), belly breathing (BB), chest breathing (CB), and breath hold (BH). Methods: Optical surface imaging, which captures all respiration-induced torso surface motion, was applied to measure respiratory TV, TV′, and BP in three common breathing patterns. Eleven healthy volunteers participated in breathing experiments with concurrent OSI-based and conventional spirometric measurements under an institutional review board approved protocol. This OSI-based technique measures dynamic TV from torso volume change (ΔVtorso = TV) in reference to full exhalation and airflow (TV′ = dTV/dt). Volume conservation, excluding exchanging air, was applied for OSI-based measurements under negligible pleural pressure variation in FB, BB, and CB. To demonstrate volume conservation, a constant TV was measured during BH while the chest and belly are moving (“pretended” respiration). To assess the accuracy of OSI-based spirometry, a conventional spirometer was used as the standard for both TV and TV′. Using OSI, BP was measured as BPOSI = ΔVchest/ΔVtorso and BP can be visualized using BPSHI = SHIchest/(SHIchest + SHIbelly), where surface height index (SHI) is defined as the mean vertical distance within a region of interest on the torso surface. A software tool was developed for OSI image processing, volume calculation, and BP visualization, and another tool was implemented for data acquisition using a Bernoulli-type spirometer. Results: The accuracy of the OSI-based spirometry is −21 ± 33 cm3 or −3.5% ± 6.3% averaged from 11 volunteers with 76 ± 28 breathing cycles on average in FB. Breathing variations between two separate acquisitions with approximate 30-min intervals are substantial: −1%

  4. An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex

    PubMed Central

    Van Essen, David C.; Drury, Heather A.; Dickson, James; Harwell, John; Hanlon, Donna; Anderson, Charles H.

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database. PMID:11522765

  5. An integrated software suite for surface-based analyses of cerebral cortex.

    PubMed

    Van Essen, D C; Drury, H A; Dickson, J; Harwell, J; Hanlon, D; Anderson, C H

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database.

  6. An integrated software suite for surface-based analyses of cerebral cortex

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.; Dickson, J.; Harwell, J.; Hanlon, D.; Anderson, C. H.

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database.

  7. Deep and surface circulation in the Northwest Indian Ocean from Argo, surface drifter, and in situ profiling current observations

    NASA Astrophysics Data System (ADS)

    Stryker, S. A.; Dimarco, S. F.; Stoessel, M. M.; Wang, Z.

    2010-12-01

    The northwest Indian Ocean is a region of complex circulation and atmospheric influence. The Persian (Arabian) Gulf and Red Sea contribute toward the complexity of the region. This study encompasses the surface and deep circulation in the region ranging from 0°N-35°N and 40°E-80°E from January 2002-December 2009. Emphasis is in the Persian Gulf, Oman Sea and Arabian Sea (roughly from 21°N-26°N and 56°E-63°E) using a variety of in situ and observation data sets. While there is a lot known about the Persian Gulf and Arabian Sea, little is known about the Oman Sea. Circulation in the northwest Indian Ocean is largely influenced by seasonal monsoon winds. From the winter monsoon to the summer monsoon, current direction reverses. Marginal sea inflow and outflow are also seasonally variable, which greatly impacts the physical water mass properties in the region. In situ and observation data sets include data from Argo floats (US GODAE), surface drifters (AOML) and an observation system consisting of 4 independent moorings and a cabled ocean observatory in the Oman Sea. The observing system in the Oman Sea was installed by Lighthouse R & D Enterprises, Inc. beginning in 2005, and measures current, temperature, conductivity, pressure, dissolved oxygen and turbidity, using the Aanderaa Recording Doppler Current Profiler (RDCP) 600 and the Aanderaa Recording Current Meter (RCM) 11. The cabled ocean observatory measures dissolved oxygen, temperature and salinity between 65 m and 1000 m and reports in real-time. Argo floats in the region have a parking depth range from 500 m to 2000 m. At 1000 m depth, 98% of the velocity magnitudes range from less than 1 cm/s to 20 cm/s. The Somali Current and Northeast/Southwest Monsoon Currents are present, reversing from summer to winter. At 2000 m depth, the Somali and Monsoon Currents are still present but have smaller velocities with 98% ranging from less than 1 cm/s to 13 cm/s. At both 1000 m and 2000 m, larger velocities occur

  8. Observation of OH radicals produced by pulsed discharges on the surface of a liquid

    NASA Astrophysics Data System (ADS)

    Kanazawa, Seiji; Kawano, Hirokazu; Watanabe, Satoshi; Furuki, Takashi; Akamine, Shuichi; Ichiki, Ryuta; Ohkubo, Toshikazu; Kocik, Marek; Mizeraczyk, Jerzy

    2011-06-01

    The hydroxyl radical (OH) plays an important role in plasma chemistry at atmospheric pressure. OH radicals have a higher oxidation potential compared with other oxidative species such as free radical O, atomic oxygen, hydroperoxyl radical (HO2), hydrogen peroxide(H2O2) and ozone. In this study, surface discharges on liquids (water and its solutions) were investigated experimentally. A pulsed streamer discharge was generated on the liquid surface using a point-to-plane electrode geometry. The primary generation process of OH radicals is closely related to the streamer propagation, and the subsequent secondary process after the discharge has an influence on the chemical reaction. Taking into account the timescale of these processes, we investigated the behavior of OH radicals using two different diagnostic methods. Time evolution of the ground-state OH radicals above the liquid surface after the discharge was observed by a laser-induced fluorescence (LIF) technique. In order to observe the ground-state OH, an OH [A 2∑+(v' = 1) <-- X 2Π(v'' = 0)] system at 282 nm was used. As the secondary process, a portion of OH radicals diffused from gas phase to the liquid surface and dissolved in the liquid. These dissolved OH radicals were measured by a chemical probe method. Terephthalic acid was used as an OH radical trap and fluorescence of the resulting 2-hydroxyterephthalic acid was measured. This paper directly presents visualization of OH radicals over the liquid surface by means of LIF, and indirectly describes OH radicals dissolved in water by means of a chemical method.

  9. In situ high-temperature characterization of AlN-based surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Aubert, Thierry; Bardong, Jochen; Legrani, Ouarda; Elmazria, Omar; Badreddine Assouar, M.; Bruckner, Gudrun; Talbi, Abdelkrim

    2013-07-01

    We report on in situ electrical measurements of surface acoustic wave delay lines based on AlN/sapphire structure and iridium interdigital transducers between 20 °C and 1050 °C under vacuum conditions. The devices show a great potential for temperature sensing applications. Burnout is only observed after 60 h at 1050 °C and is mainly attributed to the agglomeration phenomena undergone by the Ir transducers. However, despite the vacuum conditions, a significant oxidation of the AlN film is observed, pointing out the limitation of the considered structure at least at such extreme temperatures. Original structures overcoming this limitation are then proposed and discussed.

  10. Surface Deformation Observed by InSAR due to Fluid Injection: a Test Study in the Central U.S.

    NASA Astrophysics Data System (ADS)

    Deng, F.; Dixon, T. H.

    2017-12-01

    The central and eastern U.S. has undergone a dramatic increase in seismicity over the past few years. Many of these recent earthquakes were likely induced by human activities, with underground fluid injection for oil and gas extraction being one of the main contributors. Surface deformation caused by fluid injection has been captured by GPS and InSAR observations in several areas. For example, surface uplift of up to 10 cm due to CO2 injection between 2007 and 2011 was measured by InSAR at an enhanced oil recovery site in west Texas. We are using Texas and Oklahoma as test areas to analyze the potential relationship between surface deformation, underground fluid injection and induced earthquakes. C-band SAR data from ENVISAT and Sentinel-1, and L-band SAR data from ALOS and ALOS-2 are used to form decade-long time series. Based on the surface deformation derived from the time series InSAR data, subsurface volume change and volumetric strain in an elastic half space are estimated. Seismic data provided by the USGS are used to analyze the spatial and temporal distribution pattern of earthquakes, and the potential link between surface deformation and induced earthquakes. The trigger mechanism will be combined with forward modeling to predict seismicity and assess related hazard for future study.

  11. Lunar-based Earth observation geometrical characteristics research

    NASA Astrophysics Data System (ADS)

    Ren, Yuanzhen; Liu, Guang; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Chen, Zhaoning

    2016-07-01

    As is known to all, there are various platforms for carrying sensors to observe Earth, such as automobiles, aircrafts and satellites. Nowadays, we focus on a new platform, Moon, because of its longevity, stability and vast space. These advantages make it to be the next potential platform for observing Earth, enabling us to get the consistent and global measurements. In order to get a better understanding of lunar-based Earth observation, we discuss its geometrical characteristics. At present, there are no sensors on the Moon for observing Earth and we are not able to obtain a series of real experiment data. As a result, theoretical modeling and numerical calculation are used in this paper. At first, we construct an approximate geometrical model of lunar-based Earth observation, which assumes that Earth and Moon are spheres. Next, we calculate the position of Sun, Earth and Moon based on the JPL ephemeris. With the help of positions data and geometrical model, it is possible for us to decide the location of terminator and substellar points. However, in order to determine their precise position in the conventional terrestrial coordinate system, reference frames transformations are introduced as well. Besides, taking advantages of the relative positions of Sun, Earth and Moon, we get the total coverage of lunar-based Earth optical observation. Furthermore, we calculate a more precise coverage, considering placing sensors on different positions of Moon, which is influenced by its attitude parameters. In addition, different ephemeris data are compared in our research and little difference is found.

  12. Surface electrical properties of stainless steel fibres: An AFM-based study

    NASA Astrophysics Data System (ADS)

    Yin, Jun; D'Haese, Cécile; Nysten, Bernard

    2015-03-01

    Atomic force microscopy (AFM) electrical modes were used to study the surface electrical properties of stainless steel fibres. The surface electrical conductivity was studied by current sensing AFM and I-V spectroscopy. Kelvin probe force microscopy was used to measure the surface contact potential. The oxide film, known as passivation layer, covering the fibre surface gives rise to the observation of an apparently semiconducting behaviour. The passivation layer generally exhibits a p-type semiconducting behaviour, which is attributed to the predominant formation of chromium oxide on the surface of the stainless steel fibres. At the nanoscale, different behaviours are observed from points to points, which may be attributed to local variations of the chemical composition and/or thickness of the passivation layer. I-V curves are well fitted with an electron tunnelling model, indicating that electron tunnelling may be the predominant mechanism for electron transport.

  13. Tower-scale performance of four observation-based evapotranspiration algorithms within the WACMOS-ET project

    NASA Astrophysics Data System (ADS)

    Michel, Dominik; Miralles, Diego; Jimenez, Carlos; Ershadi, Ali; McCabe, Matthew F.; Hirschi, Martin; Seneviratne, Sonia I.; Jung, Martin; Wood, Eric F.; (Bob) Su, Z.; Timmermans, Joris; Chen, Xuelong; Fisher, Joshua B.; Mu, Quiaozen; Fernandez, Diego

    2015-04-01

    Research on climate variations and the development of predictive capabilities largely rely on globally available reference data series of the different components of the energy and water cycles. Several efforts have recently aimed at producing large-scale and long-term reference data sets of these components, e.g. based on in situ observations and remote sensing, in order to allow for diagnostic analyses of the drivers of temporal variations in the climate system. Evapotranspiration (ET) is an essential component of the energy and water cycle, which cannot be monitored directly on a global scale by remote sensing techniques. In recent years, several global multi-year ET data sets have been derived from remote sensing-based estimates, observation-driven land surface model simulations or atmospheric reanalyses. The LandFlux-EVAL initiative presented an ensemble-evaluation of these data sets over the time periods 1989-1995 and 1989-2005 (Mueller et al. 2013). The WACMOS-ET project (http://wacmoset.estellus.eu) started in the year 2012 and constitutes an ESA contribution to the GEWEX initiative LandFlux. It focuses on advancing the development of ET estimates at global, regional and tower scales. WACMOS-ET aims at developing a Reference Input Data Set exploiting European Earth Observations assets and deriving ET estimates produced by a set of four ET algorithms covering the period 2005-2007. The algorithms used are the SEBS (Su et al., 2002), Penman-Monteith from MODIS (Mu et al., 2011), the Priestley and Taylor JPL model (Fisher et al., 2008) and GLEAM (Miralles et al., 2011). The algorithms are run with Fluxnet tower observations, reanalysis data (ERA-Interim), and satellite forcings. They are cross-compared and validated against in-situ data. In this presentation the performance of the different ET algorithms with respect to different temporal resolutions, hydrological regimes, land cover types (including grassland, cropland, shrubland, vegetation mosaic, savanna

  14. Constraining Bulk Densities of Near-Earth Asteroid Surfaces from Radar Observations Using Laboratory Measurements of Permittivity

    NASA Astrophysics Data System (ADS)

    Hickson, D. C.; Boivin, A.; Daly, M. G.; Ghent, R. R.; Nolan, M. C.; Tait, K.; Cunje, A.; Tsai, C. A.

    2017-12-01

    Planetary radar is widely used to survey the Near-Earth Asteroid (NEA) population and can provide insight into target shapes, sizes, and spin states. The dual-polarization reflectivity is sensitive to surface roughness as well as material properties, specifically the real part of the complex permittivity, or dielectric constant. Knowledge of the behavior of the dielectric constant of asteroid regolith analogue material with environmental parameters can be used to inversely solve for such parameters, such as bulk density, from radar observations. In this study laboratory measurements of the complex permittivity of powdered aluminum oxide and dunite samples are performed in a low-pressure environment chamber using a coaxial transmission line from roughly 1 GHz to 8.5 GHz. The bulk densities of the samples are varied across the measurements by incrementally adding silica aerogel, a low-density material with a very low dielectric constant. This allows the alteration of the proportions of void space to solid particle grains to achieve microgravity-relevant porosities without significantly altering the dielectric properties of the powder sample. The data are then modeled using various electromagnetic mixing equations to characterize the change in dielectric constant with increasing volume fractions of void space (decreasing bulk density). Using spectral analogues as constraints on the composition of NEAs allows us to calculate the range in bulk densities in the near surface of NEAs that have been observed by planetary radar. Utilizing existing radar data from Arecibo Observatory we calculate the bulk density in the near-surface on (101955) Bennu, the target of NASA's OSIRIS-Rex mission, to be ρ = 1.27 ± 0.33 g cm-3 based on an average of the likely range in particle density and dielectric constant of the regolith material.

  15. A SAR Observation and Numerical Study on Ocean Surface Imprints of Atmospheric Vortex Streets.

    PubMed

    Li, Xiaofeng; Zheng, Weizhong; Zou, Cheng-Zhi; Pichel, William G

    2008-05-21

    The sea surface imprints of Atmospheric Vortex Street (AVS) off Aleutian Volcanic Islands, Alaska were observed in two RADARSAT-1 Synthetic Aperture Radar (SAR) images separated by about 11 hours. In both images, three pairs of distinctive vortices shedding in the lee side of two volcanic mountains can be clearly seen. The length and width of the vortex street are about 60-70 km and 20 km, respectively. Although the AVS's in the two SAR images have similar shapes, the structure of vortices within the AVS is highly asymmetrical. The sea surface wind speed is estimated from the SAR images with wind direction input from Navy NOGAPS model. In this paper we present a complete MM5 model simulation of the observed AVS. The surface wind simulated from the MM5 model is in good agreement with SAR-derived wind. The vortex shedding rate calculated from the model run is about 1 hour and 50 minutes. Other basic characteristics of the AVS including propagation speed of the vortex, Strouhal and Reynolds numbers favorable for AVS generation are also derived. The wind associated with AVS modifies the cloud structure in the marine atmospheric boundary layer. The AVS cloud pattern is also observed on a MODIS visible band image taken between the two RADARSAT SAR images. An ENVISAT advance SAR image taken 4 hours after the second RADARSAT SAR image shows that the AVS has almost vanished.

  16. Snowmelt and Surface Freeze/Thaw Timings over Alaska derived from Passive Microwave Observations using a Wavelet Classifier

    NASA Astrophysics Data System (ADS)

    Steiner, N.; McDonald, K. C.; Dinardo, S. J.; Miller, C. E.

    2015-12-01

    Arctic permafrost soils contain a vast amount of organic carbon that will be released into the atmosphere as carbon dioxide or methane when thawed. Surface to air greenhouse gas fluxes are largely dependent on such surface controls as the frozen/thawed state of the snow and soil. Satellite remote sensing is an important means to create continuous mapping of surface properties. Advances in the ability to determine soil and snow freeze/thaw timings from microwave frequency observations improves upon our ability to predict the response of carbon gas emission to warming through synthesis with in-situ observation, such as the 2012-2015 Carbon in Arctic Reservoir Vulnerability Experiment (CARVE). Surface freeze/thaw or snowmelt timings are often derived using a constant or spatially/temporally variable threshold applied to time-series observations. Alternately, time-series singularity classifiers aim to detect discontinuous changes, or "edges", in time-series data similar to those that occur from the large contrast in dielectric constant during the freezing or thaw of soil or snow. We use multi-scale analysis of continuous wavelet transform spectral gradient brightness temperatures from various channel combinations of passive microwave radiometers, Advanced Microwave Scanning Radiometer (AMSR-E, AMSR2) and Special Sensor Microwave Imager (SSM/I F17) gridded at a 10 km posting with resolution proportional to the observational footprint. Channel combinations presented here aim to illustrate and differentiate timings of "edges" from transitions in surface water related to various landscape components (e.g. snow-melt, soil-thaw). To support an understanding of the physical basis of observed "edges" we compare satellite measurements with simple radiative transfer microwave-emission modeling of the snow, soil and vegetation using in-situ observations from the SNOw TELemetry (SNOTEL) automated weather stations. Results of freeze/thaw and snow-melt timings and trends are

  17. Observation of an electron band above the Fermi level in FeTe₀.₅₅Se₀.₄₅ from in-situ surface doping

    DOE PAGES

    Zhang, P.; Richard, P.; Xu, N.; ...

    2014-10-27

    We used in-situ potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe₀.₅₅Se₀.₄₅. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tune the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily-electron-doped KFe₂₋ xSe₂ compound.

  18. Automated Detection of Small Bodies by Space Based Observation

    NASA Astrophysics Data System (ADS)

    Bidstrup, P. R.; Grillmayer, G.; Andersen, A. C.; Haack, H.; Jorgensen, J. L.

    The number of known comets and asteroids is increasing every year. Up till now this number is including approximately 250,000 of the largest minor planets, as they are usually referred. These discoveries are due to the Earth-based observation which has intensified over the previous decades. Additionally larger telescopes and arrays of telescopes are being used for exploring our Solar System. It is believed that all near- Earth and Main-Belt asteroids of diameters above 10 to 30 km have been discovered, leaving these groups of objects as observationally complete. However, the cataloguing of smaller bodies is incomplete as only a very small fraction of the expected number has been discovered. It is estimated that approximately 1010 main belt asteroids in the size range 1 m to 1 km are too faint to be observed using Earth-based telescopes. In order to observe these small bodies, space-based search must be initiated to remove atmospheric disturbances and to minimize the distance to the asteroids and thereby minimising the requirement for long camera integration times. A new method of space-based detection of moving non-stellar objects is currently being developed utilising the Advanced Stellar Compass (ASC) built for spacecraft attitude determination by Ørsted, Danish Technical University. The ASC serves as a backbone technology in the project as it is capable of fully automated distinction of known and unknown celestial objects. By only processing objects of particular interest, i.e. moving objects, it will be possible to discover small bodies with a minimum of ground control, with the ultimate ambition of a fully automated space search probe. Currently, the ASC is being mounted on the Flying Laptop satellite of the Institute of Space Systems, Universität Stuttgart. It will, after a launch into a low Earth polar orbit in 2008, test the detection method with the ASC equipment that already had significant in-flight experience. A future use of the ASC based automated

  19. Retrievals of Sea Surface Emissivity and Skin Temperature from M-AERI Observations from the ACAPEX/CalWater2 Campaign

    NASA Astrophysics Data System (ADS)

    Gero, P. J.; Westphall, M.; Knuteson, R.; Knuteson, R. O.; Smith, W.

    2016-12-01

    The Atmospheric Emitted Radiance Interferometer (AERI) is a ground-based instrument developed at the University of Wisconsin-Madison that measures downwelling thermal infrared radiance from the atmosphere. Observations are made in the 520-3020 cm-1 (3.3-19 μm) spectral range with a resolution of 1 cm-1, with an accuracy better than 1% of ambient radiance. These observations can be used to obtain vertical profiles of tropospheric temperature and water vapor in the lowest 3 km of the troposphere, as well as measurements of the concentration of various trace gases and microphysical and optical properties of clouds and aerosols. The U.S Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program currently operates about ten AERIs at various fixed and mobile sites worldwide, addressing a diverse range of scientific goals from process studies to long-term climate observations. One of the instruments is a marine version (M-AERI) that has the capability to view scenes ±45° from the horizon, and can be used to observe sea surface properties such as skin temperature and emissivity. The M-AERI was deployed on the NOAA Ship Ronald Brown in 2015 as part of the ACAPEX/CalWater2 campaign to study atmospheric rivers in the Pacific Ocean. We present results from the M-AERI from this campaign of retrievals of skin temperature and sea surface emissivity as a function of view angle and wind speed, as well as comparisons to various models.

  20. Observation of Landau levels on nitrogen-doped flat graphite surfaces without external magnetic fields

    PubMed Central

    Kondo, Takahiro; Guo, Donghui; Shikano, Taishi; Suzuki, Tetsuya; Sakurai, Masataka; Okada, Susumu; Nakamura, Junji

    2015-01-01

    Under perpendicular external magnetic fields, two-dimensional carriers exhibit Landau levels (LLs). However, it has recently been reported that LLs have been observed on graphene and graphite surfaces without external magnetic fields being applied. These anomalous LLs have been ascribed primarily to a strain of graphene sheets, leading to in-plane hopping modulation of electrons. Here, we report the observation of the LLs of massive Dirac fermions on atomically flat areas of a nitrogen-doped graphite surface in the absence of external magnetic fields. The corresponding magnetic fields were estimated to be as much as approximately 100 T. The generation of the LLs at the area with negligible strain can be explained by inequivalent hopping of π electrons that takes place at the perimeter of high-potential domains surrounded by positively charged substituted graphitic-nitrogen atoms. PMID:26549618

  1. Body surface assessment with 3D laser-based anthropometry: reliability, validation, and improvement of empirical surface formulae.

    PubMed

    Kuehnapfel, Andreas; Ahnert, Peter; Loeffler, Markus; Scholz, Markus

    2017-02-01

    Body surface area is a physiological quantity relevant for many medical applications. In clinical practice, it is determined by empirical formulae. 3D laser-based anthropometry provides an easy and effective way to measure body surface area but is not ubiquitously available. We used data from laser-based anthropometry from a population-based study to assess validity of published and commonly used empirical formulae. We performed a large population-based study on adults collecting classical anthropometric measurements and 3D body surface assessments (N = 1435). We determined reliability of the 3D body surface assessment and validity of 18 different empirical formulae proposed in the literature. The performance of these formulae is studied in subsets of sex and BMI. Finally, improvements of parameter settings of formulae and adjustments for sex and BMI were considered. 3D body surface measurements show excellent intra- and inter-rater reliability of 0.998 (overall concordance correlation coefficient, OCCC was used as measure of agreement). Empirical formulae of Fujimoto and Watanabe, Shuter and Aslani and Sendroy and Cecchini performed best with excellent concordance with OCCC > 0.949 even in subgroups of sex and BMI. Re-parametrization of formulae and adjustment for sex and BMI slightly improved results. In adults, 3D laser-based body surface assessment is a reliable alternative to estimation by empirical formulae. However, there are empirical formulae showing excellent results even in subgroups of sex and BMI with only little room for improvement.

  2. Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime surface particulate nitrate concentrations

    NASA Astrophysics Data System (ADS)

    Prabhakar, Gouri; Parworth, Caroline L.; Zhang, Xiaolu; Kim, Hwajin; Young, Dominique E.; Beyersdorf, Andreas J.; Ziemba, Luke D.; Nowak, John B.; Bertram, Timothy H.; Faloona, Ian C.; Zhang, Qi; Cappa, Christopher D.

    2017-12-01

    This study discusses an analysis of combined airborne and ground observations of particulate nitrate (NO3-(p)) concentrations made during the wintertime DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically resolved observations relevant to Air Quality) study at one of the most polluted cities in the United States - Fresno, CA - in the San Joaquin Valley (SJV) and focuses on developing an understanding of the various processes that impact surface nitrate concentrations during pollution events. The results provide an explicit case-study illustration of how nighttime chemistry can influence daytime surface-level NO3-(p) concentrations, complementing previous studies in the SJV. The observations exemplify the critical role that nocturnal chemical production of NO3-(p) aloft in the residual layer (RL) can play in determining daytime surface-level NO3-(p) concentrations. Further, they indicate that nocturnal production of NO3-(p) in the RL, along with daytime photochemical production, can contribute substantially to the buildup and sustaining of severe pollution episodes. The exceptionally shallow nocturnal boundary layer (NBL) heights characteristic of wintertime pollution events in the SJV intensify the importance of nocturnal production aloft in the residual layer to daytime surface concentrations. The observations also demonstrate that dynamics within the RL can influence the early-morning vertical distribution of NO3-(p), despite low wintertime wind speeds. This overnight reshaping of the vertical distribution above the city plays an important role in determining the net impact of nocturnal chemical production on local and regional surface-level NO3-(p) concentrations. Entrainment of clean free-tropospheric (FT) air into the boundary layer in the afternoon is identified as an important process that reduces surface-level NO3-(p) and limits buildup during pollution episodes. The influence of dry deposition of HNO3 gas to the surface on

  3. Short-period variability in terrestrial water storage from GNSS observations of Earth surface deformation

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Adusumilli, S.; Agnew, D. C.; Silverii, F.; Small, E. E.

    2017-12-01

    Modern geodetic observations of Earth surface deformation, initially targeted at processes such as tectonics and volcanism, also record the subtle signature of mass movements within Earth's atmosphere and hydrosphere. These observations, which track the elastic response of the solid earth to changing surface mass loads, are clearly evident in position time series from permanent Global Navigation Satellite System (GNSS) stations, which recent work has used to recover changes in terrestrial water storage (TWS) over seasonal and multi-annual time scales. Earth's elastic reponse is nearly instantaneous, which suggests the possibility of observing TWS changes at much shorter periods, limited only by the 24 hour resolution of standard GNSS data products and noise in the GNSS position estimates. We present results showing that TWS increases from individual storms can be recovered using the GNSS network in the United States, and that the water mass changes are similar to gridded precipitation estimates from the National Centers for Environmental Prediction (NCEP). The gradual decline we observe in TWS following each storm is diagnostic of runoff and local evapotranspiration, and varies by location. By greatly increasing the temporal resolution of GNSS-derived estimates of TWS, we hope to provide constraints on integrated water fluxes from hydrological models on all relevant timescales.

  4. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  5. Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru

    2018-05-01

    Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.

  6. Evaluation of Himawari-8 surface downwelling solar radiation by ground-based measurements

    NASA Astrophysics Data System (ADS)

    Damiani, Alessandro; Irie, Hitoshi; Horio, Takashi; Takamura, Tamio; Khatri, Pradeep; Takenaka, Hideaki; Nagao, Takashi; Nakajima, Takashi Y.; Cordero, Raul R.

    2018-04-01

    Observations from the new Japanese geostationary satellite Himawari-8 permit quasi-real-time estimation of global shortwave radiation at an unprecedented temporal resolution. However, accurate comparisons with ground-truthing observations are essential to assess their uncertainty. In this study, we evaluated the Himawari-8 global radiation product AMATERASS using observations recorded at four SKYNET stations in Japan and, for certain analyses, from the surface network of the Japanese Meteorological Agency in 2016. We found that the spatiotemporal variability of the satellite estimates was smaller than that of the ground observations; variability decreased with increases in the time step and spatial domain. Cloud variability was the main source of uncertainty in the satellite radiation estimates, followed by direct effects caused by aerosols and bright albedo. Under all-sky conditions, good agreement was found between satellite and ground-based data, with a mean bias in the range of 20-30 W m-2 (i.e., AMATERASS overestimated ground observations) and a root mean square error (RMSE) of approximately 70-80 W m-2. However, results depended on the time step used in the validation exercise, on the spatial domain, and on the different climatological regions. In particular, the validation performed at 2.5 min showed largest deviations and RMSE values ranging from about 110 W m-2 for the mainland to a maximum of 150 W m-2 in the subtropical region. We also detected a limited overestimation in the number of clear-sky episodes, particularly at the pixel level. Overall, satellite-based estimates were higher under overcast conditions, whereas frequent episodes of cloud-induced enhanced surface radiation (i.e., measured radiation was greater than expected clear-sky radiation) tended to reduce this difference. Finally, the total mean bias was approximately 10-15 W m-2 under clear-sky conditions, mainly because of overall instantaneous direct aerosol forcing efficiency in the range

  7. Flux observations of isoprene oxidation products above a South East US forest point to chemical conversions on leaf canopy surface

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Su, L.; Park, J.; Holzinger, R.; Nguyen, T.; Teng, A.; St Clair, J. M.; Wennberg, P. O.; Crounse, J.; Seco, R.; Karl, T.; Kaser, L.; Hansel, A.; Canaval, E.; Keutsch, F. N.; Mak, J. E.; Guenther, A. B.; Goldstein, A. H.; Mentler, B.; Lepesant, B.; Schnitzler, J. P.; Partoll, E.

    2016-12-01

    Isoprene is globally the dominant biogenic VOC (BVOC) emitted by the biosphere. Isoprene rapidly reacts with hydroxyl radicals in the atmosphere, forming oxidized carbonaceous gases some of which further react to form secondary organic aerosol. Isoprene oxidation proceeds simultaneously via NO and HO2 oxidation pathways with relative proportions depending mainly on the amount of available NOx (NO +NO2). Recent SOA modeling of HO2 oxidation of isoprene peroxides and epoxides reveal different SOA yields but few field studies are available to investigate these processes. Understanding of the fundamental chemical and physical processes controlling the fate of isoprene oxidation products is needed to improve SOA modeling under highly variable NOx concentrations and with the branching ratio between HO2 and NO pathways changing as a function of time of day. Plants are an important sink for many atmospheric chemicals formed in the atmosphere but the role of canopy surfaces is not typically accounted for when modeling atmospheric chemistry. Based on simultaneous flux measurements of isoprene carbonyls (MVK+MAC) by proton transfer reaction mass spectrometry and isoprene hydroxy hydroperoxides and epoxy diols (ISOPOOH+IEPOX) by tandem chemical ionization mass spectrometry, we show that the relative proportions of concentrations of these first-order isoprene products exhibit different diurnal patterns, dependent on NOx. Furthermore, a different diurnal flux pattern observed for first order products of NO and HO2 reactions reveals the occurrence of peroxide conversions to carbonyls at the canopy surface resulting in observed positive net emission flux of MVK+MAC in the afternoon. We hypothesize that the plant canopy provides an active surface which can catalyze chemical conversion. This hypothesis is supported by observation of consistent flux patterns at multiple different sites in the US and by a controlled ISOPOOH fumigation experiment of a plant in an enclosure chamber. In

  8. Ground-Based Observations of 9P/Tempel 1 - The Deep Impact Mission

    NASA Astrophysics Data System (ADS)

    Meech, K. J.; Bauer, J. M.; A'Hearn, M. F.

    1999-09-01

    The Deep Impact mission, one of the two recently approved Discovery missions, will deliver a 500 kg copper projectile to the comet 9P/Tempel 1 on July 4, 2005, to excavate a crater. The goal will be to watch the cratering event, measure the change in activity level caused by the impact, and will be the first experiment to sample deeply below the surface of a comet. In preparation for a successful mission, we will begin a vigorous ground-based observing campaign to characterize the nucleus of 9P/Tempel 1. The ground-based observations will characterize the pre-impact activity levels for comparison after the impact, characterize the nucleus in terms of a rotational light curve and pole position, get an estimate of the nucleus size and albedo, model the dust production rates, and search for the appearance of gaseous species as the comet approaches perihelion. The observing campaign as already begun with some intensive observations of the comet during the following observing runs: UT Date & Nts & Telescope & r[AU] & No. & Exp 12/97 & 1 &Keck II & 4.48 & 2 & 240 1/98 & 1 &UH 2.2m & 4.44 & 7 & 4200 2/98 & 1 &CTIO1.5m & 4.36 & 3 & 1800 4/98 & 2 &UH 2.2m & 4.26 & 8 & 4800 1/99 & 6 &UH 2.2m & 3.14 &133 &17220 3/99 & 4 &UH 2.2m & 2.88 &181 &54000 5/99 & 2 &UH 2.2m & 2.47 & 9 & 810 7 /99 & 2 &UH 2.2m & 2.19 & 9 & 1620 The 1999 January and March observations were made to search for the rotation period of the comet, as well as to obtain deep images to model the coma. The results of the rotational light curve observations will be presented, as well as a compilation of the heliocentric light curve from the data from earlier epochs. In addition, a detailed, comprehensive multi-wavelength ground-based observing plan will be presented to characterize the nucleus before the 2005 July 4 Deep Impact encounter with the comet. This project has been funded through the NASA Planetary Astronomy Program to date, NAG 4494.

  9. Observer-Based Adaptive Fault-Tolerant Tracking Control of Nonlinear Nonstrict-Feedback Systems.

    PubMed

    Wu, Chengwei; Liu, Jianxing; Xiong, Yongyang; Wu, Ligang

    2017-06-28

    This paper studies an output-based adaptive fault-tolerant control problem for nonlinear systems with nonstrict-feedback form. Neural networks are utilized to identify the unknown nonlinear characteristics in the system. An observer and a general fault model are constructed to estimate the unavailable states and describe the fault, respectively. Adaptive parameters are constructed to overcome the difficulties in the design process for nonstrict-feedback systems. Meanwhile, dynamic surface control technique is introduced to avoid the problem of ''explosion of complexity''. Furthermore, based on adaptive backstepping control method, an output-based adaptive neural tracking control strategy is developed for the considered system against actuator fault, which can ensure that all the signals in the resulting closed-loop system are bounded, and the system output signal can be regulated to follow the response of the given reference signal with a small error. Finally, the simulation results are provided to validate the effectiveness of the control strategy proposed in this paper.

  10. River runoff estimates based on remotely sensed surface velocities

    NASA Astrophysics Data System (ADS)

    Grünler, Steffen; Stammer, Detlef; Romeiser, Roland

    2010-05-01

    One promising technique for river runoff estimates from space is the retrieval of surface currents on the basis of synthetic aperture radar along-track interferometry (ATI). The German satellite TerraSAR-X, which was launched in June 2007, will permit ATI measurements in an experimental mode. Based on numerical simulations, we present findings of a research project in which the potential of satellite measurements of various parameters with different temporal and spatial sampling characteristics is evaluated. A sampling strategy for river runoff estimates is developed. We address the achievable accuracy and limitations of such estimates for different local flow conditions at selected test site. High-resolution three-dimensional current fields in the Elbe river (Germany) from a numerical model are used as reference data set and input for simulations of a variety of possible measuring and data interpretation strategies to be evaluated. Addressing the problem of aliasing we removed tidal signals from the sampling data. Discharge estimates on the basis of measured surface current fields and river widths from TerraSAR-X are successfully simulated. The differences of the resulted net discharge estimate are between 30-55% for a required continuously observation period of one year. We discuss the applicability of the measuring strategies to a number of major rivers. Further we show results of runoff estimates by the retrieval of surface current fields by real TerraSAR-X ATI data (AS mode) for the Elbe river study area.

  11. Extended state observer-based motion synchronisation control for hybrid actuation system of large civil aircraft

    NASA Astrophysics Data System (ADS)

    Wang, Xingjian; Shi, Cun; Wang, Shaoping

    2017-07-01

    Hybrid actuation system with dissimilar redundant actuators, which is composed of a hydraulic actuator (HA) and an electro-hydrostatic actuator (EHA), has been applied on modern civil aircraft to improve the reliability. However, the force fighting problem arises due to different dynamic performances between HA and EHA. This paper proposes an extended state observer (ESO)-based motion synchronisation control method. To cope with the problem of unavailability of the state signals, the well-designed ESO is utilised to observe the HA and EHA state variables which are unmeasured. In particular, the extended state of ESO can estimate the lumped effect of the unknown external disturbances acting on the control surface, the nonlinear dynamics, uncertainties, and the coupling term between HA and EHA. Based on the observed states of ESO, motion synchronisation controllers are presented to make HA and EHA to simultaneously track the desired motion trajectories, which are generated by a trajectory generator. Additionally, the unknown disturbances and the coupling terms can be compensated by using the extended state of the proposed ESO. Finally, comparative simulation results indicate that the proposed ESO-based motion synchronisation controller can achieve great force fighting reduction between HA and EHA.

  12. Version 2 Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF2)

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.; Shie, Chung-Lin; Starr, David O'C. (Technical Monitor)

    2002-01-01

    Information on the turbulent fluxes of momentum, moisture, and heat at the air-sea interface is essential in improving model simulations of climate variations and in climate studies. We have derived a 13.5-year (July 1987-December 2000) dataset of daily surface turbulent fluxes over global oceans from the Special Sensor Mcrowave/Imager (SSM/I) radiance measurements. This dataset, version 2 Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2), has a spatial resolution of 1 degree x 1 degree latitude-longitude and a temporal resolution of 1 day. Turbulent fluxes are derived from the SSM/I surface winds and surface air humidity, as well as the 2-m air and sea surface temperatures (SST) of the NCEP/NCAR reanalysis, using a bulk aerodynamic algorithm based on the surface layer similarity theory.

  13. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  14. Mercury's Seasonal Sodium Exosphere: MESSENGER Orbital Observations

    NASA Technical Reports Server (NTRS)

    Cassidy, Timothy A.; Merkel, Aimee W.; Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Sarantos, Menelaos

    2014-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) Ultraviolet and Visible Spectrometer (UVVS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury provides the first close-up look at the planet's sodium exosphere. UVVS has observed the exosphere from orbit almost daily for over 10 Mercury years. In this paper we describe and analyze a subset of these data: altitude profiles taken above the low-latitude dayside and south pole. The observations show spatial and temporal variations, but there are no obvious year-to-year variations in most of the observations. We do not see the episodic variability reported by some ground-based observers. We used these altitude profiles to make estimates of sodium density and temperature. The bulk of the exosphere, at about 1200 K, is much warmer than Mercury's surface. This value is consistent with some ground-based measurements and suggests that photon-stimulated desorption is the primary ejection process. We also observe a tenuous energetic component but do not see evidence of the predicted thermalized (or partially thermalized) sodium near Mercury's surface temperature. Overall we do not see the variable mixture of temperatures predicted by most Monte Carlo models of the exosphere.

  15. Mercury's Seasonal Sodium Exosphere: MESSENGER Orbital Observations

    NASA Technical Reports Server (NTRS)

    Cassidy, Timothy A.; Merkel, Aimee W.; Burger, Matthew H.; Sarantos, Menelaos; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.

    2014-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) Ultraviolet and Visible Spectrometer (UVVS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury provides the first close-up look at the planet's sodium exosphere. UVVS has observed the exosphere from orbit almost daily for over 10 Mercury years. In this paper we describe and analyze a subset of these data: altitude profiles taken above the low-latitude dayside and south pole. The observations show spatial and temporal variation but there is little or no year-to-year variation; we do not see the episodic variability reported by ground-based observers. We used these altitude profiles to make estimates of sodium density and temperature. The bulk of the exosphere is about 1200 K, much warmer than Mercury's surface. This value is consistent with some ground-based measurements and suggests that photon-stimulated desorption is the primary ejection process. We also observe a tenuous energetic component but do not see evidence of the predicted thermalized (or partially thermalized) sodium near Mercury's surface temperature. Overall we do not see the variable mixture of temperatures predicted by most Monte Carlo models of the exosphere.

  16. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft.

    PubMed

    Wang, Xingjian; Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-10-25

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.

  17. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    PubMed Central

    Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-01-01

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392

  18. Observation of the Amorphous-to-Crystalline Surface Transition in Al-AlxOy Using Slow Positrons

    NASA Astrophysics Data System (ADS)

    Lynn, K. G.

    1980-05-01

    The amorphous-to-crystalline surface transition of AlxOy on the Al(111) surface is observed between 650 and 800 K with different O2 exposures by measuring the positronium (Ps) fraction produced by e+ impinging on the surface. The data are interpreted in terms of vacancy-type defects in the film or at the metal-metal-oxide interface which as trapping sites for e+ or Ps. As the ordering process proceeds to completion the trapping centers anneal out and the Ps fraction increases, showing an irreversible transition. This technique provides a new experimental method to study interfaces.

  19. Spatio-temporal image-based parametric water surface reconstruction: a novel methodology based on refraction

    NASA Astrophysics Data System (ADS)

    Engelen, L.; Creëlle, S.; Schindfessel, L.; De Mulder, T.

    2018-03-01

    This paper presents a low-cost and easy-to-implement image-based reconstruction technique for laboratory experiments, which results in a temporal description of the water surface topography. The distortion due to refraction of a known pattern, located below the water surface, is used to fit a low parameter surface model that describes the time-dependent and three-dimensional surface variation. Instead of finding the optimal water depth for characteristic points on the surface, the deformation of the entire pattern is compared to its original shape. This avoids the need for feature tracking adopted in similar techniques, which improves the robustness to suboptimal optical conditions and small-scale, high-frequency surface perturbations. Experimental validation, by comparison with water depth measurements using a level gauge and pressure sensor, proves sub-millimetre accuracy for smooth and steady surface shapes. Although such accuracy cannot be achieved in case of highly dynamic surface phenomena, the low-frequency and large-scale free surface oscillations can still be measured with a temporal and spatial resolution mostly limited by the available optical set-up. The technique is initially intended for periodic surface phenomena, but the results presented in this paper indicate that also irregular surface shapes can robustly be reconstructed. Therefore, the presented technique is a promising tool for other research applications that require non-intrusive, low-cost surface measurements while maintaining visual access to the water below the surface. The latter ensures that the suggested surface reconstruction is compatible with simultaneous image-based velocity measurements, enabling a detailed study of the flow.

  20. Retrieving Arctic Sea Fog Geometrical Thickness and Inversion Characteristics from Surface and Radiosonde Observations.

    NASA Astrophysics Data System (ADS)

    Gilson, Gaëlle; Jiskoot, Hester

    2017-04-01

    Arctic sea fog hasn't been extensively studied despite its importance for environmental impact such as on traffic safety and on glacier ablation in coastal Arctic regions. Understanding fog processes can improve nowcasting of environmental impact in such remote regions where few observational data exist. To understand fog's physical, macrophysical and radiative properties, it is important to determine accurate Arctic fog climatology. Our previous study suggested that fog peaks in July over East Greenland and associates with sea ice break-up and a sea breeze with wind speeds between 1-4 m/s. The goal of this study is to understand Arctic coastal fog macrophysical properties and quantify its vertical extent. Radiosonde profiles were extracted from the Integrated Global Radiosonde Archive (IGRA) between 1980-2012, coincident with manual and automated fog observations at three synoptic weather stations along the coast of East Greenland. A new method using air mass saturation ratio and thermodynamic stability was developed to derive fog top height from IGRA radiosonde profiles. Soundings were classified into nine categories, based on surface and low-level saturation ratio, inversion type, and the fog top height relative to the inversion base. Results show that Arctic coastal fog mainly occurs under thermodynamically stable conditions characterized by deep and strong low-level inversions. Fog thickness is commonly about 100-400 m, often reaching the top of the boundary layer. Fog top height is greater at northern stations, where daily fog duration is also longer and often lasts throughout the day. Fog thickness is likely correlated to sea ice concentration density during sea ice break-up. Overall, it is hypothesized that our sounding classes represent development or dissipation stages of advection fog, or stratus lowering and fog lifting processes. With a new automated method, it is planned to retrieve fog height from IGRA data over Arctic terrain around the entire North

  1. Surface Wind Vector and Rain Rate Observation Capability of Future Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Bailey, M. C.; Black, Peter; El-Nimri, Salem; Hood, Robbie; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is the next-generation Stepped Frequency Microwave Radiometer (SFMR), and it will offer the capability of simultaneous wide-swath observations of both extreme ocean surface wind vector and strong precipitation from either aircraft (including UAS) or satellite platforms. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce valid wind observations under hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered by precipitation. The SFMR i s a proven aircraft remote sensing system for simultaneously observing extreme ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. The first version of the instrument will be a single polarization system for wind speed and rain rate, with a dual-polarization system to follow for wind vector capability. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by NASA s Instrument Incubator Program. A brassboard (laboratory) version of the instrument has been completed and successfully tested in a test chamber. Development of the aircraft instrument is underway, with flight testing planned for the fall of 2009. Preliminary Observing System Simulation Experiments (OSSEs) show that HIRAD will have a significant positive impact on surface wind analyses as either a new aircraft or satellite sensor. New off-nadir data collected in 2008 by SFMR that affirms the ability of this measurement technique to obtain wind speed data at non-zero incidence angle will

  2. Observation of Transient Surface-Bound Intermediates by Interfacial Matrix Stabilization Spectroscopy (imss)

    NASA Astrophysics Data System (ADS)

    Jarrah, Nina K.; Moore, David T.

    2014-06-01

    Interfacial matrix stabilization spectroscopy is a new technique based on matrix isolation spectroscopy, but where a cryogenic matrix is deposited over the top of a film sample, in order to characterize interactions between the substrate and molecular dopants. The IMSS technique harnesses the well-established ability of cryogenic matrices to trap and stabilize transient species, although in this case it is applied to intermediates relevant to heterogeneous catalysis. In this proof-of-concept study, we present data for CO and O2 reactants binding to TiO2 and Au/TiO2 nanoparticle films, where in the latter case the Au nanoparticles were created by de-wetting of a 22.5 nm overlayer at 450 K. The films are first pre-saturated with CO at 40 K, then cooled to 20 K, at which point an argon matrix is deposited over the top of them. The spectra are then annealed in stages over a range of temperatures between 20 and 40 K. In all cases, the presence of the Ar matrix alters the appearance of the CO bands, revealing additional structure, such as a broad feature at 2150 wn, which is typically attributed to CO interacting with OH groups on the TiO2 surface, but is not observed at 40 K for these samples in the absence of the matrix. The interpretation is that the matrix induces a caging-effect that prevents molecules from desorbing from weak binding sites from which they would be "pumped away" in the vacuum chamber if the matrix were not present. Perhaps the most interesting feature of these spectra is a small but sharp band at 2112 wn that appears ONLY when O2 is added to the argon matrix as a dopant. This transient band grows in following annealing at 32 K, but then disappears upon annealing above 34 K, suggesting that it may correspond to a reactive intermediate. The band occurs for samples both with and without Au present on the TiO2 surface, but shows a larger intensity in the latter case. Possible assignments for the observed band in light of previous studies from the

  3. An all-water-based system for robust superhydrophobic surfaces.

    PubMed

    Liu, Mingming; Hou, Yuanyuan; Li, Jing; Tie, Lu; Guo, Zhiguang

    2018-06-01

    Superhydrophobic surfaces with micro-/nanohierarchical structures are mechanically weak. Generally, organic solvents are used to dissolve or disperse organic adhesives and modifiers to enhance the mechanical strength of superhydrophobic surfaces. In this work, an all-water-based spraying solution is developed for the preparation of robust superhydrophobic surfaces, which contains ZnO nanoparticles, aluminum phosphate as an inorganic adhesive, and polytetrafluoroethylene with low surface energy. The all-water-based system is appreciated for low price and less pollution. Importantly, the prepared superhydrophobic surfaces are durable enough against various harsh conditions (such as UV irradiation for 12 h, pH values from 1 to 13, and temperatures from -10 to 300 °C for 12 h) and physical damages (including sandpaper abrasion and sand impact tests for 50 cycles). In addition, the obtained interfacial materials show promise for practical applications such as anti-icing and oil-water separation. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. "Slow-scanning" in Ground-based Mid-infrared Observations

    NASA Astrophysics Data System (ADS)

    Ohsawa, Ryou; Sako, Shigeyuki; Miyata, Takashi; Kamizuka, Takafumi; Okada, Kazushi; Mori, Kiyoshi; Uchiyama, Masahito S.; Yamaguchi, Junpei; Fujiyoshi, Takuya; Morii, Mikio; Ikeda, Shiro

    2018-04-01

    Chopping observations with a tip-tilt secondary mirror have conventionally been used in ground-based mid-infrared observations. However, it is not practical for next generation large telescopes to have a large tip-tilt mirror that moves at a frequency larger than a few hertz. We propose an alternative observing method, a "slow-scanning" observation. Images are continuously captured as movie data, while the field of view is slowly moved. The signal from an astronomical object is extracted from the movie data by a low-rank and sparse matrix decomposition. The performance of the "slow-scanning" observation was tested in an experimental observation with Subaru/COMICS. The quality of a resultant image in the "slow-scanning" observation was as good as in a conventional chopping observation with COMICS, at least for a bright point-source object. The observational efficiency in the "slow-scanning" observation was better than that in the chopping observation. The results suggest that the "slow-scanning" observation can be a competitive method for the Subaru telescope and be of potential interest to other ground-based facilities to avoid chopping.

  5. Free-surface liquid jet impingement on rib patterned superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Maynes, D.; Johnson, M.; Webb, B. W.

    2011-05-01

    We report experimental results characterizing the dynamics of a liquid jet impinging normally on hydrophilic, hydrophobic, and superhydrophobic surfaces spanning the Weber number (based on the jet velocity and diameter) range from 100 to 1900. The superhydrophobic surfaces are fabricated with both hydrophobically coated silicon and polydimethylsiloxane that exhibit alternating microribs and cavities. For all surfaces a transition from a thin radially moving liquid sheet occurs. This takes the form of the classical hydraulic jump for the hydrophilic surfaces but is markedly different for the hydrophobic and superhydrophobic surfaces, where the transition is significantly influenced by surface tension and a break-up into droplets is observed at high Weber number. For the superhydrophobic surfaces, the transition exhibits an elliptical shape with the major axis being aligned parallel to the ribs, concomitant with the frictional resistance being smaller in the parallel direction than in the transverse direction. However, the total projected area of the ellipse exhibits a nearly linear dependence on the jet Weber number, and was nominally invariant with varying hydrophobicity and relative size of the ribs and cavities. For the hydrophobic and superhydrophobic scenarios, the local Weber number based on the local radial velocity and local depth of the radially moving liquid sheet is observed to be of order unity at the transition location. The results also reveal that for increasing relative size of the cavities, the ratio of the ellipse axis (major-to-minor) increases.

  6. Plausible surface models for Titan

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1992-01-01

    Current understanding of the nature of Titan's surface and some new ideas for explaining the curious radar returns from Saturn's largest satellite are reviewed. Pre-Voyager models of the surface, based largely on cosmochemistry and the discovery of atmospheric methane, allowed for a range of possibilities, including pure methane oceans. The Voyager 1 flyby ruled out this last possibility, replacing it with compelling observational arguments in favor of a mixed light hydrocarbon and nitrogen ocean. Ground based radar observations indicated a surprisingly reflective surface which is inconsistent with a hydrocarbon ocean and more reminiscent of the Galilean Satellites. Nonetheless, passive radiometric measurements of the surface do not support the notion that Titan's surface is like that of the Galilean satellites. One of the arguments against hydrocarbon oceans reflecting radar energy is that most solid, complex hydrocarbon and nitriles will be denser than the liquid and sink. Nonetheless, many of the aerosol species will coagulate in highly nonspherical patterns, and some species probably polymerize in long chains. Such chains will have very low sedimendation velocities in the ocean and may remain near the surface through ocean mixing process. The prospect of an oceanic 'soup' of polar polymers acting as volume reflectors at radio wevelengths suggests that the interpretation of radar observations needs evaluation.

  7. Excitation of surface electromagnetic waves in a graphene-based Bragg grating

    PubMed Central

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc. PMID:23071901

  8. Excitation of surface electromagnetic waves in a graphene-based Bragg grating.

    PubMed

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.

  9. Observations of inner shelf cross-shore surface material transport adjacent to a coastal inlet in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roth, Mathias K.; MacMahan, Jamie; Reniers, Ad; Özgökmen, Tamay M.; Woodall, Kate; Haus, Brian

    2017-04-01

    Motivated by the Deepwater Horizon oil spill, the Surfzone and Coastal Oil Pathways Experiment obtained Acoustic Doppler Current Profiler (ADCP) Eulerian and GPS-drifter based Lagrangian "surface" (<1 m) flow observations in the northern Gulf of Mexico to describe the influence of small-scale river plumes on surface material transport pathways in the nearshore. Lagrangian paths are qualitatively similar to surface pathlines derived from non-traditional, near-surface ADCP velocities, but both differ significantly from depth-averaged subsurface pathlines. Near-surface currents are linearly correlated with wind velocities (r =0.76 in the alongshore and r =0.85 in the cross-shore) at the 95% confidence level, and are 4-7 times larger than theoretical estimates of wind and wave-driven surface flow in an un-stratified water column. Differences in near-surface flow are attributed to the presence of a buoyant river plume forced by winds from passing extratropical storms. Plume boundary fronts induce a horizontal velocity gradient where drifters deployed outside of the plume in oceanic water routinely converge, slow, and are re-directed. When the plume flows west parallel to the beach, the seaward plume boundary front acts as a coastal barrier that prevents 100% of oceanic drifters from beaching within 27 km of the inlet. As a result, small-scale, wind-driven river plumes in the northern Gulf of Mexico act as coastal barriers that prevent offshore surface pollution from washing ashore west of river inlets.

  10. Observed near-surface flows under all tropical cyclone intensity levels using drifters in the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chia; Chen, Guan-Yu; Tseng, Ruo-Shan; Centurioni, Luca R.; Chu, Peter C.

    2013-05-01

    Data from drifters of the surface velocity program and tropical cyclones (TCs) of the Joint Typhoon Warning Center during 1985-2009 were analyzed to demonstrate strong currents under various storm intensities such as category-4 to -5, category-2 to -3, and tropical storm to category-1 TCs in the northwestern Pacific. Current speeds over 2.0 m s-1 are observed under major TCs with the strongest mean currents to the right of the storm track. This study provides the characterization of the near-surface velocity response to all recorded TCs, and agrees roughly with Geisler's theory (1970). Our observations also verify earlier modeling results of Price (1983).

  11. Global Precipitation Estimates from Cross-Track Passive Microwave Observations Using a Physically-Based Retrieval Scheme

    NASA Technical Reports Server (NTRS)

    Kidd, Chris; Matsui, Toshi; Chern, Jiundar; Mohr, Karen; Kummerow, Christian; Randel, Dave

    2015-01-01

    The estimation of precipitation across the globe from satellite sensors provides a key resource in the observation and understanding of our climate system. Estimates from all pertinent satellite observations are critical in providing the necessary temporal sampling. However, consistency in these estimates from instruments with different frequencies and resolutions is critical. This paper details the physically based retrieval scheme to estimate precipitation from cross-track (XT) passive microwave (PM) sensors on board the constellation satellites of the Global Precipitation Measurement (GPM) mission. Here the Goddard profiling algorithm (GPROF), a physically based Bayesian scheme developed for conically scanning (CS) sensors, is adapted for use with XT PM sensors. The present XT GPROF scheme utilizes a model-generated database to overcome issues encountered with an observational database as used by the CS scheme. The model database ensures greater consistency across meteorological regimes and surface types by providing a more comprehensive set of precipitation profiles. The database is corrected for bias against the CS database to ensure consistency in the final product. Statistical comparisons over western Europe and the United States show that the XT GPROF estimates are comparable with those from the CS scheme. Indeed, the XT estimates have higher correlations against surface radar data, while maintaining similar root-mean-square errors. Latitudinal profiles of precipitation show the XT estimates are generally comparable with the CS estimates, although in the southern midlatitudes the peak precipitation is shifted equatorward while over the Arctic large differences are seen between the XT and the CS retrievals.

  12. Automated search of control points in surface-based morphometry.

    PubMed

    Canna, Antonietta; Russo, Andrea G; Ponticorvo, Sara; Manara, Renzo; Pepino, Alessandro; Sansone, Mario; Di Salle, Francesco; Esposito, Fabrizio

    2018-04-16

    Cortical surface-based morphometry is based on a semi-automated analysis of structural MRI images. In FreeSurfer, a widespread tool for surface-based analyses, a visual check of gray-white matter borders is followed by the manual placement of control points to drive the topological correction (editing) of segmented data. A novel algorithm combining radial sampling and machine learning is presented for the automated control point search (ACPS). Four data sets with 3 T MRI structural images were used for ACPS validation, including raw data acquired twice in 36 healthy subjects and both raw and FreeSurfer preprocessed data of 125 healthy subjects from public databases. The unedited data from a subgroup of subjects were submitted to manual control point search and editing. The ACPS algorithm was trained on manual control points and tested on new (unseen) unedited data. Cortical thickness (CT) and fractal dimensionality (FD) were estimated in three data sets by reconstructing surfaces from both unedited and edited data, and the effects of editing were compared between manual and automated editing and versus no editing. The ACPS-based editing improved the surface reconstructions similarly to manual editing. Compared to no editing, ACPS-based and manual editing significantly reduced CT and FD in consistent regions across different data sets. Despite the extra processing of control point driven reconstructions, CT and FD estimates were highly reproducible in almost all cortical regions, albeit some problematic regions (e.g. entorhinal cortex) may benefit from different editing. The use of control points improves the surface reconstruction and the ACPS algorithm can automate their search reducing the burden of manual editing. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Operational evapotranspiration based on Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  14. Land Surface Data Assimilation

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2012-12-01

    Information about land surface water, energy and carbon conditions is of critical importance to real-world applications such as agricultural production, water resource management, flood prediction, water supply, weather and climate forecasting, and environmental preservation. While ground-based observational networks are improving, the only practical way to observe these land surface states on continental to global scales is via satellites. Remote sensing can make spatially comprehensive measurements of various components of the terrestrial system, but it cannot provide information on the entire system (e.g. evaporation), and the observations represent only an instant in time. Land surface process models may be used to predict temporal and spatial terrestrial dynamics, but these predictions are often poor, due to model initialization, parameter and forcing, and physics errors. Therefore, an attractive prospect is to combine the strengths of land surface models and observations (and minimize the weaknesses) to provide a superior terrestrial state estimate. This is the goal of land surface data assimilation. Data Assimilation combines observations into a dynamical model, using the model's equations to provide time continuity and coupling between the estimated fields. Land surface data assimilation aims to utilize both our land surface process knowledge, as embodied in a land surface model, and information that can be gained from observations. Both model predictions and observations are imperfect and we wish to use both synergistically to obtain a more accurate result. Moreover, both contain different kinds of information, that when used together, provide an accuracy level that cannot be obtained individually. Model biases can be mitigated using a complementary calibration and parameterization process. Limited point measurements are often used to calibrate the model(s) and validate the assimilation results. This presentation will provide a brief background on land

  15. Observation of surface superstructure induced by systematic vacancies in the topological Dirac semimetal Cd3As2

    NASA Astrophysics Data System (ADS)

    Butler, Christopher J.; Tseng, Yi; Hsing, Cheng-Rong; Wu, Yu-Mi; Sankar, Raman; Wang, Mei-Fang; Wei, Ching-Ming; Chou, Fang-Cheng; Lin, Minn-Tsong

    2017-02-01

    The Dirac semimetal phase found in Cd3As2 is protected by a C4 rotational symmetry derived from a corkscrew arrangement of systematic Cd vacancies in its complicated crystal structure. It is therefore surprising that no microscopic observation, direct or indirect, of these systematic vacancies has so far been described. To this end, we revisit the cleaved (112) surface of Cd3As2 using a combined approach of scanning tunneling microscopy and ab initio calculations. We determine the exact position of the (112) plane at which Cd3As2 naturally cleaves, and describe in detail a structural periodicity found at the reconstructed surface, consistent with that expected to arise from the systematic Cd vacancies. This reconciles the current state of microscopic surface observations with those of crystallographic and theoretical models, and demonstrates that this vacancy superstructure, central to the preservation of the Dirac semimetal phase, survives the cleavage process and retains order at the surface.

  16. The bursts of high energy events observed by the telescope array surface detector

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Sekino, K.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-08-01

    The Telescope Array (TA) experiment is designed to detect air showers induced by ultra high energy cosmic rays. The TA ground Surface particle Detector (TASD) observed several short-time bursts of air shower like events. These bursts are not likely due to chance coincidence between single shower events. The expectation of chance coincidence is less than 10-4 for five-year's observation. We checked the correlation between these bursts of events and lightning data, and found evidence for correlations in timing and position. Some features of the burst events are similar to those of a normal cosmic ray air shower, and some are not. On this paper, we report the observed bursts of air shower like events and their correlation with lightning.

  17. From Ground Truth to Space: Surface, Subsurface and Remote Observations Associated with Nuclear Test Detection

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.

    2016-12-01

    Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.

  18. Observed Screen (Air) and GCM Surface/Screen Temperatures: Implications for Outgoing Longwave Fluxes at the Surface.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1995-05-01

    There is direct evidence that excess net radiation calculated in general circulation models at continental surfaces [of about 11-17 W m2 (20%-27%) on an annual ~1 is not only due to overestimates in annual incoming shortwave fluxes [of 9-18 W m2 (6%-9%)], but also to underestimates in outgoing longwave fluxes. The bias in the outgoing longwave flux is deduced from a comparison of screen-air temperature observations, available as a global climatology of mean monthly values, and model-calculated surface and screen-air temperatures. An underestimate in the screen temperature computed in general circulation models over continents, of about 3 K on an annual basis, implies an underestimate in the outgoing longwave flux, averaged in six models under study, of 11-15 W m2 (3%-4%). For a set of 22 inland stations studied previously, the residual bias on an annual basis (the residual is the net radiation minus incoming shortwave plus outgoing longwave) varies between 18 and 23 W m2 for the models considered. Additional biases in one or both of the reflected shortwave and incoming longwave components cannot be ruled out.

  19. Spatial and Temporal Variations in Titan's Surface Temperatures from Cassini CIRS Observations

    NASA Technical Reports Server (NTRS)

    Cottini, V.; Nixon, C. A.; Jennings, D. E.; deKok, R.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2012-01-01

    We report a wide-ranging study of Titan's surface temperatures by analysis of the Moon's outgoing radiance through a spectral window in the thermal infrared at 19 mm (530/cm) characterized by lower atmospheric opacity. We begin by modeling Cassini Composite Infrared Spectrometer (CIRS) far infrared spectra collected in the period 2004-2010, using a radiative transfer forward model combined with a non-linear optimal estimation inversion method. At low-latitudes, we agree with the HASI near-surface temperature of about 94 K at 101S (Fulchignoni et al., 2005). We find a systematic decrease from the equator toward the poles, hemispherically asymmetric, of approx. 1 K at 60 deg. south and approx. 3 K at 60 deg. north, in general agreement with a previous analysis of CIRS data and with Voyager results from the previous northern winter. Subdividing the available database, corresponding to about one Titan season, into 3 consecutive periods, small seasonal changes of up to 2 K at 60 deg N became noticeable in the results. In addition, clear evidence of diurnal variations of the surface temperatures near the equator are observed for the first time: we find a trend of slowly increasing temperature from the morning to the early afternoon and a faster decrease during the night. The diurnal change is approx. 1.5 K, in agreement with model predictions for a surface with a thermal inertia between 300 and 600 J/ sq. m s (exp -1/2) / K. These results provide important constraints on coupled surface-atmosphere models of Titan's meteorology and atmospheric dynamic.

  20. Novel surface modification of polymer-based separation media controlling separation selectivity, retentivity and generation of electroosmotic flow.

    PubMed

    Hosoya, Ken; Kubo, Takuya; Takahashi, Katsuo; Ikegami, Tohru; Tanaka, Nobuo

    2002-12-06

    Uniformly sized packing materials based on synthetic polymer particles for high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) have been prepared from polymerization mixtures containing methacrylic acid (MAA) as a functional monomer and by using a novel surface modification method. This "dispersion method" affords effectively modified separation media. Both the amount of MAA utilized in the preparation and reaction time affect the selectivity of chromatographic separation in both the HPLC and the CEC mode and electroosmotic flow. This detailed study revealed that the dispersion method effectively modified internal surface of macroporous separation media and, based on the amount of MAA introduced, exclusion mechanism for the separation of certain solutes could be observed.

  1. Comparison of ScaRaB, GOES 8, Aircraft, and Surface Observations of the Absorption of Solar Radiation by Clouds

    NASA Technical Reports Server (NTRS)

    Pope, Shelly K.; Valero, Francisco P. J.; Collins, William D.; Minnis, Patrick

    2002-01-01

    Data obtained by the Scanner for Radiation Budget (ScaRaB) instrument on the Meteor 3 satellite have been analyzed and compared to satellite (GOES 8), aircraft (Radiation Measurement System, RAMS), and surface (Baseline Solar Radiation Network (BSRN), Solar and Infrared Observations System (SIROS), and RAMS) measurements of irradiance obtained during the Atmospheric Radiation Measurements Enhanced Shortwave Experiment (ARESE). It is found that the ScaRaB data covering the period from March 1994 to February 1995 (the instrument's operational lifetime) indicate excess absorption of solar radiation by the cloudy atmosphere in agreement with previous aircraft, surface, and GOES 8 results. The full ScaRaB data set combined with BSRN and SIROS surface observations gives an average all-sky absorptance of 0.28. The GOES 8 data set combined with RAMS surface observations gives an average all-sky absorptance of 0.26. The aircraft data set (RAMS) gives a mean all-sky absorptance of 0.24 (for the column between 0.5 and 13 km).

  2. Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Lin, Che-Jen; Wang, Xun; Sommar, Jonas; Fu, Xuewu; Feng, Xinbin

    2016-04-01

    Reliable quantification of air-surface fluxes of elemental Hg vapor (Hg0) is crucial for understanding mercury (Hg) global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc.) in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere-surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air-surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.). However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann-Whitney U test). The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia). The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0 flux observations in East

  3. Observability-Based Guidance and Sensor Placement

    NASA Astrophysics Data System (ADS)

    Hinson, Brian T.

    Control system performance is highly dependent on the quality of sensor information available. In a growing number of applications, however, the control task must be accomplished with limited sensing capabilities. This thesis addresses these types of problems from a control-theoretic point-of-view, leveraging system nonlinearities to improve sensing performance. Using measures of observability as an information quality metric, guidance trajectories and sensor distributions are designed to improve the quality of sensor information. An observability-based sensor placement algorithm is developed to compute optimal sensor configurations for a general nonlinear system. The algorithm utilizes a simulation of the nonlinear system as the source of input data, and convex optimization provides a scalable solution method. The sensor placement algorithm is applied to a study of gyroscopic sensing in insect wings. The sensor placement algorithm reveals information-rich areas on flexible insect wings, and a comparison to biological data suggests that insect wings are capable of acting as gyroscopic sensors. An observability-based guidance framework is developed for robotic navigation with limited inertial sensing. Guidance trajectories and algorithms are developed for range-only and bearing-only navigation that improve navigation accuracy. Simulations and experiments with an underwater vehicle demonstrate that the observability measure allows tuning of the navigation uncertainty.

  4. [A Method to Reconstruct Surface Reflectance Spectrum from Multispectral Image Based on Canopy Radiation Transfer Model].

    PubMed

    Zhao, Yong-guang; Ma, Ling-ling; Li, Chuan-rong; Zhu, Xiao-hua; Tang, Ling-li

    2015-07-01

    Due to the lack of enough spectral bands for multi-spectral sensor, it is difficult to reconstruct surface retlectance spectrum from finite spectral information acquired by multi-spectral instrument. Here, taking into full account of the heterogeneity of pixel from remote sensing image, a method is proposed to simulate hyperspectral data from multispectral data based on canopy radiation transfer model. This method first assumes the mixed pixels contain two types of land cover, i.e., vegetation and soil. The sensitive parameters of Soil-Leaf-Canopy (SLC) model and a soil ratio factor were retrieved from multi-spectral data based on Look-Up Table (LUT) technology. Then, by combined with a soil ratio factor, all the parameters were input into the SLC model to simulate the surface reflectance spectrum from 400 to 2 400 nm. Taking Landsat Enhanced Thematic Mapper Plus (ETM+) image as reference image, the surface reflectance spectrum was simulated. The simulated reflectance spectrum revealed different feature information of different surface types. To test the performance of this method, the simulated reflectance spectrum was convolved with the Landsat ETM + spectral response curves and Moderate Resolution Imaging Spectrometer (MODIS) spectral response curves to obtain the simulated Landsat ETM+ and MODIS image. Finally, the simulated Landsat ETM+ and MODIS images were compared with the observed Landsat ETM+ and MODIS images. The results generally showed high correction coefficients (Landsat: 0.90-0.99, MODIS: 0.74-0.85) between most simulated bands and observed bands and indicated that the simulated reflectance spectrum was well simulated and reliable.

  5. Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA using Satellite and Surface Observations

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liang, S.; Wang, G.; Yao, Y.; Jiang, B.; Cheng, J.

    2016-12-01

    Solar radiation incident at the Earth's surface (Rs) is an essential component of the total energy exchange between the atmosphere and the surface. Reanalysis data have been widely used, but a comprehensive validation using surface measurements is still highly needed. In this study, we evaluated the Rs estimates from six current representative global reanalyses [NCEP-NCAR, NCEP-DOE; CFSR; ERA-Interim; MERRA; and JRA-55] using surface measurements from different observation networks [GEBA; BSRN; GC-NET; Buoy; and CMA] (674 sites in total) and the Earth's Radiant Energy System (CERES) EBAF product from 2001 to 2009. The global mean biases between the reanalysis Rs and surface measurements at all sites ranged from 11.25 W/m2 to 49.80 W/m2. Comparing with the CERES-EBAF Rs product, all the reanalyses overestimate Rs, except for ERA-Interim, with the biases ranging from -2.98 W/m2 to 21.97 W/m2 over the globe. It was also found that the biases of cloud fraction (CF) in the reanalyses caused the overestimation of Rs. After removing the averaged bias of CERES-EBAF, weighted by the area of the latitudinal band, a global annual mean Rs values of 184.6 W/m2, 180.0 W/m2, and 182.9 W/m2 was obtained over land, ocean, and the globe, respectively.

  6. Surface modification of polypropylene based particle foams

    NASA Astrophysics Data System (ADS)

    Schreier, P.; Trassl, C.; Altstädt, V.

    2014-05-01

    This paper deals with the modification of the surface properties of expanded polypropylene (EPP). EPP is a semi-hard to soft elastic thermoplastic foam. The characteristic surface of EPP shows process-related steam nozzle imprints and gussets. Therefore EPP does not satisfy the quality requirements for visible automotive applications. In order to meet these demands, plastic surfaces are usually enhanced with functional or decorative coatings, e.g. textiles, plastic films or paint. The coating of plastics with low surface energies such as PP often leads to adhesion problems by reason of the missing polar and functional groups. This paper gives an evaluation of activation and pre-treatment methods of EPP, with the aim to identify the most suitable pre-treatment method. For this purpose five typical surface treatment methods - flame treatment, corona, fluorination, atmospheric and low-pressure plasma - were performed on EPP samples. As a comparison criterion the maximum increase in the adhesion force between a polyurethane-based coating and the modified EPP substrate was selected. Moreover the influence of the selected pre-treatment method on the increase in the total surface energy and its polar component was investigated by the drop shape analysis method. The results showed that the contact angle measurement is a suitable method to determine the polar and disperse fractions of the surface tension of EPP. Furthermore, all performed methods increased the adhesion of EPP.

  7. Ice nucleation on nanotextured surfaces: the influence of surface fraction, pillar height and wetting states.

    PubMed

    Metya, Atanu K; Singh, Jayant K; Müller-Plathe, Florian

    2016-09-29

    In this work, we address the nucleation behavior of a supercooled monatomic cylindrical water droplet on nanoscale textured surfaces using molecular dynamics simulations. The ice nucleation rate at 203 K on graphite based textured surfaces with nanoscale roughness is evaluated using the mean fast-passage time method. The simulation results show that the nucleation rate depends on the surface fraction as well as the wetting states. The nucleation rate enhances with increasing surface fraction for water in the Cassie-Baxter state, while contrary behavior is observed for the case of Wenzel state. Based on the spatial histogram distribution of ice formation, we observed two pathways for ice nucleation. Heterogeneous nucleation is observed at a high surface fraction. However, the probability of homogeneous ice nucleation events increases with decreasing surface fraction. We further investigate the role of the nanopillar height in ice nucleation. The nucleation rate is enhanced with increasing nanopillar height. This is attributed to the enhanced contact area with increasing nanopillar height and the shift in nucleation events towards the three-phase contact line associated with the nanotextured surface. The ice-surface work of adhesion for the Wenzel state is found to be 1-2 times higher than that in the Cassie-Baxter state. Furthermore, the work of adhesion of ice in the Wenzel state is found to be linearly dependent on the contour length of the droplet, which is in line with that reported for liquid droplets.

  8. Experimental observations on the links between surface perturbation parameters and shock-induced mass ejection

    NASA Astrophysics Data System (ADS)

    Monfared, S. K.; Oró, D. M.; Grover, M.; Hammerberg, J. E.; LaLone, B. M.; Pack, C. L.; Schauer, M. M.; Stevens, G. D.; Stone, J. B.; Turley, W. D.; Buttler, W. T.

    2014-08-01

    We have assembled together our ejecta measurements from explosively shocked tin acquired over a period of about ten years. The tin was cast at 0.99995 purity, and all of the tin targets or samples were shocked to loading pressures of about 27 GPa, allowing meaningful comparisons. The collected data are markedly consistent, and because the total ejected mass scales linearly with the perturbations amplitudes they can be used to estimate how much total Sn mass will be ejected from explosively shocked Sn, at similar loading pressures, based on the surface perturbation parameters of wavelength and amplitude. Most of the data were collected from periodic isosceles shapes that approximate sinusoidal perturbations. Importantly, however, we find that not all periodic perturbations behave similarly. For example, we observed that sawtooth (right triangular) perturbations eject more mass than an isosceles perturbation of similar depth and wavelength, demonstrating that masses ejected from irregular shaped perturbations cannot be normalized to the cross-sectional areas of the perturbations.

  9. Wide energy electron precipitations associated with chorus waves; Initial observations from Arase and ground-based observations

    NASA Astrophysics Data System (ADS)

    Miyoshi, Y.; Kurita, S.; Saito, S.; Shinohara, I.; Kasahara, Y.; Matsuda, S.; Kasaba, Y.; Yagitani, S.; Kojima, H.; Hikishima, M.; Tsuchiya, F.; Kumamoto, A.; Katoh, Y.; Matsuoka, A.; Higashio, N.; Mitani, T.; Takashima, T.; Kasahara, S.; Yokota, S.; Asamura, K.; Kazama, Y.; Wang, S. Y.; Shiokawa, K.; Oyama, S. I.; Ogawa, Y.; Hosokawa, K.; Kataoka, R.; Kero, A.; Hori, T.; Turunen, E. S.; Shoji, M.; Teramoto, M.; Chang, T. F.

    2017-12-01

    The pulsating aurora is caused by intermittent precipitations of a few - 10s keV electrons, and it is expected that the pitch angle scattering by chorus waves at the magnetosphere is a primary process to cause the pulsating aurora. The Arase satellite that was launched in December, 2016 has obtained comprehensive data sets for plasma/particles and fields/waves. In March and April, 2017, a series of campaign observation focused on the chorus-wave particle interactions from conjugate observations from Arase and ground-based observations, and the pulsating aurora as a manifest of chorus-wave particle ineteractions was the important observation subject. During the campaign observations, good conjugate observations were realized between Arase and ground-based observations in Scandinavia. Associated with the pulsating aurora, the EISCAT VHF incoherent scatter radar at Tromso, Norway observed strong ionization in lower ionosphere. During the period, the Arase satellite observed intense chorus waves near the magnetic equator for a few hours, suggesting that strong pitch angle scattering took place. From the conjugate observations from Arase and ground-based observations, we discuss how chorus waves cause strong precipitation of electrons from plasma sheet and radiation belts.

  10. Space-based pseudo-fixed latitude observation mode based on the characteristics of geosynchronous orbit belt

    NASA Astrophysics Data System (ADS)

    Hu, Yun-peng; Chen, Lei; Huang, Jian-yu

    2017-08-01

    The US Lincoln Laboratory proved that space-based visible (SBV) observation is efficient to observe space objects, especially Geosynchronous Orbit (GEO) objects. After that, SBV observation plays an important role in the space surveillance. In this paper, a novel space-based observation mode is designed to observe all the GEO objects in a relatively short time. A low earth orbit (LEO) satellite, especially a dawn-dusk sun-synchronous orbit satellite, is useful for space-based observation. Thus, the observation mode for GEO objects is based on a dawn-dusk sun-synchronous orbit satellite. It is found that the Pinch Point (PP) regions proposed by the US Lincoln Laboratory are spreading based on the analysis of the evolution principles of GEO objects. As the PP regions becoming more and more widely in the future, many strategies based on it may not be efficient any more. Hence, the key point of the space-based observation strategy design for GEO objects should be emphasized on the whole GEO belt as far as possible. The pseudo-fixed latitude observation mode is proposed in this paper based on the characteristics of GEO belt. Unlike classical space-based observation modes, pseudo-fixed latitude observation mode makes use of the one-dimensional attitude adjustment of the observation satellite. The pseudo-fixed latitude observation mode is more reliable and simple in engineering, compared with the gazing observation mode which needs to adjust the attitude from the two dimensions. It includes two types of attitude adjustment, i.e. daily and continuous attitude adjustment. Therefore, the pseudo-fixed latitude observation mode has two characteristics. In a day, the latitude of the observation region is fixed and the scanning region is about a rectangle, while the latitude of the observation region centre changes each day in a long term based on a daily strategy. The capabilities of a pseudo-fixed latitude observation instrument with a 98° dawn-dusk sun-synchronous orbit are

  11. Laboratory Simulations of the Titan Surface to Elucidate the Huygens Probe GCMS Observations

    NASA Technical Reports Server (NTRS)

    Trainer, M. G.; Niemann, H. B.; Harpold, D. N.; Atreya, S. K.; Owen, T. C.; Kasprzak, W. T.

    2011-01-01

    The Cassini/Huygens mission has vastly increased the information we have available to stndy Satnro's moon Titan. The complete mission has included an array of observational methods including remote sensing techniques, upper atmosphere in-situ saropling, and the descent of the Huygens probe directly through the atmosphere to the surface [1,2]. The instruments on the Huygens probe remain the ouly source of in-situ measurements at the surface of Titan, and work evaluating these measurements to create a pict.rre of the surface environment is ongoing. In particular, the Gas Chromatograph Mass Spectrometer (GCMS) experiment on Huygens found that although there were no heavy hydrocarbons detected in the lower atmosphere, a rich spectrum of mass peaks arose once the probe landed on the surface [3,4], However, to date it has not been possible to extract the identity and abundances of the many minor components of the spectra due to a lack of temperatnre- and instrumentappropriate data for the relevant species. We are performing laboratory stndies designed to elucidate the spectrum collected on Titan's surface, utilizing a cryogenic charober maintained at appropriate temperature and pressure conditions. The experiments will simulate the temperatnre rise experienced by the surface, which led to an enhanced signal of volatiles detected by the Huygens GCMS. The objective of this study is to exaroine the characteristics of various surface analogs as measured by the Huygens GCMS flight spare instrument, which is currently housed in our laboratory at NASA Goddard Space Flight Center (GSFC). This identification cannot be adequately accomplished through theoretical work alone since the thermodynamic properties of many species at these temperatnres (94 K, HASI measurement [5]) are not known.

  12. An investigation of surface albedo variations during the recent sahel drought. [ats 3 observations

    NASA Technical Reports Server (NTRS)

    Norton, C. C.; Mosher, F. R.; Hinton, B.

    1978-01-01

    Applications Technology Satellite 3 green sensor data were used to measure surface reflectance variations in the Sahara/Sahel during the recent drought period; 1967 to 1974. The magnitude of the seasonal reflectance change is shown to be as much as 80% for years of normal precipitation and less than 50% for drought years. Year to year comparisons during both wet and dry seasons reveal the existence of a surface reflectance cycle coincident with the drought intensity. The relationship between the green reflectance and solar albedo is examined and estimated to be about 0.6 times the reflectance change observed by the green channel.

  13. Venus surface peeking through the atmosphere - gaining a global perspective on the surface composition through near infrared observations

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Dyar, M. D.; Maturilli, A.; D'Amore, M.; Ferrari, S.; Mueller, N. T.; Smrekar, S. E.

    2017-12-01

    Venus is the most Earth-like of the terrestrial planets, though very little is known about its surface composition. Thanks to recent advances in laboratory spectroscopy and spectral analysis techniques, this is about to change. Although the atmosphere prohibits observations of the surface with traditional imaging techniques over much of the EM spectral range, five transparent windows between 0.86 µm and 1.18 µm occur in the atmosphere's CO2 spectrum. New high temperature laboratory spectra from the Planetary Spectroscopy Laboratory at DLR show that spectra in these windows are highly diagnostic for surface mineralogy [1]. The Venus Emissivity Mapper (VEM) [2] builds on these recent advances. It is proposed for NASA's Venus Origins Explorer where a radar will provided the needed high-resolution altimetry and ESA's EnVision would provide stereo topography instead. VEM is the first flight instrument specially designed to focus solely on mapping Venus' surface using the windows around 1 µm. Operating in situ from Venus orbit, VEM will provide a global map of composition as well as redox state of the surface, enabling a comprehensive picture of surface-atmosphere interaction on Venus. VEM will return a complex data set containing surface, atmospheric, cloud, and scattering information. Total planned data volume for a typical mission scenario exceeds 1TB. Classical analysis techniques have been successfully used for VIRTIS on Venus Express [3-5] and could be employed with the VEM data. However, application of machine learning approaches to this rich dataset is vastly more efficient, as has already been confirmed with laboratory data. Binary classifiers [6] demonstrate that at current best estimate errors, basalt spectra are confidently discriminated from basaltic andesites, andesites, and rhyolite/granite. Applying the approach of self-organizing maps to the increasingly large set of laboratory measurements allows searching for additional mineralogical indicators

  14. Simulation of the Impact of New Aircraft- and Satellite-based Ocean Surface Wind Measurements on Estimates of Hurricane Intensity

    NASA Technical Reports Server (NTRS)

    Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.

  15. A Theoretical Model of Drumlin Formation Based on Observations at Múlajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Iverson, N. R.; McCracken, R. G.; Zoet, L. K.; Benediktsson, Í. Ö.; Schomacker, A.; Johnson, M. D.; Woodard, J.

    2017-12-01

    The drumlin field at the surge-type glacier, Múlajökull, provides an unusual opportunity to build a model of drumlin formation based on field observations in a modern drumlin-forming environment. These observations indicate that surges deposit till layers that drape the glacier forefield, conform to drumlin surfaces, and are deposited in shear. Observations also indicate that erosion helps create drumlin relief, effective stresses in subglacial till are highest between drumlins, and during quiescent flow, crevasses on the glacier surface overlie drumlins while subglacial channels occupy intervening swales. In the model, we consider gentle undulations on the bed bounded by subglacial channels at low water pressure. During quiescent flow, slip of temperate ice across these undulations and basal water flow toward bounding channels create an effective stress distribution that maximizes till entrainment in ice on the heads and flanks of drumlins. Crevasses amplify this effect but are not necessary for it. During surges, effective stresses are uniformly low, and the bed shears pervasively. Vigorous basal melting during surges releases debris from ice and deposits it on the bed, with deposition augmented by transport in the deforming bed. As surge cycles progress, drumlins migrate downglacier and grow at increasing rates, due to positive feedbacks that depend on drumlin height. Drumlin growth can be accompanied by either net aggradation or erosion of the bed, and drumlin heights and stratigraphy generally correspond with observations. This model highlights that drumlin growth can reflect instabilities other than those of bed shear instability models, which require heuristic till transport assumptions.

  16. SAMOS Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Smith, Shawn; Bourassa, Mark

    2014-05-01

    The development of a new surface flux dataset based on underway meteorological observations from research vessels will be presented. The research vessel data center at the Florida State University routinely acquires, quality controls, and distributes underway surface meteorological and oceanographic observations from over 30 oceanographic vessels. These activities are coordinated by the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative in partnership with the Rolling Deck to Repository (R2R) project. Recently, the SAMOS data center has used these underway observations to produce bulk flux estimates for each vessel along individual cruise tracks. A description of this new flux product, along with the underlying data quality control procedures applied to SAMOS observations, will be provided. Research vessels provide underway observations at high-temporal frequency (1 min. sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Vessels recruited to the SAMOS initiative collect a high concentration of data within the U.S. continental shelf and also frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern, Arctic, South Atlantic, and South Pacific oceans). These observations are atypical for their spatial and temporal sampling, making them very useful for many applications including validation of numerical models and satellite retrievals, as well as local assessments of natural variability. Individual SAMOS observations undergo routine automated quality control and select vessels receive detailed visual data quality inspection. The result is a quality-flagged data set that is ideal for calculating turbulent flux estimates. We will describe the bulk flux algorithms that have been applied to the

  17. Trajectory-Based Takeoff Time Predictions Applied to Tactical Departure Scheduling: Concept Description, System Design, and Initial Observations

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn A.; Capps, Alan

    2011-01-01

    Current aircraft departure release times are based on manual estimates of aircraft takeoff times. Uncertainty in takeoff time estimates may result in missed opportunities to merge into constrained en route streams and lead to lost throughput. However, technology exists to improve takeoff time estimates by using the aircraft surface trajectory predictions that enable air traffic control tower (ATCT) decision support tools. NASA s Precision Departure Release Capability (PDRC) is designed to use automated surface trajectory-based takeoff time estimates to improve en route tactical departure scheduling. This is accomplished by integrating an ATCT decision support tool with an en route tactical departure scheduling decision support tool. The PDRC concept and prototype software have been developed, and an initial test was completed at air traffic control facilities in Dallas/Fort Worth. This paper describes the PDRC operational concept, system design, and initial observations.

  18. Surface acid-base behaviors of Chinese loess.

    PubMed

    Chu, Zhaosheng; Liu, Wenxin; Tang, Hongxiao; Qian, Tianwei; Li, Shushen; Li, Zhentang; Wu, Guibin

    2002-08-15

    Acid-base titration was applied to investigate the surface acid-base properties of a Chinese loess sample at different ionic strengths. The acidimetric supernatant was regarded as the system blank of titration to correct the influence of particle dissolution on the estimation of proton consumption. The titration behavior of the system blank could be described by the hydrolysis of Al3+ and Si(OH)4 in aqueous solution as well as the production of hydroxyaluminosilicates. The formation of Al-Si species on homogeneous surface sites by hydrous aluminum and silicic acid, released from solid substrate during the acidic titration, was considered in the model description of the back-titration procedure. A surface reaction model was suggested as follows: >SOH<-->SO(-)+H+, pK(a)(int)=3.48-3.98;>SOH+Al(3+)+H4SiO4<-->SOAl(OSi(OH)3(+)+2H+, pK(SC)=3.48-4.04. Two simple surface complexation models accounted for the interfacial structure, i.e., the constant capacitance model (CCM) and the diffuse layer model (DLM), and gave a satisfactory description of the experimental data. Considering the effect of ionic strength on the electrostatic profile at the solid-aqueous interface, the DLM was appropriate at the low concentrations (0.01 and 0.005 mol/L) of background electrolyte (NaNO3 in this study), while the CCM was preferable in the case of high ionic strength (0.1 mol/L).

  19. Validating Remotely Sensed Land Surface Evapotranspiration Based on Multi-scale Field Measurements

    NASA Astrophysics Data System (ADS)

    Jia, Z.; Liu, S.; Ziwei, X.; Liang, S.

    2012-12-01

    validation experiments demonstrated that the models yield accurate estimates at flux measurement sites, the question remains whether they are performing well over the broader landscape. Moreover, a large number of RS_ET products have been released in recent years. Thus, we also pay attention to the cross-validation method of RS_ET derived from multi-source models. "The Multi-scale Observation Experiment on Evapotranspiration over Heterogeneous Land Surfaces: Flux Observation Matrix" campaign is carried out at the middle reaches of the Heihe River Basin, China in 2012. Flux measurements from an observation matrix composed of 22 EC and 4 LAS are acquired to investigate the cross-validation of multi-source models over different landscapes. In this case, six remote sensing models, including the empirical statistical model, the one-source and two-source models, the Penman-Monteith equation based model, the Priestley-Taylor equation based model, and the complementary relationship based model, are used to perform an intercomparison. All the results from the two cases of RS_ET validation showed that the proposed validation methods are reasonable and feasible.

  20. Phase-field modeling of liquids splitting between separating surfaces and its application to high-resolution roll-based printing technologies

    NASA Astrophysics Data System (ADS)

    Hizir, F. E.; Hardt, D. E.

    2017-05-01

    An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.