Bayesian estimates of the incidence of rare cancers in Europe.
Botta, Laura; Capocaccia, Riccardo; Trama, Annalisa; Herrmann, Christian; Salmerón, Diego; De Angelis, Roberta; Mallone, Sandra; Bidoli, Ettore; Marcos-Gragera, Rafael; Dudek-Godeau, Dorota; Gatta, Gemma; Cleries, Ramon
2018-04-21
The RARECAREnet project has updated the estimates of the burden of the 198 rare cancers in each European country. Suspecting that scant data could affect the reliability of statistical analysis, we employed a Bayesian approach to estimate the incidence of these cancers. We analyzed about 2,000,000 rare cancers diagnosed in 2000-2007 provided by 83 population-based cancer registries from 27 European countries. We considered European incidence rates (IRs), calculated over all the data available in RARECAREnet, as a valid a priori to merge with country-specific observed data. Therefore we provided (1) Bayesian estimates of IRs and the yearly numbers of cases of rare cancers in each country; (2) the expected time (T) in years needed to observe one new case; and (3) practical criteria to decide when to use the Bayesian approach. Bayesian and classical estimates did not differ much; substantial differences (>10%) ranged from 77 rare cancers in Iceland to 14 in England. The smaller the population the larger the number of rare cancers needing a Bayesian approach. Bayesian estimates were useful for cancers with fewer than 150 observed cases in a country during the study period; this occurred mostly when the population of the country is small. For the first time the Bayesian estimates of IRs and the yearly expected numbers of cases for each rare cancer in each individual European country were calculated. Moreover, the indicator T is useful to convey incidence estimates for exceptionally rare cancers and in small countries; it far exceeds the professional lifespan of a medical doctor. Copyright © 2018 Elsevier Ltd. All rights reserved.
Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan
NASA Astrophysics Data System (ADS)
Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung
2010-08-01
Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.
Flood quantile estimation at ungauged sites by Bayesian networks
NASA Astrophysics Data System (ADS)
Mediero, L.; Santillán, D.; Garrote, L.
2012-04-01
Estimating flood quantiles at a site for which no observed measurements are available is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. The most common technique used is the multiple regression analysis, which relates physical and climatic basin characteristic to flood quantiles. Regression equations are fitted from flood frequency data and basin characteristics at gauged sites. Regression equations are a rigid technique that assumes linear relationships between variables and cannot take the measurement errors into account. In addition, the prediction intervals are estimated in a very simplistic way from the variance of the residuals in the estimated model. Bayesian networks are a probabilistic computational structure taken from the field of Artificial Intelligence, which have been widely and successfully applied to many scientific fields like medicine and informatics, but application to the field of hydrology is recent. Bayesian networks infer the joint probability distribution of several related variables from observations through nodes, which represent random variables, and links, which represent causal dependencies between them. A Bayesian network is more flexible than regression equations, as they capture non-linear relationships between variables. In addition, the probabilistic nature of Bayesian networks allows taking the different sources of estimation uncertainty into account, as they give a probability distribution as result. A homogeneous region in the Tagus Basin was selected as case study. A regression equation was fitted taking the basin area, the annual maximum 24-hour rainfall for a given recurrence interval and the mean height as explanatory variables. Flood quantiles at ungauged sites were estimated by Bayesian networks. Bayesian networks need to be learnt from a huge enough data set. As observational data are reduced, a stochastic generator of synthetic data was developed. Synthetic basin characteristics were randomised, keeping the statistical properties of observed physical and climatic variables in the homogeneous region. The synthetic flood quantiles were stochastically generated taking the regression equation as basis. The learnt Bayesian network was validated by the reliability diagram, the Brier Score and the ROC diagram, which are common measures used in the validation of probabilistic forecasts. Summarising, the flood quantile estimations through Bayesian networks supply information about the prediction uncertainty as a probability distribution function of discharges is given as result. Therefore, the Bayesian network model has application as a decision support for water resources and planning management.
NASA Astrophysics Data System (ADS)
Cheung, Shao-Yong; Lee, Chieh-Han; Yu, Hwa-Lung
2017-04-01
Due to the limited hydrogeological observation data and high levels of uncertainty within, parameter estimation of the groundwater model has been an important issue. There are many methods of parameter estimation, for example, Kalman filter provides a real-time calibration of parameters through measurement of groundwater monitoring wells, related methods such as Extended Kalman Filter and Ensemble Kalman Filter are widely applied in groundwater research. However, Kalman Filter method is limited to linearity. This study propose a novel method, Bayesian Maximum Entropy Filtering, which provides a method that can considers the uncertainty of data in parameter estimation. With this two methods, we can estimate parameter by given hard data (certain) and soft data (uncertain) in the same time. In this study, we use Python and QGIS in groundwater model (MODFLOW) and development of Extended Kalman Filter and Bayesian Maximum Entropy Filtering in Python in parameter estimation. This method may provide a conventional filtering method and also consider the uncertainty of data. This study was conducted through numerical model experiment to explore, combine Bayesian maximum entropy filter and a hypothesis for the architecture of MODFLOW groundwater model numerical estimation. Through the virtual observation wells to simulate and observe the groundwater model periodically. The result showed that considering the uncertainty of data, the Bayesian maximum entropy filter will provide an ideal result of real-time parameters estimation.
Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon
2017-12-01
Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Echeverria, Alex; Silva, Jorge F.; Mendez, Rene A.; Orchard, Marcos
2016-10-01
Context. The best precision that can be achieved to estimate the location of a stellar-like object is a topic of permanent interest in the astrometric community. Aims: We analyze bounds for the best position estimation of a stellar-like object on a CCD detector array in a Bayesian setting where the position is unknown, but where we have access to a prior distribution. In contrast to a parametric setting where we estimate a parameter from observations, the Bayesian approach estimates a random object (I.e., the position is a random variable) from observations that are statistically dependent on the position. Methods: We characterize the Bayesian Cramér-Rao (CR) that bounds the minimum mean square error (MMSE) of the best estimator of the position of a point source on a linear CCD-like detector, as a function of the properties of detector, the source, and the background. Results: We quantify and analyze the increase in astrometric performance from the use of a prior distribution of the object position, which is not available in the classical parametric setting. This gain is shown to be significant for various observational regimes, in particular in the case of faint objects or when the observations are taken under poor conditions. Furthermore, we present numerical evidence that the MMSE estimator of this problem tightly achieves the Bayesian CR bound. This is a remarkable result, demonstrating that all the performance gains presented in our analysis can be achieved with the MMSE estimator. Conclusions: The Bayesian CR bound can be used as a benchmark indicator of the expected maximum positional precision of a set of astrometric measurements in which prior information can be incorporated. This bound can be achieved through the conditional mean estimator, in contrast to the parametric case where no unbiased estimator precisely reaches the CR bound.
Kärkkäinen, Hanni P; Sillanpää, Mikko J
2013-09-04
Because of the increased availability of genome-wide sets of molecular markers along with reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for parameter estimation under these models. We demonstrate our method with simulated and real data. Our example analyses suggest that the use of the extra information present in an ordered categorical or censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data, while with a binary or an ordinal data the superiority of the threshold model could not be confirmed.
Kärkkäinen, Hanni P.; Sillanpää, Mikko J.
2013-01-01
Because of the increased availability of genome-wide sets of molecular markers along with reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for parameter estimation under these models. We demonstrate our method with simulated and real data. Our example analyses suggest that the use of the extra information present in an ordered categorical or censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data, while with a binary or an ordinal data the superiority of the threshold model could not be confirmed. PMID:23821618
Bayesian characterization of uncertainty in species interaction strengths.
Wolf, Christopher; Novak, Mark; Gitelman, Alix I
2017-06-01
Considerable effort has been devoted to the estimation of species interaction strengths. This effort has focused primarily on statistical significance testing and obtaining point estimates of parameters that contribute to interaction strength magnitudes, leaving the characterization of uncertainty associated with those estimates unconsidered. We consider a means of characterizing the uncertainty of a generalist predator's interaction strengths by formulating an observational method for estimating a predator's prey-specific per capita attack rates as a Bayesian statistical model. This formulation permits the explicit incorporation of multiple sources of uncertainty. A key insight is the informative nature of several so-called non-informative priors that have been used in modeling the sparse data typical of predator feeding surveys. We introduce to ecology a new neutral prior and provide evidence for its superior performance. We use a case study to consider the attack rates in a New Zealand intertidal whelk predator, and we illustrate not only that Bayesian point estimates can be made to correspond with those obtained by frequentist approaches, but also that estimation uncertainty as described by 95% intervals is more useful and biologically realistic using the Bayesian method. In particular, unlike in bootstrap confidence intervals, the lower bounds of the Bayesian posterior intervals for attack rates do not include zero when a predator-prey interaction is in fact observed. We conclude that the Bayesian framework provides a straightforward, probabilistic characterization of interaction strength uncertainty, enabling future considerations of both the deterministic and stochastic drivers of interaction strength and their impact on food webs.
Gu, Hairong; Kim, Woojae; Hou, Fang; Lesmes, Luis Andres; Pitt, Mark A; Lu, Zhong-Lin; Myung, Jay I
2016-01-01
Measurement efficiency is of concern when a large number of observations are required to obtain reliable estimates for parametric models of vision. The standard entropy-based Bayesian adaptive testing procedures addressed the issue by selecting the most informative stimulus in sequential experimental trials. Noninformative, diffuse priors were commonly used in those tests. Hierarchical adaptive design optimization (HADO; Kim, Pitt, Lu, Steyvers, & Myung, 2014) further improves the efficiency of the standard Bayesian adaptive testing procedures by constructing an informative prior using data from observers who have already participated in the experiment. The present study represents an empirical validation of HADO in estimating the human contrast sensitivity function. The results show that HADO significantly improves the accuracy and precision of parameter estimates, and therefore requires many fewer observations to obtain reliable inference about contrast sensitivity, compared to the method of quick contrast sensitivity function (Lesmes, Lu, Baek, & Albright, 2010), which uses the standard Bayesian procedure. The improvement with HADO was maintained even when the prior was constructed from heterogeneous populations or a relatively small number of observers. These results of this case study support the conclusion that HADO can be used in Bayesian adaptive testing by replacing noninformative, diffuse priors with statistically justified informative priors without introducing unwanted bias.
Gu, Hairong; Kim, Woojae; Hou, Fang; Lesmes, Luis Andres; Pitt, Mark A.; Lu, Zhong-Lin; Myung, Jay I.
2016-01-01
Measurement efficiency is of concern when a large number of observations are required to obtain reliable estimates for parametric models of vision. The standard entropy-based Bayesian adaptive testing procedures addressed the issue by selecting the most informative stimulus in sequential experimental trials. Noninformative, diffuse priors were commonly used in those tests. Hierarchical adaptive design optimization (HADO; Kim, Pitt, Lu, Steyvers, & Myung, 2014) further improves the efficiency of the standard Bayesian adaptive testing procedures by constructing an informative prior using data from observers who have already participated in the experiment. The present study represents an empirical validation of HADO in estimating the human contrast sensitivity function. The results show that HADO significantly improves the accuracy and precision of parameter estimates, and therefore requires many fewer observations to obtain reliable inference about contrast sensitivity, compared to the method of quick contrast sensitivity function (Lesmes, Lu, Baek, & Albright, 2010), which uses the standard Bayesian procedure. The improvement with HADO was maintained even when the prior was constructed from heterogeneous populations or a relatively small number of observers. These results of this case study support the conclusion that HADO can be used in Bayesian adaptive testing by replacing noninformative, diffuse priors with statistically justified informative priors without introducing unwanted bias. PMID:27105061
Bayesian parameter estimation for chiral effective field theory
NASA Astrophysics Data System (ADS)
Wesolowski, Sarah; Furnstahl, Richard; Phillips, Daniel; Klco, Natalie
2016-09-01
The low-energy constants (LECs) of a chiral effective field theory (EFT) interaction in the two-body sector are fit to observable data using a Bayesian parameter estimation framework. By using Bayesian prior probability distributions (pdfs), we quantify relevant physical expectations such as LEC naturalness and include them in the parameter estimation procedure. The final result is a posterior pdf for the LECs, which can be used to propagate uncertainty resulting from the fit to data to the final observable predictions. The posterior pdf also allows an empirical test of operator redundancy and other features of the potential. We compare results of our framework with other fitting procedures, interpreting the underlying assumptions in Bayesian probabilistic language. We also compare results from fitting all partial waves of the interaction simultaneously to cross section data compared to fitting to extracted phase shifts, appropriately accounting for correlations in the data. Supported in part by the NSF and DOE.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.
Tian, Ting; McLachlan, Geoffrey J.; Dieters, Mark J.; Basford, Kaye E.
2015-01-01
It is a common occurrence in plant breeding programs to observe missing values in three-way three-mode multi-environment trial (MET) data. We proposed modifications of models for estimating missing observations for these data arrays, and developed a novel approach in terms of hierarchical clustering. Multiple imputation (MI) was used in four ways, multiple agglomerative hierarchical clustering, normal distribution model, normal regression model, and predictive mean match. The later three models used both Bayesian analysis and non-Bayesian analysis, while the first approach used a clustering procedure with randomly selected attributes and assigned real values from the nearest neighbour to the one with missing observations. Different proportions of data entries in six complete datasets were randomly selected to be missing and the MI methods were compared based on the efficiency and accuracy of estimating those values. The results indicated that the models using Bayesian analysis had slightly higher accuracy of estimation performance than those using non-Bayesian analysis but they were more time-consuming. However, the novel approach of multiple agglomerative hierarchical clustering demonstrated the overall best performances. PMID:26689369
Tian, Ting; McLachlan, Geoffrey J; Dieters, Mark J; Basford, Kaye E
2015-01-01
It is a common occurrence in plant breeding programs to observe missing values in three-way three-mode multi-environment trial (MET) data. We proposed modifications of models for estimating missing observations for these data arrays, and developed a novel approach in terms of hierarchical clustering. Multiple imputation (MI) was used in four ways, multiple agglomerative hierarchical clustering, normal distribution model, normal regression model, and predictive mean match. The later three models used both Bayesian analysis and non-Bayesian analysis, while the first approach used a clustering procedure with randomly selected attributes and assigned real values from the nearest neighbour to the one with missing observations. Different proportions of data entries in six complete datasets were randomly selected to be missing and the MI methods were compared based on the efficiency and accuracy of estimating those values. The results indicated that the models using Bayesian analysis had slightly higher accuracy of estimation performance than those using non-Bayesian analysis but they were more time-consuming. However, the novel approach of multiple agglomerative hierarchical clustering demonstrated the overall best performances.
Asteroid orbital error analysis: Theory and application
NASA Technical Reports Server (NTRS)
Muinonen, K.; Bowell, Edward
1992-01-01
We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).
Estimating the hatchery fraction of a natural population: a Bayesian approach
Barber, Jarrett J.; Gerow, Kenneth G.; Connolly, Patrick J.; Singh, Sarabdeep
2011-01-01
There is strong and growing interest in estimating the proportion of hatchery fish that are in a natural population (the hatchery fraction). In a sample of fish from the relevant population, some are observed to be marked, indicating their origin as hatchery fish. The observed proportion of marked fish is usually less than the actual hatchery fraction, since the observed proportion is determined by the proportion originally marked, differential survival (usually lower) of marked fish relative to unmarked hatchery fish, and rates of mark retention and detection. Bayesian methods can work well in a setting such as this, in which empirical data are limited but for which there may be considerable expert judgment regarding these values. We explored a Bayesian estimation of the hatchery fraction using Monte Carlo–Markov chain methods. Based on our findings, we created an interactive Excel tool to implement the algorithm, which we have made available for free.
Identification of transmissivity fields using a Bayesian strategy and perturbative approach
NASA Astrophysics Data System (ADS)
Zanini, Andrea; Tanda, Maria Giovanna; Woodbury, Allan D.
2017-10-01
The paper deals with the crucial problem of the groundwater parameter estimation that is the basis for efficient modeling and reclamation activities. A hierarchical Bayesian approach is developed: it uses the Akaike's Bayesian Information Criteria in order to estimate the hyperparameters (related to the covariance model chosen) and to quantify the unknown noise variance. The transmissivity identification proceeds in two steps: the first, called empirical Bayesian interpolation, uses Y* (Y = lnT) observations to interpolate Y values on a specified grid; the second, called empirical Bayesian update, improve the previous Y estimate through the addition of hydraulic head observations. The relationship between the head and the lnT has been linearized through a perturbative solution of the flow equation. In order to test the proposed approach, synthetic aquifers from literature have been considered. The aquifers in question contain a variety of boundary conditions (both Dirichelet and Neuman type) and scales of heterogeneities (σY2 = 1.0 and σY2 = 5.3). The estimated transmissivity fields were compared to the true one. The joint use of Y* and head measurements improves the estimation of Y considering both degrees of heterogeneity. Even if the variance of the strong transmissivity field can be considered high for the application of the perturbative approach, the results show the same order of approximation of the non-linear methods proposed in literature. The procedure allows to compute the posterior probability distribution of the target quantities and to quantify the uncertainty in the model prediction. Bayesian updating has advantages related both to the Monte-Carlo (MC) and non-MC approaches. In fact, as the MC methods, Bayesian updating allows computing the direct posterior probability distribution of the target quantities and as non-MC methods it has computational times in the order of seconds.
Gu, Weidong; Medalla, Felicita; Hoekstra, Robert M
2018-02-01
The National Antimicrobial Resistance Monitoring System (NARMS) at the Centers for Disease Control and Prevention tracks resistance among Salmonella infections. The annual number of Salmonella isolates of a particular serotype from states may be small, making direct estimation of resistance proportions unreliable. We developed a Bayesian hierarchical model to improve estimation by borrowing strength from relevant sampling units. We illustrate the models with different specifications of spatio-temporal interaction using 2004-2013 NARMS data for ceftriaxone-resistant Salmonella serotype Heidelberg. Our results show that Bayesian estimates of resistance proportions were smoother than observed values, and the difference between predicted and observed proportions was inversely related to the number of submitted isolates. The model with interaction allowed for tracking of annual changes in resistance proportions at the state level. We demonstrated that Bayesian hierarchical models provide a useful tool to examine spatio-temporal patterns of small sample size such as those found in NARMS. Published by Elsevier Ltd.
Survival Bayesian Estimation of Exponential-Gamma Under Linex Loss Function
NASA Astrophysics Data System (ADS)
Rizki, S. W.; Mara, M. N.; Sulistianingsih, E.
2017-06-01
This paper elaborates a research of the cancer patients after receiving a treatment in cencored data using Bayesian estimation under Linex Loss function for Survival Model which is assumed as an exponential distribution. By giving Gamma distribution as prior and likelihood function produces a gamma distribution as posterior distribution. The posterior distribution is used to find estimatior {\\hat{λ }}BL by using Linex approximation. After getting {\\hat{λ }}BL, the estimators of hazard function {\\hat{h}}BL and survival function {\\hat{S}}BL can be found. Finally, we compare the result of Maximum Likelihood Estimation (MLE) and Linex approximation to find the best method for this observation by finding smaller MSE. The result shows that MSE of hazard and survival under MLE are 2.91728E-07 and 0.000309004 and by using Bayesian Linex worths 2.8727E-07 and 0.000304131, respectively. It concludes that the Bayesian Linex is better than MLE.
Heudtlass, Peter; Guha-Sapir, Debarati; Speybroeck, Niko
2018-05-31
The crude death rate (CDR) is one of the defining indicators of humanitarian emergencies. When data from vital registration systems are not available, it is common practice to estimate the CDR from household surveys with cluster-sampling design. However, sample sizes are often too small to compare mortality estimates to emergency thresholds, at least in a frequentist framework. Several authors have proposed Bayesian methods for health surveys in humanitarian crises. Here, we develop an approach specifically for mortality data and cluster-sampling surveys. We describe a Bayesian hierarchical Poisson-Gamma mixture model with generic (weakly informative) priors that could be used as default in absence of any specific prior knowledge, and compare Bayesian and frequentist CDR estimates using five different mortality datasets. We provide an interpretation of the Bayesian estimates in the context of an emergency threshold and demonstrate how to interpret parameters at the cluster level and ways in which informative priors can be introduced. With the same set of weakly informative priors, Bayesian CDR estimates are equivalent to frequentist estimates, for all practical purposes. The probability that the CDR surpasses the emergency threshold can be derived directly from the posterior of the mean of the mixing distribution. All observation in the datasets contribute to the estimation of cluster-level estimates, through the hierarchical structure of the model. In a context of sparse data, Bayesian mortality assessments have advantages over frequentist ones already when using only weakly informative priors. More informative priors offer a formal and transparent way of combining new data with existing data and expert knowledge and can help to improve decision-making in humanitarian crises by complementing frequentist estimates.
Bayesian statistics: estimating plant demographic parameters
James S. Clark; Michael Lavine
2001-01-01
There are times when external information should be brought tobear on an ecological analysis. experiments are never conducted in a knowledge-free context. The inference we draw from an observation may depend on everything else we know about the process. Bayesian analysis is a method that brings outside evidence into the analysis of experimental and observational data...
A Bayesian Approach to More Stable Estimates of Group-Level Effects in Contextual Studies.
Zitzmann, Steffen; Lüdtke, Oliver; Robitzsch, Alexander
2015-01-01
Multilevel analyses are often used to estimate the effects of group-level constructs. However, when using aggregated individual data (e.g., student ratings) to assess a group-level construct (e.g., classroom climate), the observed group mean might not provide a reliable measure of the unobserved latent group mean. In the present article, we propose a Bayesian approach that can be used to estimate a multilevel latent covariate model, which corrects for the unreliable assessment of the latent group mean when estimating the group-level effect. A simulation study was conducted to evaluate the choice of different priors for the group-level variance of the predictor variable and to compare the Bayesian approach with the maximum likelihood approach implemented in the software Mplus. Results showed that, under problematic conditions (i.e., small number of groups, predictor variable with a small ICC), the Bayesian approach produced more accurate estimates of the group-level effect than the maximum likelihood approach did.
Zaikin, Alexey; Míguez, Joaquín
2017-01-01
We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087
Bayesian Retrieval of Complete Posterior PDFs of Oceanic Rain Rate From Microwave Observations
NASA Technical Reports Server (NTRS)
Chiu, J. Christine; Petty, Grant W.
2005-01-01
This paper presents a new Bayesian algorithm for retrieving surface rain rate from Tropical Rainfall Measurements Mission (TRMM) Microwave Imager (TMI) over the ocean, along with validations against estimates from the TRMM Precipitation Radar (PR). The Bayesian approach offers a rigorous basis for optimally combining multichannel observations with prior knowledge. While other rain rate algorithms have been published that are based at least partly on Bayesian reasoning, this is believed to be the first self-contained algorithm that fully exploits Bayes Theorem to yield not just a single rain rate, but rather a continuous posterior probability distribution of rain rate. To advance our understanding of theoretical benefits of the Bayesian approach, we have conducted sensitivity analyses based on two synthetic datasets for which the true conditional and prior distribution are known. Results demonstrate that even when the prior and conditional likelihoods are specified perfectly, biased retrievals may occur at high rain rates. This bias is not the result of a defect of the Bayesian formalism but rather represents the expected outcome when the physical constraint imposed by the radiometric observations is weak, due to saturation effects. It is also suggested that the choice of the estimators and the prior information are both crucial to the retrieval. In addition, the performance of our Bayesian algorithm is found to be comparable to that of other benchmark algorithms in real-world applications, while having the additional advantage of providing a complete continuous posterior probability distribution of surface rain rate.
Bayesian Estimation and Inference Using Stochastic Electronics
Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan; van Schaik, André
2016-01-01
In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream. PMID:27047326
Bayesian Estimation and Inference Using Stochastic Electronics.
Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan; van Schaik, André
2016-01-01
In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream.
ERIC Educational Resources Information Center
Griffiths, Thomas L.; Tenenbaum, Joshua B.
2011-01-01
Predicting the future is a basic problem that people have to solve every day and a component of planning, decision making, memory, and causal reasoning. In this article, we present 5 experiments testing a Bayesian model of predicting the duration or extent of phenomena from their current state. This Bayesian model indicates how people should…
Bayesian Estimates of Autocorrelations in Single-Case Designs
ERIC Educational Resources Information Center
Shadish, William R.; Rindskopf, David M.; Hedges, Larry V.; Sullivan, Kristynn J.
2012-01-01
Researchers in the single-case design tradition have debated the size and importance of the observed autocorrelations in those designs. All of the past estimates of the autocorrelation in that literature have taken the observed autocorrelation estimates as the data to be used in the debate. However, estimates of the autocorrelation are subject to…
Bayesian model selection: Evidence estimation based on DREAM simulation and bridge sampling
NASA Astrophysics Data System (ADS)
Volpi, Elena; Schoups, Gerrit; Firmani, Giovanni; Vrugt, Jasper A.
2017-04-01
Bayesian inference has found widespread application in Earth and Environmental Systems Modeling, providing an effective tool for prediction, data assimilation, parameter estimation, uncertainty analysis and hypothesis testing. Under multiple competing hypotheses, the Bayesian approach also provides an attractive alternative to traditional information criteria (e.g. AIC, BIC) for model selection. The key variable for Bayesian model selection is the evidence (or marginal likelihood) that is the normalizing constant in the denominator of Bayes theorem; while it is fundamental for model selection, the evidence is not required for Bayesian inference. It is computed for each hypothesis (model) by averaging the likelihood function over the prior parameter distribution, rather than maximizing it as by information criteria; the larger a model evidence the more support it receives among a collection of hypothesis as the simulated values assign relatively high probability density to the observed data. Hence, the evidence naturally acts as an Occam's razor, preferring simpler and more constrained models against the selection of over-fitted ones by information criteria that incorporate only the likelihood maximum. Since it is not particularly easy to estimate the evidence in practice, Bayesian model selection via the marginal likelihood has not yet found mainstream use. We illustrate here the properties of a new estimator of the Bayesian model evidence, which provides robust and unbiased estimates of the marginal likelihood; the method is coined Gaussian Mixture Importance Sampling (GMIS). GMIS uses multidimensional numerical integration of the posterior parameter distribution via bridge sampling (a generalization of importance sampling) of a mixture distribution fitted to samples of the posterior distribution derived from the DREAM algorithm (Vrugt et al., 2008; 2009). Some illustrative examples are presented to show the robustness and superiority of the GMIS estimator with respect to other commonly used approaches in the literature.
NASA Astrophysics Data System (ADS)
Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn
2013-04-01
SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.
Evaluating Variability and Uncertainty of Geological Strength Index at a Specific Site
NASA Astrophysics Data System (ADS)
Wang, Yu; Aladejare, Adeyemi Emman
2016-09-01
Geological Strength Index (GSI) is an important parameter for estimating rock mass properties. GSI can be estimated from quantitative GSI chart, as an alternative to the direct observational method which requires vast geological experience of rock. GSI chart was developed from past observations and engineering experience, with either empiricism or some theoretical simplifications. The GSI chart thereby contains model uncertainty which arises from its development. The presence of such model uncertainty affects the GSI estimated from GSI chart at a specific site; it is, therefore, imperative to quantify and incorporate the model uncertainty during GSI estimation from the GSI chart. A major challenge for quantifying the GSI chart model uncertainty is a lack of the original datasets that have been used to develop the GSI chart, since the GSI chart was developed from past experience without referring to specific datasets. This paper intends to tackle this problem by developing a Bayesian approach for quantifying the model uncertainty in GSI chart when using it to estimate GSI at a specific site. The model uncertainty in the GSI chart and the inherent spatial variability in GSI are modeled explicitly in the Bayesian approach. The Bayesian approach generates equivalent samples of GSI from the integrated knowledge of GSI chart, prior knowledge and observation data available from site investigation. Equations are derived for the Bayesian approach, and the proposed approach is illustrated using data from a drill and blast tunnel project. The proposed approach effectively tackles the problem of how to quantify the model uncertainty that arises from using GSI chart for characterization of site-specific GSI in a transparent manner.
BAYESIAN ESTIMATION OF THERMONUCLEAR REACTION RATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliadis, C.; Anderson, K. S.; Coc, A.
The problem of estimating non-resonant astrophysical S -factors and thermonuclear reaction rates, based on measured nuclear cross sections, is of major interest for nuclear energy generation, neutrino physics, and element synthesis. Many different methods have been applied to this problem in the past, almost all of them based on traditional statistics. Bayesian methods, on the other hand, are now in widespread use in the physical sciences. In astronomy, for example, Bayesian statistics is applied to the observation of extrasolar planets, gravitational waves, and Type Ia supernovae. However, nuclear physics, in particular, has been slow to adopt Bayesian methods. We presentmore » astrophysical S -factors and reaction rates based on Bayesian statistics. We develop a framework that incorporates robust parameter estimation, systematic effects, and non-Gaussian uncertainties in a consistent manner. The method is applied to the reactions d(p, γ ){sup 3}He, {sup 3}He({sup 3}He,2p){sup 4}He, and {sup 3}He( α , γ ){sup 7}Be, important for deuterium burning, solar neutrinos, and Big Bang nucleosynthesis.« less
Hierarchical Bayesian sparse image reconstruction with application to MRFM.
Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves
2009-09-01
This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.
A Bayesian Approach for Summarizing and Modeling Time-Series Exposure Data with Left Censoring.
Houseman, E Andres; Virji, M Abbas
2017-08-01
Direct reading instruments are valuable tools for measuring exposure as they provide real-time measurements for rapid decision making. However, their use is limited to general survey applications in part due to issues related to their performance. Moreover, statistical analysis of real-time data is complicated by autocorrelation among successive measurements, non-stationary time series, and the presence of left-censoring due to limit-of-detection (LOD). A Bayesian framework is proposed that accounts for non-stationary autocorrelation and LOD issues in exposure time-series data in order to model workplace factors that affect exposure and estimate summary statistics for tasks or other covariates of interest. A spline-based approach is used to model non-stationary autocorrelation with relatively few assumptions about autocorrelation structure. Left-censoring is addressed by integrating over the left tail of the distribution. The model is fit using Markov-Chain Monte Carlo within a Bayesian paradigm. The method can flexibly account for hierarchical relationships, random effects and fixed effects of covariates. The method is implemented using the rjags package in R, and is illustrated by applying it to real-time exposure data. Estimates for task means and covariates from the Bayesian model are compared to those from conventional frequentist models including linear regression, mixed-effects, and time-series models with different autocorrelation structures. Simulations studies are also conducted to evaluate method performance. Simulation studies with percent of measurements below the LOD ranging from 0 to 50% showed lowest root mean squared errors for task means and the least biased standard deviations from the Bayesian model compared to the frequentist models across all levels of LOD. In the application, task means from the Bayesian model were similar to means from the frequentist models, while the standard deviations were different. Parameter estimates for covariates were significant in some frequentist models, but in the Bayesian model their credible intervals contained zero; such discrepancies were observed in multiple datasets. Variance components from the Bayesian model reflected substantial autocorrelation, consistent with the frequentist models, except for the auto-regressive moving average model. Plots of means from the Bayesian model showed good fit to the observed data. The proposed Bayesian model provides an approach for modeling non-stationary autocorrelation in a hierarchical modeling framework to estimate task means, standard deviations, quantiles, and parameter estimates for covariates that are less biased and have better performance characteristics than some of the contemporary methods. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.
USDA-ARS?s Scientific Manuscript database
Data assimilation and regression are two commonly used methods for predicting agricultural yield from remote sensing observations. Data assimilation is a generative approach because it requires explicit approximations of the Bayesian prior and likelihood to compute the probability density function...
NASA Astrophysics Data System (ADS)
Eadie, Gwendolyn M.; Springford, Aaron; Harris, William E.
2017-02-01
We present a hierarchical Bayesian method for estimating the total mass and mass profile of the Milky Way Galaxy. The new hierarchical Bayesian approach further improves the framework presented by Eadie et al. and Eadie and Harris and builds upon the preliminary reports by Eadie et al. The method uses a distribution function f({ E },L) to model the Galaxy and kinematic data from satellite objects, such as globular clusters (GCs), to trace the Galaxy’s gravitational potential. A major advantage of the method is that it not only includes complete and incomplete data simultaneously in the analysis, but also incorporates measurement uncertainties in a coherent and meaningful way. We first test the hierarchical Bayesian framework, which includes measurement uncertainties, using the same data and power-law model assumed in Eadie and Harris and find the results are similar but more strongly constrained. Next, we take advantage of the new statistical framework and incorporate all possible GC data, finding a cumulative mass profile with Bayesian credible regions. This profile implies a mass within 125 kpc of 4.8× {10}11{M}⊙ with a 95% Bayesian credible region of (4.0{--}5.8)× {10}11{M}⊙ . Our results also provide estimates of the true specific energies of all the GCs. By comparing these estimated energies to the measured energies of GCs with complete velocity measurements, we observe that (the few) remote tracers with complete measurements may play a large role in determining a total mass estimate of the Galaxy. Thus, our study stresses the need for more remote tracers with complete velocity measurements.
NASA Astrophysics Data System (ADS)
Umehara, Hiroaki; Okada, Masato; Naruse, Yasushi
2018-03-01
The estimation of angular time series data is a widespread issue relating to various situations involving rotational motion and moving objects. There are two kinds of problem settings: the estimation of wrapped angles, which are principal values in a circular coordinate system (e.g., the direction of an object), and the estimation of unwrapped angles in an unbounded coordinate system such as for the positioning and tracking of moving objects measured by the signal-wave phase. Wrapped angles have been estimated in previous studies by sequential Bayesian filtering; however, the hyperparameters that are to be solved and that control the properties of the estimation model were given a priori. The present study establishes a procedure of hyperparameter estimation from the observation data of angles only, using the framework of Bayesian inference completely as the maximum likelihood estimation. Moreover, the filter model is modified to estimate the unwrapped angles. It is proved that without noise our model reduces to the existing algorithm of Itoh's unwrapping transform. It is numerically confirmed that our model is an extension of unwrapping estimation from Itoh's unwrapping transform to the case with noise.
Bayesian structural equation modeling in sport and exercise psychology.
Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus
2015-08-01
Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.
Bockman, Alexander; Fackler, Cameron; Xiang, Ning
2015-04-01
Acoustic performance for an interior requires an accurate description of the boundary materials' surface acoustic impedance. Analytical methods may be applied to a small class of test geometries, but inverse numerical methods provide greater flexibility. The parameter estimation problem requires minimizing prediction vice observed acoustic field pressure. The Bayesian-network sampling approach presented here mitigates other methods' susceptibility to noise inherent to the experiment, model, and numerics. A geometry agnostic method is developed here and its parameter estimation performance is demonstrated for an air-backed micro-perforated panel in an impedance tube. Good agreement is found with predictions from the ISO standard two-microphone, impedance-tube method, and a theoretical model for the material. Data by-products exclusive to a Bayesian approach are analyzed to assess sensitivity of the method to nuisance parameters.
Robust Learning of High-dimensional Biological Networks with Bayesian Networks
NASA Astrophysics Data System (ADS)
Nägele, Andreas; Dejori, Mathäus; Stetter, Martin
Structure learning of Bayesian networks applied to gene expression data has become a potentially useful method to estimate interactions between genes. However, the NP-hardness of Bayesian network structure learning renders the reconstruction of the full genetic network with thousands of genes unfeasible. Consequently, the maximal network size is usually restricted dramatically to a small set of genes (corresponding with variables in the Bayesian network). Although this feature reduction step makes structure learning computationally tractable, on the downside, the learned structure might be adversely affected due to the introduction of missing genes. Additionally, gene expression data are usually very sparse with respect to the number of samples, i.e., the number of genes is much greater than the number of different observations. Given these problems, learning robust network features from microarray data is a challenging task. This chapter presents several approaches tackling the robustness issue in order to obtain a more reliable estimation of learned network features.
A Bayesian observer replicates convexity context effects in figure-ground perception.
Goldreich, Daniel; Peterson, Mary A
2012-01-01
Peterson and Salvagio (2008) demonstrated convexity context effects in figure-ground perception. Subjects shown displays consisting of unfamiliar alternating convex and concave regions identified the convex regions as foreground objects progressively more frequently as the number of regions increased; this occurred only when the concave regions were homogeneously colored. The origins of these effects have been unclear. Here, we present a two-free-parameter Bayesian observer that replicates convexity context effects. The Bayesian observer incorporates two plausible expectations regarding three-dimensional scenes: (1) objects tend to be convex rather than concave, and (2) backgrounds tend (more than foreground objects) to be homogeneously colored. The Bayesian observer estimates the probability that a depicted scene is three-dimensional, and that the convex regions are figures. It responds stochastically by sampling from its posterior distributions. Like human observers, the Bayesian observer shows convexity context effects only for images with homogeneously colored concave regions. With optimal parameter settings, it performs similarly to the average human subject on the four display types tested. We propose that object convexity and background color homogeneity are environmental regularities exploited by human visual perception; vision achieves figure-ground perception by interpreting ambiguous images in light of these and other expected regularities in natural scenes.
Dynamic Bayesian wavelet transform: New methodology for extraction of repetitive transients
NASA Astrophysics Data System (ADS)
Wang, Dong; Tsui, Kwok-Leung
2017-05-01
Thanks to some recent research works, dynamic Bayesian wavelet transform as new methodology for extraction of repetitive transients is proposed in this short communication to reveal fault signatures hidden in rotating machine. The main idea of the dynamic Bayesian wavelet transform is to iteratively estimate posterior parameters of wavelet transform via artificial observations and dynamic Bayesian inference. First, a prior wavelet parameter distribution can be established by one of many fast detection algorithms, such as the fast kurtogram, the improved kurtogram, the enhanced kurtogram, the sparsogram, the infogram, continuous wavelet transform, discrete wavelet transform, wavelet packets, multiwavelets, empirical wavelet transform, empirical mode decomposition, local mean decomposition, etc.. Second, artificial observations can be constructed based on one of many metrics, such as kurtosis, the sparsity measurement, entropy, approximate entropy, the smoothness index, a synthesized criterion, etc., which are able to quantify repetitive transients. Finally, given artificial observations, the prior wavelet parameter distribution can be posteriorly updated over iterations by using dynamic Bayesian inference. More importantly, the proposed new methodology can be extended to establish the optimal parameters required by many other signal processing methods for extraction of repetitive transients.
NASA Astrophysics Data System (ADS)
Lowman, L.; Barros, A. P.
2014-12-01
Computational modeling of surface erosion processes is inherently difficult because of the four-dimensional nature of the problem and the multiple temporal and spatial scales that govern individual mechanisms. Landscapes are modified via surface and fluvial erosion and exhumation, each of which takes place over a range of time scales. Traditional field measurements of erosion/exhumation rates are scale dependent, often valid for a single point-wise location or averaging over large aerial extents and periods with intense and mild erosion. We present a method of remotely estimating erosion rates using a Bayesian hierarchical model based upon the stream power erosion law (SPEL). A Bayesian approach allows for estimating erosion rates using the deterministic relationship given by the SPEL and data on channel slopes and precipitation at the basin and sub-basin scale. The spatial scale associated with this framework is the elevation class, where each class is characterized by distinct morphologic behavior observed through different modes in the distribution of basin outlet elevations. Interestingly, the distributions of first-order outlets are similar in shape and extent to the distribution of precipitation events (i.e. individual storms) over a 14-year period between 1998-2011. We demonstrate an application of the Bayesian hierarchical modeling framework for five basins and one intermontane basin located in the central Andes between 5S and 20S. Using remotely sensed data of current annual precipitation rates from the Tropical Rainfall Measuring Mission (TRMM) and topography from a high resolution (3 arc-seconds) digital elevation map (DEM), our erosion rate estimates are consistent with decadal-scale estimates based on landslide mapping and sediment flux observations and 1-2 orders of magnitude larger than most millennial and million year timescale estimates from thermochronology and cosmogenic nuclides.
Comparing interval estimates for small sample ordinal CFA models
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research. PMID:26579002
Comparing interval estimates for small sample ordinal CFA models.
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research.
NASA Astrophysics Data System (ADS)
Hagemann, M.; Gleason, C. J.
2017-12-01
The upcoming (2021) Surface Water and Ocean Topography (SWOT) NASA satellite mission aims, in part, to estimate discharge on major rivers worldwide using reach-scale measurements of stream width, slope, and height. Current formalizations of channel and floodplain hydraulics are insufficient to fully constrain this problem mathematically, resulting in an infinitely large solution set for any set of satellite observations. Recent work has reformulated this problem in a Bayesian statistical setting, in which the likelihood distributions derive directly from hydraulic flow-law equations. When coupled with prior distributions on unknown flow-law parameters, this formulation probabilistically constrains the parameter space, and results in a computationally tractable description of discharge. Using a curated dataset of over 200,000 in-situ acoustic Doppler current profiler (ADCP) discharge measurements from over 10,000 USGS gaging stations throughout the United States, we developed empirical prior distributions for flow-law parameters that are not observable by SWOT, but that are required in order to estimate discharge. This analysis quantified prior uncertainties on quantities including cross-sectional area, at-a-station hydraulic geometry width exponent, and discharge variability, that are dependent on SWOT-observable variables including reach-scale statistics of width and height. When compared against discharge estimation approaches that do not use this prior information, the Bayesian approach using ADCP-derived priors demonstrated consistently improved performance across a range of performance metrics. This Bayesian approach formally transfers information from in-situ gaging stations to remote-sensed estimation of discharge, in which the desired quantities are not directly observable. Further investigation using large in-situ datasets is therefore a promising way forward in improving satellite-based estimates of river discharge.
The utility of Bayesian predictive probabilities for interim monitoring of clinical trials
Connor, Jason T.; Ayers, Gregory D; Alvarez, JoAnn
2014-01-01
Background Bayesian predictive probabilities can be used for interim monitoring of clinical trials to estimate the probability of observing a statistically significant treatment effect if the trial were to continue to its predefined maximum sample size. Purpose We explore settings in which Bayesian predictive probabilities are advantageous for interim monitoring compared to Bayesian posterior probabilities, p-values, conditional power, or group sequential methods. Results For interim analyses that address prediction hypotheses, such as futility monitoring and efficacy monitoring with lagged outcomes, only predictive probabilities properly account for the amount of data remaining to be observed in a clinical trial and have the flexibility to incorporate additional information via auxiliary variables. Limitations Computational burdens limit the feasibility of predictive probabilities in many clinical trial settings. The specification of prior distributions brings additional challenges for regulatory approval. Conclusions The use of Bayesian predictive probabilities enables the choice of logical interim stopping rules that closely align with the clinical decision making process. PMID:24872363
Applications of Bayesian Statistics to Problems in Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Meegan, Charles A.
1997-01-01
This presentation will describe two applications of Bayesian statistics to Gamma Ray Bursts (GRBS). The first attempts to quantify the evidence for a cosmological versus galactic origin of GRBs using only the observations of the dipole and quadrupole moments of the angular distribution of bursts. The cosmological hypothesis predicts isotropy, while the galactic hypothesis is assumed to produce a uniform probability distribution over positive values for these moments. The observed isotropic distribution indicates that the Bayes factor for the cosmological hypothesis over the galactic hypothesis is about 300. Another application of Bayesian statistics is in the estimation of chance associations of optical counterparts with galaxies. The Bayesian approach is preferred to frequentist techniques here because the Bayesian approach easily accounts for galaxy mass distributions and because one can incorporate three disjoint hypotheses: (1) bursts come from galactic centers, (2) bursts come from galaxies in proportion to luminosity, and (3) bursts do not come from external galaxies. This technique was used in the analysis of the optical counterpart to GRB970228.
NASA Astrophysics Data System (ADS)
Plant, N. G.; Thieler, E. R.; Gutierrez, B.; Lentz, E. E.; Zeigler, S. L.; Van Dongeren, A.; Fienen, M. N.
2016-12-01
We evaluate the strengths and weaknesses of Bayesian networks that have been used to address scientific and decision-support questions related to coastal geomorphology. We will provide an overview of coastal geomorphology research that has used Bayesian networks and describe what this approach can do and when it works (or fails to work). Over the past decade, Bayesian networks have been formulated to analyze the multi-variate structure and evolution of coastal morphology and associated human and ecological impacts. The approach relates observable system variables to each other by estimating discrete correlations. The resulting Bayesian-networks make predictions that propagate errors, conduct inference via Bayes rule, or both. In scientific applications, the model results are useful for hypothesis testing, using confidence estimates to gage the strength of tests while applications to coastal resource management are aimed at decision-support, where the probabilities of desired ecosystems outcomes are evaluated. The range of Bayesian-network applications to coastal morphology includes emulation of high-resolution wave transformation models to make oceanographic predictions, morphologic response to storms and/or sea-level rise, groundwater response to sea-level rise and morphologic variability, habitat suitability for endangered species, and assessment of monetary or human-life risk associated with storms. All of these examples are based on vast observational data sets, numerical model output, or both. We will discuss the progression of our experiments, which has included testing whether the Bayesian-network approach can be implemented and is appropriate for addressing basic and applied scientific problems and evaluating the hindcast and forecast skill of these implementations. We will present and discuss calibration/validation tests that are used to assess the robustness of Bayesian-network models and we will compare these results to tests of other models. This will demonstrate how Bayesian networks are used to extract new insights about coastal morphologic behavior, assess impacts to societal and ecological systems, and communicate probabilistic predictions to decision makers.
Bayes and empirical Bayes estimators of abundance and density from spatial capture-recapture data
Dorazio, Robert M.
2013-01-01
In capture-recapture and mark-resight surveys, movements of individuals both within and between sampling periods can alter the susceptibility of individuals to detection over the region of sampling. In these circumstances spatially explicit capture-recapture (SECR) models, which incorporate the observed locations of individuals, allow population density and abundance to be estimated while accounting for differences in detectability of individuals. In this paper I propose two Bayesian SECR models, one for the analysis of recaptures observed in trapping arrays and another for the analysis of recaptures observed in area searches. In formulating these models I used distinct submodels to specify the distribution of individual home-range centers and the observable recaptures associated with these individuals. This separation of ecological and observational processes allowed me to derive a formal connection between Bayes and empirical Bayes estimators of population abundance that has not been established previously. I showed that this connection applies to every Poisson point-process model of SECR data and provides theoretical support for a previously proposed estimator of abundance based on recaptures in trapping arrays. To illustrate results of both classical and Bayesian methods of analysis, I compared Bayes and empirical Bayes esimates of abundance and density using recaptures from simulated and real populations of animals. Real populations included two iconic datasets: recaptures of tigers detected in camera-trap surveys and recaptures of lizards detected in area-search surveys. In the datasets I analyzed, classical and Bayesian methods provided similar – and often identical – inferences, which is not surprising given the sample sizes and the noninformative priors used in the analyses.
Bayes and empirical Bayes estimators of abundance and density from spatial capture-recapture data.
Dorazio, Robert M
2013-01-01
In capture-recapture and mark-resight surveys, movements of individuals both within and between sampling periods can alter the susceptibility of individuals to detection over the region of sampling. In these circumstances spatially explicit capture-recapture (SECR) models, which incorporate the observed locations of individuals, allow population density and abundance to be estimated while accounting for differences in detectability of individuals. In this paper I propose two Bayesian SECR models, one for the analysis of recaptures observed in trapping arrays and another for the analysis of recaptures observed in area searches. In formulating these models I used distinct submodels to specify the distribution of individual home-range centers and the observable recaptures associated with these individuals. This separation of ecological and observational processes allowed me to derive a formal connection between Bayes and empirical Bayes estimators of population abundance that has not been established previously. I showed that this connection applies to every Poisson point-process model of SECR data and provides theoretical support for a previously proposed estimator of abundance based on recaptures in trapping arrays. To illustrate results of both classical and Bayesian methods of analysis, I compared Bayes and empirical Bayes esimates of abundance and density using recaptures from simulated and real populations of animals. Real populations included two iconic datasets: recaptures of tigers detected in camera-trap surveys and recaptures of lizards detected in area-search surveys. In the datasets I analyzed, classical and Bayesian methods provided similar - and often identical - inferences, which is not surprising given the sample sizes and the noninformative priors used in the analyses.
Caudek, Corrado; Fantoni, Carlo; Domini, Fulvio
2011-01-01
We measured perceived depth from the optic flow (a) when showing a stationary physical or virtual object to observers who moved their head at a normal or slower speed, and (b) when simulating the same optic flow on a computer and presenting it to stationary observers. Our results show that perceived surface slant is systematically distorted, for both the active and the passive viewing of physical or virtual surfaces. These distortions are modulated by head translation speed, with perceived slant increasing directly with the local velocity gradient of the optic flow. This empirical result allows us to determine the relative merits of two alternative approaches aimed at explaining perceived surface slant in active vision: an “inverse optics” model that takes head motion information into account, and a probabilistic model that ignores extra-retinal signals. We compare these two approaches within the framework of the Bayesian theory. The “inverse optics” Bayesian model produces veridical slant estimates if the optic flow and the head translation velocity are measured with no error; because of the influence of a “prior” for flatness, the slant estimates become systematically biased as the measurement errors increase. The Bayesian model, which ignores the observer's motion, always produces distorted estimates of surface slant. Interestingly, the predictions of this second model, not those of the first one, are consistent with our empirical findings. The present results suggest that (a) in active vision perceived surface slant may be the product of probabilistic processes which do not guarantee the correct solution, and (b) extra-retinal signals may be mainly used for a better measurement of retinal information. PMID:21533197
Accuracy of latent-variable estimation in Bayesian semi-supervised learning.
Yamazaki, Keisuke
2015-09-01
Hierarchical probabilistic models, such as Gaussian mixture models, are widely used for unsupervised learning tasks. These models consist of observable and latent variables, which represent the observable data and the underlying data-generation process, respectively. Unsupervised learning tasks, such as cluster analysis, are regarded as estimations of latent variables based on the observable ones. The estimation of latent variables in semi-supervised learning, where some labels are observed, will be more precise than that in unsupervised, and one of the concerns is to clarify the effect of the labeled data. However, there has not been sufficient theoretical analysis of the accuracy of the estimation of latent variables. In a previous study, a distribution-based error function was formulated, and its asymptotic form was calculated for unsupervised learning with generative models. It has been shown that, for the estimation of latent variables, the Bayes method is more accurate than the maximum-likelihood method. The present paper reveals the asymptotic forms of the error function in Bayesian semi-supervised learning for both discriminative and generative models. The results show that the generative model, which uses all of the given data, performs better when the model is well specified. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nonlinear, discrete flood event models, 1. Bayesian estimation of parameters
NASA Astrophysics Data System (ADS)
Bates, Bryson C.; Townley, Lloyd R.
1988-05-01
In this paper (Part 1), a Bayesian procedure for parameter estimation is applied to discrete flood event models. The essence of the procedure is the minimisation of a sum of squares function for models in which the computed peak discharge is nonlinear in terms of the parameters. This objective function is dependent on the observed and computed peak discharges for several storms on the catchment, information on the structure of observation error, and prior information on parameter values. The posterior covariance matrix gives a measure of the precision of the estimated parameters. The procedure is demonstrated using rainfall and runoff data from seven Australian catchments. It is concluded that the procedure is a powerful alternative to conventional parameter estimation techniques in situations where a number of floods are available for parameter estimation. Parts 2 and 3 will discuss the application of statistical nonlinearity measures and prediction uncertainty analysis to calibrated flood models. Bates (this volume) and Bates and Townley (this volume).
Multilevel modeling of single-case data: A comparison of maximum likelihood and Bayesian estimation.
Moeyaert, Mariola; Rindskopf, David; Onghena, Patrick; Van den Noortgate, Wim
2017-12-01
The focus of this article is to describe Bayesian estimation, including construction of prior distributions, and to compare parameter recovery under the Bayesian framework (using weakly informative priors) and the maximum likelihood (ML) framework in the context of multilevel modeling of single-case experimental data. Bayesian estimation results were found similar to ML estimation results in terms of the treatment effect estimates, regardless of the functional form and degree of information included in the prior specification in the Bayesian framework. In terms of the variance component estimates, both the ML and Bayesian estimation procedures result in biased and less precise variance estimates when the number of participants is small (i.e., 3). By increasing the number of participants to 5 or 7, the relative bias is close to 5% and more precise estimates are obtained for all approaches, except for the inverse-Wishart prior using the identity matrix. When a more informative prior was added, more precise estimates for the fixed effects and random effects were obtained, even when only 3 participants were included. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Traffic Video Image Segmentation Model Based on Bayesian and Spatio-Temporal Markov Random Field
NASA Astrophysics Data System (ADS)
Zhou, Jun; Bao, Xu; Li, Dawei; Yin, Yongwen
2017-10-01
Traffic video image is a kind of dynamic image and its background and foreground is changed at any time, which results in the occlusion. In this case, using the general method is more difficult to get accurate image segmentation. A segmentation algorithm based on Bayesian and Spatio-Temporal Markov Random Field is put forward, which respectively build the energy function model of observation field and label field to motion sequence image with Markov property, then according to Bayesian' rule, use the interaction of label field and observation field, that is the relationship of label field’s prior probability and observation field’s likelihood probability, get the maximum posterior probability of label field’s estimation parameter, use the ICM model to extract the motion object, consequently the process of segmentation is finished. Finally, the segmentation methods of ST - MRF and the Bayesian combined with ST - MRF were analyzed. Experimental results: the segmentation time in Bayesian combined with ST-MRF algorithm is shorter than in ST-MRF, and the computing workload is small, especially in the heavy traffic dynamic scenes the method also can achieve better segmentation effect.
Bayesian Estimation of the Spatially Varying Completeness Magnitude of Earthquake Catalogs
NASA Astrophysics Data System (ADS)
Mignan, A.; Werner, M.; Wiemer, S.; Chen, C.; Wu, Y.
2010-12-01
Assessing the completeness magnitude Mc of earthquake catalogs is an essential prerequisite for any seismicity analysis. We employ a simple model to compute Mc in space, based on the proximity to seismic stations in a network. We show that a relationship of the form Mcpred(d) = ad^b+c, with d the distance to the 5th nearest seismic station, fits the observations well. We then propose a new Mc mapping approach, the Bayesian Magnitude of Completeness (BMC) method, based on a 2-step procedure: (1) a spatial resolution optimization to minimize spatial heterogeneities and uncertainties in Mc estimates and (2) a Bayesian approach that merges prior information about Mc based on the proximity to seismic stations with locally observed values weighted by their respective uncertainties. This new methodology eliminates most weaknesses associated with current Mc mapping procedures: the radius that defines which earthquakes to include in the local magnitude distribution is chosen according to an objective criterion and there are no gaps in the spatial estimation of Mc. The method solely requires the coordinates of seismic stations. Here, we investigate the Taiwan Central Weather Bureau (CWB) earthquake catalog by computing a Mc map for the period 1994-2010.
Is Bayesian Estimation Proper for Estimating the Individual's Ability? Research Report 80-3.
ERIC Educational Resources Information Center
Samejima, Fumiko
The effect of prior information in Bayesian estimation is considered, mainly from the standpoint of objective testing. In the estimation of a parameter belonging to an individual, the prior information is, in most cases, the density function of the population to which the individual belongs. Bayesian estimation was compared with maximum likelihood…
Kruschke, John K; Liddell, Torrin M
2018-02-01
In the practice of data analysis, there is a conceptual distinction between hypothesis testing, on the one hand, and estimation with quantified uncertainty on the other. Among frequentists in psychology, a shift of emphasis from hypothesis testing to estimation has been dubbed "the New Statistics" (Cumming 2014). A second conceptual distinction is between frequentist methods and Bayesian methods. Our main goal in this article is to explain how Bayesian methods achieve the goals of the New Statistics better than frequentist methods. The article reviews frequentist and Bayesian approaches to hypothesis testing and to estimation with confidence or credible intervals. The article also describes Bayesian approaches to meta-analysis, randomized controlled trials, and power analysis.
Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.
Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji
2016-09-01
It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.
Liu, Kai; Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo
2016-01-01
On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods.
Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo
2016-01-01
On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods. PMID:27362654
Evaluation of Oceanic Transport Statistics By Use of Transient Tracers and Bayesian Methods
NASA Astrophysics Data System (ADS)
Trossman, D. S.; Thompson, L.; Mecking, S.; Bryan, F.; Peacock, S.
2013-12-01
Key variables that quantify the time scales over which atmospheric signals penetrate into the oceanic interior and their uncertainties are computed using Bayesian methods and transient tracers from both models and observations. First, the mean residence times, subduction rates, and formation rates of Subtropical Mode Water (STMW) and Subpolar Mode Water (SPMW) in the North Atlantic and Subantarctic Mode Water (SAMW) in the Southern Ocean are estimated by combining a model and observations of chlorofluorocarbon-11 (CFC-11) via Bayesian Model Averaging (BMA), statistical technique that weights model estimates according to how close they agree with observations. Second, a Bayesian method is presented to find two oceanic transport parameters associated with the age distribution of ocean waters, the transit-time distribution (TTD), by combining an eddying global ocean model's estimate of the TTD with hydrographic observations of CFC-11, temperature, and salinity. Uncertainties associated with objectively mapping irregularly spaced bottle data are quantified by making use of a thin-plate spline and then propagated via the two Bayesian techniques. It is found that the subduction of STMW, SPMW, and SAMW is mostly an advective process, but up to about one-third of STMW subduction likely owes to non-advective processes. Also, while the formation of STMW is mostly due to subduction, the formation of SPMW is mostly due to other processes. About half of the formation of SAMW is due to subduction and half is due to other processes. A combination of air-sea flux, acting on relatively short time scales, and turbulent mixing, acting on a wide range of time scales, is likely the dominant SPMW erosion mechanism. Air-sea flux is likely responsible for most STMW erosion, and turbulent mixing is likely responsible for most SAMW erosion. Two oceanic transport parameters, the mean age of a water parcel and the half-variance associated with the TTD, estimated using the model's tracers as data (BayesPOP) and those estimated using tracer observations as data (BayesObs) provide information about the sources of model biases, and give a more nuanced picture than can be found by comparing the simulated CFC-11 concentrations with observed CFC-11 concentrations. Using the differences between the two oceanic transport parameters from BayesObs and those from BayesPOP with and without a constant Peclet number assumption along each of the hydrographic cross-sections considered here, it is found that the model's diffusivity tensor biases lead to larger model errors than the model's mean advection time biases. However, it is also found that mean advection time biases in the model are statistically significant at the 95% level where mode water is found.
Roberto, Anna; Deandrea, Silvia; Greco, Maria Teresa; Corli, Oscar; Negri, Eva; Pizzuto, Massimo; Ruggeri, Fabrizio
2016-06-01
Because of the increasing body of literature on neuropathic cancer pain (NCP), an accurate estimate of its prevalence requires recurring updates. To provide this estimate using information from a systematic review and a survey. Using MEDLINE, Embase, and a previous review, we searched for studies published up to 2014 reporting data on NCP prevalence in adult cancer populations. Pooled prevalence rates from observational prospective studies were computed. The association between NCP prevalence and possible predictors was investigated for oncology and palliative settings. Prevalence rates were extracted from a questionnaire answered by 137 physicians working in 50 Italian centers of palliative care. Estimates from studies conducted in palliative settings and from the experts were analyzed separately and eventually pooled with an informative Bayesian random-effect model. Twenty-nine observational studies were identified. The overall pooled prevalence was 31.2%, with high heterogeneity; similar figures were observed when oncology and palliative settings were individually considered. A slightly higher prevalence of NCP was detected for hospice/inpatients as compared to outpatients, in both settings. The mean NCP prevalence reported by the survey experts was 44.2%; the pooled Bayesian estimate for the palliative setting corresponded to 43.0% (95% CI: 40.0-46.0). The subgroup with the lowest heterogeneity and where the literature and experts' estimates were closest is hospice/inpatients, with a pooled Bayesian prevalence rate of 34.9% (95% CI: 29.9-41.0). The systematic review and the survey suggest that more than one in three patients with cancer pain also experiences NCP. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni; ...
2016-06-09
The remote monitoring of plant canopies is critically needed for understanding of terrestrial ecosystem mechanics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and climate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology, water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation properties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these properties from spectral data. However, existing approaches tomore » RTM spectral inversion are typically limited by the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate for each parameter but rather the joint probability distribution that includes estimates of parameter uncertainties and covariance structure. We validated our inversion approach using a database of leaf spectra together with measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters estimated by our inversion were able to accurately reproduce the observed reflectance (RMSE VIS = 0.0063, RMSE NIR-SWIR = 0.0098) and transmittance (RMSE VIS = 0.0404, RMSE NIR-SWIR = 0.0551) for both broadleaved and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct measurements (CV EWT = 18.8%, CV LMA = 24.5%), while estimates for conifer species were less accurate (CV EWT = 53.2%, CV LMA = 63.3%). To examine the influence of spectral resolution on parameter uncertainty, we simulated leaf reflectance as observed by ten common remote sensing platforms with varying spectral configurations and performed a Bayesian inversion on the resulting spectra. We found that full-range hyperspectral platforms were able to retrieve all parameters accurately and precisely, while the parameter estimates of multispectral platforms were much less precise and prone to bias at high and low values. We also observed that variations in the width and location of spectral bands influenced the shape of the covariance structure of parameter estimates. Lastly, our Bayesian spectral inversion provides a powerful and versatile framework for future RTM development and single- and multi-instrumental remote sensing of vegetation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni
The remote monitoring of plant canopies is critically needed for understanding of terrestrial ecosystem mechanics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and climate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology, water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation properties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these properties from spectral data. However, existing approaches tomore » RTM spectral inversion are typically limited by the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate for each parameter but rather the joint probability distribution that includes estimates of parameter uncertainties and covariance structure. We validated our inversion approach using a database of leaf spectra together with measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters estimated by our inversion were able to accurately reproduce the observed reflectance (RMSE VIS = 0.0063, RMSE NIR-SWIR = 0.0098) and transmittance (RMSE VIS = 0.0404, RMSE NIR-SWIR = 0.0551) for both broadleaved and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct measurements (CV EWT = 18.8%, CV LMA = 24.5%), while estimates for conifer species were less accurate (CV EWT = 53.2%, CV LMA = 63.3%). To examine the influence of spectral resolution on parameter uncertainty, we simulated leaf reflectance as observed by ten common remote sensing platforms with varying spectral configurations and performed a Bayesian inversion on the resulting spectra. We found that full-range hyperspectral platforms were able to retrieve all parameters accurately and precisely, while the parameter estimates of multispectral platforms were much less precise and prone to bias at high and low values. We also observed that variations in the width and location of spectral bands influenced the shape of the covariance structure of parameter estimates. Lastly, our Bayesian spectral inversion provides a powerful and versatile framework for future RTM development and single- and multi-instrumental remote sensing of vegetation.« less
Kennedy, Paula L; Woodbury, Allan D
2002-01-01
In ground water flow and transport modeling, the heterogeneous nature of porous media has a considerable effect on the resulting flow and solute transport. Some method of generating the heterogeneous field from a limited dataset of uncertain measurements is required. Bayesian updating is one method that interpolates from an uncertain dataset using the statistics of the underlying probability distribution function. In this paper, Bayesian updating was used to determine the heterogeneous natural log transmissivity field for a carbonate and a sandstone aquifer in southern Manitoba. It was determined that the transmissivity in m2/sec followed a natural log normal distribution for both aquifers with a mean of -7.2 and - 8.0 for the carbonate and sandstone aquifers, respectively. The variograms were calculated using an estimator developed by Li and Lake (1994). Fractal nature was not evident in the variogram from either aquifer. The Bayesian updating heterogeneous field provided good results even in cases where little data was available. A large transmissivity zone in the sandstone aquifer was created by the Bayesian procedure, which is not a reflection of any deterministic consideration, but is a natural outcome of updating a prior probability distribution function with observations. The statistical model returns a result that is very reasonable; that is homogeneous in regions where little or no information is available to alter an initial state. No long range correlation trends or fractal behavior of the log-transmissivity field was observed in either aquifer over a distance of about 300 km.
Covariance specification and estimation to improve top-down Green House Gas emission estimates
NASA Astrophysics Data System (ADS)
Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Whetstone, J. R.
2015-12-01
The National Institute of Standards and Technology (NIST) operates the North-East Corridor (NEC) project and the Indianapolis Flux Experiment (INFLUX) in order to develop measurement methods to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties in urban domains using a top down inversion method. Top down inversion updates prior knowledge using observations in a Bayesian way. One primary consideration in a Bayesian inversion framework is the covariance structure of (1) the emission prior residuals and (2) the observation residuals (i.e. the difference between observations and model predicted observations). These covariance matrices are respectively referred to as the prior covariance matrix and the model-data mismatch covariance matrix. It is known that the choice of these covariances can have large effect on estimates. The main objective of this work is to determine the impact of different covariance models on inversion estimates and their associated uncertainties in urban domains. We use a pseudo-data Bayesian inversion framework using footprints (i.e. sensitivities of tower measurements of GHGs to surface emissions) and emission priors (based on Hestia project to quantify fossil-fuel emissions) to estimate posterior emissions using different covariance schemes. The posterior emission estimates and uncertainties are compared to the hypothetical truth. We find that, if we correctly specify spatial variability and spatio-temporal variability in prior and model-data mismatch covariances respectively, then we can compute more accurate posterior estimates. We discuss few covariance models to introduce space-time interacting mismatches along with estimation of the involved parameters. We then compare several candidate prior spatial covariance models from the Matern covariance class and estimate their parameters with specified mismatches. We find that best-fitted prior covariances are not always best in recovering the truth. To achieve accuracy, we perform a sensitivity study to further tune covariance parameters. Finally, we introduce a shrinkage based sample covariance estimation technique for both prior and mismatch covariances. This technique allows us to achieve similar accuracy nonparametrically in a more efficient and automated way.
Bayesian inference based on dual generalized order statistics from the exponentiated Weibull model
NASA Astrophysics Data System (ADS)
Al Sobhi, Mashail M.
2015-02-01
Bayesian estimation for the two parameters and the reliability function of the exponentiated Weibull model are obtained based on dual generalized order statistics (DGOS). Also, Bayesian prediction bounds for future DGOS from exponentiated Weibull model are obtained. The symmetric and asymmetric loss functions are considered for Bayesian computations. The Markov chain Monte Carlo (MCMC) methods are used for computing the Bayes estimates and prediction bounds. The results have been specialized to the lower record values. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.
Alós, Josep; Palmer, Miquel; Balle, Salvador; Arlinghaus, Robert
2016-01-01
State-space models (SSM) are increasingly applied in studies involving biotelemetry-generated positional data because they are able to estimate movement parameters from positions that are unobserved or have been observed with non-negligible observational error. Popular telemetry systems in marine coastal fish consist of arrays of omnidirectional acoustic receivers, which generate a multivariate time-series of detection events across the tracking period. Here we report a novel Bayesian fitting of a SSM application that couples mechanistic movement properties within a home range (a specific case of random walk weighted by an Ornstein-Uhlenbeck process) with a model of observational error typical for data obtained from acoustic receiver arrays. We explored the performance and accuracy of the approach through simulation modelling and extensive sensitivity analyses of the effects of various configurations of movement properties and time-steps among positions. Model results show an accurate and unbiased estimation of the movement parameters, and in most cases the simulated movement parameters were properly retrieved. Only in extreme situations (when fast swimming speeds are combined with pooling the number of detections over long time-steps) the model produced some bias that needs to be accounted for in field applications. Our method was subsequently applied to real acoustic tracking data collected from a small marine coastal fish species, the pearly razorfish, Xyrichtys novacula. The Bayesian SSM we present here constitutes an alternative for those used to the Bayesian way of reasoning. Our Bayesian SSM can be easily adapted and generalized to any species, thereby allowing studies in freely roaming animals on the ecological and evolutionary consequences of home ranges and territory establishment, both in fishes and in other taxa. PMID:27119718
Martin, Summer L; Stohs, Stephen M; Moore, Jeffrey E
2015-03-01
Fisheries bycatch is a global threat to marine megafauna. Environmental laws require bycatch assessment for protected species, but this is difficult when bycatch is rare. Low bycatch rates, combined with low observer coverage, may lead to biased, imprecise estimates when using standard ratio estimators. Bayesian model-based approaches incorporate uncertainty, produce less volatile estimates, and enable probabilistic evaluation of estimates relative to management thresholds. Here, we demonstrate a pragmatic decision-making process that uses Bayesian model-based inferences to estimate the probability of exceeding management thresholds for bycatch in fisheries with < 100% observer coverage. Using the California drift gillnet fishery as a case study, we (1) model rates of rare-event bycatch and mortality using Bayesian Markov chain Monte Carlo estimation methods and 20 years of observer data; (2) predict unobserved counts of bycatch and mortality; (3) infer expected annual mortality; (4) determine probabilities of mortality exceeding regulatory thresholds; and (5) classify the fishery as having low, medium, or high bycatch impact using those probabilities. We focused on leatherback sea turtles (Dermochelys coriacea) and humpback whales (Megaptera novaeangliae). Candidate models included Poisson or zero-inflated Poisson likelihood, fishing effort, and a bycatch rate that varied with area, time, or regulatory regime. Regulatory regime had the strongest effect on leatherback bycatch, with the highest levels occurring prior to a regulatory change. Area had the strongest effect on humpback bycatch. Cumulative bycatch estimates for the 20-year period were 104-242 leatherbacks (52-153 deaths) and 6-50 humpbacks (0-21 deaths). The probability of exceeding a regulatory threshold under the U.S. Marine Mammal Protection Act (Potential Biological Removal, PBR) of 0.113 humpback deaths was 0.58, warranting a "medium bycatch impact" classification of the fishery. No PBR thresholds exist for leatherbacks, but the probability of exceeding an anticipated level of two deaths per year, stated as part of a U.S. Endangered Species Act assessment process, was 0.0007. The approach demonstrated here would allow managers to objectively and probabilistically classify fisheries with respect to bycatch impacts on species that have population-relevant mortality reference points, and declare with a stipulated level of certainty that bycatch did or did not exceed estimated upper bounds.
Bayesian estimation of seasonal course of canopy leaf area index from hyperspectral satellite data
NASA Astrophysics Data System (ADS)
Varvia, Petri; Rautiainen, Miina; Seppänen, Aku
2018-03-01
In this paper, Bayesian inversion of a physically-based forest reflectance model is investigated to estimate of boreal forest canopy leaf area index (LAI) from EO-1 Hyperion hyperspectral data. The data consist of multiple forest stands with different species compositions and structures, imaged in three phases of the growing season. The Bayesian estimates of canopy LAI are compared to reference estimates based on a spectral vegetation index. The forest reflectance model contains also other unknown variables in addition to LAI, for example leaf single scattering albedo and understory reflectance. In the Bayesian approach, these variables are estimated simultaneously with LAI. The feasibility and seasonal variation of these estimates is also examined. Credible intervals for the estimates are also calculated and evaluated. The results show that the Bayesian inversion approach is significantly better than using a comparable spectral vegetation index regression.
Empirical Bayes estimation of proportions with application to cowbird parasitism rates
Link, W.A.; Hahn, D.C.
1996-01-01
Bayesian models provide a structure for studying collections of parameters such as are considered in the investigation of communities, ecosystems, and landscapes. This structure allows for improved estimation of individual parameters, by considering them in the context of a group of related parameters. Individual estimates are differentially adjusted toward an overall mean, with the magnitude of their adjustment based on their precision. Consequently, Bayesian estimation allows for a more credible identification of extreme values in a collection of estimates. Bayesian models regard individual parameters as values sampled from a specified probability distribution, called a prior. The requirement that the prior be known is often regarded as an unattractive feature of Bayesian analysis and may be the reason why Bayesian analyses are not frequently applied in ecological studies. Empirical Bayes methods provide an alternative approach that incorporates the structural advantages of Bayesian models while requiring a less stringent specification of prior knowledge. Rather than requiring that the prior distribution be known, empirical Bayes methods require only that it be in a certain family of distributions, indexed by hyperparameters that can be estimated from the available data. This structure is of interest per se, in addition to its value in allowing for improved estimation of individual parameters; for example, hypotheses regarding the existence of distinct subgroups in a collection of parameters can be considered under the empirical Bayes framework by allowing the hyperparameters to vary among subgroups. Though empirical Bayes methods have been applied in a variety of contexts, they have received little attention in the ecological literature. We describe the empirical Bayes approach in application to estimation of proportions, using data obtained in a community-wide study of cowbird parasitism rates for illustration. Since observed proportions based on small sample sizes are heavily adjusted toward the mean, extreme values among empirical Bayes estimates identify those species for which there is the greatest evidence of extreme parasitism rates. Applying a subgroup analysis to our data on cowbird parasitism rates, we conclude that parasitism rates for Neotropical Migrants as a group are no greater than those of Resident/Short-distance Migrant species in this forest community. Our data and analyses demonstrate that the parasitism rates for certain Neotropical Migrant species are remarkably low (Wood Thrush and Rose-breasted Grosbeak) while those for others are remarkably high (Ovenbird and Red-eyed Vireo).
NASA Astrophysics Data System (ADS)
Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Karion, A.; Mueller, K.; Gourdji, S.; Martin, C.; Whetstone, J. R.
2017-12-01
The National Institute of Standards and Technology (NIST) supports the North-East Corridor Baltimore Washington (NEC-B/W) project and Indianapolis Flux Experiment (INFLUX) aiming to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties. These projects employ different flux estimation methods including top-down inversion approaches. The traditional Bayesian inversion method estimates emission distributions by updating prior information using atmospheric observations of Green House Gases (GHG) coupled to an atmospheric and dispersion model. The magnitude of the update is dependent upon the observed enhancement along with the assumed errors such as those associated with prior information and the atmospheric transport and dispersion model. These errors are specified within the inversion covariance matrices. The assumed structure and magnitude of the specified errors can have large impact on the emission estimates from the inversion. The main objective of this work is to build a data-adaptive model for these covariances matrices. We construct a synthetic data experiment using a Kalman Filter inversion framework (Lopez et al., 2017) employing different configurations of transport and dispersion model and an assumed prior. Unlike previous traditional Bayesian approaches, we estimate posterior emissions using regularized sample covariance matrices associated with prior errors to investigate whether the structure of the matrices help to better recover our hypothetical true emissions. To incorporate transport model error, we use ensemble of transport models combined with space-time analytical covariance to construct a covariance that accounts for errors in space and time. A Kalman Filter is then run using these covariances along with Maximum Likelihood Estimates (MLE) of the involved parameters. Preliminary results indicate that specifying sptio-temporally varying errors in the error covariances can improve the flux estimates and uncertainties. We also demonstrate that differences between the modeled and observed meteorology can be used to predict uncertainties associated with atmospheric transport and dispersion modeling which can help improve the skill of an inversion at urban scales.
NASA Technical Reports Server (NTRS)
Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.
2004-01-01
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).
NASA Astrophysics Data System (ADS)
von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo
2014-06-01
Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.
Deviney, Frank A.; Rice, Karen; Brown, Donald E.
2012-01-01
Natural resource managers require information concerning the frequency, duration, and long-term probability of occurrence of water-quality indicator (WQI) violations of defined thresholds. The timing of these threshold crossings often is hidden from the observer, who is restricted to relatively infrequent observations. Here, a model for the hidden process is linked with a model for the observations, and the parameters describing duration, return period, and long-term probability of occurrence are estimated using Bayesian methods. A simulation experiment is performed to evaluate the approach under scenarios based on the equivalent of a total monitoring period of 5-30 years and an observation frequency of 1-50 observations per year. Given constant threshold crossing rate, accuracy and precision of parameter estimates increased with longer total monitoring period and more-frequent observations. Given fixed monitoring period and observation frequency, accuracy and precision of parameter estimates increased with longer times between threshold crossings. For most cases where the long-term probability of being in violation is greater than 0.10, it was determined that at least 600 observations are needed to achieve precise estimates. An application of the approach is presented using 22 years of quasi-weekly observations of acid-neutralizing capacity from Deep Run, a stream in Shenandoah National Park, Virginia. The time series also was sub-sampled to simulate monthly and semi-monthly sampling protocols. Estimates of the long-term probability of violation were unbiased despite sampling frequency; however, the expected duration and return period were over-estimated using the sub-sampled time series with respect to the full quasi-weekly time series.
ERIC Educational Resources Information Center
Wang, Lijuan; McArdle, John J.
2008-01-01
The main purpose of this research is to evaluate the performance of a Bayesian approach for estimating unknown change points using Monte Carlo simulations. The univariate and bivariate unknown change point mixed models were presented and the basic idea of the Bayesian approach for estimating the models was discussed. The performance of Bayesian…
A Bayesian model for estimating multi-state disease progression.
Shen, Shiwen; Han, Simon X; Petousis, Panayiotis; Weiss, Robert E; Meng, Frank; Bui, Alex A T; Hsu, William
2017-02-01
A growing number of individuals who are considered at high risk of cancer are now routinely undergoing population screening. However, noted harms such as radiation exposure, overdiagnosis, and overtreatment underscore the need for better temporal models that predict who should be screened and at what frequency. The mean sojourn time (MST), an average duration period when a tumor can be detected by imaging but with no observable clinical symptoms, is a critical variable for formulating screening policy. Estimation of MST has been long studied using continuous Markov model (CMM) with Maximum likelihood estimation (MLE). However, a lot of traditional methods assume no observation error of the imaging data, which is unlikely and can bias the estimation of the MST. In addition, the MLE may not be stably estimated when data is sparse. Addressing these shortcomings, we present a probabilistic modeling approach for periodic cancer screening data. We first model the cancer state transition using a three state CMM model, while simultaneously considering observation error. We then jointly estimate the MST and observation error within a Bayesian framework. We also consider the inclusion of covariates to estimate individualized rates of disease progression. Our approach is demonstrated on participants who underwent chest x-ray screening in the National Lung Screening Trial (NLST) and validated using posterior predictive p-values and Pearson's chi-square test. Our model demonstrates more accurate and sensible estimates of MST in comparison to MLE. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Agapiou, Sergios; Burger, Martin; Dashti, Masoumeh; Helin, Tapio
2018-04-01
We consider the inverse problem of recovering an unknown functional parameter u in a separable Banach space, from a noisy observation vector y of its image through a known possibly non-linear map {{\\mathcal G}} . We adopt a Bayesian approach to the problem and consider Besov space priors (see Lassas et al (2009 Inverse Problems Imaging 3 87-122)), which are well-known for their edge-preserving and sparsity-promoting properties and have recently attracted wide attention especially in the medical imaging community. Our key result is to show that in this non-parametric setup the maximum a posteriori (MAP) estimates are characterized by the minimizers of a generalized Onsager-Machlup functional of the posterior. This is done independently for the so-called weak and strong MAP estimates, which as we show coincide in our context. In addition, we prove a form of weak consistency for the MAP estimators in the infinitely informative data limit. Our results are remarkable for two reasons: first, the prior distribution is non-Gaussian and does not meet the smoothness conditions required in previous research on non-parametric MAP estimates. Second, the result analytically justifies existing uses of the MAP estimate in finite but high dimensional discretizations of Bayesian inverse problems with the considered Besov priors.
van der Meer, Aize Franciscus; Touw, Daniël J; Marcus, Marco A E; Neef, Cornelis; Proost, Johannes H
2012-10-01
Observational data sets can be used for population pharmacokinetic (PK) modeling. However, these data sets are generally less precisely recorded than experimental data sets. This article aims to investigate the influence of erroneous records on population PK modeling and individual maximum a posteriori Bayesian (MAPB) estimation. A total of 1123 patient records of neonates who were administered vancomycin were used for population PK modeling by iterative 2-stage Bayesian (ITSB) analysis. Cut-off values for weighted residuals were tested for exclusion of records from the analysis. A simulation study was performed to assess the influence of erroneous records on population modeling and individual MAPB estimation. Also the cut-off values for weighted residuals were tested in the simulation study. Errors in registration have limited the influence on outcomes of population PK modeling but can have detrimental effects on individual MAPB estimation. A population PK model created from a data set with many registration errors has little influence on subsequent MAPB estimates for precisely recorded data. A weighted residual value of 2 for concentration measurements has good discriminative power for identification of erroneous records. ITSB analysis and its individual estimates are hardly affected by most registration errors. Large registration errors can be detected by weighted residuals of concentration.
NASA Astrophysics Data System (ADS)
Lew, E. J.; Butenhoff, C. L.; Karmakar, S.; Rice, A. L.; Khalil, A. K.
2017-12-01
Methane is the second most important greenhouse gas after carbon dioxide. In efforts to control emissions, a careful examination of the methane budget and source strengths is required. To determine methane surface fluxes, Bayesian methods are often used to provide top-down constraints. Inverse modeling derives unknown fluxes using observed methane concentrations, a chemical transport model (CTM) and prior information. The Bayesian inversion reduces prior flux uncertainties by exploiting information content in the data. While the Bayesian formalism produces internal error estimates of source fluxes, systematic or external errors that arise from user choices in the inversion scheme are often much larger. Here we examine model sensitivity and uncertainty of our inversion under different observation data sets and CTM grid resolution. We compare posterior surface fluxes using the data product GLOBALVIEW-CH4 against the event-level molar mixing ratio data available from NOAA. GLOBALVIEW-CH4 is a collection of CH4 concentration estimates from 221 sites, collected by 12 laboratories, that have been interpolated and extracted to provide weekly records from 1984-2008. Differently, the event-level NOAA data records methane mixing ratios field measurements from 102 sites, containing sampling frequency irregularities and gaps in time. Furthermore, the sampling platform types used by the data sets may influence the posterior flux estimates, namely fixed surface, tower, ship and aircraft sites. To explore the sensitivity of the posterior surface fluxes to the observation network geometry, inversions composed of all sites, only aircraft, only ship, only tower and only fixed surface sites, are performed and compared. Also, we investigate the sensitivity of the error reduction associated with the resolution of the GEOS-Chem simulation (4°×5° vs 2°×2.5°) used to calculate the response matrix. Using a higher resolution grid decreased the model-data error at most sites, thereby increasing the information at that site. These different inversions—event-level and interpolated data, higher and lower resolutions—are compared using an ensemble of descriptive and comparative statistics. Analyzing the sensitivity of the inverse model leads to more accurate estimates of the methane source category uncertainty.
Sequential Inverse Problems Bayesian Principles and the Logistic Map Example
NASA Astrophysics Data System (ADS)
Duan, Lian; Farmer, Chris L.; Moroz, Irene M.
2010-09-01
Bayesian statistics provides a general framework for solving inverse problems, but is not without interpretation and implementation problems. This paper discusses difficulties arising from the fact that forward models are always in error to some extent. Using a simple example based on the one-dimensional logistic map, we argue that, when implementation problems are minimal, the Bayesian framework is quite adequate. In this paper the Bayesian Filter is shown to be able to recover excellent state estimates in the perfect model scenario (PMS) and to distinguish the PMS from the imperfect model scenario (IMS). Through a quantitative comparison of the way in which the observations are assimilated in both the PMS and the IMS scenarios, we suggest that one can, sometimes, measure the degree of imperfection.
Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model
NASA Astrophysics Data System (ADS)
Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.
2014-02-01
Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can be successfully applied to process-based models of high complexity. The methodology is particularly suitable for heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models.
Technical Note: Approximate Bayesian parameterization of a complex tropical forest model
NASA Astrophysics Data System (ADS)
Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.
2013-08-01
Inverse parameter estimation of process-based models is a long-standing problem in ecology and evolution. A key problem of inverse parameter estimation is to define a metric that quantifies how well model predictions fit to the data. Such a metric can be expressed by general cost or objective functions, but statistical inversion approaches are based on a particular metric, the probability of observing the data given the model, known as the likelihood. Deriving likelihoods for dynamic models requires making assumptions about the probability for observations to deviate from mean model predictions. For technical reasons, these assumptions are usually derived without explicit consideration of the processes in the simulation. Only in recent years have new methods become available that allow generating likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional MCMC, performs well in retrieving known parameter values from virtual field data generated by the forest model. We analyze the results of the parameter estimation, examine the sensitivity towards the choice and aggregation of model outputs and observed data (summary statistics), and show results from using this method to fit the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss differences of this approach to Approximate Bayesian Computing (ABC), another commonly used method to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can successfully be applied to process-based models of high complexity. The methodology is particularly suited to heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models in ecology and evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Russa, D
Purpose: The purpose of this project is to develop a robust method of parameter estimation for a Poisson-based TCP model using Bayesian inference. Methods: Bayesian inference was performed using the PyMC3 probabilistic programming framework written in Python. A Poisson-based TCP regression model that accounts for clonogen proliferation was fit to observed rates of local relapse as a function of equivalent dose in 2 Gy fractions for a population of 623 stage-I non-small-cell lung cancer patients. The Slice Markov Chain Monte Carlo sampling algorithm was used to sample the posterior distributions, and was initiated using the maximum of the posterior distributionsmore » found by optimization. The calculation of TCP with each sample step required integration over the free parameter α, which was performed using an adaptive 24-point Gauss-Legendre quadrature. Convergence was verified via inspection of the trace plot and posterior distribution for each of the fit parameters, as well as with comparisons of the most probable parameter values with their respective maximum likelihood estimates. Results: Posterior distributions for α, the standard deviation of α (σ), the average tumour cell-doubling time (Td), and the repopulation delay time (Tk), were generated assuming α/β = 10 Gy, and a fixed clonogen density of 10{sup 7} cm−{sup 3}. Posterior predictive plots generated from samples from these posterior distributions are in excellent agreement with the observed rates of local relapse used in the Bayesian inference. The most probable values of the model parameters also agree well with maximum likelihood estimates. Conclusion: A robust method of performing Bayesian inference of TCP data using a complex TCP model has been established.« less
A Comparison of a Bayesian and a Maximum Likelihood Tailored Testing Procedure.
ERIC Educational Resources Information Center
McKinley, Robert L.; Reckase, Mark D.
A study was conducted to compare tailored testing procedures based on a Bayesian ability estimation technique and on a maximum likelihood ability estimation technique. The Bayesian tailored testing procedure selected items so as to minimize the posterior variance of the ability estimate distribution, while the maximum likelihood tailored testing…
Estimation from incomplete multinomial data. Ph.D. Thesis - Harvard Univ.
NASA Technical Reports Server (NTRS)
Credeur, K. R.
1978-01-01
The vector of multinomial cell probabilities was estimated from incomplete data, incomplete in that it contains partially classified observations. Each such partially classified observation was observed to fall in one of two or more selected categories but was not classified further into a single category. The data were assumed to be incomplete at random. The estimation criterion was minimization of risk for quadratic loss. The estimators were the classical maximum likelihood estimate, the Bayesian posterior mode, and the posterior mean. An approximation was developed for the posterior mean. The Dirichlet, the conjugate prior for the multinomial distribution, was assumed for the prior distribution.
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
Molitor, John
2012-03-01
Bayesian methods have seen an increase in popularity in a wide variety of scientific fields, including epidemiology. One of the main reasons for their widespread application is the power of the Markov chain Monte Carlo (MCMC) techniques generally used to fit these models. As a result, researchers often implicitly associate Bayesian models with MCMC estimation procedures. However, Bayesian models do not always require Markov-chain-based methods for parameter estimation. This is important, as MCMC estimation methods, while generally quite powerful, are complex and computationally expensive and suffer from convergence problems related to the manner in which they generate correlated samples used to estimate probability distributions for parameters of interest. In this issue of the Journal, Cole et al. (Am J Epidemiol. 2012;175(5):368-375) present an interesting paper that discusses non-Markov-chain-based approaches to fitting Bayesian models. These methods, though limited, can overcome some of the problems associated with MCMC techniques and promise to provide simpler approaches to fitting Bayesian models. Applied researchers will find these estimation approaches intuitively appealing and will gain a deeper understanding of Bayesian models through their use. However, readers should be aware that other non-Markov-chain-based methods are currently in active development and have been widely published in other fields.
Spertus, Jacob V; Normand, Sharon-Lise T
2018-04-23
High-dimensional data provide many potential confounders that may bolster the plausibility of the ignorability assumption in causal inference problems. Propensity score methods are powerful causal inference tools, which are popular in health care research and are particularly useful for high-dimensional data. Recent interest has surrounded a Bayesian treatment of propensity scores in order to flexibly model the treatment assignment mechanism and summarize posterior quantities while incorporating variance from the treatment model. We discuss methods for Bayesian propensity score analysis of binary treatments, focusing on modern methods for high-dimensional Bayesian regression and the propagation of uncertainty. We introduce a novel and simple estimator for the average treatment effect that capitalizes on conjugacy of the beta and binomial distributions. Through simulations, we show the utility of horseshoe priors and Bayesian additive regression trees paired with our new estimator, while demonstrating the importance of including variance from the treatment regression model. An application to cardiac stent data with almost 500 confounders and 9000 patients illustrates approaches and facilitates comparison with existing alternatives. As measured by a falsifiability endpoint, we improved confounder adjustment compared with past observational research of the same problem. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Karabatsos, George
2017-02-01
Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.
Assessment of CT image quality using a Bayesian approach
NASA Astrophysics Data System (ADS)
Reginatto, M.; Anton, M.; Elster, C.
2017-08-01
One of the most promising approaches for evaluating CT image quality is task-specific quality assessment. This involves a simplified version of a clinical task, e.g. deciding whether an image belongs to the class of images that contain the signature of a lesion or not. Task-specific quality assessment can be done by model observers, which are mathematical procedures that carry out the classification task. The most widely used figure of merit for CT image quality is the area under the ROC curve (AUC), a quantity which characterizes the performance of a given model observer. In order to estimate AUC from a finite sample of images, different approaches from classical statistics have been suggested. The goal of this paper is to introduce task-specific quality assessment of CT images to metrology and to propose a novel Bayesian estimation of AUC for the channelized Hotelling observer (CHO) applied to the task of detecting a lesion at a known image location. It is assumed that signal-present and signal-absent images follow multivariate normal distributions with the same covariance matrix. The Bayesian approach results in a posterior distribution for the AUC of the CHO which provides in addition a complete characterization of the uncertainty of this figure of merit. The approach is illustrated by its application to both simulated and experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yu; Hou, Zhangshuan; Huang, Maoyi
2013-12-10
This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC) - Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find thatmore » using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent - as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to the different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.« less
NASA Astrophysics Data System (ADS)
Silva, F. E. O. E.; Naghettini, M. D. C.; Fernandes, W.
2014-12-01
This paper evaluated the uncertainties associated with the estimation of the parameters of a conceptual rainfall-runoff model, through the use of Bayesian inference techniques by Monte Carlo simulation. The Pará River sub-basin, located in the upper São Francisco river basin, in southeastern Brazil, was selected for developing the studies. In this paper, we used the Rio Grande conceptual hydrologic model (EHR/UFMG, 2001) and the Markov Chain Monte Carlo simulation method named DREAM (VRUGT, 2008a). Two probabilistic models for the residues were analyzed: (i) the classic [Normal likelihood - r ≈ N (0, σ²)]; and (ii) a generalized likelihood (SCHOUPS & VRUGT, 2010), in which it is assumed that the differences between observed and simulated flows are correlated, non-stationary, and distributed as a Skew Exponential Power density. The assumptions made for both models were checked to ensure that the estimation of uncertainties in the parameters was not biased. The results showed that the Bayesian approach proved to be adequate to the proposed objectives, enabling and reinforcing the importance of assessing the uncertainties associated with hydrological modeling.
Bayesian estimation of the discrete coefficient of determination.
Chen, Ting; Braga-Neto, Ulisses M
2016-12-01
The discrete coefficient of determination (CoD) measures the nonlinear interaction between discrete predictor and target variables and has had far-reaching applications in Genomic Signal Processing. Previous work has addressed the inference of the discrete CoD using classical parametric and nonparametric approaches. In this paper, we introduce a Bayesian framework for the inference of the discrete CoD. We derive analytically the optimal minimum mean-square error (MMSE) CoD estimator, as well as a CoD estimator based on the Optimal Bayesian Predictor (OBP). For the latter estimator, exact expressions for its bias, variance, and root-mean-square (RMS) are given. The accuracy of both Bayesian CoD estimators with non-informative and informative priors, under fixed or random parameters, is studied via analytical and numerical approaches. We also demonstrate the application of the proposed Bayesian approach in the inference of gene regulatory networks, using gene-expression data from a previously published study on metastatic melanoma.
Uncertainty Analysis and Parameter Estimation For Nearshore Hydrodynamic Models
NASA Astrophysics Data System (ADS)
Ardani, S.; Kaihatu, J. M.
2012-12-01
Numerical models represent deterministic approaches used for the relevant physical processes in the nearshore. Complexity of the physics of the model and uncertainty involved in the model inputs compel us to apply a stochastic approach to analyze the robustness of the model. The Bayesian inverse problem is one powerful way to estimate the important input model parameters (determined by apriori sensitivity analysis) and can be used for uncertainty analysis of the outputs. Bayesian techniques can be used to find the range of most probable parameters based on the probability of the observed data and the residual errors. In this study, the effect of input data involving lateral (Neumann) boundary conditions, bathymetry and off-shore wave conditions on nearshore numerical models are considered. Monte Carlo simulation is applied to a deterministic numerical model (the Delft3D modeling suite for coupled waves and flow) for the resulting uncertainty analysis of the outputs (wave height, flow velocity, mean sea level and etc.). Uncertainty analysis of outputs is performed by random sampling from the input probability distribution functions and running the model as required until convergence to the consistent results is achieved. The case study used in this analysis is the Duck94 experiment, which was conducted at the U.S. Army Field Research Facility at Duck, North Carolina, USA in the fall of 1994. The joint probability of model parameters relevant for the Duck94 experiments will be found using the Bayesian approach. We will further show that, by using Bayesian techniques to estimate the optimized model parameters as inputs and applying them for uncertainty analysis, we can obtain more consistent results than using the prior information for input data which means that the variation of the uncertain parameter will be decreased and the probability of the observed data will improve as well. Keywords: Monte Carlo Simulation, Delft3D, uncertainty analysis, Bayesian techniques, MCMC
A Bayesian Assessment of Seismic Semi-Periodicity Forecasts
NASA Astrophysics Data System (ADS)
Nava, F.; Quinteros, C.; Glowacka, E.; Frez, J.
2016-01-01
Among the schemes for earthquake forecasting, the search for semi-periodicity during large earthquakes in a given seismogenic region plays an important role. When considering earthquake forecasts based on semi-periodic sequence identification, the Bayesian formalism is a useful tool for: (1) assessing how well a given earthquake satisfies a previously made forecast; (2) re-evaluating the semi-periodic sequence probability; and (3) testing other prior estimations of the sequence probability. A comparison of Bayesian estimates with updated estimates of semi-periodic sequences that incorporate new data not used in the original estimates shows extremely good agreement, indicating that: (1) the probability that a semi-periodic sequence is not due to chance is an appropriate estimate for the prior sequence probability estimate; and (2) the Bayesian formalism does a very good job of estimating corrected semi-periodicity probabilities, using slightly less data than that used for updated estimates. The Bayesian approach is exemplified explicitly by its application to the Parkfield semi-periodic forecast, and results are given for its application to other forecasts in Japan and Venezuela.
NASA Astrophysics Data System (ADS)
Wang, L.; Davis, J. L.; Tamisiea, M. E.
2017-12-01
The Antarctic ice sheet (AIS) holds about 60% of all fresh water on the Earth, an amount equivalent to about 58 m of sea-level rise. Observation of AIS mass change is thus essential in determining and predicting its contribution to sea level. While the ice mass loss estimates for West Antarctica (WA) and the Antarctic Peninsula (AP) are in good agreement, what the mass balance over East Antarctica (EA) is, and whether or not it compensates for the mass loss is under debate. Besides the different error sources and sensitivities of different measurement types, complex spatial and temporal variabilities would be another factor complicating the accurate estimation of the AIS mass balance. Therefore, a model that allows for variabilities in both melting rate and seasonal signals would seem appropriate in the estimation of present-day AIS melting. We present a stochastic filter technique, which enables the Bayesian separation of the systematic stripe noise and mass signal in decade-length GRACE monthly gravity series, and allows the estimation of time-variable seasonal and inter-annual components in the signals. One of the primary advantages of this Bayesian method is that it yields statistically rigorous uncertainty estimates reflecting the inherent spatial resolution of the data. By applying the stochastic filter to the decade-long GRACE observations, we present the temporal variabilities of the AIS mass balance at basin scale, particularly over East Antarctica, and decipher the EA mass variations in the past decade, and their role in affecting overall AIS mass balance and sea level.
Bayesian Framework for Water Quality Model Uncertainty Estimation and Risk Management
A formal Bayesian methodology is presented for integrated model calibration and risk-based water quality management using Bayesian Monte Carlo simulation and maximum likelihood estimation (BMCML). The primary focus is on lucid integration of model calibration with risk-based wat...
Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...
Estimating Tree Height-Diameter Models with the Bayesian Method
Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei
2014-01-01
Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the “best” model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2. PMID:24711733
Estimating tree height-diameter models with the Bayesian method.
Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei
2014-01-01
Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the "best" model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2.
Analyzing thresholds and efficiency with hierarchical Bayesian logistic regression.
Houpt, Joseph W; Bittner, Jennifer L
2018-07-01
Ideal observer analysis is a fundamental tool used widely in vision science for analyzing the efficiency with which a cognitive or perceptual system uses available information. The performance of an ideal observer provides a formal measure of the amount of information in a given experiment. The ratio of human to ideal performance is then used to compute efficiency, a construct that can be directly compared across experimental conditions while controlling for the differences due to the stimuli and/or task specific demands. In previous research using ideal observer analysis, the effects of varying experimental conditions on efficiency have been tested using ANOVAs and pairwise comparisons. In this work, we present a model that combines Bayesian estimates of psychometric functions with hierarchical logistic regression for inference about both unadjusted human performance metrics and efficiencies. Our approach improves upon the existing methods by constraining the statistical analysis using a standard model connecting stimulus intensity to human observer accuracy and by accounting for variability in the estimates of human and ideal observer performance scores. This allows for both individual and group level inferences. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bayesian analysis of U.S. hurricane climate
Elsner, James B.; Bossak, Brian H.
2001-01-01
Predictive climate distributions of U.S. landfalling hurricanes are estimated from observational records over the period 1851–2000. The approach is Bayesian, combining the reliable records of hurricane activity during the twentieth century with the less precise accounts of activity during the nineteenth century to produce a best estimate of the posterior distribution on the annual rates. The methodology provides a predictive distribution of future activity that serves as a climatological benchmark. Results are presented for the entire coast as well as for the Gulf Coast, Florida, and the East Coast. Statistics on the observed annual counts of U.S. hurricanes, both for the entire coast and by region, are similar within each of the three consecutive 50-yr periods beginning in 1851. However, evidence indicates that the records during the nineteenth century are less precise. Bayesian theory provides a rational approach for defining hurricane climate that uses all available information and that makes no assumption about whether the 150-yr record of hurricanes has been adequately or uniformly monitored. The analysis shows that the number of major hurricanes expected to reach the U.S. coast over the next 30 yr is 18 and the number of hurricanes expected to hit Florida is 20.
Accurate Biomass Estimation via Bayesian Adaptive Sampling
NASA Technical Reports Server (NTRS)
Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay
2005-01-01
The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.
Staatz, Christine E; Tett, Susan E
2011-12-01
This review seeks to summarize the available data about Bayesian estimation of area under the plasma concentration-time curve (AUC) and dosage prediction for mycophenolic acid (MPA) and evaluate whether sufficient evidence is available for routine use of Bayesian dosage prediction in clinical practice. A literature search identified 14 studies that assessed the predictive performance of maximum a posteriori Bayesian estimation of MPA AUC and one report that retrospectively evaluated how closely dosage recommendations based on Bayesian forecasting achieved targeted MPA exposure. Studies to date have mostly been undertaken in renal transplant recipients, with limited investigation in patients treated with MPA for autoimmune disease or haematopoietic stem cell transplantation. All of these studies have involved use of the mycophenolate mofetil (MMF) formulation of MPA, rather than the enteric-coated mycophenolate sodium (EC-MPS) formulation. Bias associated with estimation of MPA AUC using Bayesian forecasting was generally less than 10%. However some difficulties with imprecision was evident, with values ranging from 4% to 34% (based on estimation involving two or more concentration measurements). Evaluation of whether MPA dosing decisions based on Bayesian forecasting (by the free website service https://pharmaco.chu-limoges.fr) achieved target drug exposure has only been undertaken once. When MMF dosage recommendations were applied by clinicians, a higher proportion (72-80%) of subsequent estimated MPA AUC values were within the 30-60 mg · h/L target range, compared with when dosage recommendations were not followed (only 39-57% within target range). Such findings provide evidence that Bayesian dosage prediction is clinically useful for achieving target MPA AUC. This study, however, was retrospective and focussed only on adult renal transplant recipients. Furthermore, in this study, Bayesian-generated AUC estimations and dosage predictions were not compared with a later full measured AUC but rather with a further AUC estimate based on a second Bayesian analysis. This study also provided some evidence that a useful monitoring schedule for MPA AUC following adult renal transplant would be every 2 weeks during the first month post-transplant, every 1-3 months between months 1 and 12, and each year thereafter. It will be interesting to see further validations in different patient groups using the free website service. In summary, the predictive performance of Bayesian estimation of MPA, comparing estimated with measured AUC values, has been reported in several studies. However, the next step of predicting dosages based on these Bayesian-estimated AUCs, and prospectively determining how closely these predicted dosages give drug exposure matching targeted AUCs, remains largely unaddressed. Further prospective studies are required, particularly in non-renal transplant patients and with the EC-MPS formulation. Other important questions remain to be answered, such as: do Bayesian forecasting methods devised to date use the best population pharmacokinetic models or most accurate algorithms; are the methods simple to use for routine clinical practice; do the algorithms actually improve dosage estimations beyond empirical recommendations in all groups that receive MPA therapy; and, importantly, do the dosage predictions, when followed, improve patient health outcomes?
Estimated value of insurance premium due to Citarum River flood by using Bayesian method
NASA Astrophysics Data System (ADS)
Sukono; Aisah, I.; Tampubolon, Y. R. H.; Napitupulu, H.; Supian, S.; Subiyanto; Sidi, P.
2018-03-01
Citarum river flood in South Bandung, West Java Indonesia, often happens every year. It causes property damage, producing economic loss. The risk of loss can be mitigated by following the flood insurance program. In this paper, we discussed about the estimated value of insurance premiums due to Citarum river flood by Bayesian method. It is assumed that the risk data for flood losses follows the Pareto distribution with the right fat-tail. The estimation of distribution model parameters is done by using Bayesian method. First, parameter estimation is done with assumption that prior comes from Gamma distribution family, while observation data follow Pareto distribution. Second, flood loss data is simulated based on the probability of damage in each flood affected area. The result of the analysis shows that the estimated premium value of insurance based on pure premium principle is as follows: for the loss value of IDR 629.65 million of premium IDR 338.63 million; for a loss of IDR 584.30 million of its premium IDR 314.24 million; and the loss value of IDR 574.53 million of its premium IDR 308.95 million. The premium value estimator can be used as neither a reference in the decision of reasonable premium determination, so as not to incriminate the insured, nor it result in loss of the insurer.
Walters, Kevin
2012-08-07
In this paper we use approximate Bayesian computation to estimate the parameters in an immortal model of colonic stem cell division. We base the inferences on the observed DNA methylation patterns of cells sampled from the human colon. Utilising DNA methylation patterns as a form of molecular clock is an emerging area of research and has been used in several studies investigating colonic stem cell turnover. There is much debate concerning the two competing models of stem cell turnover: the symmetric (immortal) and asymmetric models. Early simulation studies concluded that the observed methylation data were not consistent with the immortal model. A later modified version of the immortal model that included preferential strand segregation was subsequently shown to be consistent with the same methylation data. Most of this earlier work assumes site independent methylation models that do not take account of the known processivity of methyltransferases whilst other work does not take into account the methylation errors that occur in differentiated cells. This paper addresses both of these issues for the immortal model and demonstrates that approximate Bayesian computation provides accurate estimates of the parameters in this neighbour-dependent model of methylation error rates. The results indicate that if colonic stem cells divide asymmetrically then colon stem cell niches are maintained by more than 8 stem cells. Results also indicate the possibility of preferential strand segregation and provide clear evidence against a site-independent model for methylation errors. In addition, algebraic expressions for some of the summary statistics used in the approximate Bayesian computation (that allow for the additional variation arising from cell division in differentiated cells) are derived and their utility discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bayesian inference of a historical bottleneck in a heavily exploited marine mammal.
Hoffman, J I; Grant, S M; Forcada, J; Phillips, C D
2011-10-01
Emerging Bayesian analytical approaches offer increasingly sophisticated means of reconstructing historical population dynamics from genetic data, but have been little applied to scenarios involving demographic bottlenecks. Consequently, we analysed a large mitochondrial and microsatellite dataset from the Antarctic fur seal Arctocephalus gazella, a species subjected to one of the most extreme examples of uncontrolled exploitation in history when it was reduced to the brink of extinction by the sealing industry during the late eighteenth and nineteenth centuries. Classical bottleneck tests, which exploit the fact that rare alleles are rapidly lost during demographic reduction, yielded ambiguous results. In contrast, a strong signal of recent demographic decline was detected using both Bayesian skyline plots and Approximate Bayesian Computation, the latter also allowing derivation of posterior parameter estimates that were remarkably consistent with historical observations. This was achieved using only contemporary samples, further emphasizing the potential of Bayesian approaches to address important problems in conservation and evolutionary biology. © 2011 Blackwell Publishing Ltd.
Bayesian Inference of High-Dimensional Dynamical Ocean Models
NASA Astrophysics Data System (ADS)
Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.
2015-12-01
This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.
Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models.
Daunizeau, J; Friston, K J; Kiebel, S J
2009-11-01
In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.
An introduction to Bayesian statistics in health psychology.
Depaoli, Sarah; Rus, Holly M; Clifton, James P; van de Schoot, Rens; Tiemensma, Jitske
2017-09-01
The aim of the current article is to provide a brief introduction to Bayesian statistics within the field of health psychology. Bayesian methods are increasing in prevalence in applied fields, and they have been shown in simulation research to improve the estimation accuracy of structural equation models, latent growth curve (and mixture) models, and hierarchical linear models. Likewise, Bayesian methods can be used with small sample sizes since they do not rely on large sample theory. In this article, we discuss several important components of Bayesian statistics as they relate to health-based inquiries. We discuss the incorporation and impact of prior knowledge into the estimation process and the different components of the analysis that should be reported in an article. We present an example implementing Bayesian estimation in the context of blood pressure changes after participants experienced an acute stressor. We conclude with final thoughts on the implementation of Bayesian statistics in health psychology, including suggestions for reviewing Bayesian manuscripts and grant proposals. We have also included an extensive amount of online supplementary material to complement the content presented here, including Bayesian examples using many different software programmes and an extensive sensitivity analysis examining the impact of priors.
Sensitivity analyses for sparse-data problems-using weakly informative bayesian priors.
Hamra, Ghassan B; MacLehose, Richard F; Cole, Stephen R
2013-03-01
Sparse-data problems are common, and approaches are needed to evaluate the sensitivity of parameter estimates based on sparse data. We propose a Bayesian approach that uses weakly informative priors to quantify sensitivity of parameters to sparse data. The weakly informative prior is based on accumulated evidence regarding the expected magnitude of relationships using relative measures of disease association. We illustrate the use of weakly informative priors with an example of the association of lifetime alcohol consumption and head and neck cancer. When data are sparse and the observed information is weak, a weakly informative prior will shrink parameter estimates toward the prior mean. Additionally, the example shows that when data are not sparse and the observed information is not weak, a weakly informative prior is not influential. Advancements in implementation of Markov Chain Monte Carlo simulation make this sensitivity analysis easily accessible to the practicing epidemiologist.
Sensitivity Analyses for Sparse-Data Problems—Using Weakly Informative Bayesian Priors
Hamra, Ghassan B.; MacLehose, Richard F.; Cole, Stephen R.
2013-01-01
Sparse-data problems are common, and approaches are needed to evaluate the sensitivity of parameter estimates based on sparse data. We propose a Bayesian approach that uses weakly informative priors to quantify sensitivity of parameters to sparse data. The weakly informative prior is based on accumulated evidence regarding the expected magnitude of relationships using relative measures of disease association. We illustrate the use of weakly informative priors with an example of the association of lifetime alcohol consumption and head and neck cancer. When data are sparse and the observed information is weak, a weakly informative prior will shrink parameter estimates toward the prior mean. Additionally, the example shows that when data are not sparse and the observed information is not weak, a weakly informative prior is not influential. Advancements in implementation of Markov Chain Monte Carlo simulation make this sensitivity analysis easily accessible to the practicing epidemiologist. PMID:23337241
Pedroza, Claudia; Truong, Van Thi Thanh
2017-11-02
Analyses of multicenter studies often need to account for center clustering to ensure valid inference. For binary outcomes, it is particularly challenging to properly adjust for center when the number of centers or total sample size is small, or when there are few events per center. Our objective was to evaluate the performance of generalized estimating equation (GEE) log-binomial and Poisson models, generalized linear mixed models (GLMMs) assuming binomial and Poisson distributions, and a Bayesian binomial GLMM to account for center effect in these scenarios. We conducted a simulation study with few centers (≤30) and 50 or fewer subjects per center, using both a randomized controlled trial and an observational study design to estimate relative risk. We compared the GEE and GLMM models with a log-binomial model without adjustment for clustering in terms of bias, root mean square error (RMSE), and coverage. For the Bayesian GLMM, we used informative neutral priors that are skeptical of large treatment effects that are almost never observed in studies of medical interventions. All frequentist methods exhibited little bias, and the RMSE was very similar across the models. The binomial GLMM had poor convergence rates, ranging from 27% to 85%, but performed well otherwise. The results show that both GEE models need to use small sample corrections for robust SEs to achieve proper coverage of 95% CIs. The Bayesian GLMM had similar convergence rates but resulted in slightly more biased estimates for the smallest sample sizes. However, it had the smallest RMSE and good coverage across all scenarios. These results were very similar for both study designs. For the analyses of multicenter studies with a binary outcome and few centers, we recommend adjustment for center with either a GEE log-binomial or Poisson model with appropriate small sample corrections or a Bayesian binomial GLMM with informative priors.
Bouhrara, Mustapha; Spencer, Richard G.
2015-01-01
Myelin water fraction (MWF) mapping with magnetic resonance imaging has led to the ability to directly observe myelination and demyelination in both the developing brain and in disease. Multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) has been proposed as a rapid approach for multicomponent relaxometry and has been applied to map MWF in human brain. However, even for the simplest two-pool signal model consisting of MWF and non-myelin-associated water, the dimensionality of the parameter space for obtaining MWF estimates remains high. This renders parameter estimation difficult, especially at low-to-moderate signal-to-noise ratios (SNR), due to the presence of local minima and the flatness of the fit residual energy surface used for parameter determination using conventional nonlinear least squares (NLLS)-based algorithms. In this study, we introduce three Bayesian approaches for analysis of the mcDESPOT signal model to determine MWF. Given the high dimensional nature of mcDESPOT signal model, and, thereby, the high dimensional marginalizations over nuisance parameters needed to derive the posterior probability distribution of MWF parameter, the introduced Bayesian analyses use different approaches to reduce the dimensionality of the parameter space. The first approach uses normalization by average signal amplitude, and assumes that noise can be accurately estimated from signal-free regions of the image. The second approach likewise uses average amplitude normalization, but incorporates a full treatment of noise as an unknown variable through marginalization. The third approach does not use amplitude normalization and incorporates marginalization over both noise and signal amplitude. Through extensive Monte Carlo numerical simulations and analysis of in-vivo human brain datasets exhibiting a range of SNR and spatial resolution, we demonstrated the markedly improved accuracy and precision in the estimation of MWF using these Bayesian methods as compared to the stochastic region contraction (SRC) implementation of NLLS. PMID:26499810
NASA Astrophysics Data System (ADS)
Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby
2013-12-01
This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.
Varughese, Eunice A.; Brinkman, Nichole E; Anneken, Emily M; Cashdollar, Jennifer S; Fout, G. Shay; Furlong, Edward T.; Kolpin, Dana W.; Glassmeyer, Susan T.; Keely, Scott P
2017-01-01
incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters.
A Bayesian kriging approach for blending satellite and ground precipitation observations
Verdin, Andrew P.; Rajagopalan, Balaji; Kleiber, William; Funk, Christopher C.
2015-01-01
Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution of the “true” observed precipitation value at each grid cell.
Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming
2011-01-01
Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005–2007. PMID:21776223
Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming
2011-06-01
Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005-2007.
ERIC Educational Resources Information Center
Sen, Sedat
2018-01-01
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood…
Vrancken, Bram; Lemey, Philippe; Rambaut, Andrew; Bedford, Trevor; Longdon, Ben; Günthard, Huldrych F.; Suchard, Marc A.
2014-01-01
Phylogenetic signal quantifies the degree to which resemblance in continuously-valued traits reflects phylogenetic relatedness. Measures of phylogenetic signal are widely used in ecological and evolutionary research, and are recently gaining traction in viral evolutionary studies. Standard estimators of phylogenetic signal frequently condition on data summary statistics of the repeated trait observations and fixed phylogenetics trees, resulting in information loss and potential bias. To incorporate the observation process and phylogenetic uncertainty in a model-based approach, we develop a novel Bayesian inference method to simultaneously estimate the evolutionary history and phylogenetic signal from molecular sequence data and repeated multivariate traits. Our approach builds upon a phylogenetic diffusion framework that model continuous trait evolution as a Brownian motion process and incorporates Pagel’s λ transformation parameter to estimate dependence among traits. We provide a computationally efficient inference implementation in the BEAST software package. We evaluate the synthetic performance of the Bayesian estimator of phylogenetic signal against standard estimators, and demonstrate the use of our coherent framework to address several virus-host evolutionary questions, including virulence heritability for HIV, antigenic evolution in influenza and HIV, and Drosophila sensitivity to sigma virus infection. Finally, we discuss model extensions that will make useful contributions to our flexible framework for simultaneously studying sequence and trait evolution. PMID:25780554
[Evaluation of estimation of prevalence ratio using bayesian log-binomial regression model].
Gao, W L; Lin, H; Liu, X N; Ren, X W; Li, J S; Shen, X P; Zhu, S L
2017-03-10
To evaluate the estimation of prevalence ratio ( PR ) by using bayesian log-binomial regression model and its application, we estimated the PR of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea in their infants by using bayesian log-binomial regression model in Openbugs software. The results showed that caregivers' recognition of infant' s risk signs of diarrhea was associated significantly with a 13% increase of medical care-seeking. Meanwhile, we compared the differences in PR 's point estimation and its interval estimation of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea and convergence of three models (model 1: not adjusting for the covariates; model 2: adjusting for duration of caregivers' education, model 3: adjusting for distance between village and township and child month-age based on model 2) between bayesian log-binomial regression model and conventional log-binomial regression model. The results showed that all three bayesian log-binomial regression models were convergence and the estimated PRs were 1.130(95 %CI : 1.005-1.265), 1.128(95 %CI : 1.001-1.264) and 1.132(95 %CI : 1.004-1.267), respectively. Conventional log-binomial regression model 1 and model 2 were convergence and their PRs were 1.130(95 % CI : 1.055-1.206) and 1.126(95 % CI : 1.051-1.203), respectively, but the model 3 was misconvergence, so COPY method was used to estimate PR , which was 1.125 (95 %CI : 1.051-1.200). In addition, the point estimation and interval estimation of PRs from three bayesian log-binomial regression models differed slightly from those of PRs from conventional log-binomial regression model, but they had a good consistency in estimating PR . Therefore, bayesian log-binomial regression model can effectively estimate PR with less misconvergence and have more advantages in application compared with conventional log-binomial regression model.
Bayesian depth estimation from monocular natural images.
Su, Che-Chun; Cormack, Lawrence K; Bovik, Alan C
2017-05-01
Estimating an accurate and naturalistic dense depth map from a single monocular photographic image is a difficult problem. Nevertheless, human observers have little difficulty understanding the depth structure implied by photographs. Two-dimensional (2D) images of the real-world environment contain significant statistical information regarding the three-dimensional (3D) structure of the world that the vision system likely exploits to compute perceived depth, monocularly as well as binocularly. Toward understanding how this might be accomplished, we propose a Bayesian model of monocular depth computation that recovers detailed 3D scene structures by extracting reliable, robust, depth-sensitive statistical features from single natural images. These features are derived using well-accepted univariate natural scene statistics (NSS) models and recent bivariate/correlation NSS models that describe the relationships between 2D photographic images and their associated depth maps. This is accomplished by building a dictionary of canonical local depth patterns from which NSS features are extracted as prior information. The dictionary is used to create a multivariate Gaussian mixture (MGM) likelihood model that associates local image features with depth patterns. A simple Bayesian predictor is then used to form spatial depth estimates. The depth results produced by the model, despite its simplicity, correlate well with ground-truth depths measured by a current-generation terrestrial light detection and ranging (LIDAR) scanner. Such a strong form of statistical depth information could be used by the visual system when creating overall estimated depth maps incorporating stereopsis, accommodation, and other conditions. Indeed, even in isolation, the Bayesian predictor delivers depth estimates that are competitive with state-of-the-art "computer vision" methods that utilize highly engineered image features and sophisticated machine learning algorithms.
A Bayesian nonparametric method for prediction in EST analysis
Lijoi, Antonio; Mena, Ramsés H; Prünster, Igor
2007-01-01
Background Expressed sequence tags (ESTs) analyses are a fundamental tool for gene identification in organisms. Given a preliminary EST sample from a certain library, several statistical prediction problems arise. In particular, it is of interest to estimate how many new genes can be detected in a future EST sample of given size and also to determine the gene discovery rate: these estimates represent the basis for deciding whether to proceed sequencing the library and, in case of a positive decision, a guideline for selecting the size of the new sample. Such information is also useful for establishing sequencing efficiency in experimental design and for measuring the degree of redundancy of an EST library. Results In this work we propose a Bayesian nonparametric approach for tackling statistical problems related to EST surveys. In particular, we provide estimates for: a) the coverage, defined as the proportion of unique genes in the library represented in the given sample of reads; b) the number of new unique genes to be observed in a future sample; c) the discovery rate of new genes as a function of the future sample size. The Bayesian nonparametric model we adopt conveys, in a statistically rigorous way, the available information into prediction. Our proposal has appealing properties over frequentist nonparametric methods, which become unstable when prediction is required for large future samples. EST libraries, previously studied with frequentist methods, are analyzed in detail. Conclusion The Bayesian nonparametric approach we undertake yields valuable tools for gene capture and prediction in EST libraries. The estimators we obtain do not feature the kind of drawbacks associated with frequentist estimators and are reliable for any size of the additional sample. PMID:17868445
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan
In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic amplitude versus angle (AVA) and controlled source electromagnetic (CSEM) data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo (MCMC) sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis (DREAM) and Adaptive Metropolis (AM) samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and CSEM data. The multi-chain MCMC is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration,more » the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic AVA and CSEM joint inversion provides better estimation of reservoir saturations than the seismic AVA-only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated – reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
NASA Astrophysics Data System (ADS)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura
2017-12-01
In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.
NASA Astrophysics Data System (ADS)
Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.
2015-12-01
Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.
Estimation and Application of Ecological Memory Functions in Time and Space
NASA Astrophysics Data System (ADS)
Itter, M.; Finley, A. O.; Dawson, A.
2017-12-01
A common goal in quantitative ecology is the estimation or prediction of ecological processes as a function of explanatory variables (or covariates). Frequently, the ecological process of interest and associated covariates vary in time, space, or both. Theory indicates many ecological processes exhibit memory to local, past conditions. Despite such theoretical understanding, few methods exist to integrate observations from the recent past or within a local neighborhood as drivers of these processes. We build upon recent methodological advances in ecology and spatial statistics to develop a Bayesian hierarchical framework to estimate so-called ecological memory functions; that is, weight-generating functions that specify the relative importance of local, past covariate observations to ecological processes. Memory functions are estimated using a set of basis functions in time and/or space, allowing for flexible ecological memory based on a reduced set of parameters. Ecological memory functions are entirely data driven under the Bayesian hierarchical framework—no a priori assumptions are made regarding functional forms. Memory function uncertainty follows directly from posterior distributions for model parameters allowing for tractable propagation of error to predictions of ecological processes. We apply the model framework to simulated spatio-temporal datasets generated using memory functions of varying complexity. The framework is also applied to estimate the ecological memory of annual boreal forest growth to local, past water availability. Consistent with ecological understanding of boreal forest growth dynamics, memory to past water availability peaks in the year previous to growth and slowly decays to zero in five to eight years. The Bayesian hierarchical framework has applicability to a broad range of ecosystems and processes allowing for increased understanding of ecosystem responses to local and past conditions and improved prediction of ecological processes.
NASA Astrophysics Data System (ADS)
Meillier, Céline; Chatelain, Florent; Michel, Olivier; Bacon, Roland; Piqueras, Laure; Bacher, Raphael; Ayasso, Hacheme
2016-04-01
We present SELFI, the Source Emission Line FInder, a new Bayesian method optimized for detection of faint galaxies in Multi Unit Spectroscopic Explorer (MUSE) deep fields. MUSE is the new panoramic integral field spectrograph at the Very Large Telescope (VLT) that has unique capabilities for spectroscopic investigation of the deep sky. It has provided data cubes with 324 million voxels over a single 1 arcmin2 field of view. To address the challenge of faint-galaxy detection in these large data cubes, we developed a new method that processes 3D data either for modeling or for estimation and extraction of source configurations. This object-based approach yields a natural sparse representation of the sources in massive data fields, such as MUSE data cubes. In the Bayesian framework, the parameters that describe the observed sources are considered random variables. The Bayesian model leads to a general and robust algorithm where the parameters are estimated in a fully data-driven way. This detection algorithm was applied to the MUSE observation of Hubble Deep Field-South. With 27 h total integration time, these observations provide a catalog of 189 sources of various categories and with secured redshift. The algorithm retrieved 91% of the galaxies with only 9% false detection. This method also allowed the discovery of three new Lyα emitters and one [OII] emitter, all without any Hubble Space Telescope counterpart. We analyzed the reasons for failure for some targets, and found that the most important limitation of the method is when faint sources are located in the vicinity of bright spatially resolved galaxies that cannot be approximated by the Sérsic elliptical profile. The software and its documentation are available on the MUSE science web service (muse-vlt.eu/science).
Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background
NASA Astrophysics Data System (ADS)
McEwen, J. D.; Feeney, S. M.; Peiris, H. V.; Wiaux, Y.; Ringeval, C.; Bouchet, F. R.
2017-12-01
Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high-energy scales. We develop a framework for cosmic string inference from observations of the CMB made over the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations, we demonstrate the application of our framework and evaluate its performance. The method is sensitive to Gμ ∼ 5 × 10-7 for Nambu-Goto string simulations that include an integrated Sachs-Wolfe contribution only and do not include any recombination effects, before any parameters of the analysis are optimized. The sensitivity of the method compares favourably with other techniques applied to the same simulations.
Bayesian analysis of rare events
NASA Astrophysics Data System (ADS)
Straub, Daniel; Papaioannou, Iason; Betz, Wolfgang
2016-06-01
In many areas of engineering and science there is an interest in predicting the probability of rare events, in particular in applications related to safety and security. Increasingly, such predictions are made through computer models of physical systems in an uncertainty quantification framework. Additionally, with advances in IT, monitoring and sensor technology, an increasing amount of data on the performance of the systems is collected. This data can be used to reduce uncertainty, improve the probability estimates and consequently enhance the management of rare events and associated risks. Bayesian analysis is the ideal method to include the data into the probabilistic model. It ensures a consistent probabilistic treatment of uncertainty, which is central in the prediction of rare events, where extrapolation from the domain of observation is common. We present a framework for performing Bayesian updating of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical rejection-sampling approach to Bayesian analysis, which enables the use of established methods for estimating probabilities of rare events. By drawing upon these methods, the framework makes use of their computational efficiency. These methods include the First-Order Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation (SuS). In this contribution, we briefly review these methods in the context of the BUS framework and investigate their applicability to Bayesian analysis of rare events in different settings. We find that, for some applications, FORM can be highly efficient and is surprisingly accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a general setting, BUS implemented through IS and SuS is more robust and flexible.
Hybrid-coded 3D structured illumination imaging with Bayesian estimation (Conference Presentation)
NASA Astrophysics Data System (ADS)
Chen, Hsi-Hsun; Luo, Yuan; Singh, Vijay R.
2016-03-01
Light induced fluorescent microscopy has long been developed to observe and understand the object at microscale, such as cellular sample. However, the transfer function of lense-based imaging system limits the resolution so that the fine and detailed structure of sample cannot be identified clearly. The techniques of resolution enhancement are fascinated to break the limit of resolution for objective given. In the past decades, the resolution enhancement imaging has been investigated through variety of strategies, including photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), stimulated emission depletion (STED), and structure illuminated microscopy (SIM). In those methods, only SIM can intrinsically improve the resolution limit for a system without taking the structure properties of object into account. In this paper, we develop a SIM associated with Bayesian estimation, furthermore, with optical sectioning capability rendered from HiLo processing, resulting the high resolution through 3D volume. This 3D SIM can provide the optical sectioning and resolution enhancement performance, and be robust to noise owing to the Data driven Bayesian estimation reconstruction proposed. For validating the 3D SIM, we show our simulation result of algorithm, and the experimental result demonstrating the 3D resolution enhancement.
NASA Astrophysics Data System (ADS)
Stucchi Boschi, Raquel; Qin, Mingming; Gimenez, Daniel; Cooper, Miguel
2016-04-01
Modeling is an important tool for better understanding and assessing land use impacts on landscape processes. A key point for environmental modeling is the knowledge of soil hydraulic properties. However, direct determination of soil hydraulic properties is difficult and costly, particularly in vast and remote regions such as one constituting the Amazon Biome. One way to overcome this problem is to extrapolate accurately estimated data to pedologically similar sites. The van Genuchten (VG) parametric equation is the most commonly used for modeling SWRC. The use of a Bayesian approach in combination with the Markov chain Monte Carlo to estimate the VG parameters has several advantages compared to the widely used global optimization techniques. The Bayesian approach provides posterior distributions of parameters that are independent from the initial values and allow for uncertainty analyses. The main objectives of this study were: i) to estimate hydraulic parameters from data of pasture and forest sites by the Bayesian inverse modeling approach; and ii) to investigate the extrapolation of the estimated VG parameters to a nearby toposequence with pedologically similar soils to those used for its estimate. The parameters were estimated from volumetric water content and tension observations obtained after rainfall events during a 207-day period from pasture and forest sites located in the southeastern Amazon region. These data were used to run HYDRUS-1D under a Differential Evolution Adaptive Metropolis (DREAM) scheme 10,000 times, and only the last 2,500 times were used to calculate the posterior distributions of each hydraulic parameter along with 95% confidence intervals (CI) of volumetric water content and tension time series. Then, the posterior distributions were used to generate hydraulic parameters for two nearby toposequences composed by six soil profiles, three are under forest and three are under pasture. The parameters of the nearby site were accepted when the predicted tension time series were within the 95% CI which is derived from the calibration site using DREAM scheme.
Dahabreh, Issa J; Trikalinos, Thomas A; Lau, Joseph; Schmid, Christopher H
2017-03-01
To compare statistical methods for meta-analysis of sensitivity and specificity of medical tests (e.g., diagnostic or screening tests). We constructed a database of PubMed-indexed meta-analyses of test performance from which 2 × 2 tables for each included study could be extracted. We reanalyzed the data using univariate and bivariate random effects models fit with inverse variance and maximum likelihood methods. Analyses were performed using both normal and binomial likelihoods to describe within-study variability. The bivariate model using the binomial likelihood was also fit using a fully Bayesian approach. We use two worked examples-thoracic computerized tomography to detect aortic injury and rapid prescreening of Papanicolaou smears to detect cytological abnormalities-to highlight that different meta-analysis approaches can produce different results. We also present results from reanalysis of 308 meta-analyses of sensitivity and specificity. Models using the normal approximation produced sensitivity and specificity estimates closer to 50% and smaller standard errors compared to models using the binomial likelihood; absolute differences of 5% or greater were observed in 12% and 5% of meta-analyses for sensitivity and specificity, respectively. Results from univariate and bivariate random effects models were similar, regardless of estimation method. Maximum likelihood and Bayesian methods produced almost identical summary estimates under the bivariate model; however, Bayesian analyses indicated greater uncertainty around those estimates. Bivariate models produced imprecise estimates of the between-study correlation of sensitivity and specificity. Differences between methods were larger with increasing proportion of studies that were small or required a continuity correction. The binomial likelihood should be used to model within-study variability. Univariate and bivariate models give similar estimates of the marginal distributions for sensitivity and specificity. Bayesian methods fully quantify uncertainty and their ability to incorporate external evidence may be useful for imprecisely estimated parameters. Copyright © 2017 Elsevier Inc. All rights reserved.
Estimation of post-test probabilities by residents: Bayesian reasoning versus heuristics?
Hall, Stacey; Phang, Sen Han; Schaefer, Jeffrey P; Ghali, William; Wright, Bruce; McLaughlin, Kevin
2014-08-01
Although the process of diagnosing invariably begins with a heuristic, we encourage our learners to support their diagnoses by analytical cognitive processes, such as Bayesian reasoning, in an attempt to mitigate the effects of heuristics on diagnosing. There are, however, limited data on the use ± impact of Bayesian reasoning on the accuracy of disease probability estimates. In this study our objective was to explore whether Internal Medicine residents use a Bayesian process to estimate disease probabilities by comparing their disease probability estimates to literature-derived Bayesian post-test probabilities. We gave 35 Internal Medicine residents four clinical vignettes in the form of a referral letter and asked them to estimate the post-test probability of the target condition in each case. We then compared these to literature-derived probabilities. For each vignette the estimated probability was significantly different from the literature-derived probability. For the two cases with low literature-derived probability our participants significantly overestimated the probability of these target conditions being the correct diagnosis, whereas for the two cases with high literature-derived probability the estimated probability was significantly lower than the calculated value. Our results suggest that residents generate inaccurate post-test probability estimates. Possible explanations for this include ineffective application of Bayesian reasoning, attribute substitution whereby a complex cognitive task is replaced by an easier one (e.g., a heuristic), or systematic rater bias, such as central tendency bias. Further studies are needed to identify the reasons for inaccuracy of disease probability estimates and to explore ways of improving accuracy.
Cai, C; Rodet, T; Legoupil, S; Mohammad-Djafari, A
2013-11-01
Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images. This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed. The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also necessary to have the accurate spectrum information about the source-detector system. When dealing with experimental data, the spectrum can be predicted by a Monte Carlo simulator. For the materials between water and bone, less than 5% separation errors are observed on the estimated decomposition fractions. The proposed approach is a statistical reconstruction approach based on a nonlinear forward model counting the full beam polychromaticity and applied directly to the projections without taking negative-log. Compared to the approaches based on linear forward models and the BHA correction approaches, it has advantages in noise robustness and reconstruction accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzouk, Youssef
Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesianmore » inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.« less
NASA Astrophysics Data System (ADS)
Ait-El-Fquih, Boujemaa; El Gharamti, Mohamad; Hoteit, Ibrahim
2016-08-01
Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface groundwater models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKFOSA. Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25 % more accurate state and parameter estimations than the joint and dual approaches.
Data-driven confounder selection via Markov and Bayesian networks.
Häggström, Jenny
2018-06-01
To unbiasedly estimate a causal effect on an outcome unconfoundedness is often assumed. If there is sufficient knowledge on the underlying causal structure then existing confounder selection criteria can be used to select subsets of the observed pretreatment covariates, X, sufficient for unconfoundedness, if such subsets exist. Here, estimation of these target subsets is considered when the underlying causal structure is unknown. The proposed method is to model the causal structure by a probabilistic graphical model, for example, a Markov or Bayesian network, estimate this graph from observed data and select the target subsets given the estimated graph. The approach is evaluated by simulation both in a high-dimensional setting where unconfoundedness holds given X and in a setting where unconfoundedness only holds given subsets of X. Several common target subsets are investigated and the selected subsets are compared with respect to accuracy in estimating the average causal effect. The proposed method is implemented with existing software that can easily handle high-dimensional data, in terms of large samples and large number of covariates. The results from the simulation study show that, if unconfoundedness holds given X, this approach is very successful in selecting the target subsets, outperforming alternative approaches based on random forests and LASSO, and that the subset estimating the target subset containing all causes of outcome yields smallest MSE in the average causal effect estimation. © 2017, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Kim, Seongryong; Tkalčić, Hrvoje; Mustać, Marija; Rhie, Junkee; Ford, Sean
2016-04-01
A framework is presented within which we provide rigorous estimations for seismic sources and structures in the Northeast Asia. We use Bayesian inversion methods, which enable statistical estimations of models and their uncertainties based on data information. Ambiguities in error statistics and model parameterizations are addressed by hierarchical and trans-dimensional (trans-D) techniques, which can be inherently implemented in the Bayesian inversions. Hence reliable estimation of model parameters and their uncertainties is possible, thus avoiding arbitrary regularizations and parameterizations. Hierarchical and trans-D inversions are performed to develop a three-dimensional velocity model using ambient noise data. To further improve the model, we perform joint inversions with receiver function data using a newly developed Bayesian method. For the source estimation, a novel moment tensor inversion method is presented and applied to regional waveform data of the North Korean nuclear explosion tests. By the combination of new Bayesian techniques and the structural model, coupled with meaningful uncertainties related to each of the processes, more quantitative monitoring and discrimination of seismic events is possible.
Estimating mountain basin-mean precipitation from streamflow using Bayesian inference
NASA Astrophysics Data System (ADS)
Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Lundquist, Jessica D.
2015-10-01
Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in the topographical representativeness of precipitation gauges relative to the basin. To address this issue, we use Bayesian methodology coupled with a multimodel framework to infer basin-mean precipitation from streamflow observations, and we apply this approach to snow-dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing data from lower-elevation stations, the Bayesian Total Error Analysis (BATEA) methodology and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean precipitation, and compare it to basin-mean precipitation estimated using topographically informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with PRISM in terms of the rank of basins from wet to dry but differ in absolute values. In some of the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff ratios may be inconsistent with the regional climate. We also infer annual time series of basin precipitation using a two-step calibration approach. Assessment of the precision and robustness of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is primarily related to uncertainties in hydrologic model structure. Despite these limitations, time series of inferred annual precipitation under different model and parameter assumptions are strongly correlated with one another, suggesting that this approach is capable of resolving year-to-year variability in basin-mean precipitation.
Bayesian Monte Carlo and Maximum Likelihood Approach for ...
Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood estimation (BMCML) to calibrate a lake oxygen recovery model. We first derive an analytical solution of the differential equation governing lake-averaged oxygen dynamics as a function of time-variable wind speed. Statistical inferences on model parameters and predictive uncertainty are then drawn by Bayesian conditioning of the analytical solution on observed daily wind speed and oxygen concentration data obtained from an earlier study during two recovery periods on a eutrophic lake in upper state New York. The model is calibrated using oxygen recovery data for one year and statistical inferences were validated using recovery data for another year. Compared with essentially two-step, regression and optimization approach, the BMCML results are more comprehensive and performed relatively better in predicting the observed temporal dissolved oxygen levels (DO) in the lake. BMCML also produced comparable calibration and validation results with those obtained using popular Markov Chain Monte Carlo technique (MCMC) and is computationally simpler and easier to implement than the MCMC. Next, using the calibrated model, we derive an optimal relationship between liquid film-transfer coefficien
Tree Biomass Estimation of Chinese fir (Cunninghamia lanceolata) Based on Bayesian Method
Zhang, Jianguo
2013-01-01
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass. PMID:24278198
Tree biomass estimation of Chinese fir (Cunninghamia lanceolata) based on Bayesian method.
Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo
2013-01-01
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation W = a(D2H)b was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass.
Rediscovery of Good-Turing estimators via Bayesian nonparametrics.
Favaro, Stefano; Nipoti, Bernardo; Teh, Yee Whye
2016-03-01
The problem of estimating discovery probabilities originated in the context of statistical ecology, and in recent years it has become popular due to its frequent appearance in challenging applications arising in genetics, bioinformatics, linguistics, designs of experiments, machine learning, etc. A full range of statistical approaches, parametric and nonparametric as well as frequentist and Bayesian, has been proposed for estimating discovery probabilities. In this article, we investigate the relationships between the celebrated Good-Turing approach, which is a frequentist nonparametric approach developed in the 1940s, and a Bayesian nonparametric approach recently introduced in the literature. Specifically, under the assumption of a two parameter Poisson-Dirichlet prior, we show that Bayesian nonparametric estimators of discovery probabilities are asymptotically equivalent, for a large sample size, to suitably smoothed Good-Turing estimators. As a by-product of this result, we introduce and investigate a methodology for deriving exact and asymptotic credible intervals to be associated with the Bayesian nonparametric estimators of discovery probabilities. The proposed methodology is illustrated through a comprehensive simulation study and the analysis of Expressed Sequence Tags data generated by sequencing a benchmark complementary DNA library. © 2015, The International Biometric Society.
A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research
ERIC Educational Resources Information Center
van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B.; Neyer, Franz J.; van Aken, Marcel A. G.
2014-01-01
Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First, the ingredients underlying Bayesian methods are…
Bayesian estimation inherent in a Mexican-hat-type neural network
NASA Astrophysics Data System (ADS)
Takiyama, Ken
2016-05-01
Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.
NASA Astrophysics Data System (ADS)
Kopka, P.; Wawrzynczak, A.; Borysiewicz, M.
2015-09-01
In many areas of application, a central problem is a solution to the inverse problem, especially estimation of the unknown model parameters to model the underlying dynamics of a physical system precisely. In this situation, the Bayesian inference is a powerful tool to combine observed data with prior knowledge to gain the probability distribution of searched parameters. We have applied the modern methodology named Sequential Approximate Bayesian Computation (S-ABC) to the problem of tracing the atmospheric contaminant source. The ABC is technique commonly used in the Bayesian analysis of complex models and dynamic system. Sequential methods can significantly increase the efficiency of the ABC. In the presented algorithm, the input data are the on-line arriving concentrations of released substance registered by distributed sensor network from OVER-LAND ATMOSPHERIC DISPERSION (OLAD) experiment. The algorithm output are the probability distributions of a contamination source parameters i.e. its particular location, release rate, speed and direction of the movement, start time and duration. The stochastic approach presented in this paper is completely general and can be used in other fields where the parameters of the model bet fitted to the observable data should be found.
Tipping point analysis of atmospheric oxygen concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livina, V. N.; Forbes, A. B.; Vaz Martins, T. M.
2015-03-15
We apply tipping point analysis to nine observational oxygen concentration records around the globe, analyse their dynamics and perform projections under possible future scenarios, leading to oxygen deficiency in the atmosphere. The analysis is based on statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the observed data using Bayesian and wavelet techniques.
Information-Based Analysis of Data Assimilation (Invited)
NASA Astrophysics Data System (ADS)
Nearing, G. S.; Gupta, H. V.; Crow, W. T.; Gong, W.
2013-12-01
Data assimilation is defined as the Bayesian conditioning of uncertain model simulations on observations for the purpose of reducing uncertainty about model states. Practical data assimilation methods make the application of Bayes' law tractable either by employing assumptions about the prior, posterior and likelihood distributions (e.g., the Kalman family of filters) or by using resampling methods (e.g., bootstrap filter). We propose to quantify the efficiency of these approximations in an OSSE setting using information theory and, in an OSSE or real-world validation setting, to measure the amount - and more importantly, the quality - of information extracted from observations during data assimilation. To analyze DA assumptions, uncertainty is quantified as the Shannon-type entropy of a discretized probability distribution. The maximum amount of information that can be extracted from observations about model states is the mutual information between states and observations, which is equal to the reduction in entropy in our estimate of the state due to Bayesian filtering. The difference between this potential and the actual reduction in entropy due to Kalman (or other type of) filtering measures the inefficiency of the filter assumptions. Residual uncertainty in DA posterior state estimates can be attributed to three sources: (i) non-injectivity of the observation operator, (ii) noise in the observations, and (iii) filter approximations. The contribution of each of these sources is measurable in an OSSE setting. The amount of information extracted from observations by data assimilation (or system identification, including parameter estimation) can also be measured by Shannon's theory. Since practical filters are approximations of Bayes' law, it is important to know whether the information that is extracted form observations by a filter is reliable. We define information as either good or bad, and propose to measure these two types of information using partial Kullback-Leibler divergences. Defined this way, good and bad information sum to total information. This segregation of information into good and bad components requires a validation target distribution; in a DA OSSE setting, this can be the true Bayesian posterior, but in a real-world setting the validation target might be determined by a set of in situ observations.
ERIC Educational Resources Information Center
Marcoulides, Katerina M.
2018-01-01
This study examined the use of Bayesian analysis methods for the estimation of item parameters in a two-parameter logistic item response theory model. Using simulated data under various design conditions with both informative and non-informative priors, the parameter recovery of Bayesian analysis methods were examined. Overall results showed that…
Zonta, Zivko J; Flotats, Xavier; Magrí, Albert
2014-08-01
The procedure commonly used for the assessment of the parameters included in activated sludge models (ASMs) relies on the estimation of their optimal value within a confidence region (i.e. frequentist inference). Once optimal values are estimated, parameter uncertainty is computed through the covariance matrix. However, alternative approaches based on the consideration of the model parameters as probability distributions (i.e. Bayesian inference), may be of interest. The aim of this work is to apply (and compare) both Bayesian and frequentist inference methods when assessing uncertainty for an ASM-type model, which considers intracellular storage and biomass growth, simultaneously. Practical identifiability was addressed exclusively considering respirometric profiles based on the oxygen uptake rate and with the aid of probabilistic global sensitivity analysis. Parameter uncertainty was thus estimated according to both the Bayesian and frequentist inferential procedures. Results were compared in order to evidence the strengths and weaknesses of both approaches. Since it was demonstrated that Bayesian inference could be reduced to a frequentist approach under particular hypotheses, the former can be considered as a more generalist methodology. Hence, the use of Bayesian inference is encouraged for tackling inferential issues in ASM environments.
NASA Astrophysics Data System (ADS)
Li, Zhijun; Feng, Maria Q.; Luo, Longxi; Feng, Dongming; Xu, Xiuli
2018-01-01
Uncertainty of modal parameters estimation appear in structural health monitoring (SHM) practice of civil engineering to quite some significant extent due to environmental influences and modeling errors. Reasonable methodologies are needed for processing the uncertainty. Bayesian inference can provide a promising and feasible identification solution for the purpose of SHM. However, there are relatively few researches on the application of Bayesian spectral method in the modal identification using SHM data sets. To extract modal parameters from large data sets collected by SHM system, the Bayesian spectral density algorithm was applied to address the uncertainty of mode extraction from output-only response of a long-span suspension bridge. The posterior most possible values of modal parameters and their uncertainties were estimated through Bayesian inference. A long-term variation and statistical analysis was performed using the sensor data sets collected from the SHM system of the suspension bridge over a one-year period. The t location-scale distribution was shown to be a better candidate function for frequencies of lower modes. On the other hand, the burr distribution provided the best fitting to the higher modes which are sensitive to the temperature. In addition, wind-induced variation of modal parameters was also investigated. It was observed that both the damping ratios and modal forces increased during the period of typhoon excitations. Meanwhile, the modal damping ratios exhibit significant correlation with the spectral intensities of the corresponding modal forces.
Bayesian statistics in radionuclide metrology: measurement of a decaying source
NASA Astrophysics Data System (ADS)
Bochud, François O.; Bailat, Claude J.; Laedermann, Jean-Pascal
2007-08-01
The most intuitive way of defining a probability is perhaps through the frequency at which it appears when a large number of trials are realized in identical conditions. The probability derived from the obtained histogram characterizes the so-called frequentist or conventional statistical approach. In this sense, probability is defined as a physical property of the observed system. By contrast, in Bayesian statistics, a probability is not a physical property or a directly observable quantity, but a degree of belief or an element of inference. The goal of this paper is to show how Bayesian statistics can be used in radionuclide metrology and what its advantages and disadvantages are compared with conventional statistics. This is performed through the example of an yttrium-90 source typically encountered in environmental surveillance measurement. Because of the very low activity of this kind of source and the small half-life of the radionuclide, this measurement takes several days, during which the source decays significantly. Several methods are proposed to compute simultaneously the number of unstable nuclei at a given reference time, the decay constant and the background. Asymptotically, all approaches give the same result. However, Bayesian statistics produces coherent estimates and confidence intervals in a much smaller number of measurements. Apart from the conceptual understanding of statistics, the main difficulty that could deter radionuclide metrologists from using Bayesian statistics is the complexity of the computation.
Quantum state estimation when qubits are lost: a no-data-left-behind approach
Williams, Brian P.; Lougovski, Pavel
2017-04-06
We present an approach to Bayesian mean estimation of quantum states using hyperspherical parametrization and an experiment-specific likelihood which allows utilization of all available data, even when qubits are lost. With this method, we report the first closed-form Bayesian mean and maximum likelihood estimates for the ideal single qubit. Due to computational constraints, we utilize numerical sampling to determine the Bayesian mean estimate for a photonic two-qubit experiment in which our novel analysis reduces burdens associated with experimental asymmetries and inefficiencies. This method can be applied to quantum states of any dimension and experimental complexity.
McCarron, C Elizabeth; Pullenayegum, Eleanor M; Thabane, Lehana; Goeree, Ron; Tarride, Jean-Eric
2013-04-01
Bayesian methods have been proposed as a way of synthesizing all available evidence to inform decision making. However, few practical applications of the use of Bayesian methods for combining patient-level data (i.e., trial) with additional evidence (e.g., literature) exist in the cost-effectiveness literature. The objective of this study was to compare a Bayesian cost-effectiveness analysis using informative priors to a standard non-Bayesian nonparametric method to assess the impact of incorporating additional information into a cost-effectiveness analysis. Patient-level data from a previously published nonrandomized study were analyzed using traditional nonparametric bootstrap techniques and bivariate normal Bayesian models with vague and informative priors. Two different types of informative priors were considered to reflect different valuations of the additional evidence relative to the patient-level data (i.e., "face value" and "skeptical"). The impact of using different distributions and valuations was assessed in a sensitivity analysis. Models were compared in terms of incremental net monetary benefit (INMB) and cost-effectiveness acceptability frontiers (CEAFs). The bootstrapping and Bayesian analyses using vague priors provided similar results. The most pronounced impact of incorporating the informative priors was the increase in estimated life years in the control arm relative to what was observed in the patient-level data alone. Consequently, the incremental difference in life years originally observed in the patient-level data was reduced, and the INMB and CEAF changed accordingly. The results of this study demonstrate the potential impact and importance of incorporating additional information into an analysis of patient-level data, suggesting this could alter decisions as to whether a treatment should be adopted and whether more information should be acquired.
Vilar, M J; Ranta, J; Virtanen, S; Korkeala, H
2015-01-01
Bayesian analysis was used to estimate the pig's and herd's true prevalence of enteropathogenic Yersinia in serum samples collected from Finnish pig farms. The sensitivity and specificity of the diagnostic test were also estimated for the commercially available ELISA which is used for antibody detection against enteropathogenic Yersinia. The Bayesian analysis was performed in two steps; the first step estimated the prior true prevalence of enteropathogenic Yersinia with data obtained from a systematic review of the literature. In the second step, data of the apparent prevalence (cross-sectional study data), prior true prevalence (first step), and estimated sensitivity and specificity of the diagnostic methods were used for building the Bayesian model. The true prevalence of Yersinia in slaughter-age pigs was 67.5% (95% PI 63.2-70.9). The true prevalence of Yersinia in sows was 74.0% (95% PI 57.3-82.4). The estimates of sensitivity and specificity values of the ELISA were 79.5% and 96.9%.
NASA Astrophysics Data System (ADS)
Hopcroft, Peter O.; Valdes, Paul J.; Kaplan, Jed O.
2018-04-01
The observed rise in atmospheric methane (CH4) from 375 ppbv during the Last Glacial Maximum (LGM: 21,000 years ago) to 680 ppbv during the late preindustrial era is not well understood. Atmospheric chemistry considerations implicate an increase in CH4 sources, but process-based estimates fail to reproduce the required amplitude. CH4 stable isotopes provide complementary information that can help constrain the underlying causes of the increase. We combine Earth System model simulations of the late preindustrial and LGM CH4 cycles, including process-based estimates of the isotopic discrimination of vegetation, in a box model of atmospheric CH4 and its isotopes. Using a Bayesian approach, we show how model-based constraints and ice core observations may be combined in a consistent probabilistic framework. The resultant posterior distributions point to a strong reduction in wetland and other biogenic CH4 emissions during the LGM, with a modest increase in the geological source, or potentially natural or anthropogenic fires, accounting for the observed enrichment of δ13CH4.
NASA Astrophysics Data System (ADS)
Iskandar, Ismed; Satria Gondokaryono, Yudi
2016-02-01
In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range between the true value and the maximum likelihood estimated value lines.
A Bayesian framework for infrasound location
NASA Astrophysics Data System (ADS)
Modrak, Ryan T.; Arrowsmith, Stephen J.; Anderson, Dale N.
2010-04-01
We develop a framework for location of infrasound events using backazimuth and infrasonic arrival times from multiple arrays. Bayesian infrasonic source location (BISL) developed here estimates event location and associated credibility regions. BISL accounts for unknown source-to-array path or phase by formulating infrasonic group velocity as random. Differences between observed and predicted source-to-array traveltimes are partitioned into two additive Gaussian sources, measurement error and model error, the second of which accounts for the unknown influence of wind and temperature on path. By applying the technique to both synthetic tests and ground-truth events, we highlight the complementary nature of back azimuths and arrival times for estimating well-constrained event locations. BISL is an extension to methods developed earlier by Arrowsmith et al. that provided simple bounds on location using a grid-search technique.
Bayesian experimental design for models with intractable likelihoods.
Drovandi, Christopher C; Pettitt, Anthony N
2013-12-01
In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utility function considered for precise parameter estimation is based upon the precision of the ABC posterior distribution, which we form efficiently via the ABC rejection algorithm based on pre-computed model simulations. Our focus is on stochastic models and, in particular, we investigate the methodology for Markov process models of epidemics and macroparasite population evolution. The macroparasite example involves a multivariate process and we assess the loss of information from not observing all variables. © 2013, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Wang, Hongrui; Wang, Cheng; Wang, Ying; Gao, Xiong; Yu, Chen
2017-06-01
This paper presents a Bayesian approach using Metropolis-Hastings Markov Chain Monte Carlo algorithm and applies this method for daily river flow rate forecast and uncertainty quantification for Zhujiachuan River using data collected from Qiaotoubao Gage Station and other 13 gage stations in Zhujiachuan watershed in China. The proposed method is also compared with the conventional maximum likelihood estimation (MLE) for parameter estimation and quantification of associated uncertainties. While the Bayesian method performs similarly in estimating the mean value of daily flow rate, it performs over the conventional MLE method on uncertainty quantification, providing relatively narrower reliable interval than the MLE confidence interval and thus more precise estimation by using the related information from regional gage stations. The Bayesian MCMC method might be more favorable in the uncertainty analysis and risk management.
Generalizability of Evidence-Based Assessment Recommendations for Pediatric Bipolar Disorder
Jenkins, Melissa M.; Youngstrom, Eric A.; Youngstrom, Jennifer Kogos; Feeny, Norah C.; Findling, Robert L.
2013-01-01
Bipolar disorder is frequently clinically diagnosed in youths who do not actually satisfy DSM-IV criteria, yet cases that would satisfy full DSM-IV criteria are often undetected clinically. Evidence-based assessment methods that incorporate Bayesian reasoning have demonstrated improved diagnostic accuracy, and consistency; however, their clinical utility is largely unexplored. The present study examines the effectiveness of promising evidence-based decision-making compared to the clinical gold standard. Participants were 562 youth, ages 5-17 and predominantly African American, drawn from a community mental health clinic. Research diagnoses combined semi-structured interview with youths’ psychiatric, developmental, and family mental health histories. Independent Bayesian estimates relied on published risk estimates from other samples discriminated bipolar diagnoses, Area Under Curve=.75, p<.00005. The Bayes and confidence ratings correlated rs =.30. Agreement about an evidence-based assessment intervention “threshold model” (wait/assess/treat) had K=.24, p<.05. No potential moderators of agreement between the Bayesian estimates and confidence ratings, including type of bipolar illness, were significant. Bayesian risk estimates were highly correlated with logistic regression estimates using optimal sample weights, r=.81, p<.0005. Clinical and Bayesian approaches agree in terms of overall concordance and deciding next clinical action, even when Bayesian predictions are based on published estimates from clinically and demographically different samples. Evidence-based assessment methods may be useful in settings that cannot routinely employ gold standard assessments, and they may help decrease rates of overdiagnosis while promoting earlier identification of true cases. PMID:22004538
Bayesian analysis of rare events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straub, Daniel, E-mail: straub@tum.de; Papaioannou, Iason; Betz, Wolfgang
2016-06-01
In many areas of engineering and science there is an interest in predicting the probability of rare events, in particular in applications related to safety and security. Increasingly, such predictions are made through computer models of physical systems in an uncertainty quantification framework. Additionally, with advances in IT, monitoring and sensor technology, an increasing amount of data on the performance of the systems is collected. This data can be used to reduce uncertainty, improve the probability estimates and consequently enhance the management of rare events and associated risks. Bayesian analysis is the ideal method to include the data into themore » probabilistic model. It ensures a consistent probabilistic treatment of uncertainty, which is central in the prediction of rare events, where extrapolation from the domain of observation is common. We present a framework for performing Bayesian updating of rare event probabilities, termed BUS. It is based on a reinterpretation of the classical rejection-sampling approach to Bayesian analysis, which enables the use of established methods for estimating probabilities of rare events. By drawing upon these methods, the framework makes use of their computational efficiency. These methods include the First-Order Reliability Method (FORM), tailored importance sampling (IS) methods and Subset Simulation (SuS). In this contribution, we briefly review these methods in the context of the BUS framework and investigate their applicability to Bayesian analysis of rare events in different settings. We find that, for some applications, FORM can be highly efficient and is surprisingly accurate, enabling Bayesian analysis of rare events with just a few model evaluations. In a general setting, BUS implemented through IS and SuS is more robust and flexible.« less
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; ...
2017-10-17
In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan
In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
NASA Astrophysics Data System (ADS)
Sahai, Swupnil
This thesis includes three parts. The overarching theme is how to analyze structured hierarchical data, with applications to astronomy and sociology. The first part discusses how expectation propagation can be used to parallelize the computation when fitting big hierarchical bayesian models. This methodology is then used to fit a novel, nonlinear mixture model to ultraviolet radiation from various regions of the observable universe. The second part discusses how the Stan probabilistic programming language can be used to numerically integrate terms in a hierarchical bayesian model. This technique is demonstrated on supernovae data to significantly speed up convergence to the posterior distribution compared to a previous study that used a Gibbs-type sampler. The third part builds a formal latent kernel representation for aggregate relational data as a way to more robustly estimate the mixing characteristics of agents in a network. In particular, the framework is applied to sociology surveys to estimate, as a function of ego age, the age and sex composition of the personal networks of individuals in the United States.
Whose statistical reasoning is facilitated by a causal structure intervention?
McNair, Simon; Feeney, Aidan
2015-02-01
People often struggle when making Bayesian probabilistic estimates on the basis of competing sources of statistical evidence. Recently, Krynski and Tenenbaum (Journal of Experimental Psychology: General, 136, 430-450, 2007) proposed that a causal Bayesian framework accounts for peoples' errors in Bayesian reasoning and showed that, by clarifying the causal relations among the pieces of evidence, judgments on a classic statistical reasoning problem could be significantly improved. We aimed to understand whose statistical reasoning is facilitated by the causal structure intervention. In Experiment 1, although we observed causal facilitation effects overall, the effect was confined to participants high in numeracy. We did not find an overall facilitation effect in Experiment 2 but did replicate the earlier interaction between numerical ability and the presence or absence of causal content. This effect held when we controlled for general cognitive ability and thinking disposition. Our results suggest that clarifying causal structure facilitates Bayesian judgments, but only for participants with sufficient understanding of basic concepts in probability and statistics.
Bayesian Analysis of the Association between Family-Level Factors and Siblings' Dental Caries.
Wen, A; Weyant, R J; McNeil, D W; Crout, R J; Neiswanger, K; Marazita, M L; Foxman, B
2017-07-01
We conducted a Bayesian analysis of the association between family-level socioeconomic status and smoking and the prevalence of dental caries among siblings (children from infant to 14 y) among children living in rural and urban Northern Appalachia using data from the Center for Oral Health Research in Appalachia (COHRA). The observed proportion of siblings sharing caries was significantly different from predicted assuming siblings' caries status was independent. Using a Bayesian hierarchical model, we found the inclusion of a household factor significantly improved the goodness of fit. Other findings showed an inverse association between parental education and siblings' caries and a positive association between households with smokers and siblings' caries. Our study strengthens existing evidence suggesting that increased parental education and decreased parental cigarette smoking are associated with reduced childhood caries in the household. Our results also demonstrate the value of a Bayesian approach, which allows us to include household as a random effect, thereby providing more accurate estimates than obtained using generalized linear mixed models.
Probabilistic models in human sensorimotor control
Wolpert, Daniel M.
2009-01-01
Sensory and motor uncertainty form a fundamental constraint on human sensorimotor control. Bayesian decision theory (BDT) has emerged as a unifying framework to understand how the central nervous system performs optimal estimation and control in the face of such uncertainty. BDT has two components: Bayesian statistics and decision theory. Here we review Bayesian statistics and show how it applies to estimating the state of the world and our own body. Recent results suggest that when learning novel tasks we are able to learn the statistical properties of both the world and our own sensory apparatus so as to perform estimation using Bayesian statistics. We review studies which suggest that humans can combine multiple sources of information to form maximum likelihood estimates, can incorporate prior beliefs about possible states of the world so as to generate maximum a posteriori estimates and can use Kalman filter-based processes to estimate time-varying states. Finally, we review Bayesian decision theory in motor control and how the central nervous system processes errors to determine loss functions and optimal actions. We review results that suggest we plan movements based on statistics of our actions that result from signal-dependent noise on our motor outputs. Taken together these studies provide a statistical framework for how the motor system performs in the presence of uncertainty. PMID:17628731
A Bayesian Hybrid Adaptive Randomisation Design for Clinical Trials with Survival Outcomes.
Moatti, M; Chevret, S; Zohar, S; Rosenberger, W F
2016-01-01
Response-adaptive randomisation designs have been proposed to improve the efficiency of phase III randomised clinical trials and improve the outcomes of the clinical trial population. In the setting of failure time outcomes, Zhang and Rosenberger (2007) developed a response-adaptive randomisation approach that targets an optimal allocation, based on a fixed sample size. The aim of this research is to propose a response-adaptive randomisation procedure for survival trials with an interim monitoring plan, based on the following optimal criterion: for fixed variance of the estimated log hazard ratio, what allocation minimizes the expected hazard of failure? We demonstrate the utility of the design by redesigning a clinical trial on multiple myeloma. To handle continuous monitoring of data, we propose a Bayesian response-adaptive randomisation procedure, where the log hazard ratio is the effect measure of interest. Combining the prior with the normal likelihood, the mean posterior estimate of the log hazard ratio allows derivation of the optimal target allocation. We perform a simulation study to assess and compare the performance of this proposed Bayesian hybrid adaptive design to those of fixed, sequential or adaptive - either frequentist or fully Bayesian - designs. Non informative normal priors of the log hazard ratio were used, as well as mixture of enthusiastic and skeptical priors. Stopping rules based on the posterior distribution of the log hazard ratio were computed. The method is then illustrated by redesigning a phase III randomised clinical trial of chemotherapy in patients with multiple myeloma, with mixture of normal priors elicited from experts. As expected, there was a reduction in the proportion of observed deaths in the adaptive vs. non-adaptive designs; this reduction was maximized using a Bayes mixture prior, with no clear-cut improvement by using a fully Bayesian procedure. The use of stopping rules allows a slight decrease in the observed proportion of deaths under the alternate hypothesis compared with the adaptive designs with no stopping rules. Such Bayesian hybrid adaptive survival trials may be promising alternatives to traditional designs, reducing the duration of survival trials, as well as optimizing the ethical concerns for patients enrolled in the trial.
Hierarchical Bayesian Model (HBM)-Derived Estimates of Air Quality for 2004 - Annual Report
This report describes EPA's Hierarchical Bayesian model-generated (HBM) estimates of O3 and PM2.5 concentrations throughout the continental United States during the 2004 calendar year. HBM estimates provide the spatial and temporal variance of O3 ...
Bayesian Estimation Supersedes the "t" Test
ERIC Educational Resources Information Center
Kruschke, John K.
2013-01-01
Bayesian estimation for 2 groups provides complete distributions of credible values for the effect size, group means and their difference, standard deviations and their difference, and the normality of the data. The method handles outliers. The decision rule can accept the null value (unlike traditional "t" tests) when certainty in the estimate is…
In this paper, we present methods for estimating Freundlich isotherm fitting parameters (K and N) and their joint uncertainty, which have been implemented into the freeware software platforms R and WinBUGS. These estimates were determined by both Frequentist and Bayesian analyse...
Bayesian Model Averaging for Propensity Score Analysis
ERIC Educational Resources Information Center
Kaplan, David; Chen, Jianshen
2013-01-01
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
NASA Technical Reports Server (NTRS)
Vangelder, B. H. W.
1978-01-01
Non-Bayesian statistics were used in simulation studies centered around laser range observations to LAGEOS. The capabilities of satellite laser ranging especially in connection with relative station positioning are evaluated. The satellite measurement system under investigation may fall short in precise determinations of the earth's orientation (precession and nutation) and earth's rotation as opposed to systems as very long baseline interferometry (VLBI) and lunar laser ranging (LLR). Relative station positioning, determination of (differential) polar motion, positioning of stations with respect to the earth's center of mass and determination of the earth's gravity field should be easily realized by satellite laser ranging (SLR). The last two features should be considered as best (or solely) determinable by SLR in contrast to VLBI and LLR.
Testing students' e-learning via Facebook through Bayesian structural equation modeling.
Salarzadeh Jenatabadi, Hashem; Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad
2017-01-01
Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.
Testing students’ e-learning via Facebook through Bayesian structural equation modeling
Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad
2017-01-01
Learning is an intentional activity, with several factors affecting students’ intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods’ results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated. PMID:28886019
Bayesian-MCMC-based parameter estimation of stealth aircraft RCS models
NASA Astrophysics Data System (ADS)
Xia, Wei; Dai, Xiao-Xia; Feng, Yuan
2015-12-01
When modeling a stealth aircraft with low RCS (Radar Cross Section), conventional parameter estimation methods may cause a deviation from the actual distribution, owing to the fact that the characteristic parameters are estimated via directly calculating the statistics of RCS. The Bayesian-Markov Chain Monte Carlo (Bayesian-MCMC) method is introduced herein to estimate the parameters so as to improve the fitting accuracies of fluctuation models. The parameter estimations of the lognormal and the Legendre polynomial models are reformulated in the Bayesian framework. The MCMC algorithm is then adopted to calculate the parameter estimates. Numerical results show that the distribution curves obtained by the proposed method exhibit improved consistence with the actual ones, compared with those fitted by the conventional method. The fitting accuracy could be improved by no less than 25% for both fluctuation models, which implies that the Bayesian-MCMC method might be a good candidate among the optimal parameter estimation methods for stealth aircraft RCS models. Project supported by the National Natural Science Foundation of China (Grant No. 61101173), the National Basic Research Program of China (Grant No. 613206), the National High Technology Research and Development Program of China (Grant No. 2012AA01A308), the State Scholarship Fund by the China Scholarship Council (CSC), and the Oversea Academic Training Funds, and University of Electronic Science and Technology of China (UESTC).
Zhang, Xiang; Faries, Douglas E; Boytsov, Natalie; Stamey, James D; Seaman, John W
2016-09-01
Observational studies are frequently used to assess the effectiveness of medical interventions in routine clinical practice. However, the use of observational data for comparative effectiveness is challenged by selection bias and the potential of unmeasured confounding. This is especially problematic for analyses using a health care administrative database, in which key clinical measures are often not available. This paper provides an approach to conducting a sensitivity analyses to investigate the impact of unmeasured confounding in observational studies. In a real world osteoporosis comparative effectiveness study, the bone mineral density (BMD) score, an important predictor of fracture risk and a factor in the selection of osteoporosis treatments, is unavailable in the data base and lack of baseline BMD could potentially lead to significant selection bias. We implemented Bayesian twin-regression models, which simultaneously model both the observed outcome and the unobserved unmeasured confounder, using information from external sources. A sensitivity analysis was also conducted to assess the robustness of our conclusions to changes in such external data. The use of Bayesian modeling in this study suggests that the lack of baseline BMD did have a strong impact on the analysis, reversing the direction of the estimated effect (odds ratio of fracture incidence at 24 months: 0.40 vs. 1.36, with/without adjusting for unmeasured baseline BMD). The Bayesian twin-regression models provide a flexible sensitivity analysis tool to quantitatively assess the impact of unmeasured confounding in observational studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Law, Jane
2016-01-01
Intrinsic conditional autoregressive modeling in a Bayeisan hierarchical framework has been increasingly applied in small-area ecological studies. This study explores the specifications of spatial structure in this Bayesian framework in two aspects: adjacency, i.e., the set of neighbor(s) for each area; and (spatial) weight for each pair of neighbors. Our analysis was based on a small-area study of falling injuries among people age 65 and older in Ontario, Canada, that was aimed to estimate risks and identify risk factors of such falls. In the case study, we observed incorrect adjacencies information caused by deficiencies in the digital map itself. Further, when equal weights was replaced by weights based on a variable of expected count, the range of estimated risks increased, the number of areas with probability of estimated risk greater than one at different probability thresholds increased, and model fit improved. More importantly, significance of a risk factor diminished. Further research to thoroughly investigate different methods of variable weights; quantify the influence of specifications of spatial weights; and develop strategies for better defining spatial structure of a map in small-area analysis in Bayesian hierarchical spatial modeling is recommended. PMID:29546147
Bayesian inference for disease prevalence using negative binomial group testing
Pritchard, Nicholas A.; Tebbs, Joshua M.
2011-01-01
Group testing, also known as pooled testing, and inverse sampling are both widely used methods of data collection when the goal is to estimate a small proportion. Taking a Bayesian approach, we consider the new problem of estimating disease prevalence from group testing when inverse (negative binomial) sampling is used. Using different distributions to incorporate prior knowledge of disease incidence and different loss functions, we derive closed form expressions for posterior distributions and resulting point and credible interval estimators. We then evaluate our new estimators, on Bayesian and classical grounds, and apply our methods to a West Nile Virus data set. PMID:21259308
A simple parametric model observer for quality assurance in computer tomography
NASA Astrophysics Data System (ADS)
Anton, M.; Khanin, A.; Kretz, T.; Reginatto, M.; Elster, C.
2018-04-01
Model observers are mathematical classifiers that are used for the quality assessment of imaging systems such as computer tomography. The quality of the imaging system is quantified by means of the performance of a selected model observer. For binary classification tasks, the performance of the model observer is defined by the area under its ROC curve (AUC). Typically, the AUC is estimated by applying the model observer to a large set of training and test data. However, the recording of these large data sets is not always practical for routine quality assurance. In this paper we propose as an alternative a parametric model observer that is based on a simple phantom, and we provide a Bayesian estimation of its AUC. It is shown that a limited number of repeatedly recorded images (10–15) is already sufficient to obtain results suitable for the quality assessment of an imaging system. A MATLAB® function is provided for the calculation of the results. The performance of the proposed model observer is compared to that of the established channelized Hotelling observer and the nonprewhitening matched filter for simulated images as well as for images obtained from a low-contrast phantom on an x-ray tomography scanner. The results suggest that the proposed parametric model observer, along with its Bayesian treatment, can provide an efficient, practical alternative for the quality assessment of CT imaging systems.
A new prior for bayesian anomaly detection: application to biosurveillance.
Shen, Y; Cooper, G F
2010-01-01
Bayesian anomaly detection computes posterior probabilities of anomalous events by combining prior beliefs and evidence from data. However, the specification of prior probabilities can be challenging. This paper describes a Bayesian prior in the context of disease outbreak detection. The goal is to provide a meaningful, easy-to-use prior that yields a posterior probability of an outbreak that performs at least as well as a standard frequentist approach. If this goal is achieved, the resulting posterior could be usefully incorporated into a decision analysis about how to act in light of a possible disease outbreak. This paper describes a Bayesian method for anomaly detection that combines learning from data with a semi-informative prior probability over patterns of anomalous events. A univariate version of the algorithm is presented here for ease of illustration of the essential ideas. The paper describes the algorithm in the context of disease-outbreak detection, but it is general and can be used in other anomaly detection applications. For this application, the semi-informative prior specifies that an increased count over baseline is expected for the variable being monitored, such as the number of respiratory chief complaints per day at a given emergency department. The semi-informative prior is derived based on the baseline prior, which is estimated from using historical data. The evaluation reported here used semi-synthetic data to evaluate the detection performance of the proposed Bayesian method and a control chart method, which is a standard frequentist algorithm that is closest to the Bayesian method in terms of the type of data it uses. The disease-outbreak detection performance of the Bayesian method was statistically significantly better than that of the control chart method when proper baseline periods were used to estimate the baseline behavior to avoid seasonal effects. When using longer baseline periods, the Bayesian method performed as well as the control chart method. The time complexity of the Bayesian algorithm is linear in the number of the observed events being monitored, due to a novel, closed-form derivation that is introduced in the paper. This paper introduces a novel prior probability for Bayesian outbreak detection that is expressive, easy-to-apply, computationally efficient, and performs as well or better than a standard frequentist method.
Wang, Hongrui; Wang, Cheng; Wang, Ying; ...
2017-04-05
This paper presents a Bayesian approach using Metropolis-Hastings Markov Chain Monte Carlo algorithm and applies this method for daily river flow rate forecast and uncertainty quantification for Zhujiachuan River using data collected from Qiaotoubao Gage Station and other 13 gage stations in Zhujiachuan watershed in China. The proposed method is also compared with the conventional maximum likelihood estimation (MLE) for parameter estimation and quantification of associated uncertainties. While the Bayesian method performs similarly in estimating the mean value of daily flow rate, it performs over the conventional MLE method on uncertainty quantification, providing relatively narrower reliable interval than the MLEmore » confidence interval and thus more precise estimation by using the related information from regional gage stations. As a result, the Bayesian MCMC method might be more favorable in the uncertainty analysis and risk management.« less
A Bayesian approach to tracking patients having changing pharmacokinetic parameters
NASA Technical Reports Server (NTRS)
Bayard, David S.; Jelliffe, Roger W.
2004-01-01
This paper considers the updating of Bayesian posterior densities for pharmacokinetic models associated with patients having changing parameter values. For estimation purposes it is proposed to use the Interacting Multiple Model (IMM) estimation algorithm, which is currently a popular algorithm in the aerospace community for tracking maneuvering targets. The IMM algorithm is described, and compared to the multiple model (MM) and Maximum A-Posteriori (MAP) Bayesian estimation methods, which are presently used for posterior updating when pharmacokinetic parameters do not change. Both the MM and MAP Bayesian estimation methods are used in their sequential forms, to facilitate tracking of changing parameters. Results indicate that the IMM algorithm is well suited for tracking time-varying pharmacokinetic parameters in acutely ill and unstable patients, incurring only about half of the integrated error compared to the sequential MM and MAP methods on the same example.
Non-ignorable missingness in logistic regression.
Wang, Joanna J J; Bartlett, Mark; Ryan, Louise
2017-08-30
Nonresponses and missing data are common in observational studies. Ignoring or inadequately handling missing data may lead to biased parameter estimation, incorrect standard errors and, as a consequence, incorrect statistical inference and conclusions. We present a strategy for modelling non-ignorable missingness where the probability of nonresponse depends on the outcome. Using a simple case of logistic regression, we quantify the bias in regression estimates and show the observed likelihood is non-identifiable under non-ignorable missing data mechanism. We then adopt a selection model factorisation of the joint distribution as the basis for a sensitivity analysis to study changes in estimated parameters and the robustness of study conclusions against different assumptions. A Bayesian framework for model estimation is used as it provides a flexible approach for incorporating different missing data assumptions and conducting sensitivity analysis. Using simulated data, we explore the performance of the Bayesian selection model in correcting for bias in a logistic regression. We then implement our strategy using survey data from the 45 and Up Study to investigate factors associated with worsening health from the baseline to follow-up survey. Our findings have practical implications for the use of the 45 and Up Study data to answer important research questions relating to health and quality-of-life. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.
2009-08-01
Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.
Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.
2009-01-01
Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.
NASA Technical Reports Server (NTRS)
Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.;
2006-01-01
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%-15% at 5 mm day.1, with proportionate reductions in latent heating sampling errors.
ERIC Educational Resources Information Center
Kessler, Lawrence M.
2013-01-01
In this paper I propose Bayesian estimation of a nonlinear panel data model with a fractional dependent variable (bounded between 0 and 1). Specifically, I estimate a panel data fractional probit model which takes into account the bounded nature of the fractional response variable. I outline estimation under the assumption of strict exogeneity as…
Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Hsu, Danley C.; Ford, Eric B.; Ragozzine, Darin; Morehead, Robert C.
2018-05-01
We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period as our model and apply our algorithm to estimate occurrence rates for Q1–Q16 planet candidates orbiting solar-type stars. We arrive at significantly increased planet occurrence rates for small planet candidates (R p < 1.25 R ⊕) at larger orbital periods (P > 80 day) compared to the rates estimated by the more common inverse detection efficiency method (IDEM). Our improved methodology estimates that the occurrence rate density of small planet candidates in the habitable zone of solar-type stars is {1.6}-0.5+1.2 per factor of 2 in planet radius and orbital period. Additionally, we observe a local minimum in the occurrence rate for strong planet candidates marginalized over orbital period between 1.5 and 2 R ⊕ that is consistent with previous studies. For future improvements, the forward modeling approach of ABC is ideally suited to incorporating multiple populations, such as planets, astrophysical false positives, and pipeline false alarms, to provide accurate planet occurrence rates and uncertainties. Furthermore, ABC provides a practical statistical framework for answering complex questions (e.g., frequency of different planetary architectures) and providing sound uncertainties, even in the face of complex selection effects, observational biases, and follow-up strategies. In summary, ABC offers a powerful tool for accurately characterizing a wide variety of astrophysical populations.
Bayesian inference of Calibration curves: application to archaeomagnetism
NASA Astrophysics Data System (ADS)
Lanos, P.
2003-04-01
The range of errors that occur at different stages of the archaeomagnetic calibration process are modelled using a Bayesian hierarchical model. The archaeomagnetic data obtained from archaeological structures such as hearths, kilns or sets of bricks and tiles, exhibit considerable experimental errors and are typically more or less well dated by archaeological context, history or chronometric methods (14C, TL, dendrochronology, etc.). They can also be associated with stratigraphic observations which provide prior relative chronological information. The modelling we describe in this paper allows all these observations, on materials from a given period, to be linked together, and the use of penalized maximum likelihood for smoothing univariate, spherical or three-dimensional time series data allows representation of the secular variation of the geomagnetic field over time. The smooth curve we obtain (which takes the form of a penalized natural cubic spline) provides an adaptation to the effects of variability in the density of reference points over time. Since our model takes account of all the known errors in the archaeomagnetic calibration process, we are able to obtain a functional highest-posterior-density envelope on the new curve. With this new posterior estimate of the curve available to us, the Bayesian statistical framework then allows us to estimate the calendar dates of undated archaeological features (such as kilns) based on one, two or three geomagnetic parameters (inclination, declination and/or intensity). Date estimates are presented in much the same way as those that arise from radiocarbon dating. In order to illustrate the model and inference methods used, we will present results based on German archaeomagnetic data recently published by a German team.
Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L
2016-02-10
Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.
Tools to estimate PM2.5 mass have expanded in recent years, and now include: 1) stationary monitor readings, 2) Community Multi-Scale Air Quality (CMAQ) model estimates, 3) Hierarchical Bayesian (HB) estimates from combined stationary monitor readings and CMAQ model output; and, ...
On parametrized cold dense matter equation-of-state inference
NASA Astrophysics Data System (ADS)
Riley, Thomas E.; Raaijmakers, Geert; Watts, Anna L.
2018-07-01
Constraining the equation of state of cold dense matter in compact stars is a major science goal for observing programmes being conducted using X-ray, radio, and gravitational wave telescopes. We discuss Bayesian hierarchical inference of parametrized dense matter equations of state. In particular, we generalize and examine two inference paradigms from the literature: (i) direct posterior equation-of-state parameter estimation, conditioned on observations of a set of rotating compact stars; and (ii) indirect parameter estimation, via transformation of an intermediary joint posterior distribution of exterior spacetime parameters (such as gravitational masses and coordinate equatorial radii). We conclude that the former paradigm is not only tractable for large-scale analyses, but is principled and flexible from a Bayesian perspective while the latter paradigm is not. The thematic problem of Bayesian prior definition emerges as the crux of the difference between these paradigms. The second paradigm should in general only be considered as an ill-defined approach to the problem of utilizing archival posterior constraints on exterior spacetime parameters; we advocate for an alternative approach whereby such information is repurposed as an approximative likelihood function. We also discuss why conditioning on a piecewise-polytropic equation-of-state model - currently standard in the field of dense matter study - can easily violate conditions required for transformation of a probability density distribution between spaces of exterior (spacetime) and interior (source matter) parameters.
On parametrised cold dense matter equation of state inference
NASA Astrophysics Data System (ADS)
Riley, Thomas E.; Raaijmakers, Geert; Watts, Anna L.
2018-04-01
Constraining the equation of state of cold dense matter in compact stars is a major science goal for observing programmes being conducted using X-ray, radio, and gravitational wave telescopes. We discuss Bayesian hierarchical inference of parametrised dense matter equations of state. In particular we generalise and examine two inference paradigms from the literature: (i) direct posterior equation of state parameter estimation, conditioned on observations of a set of rotating compact stars; and (ii) indirect parameter estimation, via transformation of an intermediary joint posterior distribution of exterior spacetime parameters (such as gravitational masses and coordinate equatorial radii). We conclude that the former paradigm is not only tractable for large-scale analyses, but is principled and flexible from a Bayesian perspective whilst the latter paradigm is not. The thematic problem of Bayesian prior definition emerges as the crux of the difference between these paradigms. The second paradigm should in general only be considered as an ill-defined approach to the problem of utilising archival posterior constraints on exterior spacetime parameters; we advocate for an alternative approach whereby such information is repurposed as an approximative likelihood function. We also discuss why conditioning on a piecewise-polytropic equation of state model - currently standard in the field of dense matter study - can easily violate conditions required for transformation of a probability density distribution between spaces of exterior (spacetime) and interior (source matter) parameters.
Unification of field theory and maximum entropy methods for learning probability densities
NASA Astrophysics Data System (ADS)
Kinney, Justin B.
2015-09-01
The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.
Unification of field theory and maximum entropy methods for learning probability densities.
Kinney, Justin B
2015-09-01
The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.
BMDS: A Collection of R Functions for Bayesian Multidimensional Scaling
ERIC Educational Resources Information Center
Okada, Kensuke; Shigemasu, Kazuo
2009-01-01
Bayesian multidimensional scaling (MDS) has attracted a great deal of attention because: (1) it provides a better fit than do classical MDS and ALSCAL; (2) it provides estimation errors of the distances; and (3) the Bayesian dimension selection criterion, MDSIC, provides a direct indication of optimal dimensionality. However, Bayesian MDS is not…
A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study
ERIC Educational Resources Information Center
Kaplan, David; Chen, Jianshen
2012-01-01
A two-step Bayesian propensity score approach is introduced that incorporates prior information in the propensity score equation and outcome equation without the problems associated with simultaneous Bayesian propensity score approaches. The corresponding variance estimators are also provided. The two-step Bayesian propensity score is provided for…
Using SAS PROC MCMC for Item Response Theory Models
Samonte, Kelli
2014-01-01
Interest in using Bayesian methods for estimating item response theory models has grown at a remarkable rate in recent years. This attentiveness to Bayesian estimation has also inspired a growth in available software such as WinBUGS, R packages, BMIRT, MPLUS, and SAS PROC MCMC. This article intends to provide an accessible overview of Bayesian methods in the context of item response theory to serve as a useful guide for practitioners in estimating and interpreting item response theory (IRT) models. Included is a description of the estimation procedure used by SAS PROC MCMC. Syntax is provided for estimation of both dichotomous and polytomous IRT models, as well as a discussion on how to extend the syntax to accommodate more complex IRT models. PMID:29795834
A Bayesian perspective on magnitude estimation.
Petzschner, Frederike H; Glasauer, Stefan; Stephan, Klaas E
2015-05-01
Our representation of the physical world requires judgments of magnitudes, such as loudness, distance, or time. Interestingly, magnitude estimates are often not veridical but subject to characteristic biases. These biases are strikingly similar across different sensory modalities, suggesting common processing mechanisms that are shared by different sensory systems. However, the search for universal neurobiological principles of magnitude judgments requires guidance by formal theories. Here, we discuss a unifying Bayesian framework for understanding biases in magnitude estimation. This Bayesian perspective enables a re-interpretation of a range of established psychophysical findings, reconciles seemingly incompatible classical views on magnitude estimation, and can guide future investigations of magnitude estimation and its neurobiological mechanisms in health and in psychiatric diseases, such as schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xu, Yadong; Serre, Marc L; Reyes, Jeanette; Vizuete, William
2016-04-19
To improve ozone exposure estimates for ambient concentrations at a national scale, we introduce our novel Regionalized Air Quality Model Performance (RAMP) approach to integrate chemical transport model (CTM) predictions with the available ozone observations using the Bayesian Maximum Entropy (BME) framework. The framework models the nonlinear and nonhomoscedastic relation between air pollution observations and CTM predictions and for the first time accounts for variability in CTM model performance. A validation analysis using only noncollocated data outside of a validation radius rv was performed and the R(2) between observations and re-estimated values for two daily metrics, the daily maximum 8-h average (DM8A) and the daily 24-h average (D24A) ozone concentrations, were obtained with the OBS scenario using ozone observations only in contrast with the RAMP and a Constant Air Quality Model Performance (CAMP) scenarios. We show that, by accounting for the spatial and temporal variability in model performance, our novel RAMP approach is able to extract more information in terms of R(2) increase percentage, with over 12 times for the DM8A and over 3.5 times for the D24A ozone concentrations, from CTM predictions than the CAMP approach assuming that model performance does not change across space and time.
Yoshikawa, Tetsuro; Osada, Yutaka
2015-01-01
Determining the composition of a bird’s diet and its seasonal shifts are fundamental for understanding the ecology and ecological functions of a species. Various methods have been used to estimate the dietary compositions of birds, which have their own advantages and disadvantages. In this study, we examined the possibility of using long-term volunteer monitoring data as the source of dietary information for 15 resident bird species in Kanagawa Prefecture, Japan. The data were collected from field observations reported by volunteers of regional naturalist groups. Based on these monitoring data, we calculated the monthly dietary composition of each bird species directly, and we also estimated unidentified items within the reported foraging episodes using Bayesian models that contained additional information regarding foraging locations. Next, to examine the validity of the estimated dietary compositions, we compared them with the dietary information for focal birds based on stomach analysis methods, collected from past literatures. The dietary trends estimated from the monitoring data were largely consistent with the general food habits determined from the previous studies of focal birds. Thus, the estimates based on the volunteer monitoring data successfully detected noticeable seasonal shifts in many of the birds from plant materials to animal diets during spring—summer. Comparisons with stomach analysis data supported the qualitative validity of the monitoring-based dietary information and the effectiveness of the Bayesian models for improving the estimates. This comparison suggests that one advantage of using monitoring data is its ability to detect dietary items such as fleshy fruits, flower nectar, and vertebrates. These results emphasize the potential importance of observation data collecting and mining by citizens, especially free descriptive observation data, for use in bird ecology studies. PMID:25723544
NASA Technical Reports Server (NTRS)
Gilkey, Kelly M.; Myers, Jerry G.; McRae, Michael P.; Griffin, Elise A.; Kallrui, Aditya S.
2012-01-01
The Exploration Medical Capability project is creating a catalog of risk assessments using the Integrated Medical Model (IMM). The IMM is a software-based system intended to assist mission planners in preparing for spaceflight missions by helping them to make informed decisions about medical preparations and supplies needed for combating and treating various medical events using Probabilistic Risk Assessment. The objective is to use statistical analyses to inform the IMM decision tool with estimated probabilities of medical events occurring during an exploration mission. Because data regarding astronaut health are limited, Bayesian statistical analysis is used. Bayesian inference combines prior knowledge, such as data from the general U.S. population, the U.S. Submarine Force, or the analog astronaut population located at the NASA Johnson Space Center, with observed data for the medical condition of interest. The posterior results reflect the best evidence for specific medical events occurring in flight. Bayes theorem provides a formal mechanism for combining available observed data with data from similar studies to support the quantification process. The IMM team performed Bayesian updates on the following medical events: angina, appendicitis, atrial fibrillation, atrial flutter, dental abscess, dental caries, dental periodontal disease, gallstone disease, herpes zoster, renal stones, seizure, and stroke.
Groopman, Amber M.; Katz, Jonathan I.; Holland, Mark R.; Fujita, Fuminori; Matsukawa, Mami; Mizuno, Katsunori; Wear, Keith A.; Miller, James G.
2015-01-01
Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable. PMID:26328678
A default Bayesian hypothesis test for mediation.
Nuijten, Michèle B; Wetzels, Ruud; Matzke, Dora; Dolan, Conor V; Wagenmakers, Eric-Jan
2015-03-01
In order to quantify the relationship between multiple variables, researchers often carry out a mediation analysis. In such an analysis, a mediator (e.g., knowledge of a healthy diet) transmits the effect from an independent variable (e.g., classroom instruction on a healthy diet) to a dependent variable (e.g., consumption of fruits and vegetables). Almost all mediation analyses in psychology use frequentist estimation and hypothesis-testing techniques. A recent exception is Yuan and MacKinnon (Psychological Methods, 14, 301-322, 2009), who outlined a Bayesian parameter estimation procedure for mediation analysis. Here we complete the Bayesian alternative to frequentist mediation analysis by specifying a default Bayesian hypothesis test based on the Jeffreys-Zellner-Siow approach. We further extend this default Bayesian test by allowing a comparison to directional or one-sided alternatives, using Markov chain Monte Carlo techniques implemented in JAGS. All Bayesian tests are implemented in the R package BayesMed (Nuijten, Wetzels, Matzke, Dolan, & Wagenmakers, 2014).
Bayesian sparse channel estimation
NASA Astrophysics Data System (ADS)
Chen, Chulong; Zoltowski, Michael D.
2012-05-01
In Orthogonal Frequency Division Multiplexing (OFDM) systems, the technique used to estimate and track the time-varying multipath channel is critical to ensure reliable, high data rate communications. It is recognized that wireless channels often exhibit a sparse structure, especially for wideband and ultra-wideband systems. In order to exploit this sparse structure to reduce the number of pilot tones and increase the channel estimation quality, the application of compressed sensing to channel estimation is proposed. In this article, to make the compressed channel estimation more feasible for practical applications, it is investigated from a perspective of Bayesian learning. Under the Bayesian learning framework, the large-scale compressed sensing problem, as well as large time delay for the estimation of the doubly selective channel over multiple consecutive OFDM symbols, can be avoided. Simulation studies show a significant improvement in channel estimation MSE and less computing time compared to the conventional compressed channel estimation techniques.
Sironi, Emanuele; Taroni, Franco; Baldinotti, Claudio; Nardi, Cosimo; Norelli, Gian-Aristide; Gallidabino, Matteo; Pinchi, Vilma
2017-11-14
The present study aimed to investigate the performance of a Bayesian method in the evaluation of dental age-related evidence collected by means of a geometrical approximation procedure of the pulp chamber volume. Measurement of this volume was based on three-dimensional cone beam computed tomography images. The Bayesian method was applied by means of a probabilistic graphical model, namely a Bayesian network. Performance of that method was investigated in terms of accuracy and bias of the decisional outcomes. Influence of an informed elicitation of the prior belief of chronological age was also studied by means of a sensitivity analysis. Outcomes in terms of accuracy were adequate with standard requirements for forensic adult age estimation. Findings also indicated that the Bayesian method does not show a particular tendency towards under- or overestimation of the age variable. Outcomes of the sensitivity analysis showed that results on estimation are improved with a ration elicitation of the prior probabilities of age.
Wang, Tianli; Baron, Kyle; Zhong, Wei; Brundage, Richard; Elmquist, William
2014-03-01
The current study presents a Bayesian approach to non-compartmental analysis (NCA), which provides the accurate and precise estimate of AUC 0 (∞) and any AUC 0 (∞) -based NCA parameter or derivation. In order to assess the performance of the proposed method, 1,000 simulated datasets were generated in different scenarios. A Bayesian method was used to estimate the tissue and plasma AUC 0 (∞) s and the tissue-to-plasma AUC 0 (∞) ratio. The posterior medians and the coverage of 95% credible intervals for the true parameter values were examined. The method was applied to laboratory data from a mice brain distribution study with serial sacrifice design for illustration. Bayesian NCA approach is accurate and precise in point estimation of the AUC 0 (∞) and the partition coefficient under a serial sacrifice design. It also provides a consistently good variance estimate, even considering the variability of the data and the physiological structure of the pharmacokinetic model. The application in the case study obtained a physiologically reasonable posterior distribution of AUC, with a posterior median close to the value estimated by classic Bailer-type methods. This Bayesian NCA approach for sparse data analysis provides statistical inference on the variability of AUC 0 (∞) -based parameters such as partition coefficient and drug targeting index, so that the comparison of these parameters following destructive sampling becomes statistically feasible.
NASA Astrophysics Data System (ADS)
Bakoban, Rana A.
2017-08-01
The coefficient of variation [CV] has several applications in applied statistics. So in this paper, we adopt Bayesian and non-Bayesian approaches for the estimation of CV under type-II censored data from extension exponential distribution [EED]. The point and interval estimate of the CV are obtained for each of the maximum likelihood and parametric bootstrap techniques. Also the Bayesian approach with the help of MCMC method is presented. A real data set is presented and analyzed, hence the obtained results are used to assess the obtained theoretical results.
A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data
Huynh, Tran; Quick, Harrison; Ramachandran, Gurumurthy; Banerjee, Sudipto; Stenzel, Mark; Sandler, Dale P.; Engel, Lawrence S.; Kwok, Richard K.; Blair, Aaron; Stewart, Patricia A.
2016-01-01
Classical statistical methods for analyzing exposure data with values below the detection limits are well described in the occupational hygiene literature, but an evaluation of a Bayesian approach for handling such data is currently lacking. Here, we first describe a Bayesian framework for analyzing censored data. We then present the results of a simulation study conducted to compare the β-substitution method with a Bayesian method for exposure datasets drawn from lognormal distributions and mixed lognormal distributions with varying sample sizes, geometric standard deviations (GSDs), and censoring for single and multiple limits of detection. For each set of factors, estimates for the arithmetic mean (AM), geometric mean, GSD, and the 95th percentile (X0.95) of the exposure distribution were obtained. We evaluated the performance of each method using relative bias, the root mean squared error (rMSE), and coverage (the proportion of the computed 95% uncertainty intervals containing the true value). The Bayesian method using non-informative priors and the β-substitution method were generally comparable in bias and rMSE when estimating the AM and GM. For the GSD and the 95th percentile, the Bayesian method with non-informative priors was more biased and had a higher rMSE than the β-substitution method, but use of more informative priors generally improved the Bayesian method’s performance, making both the bias and the rMSE more comparable to the β-substitution method. An advantage of the Bayesian method is that it provided estimates of uncertainty for these parameters of interest and good coverage, whereas the β-substitution method only provided estimates of uncertainty for the AM, and coverage was not as consistent. Selection of one or the other method depends on the needs of the practitioner, the availability of prior information, and the distribution characteristics of the measurement data. We suggest the use of Bayesian methods if the practitioner has the computational resources and prior information, as the method would generally provide accurate estimates and also provides the distributions of all of the parameters, which could be useful for making decisions in some applications. PMID:26209598
Internal Medicine residents use heuristics to estimate disease probability.
Phang, Sen Han; Ravani, Pietro; Schaefer, Jeffrey; Wright, Bruce; McLaughlin, Kevin
2015-01-01
Training in Bayesian reasoning may have limited impact on accuracy of probability estimates. In this study, our goal was to explore whether residents previously exposed to Bayesian reasoning use heuristics rather than Bayesian reasoning to estimate disease probabilities. We predicted that if residents use heuristics then post-test probability estimates would be increased by non-discriminating clinical features or a high anchor for a target condition. We randomized 55 Internal Medicine residents to different versions of four clinical vignettes and asked them to estimate probabilities of target conditions. We manipulated the clinical data for each vignette to be consistent with either 1) using a representative heuristic, by adding non-discriminating prototypical clinical features of the target condition, or 2) using anchoring with adjustment heuristic, by providing a high or low anchor for the target condition. When presented with additional non-discriminating data the odds of diagnosing the target condition were increased (odds ratio (OR) 2.83, 95% confidence interval [1.30, 6.15], p = 0.009). Similarly, the odds of diagnosing the target condition were increased when a high anchor preceded the vignette (OR 2.04, [1.09, 3.81], p = 0.025). Our findings suggest that despite previous exposure to the use of Bayesian reasoning, residents use heuristics, such as the representative heuristic and anchoring with adjustment, to estimate probabilities. Potential reasons for attribute substitution include the relative cognitive ease of heuristics vs. Bayesian reasoning or perhaps residents in their clinical practice use gist traces rather than precise probability estimates when diagnosing.
Robust Tracking of Small Displacements with a Bayesian Estimator
Dumont, Douglas M.; Byram, Brett C.
2016-01-01
Radiation-force-based elasticity imaging describes a group of techniques that use acoustic radiation force (ARF) to displace tissue in order to obtain qualitative or quantitative measurements of tissue properties. Because ARF-induced displacements are on the order of micrometers, tracking these displacements in vivo can be challenging. Previously, it has been shown that Bayesian-based estimation can overcome some of the limitations of a traditional displacement estimator like normalized cross-correlation (NCC). In this work, we describe a Bayesian framework that combines a generalized Gaussian-Markov random field (GGMRF) prior with an automated method for selecting the prior’s width. We then evaluate its performance in the context of tracking the micrometer-order displacements encountered in an ARF-based method like acoustic radiation force impulse (ARFI) imaging. The results show that bias, variance, and mean-square error performance vary with prior shape and width, and that an almost one order-of-magnitude reduction in mean-square error can be achieved by the estimator at the automatically-selected prior width. Lesion simulations show that the proposed estimator has a higher contrast-to-noise ratio but lower contrast than NCC, median-filtered NCC, and the previous Bayesian estimator, with a non-Gaussian prior shape having better lesion-edge resolution than a Gaussian prior. In vivo results from a cardiac, radiofrequency ablation ARFI imaging dataset show quantitative improvements in lesion contrast-to-noise ratio over NCC as well as the previous Bayesian estimator. PMID:26529761
Baker, Robert L; Leong, Wen Fung; An, Nan; Brock, Marcus T; Rubin, Matthew J; Welch, Stephen; Weinig, Cynthia
2018-02-01
We develop Bayesian function-valued trait models that mathematically isolate genetic mechanisms underlying leaf growth trajectories by factoring out genotype-specific differences in photosynthesis. Remote sensing data can be used instead of leaf-level physiological measurements. Characterizing the genetic basis of traits that vary during ontogeny and affect plant performance is a major goal in evolutionary biology and agronomy. Describing genetic programs that specifically regulate morphological traits can be complicated by genotypic differences in physiological traits. We describe the growth trajectories of leaves using novel Bayesian function-valued trait (FVT) modeling approaches in Brassica rapa recombinant inbred lines raised in heterogeneous field settings. While frequentist approaches estimate parameter values by treating each experimental replicate discretely, Bayesian models can utilize information in the global dataset, potentially leading to more robust trait estimation. We illustrate this principle by estimating growth asymptotes in the face of missing data and comparing heritabilities of growth trajectory parameters estimated by Bayesian and frequentist approaches. Using pseudo-Bayes factors, we compare the performance of an initial Bayesian logistic growth model and a model that incorporates carbon assimilation (A max ) as a cofactor, thus statistically accounting for genotypic differences in carbon resources. We further evaluate two remotely sensed spectroradiometric indices, photochemical reflectance (pri2) and MERIS Terrestrial Chlorophyll Index (mtci) as covariates in lieu of A max , because these two indices were genetically correlated with A max across years and treatments yet allow much higher throughput compared to direct leaf-level gas-exchange measurements. For leaf lengths in uncrowded settings, including A max improves model fit over the initial model. The mtci and pri2 indices also outperform direct A max measurements. Of particular importance for evolutionary biologists and plant breeders, hierarchical Bayesian models estimating FVT parameters improve heritabilities compared to frequentist approaches.
Estimation of gross land-use change and its uncertainty using a Bayesian data assimilation approach
NASA Astrophysics Data System (ADS)
Levy, Peter; van Oijen, Marcel; Buys, Gwen; Tomlinson, Sam
2018-03-01
We present a method for estimating land-use change using a Bayesian data assimilation approach. The approach provides a general framework for combining multiple disparate data sources with a simple model. This allows us to constrain estimates of gross land-use change with reliable national-scale census data, whilst retaining the detailed information available from several other sources. Eight different data sources, with three different data structures, were combined in our posterior estimate of land use and land-use change, and other data sources could easily be added in future. The tendency for observations to underestimate gross land-use change is accounted for by allowing for a skewed distribution in the likelihood function. The data structure produced has high temporal and spatial resolution, and is appropriate for dynamic process-based modelling. Uncertainty is propagated appropriately into the output, so we have a full posterior distribution of output and parameters. The data are available in the widely used netCDF file format from http://eidc.ceh.ac.uk/.
NASA Astrophysics Data System (ADS)
Dittes, Beatrice; Špačková, Olga; Ebrahimian, Negin; Kaiser, Maria; Rieger, Wolfgang; Disse, Markus; Straub, Daniel
2017-04-01
Flood risk estimates are subject to significant uncertainties, e.g. due to limited records of historic flood events, uncertainty in flood modeling, uncertain impact of climate change or uncertainty in the exposure and loss estimates. In traditional design of flood protection systems, these uncertainties are typically just accounted for implicitly, based on engineering judgment. In the AdaptRisk project, we develop a fully quantitative framework for planning of flood protection systems under current and future uncertainties using quantitative pre-posterior Bayesian decision analysis. In this contribution, we focus on the quantification of the uncertainties and study their relative influence on the flood risk estimate and on the planning of flood protection systems. The following uncertainty components are included using a Bayesian approach: 1) inherent and statistical (i.e. limited record length) uncertainty; 2) climate uncertainty that can be learned from an ensemble of GCM-RCM models; 3) estimates of climate uncertainty components not covered in 2), such as bias correction, incomplete ensemble, local specifics not captured by the GCM-RCM models; 4) uncertainty in the inundation modelling; 5) uncertainty in damage estimation. We also investigate how these uncertainties are possibly reduced in the future when new evidence - such as new climate models, observed extreme events, and socio-economic data - becomes available. Finally, we look into how this new evidence influences the risk assessment and effectivity of flood protection systems. We demonstrate our methodology for a pre-alpine catchment in southern Germany: the Mangfall catchment in Bavaria that includes the city of Rosenheim, which suffered significant losses during the 2013 flood event.
Wu, Hao; Noé, Frank
2011-03-01
Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.
A Bayesian approach to the modelling of α Cen A
NASA Astrophysics Data System (ADS)
Bazot, M.; Bourguignon, S.; Christensen-Dalsgaard, J.
2012-12-01
Determining the physical characteristics of a star is an inverse problem consisting of estimating the parameters of models for the stellar structure and evolution, and knowing certain observable quantities. We use a Bayesian approach to solve this problem for α Cen A, which allows us to incorporate prior information on the parameters to be estimated, in order to better constrain the problem. Our strategy is based on the use of a Markov chain Monte Carlo (MCMC) algorithm to estimate the posterior probability densities of the stellar parameters: mass, age, initial chemical composition, etc. We use the stellar evolutionary code ASTEC to model the star. To constrain this model both seismic and non-seismic observations were considered. Several different strategies were tested to fit these values, using either two free parameters or five free parameters in ASTEC. We are thus able to show evidence that MCMC methods become efficient with respect to more classical grid-based strategies when the number of parameters increases. The results of our MCMC algorithm allow us to derive estimates for the stellar parameters and robust uncertainties thanks to the statistical analysis of the posterior probability densities. We are also able to compute odds for the presence of a convective core in α Cen A. When using core-sensitive seismic observational constraints, these can rise above ˜40 per cent. The comparison of results to previous studies also indicates that these seismic constraints are of critical importance for our knowledge of the structure of this star.
Bayesian Sensitivity Analysis of Statistical Models with Missing Data
ZHU, HONGTU; IBRAHIM, JOSEPH G.; TANG, NIANSHENG
2013-01-01
Methods for handling missing data depend strongly on the mechanism that generated the missing values, such as missing completely at random (MCAR) or missing at random (MAR), as well as other distributional and modeling assumptions at various stages. It is well known that the resulting estimates and tests may be sensitive to these assumptions as well as to outlying observations. In this paper, we introduce various perturbations to modeling assumptions and individual observations, and then develop a formal sensitivity analysis to assess these perturbations in the Bayesian analysis of statistical models with missing data. We develop a geometric framework, called the Bayesian perturbation manifold, to characterize the intrinsic structure of these perturbations. We propose several intrinsic influence measures to perform sensitivity analysis and quantify the effect of various perturbations to statistical models. We use the proposed sensitivity analysis procedure to systematically investigate the tenability of the non-ignorable missing at random (NMAR) assumption. Simulation studies are conducted to evaluate our methods, and a dataset is analyzed to illustrate the use of our diagnostic measures. PMID:24753718
Fortunato, Laura; Holden, Clare; Mace, Ruth
2006-12-01
Significant amounts of wealth have been exchanged as part of marriage settlements throughout history. Although various models have been proposed for interpreting these practices, their development over time has not been investigated systematically. In this paper we use a Bayesian MCMC phylogenetic comparative approach to reconstruct the evolution of two forms of wealth transfers at marriage, dowry and bridewealth, for 51 Indo-European cultural groups. Results indicate that dowry is more likely to have been the ancestral practice, and that a minimum of four changes to bridewealth is necessary to explain the observed distribution of the two states across the cultural groups.
ERIC Educational Resources Information Center
Yuan, Ying; MacKinnon, David P.
2009-01-01
In this article, we propose Bayesian analysis of mediation effects. Compared with conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian…
A Bayes linear Bayes method for estimation of correlated event rates.
Quigley, John; Wilson, Kevin J; Walls, Lesley; Bedford, Tim
2013-12-01
Typically, full Bayesian estimation of correlated event rates can be computationally challenging since estimators are intractable. When estimation of event rates represents one activity within a larger modeling process, there is an incentive to develop more efficient inference than provided by a full Bayesian model. We develop a new subjective inference method for correlated event rates based on a Bayes linear Bayes model under the assumption that events are generated from a homogeneous Poisson process. To reduce the elicitation burden we introduce homogenization factors to the model and, as an alternative to a subjective prior, an empirical method using the method of moments is developed. Inference under the new method is compared against estimates obtained under a full Bayesian model, which takes a multivariate gamma prior, where the predictive and posterior distributions are derived in terms of well-known functions. The mathematical properties of both models are presented. A simulation study shows that the Bayes linear Bayes inference method and the full Bayesian model provide equally reliable estimates. An illustrative example, motivated by a problem of estimating correlated event rates across different users in a simple supply chain, shows how ignoring the correlation leads to biased estimation of event rates. © 2013 Society for Risk Analysis.
Approximate Bayesian estimation of extinction rate in the Finnish Daphnia magna metapopulation.
Robinson, John D; Hall, David W; Wares, John P
2013-05-01
Approximate Bayesian computation (ABC) is useful for parameterizing complex models in population genetics. In this study, ABC was applied to simultaneously estimate parameter values for a model of metapopulation coalescence and test two alternatives to a strict metapopulation model in the well-studied network of Daphnia magna populations in Finland. The models shared four free parameters: the subpopulation genetic diversity (θS), the rate of gene flow among patches (4Nm), the founding population size (N0) and the metapopulation extinction rate (e) but differed in the distribution of extinction rates across habitat patches in the system. The three models had either a constant extinction rate in all populations (strict metapopulation), one population that was protected from local extinction (i.e. a persistent source), or habitat-specific extinction rates drawn from a distribution with specified mean and variance. Our model selection analysis favoured the model including a persistent source population over the two alternative models. Of the closest 750,000 data sets in Euclidean space, 78% were simulated under the persistent source model (estimated posterior probability = 0.769). This fraction increased to more than 85% when only the closest 150,000 data sets were considered (estimated posterior probability = 0.774). Approximate Bayesian computation was then used to estimate parameter values that might produce the observed set of summary statistics. Our analysis provided posterior distributions for e that included the point estimate obtained from previous data from the Finnish D. magna metapopulation. Our results support the use of ABC and population genetic data for testing the strict metapopulation model and parameterizing complex models of demography. © 2013 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad
2016-05-01
Bayesian inference has traditionally been conceived as the proper framework for the formal incorporation of expert knowledge in parameter estimation of groundwater models. However, conventional Bayesian inference is incapable of taking into account the imprecision essentially embedded in expert provided information. In order to solve this problem, a number of extensions to conventional Bayesian inference have been introduced in recent years. One of these extensions is 'fuzzy Bayesian inference' which is the result of integrating fuzzy techniques into Bayesian statistics. Fuzzy Bayesian inference has a number of desirable features which makes it an attractive approach for incorporating expert knowledge in the parameter estimation process of groundwater models: (1) it is well adapted to the nature of expert provided information, (2) it allows to distinguishably model both uncertainty and imprecision, and (3) it presents a framework for fusing expert provided information regarding the various inputs of the Bayesian inference algorithm. However an important obstacle in employing fuzzy Bayesian inference in groundwater numerical modeling applications is the computational burden, as the required number of numerical model simulations often becomes extremely exhaustive and often computationally infeasible. In this paper, a novel approach of accelerating the fuzzy Bayesian inference algorithm is proposed which is based on using approximate posterior distributions derived from surrogate modeling, as a screening tool in the computations. The proposed approach is first applied to a synthetic test case of seawater intrusion (SWI) in a coastal aquifer. It is shown that for this synthetic test case, the proposed approach decreases the number of required numerical simulations by an order of magnitude. Then the proposed approach is applied to a real-world test case involving three-dimensional numerical modeling of SWI in Kish Island, located in the Persian Gulf. An expert elicitation methodology is developed and applied to the real-world test case in order to provide a road map for the use of fuzzy Bayesian inference in groundwater modeling applications.
Schwartz, Rachel S; Mueller, Rachel L
2010-01-11
Estimates of divergence dates between species improve our understanding of processes ranging from nucleotide substitution to speciation. Such estimates are frequently based on molecular genetic differences between species; therefore, they rely on accurate estimates of the number of such differences (i.e. substitutions per site, measured as branch length on phylogenies). We used simulations to determine the effects of dataset size, branch length heterogeneity, branch depth, and analytical framework on branch length estimation across a range of branch lengths. We then reanalyzed an empirical dataset for plethodontid salamanders to determine how inaccurate branch length estimation can affect estimates of divergence dates. The accuracy of branch length estimation varied with branch length, dataset size (both number of taxa and sites), branch length heterogeneity, branch depth, dataset complexity, and analytical framework. For simple phylogenies analyzed in a Bayesian framework, branches were increasingly underestimated as branch length increased; in a maximum likelihood framework, longer branch lengths were somewhat overestimated. Longer datasets improved estimates in both frameworks; however, when the number of taxa was increased, estimation accuracy for deeper branches was less than for tip branches. Increasing the complexity of the dataset produced more misestimated branches in a Bayesian framework; however, in an ML framework, more branches were estimated more accurately. Using ML branch length estimates to re-estimate plethodontid salamander divergence dates generally resulted in an increase in the estimated age of older nodes and a decrease in the estimated age of younger nodes. Branch lengths are misestimated in both statistical frameworks for simulations of simple datasets. However, for complex datasets, length estimates are quite accurate in ML (even for short datasets), whereas few branches are estimated accurately in a Bayesian framework. Our reanalysis of empirical data demonstrates the magnitude of effects of Bayesian branch length misestimation on divergence date estimates. Because the length of branches for empirical datasets can be estimated most reliably in an ML framework when branches are <1 substitution/site and datasets are > or =1 kb, we suggest that divergence date estimates using datasets, branch lengths, and/or analytical techniques that fall outside of these parameters should be interpreted with caution.
Uncertainty analysis of depth predictions from seismic reflection data using Bayesian statistics
NASA Astrophysics Data System (ADS)
Michelioudakis, Dimitrios G.; Hobbs, Richard W.; Caiado, Camila C. S.
2018-03-01
Estimating the depths of target horizons from seismic reflection data is an important task in exploration geophysics. To constrain these depths we need a reliable and accurate velocity model. Here, we build an optimum 2D seismic reflection data processing flow focused on pre - stack deghosting filters and velocity model building and apply Bayesian methods, including Gaussian process emulation and Bayesian History Matching (BHM), to estimate the uncertainties of the depths of key horizons near the borehole DSDP-258 located in the Mentelle Basin, south west of Australia, and compare the results with the drilled core from that well. Following this strategy, the tie between the modelled and observed depths from DSDP-258 core was in accordance with the ± 2σ posterior credibility intervals and predictions for depths to key horizons were made for the two new drill sites, adjacent the existing borehole of the area. The probabilistic analysis allowed us to generate multiple realizations of pre-stack depth migrated images, these can be directly used to better constrain interpretation and identify potential risk at drill sites. The method will be applied to constrain the drilling targets for the upcoming International Ocean Discovery Program (IODP), leg 369.
Uncertainty analysis of depth predictions from seismic reflection data using Bayesian statistics
NASA Astrophysics Data System (ADS)
Michelioudakis, Dimitrios G.; Hobbs, Richard W.; Caiado, Camila C. S.
2018-06-01
Estimating the depths of target horizons from seismic reflection data is an important task in exploration geophysics. To constrain these depths we need a reliable and accurate velocity model. Here, we build an optimum 2-D seismic reflection data processing flow focused on pre-stack deghosting filters and velocity model building and apply Bayesian methods, including Gaussian process emulation and Bayesian History Matching, to estimate the uncertainties of the depths of key horizons near the Deep Sea Drilling Project (DSDP) borehole 258 (DSDP-258) located in the Mentelle Basin, southwest of Australia, and compare the results with the drilled core from that well. Following this strategy, the tie between the modelled and observed depths from DSDP-258 core was in accordance with the ±2σ posterior credibility intervals and predictions for depths to key horizons were made for the two new drill sites, adjacent to the existing borehole of the area. The probabilistic analysis allowed us to generate multiple realizations of pre-stack depth migrated images, these can be directly used to better constrain interpretation and identify potential risk at drill sites. The method will be applied to constrain the drilling targets for the upcoming International Ocean Discovery Program, leg 369.
Ghosh, Sujit K
2010-01-01
Bayesian methods are rapidly becoming popular tools for making statistical inference in various fields of science including biology, engineering, finance, and genetics. One of the key aspects of Bayesian inferential method is its logical foundation that provides a coherent framework to utilize not only empirical but also scientific information available to a researcher. Prior knowledge arising from scientific background, expert judgment, or previously collected data is used to build a prior distribution which is then combined with current data via the likelihood function to characterize the current state of knowledge using the so-called posterior distribution. Bayesian methods allow the use of models of complex physical phenomena that were previously too difficult to estimate (e.g., using asymptotic approximations). Bayesian methods offer a means of more fully understanding issues that are central to many practical problems by allowing researchers to build integrated models based on hierarchical conditional distributions that can be estimated even with limited amounts of data. Furthermore, advances in numerical integration methods, particularly those based on Monte Carlo methods, have made it possible to compute the optimal Bayes estimators. However, there is a reasonably wide gap between the background of the empirically trained scientists and the full weight of Bayesian statistical inference. Hence, one of the goals of this chapter is to bridge the gap by offering elementary to advanced concepts that emphasize linkages between standard approaches and full probability modeling via Bayesian methods.
NASA Astrophysics Data System (ADS)
Martinsson, J.
2013-03-01
We propose methods for robust Bayesian inference of the hypocentre in presence of poor, inconsistent and insufficient phase arrival times. The objectives are to increase the robustness, the accuracy and the precision by introducing heavy-tailed distributions and an informative prior distribution of the seismicity. The effects of the proposed distributions are studied under real measurement conditions in two underground mine networks and validated using 53 blasts with known hypocentres. To increase the robustness against poor, inconsistent or insufficient arrivals, a Gaussian Mixture Model is used as a hypocentre prior distribution to describe the seismically active areas, where the parameters are estimated based on previously located events in the region. The prior is truncated to constrain the solution to valid geometries, for example below the ground surface, excluding known cavities, voids and fractured zones. To reduce the sensitivity to outliers, different heavy-tailed distributions are evaluated to model the likelihood distribution of the arrivals given the hypocentre and the origin time. Among these distributions, the multivariate t-distribution is shown to produce the overall best performance, where the tail-mass adapts to the observed data. Hypocentre and uncertainty region estimates are based on simulations from the posterior distribution using Markov Chain Monte Carlo techniques. Velocity graphs (equivalent to traveltime graphs) are estimated using blasts from known locations, and applied to reduce the main uncertainties and thereby the final estimation error. To focus on the behaviour and the performance of the proposed distributions, a basic single-event Bayesian procedure is considered in this study for clarity. Estimation results are shown with different distributions, with and without prior distribution of seismicity, with wrong prior distribution, with and without error compensation, with and without error description, with insufficient arrival times and in presence of significant outliers. A particular focus is on visual results and comparisons to give a better understanding of the Bayesian advantage and to show the effects of heavy-tailed distributions and informative prior information on real data.
NASA Astrophysics Data System (ADS)
Elshall, A. S.; Ye, M.; Niu, G. Y.; Barron-Gafford, G.
2016-12-01
Bayesian multimodel inference is increasingly being used in hydrology. Estimating Bayesian model evidence (BME) is of central importance in many Bayesian multimodel analysis such as Bayesian model averaging and model selection. BME is the overall probability of the model in reproducing the data, accounting for the trade-off between the goodness-of-fit and the model complexity. Yet estimating BME is challenging, especially for high dimensional problems with complex sampling space. Estimating BME using the Monte Carlo numerical methods is preferred, as the methods yield higher accuracy than semi-analytical solutions (e.g. Laplace approximations, BIC, KIC, etc.). However, numerical methods are prone the numerical demons arising from underflow of round off errors. Although few studies alluded to this issue, to our knowledge this is the first study that illustrates these numerical demons. We show that the precision arithmetic can become a threshold on likelihood values and Metropolis acceptance ratio, which results in trimming parameter regions (when likelihood function is less than the smallest floating point number that a computer can represent) and corrupting of the empirical measures of the random states of the MCMC sampler (when using log-likelihood function). We consider two of the most powerful numerical estimators of BME that are the path sampling method of thermodynamic integration (TI) and the importance sampling method of steppingstone sampling (SS). We also consider the two most widely used numerical estimators, which are the prior sampling arithmetic mean (AS) and posterior sampling harmonic mean (HM). We investigate the vulnerability of these four estimators to the numerical demons. Interesting, the most biased estimator, namely the HM, turned out to be the least vulnerable. While it is generally assumed that AM is a bias-free estimator that will always approximate the true BME by investing in computational effort, we show that arithmetic underflow can hamper AM resulting in severe underestimation of BME. TI turned out to be the most vulnerable, resulting in BME overestimation. Finally, we show how SS can be largely invariant to rounding errors, yielding the most accurate and computational efficient results. These research results are useful for MC simulations to estimate Bayesian model evidence.
A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs
ERIC Educational Resources Information Center
Karabatsos, George; Walker, Stephen G.
2013-01-01
The regression discontinuity (RD) design (Thistlewaite & Campbell, 1960; Cook, 2008) provides a framework to identify and estimate causal effects from a non-randomized design. Each subject of a RD design is assigned to the treatment (versus assignment to a non-treatment) whenever her/his observed value of the assignment variable equals or…
BayeSED: A General Approach to Fitting the Spectral Energy Distribution of Galaxies
NASA Astrophysics Data System (ADS)
Han, Yunkun; Han, Zhanwen
2014-11-01
We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large Ks -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has been performed for the first time. We found that the 2003 model by Bruzual & Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the Ks -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.
BayeSED: A GENERAL APPROACH TO FITTING THE SPECTRAL ENERGY DISTRIBUTION OF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yunkun; Han, Zhanwen, E-mail: hanyk@ynao.ac.cn, E-mail: zhanwenhan@ynao.ac.cn
2014-11-01
We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large K{sub s} -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has beenmore » performed for the first time. We found that the 2003 model by Bruzual and Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the K{sub s} -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.« less
Chan, Jennifer S K
2016-05-01
Dropouts are common in longitudinal study. If the dropout probability depends on the missing observations at or after dropout, this type of dropout is called informative (or nonignorable) dropout (ID). Failure to accommodate such dropout mechanism into the model will bias the parameter estimates. We propose a conditional autoregressive model for longitudinal binary data with an ID model such that the probabilities of positive outcomes as well as the drop-out indicator in each occasion are logit linear in some covariates and outcomes. This model adopting a marginal model for outcomes and a conditional model for dropouts is called a selection model. To allow for the heterogeneity and clustering effects, the outcome model is extended to incorporate mixture and random effects. Lastly, the model is further extended to a novel model that models the outcome and dropout jointly such that their dependency is formulated through an odds ratio function. Parameters are estimated by a Bayesian approach implemented using the user-friendly Bayesian software WinBUGS. A methadone clinic dataset is analyzed to illustrate the proposed models. Result shows that the treatment time effect is still significant but weaker after allowing for an ID process in the data. Finally the effect of drop-out on parameter estimates is evaluated through simulation studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Grieve, Richard; Nixon, Richard; Thompson, Simon G
2010-01-01
Cost-effectiveness analyses (CEA) may be undertaken alongside cluster randomized trials (CRTs) where randomization is at the level of the cluster (for example, the hospital or primary care provider) rather than the individual. Costs (and outcomes) within clusters may be correlated so that the assumption made by standard bivariate regression models, that observations are independent, is incorrect. This study develops a flexible modeling framework to acknowledge the clustering in CEA that use CRTs. The authors extend previous Bayesian bivariate models for CEA of multicenter trials to recognize the specific form of clustering in CRTs. They develop new Bayesian hierarchical models (BHMs) that allow mean costs and outcomes, and also variances, to differ across clusters. They illustrate how each model can be applied using data from a large (1732 cases, 70 primary care providers) CRT evaluating alternative interventions for reducing postnatal depression. The analyses compare cost-effectiveness estimates from BHMs with standard bivariate regression models that ignore the data hierarchy. The BHMs show high levels of cost heterogeneity across clusters (intracluster correlation coefficient, 0.17). Compared with standard regression models, the BHMs yield substantially increased uncertainty surrounding the cost-effectiveness estimates, and altered point estimates. The authors conclude that ignoring clustering can lead to incorrect inferences. The BHMs that they present offer a flexible modeling framework that can be applied more generally to CEA that use CRTs.
Evolution of the cerebellum as a neuronal machine for Bayesian state estimation
NASA Astrophysics Data System (ADS)
Paulin, M. G.
2005-09-01
The cerebellum evolved in association with the electric sense and vestibular sense of the earliest vertebrates. Accurate information provided by these sensory systems would have been essential for precise control of orienting behavior in predation. A simple model shows that individual spikes in electrosensory primary afferent neurons can be interpreted as measurements of prey location. Using this result, I construct a computational neural model in which the spatial distribution of spikes in a secondary electrosensory map forms a Monte Carlo approximation to the Bayesian posterior distribution of prey locations given the sense data. The neural circuit that emerges naturally to perform this task resembles the cerebellar-like hindbrain electrosensory filtering circuitry of sharks and other electrosensory vertebrates. The optimal filtering mechanism can be extended to handle dynamical targets observed from a dynamical platform; that is, to construct an optimal dynamical state estimator using spiking neurons. This may provide a generic model of cerebellar computation. Vertebrate motion-sensing neurons have specific fractional-order dynamical characteristics that allow Bayesian state estimators to be implemented elegantly and efficiently, using simple operations with asynchronous pulses, i.e. spikes. The computational neural models described in this paper represent a novel kind of particle filter, using spikes as particles. The models are specific and make testable predictions about computational mechanisms in cerebellar circuitry, while providing a plausible explanation of cerebellar contributions to aspects of motor control, perception and cognition.
Ortega, Alonso; Labrenz, Stephan; Markowitsch, Hans J; Piefke, Martina
2013-01-01
In the last decade, different statistical techniques have been introduced to improve assessment of malingering-related poor effort. In this context, we have recently shown preliminary evidence that a Bayesian latent group model may help to optimize classification accuracy using a simulation research design. In the present study, we conducted two analyses. Firstly, we evaluated how accurately this Bayesian approach can distinguish between participants answering in an honest way (honest response group) and participants feigning cognitive impairment (experimental malingering group). Secondly, we tested the accuracy of our model in the differentiation between patients who had real cognitive deficits (cognitively impaired group) and participants who belonged to the experimental malingering group. All Bayesian analyses were conducted using the raw scores of a visual recognition forced-choice task (2AFC), the Test of Memory Malingering (TOMM, Trial 2), and the Word Memory Test (WMT, primary effort subtests). The first analysis showed 100% accuracy for the Bayesian model in distinguishing participants of both groups with all effort measures. The second analysis showed outstanding overall accuracy of the Bayesian model when estimates were obtained from the 2AFC and the TOMM raw scores. Diagnostic accuracy of the Bayesian model diminished when using the WMT total raw scores. Despite, overall diagnostic accuracy can still be considered excellent. The most plausible explanation for this decrement is the low performance in verbal recognition and fluency tasks of some patients of the cognitively impaired group. Additionally, the Bayesian model provides individual estimates, p(zi |D), of examinees' effort levels. In conclusion, both high classification accuracy levels and Bayesian individual estimates of effort may be very useful for clinicians when assessing for effort in medico-legal settings.
NASA Astrophysics Data System (ADS)
Li, L.; Xu, C.-Y.; Engeland, K.
2012-04-01
With respect to model calibration, parameter estimation and analysis of uncertainty sources, different approaches have been used in hydrological models. Bayesian method is one of the most widely used methods for uncertainty assessment of hydrological models, which incorporates different sources of information into a single analysis through Bayesian theorem. However, none of these applications can well treat the uncertainty in extreme flows of hydrological models' simulations. This study proposes a Bayesian modularization method approach in uncertainty assessment of conceptual hydrological models by considering the extreme flows. It includes a comprehensive comparison and evaluation of uncertainty assessments by a new Bayesian modularization method approach and traditional Bayesian models using the Metropolis Hasting (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions are used in combination with traditional Bayesian: the AR (1) plus Normal and time period independent model (Model 1), the AR (1) plus Normal and time period dependent model (Model 2) and the AR (1) plus multi-normal model (Model 3). The results reveal that (1) the simulations derived from Bayesian modularization method are more accurate with the highest Nash-Sutcliffe efficiency value, and (2) the Bayesian modularization method performs best in uncertainty estimates of entire flows and in terms of the application and computational efficiency. The study thus introduces a new approach for reducing the extreme flow's effect on the discharge uncertainty assessment of hydrological models via Bayesian. Keywords: extreme flow, uncertainty assessment, Bayesian modularization, hydrological model, WASMOD
Hierarchical Bayesian Model (HBM) - Derived Estimates of Air Quality for 2007: Annual Report
This report describes EPA's Hierarchical Bayesian model generated (HBM) estimates of ozone (O3) and fine particulate matter (PM2.5 particles with aerodynamic diameter < 2.5 microns)concentrations throughout the continental United States during the 2007 calen...
qPR: An adaptive partial-report procedure based on Bayesian inference.
Baek, Jongsoo; Lesmes, Luis Andres; Lu, Zhong-Lin
2016-08-01
Iconic memory is best assessed with the partial report procedure in which an array of letters appears briefly on the screen and a poststimulus cue directs the observer to report the identity of the cued letter(s). Typically, 6-8 cue delays or 600-800 trials are tested to measure the iconic memory decay function. Here we develop a quick partial report, or qPR, procedure based on a Bayesian adaptive framework to estimate the iconic memory decay function with much reduced testing time. The iconic memory decay function is characterized by an exponential function and a joint probability distribution of its three parameters. Starting with a prior of the parameters, the method selects the stimulus to maximize the expected information gain in the next test trial. It then updates the posterior probability distribution of the parameters based on the observer's response using Bayesian inference. The procedure is reiterated until either the total number of trials or the precision of the parameter estimates reaches a certain criterion. Simulation studies showed that only 100 trials were necessary to reach an average absolute bias of 0.026 and a precision of 0.070 (both in terms of probability correct). A psychophysical validation experiment showed that estimates of the iconic memory decay function obtained with 100 qPR trials exhibited good precision (the half width of the 68.2% credible interval = 0.055) and excellent agreement with those obtained with 1,600 trials of the conventional method of constant stimuli procedure (RMSE = 0.063). Quick partial-report relieves the data collection burden in characterizing iconic memory and makes it possible to assess iconic memory in clinical populations.
NASA Astrophysics Data System (ADS)
Raj, Rahul; van der Tol, Christiaan; Hamm, Nicholas Alexander Samuel; Stein, Alfred
2018-01-01
Parameters of a process-based forest growth simulator are difficult or impossible to obtain from field observations. Reliable estimates can be obtained using calibration against observations of output and state variables. In this study, we present a Bayesian framework to calibrate the widely used process-based simulator Biome-BGC against estimates of gross primary production (GPP) data. We used GPP partitioned from flux tower measurements of a net ecosystem exchange over a 55-year-old Douglas fir stand as an example. The uncertainties of both the Biome-BGC parameters and the simulated GPP values were estimated. The calibrated parameters leaf and fine root turnover (LFRT), ratio of fine root carbon to leaf carbon (FRC : LC), ratio of carbon to nitrogen in leaf (C : Nleaf), canopy water interception coefficient (Wint), fraction of leaf nitrogen in RuBisCO (FLNR), and effective soil rooting depth (SD) characterize the photosynthesis and carbon and nitrogen allocation in the forest. The calibration improved the root mean square error and enhanced Nash-Sutcliffe efficiency between simulated and flux tower daily GPP compared to the uncalibrated Biome-BGC. Nevertheless, the seasonal cycle for flux tower GPP was not reproduced exactly and some overestimation in spring and underestimation in summer remained after calibration. We hypothesized that the phenology exhibited a seasonal cycle that was not accurately reproduced by the simulator. We investigated this by calibrating the Biome-BGC to each month's flux tower GPP separately. As expected, the simulated GPP improved, but the calibrated parameter values suggested that the seasonal cycle of state variables in the simulator could be improved. It was concluded that the Bayesian framework for calibration can reveal features of the modelled physical processes and identify aspects of the process simulator that are too rigid.
qPR: An adaptive partial-report procedure based on Bayesian inference
Baek, Jongsoo; Lesmes, Luis Andres; Lu, Zhong-Lin
2016-01-01
Iconic memory is best assessed with the partial report procedure in which an array of letters appears briefly on the screen and a poststimulus cue directs the observer to report the identity of the cued letter(s). Typically, 6–8 cue delays or 600–800 trials are tested to measure the iconic memory decay function. Here we develop a quick partial report, or qPR, procedure based on a Bayesian adaptive framework to estimate the iconic memory decay function with much reduced testing time. The iconic memory decay function is characterized by an exponential function and a joint probability distribution of its three parameters. Starting with a prior of the parameters, the method selects the stimulus to maximize the expected information gain in the next test trial. It then updates the posterior probability distribution of the parameters based on the observer's response using Bayesian inference. The procedure is reiterated until either the total number of trials or the precision of the parameter estimates reaches a certain criterion. Simulation studies showed that only 100 trials were necessary to reach an average absolute bias of 0.026 and a precision of 0.070 (both in terms of probability correct). A psychophysical validation experiment showed that estimates of the iconic memory decay function obtained with 100 qPR trials exhibited good precision (the half width of the 68.2% credible interval = 0.055) and excellent agreement with those obtained with 1,600 trials of the conventional method of constant stimuli procedure (RMSE = 0.063). Quick partial-report relieves the data collection burden in characterizing iconic memory and makes it possible to assess iconic memory in clinical populations. PMID:27580045
Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater
Shabbir, Javid; M. AbdEl-Salam, Nasser; Hussain, Tajammal
2016-01-01
Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampling designs. Different estimation methods (i.e., maximum likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares) are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian, spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal kriging. It is also observed that the universal kriging predictor provides minimum mean universal kriging variance for both adding and deleting locations during sampling design. PMID:27683016
Internal Medicine residents use heuristics to estimate disease probability
Phang, Sen Han; Ravani, Pietro; Schaefer, Jeffrey; Wright, Bruce; McLaughlin, Kevin
2015-01-01
Background Training in Bayesian reasoning may have limited impact on accuracy of probability estimates. In this study, our goal was to explore whether residents previously exposed to Bayesian reasoning use heuristics rather than Bayesian reasoning to estimate disease probabilities. We predicted that if residents use heuristics then post-test probability estimates would be increased by non-discriminating clinical features or a high anchor for a target condition. Method We randomized 55 Internal Medicine residents to different versions of four clinical vignettes and asked them to estimate probabilities of target conditions. We manipulated the clinical data for each vignette to be consistent with either 1) using a representative heuristic, by adding non-discriminating prototypical clinical features of the target condition, or 2) using anchoring with adjustment heuristic, by providing a high or low anchor for the target condition. Results When presented with additional non-discriminating data the odds of diagnosing the target condition were increased (odds ratio (OR) 2.83, 95% confidence interval [1.30, 6.15], p = 0.009). Similarly, the odds of diagnosing the target condition were increased when a high anchor preceded the vignette (OR 2.04, [1.09, 3.81], p = 0.025). Conclusions Our findings suggest that despite previous exposure to the use of Bayesian reasoning, residents use heuristics, such as the representative heuristic and anchoring with adjustment, to estimate probabilities. Potential reasons for attribute substitution include the relative cognitive ease of heuristics vs. Bayesian reasoning or perhaps residents in their clinical practice use gist traces rather than precise probability estimates when diagnosing. PMID:27004080
Bayesian LASSO, scale space and decision making in association genetics.
Pasanen, Leena; Holmström, Lasse; Sillanpää, Mikko J
2015-01-01
LASSO is a penalized regression method that facilitates model fitting in situations where there are as many, or even more explanatory variables than observations, and only a few variables are relevant in explaining the data. We focus on the Bayesian version of LASSO and consider four problems that need special attention: (i) controlling false positives, (ii) multiple comparisons, (iii) collinearity among explanatory variables, and (iv) the choice of the tuning parameter that controls the amount of shrinkage and the sparsity of the estimates. The particular application considered is association genetics, where LASSO regression can be used to find links between chromosome locations and phenotypic traits in a biological organism. However, the proposed techniques are relevant also in other contexts where LASSO is used for variable selection. We separate the true associations from false positives using the posterior distribution of the effects (regression coefficients) provided by Bayesian LASSO. We propose to solve the multiple comparisons problem by using simultaneous inference based on the joint posterior distribution of the effects. Bayesian LASSO also tends to distribute an effect among collinear variables, making detection of an association difficult. We propose to solve this problem by considering not only individual effects but also their functionals (i.e. sums and differences). Finally, whereas in Bayesian LASSO the tuning parameter is often regarded as a random variable, we adopt a scale space view and consider a whole range of fixed tuning parameters, instead. The effect estimates and the associated inference are considered for all tuning parameters in the selected range and the results are visualized with color maps that provide useful insights into data and the association problem considered. The methods are illustrated using two sets of artificial data and one real data set, all representing typical settings in association genetics.
Pooseh, Shakoor; Bernhardt, Nadine; Guevara, Alvaro; Huys, Quentin J M; Smolka, Michael N
2018-02-01
Using simple mathematical models of choice behavior, we present a Bayesian adaptive algorithm to assess measures of impulsive and risky decision making. Practically, these measures are characterized by discounting rates and are used to classify individuals or population groups, to distinguish unhealthy behavior, and to predict developmental courses. However, a constant demand for improved tools to assess these constructs remains unanswered. The algorithm is based on trial-by-trial observations. At each step, a choice is made between immediate (certain) and delayed (risky) options. Then the current parameter estimates are updated by the likelihood of observing the choice, and the next offers are provided from the indifference point, so that they will acquire the most informative data based on the current parameter estimates. The procedure continues for a certain number of trials in order to reach a stable estimation. The algorithm is discussed in detail for the delay discounting case, and results from decision making under risk for gains, losses, and mixed prospects are also provided. Simulated experiments using prescribed parameter values were performed to justify the algorithm in terms of the reproducibility of its parameters for individual assessments, and to test the reliability of the estimation procedure in a group-level analysis. The algorithm was implemented as an experimental battery to measure temporal and probability discounting rates together with loss aversion, and was tested on a healthy participant sample.
Uncertainty Management for Diagnostics and Prognostics of Batteries using Bayesian Techniques
NASA Technical Reports Server (NTRS)
Saha, Bhaskar; Goebel, kai
2007-01-01
Uncertainty management has always been the key hurdle faced by diagnostics and prognostics algorithms. A Bayesian treatment of this problem provides an elegant and theoretically sound approach to the modern Condition- Based Maintenance (CBM)/Prognostic Health Management (PHM) paradigm. The application of the Bayesian techniques to regression and classification in the form of Relevance Vector Machine (RVM), and to state estimation as in Particle Filters (PF), provides a powerful tool to integrate the diagnosis and prognosis of battery health. The RVM, which is a Bayesian treatment of the Support Vector Machine (SVM), is used for model identification, while the PF framework uses the learnt model, statistical estimates of noise and anticipated operational conditions to provide estimates of remaining useful life (RUL) in the form of a probability density function (PDF). This type of prognostics generates a significant value addition to the management of any operation involving electrical systems.
Cipoli, Daniel E; Martinez, Edson Z; Castro, Margaret de; Moreira, Ayrton C
2012-12-01
To estimate the pretest probability of Cushing's syndrome (CS) diagnosis by a Bayesian approach using intuitive clinical judgment. Physicians were requested, in seven endocrinology meetings, to answer three questions: "Based on your personal expertise, after obtaining clinical history and physical examination, without using laboratorial tests, what is your probability of diagnosing Cushing's Syndrome?"; "For how long have you been practicing Endocrinology?"; and "Where do you work?". A Bayesian beta regression, using the WinBugs software was employed. We obtained 294 questionnaires. The mean pretest probability of CS diagnosis was 51.6% (95%CI: 48.7-54.3). The probability was directly related to experience in endocrinology, but not with the place of work. Pretest probability of CS diagnosis was estimated using a Bayesian methodology. Although pretest likelihood can be context-dependent, experience based on years of practice may help the practitioner to diagnosis CS.
De Tobel, J; Phlypo, I; Fieuws, S; Politis, C; Verstraete, K L; Thevissen, P W
2017-12-01
The development of third molars can be evaluated with medical imaging to estimate age in subadults. The appearance of third molars on magnetic resonance imaging (MRI) differs greatly from that on radiographs. Therefore a specific staging technique is necessary to classify third molar development on MRI and to apply it for age estimation. To develop a specific staging technique to register third molar development on MRI and to evaluate its performance for age estimation in subadults. Using 3T MRI in three planes, all third molars were evaluated in 309 healthy Caucasian participants from 14 to 26 years old. According to the appearance of the developing third molars on MRI, descriptive criteria and schematic representations were established to define a specific staging technique. Two observers, with different levels of experience, staged all third molars independently with the developed technique. Intra- and inter-observer agreement were calculated. The data were imported in a Bayesian model for age estimation as described by Fieuws et al. (2016). This approach adequately handles correlation between age indicators and missing age indicators. It was used to calculate a point estimate and a prediction interval of the estimated age. Observed age minus predicted age was calculated, reflecting the error of the estimate. One-hundred and sixty-six third molars were agenetic. Five percent (51/1096) of upper third molars and 7% (70/1044) of lower third molars were not assessable. Kappa for inter-observer agreement ranged from 0.76 to 0.80. For intra-observer agreement kappa ranged from 0.80 to 0.89. However, two stage differences between observers or between staging sessions occurred in up to 2.2% (20/899) of assessments, probably due to a learning effect. Using the Bayesian model for age estimation, a mean absolute error of 2.0 years in females and 1.7 years in males was obtained. Root mean squared error equalled 2.38 years and 2.06 years respectively. The performance to discern minors from adults was better for males than for females, with specificities of 96% and 73% respectively. Age estimations based on the proposed staging method for third molars on MRI showed comparable reproducibility and performance as the established methods based on radiographs.
Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood e...
Hierarchical Bayesian Model (HBM) - Derived Estimates of Air Quality for 2008: Annual Report
This report describes EPA’s Hierarchical Bayesian model generated (HBM) estimates of ozone (O3) and fine particulate matter (PM2.5, particles with aerodynamic diameter < 2.5 microns) concentrations throughout the continental United States during the 2007 ca...
Disease Mapping for Stomach Cancer in Libya Based on Besag– York– Mollié (BYM) Model
Alhdiri, Maryam Ahmed Salem; Samat, Nor Azah; Mohamed, Zulkifley
2017-06-25
Globally, Cancer is the ever-increasing health problem and most common cause of medical deaths. In Libya, it is an important health concern, especially in the setting of an aging population and limited healthcare facilities. Therefore, the goal of this research is to map of the county’ cancer incidence rate using the Bayesian method and identify the high-risk regions (for the first time in a decade). In the field of disease mapping, very little has been done to address the issue of analyzing sparse cancer diseases in Libya. Standardized Morbidity Ratio or SMR is known as a traditional approach to measure the relative risk of the disease, which is the ratio of observed and expected number of accounts in a region that has the greatest uncertainty if the disease is rare or small geographical region. Therefore, to solve some of SMR’s problems, we used statistical smoothing or Bayesian models to estimate the relative risk for stomach cancer incidence in Libya in 2007 based on the BYM model. This research begins with a short offer of the SMR and Bayesian model with BYM model, which we applied to stomach cancer incidence in Libya. We compared all of the results using maps and tables. We found that BYM model is potentially beneficial, because it gives better relative risk estimates compared to SMR method. As well as, it has can overcome the classical method problem when there is no observed stomach cancer in a region. Creative Commons Attribution License
Nowcasting Cloud Fields for U.S. Air Force Special Operations
2017-03-01
application of Bayes’ Rule offers many advantages over Kernel Density Estimation (KDE) and other commonly used statistical post-processing methods...reflectance and probability of cloud. A statistical post-processing technique is applied using Bayesian estimation to train the system from a set of past...nowcasting, low cloud forecasting, cloud reflectance, ISR, Bayesian estimation, statistical post-processing, machine learning 15. NUMBER OF PAGES
Bayesian hierarchical model for large-scale covariance matrix estimation.
Zhu, Dongxiao; Hero, Alfred O
2007-12-01
Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.
NASA Astrophysics Data System (ADS)
Ortega Culaciati, F. H.; Simons, M.; Minson, S. E.; Owen, S. E.; Moore, A. W.; Hetland, E. A.
2011-12-01
We aim to quantify the spatial distribution of after-slip following the Great 11 March 2011 Tohoku-Oki (Mw 9.0) earthquake and its implications for the occurrence of a future Great Earthquake, particularly in the Ibaraki region of Japan. We use a Bayesian approach (CATMIP algorithm), constrained by on-land Geonet GPS time series, to infer models of after-slip to date in the Japan megathrust. Unlike traditional inverse methods, in which a single optimum model is found, the Bayesian approach allows a complete characterization of the model parameter space by searching a-posteriori estimates of the range of plausible models. We use the Kullback-Liebler information divergence as a metric of the information gain on each subsurface slip patch, to quantify the extent to which land-based geodetic observations can constrain the upper parts of the megathrust, where the Great Tohoku-Oki earthquake took place. We aim to understand the relationships of spatial distribution of fault slip behavior in the different stages of the seismic cycle. We compare our post-seismic slip distributions to inter- and co-seismic slip distributions obtained through a Bayesian methodology as well as through traditional (optimization) inverse estimates in the published literature. We discuss implications of these analyses for the occurrence of a large earthquake in the Japan megathrust regions adjacent to the Great Tohoku-Oki earthquake.
Adaptive Parameter Estimation of Person Recognition Model in a Stochastic Human Tracking Process
NASA Astrophysics Data System (ADS)
Nakanishi, W.; Fuse, T.; Ishikawa, T.
2015-05-01
This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation using general state space model. Firstly we explain the way to formulate human tracking in general state space model with their components. Then referring to previous researches, we use Bhattacharyya coefficient to formulate observation model of general state space model, which is corresponding to person recognition model. The observation model in this paper is a function of Bhattacharyya coefficient with one unknown parameter. At last we sequentially estimate this parameter in real dataset with some settings. Results showed that sequential parameter estimation was succeeded and were consistent with observation situations such as occlusions.
Bayesian calibration for forensic age estimation.
Ferrante, Luigi; Skrami, Edlira; Gesuita, Rosaria; Cameriere, Roberto
2015-05-10
Forensic medicine is increasingly called upon to assess the age of individuals. Forensic age estimation is mostly required in relation to illegal immigration and identification of bodies or skeletal remains. A variety of age estimation methods are based on dental samples and use of regression models, where the age of an individual is predicted by morphological tooth changes that take place over time. From the medico-legal point of view, regression models, with age as the dependent random variable entail that age tends to be overestimated in the young and underestimated in the old. To overcome this bias, we describe a new full Bayesian calibration method (asymmetric Laplace Bayesian calibration) for forensic age estimation that uses asymmetric Laplace distribution as the probability model. The method was compared with three existing approaches (two Bayesian and a classical method) using simulated data. Although its accuracy was comparable with that of the other methods, the asymmetric Laplace Bayesian calibration appears to be significantly more reliable and robust in case of misspecification of the probability model. The proposed method was also applied to a real dataset of values of the pulp chamber of the right lower premolar measured on x-ray scans of individuals of known age. Copyright © 2015 John Wiley & Sons, Ltd.
Bayesian power spectrum inference with foreground and target contamination treatment
NASA Astrophysics Data System (ADS)
Jasche, J.; Lavaux, G.
2017-10-01
This work presents a joint and self-consistent Bayesian treatment of various foreground and target contaminations when inferring cosmological power spectra and three-dimensional density fields from galaxy redshift surveys. This is achieved by introducing additional block-sampling procedures for unknown coefficients of foreground and target contamination templates to the previously presented ARES framework for Bayesian large-scale structure analyses. As a result, the method infers jointly and fully self-consistently three-dimensional density fields, cosmological power spectra, luminosity-dependent galaxy biases, noise levels of the respective galaxy distributions, and coefficients for a set of a priori specified foreground templates. In addition, this fully Bayesian approach permits detailed quantification of correlated uncertainties amongst all inferred quantities and correctly marginalizes over observational systematic effects. We demonstrate the validity and efficiency of our approach in obtaining unbiased estimates of power spectra via applications to realistic mock galaxy observations that are subject to stellar contamination and dust extinction. While simultaneously accounting for galaxy biases and unknown noise levels, our method reliably and robustly infers three-dimensional density fields and corresponding cosmological power spectra from deep galaxy surveys. Furthermore, our approach correctly accounts for joint and correlated uncertainties between unknown coefficients of foreground templates and the amplitudes of the power spectrum. This effect amounts to correlations and anti-correlations of up to 10 per cent across wide ranges in Fourier space.
A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data.
Huynh, Tran; Quick, Harrison; Ramachandran, Gurumurthy; Banerjee, Sudipto; Stenzel, Mark; Sandler, Dale P; Engel, Lawrence S; Kwok, Richard K; Blair, Aaron; Stewart, Patricia A
2016-01-01
Classical statistical methods for analyzing exposure data with values below the detection limits are well described in the occupational hygiene literature, but an evaluation of a Bayesian approach for handling such data is currently lacking. Here, we first describe a Bayesian framework for analyzing censored data. We then present the results of a simulation study conducted to compare the β-substitution method with a Bayesian method for exposure datasets drawn from lognormal distributions and mixed lognormal distributions with varying sample sizes, geometric standard deviations (GSDs), and censoring for single and multiple limits of detection. For each set of factors, estimates for the arithmetic mean (AM), geometric mean, GSD, and the 95th percentile (X0.95) of the exposure distribution were obtained. We evaluated the performance of each method using relative bias, the root mean squared error (rMSE), and coverage (the proportion of the computed 95% uncertainty intervals containing the true value). The Bayesian method using non-informative priors and the β-substitution method were generally comparable in bias and rMSE when estimating the AM and GM. For the GSD and the 95th percentile, the Bayesian method with non-informative priors was more biased and had a higher rMSE than the β-substitution method, but use of more informative priors generally improved the Bayesian method's performance, making both the bias and the rMSE more comparable to the β-substitution method. An advantage of the Bayesian method is that it provided estimates of uncertainty for these parameters of interest and good coverage, whereas the β-substitution method only provided estimates of uncertainty for the AM, and coverage was not as consistent. Selection of one or the other method depends on the needs of the practitioner, the availability of prior information, and the distribution characteristics of the measurement data. We suggest the use of Bayesian methods if the practitioner has the computational resources and prior information, as the method would generally provide accurate estimates and also provides the distributions of all of the parameters, which could be useful for making decisions in some applications. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Bayesian Methods for Effective Field Theories
NASA Astrophysics Data System (ADS)
Wesolowski, Sarah
Microscopic predictions of the properties of atomic nuclei have reached a high level of precision in the past decade. This progress mandates improved uncertainty quantification (UQ) for a robust comparison of experiment with theory. With the uncertainty from many-body methods under control, calculations are now sensitive to the input inter-nucleon interactions. These interactions include parameters that must be fit to experiment, inducing both uncertainty from the fit and from missing physics in the operator structure of the Hamiltonian. Furthermore, the implementation of the inter-nucleon interactions is not unique, which presents the additional problem of assessing results using different interactions. Effective field theories (EFTs) take advantage of a separation of high- and low-energy scales in the problem to form a power-counting scheme that allows the organization of terms in the Hamiltonian based on their expected contribution to observable predictions. This scheme gives a natural framework for quantification of uncertainty due to missing physics. The free parameters of the EFT, called the low-energy constants (LECs), must be fit to data, but in a properly constructed EFT these constants will be natural-sized, i.e., of order unity. The constraints provided by the EFT, namely the size of the systematic uncertainty from truncation of the theory and the natural size of the LECs, are assumed information even before a calculation is performed or a fit is done. Bayesian statistical methods provide a framework for treating uncertainties that naturally incorporates prior information as well as putting stochastic and systematic uncertainties on an equal footing. For EFT UQ Bayesian methods allow the relevant EFT properties to be incorporated quantitatively as prior probability distribution functions (pdfs). Following the logic of probability theory, observable quantities and underlying physical parameters such as the EFT breakdown scale may be expressed as pdfs that incorporate the prior pdfs. Problems of model selection, such as distinguishing between competing EFT implementations, are also natural in a Bayesian framework. In this thesis we focus on two complementary topics for EFT UQ using Bayesian methods--quantifying EFT truncation uncertainty and parameter estimation for LECs. Using the order-by-order calculations and underlying EFT constraints as prior information, we show how to estimate EFT truncation uncertainties. We then apply the result to calculating truncation uncertainties on predictions of nucleon-nucleon scattering in chiral effective field theory. We apply model-checking diagnostics to our calculations to ensure that the statistical model of truncation uncertainty produces consistent results. A framework for EFT parameter estimation based on EFT convergence properties and naturalness is developed which includes a series of diagnostics to ensure the extraction of the maximum amount of available information from data to estimate LECs with minimal bias. We develop this framework using model EFTs and apply it to the problem of extrapolating lattice quantum chromodynamics results for the nucleon mass. We then apply aspects of the parameter estimation framework to perform case studies in chiral EFT parameter estimation, investigating a possible operator redundancy at fourth order in the chiral expansion and the appropriate inclusion of truncation uncertainty in estimating LECs.
Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Peng, E-mail: peng@ices.utexas.edu; Schwab, Christoph, E-mail: christoph.schwab@sam.math.ethz.ch
2016-07-01
We extend the reduced basis (RB) accelerated Bayesian inversion methods for affine-parametric, linear operator equations which are considered in [16,17] to non-affine, nonlinear parametric operator equations. We generalize the analysis of sparsity of parametric forward solution maps in [20] and of Bayesian inversion in [48,49] to the fully discrete setting, including Petrov–Galerkin high-fidelity (“HiFi”) discretization of the forward maps. We develop adaptive, stochastic collocation based reduction methods for the efficient computation of reduced bases on the parametric solution manifold. The nonaffinity and nonlinearity with respect to (w.r.t.) the distributed, uncertain parameters and the unknown solution is collocated; specifically, by themore » so-called Empirical Interpolation Method (EIM). For the corresponding Bayesian inversion problems, computational efficiency is enhanced in two ways: first, expectations w.r.t. the posterior are computed by adaptive quadratures with dimension-independent convergence rates proposed in [49]; the present work generalizes [49] to account for the impact of the PG discretization in the forward maps on the convergence rates of the Quantities of Interest (QoI for short). Second, we propose to perform the Bayesian estimation only w.r.t. a parsimonious, RB approximation of the posterior density. Based on the approximation results in [49], the infinite-dimensional parametric, deterministic forward map and operator admit N-term RB and EIM approximations which converge at rates which depend only on the sparsity of the parametric forward map. In several numerical experiments, the proposed algorithms exhibit dimension-independent convergence rates which equal, at least, the currently known rate estimates for N-term approximation. We propose to accelerate Bayesian estimation by first offline construction of reduced basis surrogates of the Bayesian posterior density. The parsimonious surrogates can then be employed for online data assimilation and for Bayesian estimation. They also open a perspective for optimal experimental design.« less
A hierarchical model for spatial capture-recapture data
Royle, J. Andrew; Young, K.V.
2008-01-01
Estimating density is a fundamental objective of many animal population studies. Application of methods for estimating population size from ostensibly closed populations is widespread, but ineffective for estimating absolute density because most populations are subject to short-term movements or so-called temporary emigration. This phenomenon invalidates the resulting estimates because the effective sample area is unknown. A number of methods involving the adjustment of estimates based on heuristic considerations are in widespread use. In this paper, a hierarchical model of spatially indexed capture recapture data is proposed for sampling based on area searches of spatial sample units subject to uniform sampling intensity. The hierarchical model contains explicit models for the distribution of individuals and their movements, in addition to an observation model that is conditional on the location of individuals during sampling. Bayesian analysis of the hierarchical model is achieved by the use of data augmentation, which allows for a straightforward implementation in the freely available software WinBUGS. We present results of a simulation study that was carried out to evaluate the operating characteristics of the Bayesian estimator under variable densities and movement patterns of individuals. An application of the model is presented for survey data on the flat-tailed horned lizard (Phrynosoma mcallii) in Arizona, USA.
A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research
van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B; Neyer, Franz J; van Aken, Marcel AG
2014-01-01
Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First, the ingredients underlying Bayesian methods are introduced using a simplified example. Thereafter, the advantages and pitfalls of the specification of prior knowledge are discussed. To illustrate Bayesian methods explained in this study, in a second example a series of studies that examine the theoretical framework of dynamic interactionism are considered. In the Discussion the advantages and disadvantages of using Bayesian statistics are reviewed, and guidelines on how to report on Bayesian statistics are provided. PMID:24116396
Pisharady, Pramod Kumar; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe
2017-09-01
We propose a sparse Bayesian learning algorithm for improved estimation of white matter fiber parameters from compressed (under-sampled q-space) multi-shell diffusion MRI data. The multi-shell data is represented in a dictionary form using a non-monoexponential decay model of diffusion, based on continuous gamma distribution of diffusivities. The fiber volume fractions with predefined orientations, which are the unknown parameters, form the dictionary weights. These unknown parameters are estimated with a linear un-mixing framework, using a sparse Bayesian learning algorithm. A localized learning of hyperparameters at each voxel and for each possible fiber orientations improves the parameter estimation. Our experiments using synthetic data from the ISBI 2012 HARDI reconstruction challenge and in-vivo data from the Human Connectome Project demonstrate the improvements.
Bayesian Inversion of 2D Models from Airborne Transient EM Data
NASA Astrophysics Data System (ADS)
Blatter, D. B.; Key, K.; Ray, A.
2016-12-01
The inherent non-uniqueness in most geophysical inverse problems leads to an infinite number of Earth models that fit observed data to within an adequate tolerance. To resolve this ambiguity, traditional inversion methods based on optimization techniques such as the Gauss-Newton and conjugate gradient methods rely on an additional regularization constraint on the properties that an acceptable model can possess, such as having minimal roughness. While allowing such an inversion scheme to converge on a solution, regularization makes it difficult to estimate the uncertainty associated with the model parameters. This is because regularization biases the inversion process toward certain models that satisfy the regularization constraint and away from others that don't, even when both may suitably fit the data. By contrast, a Bayesian inversion framework aims to produce not a single `most acceptable' model but an estimate of the posterior likelihood of the model parameters, given the observed data. In this work, we develop a 2D Bayesian framework for the inversion of transient electromagnetic (TEM) data. Our method relies on a reversible-jump Markov Chain Monte Carlo (RJ-MCMC) Bayesian inverse method with parallel tempering. Previous gradient-based inversion work in this area used a spatially constrained scheme wherein individual (1D) soundings were inverted together and non-uniqueness was tackled by using lateral and vertical smoothness constraints. By contrast, our work uses a 2D model space of Voronoi cells whose parameterization (including number of cells) is fully data-driven. To make the problem work practically, we approximate the forward solution for each TEM sounding using a local 1D approximation where the model is obtained from the 2D model by retrieving a vertical profile through the Voronoi cells. The implicit parsimony of the Bayesian inversion process leads to the simplest models that adequately explain the data, obviating the need for explicit smoothness constraints. In addition, credible intervals in model space are directly obtained, resolving some of the uncertainty introduced by regularization. An example application shows how the method can be used to quantify the uncertainty in airborne EM soundings for imaging subglacial brine channels and groundwater systems.
NASA Astrophysics Data System (ADS)
Granade, Christopher; Combes, Joshua; Cory, D. G.
2016-03-01
In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of-the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we address all three problems. First, we use modern statistical methods, as pioneered by Huszár and Houlsby (2012 Phys. Rev. A 85 052120) and by Ferrie (2014 New J. Phys. 16 093035), to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first priors on quantum states and channels that allow for including useful experimental insight. Finally, we develop a method that allows tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.
Uwano, Ikuko; Sasaki, Makoto; Kudo, Kohsuke; Boutelier, Timothé; Kameda, Hiroyuki; Mori, Futoshi; Yamashita, Fumio
2017-01-10
The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson's correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms.
Wendling, T; Jung, K; Callahan, A; Schuler, A; Shah, N H; Gallego, B
2018-06-03
There is growing interest in using routinely collected data from health care databases to study the safety and effectiveness of therapies in "real-world" conditions, as it can provide complementary evidence to that of randomized controlled trials. Causal inference from health care databases is challenging because the data are typically noisy, high dimensional, and most importantly, observational. It requires methods that can estimate heterogeneous treatment effects while controlling for confounding in high dimensions. Bayesian additive regression trees, causal forests, causal boosting, and causal multivariate adaptive regression splines are off-the-shelf methods that have shown good performance for estimation of heterogeneous treatment effects in observational studies of continuous outcomes. However, it is not clear how these methods would perform in health care database studies where outcomes are often binary and rare and data structures are complex. In this study, we evaluate these methods in simulation studies that recapitulate key characteristics of comparative effectiveness studies. We focus on the conditional average effect of a binary treatment on a binary outcome using the conditional risk difference as an estimand. To emulate health care database studies, we propose a simulation design where real covariate and treatment assignment data are used and only outcomes are simulated based on nonparametric models of the real outcomes. We apply this design to 4 published observational studies that used records from 2 major health care databases in the United States. Our results suggest that Bayesian additive regression trees and causal boosting consistently provide low bias in conditional risk difference estimates in the context of health care database studies. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Anderson, Christian Carl
This Dissertation explores the physics underlying the propagation of ultrasonic waves in bone and in heart tissue through the use of Bayesian probability theory. Quantitative ultrasound is a noninvasive modality used for clinical detection, characterization, and evaluation of bone quality and cardiovascular disease. Approaches that extend the state of knowledge of the physics underpinning the interaction of ultrasound with inherently inhomogeneous and isotropic tissue have the potential to enhance its clinical utility. Simulations of fast and slow compressional wave propagation in cancellous bone were carried out to demonstrate the plausibility of a proposed explanation for the widely reported anomalous negative dispersion in cancellous bone. The results showed that negative dispersion could arise from analysis that proceeded under the assumption that the data consist of only a single ultrasonic wave, when in fact two overlapping and interfering waves are present. The confounding effect of overlapping fast and slow waves was addressed by applying Bayesian parameter estimation to simulated data, to experimental data acquired on bone-mimicking phantoms, and to data acquired in vitro on cancellous bone. The Bayesian approach successfully estimated the properties of the individual fast and slow waves even when they strongly overlapped in the acquired data. The Bayesian parameter estimation technique was further applied to an investigation of the anisotropy of ultrasonic properties in cancellous bone. The degree to which fast and slow waves overlap is partially determined by the angle of insonation of ultrasound relative to the predominant direction of trabecular orientation. In the past, studies of anisotropy have been limited by interference between fast and slow waves over a portion of the range of insonation angles. Bayesian analysis estimated attenuation, velocity, and amplitude parameters over the entire range of insonation angles, allowing a more complete characterization of anisotropy. A novel piecewise linear model for the cyclic variation of ultrasonic backscatter from myocardium was proposed. Models of cyclic variation for 100 type 2 diabetes patients and 43 normal control subjects were constructed using Bayesian parameter estimation. Parameters determined from the model, specifically rise time and slew rate, were found to be more reliable in differentiating between subject groups than the previously employed magnitude parameter.
Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data
ERIC Educational Resources Information Center
Lee, Sik-Yum
2006-01-01
A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…
Bayesian Data-Model Fit Assessment for Structural Equation Modeling
ERIC Educational Resources Information Center
Levy, Roy
2011-01-01
Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…
A Bayesian estimation of a stochastic predator-prey model of economic fluctuations
NASA Astrophysics Data System (ADS)
Dibeh, Ghassan; Luchinsky, Dmitry G.; Luchinskaya, Daria D.; Smelyanskiy, Vadim N.
2007-06-01
In this paper, we develop a Bayesian framework for the empirical estimation of the parameters of one of the best known nonlinear models of the business cycle: The Marx-inspired model of a growth cycle introduced by R. M. Goodwin. The model predicts a series of closed cycles representing the dynamics of labor's share and the employment rate in the capitalist economy. The Bayesian framework is used to empirically estimate a modified Goodwin model. The original model is extended in two ways. First, we allow for exogenous periodic variations of the otherwise steady growth rates of the labor force and productivity per worker. Second, we allow for stochastic variations of those parameters. The resultant modified Goodwin model is a stochastic predator-prey model with periodic forcing. The model is then estimated using a newly developed Bayesian estimation method on data sets representing growth cycles in France and Italy during the years 1960-2005. Results show that inference of the parameters of the stochastic Goodwin model can be achieved. The comparison of the dynamics of the Goodwin model with the inferred values of parameters demonstrates quantitative agreement with the growth cycle empirical data.
A simulation study on Bayesian Ridge regression models for several collinearity levels
NASA Astrophysics Data System (ADS)
Efendi, Achmad; Effrihan
2017-12-01
When analyzing data with multiple regression model if there are collinearities, then one or several predictor variables are usually omitted from the model. However, there sometimes some reasons, for instance medical or economic reasons, the predictors are all important and should be included in the model. Ridge regression model is not uncommon in some researches to use to cope with collinearity. Through this modeling, weights for predictor variables are used for estimating parameters. The next estimation process could follow the concept of likelihood. Furthermore, for the estimation nowadays the Bayesian version could be an alternative. This estimation method does not match likelihood one in terms of popularity due to some difficulties; computation and so forth. Nevertheless, with the growing improvement of computational methodology recently, this caveat should not at the moment become a problem. This paper discusses about simulation process for evaluating the characteristic of Bayesian Ridge regression parameter estimates. There are several simulation settings based on variety of collinearity levels and sample sizes. The results show that Bayesian method gives better performance for relatively small sample sizes, and for other settings the method does perform relatively similar to the likelihood method.
NASA Astrophysics Data System (ADS)
Saputro, D. R. S.; Amalia, F.; Widyaningsih, P.; Affan, R. C.
2018-05-01
Bayesian method is a method that can be used to estimate the parameters of multivariate multiple regression model. Bayesian method has two distributions, there are prior and posterior distributions. Posterior distribution is influenced by the selection of prior distribution. Jeffreys’ prior distribution is a kind of Non-informative prior distribution. This prior is used when the information about parameter not available. Non-informative Jeffreys’ prior distribution is combined with the sample information resulting the posterior distribution. Posterior distribution is used to estimate the parameter. The purposes of this research is to estimate the parameters of multivariate regression model using Bayesian method with Non-informative Jeffreys’ prior distribution. Based on the results and discussion, parameter estimation of β and Σ which were obtained from expected value of random variable of marginal posterior distribution function. The marginal posterior distributions for β and Σ are multivariate normal and inverse Wishart. However, in calculation of the expected value involving integral of a function which difficult to determine the value. Therefore, approach is needed by generating of random samples according to the posterior distribution characteristics of each parameter using Markov chain Monte Carlo (MCMC) Gibbs sampling algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, Donald D.; Gowardhan, Akshay; Cameron-Smith, Philip
2015-08-08
Here, a computational Bayesian inverse technique is used to quantify the effects of meteorological inflow uncertainty on tracer transport and source estimation in a complex urban environment. We estimate a probability distribution of meteorological inflow by comparing wind observations to Monte Carlo simulations from the Aeolus model. Aeolus is a computational fluid dynamics model that simulates atmospheric and tracer flow around buildings and structures at meter-scale resolution. Uncertainty in the inflow is propagated through forward and backward Lagrangian dispersion calculations to determine the impact on tracer transport and the ability to estimate the release location of an unknown source. Ourmore » uncertainty methods are compared against measurements from an intensive observation period during the Joint Urban 2003 tracer release experiment conducted in Oklahoma City.« less
Displacement data assimilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, W. Steven; Venkataramani, Shankar; Mariano, Arthur J.
We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information is important. While the displacement transformation is generic, here we implement it within an ensemble Kalman Filter framework and demonstrate its effectiveness in tracking stochastically perturbed vortices.
cosmoabc: Likelihood-free inference for cosmology
NASA Astrophysics Data System (ADS)
Ishida, Emille E. O.; Vitenti, Sandro D. P.; Penna-Lima, Mariana; Trindade, Arlindo M.; Cisewski, Jessi; M.; de Souza, Rafael; Cameron, Ewan; Busti, Vinicius C.
2015-05-01
Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies on the forward simulation of mock data and comparison between observed and synthetic catalogs. cosmoabc is a Python Approximate Bayesian Computation (ABC) sampler featuring a Population Monte Carlo variation of the original ABC algorithm, which uses an adaptive importance sampling scheme. The code can be coupled to an external simulator to allow incorporation of arbitrary distance and prior functions. When coupled with the numcosmo library, it has been used to estimate posterior probability distributions over cosmological parameters based on measurements of galaxy clusters number counts without computing the likelihood function.
Bayesian methods in reliability
NASA Astrophysics Data System (ADS)
Sander, P.; Badoux, R.
1991-11-01
The present proceedings from a course on Bayesian methods in reliability encompasses Bayesian statistical methods and their computational implementation, models for analyzing censored data from nonrepairable systems, the traits of repairable systems and growth models, the use of expert judgment, and a review of the problem of forecasting software reliability. Specific issues addressed include the use of Bayesian methods to estimate the leak rate of a gas pipeline, approximate analyses under great prior uncertainty, reliability estimation techniques, and a nonhomogeneous Poisson process. Also addressed are the calibration sets and seed variables of expert judgment systems for risk assessment, experimental illustrations of the use of expert judgment for reliability testing, and analyses of the predictive quality of software-reliability growth models such as the Weibull order statistics.
The Role of Parametric Assumptions in Adaptive Bayesian Estimation
ERIC Educational Resources Information Center
Alcala-Quintana, Rocio; Garcia-Perez, Miguel A.
2004-01-01
Variants of adaptive Bayesian procedures for estimating the 5% point on a psychometric function were studied by simulation. Bias and standard error were the criteria to evaluate performance. The results indicated a superiority of (a) uniform priors, (b) model likelihood functions that are odd symmetric about threshold and that have parameter…
Bayesian Estimation of Fugitive Methane Point Source Emission Rates from a Single Downwind High-Frequency Gas Sensor With the tremendous advances in onshore oil and gas exploration and production (E&P) capability comes the realization that new tools are needed to support env...
ERIC Educational Resources Information Center
Gustafson, S. C.; Costello, C. S.; Like, E. C.; Pierce, S. J.; Shenoy, K. N.
2009-01-01
Bayesian estimation of a threshold time (hereafter simply threshold) for the receipt of impulse signals is accomplished given the following: 1) data, consisting of the number of impulses received in a time interval from zero to one and the time of the largest time impulse; 2) a model, consisting of a uniform probability density of impulse time…
Depaoli, Sarah
2013-06-01
Growth mixture modeling (GMM) represents a technique that is designed to capture change over time for unobserved subgroups (or latent classes) that exhibit qualitatively different patterns of growth. The aim of the current article was to explore the impact of latent class separation (i.e., how similar growth trajectories are across latent classes) on GMM performance. Several estimation conditions were compared: maximum likelihood via the expectation maximization (EM) algorithm and the Bayesian framework implementing diffuse priors, "accurate" informative priors, weakly informative priors, data-driven informative priors, priors reflecting partial-knowledge of parameters, and "inaccurate" (but informative) priors. The main goal was to provide insight about the optimal estimation condition under different degrees of latent class separation for GMM. Results indicated that optimal parameter recovery was obtained though the Bayesian approach using "accurate" informative priors, and partial-knowledge priors showed promise for the recovery of the growth trajectory parameters. Maximum likelihood and the remaining Bayesian estimation conditions yielded poor parameter recovery for the latent class proportions and the growth trajectories. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Gucciardi, Daniel F; Zhang, Chun-Qing; Ponnusamy, Vellapandian; Si, Gangyan; Stenling, Andreas
2016-04-01
The aims of this study were to assess the cross-cultural invariance of athletes' self-reports of mental toughness and to introduce and illustrate the application of approximate measurement invariance using Bayesian estimation for sport and exercise psychology scholars. Athletes from Australia (n = 353, Mage = 19.13, SD = 3.27, men = 161), China (n = 254, Mage = 17.82, SD = 2.28, men = 138), and Malaysia (n = 341, Mage = 19.13, SD = 3.27, men = 200) provided a cross-sectional snapshot of their mental toughness. The cross-cultural invariance of the mental toughness inventory in terms of (a) the factor structure (configural invariance), (b) factor loadings (metric invariance), and (c) item intercepts (scalar invariance) was tested using an approximate measurement framework with Bayesian estimation. Results indicated that approximate metric and scalar invariance was established. From a methodological standpoint, this study demonstrated the usefulness and flexibility of Bayesian estimation for single-sample and multigroup analyses of measurement instruments. Substantively, the current findings suggest that the measurement of mental toughness requires cultural adjustments to better capture the contextually salient (emic) aspects of this concept.
K-ε Turbulence Model Parameter Estimates Using an Approximate Self-similar Jet-in-Crossflow Solution
DeChant, Lawrence; Ray, Jaideep; Lefantzi, Sophia; ...
2017-06-09
The k-ε turbulence model has been described as perhaps “the most widely used complete turbulence model.” This family of heuristic Reynolds Averaged Navier-Stokes (RANS) turbulence closures is supported by a suite of model parameters that have been estimated by demanding the satisfaction of well-established canonical flows such as homogeneous shear flow, log-law behavior, etc. While this procedure does yield a set of so-called nominal parameters, it is abundantly clear that they do not provide a universally satisfactory turbulence model that is capable of simulating complex flows. Recent work on the Bayesian calibration of the k-ε model using jet-in-crossflow wind tunnelmore » data has yielded parameter estimates that are far more predictive than nominal parameter values. In this paper, we develop a self-similar asymptotic solution for axisymmetric jet-in-crossflow interactions and derive analytical estimates of the parameters that were inferred using Bayesian calibration. The self-similar method utilizes a near field approach to estimate the turbulence model parameters while retaining the classical far-field scaling to model flow field quantities. Our parameter values are seen to be far more predictive than the nominal values, as checked using RANS simulations and experimental measurements. They are also closer to the Bayesian estimates than the nominal parameters. A traditional simplified jet trajectory model is explicitly related to the turbulence model parameters and is shown to yield good agreement with measurement when utilizing the analytical derived turbulence model coefficients. Finally, the close agreement between the turbulence model coefficients obtained via Bayesian calibration and the analytically estimated coefficients derived in this paper is consistent with the contention that the Bayesian calibration approach is firmly rooted in the underlying physical description.« less
Capturing changes in flood risk with Bayesian approaches for flood damage assessment
NASA Astrophysics Data System (ADS)
Vogel, Kristin; Schröter, Kai; Kreibich, Heidi; Thieken, Annegret; Müller, Meike; Sieg, Tobias; Laudan, Jonas; Kienzler, Sarah; Weise, Laura; Merz, Bruno; Scherbaum, Frank
2016-04-01
Flood risk is a function of hazard as well as of exposure and vulnerability. All three components are under change over space and time and have to be considered for reliable damage estimations and risk analyses, since this is the basis for an efficient, adaptable risk management. Hitherto, models for estimating flood damage are comparatively simple and cannot sufficiently account for changing conditions. The Bayesian network approach allows for a multivariate modeling of complex systems without relying on expert knowledge about physical constraints. In a Bayesian network each model component is considered to be a random variable. The way of interactions between those variables can be learned from observations or be defined by expert knowledge. Even a combination of both is possible. Moreover, the probabilistic framework captures uncertainties related to the prediction and provides a probability distribution for the damage instead of a point estimate. The graphical representation of Bayesian networks helps to study the change of probabilities for changing circumstances and may thus simplify the communication between scientists and public authorities. In the framework of the DFG-Research Training Group "NatRiskChange" we aim to develop Bayesian networks for flood damage and vulnerability assessments of residential buildings and companies under changing conditions. A Bayesian network learned from data, collected over the last 15 years in flooded regions in the Elbe and Danube catchments (Germany), reveals the impact of many variables like building characteristics, precaution and warning situation on flood damage to residential buildings. While the handling of incomplete and hybrid (discrete mixed with continuous) data are the most challenging issues in the study on residential buildings, a similar study, that focuses on the vulnerability of small to medium sized companies, bears new challenges. Relying on a much smaller data set for the determination of the model parameters, overly complex models should be avoided. A so called Markov Blanket approach aims at the identification of the most relevant factors and constructs a Bayesian network based on those findings. With our approach we want to exploit a major advantage of Bayesian networks which is their ability to consider dependencies not only pairwise, but to capture the joint effects and interactions of driving forces. Hence, the flood damage network does not only show the impact of precaution on the building damage separately, but also reveals the mutual effects of precaution and the quality of warning for a variety of flood settings. Thus, it allows for a consideration of changing conditions and different courses of action and forms a novel and valuable tool for decision support. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training program GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at the University of Potsdam.
Zollanvari, Amin; Dougherty, Edward R
2014-06-01
The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.
Sironi, Emanuele; Pinchi, Vilma; Pradella, Francesco; Focardi, Martina; Bozza, Silvia; Taroni, Franco
2018-04-01
Not only does the Bayesian approach offer a rational and logical environment for evidence evaluation in a forensic framework, but it also allows scientists to coherently deal with uncertainty related to a collection of multiple items of evidence, due to its flexible nature. Such flexibility might come at the expense of elevated computational complexity, which can be handled by using specific probabilistic graphical tools, namely Bayesian networks. In the current work, such probabilistic tools are used for evaluating dental evidence related to the development of third molars. A set of relevant properties characterizing the graphical models are discussed and Bayesian networks are implemented to deal with the inferential process laying beyond the estimation procedure, as well as to provide age estimates. Such properties include operationality, flexibility, coherence, transparence and sensitivity. A data sample composed of Italian subjects was employed for the analysis; results were in agreement with previous studies in terms of point estimate and age classification. The influence of the prior probability elicitation in terms of Bayesian estimate and classifies was also analyzed. Findings also supported the opportunity to take into consideration multiple teeth in the evaluative procedure, since it can be shown this results in an increased robustness towards the prior probability elicitation process, as well as in more favorable outcomes from a forensic perspective. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Hackstadt, Amber J; Peng, Roger D
2014-11-01
Time series studies have suggested that air pollution can negatively impact health. These studies have typically focused on the total mass of fine particulate matter air pollution or the individual chemical constituents that contribute to it, and not source-specific contributions to air pollution. Source-specific contribution estimates are useful from a regulatory standpoint by allowing regulators to focus limited resources on reducing emissions from sources that are major contributors to air pollution and are also desired when estimating source-specific health effects. However, researchers often lack direct observations of the emissions at the source level. We propose a Bayesian multivariate receptor model to infer information about source contributions from ambient air pollution measurements. The proposed model incorporates information from national databases containing data on both the composition of source emissions and the amount of emissions from known sources of air pollution. The proposed model is used to perform source apportionment analyses for two distinct locations in the United States (Boston, Massachusetts and Phoenix, Arizona). Our results mirror previous source apportionment analyses that did not utilize the information from national databases and provide additional information about uncertainty that is relevant to the estimation of health effects.
As-built design specification for proportion estimate software subsystem
NASA Technical Reports Server (NTRS)
Obrien, S. (Principal Investigator)
1980-01-01
The Proportion Estimate Processor evaluates four estimation techniques in order to get an improved estimate of the proportion of a scene that is planted in a selected crop. The four techniques to be evaluated were provided by the techniques development section and are: (1) random sampling; (2) proportional allocation, relative count estimate; (3) proportional allocation, Bayesian estimate; and (4) sequential Bayesian allocation. The user is given two options for computation of the estimated mean square error. These are referred to as the cluster calculation option and the segment calculation option. The software for the Proportion Estimate Processor is operational on the IBM 3031 computer.
Sidibé, Cheick Abou Kounta; Grosbois, Vladimir; Thiaucourt, François; Niang, Mamadou; Lesnoff, Matthieu; Roger, François
2012-08-01
A Bayesian approach, allowing for conditional dependence between two tests was used to estimate without gold standard the sensitivities of complement fixation test (CFT) and competitive enzyme-linked immunosorbent assay test (cELISA) and the serological prevalence of CBPP in a cattle population of the Central Delta of the Niger River in Mali, where CBPP is enzootic and the true prevalence and animals serological state were unknown. A significant difference (P = 0.99) was observed between the sensitivities of the two tests, estimated at 73.7% (95% probability interval [PI], 63.4-82.7) for cELISA and 42.3% (95% PI, 33.3-53.7) for CFT. Individual-level serological prevalence in the study population was estimated at 14.1% (95% PI, 10.8-16.9). Our results indicate that in enzootic areas, cELISA performs better in terms of sensitivity than CFT. However, negative conditional sensitivity dependence between the two tests was detected, implying that to achieve maximum sensitivity, the two tests should be applied in parallel.
Hierarchical Bayesian modeling of ionospheric TEC disturbances as non-stationary processes
NASA Astrophysics Data System (ADS)
Seid, Abdu Mohammed; Berhane, Tesfahun; Roininen, Lassi; Nigussie, Melessew
2018-03-01
We model regular and irregular variation of ionospheric total electron content as stationary and non-stationary processes, respectively. We apply the method developed to SCINDA GPS data set observed at Bahir Dar, Ethiopia (11.6 °N, 37.4 °E) . We use hierarchical Bayesian inversion with Gaussian Markov random process priors, and we model the prior parameters in the hyperprior. We use Matérn priors via stochastic partial differential equations, and use scaled Inv -χ2 hyperpriors for the hyperparameters. For drawing posterior estimates, we use Markov Chain Monte Carlo methods: Gibbs sampling and Metropolis-within-Gibbs for parameter and hyperparameter estimations, respectively. This allows us to quantify model parameter estimation uncertainties as well. We demonstrate the applicability of the method proposed using a synthetic test case. Finally, we apply the method to real GPS data set, which we decompose to regular and irregular variation components. The result shows that the approach can be used as an accurate ionospheric disturbance characterization technique that quantifies the total electron content variability with corresponding error uncertainties.
van de Schoot, Rens; Broere, Joris J.; Perryck, Koen H.; Zondervan-Zwijnenburg, Mariëlle; van Loey, Nancy E.
2015-01-01
Background The analysis of small data sets in longitudinal studies can lead to power issues and often suffers from biased parameter values. These issues can be solved by using Bayesian estimation in conjunction with informative prior distributions. By means of a simulation study and an empirical example concerning posttraumatic stress symptoms (PTSS) following mechanical ventilation in burn survivors, we demonstrate the advantages and potential pitfalls of using Bayesian estimation. Methods First, we show how to specify prior distributions and by means of a sensitivity analysis we demonstrate how to check the exact influence of the prior (mis-) specification. Thereafter, we show by means of a simulation the situations in which the Bayesian approach outperforms the default, maximum likelihood and approach. Finally, we re-analyze empirical data on burn survivors which provided preliminary evidence of an aversive influence of a period of mechanical ventilation on the course of PTSS following burns. Results Not suprisingly, maximum likelihood estimation showed insufficient coverage as well as power with very small samples. Only when Bayesian analysis, in conjunction with informative priors, was used power increased to acceptable levels. As expected, we showed that the smaller the sample size the more the results rely on the prior specification. Conclusion We show that two issues often encountered during analysis of small samples, power and biased parameters, can be solved by including prior information into Bayesian analysis. We argue that the use of informative priors should always be reported together with a sensitivity analysis. PMID:25765534
van de Schoot, Rens; Broere, Joris J; Perryck, Koen H; Zondervan-Zwijnenburg, Mariëlle; van Loey, Nancy E
2015-01-01
Background : The analysis of small data sets in longitudinal studies can lead to power issues and often suffers from biased parameter values. These issues can be solved by using Bayesian estimation in conjunction with informative prior distributions. By means of a simulation study and an empirical example concerning posttraumatic stress symptoms (PTSS) following mechanical ventilation in burn survivors, we demonstrate the advantages and potential pitfalls of using Bayesian estimation. Methods : First, we show how to specify prior distributions and by means of a sensitivity analysis we demonstrate how to check the exact influence of the prior (mis-) specification. Thereafter, we show by means of a simulation the situations in which the Bayesian approach outperforms the default, maximum likelihood and approach. Finally, we re-analyze empirical data on burn survivors which provided preliminary evidence of an aversive influence of a period of mechanical ventilation on the course of PTSS following burns. Results : Not suprisingly, maximum likelihood estimation showed insufficient coverage as well as power with very small samples. Only when Bayesian analysis, in conjunction with informative priors, was used power increased to acceptable levels. As expected, we showed that the smaller the sample size the more the results rely on the prior specification. Conclusion : We show that two issues often encountered during analysis of small samples, power and biased parameters, can be solved by including prior information into Bayesian analysis. We argue that the use of informative priors should always be reported together with a sensitivity analysis.
Jiménez, José; García, Emilio J; Llaneza, Luis; Palacios, Vicente; González, Luis Mariano; García-Domínguez, Francisco; Múñoz-Igualada, Jaime; López-Bao, José Vicente
2016-08-01
In many cases, the first step in large-carnivore management is to obtain objective, reliable, and cost-effective estimates of population parameters through procedures that are reproducible over time. However, monitoring predators over large areas is difficult, and the data have a high level of uncertainty. We devised a practical multimethod and multistate modeling approach based on Bayesian hierarchical-site-occupancy models that combined multiple survey methods to estimate different population states for use in monitoring large predators at a regional scale. We used wolves (Canis lupus) as our model species and generated reliable estimates of the number of sites with wolf reproduction (presence of pups). We used 2 wolf data sets from Spain (Western Galicia in 2013 and Asturias in 2004) to test the approach. Based on howling surveys, the naïve estimation (i.e., estimate based only on observations) of the number of sites with reproduction was 9 and 25 sites in Western Galicia and Asturias, respectively. Our model showed 33.4 (SD 9.6) and 34.4 (3.9) sites with wolf reproduction, respectively. The number of occupied sites with wolf reproduction was 0.67 (SD 0.19) and 0.76 (0.11), respectively. This approach can be used to design more cost-effective monitoring programs (i.e., to define the sampling effort needed per site). Our approach should inspire well-coordinated surveys across multiple administrative borders and populations and lead to improved decision making for management of large carnivores on a landscape level. The use of this Bayesian framework provides a simple way to visualize the degree of uncertainty around population-parameter estimates and thus provides managers and stakeholders an intuitive approach to interpreting monitoring results. Our approach can be widely applied to large spatial scales in wildlife monitoring where detection probabilities differ between population states and where several methods are being used to estimate different population parameters. © 2016 Society for Conservation Biology.
Fienen, Michael N.; D'Oria, Marco; Doherty, John E.; Hunt, Randall J.
2013-01-01
The application bgaPEST is a highly parameterized inversion software package implementing the Bayesian Geostatistical Approach in a framework compatible with the parameter estimation suite PEST. Highly parameterized inversion refers to cases in which parameters are distributed in space or time and are correlated with one another. The Bayesian aspect of bgaPEST is related to Bayesian probability theory in which prior information about parameters is formally revised on the basis of the calibration dataset used for the inversion. Conceptually, this approach formalizes the conditionality of estimated parameters on the specific data and model available. The geostatistical component of the method refers to the way in which prior information about the parameters is used. A geostatistical autocorrelation function is used to enforce structure on the parameters to avoid overfitting and unrealistic results. Bayesian Geostatistical Approach is designed to provide the smoothest solution that is consistent with the data. Optionally, users can specify a level of fit or estimate a balance between fit and model complexity informed by the data. Groundwater and surface-water applications are used as examples in this text, but the possible uses of bgaPEST extend to any distributed parameter applications.
Bayesian logistic regression approaches to predict incorrect DRG assignment.
Suleiman, Mani; Demirhan, Haydar; Boyd, Leanne; Girosi, Federico; Aksakalli, Vural
2018-05-07
Episodes of care involving similar diagnoses and treatments and requiring similar levels of resource utilisation are grouped to the same Diagnosis-Related Group (DRG). In jurisdictions which implement DRG based payment systems, DRGs are a major determinant of funding for inpatient care. Hence, service providers often dedicate auditing staff to the task of checking that episodes have been coded to the correct DRG. The use of statistical models to estimate an episode's probability of DRG error can significantly improve the efficiency of clinical coding audits. This study implements Bayesian logistic regression models with weakly informative prior distributions to estimate the likelihood that episodes require a DRG revision, comparing these models with each other and to classical maximum likelihood estimates. All Bayesian approaches had more stable model parameters than maximum likelihood. The best performing Bayesian model improved overall classification per- formance by 6% compared to maximum likelihood, with a 34% gain compared to random classification, respectively. We found that the original DRG, coder and the day of coding all have a significant effect on the likelihood of DRG error. Use of Bayesian approaches has improved model parameter stability and classification accuracy. This method has already lead to improved audit efficiency in an operational capacity.
Bayesian Item Selection in Constrained Adaptive Testing Using Shadow Tests
ERIC Educational Resources Information Center
Veldkamp, Bernard P.
2010-01-01
Application of Bayesian item selection criteria in computerized adaptive testing might result in improvement of bias and MSE of the ability estimates. The question remains how to apply Bayesian item selection criteria in the context of constrained adaptive testing, where large numbers of specifications have to be taken into account in the item…
Bayesian Analysis of Longitudinal Data Using Growth Curve Models
ERIC Educational Resources Information Center
Zhang, Zhiyong; Hamagami, Fumiaki; Wang, Lijuan Lijuan; Nesselroade, John R.; Grimm, Kevin J.
2007-01-01
Bayesian methods for analyzing longitudinal data in social and behavioral research are recommended for their ability to incorporate prior information in estimating simple and complex models. We first summarize the basics of Bayesian methods before presenting an empirical example in which we fit a latent basis growth curve model to achievement data…
Bayesian Asymmetric Regression as a Means to Estimate and Evaluate Oral Reading Fluency Slopes
ERIC Educational Resources Information Center
Solomon, Benjamin G.; Forsberg, Ole J.
2017-01-01
Bayesian techniques have become increasingly present in the social sciences, fueled by advances in computer speed and the development of user-friendly software. In this paper, we forward the use of Bayesian Asymmetric Regression (BAR) to monitor intervention responsiveness when using Curriculum-Based Measurement (CBM) to assess oral reading…
Bayesian Approaches to Imputation, Hypothesis Testing, and Parameter Estimation
ERIC Educational Resources Information Center
Ross, Steven J.; Mackey, Beth
2015-01-01
This chapter introduces three applications of Bayesian inference to common and novel issues in second language research. After a review of the critiques of conventional hypothesis testing, our focus centers on ways Bayesian inference can be used for dealing with missing data, for testing theory-driven substantive hypotheses without a default null…
Modelling maximum river flow by using Bayesian Markov Chain Monte Carlo
NASA Astrophysics Data System (ADS)
Cheong, R. Y.; Gabda, D.
2017-09-01
Analysis of flood trends is vital since flooding threatens human living in terms of financial, environment and security. The data of annual maximum river flows in Sabah were fitted into generalized extreme value (GEV) distribution. Maximum likelihood estimator (MLE) raised naturally when working with GEV distribution. However, previous researches showed that MLE provide unstable results especially in small sample size. In this study, we used different Bayesian Markov Chain Monte Carlo (MCMC) based on Metropolis-Hastings algorithm to estimate GEV parameters. Bayesian MCMC method is a statistical inference which studies the parameter estimation by using posterior distribution based on Bayes’ theorem. Metropolis-Hastings algorithm is used to overcome the high dimensional state space faced in Monte Carlo method. This approach also considers more uncertainty in parameter estimation which then presents a better prediction on maximum river flow in Sabah.
Qian, Song S; Lyons, Regan E
2006-10-01
We present a Bayesian approach for characterizing background contaminant concentration distributions using data from sites that may have been contaminated. Our method, focused on estimation, resolves several technical problems of the existing methods sanctioned by the U.S. Environmental Protection Agency (USEPA) (a hypothesis testing based method), resulting in a simple and quick procedure for estimating background contaminant concentrations. The proposed Bayesian method is applied to two data sets from a federal facility regulated under the Resource Conservation and Restoration Act. The results are compared to background distributions identified using existing methods recommended by the USEPA. The two data sets represent low and moderate levels of censorship in the data. Although an unbiased estimator is elusive, we show that the proposed Bayesian estimation method will have a smaller bias than the EPA recommended method.
Bayesian estimation of dynamic matching function for U-V analysis in Japan
NASA Astrophysics Data System (ADS)
Kyo, Koki; Noda, Hideo; Kitagawa, Genshiro
2012-05-01
In this paper we propose a Bayesian method for analyzing unemployment dynamics. We derive a Beveridge curve for unemployment and vacancy (U-V) analysis from a Bayesian model based on a labor market matching function. In our framework, the efficiency of matching and the elasticities of new hiring with respect to unemployment and vacancy are regarded as time varying parameters. To construct a flexible model and obtain reasonable estimates in an underdetermined estimation problem, we treat the time varying parameters as random variables and introduce smoothness priors. The model is then described in a state space representation, enabling the parameter estimation to be carried out using Kalman filter and fixed interval smoothing. In such a representation, dynamic features of the cyclic unemployment rate and the structural-frictional unemployment rate can be accurately captured.
Hydraulic Conductivity Estimation using Bayesian Model Averaging and Generalized Parameterization
NASA Astrophysics Data System (ADS)
Tsai, F. T.; Li, X.
2006-12-01
Non-uniqueness in parameterization scheme is an inherent problem in groundwater inverse modeling due to limited data. To cope with the non-uniqueness problem of parameterization, we introduce a Bayesian Model Averaging (BMA) method to integrate a set of selected parameterization methods. The estimation uncertainty in BMA includes the uncertainty in individual parameterization methods as the within-parameterization variance and the uncertainty from using different parameterization methods as the between-parameterization variance. Moreover, the generalized parameterization (GP) method is considered in the geostatistical framework in this study. The GP method aims at increasing the flexibility of parameterization through the combination of a zonation structure and an interpolation method. The use of BMP with GP avoids over-confidence in a single parameterization method. A normalized least-squares estimation (NLSE) is adopted to calculate the posterior probability for each GP. We employee the adjoint state method for the sensitivity analysis on the weighting coefficients in the GP method. The adjoint state method is also applied to the NLSE problem. The proposed methodology is implemented to the Alamitos Barrier Project (ABP) in California, where the spatially distributed hydraulic conductivity is estimated. The optimal weighting coefficients embedded in GP are identified through the maximum likelihood estimation (MLE) where the misfits between the observed and calculated groundwater heads are minimized. The conditional mean and conditional variance of the estimated hydraulic conductivity distribution using BMA are obtained to assess the estimation uncertainty.
NASA Technical Reports Server (NTRS)
Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.
2012-01-01
Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.
NASA Technical Reports Server (NTRS)
Chapman, G. M. (Principal Investigator); Carnes, J. G.
1981-01-01
Several techniques which use clusters generated by a new clustering algorithm, CLASSY, are proposed as alternatives to random sampling to obtain greater precision in crop proportion estimation: (1) Proportional Allocation/relative count estimator (PA/RCE) uses proportional allocation of dots to clusters on the basis of cluster size and a relative count cluster level estimate; (2) Proportional Allocation/Bayes Estimator (PA/BE) uses proportional allocation of dots to clusters and a Bayesian cluster-level estimate; and (3) Bayes Sequential Allocation/Bayesian Estimator (BSA/BE) uses sequential allocation of dots to clusters and a Bayesian cluster level estimate. Clustering in an effective method in making proportion estimates. It is estimated that, to obtain the same precision with random sampling as obtained by the proportional sampling of 50 dots with an unbiased estimator, samples of 85 or 166 would need to be taken if dot sets with AI labels (integrated procedure) or ground truth labels, respectively were input. Dot reallocation provides dot sets that are unbiased. It is recommended that these proportion estimation techniques are maintained, particularly the PA/BE because it provides the greatest precision.
Analysis of Extreme Snow Water Equivalent Data in Central New Hampshire
NASA Astrophysics Data System (ADS)
Vuyovich, C.; Skahill, B. E.; Kanney, J. F.; Carr, M.
2017-12-01
Heavy snowfall and snowmelt-related events have been linked to widespread flooding and damages in many regions of the U.S. Design of critical infrastructure in these regions requires spatial estimates of extreme snow water equivalent (SWE). In this study, we develop station specific and spatially explicit estimates of extreme SWE using data from fifteen snow sampling stations maintained by the New Hampshire Department of Environmental Services. The stations are located in the Mascoma, Pemigewasset, Winnipesaukee, Ossipee, Salmon Falls, Lamprey, Sugar, and Isinglass basins in New Hampshire. The average record length for the fifteen stations is approximately fifty-nine years. The spatial analysis of extreme SWE involves application of two Bayesian Hierarchical Modeling methods, one that assumes conditional independence, and another which uses the Smith max-stable process model to account for spatial dependence. We also apply additional max-stable process models, albeit not in a Bayesian framework, that better model the observed dependence among the extreme SWE data. The spatial process modeling leverages readily available and relevant spatially explicit covariate data. The noted additional max-stable process models also used the nonstationary winter North Atlantic Oscillation index, which has been observed to influence snowy weather along the east coast of the United States. We find that, for this data set, SWE return level estimates are consistently higher when derived using methods which account for the observed spatial dependence among the extreme data. This is particularly significant for design scenarios of relevance for critical infrastructure evaluation.
Madi, Mahmoud K; Karameh, Fadi N
2017-01-01
Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF recently benchmarked against other advanced Bayesian techniques, the CD-CKF framework could provide significant gains in robustness and accuracy when estimating a variety of biological phenomena models where the underlying process dynamics unfold at time scales faster than those seen in collected measurements.
2017-01-01
Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF recently benchmarked against other advanced Bayesian techniques, the CD-CKF framework could provide significant gains in robustness and accuracy when estimating a variety of biological phenomena models where the underlying process dynamics unfold at time scales faster than those seen in collected measurements. PMID:28727850
Nested Sampling for Bayesian Model Comparison in the Context of Salmonella Disease Dynamics
Dybowski, Richard; McKinley, Trevelyan J.; Mastroeni, Pietro; Restif, Olivier
2013-01-01
Understanding the mechanisms underlying the observed dynamics of complex biological systems requires the statistical assessment and comparison of multiple alternative models. Although this has traditionally been done using maximum likelihood-based methods such as Akaike's Information Criterion (AIC), Bayesian methods have gained in popularity because they provide more informative output in the form of posterior probability distributions. However, comparison between multiple models in a Bayesian framework is made difficult by the computational cost of numerical integration over large parameter spaces. A new, efficient method for the computation of posterior probabilities has recently been proposed and applied to complex problems from the physical sciences. Here we demonstrate how nested sampling can be used for inference and model comparison in biological sciences. We present a reanalysis of data from experimental infection of mice with Salmonella enterica showing the distribution of bacteria in liver cells. In addition to confirming the main finding of the original analysis, which relied on AIC, our approach provides: (a) integration across the parameter space, (b) estimation of the posterior parameter distributions (with visualisations of parameter correlations), and (c) estimation of the posterior predictive distributions for goodness-of-fit assessments of the models. The goodness-of-fit results suggest that alternative mechanistic models and a relaxation of the quasi-stationary assumption should be considered. PMID:24376528
Engelhardt, Benjamin; Kschischo, Maik; Fröhlich, Holger
2017-06-01
Ordinary differential equations (ODEs) are a popular approach to quantitatively model molecular networks based on biological knowledge. However, such knowledge is typically restricted. Wrongly modelled biological mechanisms as well as relevant external influence factors that are not included into the model are likely to manifest in major discrepancies between model predictions and experimental data. Finding the exact reasons for such observed discrepancies can be quite challenging in practice. In order to address this issue, we suggest a Bayesian approach to estimate hidden influences in ODE-based models. The method can distinguish between exogenous and endogenous hidden influences. Thus, we can detect wrongly specified as well as missed molecular interactions in the model. We demonstrate the performance of our Bayesian dynamic elastic-net with several ordinary differential equation models from the literature, such as human JAK-STAT signalling, information processing at the erythropoietin receptor, isomerization of liquid α -Pinene, G protein cycling in yeast and UV-B triggered signalling in plants. Moreover, we investigate a set of commonly known network motifs and a gene-regulatory network. Altogether our method supports the modeller in an algorithmic manner to identify possible sources of errors in ODE-based models on the basis of experimental data. © 2017 The Author(s).
Le Bras, Ronan J; Kuzma, Heidi; Sucic, Victor; Bokelmann, Götz
2016-05-01
A notable sequence of calls was encountered, spanning several days in January 2003, in the central part of the Indian Ocean on a hydrophone triplet recording acoustic data at a 250 Hz sampling rate. This paper presents signal processing methods applied to the waveform data to detect, group, extract amplitude and bearing estimates for the recorded signals. An approximate location for the source of the sequence of calls is inferred from extracting the features from the waveform. As the source approaches the hydrophone triplet, the source level (SL) of the calls is estimated at 187 ± 6 dB re: 1 μPa-1 m in the 15-60 Hz frequency range. The calls are attributed to a subgroup of blue whales, Balaenoptera musculus, with a characteristic acoustic signature. A Bayesian location method using probabilistic models for bearing and amplitude is demonstrated on the calls sequence. The method is applied to the case of detection at a single triad of hydrophones and results in a probability distribution map for the origin of the calls. It can be extended to detections at multiple triads and because of the Bayesian formulation, additional modeling complexity can be built-in as needed.
NASA Technical Reports Server (NTRS)
Solakiewiz, Richard; Koshak, William
2008-01-01
Continuous monitoring of the ratio of cloud flashes to ground flashes may provide a better understanding of thunderstorm dynamics, intensification, and evolution, and it may be useful in severe weather warning. The National Lighting Detection Network TM (NLDN) senses ground flashes with exceptional detection efficiency and accuracy over most of the continental United States. A proposed Geostationary Lightning Mapper (GLM) aboard the Geostationary Operational Environmental Satellite (GOES-R) will look at the western hemisphere, and among the lightning data products to be made available will be the fundamental optical flash parameters for both cloud and ground flashes: radiance, area, duration, number of optical groups, and number of optical events. Previous studies have demonstrated that the optical flash parameter statistics of ground and cloud lightning, which are observable from space, are significantly different. This study investigates a Bayesian network methodology for discriminating lightning flash type (ground or cloud) using the lightning optical data and ancillary GOES-R data. A Directed Acyclic Graph (DAG) is set up with lightning as a "root" and data observed by GLM as the "leaves." This allows for a direct calculation of the joint probability distribution function for the lighting type and radiance, area, etc. Initially, the conditional probabilities that will be required can be estimated from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) together with NLDN data. Directly manipulating the joint distribution will yield the conditional probability that a lightning flash is a ground flash given the evidence, which consists of the observed lightning optical data [and possibly cloud data retrieved from the GOES-R Advanced Baseline Imager (ABI) in a more mature Bayesian network configuration]. Later, actual GLM and NLDN data can be used to refine the estimates of the conditional probabilities used in the model; i.e., the Bayesian network is a learning network. Methods for efficient calculation of the conditional probabilities (e.g., an algorithm using junction trees), finding data conflicts, goodness of fit, and dealing with missing data will also be addressed.
ERIC Educational Resources Information Center
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S.
2018-01-01
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
The main objective of this paper is to use Bayesian methods to estimate the kinetic parameters for the inactivation kinetics of Cryptosporidium parvum oocysts with chlorine dioxide or ozone which are characterized by the delayed Chick-Watson model, i.e., a lag phase or shoulder f...
A General and Flexible Approach to Estimating the Social Relations Model Using Bayesian Methods
ERIC Educational Resources Information Center
Ludtke, Oliver; Robitzsch, Alexander; Kenny, David A.; Trautwein, Ulrich
2013-01-01
The social relations model (SRM) is a conceptual, methodological, and analytical approach that is widely used to examine dyadic behaviors and interpersonal perception within groups. This article introduces a general and flexible approach to estimating the parameters of the SRM that is based on Bayesian methods using Markov chain Monte Carlo…
Using SAS PROC MCMC for Item Response Theory Models
ERIC Educational Resources Information Center
Ames, Allison J.; Samonte, Kelli
2015-01-01
Interest in using Bayesian methods for estimating item response theory models has grown at a remarkable rate in recent years. This attentiveness to Bayesian estimation has also inspired a growth in available software such as WinBUGS, R packages, BMIRT, MPLUS, and SAS PROC MCMC. This article intends to provide an accessible overview of Bayesian…
Technical note: Bayesian calibration of dynamic ruminant nutrition models.
Reed, K F; Arhonditsis, G B; France, J; Kebreab, E
2016-08-01
Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Reis, D. S.; Stedinger, J. R.; Martins, E. S.
2005-10-01
This paper develops a Bayesian approach to analysis of a generalized least squares (GLS) regression model for regional analyses of hydrologic data. The new approach allows computation of the posterior distributions of the parameters and the model error variance using a quasi-analytic approach. Two regional skew estimation studies illustrate the value of the Bayesian GLS approach for regional statistical analysis of a shape parameter and demonstrate that regional skew models can be relatively precise with effective record lengths in excess of 60 years. With Bayesian GLS the marginal posterior distribution of the model error variance and the corresponding mean and variance of the parameters can be computed directly, thereby providing a simple but important extension of the regional GLS regression procedures popularized by Tasker and Stedinger (1989), which is sensitive to the likely values of the model error variance when it is small relative to the sampling error in the at-site estimator.
NASA Astrophysics Data System (ADS)
Elshall, A. S.; Ye, M.; Niu, G. Y.; Barron-Gafford, G.
2015-12-01
Models in biogeoscience involve uncertainties in observation data, model inputs, model structure, model processes and modeling scenarios. To accommodate for different sources of uncertainty, multimodal analysis such as model combination, model selection, model elimination or model discrimination are becoming more popular. To illustrate theoretical and practical challenges of multimodal analysis, we use an example about microbial soil respiration modeling. Global soil respiration releases more than ten times more carbon dioxide to the atmosphere than all anthropogenic emissions. Thus, improving our understanding of microbial soil respiration is essential for improving climate change models. This study focuses on a poorly understood phenomena, which is the soil microbial respiration pulses in response to episodic rainfall pulses (the "Birch effect"). We hypothesize that the "Birch effect" is generated by the following three mechanisms. To test our hypothesis, we developed and assessed five evolving microbial-enzyme models against field measurements from a semiarid Savannah that is characterized by pulsed precipitation. These five model evolve step-wise such that the first model includes none of these three mechanism, while the fifth model includes the three mechanisms. The basic component of Bayesian multimodal analysis is the estimation of marginal likelihood to rank the candidate models based on their overall likelihood with respect to observation data. The first part of the study focuses on using this Bayesian scheme to discriminate between these five candidate models. The second part discusses some theoretical and practical challenges, which are mainly the effect of likelihood function selection and the marginal likelihood estimation methods on both model ranking and Bayesian model averaging. The study shows that making valid inference from scientific data is not a trivial task, since we are not only uncertain about the candidate scientific models, but also about the statistical methods that are used to discriminate between these models.
Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation
NASA Astrophysics Data System (ADS)
Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.
2012-12-01
This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.
A new Bayesian recursive technique for parameter estimation
NASA Astrophysics Data System (ADS)
Kaheil, Yasir H.; Gill, M. Kashif; McKee, Mac; Bastidas, Luis
2006-08-01
The performance of any model depends on how well its associated parameters are estimated. In the current application, a localized Bayesian recursive estimation (LOBARE) approach is devised for parameter estimation. The LOBARE methodology is an extension of the Bayesian recursive estimation (BARE) method. It is applied in this paper on two different types of models: an artificial intelligence (AI) model in the form of a support vector machine (SVM) application for forecasting soil moisture and a conceptual rainfall-runoff (CRR) model represented by the Sacramento soil moisture accounting (SAC-SMA) model. Support vector machines, based on statistical learning theory (SLT), represent the modeling task as a quadratic optimization problem and have already been used in various applications in hydrology. They require estimation of three parameters. SAC-SMA is a very well known model that estimates runoff. It has a 13-dimensional parameter space. In the LOBARE approach presented here, Bayesian inference is used in an iterative fashion to estimate the parameter space that will most likely enclose a best parameter set. This is done by narrowing the sampling space through updating the "parent" bounds based on their fitness. These bounds are actually the parameter sets that were selected by BARE runs on subspaces of the initial parameter space. The new approach results in faster convergence toward the optimal parameter set using minimum training/calibration data and fewer sets of parameter values. The efficacy of the localized methodology is also compared with the previously used BARE algorithm.
The Chandra Source Catalog 2.0: Estimating Source Fluxes
NASA Astrophysics Data System (ADS)
Primini, Francis Anthony; Allen, Christopher E.; Miller, Joseph; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula
2018-01-01
The Second Chandra Source Catalog (CSC2.0) will provide information on approximately 316,000 point or compact extended x-ray sources, derived from over 10,000 ACIS and HRC-I imaging observations available in the public archive at the end of 2014. As in the previous catalog release (CSC1.1), fluxes for these sources will be determined separately from source detection, using a Bayesian formalism that accounts for background, spatial resolution effects, and contamination from nearby sources. However, the CSC2.0 procedure differs from that used in CSC1.1 in three important aspects. First, for sources in crowded regions in which photometric apertures overlap, fluxes are determined jointly, using an extension of the CSC1.1 algorithm, as discussed in Primini & Kashyap (2014ApJ...796…24P). Second, an MCMC procedure is used to estimate marginalized posterior probability distributions for source fluxes. Finally, for sources observed in multiple observations, a Bayesian Blocks algorithm (Scargle, et al. 2013ApJ...764..167S) is used to group observations into blocks of constant source flux.In this poster we present details of the CSC2.0 photometry algorithms and illustrate their performance in actual CSC2.0 datasets.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.
2010-01-01
Background Methods for the calculation and application of quantitative electromyographic (EMG) statistics for the characterization of EMG data detected from forearm muscles of individuals with and without pain associated with repetitive strain injury are presented. Methods A classification procedure using a multi-stage application of Bayesian inference is presented that characterizes a set of motor unit potentials acquired using needle electromyography. The utility of this technique in characterizing EMG data obtained from both normal individuals and those presenting with symptoms of "non-specific arm pain" is explored and validated. The efficacy of the Bayesian technique is compared with simple voting methods. Results The aggregate Bayesian classifier presented is found to perform with accuracy equivalent to that of majority voting on the test data, with an overall accuracy greater than 0.85. Theoretical foundations of the technique are discussed, and are related to the observations found. Conclusions Aggregation of motor unit potential conditional probability distributions estimated using quantitative electromyographic analysis, may be successfully used to perform electrodiagnostic characterization of "non-specific arm pain." It is expected that these techniques will also be able to be applied to other types of electrodiagnostic data. PMID:20156353
NASA Astrophysics Data System (ADS)
Bowman, C.; Gibson, K. J.; La Haye, R. J.; Groebner, R. J.; Taylor, N. Z.; Grierson, B. A.
2014-10-01
A Bayesian inference framework has been developed for the DIII-D charge-exchange recombination (CER) system, capable of computing probability distribution functions (PDFs) for desired parameters. CER is a key diagnostic system at DIII-D, measuring important physics parameters such as plasma rotation and impurity ion temperature. This work is motivated by a case in which the CER system was used to probe the plasma rotation radial profile around an m/n = 2/1 tearing mode island rotating at ~ 1 kHz. Due to limited resolution in the tearing mode phase and short integration time, it has proven challenging to observe the structure of the rotation profile across the island. We seek to solve this problem by using the Bayesian framework to improve the estimation accuracy of the plasma rotation, helping to reveal details of how it is perturbed in the magnetic island vicinity. Examples of the PDFs obtained through the Bayesian framework will be presented, and compared with results from a conventional least-squares analysis of the CER data. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC02-09CH11466.
Mishra, Arabinda; Anderson, Adam W; Wu, Xi; Gore, John C; Ding, Zhaohua
2010-08-01
The purpose of this work is to design a neuronal fiber tracking algorithm, which will be more suitable for reconstruction of fibers associated with functionally important regions in the human brain. The functional activations in the brain normally occur in the gray matter regions. Hence the fibers bordering these regions are weakly myelinated, resulting in poor performance of conventional tractography methods to trace the fiber links between them. A lower fractional anisotropy in this region makes it even difficult to track the fibers in the presence of noise. In this work, the authors focused on a stochastic approach to reconstruct these fiber pathways based on a Bayesian regularization framework. To estimate the true fiber direction (propagation vector), the a priori and conditional probability density functions are calculated in advance and are modeled as multivariate normal. The variance of the estimated tensor element vector is associated with the uncertainty due to noise and partial volume averaging (PVA). An adaptive and multiple sampling of the estimated tensor element vector, which is a function of the pre-estimated variance, overcomes the effect of noise and PVA in this work. The algorithm has been rigorously tested using a variety of synthetic data sets. The quantitative comparison of the results to standard algorithms motivated the authors to implement it for in vivo DTI data analysis. The algorithm has been implemented to delineate fibers in two major language pathways (Broca's to SMA and Broca's to Wernicke's) across 12 healthy subjects. Though the mean of standard deviation was marginally bigger than conventional (Euler's) approach [P. J. Basser et al., "In vivo fiber tractography using DT-MRI data," Magn. Reson. Med. 44(4), 625-632 (2000)], the number of extracted fibers in this approach was significantly higher. The authors also compared the performance of the proposed method to Lu's method [Y. Lu et al., "Improved fiber tractography with Bayesian tensor regularization," Neuroimage 31(3), 1061-1074 (2006)] and Friman's stochastic approach [O. Friman et al., "A Bayesian approach for stochastic white matter tractography," IEEE Trans. Med. Imaging 25(8), 965-978 (2006)]. Overall performance of the approach is found to be superior to above two methods, particularly when the signal-to-noise ratio was low. The authors observed that an adaptive sampling of the tensor element vectors, estimated as a function of the variance in a Bayesian framework, can effectively delineate neuronal fibers to analyze the structure-function relationship in human brain. The simulated and in vivo results are in good agreement with the theoretical aspects of the algorithm.
Bayesian data analysis in observational comparative effectiveness research: rationale and examples.
Olson, William H; Crivera, Concetta; Ma, Yi-Wen; Panish, Jessica; Mao, Lian; Lynch, Scott M
2013-11-01
Many comparative effectiveness research and patient-centered outcomes research studies will need to be observational for one or both of two reasons: first, randomized trials are expensive and time-consuming; and second, only observational studies can answer some research questions. It is generally recognized that there is a need to increase the scientific validity and efficiency of observational studies. Bayesian methods for the design and analysis of observational studies are scientifically valid and offer many advantages over frequentist methods, including, importantly, the ability to conduct comparative effectiveness research/patient-centered outcomes research more efficiently. Bayesian data analysis is being introduced into outcomes studies that we are conducting. Our purpose here is to describe our view of some of the advantages of Bayesian methods for observational studies and to illustrate both realized and potential advantages by describing studies we are conducting in which various Bayesian methods have been or could be implemented.
Reliable evaluation of the quantal determinants of synaptic efficacy using Bayesian analysis
Beato, M.
2013-01-01
Communication between neurones in the central nervous system depends on synaptic transmission. The efficacy of synapses is determined by pre- and postsynaptic factors that can be characterized using quantal parameters such as the probability of neurotransmitter release, number of release sites, and quantal size. Existing methods of estimating the quantal parameters based on multiple probability fluctuation analysis (MPFA) are limited by their requirement for long recordings to acquire substantial data sets. We therefore devised an algorithm, termed Bayesian Quantal Analysis (BQA), that can yield accurate estimates of the quantal parameters from data sets of as small a size as 60 observations for each of only 2 conditions of release probability. Computer simulations are used to compare its performance in accuracy with that of MPFA, while varying the number of observations and the simulated range in release probability. We challenge BQA with realistic complexities characteristic of complex synapses, such as increases in the intra- or intersite variances, and heterogeneity in release probabilities. Finally, we validate the method using experimental data obtained from electrophysiological recordings to show that the effect of an antagonist on postsynaptic receptors is correctly characterized by BQA by a specific reduction in the estimates of quantal size. Since BQA routinely yields reliable estimates of the quantal parameters from small data sets, it is ideally suited to identify the locus of synaptic plasticity for experiments in which repeated manipulations of the recording environment are unfeasible. PMID:23076101
Uncertainty aggregation and reduction in structure-material performance prediction
NASA Astrophysics Data System (ADS)
Hu, Zhen; Mahadevan, Sankaran; Ao, Dan
2018-02-01
An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.
Estimation of Post-Test Probabilities by Residents: Bayesian Reasoning versus Heuristics?
ERIC Educational Resources Information Center
Hall, Stacey; Phang, Sen Han; Schaefer, Jeffrey P.; Ghali, William; Wright, Bruce; McLaughlin, Kevin
2014-01-01
Although the process of diagnosing invariably begins with a heuristic, we encourage our learners to support their diagnoses by analytical cognitive processes, such as Bayesian reasoning, in an attempt to mitigate the effects of heuristics on diagnosing. There are, however, limited data on the use ± impact of Bayesian reasoning on the accuracy of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiangjiang; Li, Weixuan; Zeng, Lingzao
Surrogate models are commonly used in Bayesian approaches such as Markov Chain Monte Carlo (MCMC) to avoid repetitive CPU-demanding model evaluations. However, the approximation error of a surrogate may lead to biased estimations of the posterior distribution. This bias can be corrected by constructing a very accurate surrogate or implementing MCMC in a two-stage manner. Since the two-stage MCMC requires extra original model evaluations, the computational cost is still high. If the information of measurement is incorporated, a locally accurate approximation of the original model can be adaptively constructed with low computational cost. Based on this idea, we propose amore » Gaussian process (GP) surrogate-based Bayesian experimental design and parameter estimation approach for groundwater contaminant source identification problems. A major advantage of the GP surrogate is that it provides a convenient estimation of the approximation error, which can be incorporated in the Bayesian formula to avoid over-confident estimation of the posterior distribution. The proposed approach is tested with a numerical case study. Without sacrificing the estimation accuracy, the new approach achieves about 200 times of speed-up compared to our previous work using two-stage MCMC.« less
Receptive Field Inference with Localized Priors
Park, Mijung; Pillow, Jonathan W.
2011-01-01
The linear receptive field describes a mapping from sensory stimuli to a one-dimensional variable governing a neuron's spike response. However, traditional receptive field estimators such as the spike-triggered average converge slowly and often require large amounts of data. Bayesian methods seek to overcome this problem by biasing estimates towards solutions that are more likely a priori, typically those with small, smooth, or sparse coefficients. Here we introduce a novel Bayesian receptive field estimator designed to incorporate locality, a powerful form of prior information about receptive field structure. The key to our approach is a hierarchical receptive field model that flexibly adapts to localized structure in both spacetime and spatiotemporal frequency, using an inference method known as empirical Bayes. We refer to our method as automatic locality determination (ALD), and show that it can accurately recover various types of smooth, sparse, and localized receptive fields. We apply ALD to neural data from retinal ganglion cells and V1 simple cells, and find it achieves error rates several times lower than standard estimators. Thus, estimates of comparable accuracy can be achieved with substantially less data. Finally, we introduce a computationally efficient Markov Chain Monte Carlo (MCMC) algorithm for fully Bayesian inference under the ALD prior, yielding accurate Bayesian confidence intervals for small or noisy datasets. PMID:22046110
A Bayesian Approach to Determination of F, D, and Z Values Used in Steam Sterilization Validation.
Faya, Paul; Stamey, James D; Seaman, John W
2017-01-01
For manufacturers of sterile drug products, steam sterilization is a common method used to provide assurance of the sterility of manufacturing equipment and products. The validation of sterilization processes is a regulatory requirement and relies upon the estimation of key resistance parameters of microorganisms. Traditional methods have relied upon point estimates for the resistance parameters. In this paper, we propose a Bayesian method for estimation of the well-known D T , z , and F o values that are used in the development and validation of sterilization processes. A Bayesian approach allows the uncertainty about these values to be modeled using probability distributions, thereby providing a fully risk-based approach to measures of sterility assurance. An example is given using the survivor curve and fraction negative methods for estimation of resistance parameters, and we present a means by which a probabilistic conclusion can be made regarding the ability of a process to achieve a specified sterility criterion. LAY ABSTRACT: For manufacturers of sterile drug products, steam sterilization is a common method used to provide assurance of the sterility of manufacturing equipment and products. The validation of sterilization processes is a regulatory requirement and relies upon the estimation of key resistance parameters of microorganisms. Traditional methods have relied upon point estimates for the resistance parameters. In this paper, we propose a Bayesian method for estimation of the critical process parameters that are evaluated in the development and validation of sterilization processes. A Bayesian approach allows the uncertainty about these parameters to be modeled using probability distributions, thereby providing a fully risk-based approach to measures of sterility assurance. An example is given using the survivor curve and fraction negative methods for estimation of resistance parameters, and we present a means by which a probabilistic conclusion can be made regarding the ability of a process to achieve a specified sterility criterion. © PDA, Inc. 2017.
Can, Seda; van de Schoot, Rens; Hox, Joop
2015-06-01
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation coefficient (ICC) and estimation method; maximum likelihood estimation with robust chi-squares and standard errors and Bayesian estimation, on the convergence rate are investigated. The other variables of interest were rate of inadmissible solutions and the relative parameter and standard error bias on the between level. The results showed that inadmissible solutions were obtained when there was between level collinearity and the estimation method was maximum likelihood. In the within level multicollinearity condition, all of the solutions were admissible but the bias values were higher compared with the between level collinearity condition. Bayesian estimation appeared to be robust in obtaining admissible parameters but the relative bias was higher than for maximum likelihood estimation. Finally, as expected, high ICC produced less biased results compared to medium ICC conditions.
Artificial Intelligence (AI) Center of Excellence at the University of Pennsylvania
1995-07-01
that controls impact forces. Robust Location Estimation for MLR and Non-MLR Distributions (Dissertation Proposal) Gerda L. Kamberova MS-CIS-92-28...Bayesian Approach To Computer Vision Problems Gerda L. Kamberova MS-CIS-92-29 GRASP LAB 310 The object of our study is the Bayesian approach in...Estimation for MLR and Non-MLR Distributions (Dissertation) Gerda L. Kamberova MS-CIS-92-93 GRASP LAB 340 We study the problem of estimating an unknown
Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Van Leemput, Koen
2013-10-01
Many segmentation algorithms in medical image analysis use Bayesian modeling to augment local image appearance with prior anatomical knowledge. Such methods often contain a large number of free parameters that are first estimated and then kept fixed during the actual segmentation process. However, a faithful Bayesian analysis would marginalize over such parameters, accounting for their uncertainty by considering all possible values they may take. Here we propose to incorporate this uncertainty into Bayesian segmentation methods in order to improve the inference process. In particular, we approximate the required marginalization over model parameters using computationally efficient Markov chain Monte Carlo techniques. We illustrate the proposed approach using a recently developed Bayesian method for the segmentation of hippocampal subfields in brain MRI scans, showing a significant improvement in an Alzheimer's disease classification task. As an additional benefit, the technique also allows one to compute informative "error bars" on the volume estimates of individual structures. Copyright © 2013 Elsevier B.V. All rights reserved.
Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Leemput, Koen Van
2013-01-01
Many segmentation algorithms in medical image analysis use Bayesian modeling to augment local image appearance with prior anatomical knowledge. Such methods often contain a large number of free parameters that are first estimated and then kept fixed during the actual segmentation process. However, a faithful Bayesian analysis would marginalize over such parameters, accounting for their uncertainty by considering all possible values they may take. Here we propose to incorporate this uncertainty into Bayesian segmentation methods in order to improve the inference process. In particular, we approximate the required marginalization over model parameters using computationally efficient Markov chain Monte Carlo techniques. We illustrate the proposed approach using a recently developed Bayesian method for the segmentation of hippocampal subfields in brain MRI scans, showing a significant improvement in an Alzheimer’s disease classification task. As an additional benefit, the technique also allows one to compute informative “error bars” on the volume estimates of individual structures. PMID:23773521
Quantifying Uncertainty in Near Surface Electromagnetic Imaging Using Bayesian Methods
NASA Astrophysics Data System (ADS)
Blatter, D. B.; Ray, A.; Key, K.
2017-12-01
Geoscientists commonly use electromagnetic methods to image the Earth's near surface. Field measurements of EM fields are made (often with the aid an artificial EM source) and then used to infer near surface electrical conductivity via a process known as inversion. In geophysics, the standard inversion tool kit is robust and can provide an estimate of the Earth's near surface conductivity that is both geologically reasonable and compatible with the measured field data. However, standard inverse methods struggle to provide a sense of the uncertainty in the estimate they provide. This is because the task of finding an Earth model that explains the data to within measurement error is non-unique - that is, there are many, many such models; but the standard methods provide only one "answer." An alternative method, known as Bayesian inversion, seeks to explore the full range of Earth model parameters that can adequately explain the measured data, rather than attempting to find a single, "ideal" model. Bayesian inverse methods can therefore provide a quantitative assessment of the uncertainty inherent in trying to infer near surface conductivity from noisy, measured field data. This study applies a Bayesian inverse method (called trans-dimensional Markov chain Monte Carlo) to transient airborne EM data previously collected over Taylor Valley - one of the McMurdo Dry Valleys in Antarctica. Our results confirm the reasonableness of previous estimates (made using standard methods) of near surface conductivity beneath Taylor Valley. In addition, we demonstrate quantitatively the uncertainty associated with those estimates. We demonstrate that Bayesian inverse methods can provide quantitative uncertainty to estimates of near surface conductivity.
A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jin; Yu, Yaming; Van Dyk, David A.
2014-10-20
Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use amore » principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.« less
A Bayesian approach to parameter and reliability estimation in the Poisson distribution.
NASA Technical Reports Server (NTRS)
Canavos, G. C.
1972-01-01
For life testing procedures, a Bayesian analysis is developed with respect to a random intensity parameter in the Poisson distribution. Bayes estimators are derived for the Poisson parameter and the reliability function based on uniform and gamma prior distributions of that parameter. A Monte Carlo procedure is implemented to make possible an empirical mean-squared error comparison between Bayes and existing minimum variance unbiased, as well as maximum likelihood, estimators. As expected, the Bayes estimators have mean-squared errors that are appreciably smaller than those of the other two.
Hulin, Anne; Blanchet, Benoît; Audard, Vincent; Barau, Caroline; Furlan, Valérie; Durrbach, Antoine; Taïeb, Fabrice; Lang, Philippe; Grimbert, Philippe; Tod, Michel
2009-04-01
A significant relationship between mycophenolic acid (MPA) area under the plasma concentration-time curve (AUC) and the risk for rejection has been reported. Based on 3 concentration measurements, 3 approaches have been proposed for the estimation of MPA AUC, involving either a multilinear regression approach model (MLRA) or a Bayesian estimation using either gamma absorption or zero-order absorption population models. The aim of the study was to compare the 3 approaches for the estimation of MPA AUC in 150 renal transplant patients treated with mycophenolate mofetil and tacrolimus. The population parameters were determined in 77 patients (learning study). The AUC estimation methods were compared in the learning population and in 73 patients from another center (validation study). In the latter study, the reference AUCs were estimated by the trapezoidal rule on 8 measurements. MPA concentrations were measured by liquid chromatography. The gamma absorption model gave the best fit. In the learning study, the AUCs estimated by both Bayesian methods were very similar, whereas the multilinear approach was highly correlated but yielded estimates about 20% lower than Bayesian methods. This resulted in dosing recommendations differing by 250 mg/12 h or more in 27% of cases. In the validation study, AUC estimates based on the Bayesian method with gamma absorption model and multilinear regression approach model were, respectively, 12% higher and 7% lower than the reference values. To conclude, the bicompartmental model with gamma absorption rate gave the best fit. The 3 AUC estimation methods are highly correlated but not concordant. For a given patient, the same estimation method should always be used.
Shrinkage Estimators for a Composite Measure of Quality Conceptualized as a Formative Construct
Shwartz, Michael; Peköz, Erol A; Christiansen, Cindy L; Burgess, James F; Berlowitz, Dan
2013-01-01
Objective To demonstrate the value of shrinkage estimators when calculating a composite quality measure as the weighted average of a set of individual quality indicators. Data Sources Rates of 28 quality indicators (QIs) calculated from the minimum dataset from residents of 112 Veterans Health Administration nursing homes in fiscal years 2005–2008. Study Design We compared composite scores calculated from the 28 QIs using both observed rates and shrunken rates derived from a Bayesian multivariate normal-binomial model. Principal Findings Shrunken-rate composite scores, because they take into account unreliability of estimates from small samples and the correlation among QIs, have more intuitive appeal than observed-rate composite scores. Facilities can be profiled based on more policy-relevant measures than point estimates of composite scores, and interval estimates can be calculated without assuming the QIs are independent. Usually, shrunken-rate composite scores in 1 year are better able to predict the observed total number of QI events or the observed-rate composite scores in the following year than the initial year observed-rate composite scores. Conclusion Shrinkage estimators can be useful when a composite measure is conceptualized as a formative construct. PMID:22716650
ERIC Educational Resources Information Center
Kelava, Augustin; Nagengast, Benjamin
2012-01-01
Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…
Rhodes, Kirsty M; Turner, Rebecca M; White, Ian R; Jackson, Dan; Spiegelhalter, David J; Higgins, Julian P T
2016-12-20
Many meta-analyses combine results from only a small number of studies, a situation in which the between-study variance is imprecisely estimated when standard methods are applied. Bayesian meta-analysis allows incorporation of external evidence on heterogeneity, providing the potential for more robust inference on the effect size of interest. We present a method for performing Bayesian meta-analysis using data augmentation, in which we represent an informative conjugate prior for between-study variance by pseudo data and use meta-regression for estimation. To assist in this, we derive predictive inverse-gamma distributions for the between-study variance expected in future meta-analyses. These may serve as priors for heterogeneity in new meta-analyses. In a simulation study, we compare approximate Bayesian methods using meta-regression and pseudo data against fully Bayesian approaches based on importance sampling techniques and Markov chain Monte Carlo (MCMC). We compare the frequentist properties of these Bayesian methods with those of the commonly used frequentist DerSimonian and Laird procedure. The method is implemented in standard statistical software and provides a less complex alternative to standard MCMC approaches. An importance sampling approach produces almost identical results to standard MCMC approaches, and results obtained through meta-regression and pseudo data are very similar. On average, data augmentation provides closer results to MCMC, if implemented using restricted maximum likelihood estimation rather than DerSimonian and Laird or maximum likelihood estimation. The methods are applied to real datasets, and an extension to network meta-analysis is described. The proposed method facilitates Bayesian meta-analysis in a way that is accessible to applied researchers. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Streck, André Felipe; Homeier, Timo; Foerster, Tessa; Truyen, Uwe
2013-09-01
To estimate the impact of porcine parvovirus (PPV) vaccines on the emergence of new phenotypes, the population dynamic history of the virus was calculated using the Bayesian Markov chain Monte Carlo method with a Bayesian skyline coalescent model. Additionally, an in vitro model was performed with consecutive passages of the 'Challenge' strain (a virulent field strain) and NADL2 strain (a vaccine strain) in a PK-15 cell line supplemented with polyclonal antibodies raised against the vaccine strain. A decrease in genetic diversity was observed in the presence of antibodies in vitro or after vaccination (as estimated by the in silico model). We hypothesized that the antibodies induced a selective pressure that may reduce the incidence of neutral selection, which should play a major role in the emergence of new mutations. In this scenario, vaccine failures and non-vaccinated populations (e.g. wild boars) may have an important impact in the emergence of new phenotypes.
Bayesian Correction for Misclassification in Multilevel Count Data Models.
Nelson, Tyler; Song, Joon Jin; Chin, Yoo-Mi; Stamey, James D
2018-01-01
Covariate misclassification is well known to yield biased estimates in single level regression models. The impact on hierarchical count models has been less studied. A fully Bayesian approach to modeling both the misclassified covariate and the hierarchical response is proposed. Models with a single diagnostic test and with multiple diagnostic tests are considered. Simulation studies show the ability of the proposed model to appropriately account for the misclassification by reducing bias and improving performance of interval estimators. A real data example further demonstrated the consequences of ignoring the misclassification. Ignoring misclassification yielded a model that indicated there was a significant, positive impact on the number of children of females who observed spousal abuse between their parents. When the misclassification was accounted for, the relationship switched to negative, but not significant. Ignoring misclassification in standard linear and generalized linear models is well known to lead to biased results. We provide an approach to extend misclassification modeling to the important area of hierarchical generalized linear models.
NASA Astrophysics Data System (ADS)
Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; Ren, Huiying; Liu, Ying; Swiler, Laura
2016-07-01
The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesian model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.
Efficient Bayesian experimental design for contaminant source identification
NASA Astrophysics Data System (ADS)
Zhang, J.; Zeng, L.
2013-12-01
In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameter identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from indirect concentration measurements in identifying unknown source parameters such as the release time, strength and location. In this approach, the sampling location that gives the maximum relative entropy is selected as the optimal one. Once the sampling location is determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown source parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. Compared with the traditional optimal design, which is based on the Gaussian linear assumption, the method developed in this study can cope with arbitrary nonlinearity. It can be used to assist in groundwater monitor network design and identification of unknown contaminant sources. Contours of the expected information gain. The optimal observing location corresponds to the maximum value. Posterior marginal probability densities of unknown parameters, the thick solid black lines are for the designed location. For comparison, other 7 lines are for randomly chosen locations. The true values are denoted by vertical lines. It is obvious that the unknown parameters are estimated better with the desinged location.
Estimation of Lithological Classification in Taipei Basin: A Bayesian Maximum Entropy Method
NASA Astrophysics Data System (ADS)
Wu, Meng-Ting; Lin, Yuan-Chien; Yu, Hwa-Lung
2015-04-01
In environmental or other scientific applications, we must have a certain understanding of geological lithological composition. Because of restrictions of real conditions, only limited amount of data can be acquired. To find out the lithological distribution in the study area, many spatial statistical methods used to estimate the lithological composition on unsampled points or grids. This study applied the Bayesian Maximum Entropy (BME method), which is an emerging method of the geological spatiotemporal statistics field. The BME method can identify the spatiotemporal correlation of the data, and combine not only the hard data but the soft data to improve estimation. The data of lithological classification is discrete categorical data. Therefore, this research applied Categorical BME to establish a complete three-dimensional Lithological estimation model. Apply the limited hard data from the cores and the soft data generated from the geological dating data and the virtual wells to estimate the three-dimensional lithological classification in Taipei Basin. Keywords: Categorical Bayesian Maximum Entropy method, Lithological Classification, Hydrogeological Setting
NASA Astrophysics Data System (ADS)
Fukuda, Jun'ichi; Johnson, Kaj M.
2010-06-01
We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.
Adkison, Milo D.; Peterman, R.M.
1996-01-01
Bayesian methods have been proposed to estimate optimal escapement goals, using both knowledge about physical determinants of salmon productivity and stock-recruitment data. The Bayesian approach has several advantages over many traditional methods for estimating stock productivity: it allows integration of information from diverse sources and provides a framework for decision-making that takes into account uncertainty reflected in the data. However, results can be critically dependent on details of implementation of this approach. For instance, unintended and unwarranted confidence about stock-recruitment relationships can arise if the range of relationships examined is too narrow, if too few discrete alternatives are considered, or if data are contradictory. This unfounded confidence can result in a suboptimal choice of a spawning escapement goal.
Gerber, Brian D.; Kendall, William L.
2017-01-01
Monitoring animal populations can be difficult. Limited resources often force monitoring programs to rely on unadjusted or smoothed counts as an index of abundance. Smoothing counts is commonly done using a moving-average estimator to dampen sampling variation. These indices are commonly used to inform management decisions, although their reliability is often unknown. We outline a process to evaluate the biological plausibility of annual changes in population counts and indices from a typical monitoring scenario and compare results with a hierarchical Bayesian time series (HBTS) model. We evaluated spring and fall counts, fall indices, and model-based predictions for the Rocky Mountain population (RMP) of Sandhill Cranes (Antigone canadensis) by integrating juvenile recruitment, harvest, and survival into a stochastic stage-based population model. We used simulation to evaluate population indices from the HBTS model and the commonly used 3-yr moving average estimator. We found counts of the RMP to exhibit biologically unrealistic annual change, while the fall population index was largely biologically realistic. HBTS model predictions suggested that the RMP changed little over 31 yr of monitoring, but the pattern depended on assumptions about the observational process. The HBTS model fall population predictions were biologically plausible if observed crane harvest mortality was compensatory up to natural mortality, as empirical evidence suggests. Simulations indicated that the predicted mean of the HBTS model was generally a more reliable estimate of the true population than population indices derived using a moving 3-yr average estimator. Practitioners could gain considerable advantages from modeling population counts using a hierarchical Bayesian autoregressive approach. Advantages would include: (1) obtaining measures of uncertainty; (2) incorporating direct knowledge of the observational and population processes; (3) accommodating missing years of data; and (4) forecasting population size.
Bayesian flood forecasting methods: A review
NASA Astrophysics Data System (ADS)
Han, Shasha; Coulibaly, Paulin
2017-08-01
Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been developed and widely applied, but there is still room for improvements. Future research in the context of Bayesian flood forecasting should be on assimilation of various sources of newly available information and improvement of predictive performance assessment methods.
Tracking composite material damage evolution using Bayesian filtering and flash thermography data
NASA Astrophysics Data System (ADS)
Gregory, Elizabeth D.; Holland, Steve D.
2016-05-01
We propose a method for tracking the condition of a composite part using Bayesian filtering of ash thermography data over the lifetime of the part. In this demonstration, composite panels were fabricated; impacted to induce subsurface delaminations; and loaded in compression over multiple time steps, causing the delaminations to grow in size. Flash thermography data was collected between each damage event to serve as a time history of the part. The ash thermography indicated some areas of damage but provided little additional information as to the exact nature or depth of the damage. Computed tomography (CT) data was also collected after each damage event and provided a high resolution volume model of damage that acted as truth. After each cycle, the condition estimate, from the ash thermography data and the Bayesian filter, was compared to 'ground truth'. The Bayesian process builds on the lifetime history of ash thermography scans and can give better estimates of material condition as compared to the most recent scan alone, which is common practice in the aerospace industry. Bayesian inference provides probabilistic estimates of damage condition that are updated as each new set of data becomes available. The method was tested on simulated data and then on an experimental data set.
Approximate Bayesian evaluations of measurement uncertainty
NASA Astrophysics Data System (ADS)
Possolo, Antonio; Bodnar, Olha
2018-04-01
The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.
Probabilistic Damage Characterization Using the Computationally-Efficient Bayesian Approach
NASA Technical Reports Server (NTRS)
Warner, James E.; Hochhalter, Jacob D.
2016-01-01
This work presents a computationally-ecient approach for damage determination that quanti es uncertainty in the provided diagnosis. Given strain sensor data that are polluted with measurement errors, Bayesian inference is used to estimate the location, size, and orientation of damage. This approach uses Bayes' Theorem to combine any prior knowledge an analyst may have about the nature of the damage with information provided implicitly by the strain sensor data to form a posterior probability distribution over possible damage states. The unknown damage parameters are then estimated based on samples drawn numerically from this distribution using a Markov Chain Monte Carlo (MCMC) sampling algorithm. Several modi cations are made to the traditional Bayesian inference approach to provide signi cant computational speedup. First, an ecient surrogate model is constructed using sparse grid interpolation to replace a costly nite element model that must otherwise be evaluated for each sample drawn with MCMC. Next, the standard Bayesian posterior distribution is modi ed using a weighted likelihood formulation, which is shown to improve the convergence of the sampling process. Finally, a robust MCMC algorithm, Delayed Rejection Adaptive Metropolis (DRAM), is adopted to sample the probability distribution more eciently. Numerical examples demonstrate that the proposed framework e ectively provides damage estimates with uncertainty quanti cation and can yield orders of magnitude speedup over standard Bayesian approaches.
A hierarchical Bayesian GEV model for improving local and regional flood quantile estimates
NASA Astrophysics Data System (ADS)
Lima, Carlos H. R.; Lall, Upmanu; Troy, Tara; Devineni, Naresh
2016-10-01
We estimate local and regional Generalized Extreme Value (GEV) distribution parameters for flood frequency analysis in a multilevel, hierarchical Bayesian framework, to explicitly model and reduce uncertainties. As prior information for the model, we assume that the GEV location and scale parameters for each site come from independent log-normal distributions, whose mean parameter scales with the drainage area. From empirical and theoretical arguments, the shape parameter for each site is shrunk towards a common mean. Non-informative prior distributions are assumed for the hyperparameters and the MCMC method is used to sample from the joint posterior distribution. The model is tested using annual maximum series from 20 streamflow gauges located in an 83,000 km2 flood prone basin in Southeast Brazil. The results show a significant reduction of uncertainty estimates of flood quantile estimates over the traditional GEV model, particularly for sites with shorter records. For return periods within the range of the data (around 50 years), the Bayesian credible intervals for the flood quantiles tend to be narrower than the classical confidence limits based on the delta method. As the return period increases beyond the range of the data, the confidence limits from the delta method become unreliable and the Bayesian credible intervals provide a way to estimate satisfactory confidence bands for the flood quantiles considering parameter uncertainties and regional information. In order to evaluate the applicability of the proposed hierarchical Bayesian model for regional flood frequency analysis, we estimate flood quantiles for three randomly chosen out-of-sample sites and compare with classical estimates using the index flood method. The posterior distributions of the scaling law coefficients are used to define the predictive distributions of the GEV location and scale parameters for the out-of-sample sites given only their drainage areas and the posterior distribution of the average shape parameter is taken as the regional predictive distribution for this parameter. While the index flood method does not provide a straightforward way to consider the uncertainties in the index flood and in the regional parameters, the results obtained here show that the proposed Bayesian method is able to produce adequate credible intervals for flood quantiles that are in accordance with empirical estimates.
ERIC Educational Resources Information Center
Sebro, Negusse Yohannes; Goshu, Ayele Taye
2017-01-01
This study aims to explore Bayesian multilevel modeling to investigate variations of average academic achievement of grade eight school students. A sample of 636 students is randomly selected from 26 private and government schools by a two-stage stratified sampling design. Bayesian method is used to estimate the fixed and random effects. Input and…
Determining the Intensity of a Point-Like Source Observed on the Background of AN Extended Source
NASA Astrophysics Data System (ADS)
Kornienko, Y. V.; Skuratovskiy, S. I.
2014-12-01
The problem of determining the time dependence of intensity of a point-like source in case of atmospheric blur is formulated and solved by using the Bayesian statistical approach. A pointlike source is supposed to be observed on the background of an extended source with constant in time though unknown brightness. The equation system for optimal statistical estimation of the sequence of intensity values in observation moments is obtained. The problem is particularly relevant for studying gravitational mirages which appear while observing a quasar through the gravitational field of a far galaxy.
The multicategory case of the sequential Bayesian pixel selection and estimation procedure
NASA Technical Reports Server (NTRS)
Pore, M. D.; Dennis, T. B. (Principal Investigator)
1980-01-01
A Bayesian technique for stratified proportion estimation and a sampling based on minimizing the mean squared error of this estimator were developed and tested on LANDSAT multispectral scanner data using the beta density function to model the prior distribution in the two-class case. An extention of this procedure to the k-class case is considered. A generalization of the beta function is shown to be a density function for the general case which allows the procedure to be extended.
Incorporating approximation error in surrogate based Bayesian inversion
NASA Astrophysics Data System (ADS)
Zhang, J.; Zeng, L.; Li, W.; Wu, L.
2015-12-01
There are increasing interests in applying surrogates for inverse Bayesian modeling to reduce repetitive evaluations of original model. In this way, the computational cost is expected to be saved. However, the approximation error of surrogate model is usually overlooked. This is partly because that it is difficult to evaluate the approximation error for many surrogates. Previous studies have shown that, the direct combination of surrogates and Bayesian methods (e.g., Markov Chain Monte Carlo, MCMC) may lead to biased estimations when the surrogate cannot emulate the highly nonlinear original system. This problem can be alleviated by implementing MCMC in a two-stage manner. However, the computational cost is still high since a relatively large number of original model simulations are required. In this study, we illustrate the importance of incorporating approximation error in inverse Bayesian modeling. Gaussian process (GP) is chosen to construct the surrogate for its convenience in approximation error evaluation. Numerical cases of Bayesian experimental design and parameter estimation for contaminant source identification are used to illustrate this idea. It is shown that, once the surrogate approximation error is well incorporated into Bayesian framework, promising results can be obtained even when the surrogate is directly used, and no further original model simulations are required.
HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.
Wiecki, Thomas V; Sofer, Imri; Frank, Michael J
2013-01-01
The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/
Application of bayesian networks to real-time flood risk estimation
NASA Astrophysics Data System (ADS)
Garrote, L.; Molina, M.; Blasco, G.
2003-04-01
This paper presents the application of a computational paradigm taken from the field of artificial intelligence - the bayesian network - to model the behaviour of hydrologic basins during floods. The final goal of this research is to develop representation techniques for hydrologic simulation models in order to define, develop and validate a mechanism, supported by a software environment, oriented to build decision models for the prediction and management of river floods in real time. The emphasis is placed on providing decision makers with tools to incorporate their knowledge of basin behaviour, usually formulated in terms of rainfall-runoff models, in the process of real-time decision making during floods. A rainfall-runoff model is only a step in the process of decision making. If a reliable rainfall forecast is available and the rainfall-runoff model is well calibrated, decisions can be based mainly on model results. However, in most practical situations, uncertainties in rainfall forecasts or model performance have to be incorporated in the decision process. The computation paradigm adopted for the simulation of hydrologic processes is the bayesian network. A bayesian network is a directed acyclic graph that represents causal influences between linked variables. Under this representation, uncertain qualitative variables are related through causal relations quantified with conditional probabilities. The solution algorithm allows the computation of the expected probability distribution of unknown variables conditioned to the observations. An approach to represent hydrologic processes by bayesian networks with temporal and spatial extensions is presented in this paper, together with a methodology for the development of bayesian models using results produced by deterministic hydrologic simulation models
Bayesian Statistical Inference in Ion-Channel Models with Exact Missed Event Correction.
Epstein, Michael; Calderhead, Ben; Girolami, Mark A; Sivilotti, Lucia G
2016-07-26
The stochastic behavior of single ion channels is most often described as an aggregated continuous-time Markov process with discrete states. For ligand-gated channels each state can represent a different conformation of the channel protein or a different number of bound ligands. Single-channel recordings show only whether the channel is open or shut: states of equal conductance are aggregated, so transitions between them have to be inferred indirectly. The requirement to filter noise from the raw signal further complicates the modeling process, as it limits the time resolution of the data. The consequence of the reduced bandwidth is that openings or shuttings that are shorter than the resolution cannot be observed; these are known as missed events. Postulated models fitted using filtered data must therefore explicitly account for missed events to avoid bias in the estimation of rate parameters and therefore assess parameter identifiability accurately. In this article, we present the first, to our knowledge, Bayesian modeling of ion-channels with exact missed events correction. Bayesian analysis represents uncertain knowledge of the true value of model parameters by considering these parameters as random variables. This allows us to gain a full appreciation of parameter identifiability and uncertainty when estimating values for model parameters. However, Bayesian inference is particularly challenging in this context as the correction for missed events increases the computational complexity of the model likelihood. Nonetheless, we successfully implemented a two-step Markov chain Monte Carlo method that we called "BICME", which performs Bayesian inference in models of realistic complexity. The method is demonstrated on synthetic and real single-channel data from muscle nicotinic acetylcholine channels. We show that parameter uncertainty can be characterized more accurately than with maximum-likelihood methods. Our code for performing inference in these ion channel models is publicly available. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Bayesian Estimation of Combined Accuracy for Tests with Verification Bias
Broemeling, Lyle D.
2011-01-01
This presentation will emphasize the estimation of the combined accuracy of two or more tests when verification bias is present. Verification bias occurs when some of the subjects are not subject to the gold standard. The approach is Bayesian where the estimation of test accuracy is based on the posterior distribution of the relevant parameter. Accuracy of two combined binary tests is estimated employing either “believe the positive” or “believe the negative” rule, then the true and false positive fractions for each rule are computed for two tests. In order to perform the analysis, the missing at random assumption is imposed, and an interesting example is provided by estimating the combined accuracy of CT and MRI to diagnose lung cancer. The Bayesian approach is extended to two ordinal tests when verification bias is present, and the accuracy of the combined tests is based on the ROC area of the risk function. An example involving mammography with two readers with extreme verification bias illustrates the estimation of the combined test accuracy for ordinal tests. PMID:26859487
Sky Mining - Application to Photomorphic Redshift Estimation
NASA Astrophysics Data System (ADS)
Nayak, Pragyansmita
The field of astronomy has evolved from the ancient craft of observing the sky. In it's present form, astronomers explore the cosmos not just by observing through the tiny visible window used by our eyes, but also by exploiting the electromagnetic spectrum from radio waves to gamma rays. The domain is undoubtedly at the forefront of data-driven science. The data growth rate is expected to be around 50%--100% per year. This data explosion is attributed largely to the large-scale wide and deep surveys of the different regions of the sky at multiple wavelengths (both ground and space-based surveys). This dissertation describes the application of machine learning methods to the estimation of galaxy redshifts leveraging such a survey data. Galaxy is a large system of stars held together by mutual gravitation and isolated from similar systems by vast regions of space. Our view of the universe is closely tied to our understanding of galaxy formation. Thus, a better understanding of the relative location of the multitudes of galaxies is crucial. The position of each galaxy can be characterized using three coordinates. Right Ascension (ra) and Declination (dec) are the two coordinates that locate the galaxy in two dimensions on the plane of the sky. It is relatively straightforward to measure them. In contrast, fixing the third coordinate that is the galaxy's distance from the observer along the line of sight (redshift 'z') is considerably more challenging. "Spectroscopic redshift" method gives us accurate and precise measurements of z. However, it is extremely time-intensive and unusable for faint objects. Additionally, the rate at which objects are being identified via photometric surveys far exceeds the rate at which the spectroscopic redshift measurements can keep pace in determining their distance. As the surveys go deeper into the sky, the proportion of faint objects being identified also continues to increase. In order to tackle both these drawbacks increasing in severity every day, alternative method "Photometric redshift" has been studied in the past. It uses the brightness of the object viewed through various standard filters, each of which lets through a relatively broad spectrum of colors. However, these methods are bound by the degeneracy problem (objects with different color profiles have the same redshift) which leads to low predictive accuracy. As part of our study, we are looking beyond color attributes to identify other measured attributes as degeneracy resolvers as well as generate estimators that are highly accurate; termed as "Photomorphic redshift" estimators. The present study investigates the photometric information of the objects such as color and magnitude (= observed flux) and morphology attributes such as shape, size, orientation and concentration in the different wavelengths. The specific type of magnitude used in this study are the PSF, Fiber and Petrosian magnitude. The morphology attributes are the ratio of Fiber to Petrosian magnitude, concentration index and Petrosian radius. All these attributes are in the five bands ugriz of the Sloan Digital Sky Survey (SDSS). Machine learning techniques based on Naive Bayes (NB), Bayesian Network (BN) and Generalized Linear Model (GLM) are researched to better understand their applicability, advantages and resulting predictive performance in terms of efficiency and accuracy. Note: The SDSS Data Release (DR) 10 data was used in the executed experiments (total of 700,777 galaxies with forty-five attributes associated with each galaxy). The significant findings of the present work are as follows: 1. Magnitude and morphology attributes have been found to be successful degeneracy resolvers. 2. Magnitude and morphology attributes have been found to be better redshift estimators than color attributes alone. 3. Naive Bayes, Bayesian Network and GLM have been found to be viable redshift estimation methods. Attribute selection is an important factor in computational performance. 4. In addition to the redshift estimate, the likelihood distribution of the estimate is even more useful, and my Bayesian Network models provide that information. This is particularly useful in ensemble methods as well as the kernel for mass distribution in the universe. 5. The generated Bayesian Network models can be applied to any of the variables, not just limited to redshift. Example applications include quality analysis and missing value imputation. Different types of Bayesian Network learning algorithms---constraint-based, score-based and hybrid---were investigated in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Le; Timbie, Peter T.; Bunn, Emory F.
In this paper, we present a new Bayesian semi-blind approach for foreground removal in observations of the 21 cm signal measured by interferometers. The technique, which we call H i Expectation–Maximization Independent Component Analysis (HIEMICA), is an extension of the Independent Component Analysis technique developed for two-dimensional (2D) cosmic microwave background maps to three-dimensional (3D) 21 cm cosmological signals measured by interferometers. This technique provides a fully Bayesian inference of power spectra and maps and separates the foregrounds from the signal based on the diversity of their power spectra. Relying only on the statistical independence of the components, this approachmore » can jointly estimate the 3D power spectrum of the 21 cm signal, as well as the 2D angular power spectrum and the frequency dependence of each foreground component, without any prior assumptions about the foregrounds. This approach has been tested extensively by applying it to mock data from interferometric 21 cm intensity mapping observations under idealized assumptions of instrumental effects. We also discuss the impact when the noise properties are not known completely. As a first step toward solving the 21 cm power spectrum analysis problem, we compare the semi-blind HIEMICA technique to the commonly used Principal Component Analysis. Under the same idealized circumstances, the proposed technique provides significantly improved recovery of the power spectrum. This technique can be applied in a straightforward manner to all 21 cm interferometric observations, including epoch of reionization measurements, and can be extended to single-dish observations as well.« less
Application of Bayesian Approach in Cancer Clinical Trial
Bhattacharjee, Atanu
2014-01-01
The application of Bayesian approach in clinical trials becomes more useful over classical method. It is beneficial from design to analysis phase. The straight forward statement is possible to obtain through Bayesian about the drug treatment effect. Complex computational problems are simple to handle with Bayesian techniques. The technique is only feasible to performing presence of prior information of the data. The inference is possible to establish through posterior estimates. However, some limitations are present in this method. The objective of this work was to explore the several merits and demerits of Bayesian approach in cancer research. The review of the technique will be helpful for the clinical researcher involved in the oncology to explore the limitation and power of Bayesian techniques. PMID:29147387
Mendelian randomization with Egger pleiotropy correction and weakly informative Bayesian priors.
Schmidt, A F; Dudbridge, F
2017-12-15
The MR-Egger (MRE) estimator has been proposed to correct for directional pleiotropic effects of genetic instruments in an instrumental variable (IV) analysis. The power of this method is considerably lower than that of conventional estimators, limiting its applicability. Here we propose a novel Bayesian implementation of the MR-Egger estimator (BMRE) and explore the utility of applying weakly informative priors on the intercept term (the pleiotropy estimate) to increase power of the IV (slope) estimate. This was a simulation study to compare the performance of different IV estimators. Scenarios differed in the presence of a causal effect, the presence of pleiotropy, the proportion of pleiotropic instruments and degree of 'Instrument Strength Independent of Direct Effect' (InSIDE) assumption violation. Based on empirical plasma urate data, we present an approach to elucidate a prior distribution for the amount of pleiotropy. A weakly informative prior on the intercept term increased power of the slope estimate while maintaining type 1 error rates close to the nominal value of 0.05. Under the InSIDE assumption, performance was unaffected by the presence or absence of pleiotropy. Violation of the InSIDE assumption biased all estimators, affecting the BMRE more than the MRE method. Depending on the prior distribution, the BMRE estimator has more power at the cost of an increased susceptibility to InSIDE assumption violations. As such the BMRE method is a compromise between the MRE and conventional IV estimators, and may be an especially useful approach to account for observed pleiotropy. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association.
Silva Junqueira, Vinícius; de Azevedo Peixoto, Leonardo; Galvêas Laviola, Bruno; Lopes Bhering, Leonardo; Mendonça, Simone; Agostini Costa, Tania da Silveira; Antoniassi, Rosemar
2016-01-01
The biggest challenge for jatropha breeding is to identify superior genotypes that present high seed yield and seed oil content with reduced toxicity levels. Therefore, the objective of this study was to estimate genetic parameters for three important traits (weight of 100 seed, oil seed content, and phorbol ester concentration), and to select superior genotypes to be used as progenitors in jatropha breeding. Additionally, the genotypic values and the genetic parameters estimated under the Bayesian multi-trait approach were used to evaluate different selection indices scenarios of 179 half-sib families. Three different scenarios and economic weights were considered. It was possible to simultaneously reduce toxicity and increase seed oil content and weight of 100 seed by using index selection based on genotypic value estimated by the Bayesian multi-trait approach. Indeed, we identified two families that present these characteristics by evaluating genetic diversity using the Ward clustering method, which suggested nine homogenous clusters. Future researches must integrate the Bayesian multi-trait methods with realized relationship matrix, aiming to build accurate selection indices models. PMID:27281340
2017-01-01
Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing—with its unique statistical properties—became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates) to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca. PMID:28817636
Ramachandran, Parameswaran; Sánchez-Taltavull, Daniel; Perkins, Theodore J
2017-01-01
Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing-with its unique statistical properties-became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates) to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca.
NASA Astrophysics Data System (ADS)
Pleban, J. R.; Mackay, D. S.; Ewers, B. E.; Weinig, C.; Aston, T.
2015-12-01
Challenges in terrestrial ecosystem modeling include characterizing the impact of stress on vegetation and the heterogeneous behavior of different species within the environment. In an effort to address these challenges the impacts of drought and nutrient limitation on the CO2 assimilation of multiple genotypes of Brassica rapa was investigated using the Farquhar Model (FM) of photosynthesis following a Bayesian parameterization and updating scheme. Leaf gas exchange and chlorophyll fluorescence measurements from an unstressed group (well-watered/well-fertilized) and two stressed groups (drought/well-fertilized and well-watered/nutrient limited) were used to estimate FM model parameters. Unstressed individuals were used to initialize Bayesian parameter estimation. Posterior mean estimates yielded a close fit with data as observed assimilation (An) closely matched predicted (Ap) with mean standard error for all individuals ranging from 0.8 to 3.1 μmol CO2 m-2 s-1. Posterior parameter distributions of the unstressed individuals were combined and fit to distributions to establish species level Bayesian priors of FM parameters for testing stress responses. Species level distributions of unstressed group identified mean maximum rates of carboxylation standardized to 25° (Vcmax25) as 101.8 μmol m-2 s-1 (± 29.0) and mean maximum rates of electron transport standardized to 25° (Jmax25) as 319.7 μmol m-2 s-1 (± 64.4). These updated priors were used to test the response of drought and nutrient limitations on assimilation. In the well-watered/nutrient limited group a decrease of 28.0 μmol m-2 s-1 was observed in mean estimate of Vcmax25, a decrease of 27.9 μmol m-2 s-1 in Jmax25 and a decrease in quantum yield from 0.40 mol photon/mol e- in unstressed individuals to 0.14 in the nutrient limited group. In the drought/well-fertilized group a decrease was also observed in Vcmax25 and Jmax25. The genotype specific unstressed and stressed responses were then used to parameterize an ecosystem process model with application at the field scale to investigate mechanisms of stress response in B. rapa by testing a variety of functional forms to limit assimilation in hydraulic or nutrient limited conditions.
Filtering observations without the initial guess
NASA Astrophysics Data System (ADS)
Chin, T. M.; Abbondanza, C.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Soja, B.; Wu, X.
2017-12-01
Noisy geophysical observations sampled irregularly over space and time are often numerically "analyzed" or "filtered" before scientific usage. The standard analysis and filtering techniques based on the Bayesian principle requires "a priori" joint distribution of all the geophysical parameters of interest. However, such prior distributions are seldom known fully in practice, and best-guess mean values (e.g., "climatology" or "background" data if available) accompanied by some arbitrarily set covariance values are often used in lieu. It is therefore desirable to be able to exploit efficient (time sequential) Bayesian algorithms like the Kalman filter while not forced to provide a prior distribution (i.e., initial mean and covariance). An example of this is the estimation of the terrestrial reference frame (TRF) where requirement for numerical precision is such that any use of a priori constraints on the observation data needs to be minimized. We will present the Information Filter algorithm, a variant of the Kalman filter that does not require an initial distribution, and apply the algorithm (and an accompanying smoothing algorithm) to the TRF estimation problem. We show that the information filter allows temporal propagation of partial information on the distribution (marginal distribution of a transformed version of the state vector), instead of the full distribution (mean and covariance) required by the standard Kalman filter. The information filter appears to be a natural choice for the task of filtering observational data in general cases where prior assumption on the initial estimate is not available and/or desirable. For application to data assimilation problems, reduced-order approximations of both the information filter and square-root information filter (SRIF) have been published, and the former has previously been applied to a regional configuration of the HYCOM ocean general circulation model. Such approximation approaches are also briefed in the presentation.
Gravity dependence of the effect of optokinetic stimulation on the subjective visual vertical.
Ward, Bryan K; Bockisch, Christopher J; Caramia, Nicoletta; Bertolini, Giovanni; Tarnutzer, Alexander Andrea
2017-05-01
Accurate and precise estimates of direction of gravity are essential for spatial orientation. According to Bayesian theory, multisensory vestibular, visual, and proprioceptive input is centrally integrated in a weighted fashion based on the reliability of the component sensory signals. For otolithic input, a decreasing signal-to-noise ratio was demonstrated with increasing roll angle. We hypothesized that the weights of vestibular (otolithic) and extravestibular (visual/proprioceptive) sensors are roll-angle dependent and predicted an increased weight of extravestibular cues with increasing roll angle, potentially following the Bayesian hypothesis. To probe this concept, the subjective visual vertical (SVV) was assessed in different roll positions (≤ ± 120°, steps = 30°, n = 10) with/without presenting an optokinetic stimulus (velocity = ± 60°/s). The optokinetic stimulus biased the SVV toward the direction of stimulus rotation for roll angles ≥ ± 30° ( P < 0.005). Offsets grew from 3.9 ± 1.8° (upright) to 22.1 ± 11.8° (±120° roll tilt, P < 0.001). Trial-to-trial variability increased with roll angle, demonstrating a nonsignificant increase when providing optokinetic stimulation. Variability and optokinetic bias were correlated ( R 2 = 0.71, slope = 0.71, 95% confidence interval = 0.57-0.86). An optimal-observer model combining an optokinetic bias with vestibular input reproduced measured errors closely. These findings support the hypothesis of a weighted multisensory integration when estimating direction of gravity with optokinetic stimulation. Visual input was weighted more when vestibular input became less reliable, i.e., at larger roll-tilt angles. However, according to Bayesian theory, the variability of combined cues is always lower than the variability of each source cue. If the observed increase in variability, although nonsignificant, is true, either it must depend on an additional source of variability, added after SVV computation, or it would conflict with the Bayesian hypothesis. NEW & NOTEWORTHY Applying a rotating optokinetic stimulus while recording the subjective visual vertical in different whole body roll angles, we noted the optokinetic-induced bias to correlate with the roll angle. These findings allow the hypothesis that the established optimal weighting of single-sensory cues depending on their reliability to estimate direction of gravity could be extended to a bias caused by visual self-motion stimuli. Copyright © 2017 the American Physiological Society.
Bayesian source term estimation of atmospheric releases in urban areas using LES approach.
Xue, Fei; Kikumoto, Hideki; Li, Xiaofeng; Ooka, Ryozo
2018-05-05
The estimation of source information from limited measurements of a sensor network is a challenging inverse problem, which can be viewed as an assimilation process of the observed concentration data and the predicted concentration data. When dealing with releases in built-up areas, the predicted data are generally obtained by the Reynolds-averaged Navier-Stokes (RANS) equations, which yields building-resolving results; however, RANS-based models are outperformed by large-eddy simulation (LES) in the predictions of both airflow and dispersion. Therefore, it is important to explore the possibility of improving the estimation of the source parameters by using the LES approach. In this paper, a novel source term estimation method is proposed based on LES approach using Bayesian inference. The source-receptor relationship is obtained by solving the adjoint equations constructed using the time-averaged flow field simulated by the LES approach based on the gradient diffusion hypothesis. A wind tunnel experiment with a constant point source downwind of a single building model is used to evaluate the performance of the proposed method, which is compared with that of the existing method using a RANS model. The results show that the proposed method reduces the errors of source location and releasing strength by 77% and 28%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu Yiping; Bolton, Adam S.; Dawson, Kyle S.
2012-04-15
We present a hierarchical Bayesian determination of the velocity-dispersion function of approximately 430,000 massive luminous red galaxies observed at relatively low spectroscopic signal-to-noise ratio (S/N {approx} 3-5 per 69 km s{sup -1}) by the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. We marginalize over spectroscopic redshift errors, and use the full velocity-dispersion likelihood function for each galaxy to make a self-consistent determination of the velocity-dispersion distribution parameters as a function of absolute magnitude and redshift, correcting as well for the effects of broadband magnitude errors on our binning. Parameterizing the distribution at each point inmore » the luminosity-redshift plane with a log-normal form, we detect significant evolution in the width of the distribution toward higher intrinsic scatter at higher redshifts. Using a subset of deep re-observations of BOSS galaxies, we demonstrate that our distribution-parameter estimates are unbiased regardless of spectroscopic S/N. We also show through simulation that our method introduces no systematic parameter bias with redshift. We highlight the advantage of the hierarchical Bayesian method over frequentist 'stacking' of spectra, and illustrate how our measured distribution parameters can be adopted as informative priors for velocity-dispersion measurements from individual noisy spectra.« less
ERIC Educational Resources Information Center
Hsieh, Chueh-An; Maier, Kimberly S.
2009-01-01
The capacity of Bayesian methods in estimating complex statistical models is undeniable. Bayesian data analysis is seen as having a range of advantages, such as an intuitive probabilistic interpretation of the parameters of interest, the efficient incorporation of prior information to empirical data analysis, model averaging and model selection.…
Bayesian Nonlinear Assimilation of Eulerian and Lagrangian Coastal Flow Data
2015-09-30
Lagrangian Coastal Flow Data Dr. Pierre F.J. Lermusiaux Department of Mechanical Engineering Center for Ocean Science and Engineering Massachusetts...Develop and apply theory, schemes and computational systems for rigorous Bayesian nonlinear assimilation of Eulerian and Lagrangian coastal flow data...coastal ocean fields, both in Eulerian and Lagrangian forms. - Further develop and implement our GMM-DO schemes for robust Bayesian nonlinear estimation
Bayesian B-spline mapping for dynamic quantitative traits.
Xing, Jun; Li, Jiahan; Yang, Runqing; Zhou, Xiaojing; Xu, Shizhong
2012-04-01
Owing to their ability and flexibility to describe individual gene expression at different time points, random regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that (1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines, Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of stem diameters in Populus are located.
Massoudieh, Arash; Visser, Ate; Sharifi, Soroosh; ...
2013-10-15
The mixing of groundwaters with different ages in aquifers, groundwater age is more appropriately represented by a distribution rather than a scalar number. To infer a groundwater age distribution from environmental tracers, a mathematical form is often assumed for the shape of the distribution and the parameters of the mathematical distribution are estimated using deterministic or stochastic inverse methods. We found that the prescription of the mathematical form limits the exploration of the age distribution to the shapes that can be described by the selected distribution. In this paper, the use of freeform histograms as groundwater age distributions is evaluated.more » A Bayesian Markov Chain Monte Carlo approach is used to estimate the fraction of groundwater in each histogram bin. This method was able to capture the shape of a hypothetical gamma distribution from the concentrations of four age tracers. The number of bins that can be considered in this approach is limited based on the number of tracers available. The histogram method was also tested on tracer data sets from Holten (The Netherlands; 3H, 3He, 85Kr, 39Ar) and the La Selva Biological Station (Costa-Rica; SF 6, CFCs, 3H, 4He and 14C), and compared to a number of mathematical forms. According to standard Bayesian measures of model goodness, the best mathematical distribution performs better than the histogram distributions in terms of the ability to capture the observed tracer data relative to their complexity. Among the histogram distributions, the four bin histogram performs better in most of the cases. The Monte Carlo simulations showed strong correlations in the posterior estimates of bin contributions, indicating that these bins cannot be well constrained using the available age tracers. The fact that mathematical forms overall perform better than the freeform histogram does not undermine the benefit of the freeform approach, especially for the cases where a larger amount of observed data is available and when the real groundwater distribution is more complex than can be represented by simple mathematical forms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massoudieh, Arash; Visser, Ate; Sharifi, Soroosh
The mixing of groundwaters with different ages in aquifers, groundwater age is more appropriately represented by a distribution rather than a scalar number. To infer a groundwater age distribution from environmental tracers, a mathematical form is often assumed for the shape of the distribution and the parameters of the mathematical distribution are estimated using deterministic or stochastic inverse methods. We found that the prescription of the mathematical form limits the exploration of the age distribution to the shapes that can be described by the selected distribution. In this paper, the use of freeform histograms as groundwater age distributions is evaluated.more » A Bayesian Markov Chain Monte Carlo approach is used to estimate the fraction of groundwater in each histogram bin. This method was able to capture the shape of a hypothetical gamma distribution from the concentrations of four age tracers. The number of bins that can be considered in this approach is limited based on the number of tracers available. The histogram method was also tested on tracer data sets from Holten (The Netherlands; 3H, 3He, 85Kr, 39Ar) and the La Selva Biological Station (Costa-Rica; SF 6, CFCs, 3H, 4He and 14C), and compared to a number of mathematical forms. According to standard Bayesian measures of model goodness, the best mathematical distribution performs better than the histogram distributions in terms of the ability to capture the observed tracer data relative to their complexity. Among the histogram distributions, the four bin histogram performs better in most of the cases. The Monte Carlo simulations showed strong correlations in the posterior estimates of bin contributions, indicating that these bins cannot be well constrained using the available age tracers. The fact that mathematical forms overall perform better than the freeform histogram does not undermine the benefit of the freeform approach, especially for the cases where a larger amount of observed data is available and when the real groundwater distribution is more complex than can be represented by simple mathematical forms.« less
NASA Astrophysics Data System (ADS)
Williams, Christopher J.; Moffitt, Christine M.
2003-03-01
An important emerging issue in fisheries biology is the health of free-ranging populations of fish, particularly with respect to the prevalence of certain pathogens. For many years, pathologists focused on captive populations and interest was in the presence or absence of certain pathogens, so it was economically attractive to test pooled samples of fish. Recently, investigators have begun to study individual fish prevalence from pooled samples. Estimation of disease prevalence from pooled samples is straightforward when assay sensitivity and specificity are perfect, but this assumption is unrealistic. Here we illustrate the use of a Bayesian approach for estimating disease prevalence from pooled samples when sensitivity and specificity are not perfect. We also focus on diagnostic plots to monitor the convergence of the Gibbs-sampling-based Bayesian analysis. The methods are illustrated with a sample data set.
Inferring Fault Frictional and Reservoir Hydraulic Properties From Injection-Induced Seismicity
NASA Astrophysics Data System (ADS)
Jagalur-Mohan, Jayanth; Jha, Birendra; Wang, Zheng; Juanes, Ruben; Marzouk, Youssef
2018-02-01
Characterizing the rheological properties of faults and the evolution of fault friction during seismic slip are fundamental problems in geology and seismology. Recent increases in the frequency of induced earthquakes have intensified the need for robust methods to estimate fault properties. Here we present a novel approach for estimation of aquifer and fault properties, which combines coupled multiphysics simulation of injection-induced seismicity with adaptive surrogate-based Bayesian inversion. In a synthetic 2-D model, we use aquifer pressure, ground displacements, and fault slip measurements during fluid injection to estimate the dynamic fault friction, the critical slip distance, and the aquifer permeability. Our forward model allows us to observe nonmonotonic evolutions of shear traction and slip on the fault resulting from the interplay of several physical mechanisms, including injection-induced aquifer expansion, stress transfer along the fault, and slip-induced stress relaxation. This interplay provides the basis for a successful joint inversion of induced seismicity, yielding well-informed Bayesian posterior distributions of dynamic friction and critical slip. We uncover an inverse relationship between dynamic friction and critical slip distance, which is in agreement with the small dynamic friction and large critical slip reported during seismicity on mature faults.
Anezaki, Katsunori; Nakano, Takeshi; Kashiwagi, Nobuhisa
2016-01-19
Using the chemical balance method, and considering the presence of unidentified sources, we estimated the origins of PCB contamination in surface sediments of Muroran Port, Japan. It was assumed that these PCBs originated from four types of Kanechlor products (KC300, KC400, KC500, and KC600), combustion and two kinds of pigments (azo and phthalocyanine). The characteristics of these congener patterns were summarized on the basis of principal component analysis and explanatory variables determined. A Bayesian semifactor model (CMBK2) was applied to the explanatory variables to analyze the sources of PCBs in the sediments. The resulting estimates of the contribution ratio of each kind of sediment indicate that the existence of unidentified sources can be ignored and that the assumed seven sources are adequate to account for the contamination. Within the port, the contribution ratio of KC500 and KC600 (used as paints for ship hulls) was extremely high, but outside the port, the influence of azo pigments was observable to a limited degree. This indicates that environmental PCBs not derived from technical PCBs are present at levels that cannot be ignored.
Alter, S. Elizabeth; Newsome, Seth D.; Palumbi, Stephen R.
2012-01-01
Commercial whaling decimated many whale populations, including the eastern Pacific gray whale, but little is known about how population dynamics or ecology differed prior to these removals. Of particular interest is the possibility of a large population decline prior to whaling, as such a decline could explain the ∼5-fold difference between genetic estimates of prior abundance and estimates based on historical records. We analyzed genetic (mitochondrial control region) and isotopic information from modern and prehistoric gray whales using serial coalescent simulations and Bayesian skyline analyses to test for a pre-whaling decline and to examine prehistoric genetic diversity, population dynamics and ecology. Simulations demonstrate that significant genetic differences observed between ancient and modern samples could be caused by a large, recent population bottleneck, roughly concurrent with commercial whaling. Stable isotopes show minimal differences between modern and ancient gray whale foraging ecology. Using rejection-based Approximate Bayesian Computation, we estimate the size of the population bottleneck at its minimum abundance and the pre-bottleneck abundance. Our results agree with previous genetic studies suggesting the historical size of the eastern gray whale population was roughly three to five times its current size. PMID:22590499
Spatiotemporal Bayesian analysis of Lyme disease in New York state, 1990-2000.
Chen, Haiyan; Stratton, Howard H; Caraco, Thomas B; White, Dennis J
2006-07-01
Mapping ordinarily increases our understanding of nontrivial spatial and temporal heterogeneities in disease rates. However, the large number of parameters required by the corresponding statistical models often complicates detailed analysis. This study investigates the feasibility of a fully Bayesian hierarchical regression approach to the problem and identifies how it outperforms two more popular methods: crude rate estimates (CRE) and empirical Bayes standardization (EBS). In particular, we apply a fully Bayesian approach to the spatiotemporal analysis of Lyme disease incidence in New York state for the period 1990-2000. These results are compared with those obtained by CRE and EBS in Chen et al. (2005). We show that the fully Bayesian regression model not only gives more reliable estimates of disease rates than the other two approaches but also allows for tractable models that can accommodate more numerous sources of variation and unknown parameters.
Merging Satellite Precipitation Products for Improved Streamflow Simulations
NASA Astrophysics Data System (ADS)
Maggioni, V.; Massari, C.; Barbetta, S.; Camici, S.; Brocca, L.
2017-12-01
Accurate quantitative precipitation estimation is of great importance for water resources management, agricultural planning and forecasting and monitoring of natural hazards such as flash floods and landslides. In situ observations are limited around the Earth, especially in remote areas (e.g., complex terrain, dense vegetation), but currently available satellite precipitation products are able to provide global precipitation estimates with an accuracy that depends upon many factors (e.g., type of storms, temporal sampling, season, etc.). The recent SM2RAIN approach proposes to estimate rainfall by using satellite soil moisture observations. As opposed to traditional satellite precipitation methods, which sense cloud properties to retrieve instantaneous estimates, this new bottom-up approach makes use of two consecutive soil moisture measurements for obtaining an estimate of the fallen precipitation within the interval between two satellite overpasses. As a result, the nature of the measurement is different and complementary to the one of classical precipitation products and could provide a different valid perspective to substitute or improve current rainfall estimates. Therefore, we propose to merge SM2RAIN and the widely used TMPA 3B42RT product across Italy for a 6-year period (2010-2015) at daily/0.25deg temporal/spatial scale. Two conceptually different merging techniques are compared to each other and evaluated in terms of different statistical metrics, including hit bias, threat score, false alarm rates, and missed rainfall volumes. The first is based on the maximization of the temporal correlation with a reference dataset, while the second is based on a Bayesian approach, which provides a probabilistic satellite precipitation estimate derived from the joint probability distribution of observations and satellite estimates. The merged precipitation products show a better performance with respect to the parental satellite-based products in terms of categorical statistics, as well as bias reduction and correlation coefficient, with the Bayesian approach being superior to other methods. A study case in the Tiber river basin is also presented to discuss the performance of forcing a hydrological model with the merged satellite precipitation product to simulate streamflow time series.
A Bayesian Account of Visual-Vestibular Interactions in the Rod-and-Frame Task.
Alberts, Bart B G T; de Brouwer, Anouk J; Selen, Luc P J; Medendorp, W Pieter
2016-01-01
Panoramic visual cues, as generated by the objects in the environment, provide the brain with important information about gravity direction. To derive an optimal, i.e., Bayesian, estimate of gravity direction, the brain must combine panoramic information with gravity information detected by the vestibular system. Here, we examined the individual sensory contributions to this estimate psychometrically. We asked human subjects to judge the orientation (clockwise or counterclockwise relative to gravity) of a briefly flashed luminous rod, presented within an oriented square frame (rod-in-frame). Vestibular contributions were manipulated by tilting the subject's head, whereas visual contributions were manipulated by changing the viewing distance of the rod and frame. Results show a cyclical modulation of the frame-induced bias in perceived verticality across a 90° range of frame orientations. The magnitude of this bias decreased significantly with larger viewing distance, as if visual reliability was reduced. Biases increased significantly when the head was tilted, as if vestibular reliability was reduced. A Bayesian optimal integration model, with distinct vertical and horizontal panoramic weights, a gain factor to allow for visual reliability changes, and ocular counterroll in response to head tilt, provided a good fit to the data. We conclude that subjects flexibly weigh visual panoramic and vestibular information based on their orientation-dependent reliability, resulting in the observed verticality biases and the associated response variabilities.
A Bayesian Account of Visual–Vestibular Interactions in the Rod-and-Frame Task
de Brouwer, Anouk J.; Medendorp, W. Pieter
2016-01-01
Abstract Panoramic visual cues, as generated by the objects in the environment, provide the brain with important information about gravity direction. To derive an optimal, i.e., Bayesian, estimate of gravity direction, the brain must combine panoramic information with gravity information detected by the vestibular system. Here, we examined the individual sensory contributions to this estimate psychometrically. We asked human subjects to judge the orientation (clockwise or counterclockwise relative to gravity) of a briefly flashed luminous rod, presented within an oriented square frame (rod-in-frame). Vestibular contributions were manipulated by tilting the subject’s head, whereas visual contributions were manipulated by changing the viewing distance of the rod and frame. Results show a cyclical modulation of the frame-induced bias in perceived verticality across a 90° range of frame orientations. The magnitude of this bias decreased significantly with larger viewing distance, as if visual reliability was reduced. Biases increased significantly when the head was tilted, as if vestibular reliability was reduced. A Bayesian optimal integration model, with distinct vertical and horizontal panoramic weights, a gain factor to allow for visual reliability changes, and ocular counterroll in response to head tilt, provided a good fit to the data. We conclude that subjects flexibly weigh visual panoramic and vestibular information based on their orientation-dependent reliability, resulting in the observed verticality biases and the associated response variabilities. PMID:27844055
Bayesian data fusion for spatial prediction of categorical variables in environmental sciences
NASA Astrophysics Data System (ADS)
Gengler, Sarah; Bogaert, Patrick
2014-12-01
First developed to predict continuous variables, Bayesian Maximum Entropy (BME) has become a complete framework in the context of space-time prediction since it has been extended to predict categorical variables and mixed random fields. This method proposes solutions to combine several sources of data whatever the nature of the information. However, the various attempts that were made for adapting the BME methodology to categorical variables and mixed random fields faced some limitations, as a high computational burden. The main objective of this paper is to overcome this limitation by generalizing the Bayesian Data Fusion (BDF) theoretical framework to categorical variables, which is somehow a simplification of the BME method through the convenient conditional independence hypothesis. The BDF methodology for categorical variables is first described and then applied to a practical case study: the estimation of soil drainage classes using a soil map and point observations in the sandy area of Flanders around the city of Mechelen (Belgium). The BDF approach is compared to BME along with more classical approaches, as Indicator CoKringing (ICK) and logistic regression. Estimators are compared using various indicators, namely the Percentage of Correctly Classified locations (PCC) and the Average Highest Probability (AHP). Although BDF methodology for categorical variables is somehow a simplification of BME approach, both methods lead to similar results and have strong advantages compared to ICK and logistic regression.
Gasbarra, Dario; Arjas, Elja; Vehtari, Aki; Slama, Rémy; Keiding, Niels
2015-10-01
This paper was inspired by the studies of Niels Keiding and co-authors on estimating the waiting time-to-pregnancy (TTP) distribution, and in particular on using the current duration design in that context. In this design, a cross-sectional sample of women is collected from those who are currently attempting to become pregnant, and then by recording from each the time she has been attempting. Our aim here is to study the identifiability and the estimation of the waiting time distribution on the basis of current duration data. The main difficulty in this stems from the fact that very short waiting times are only rarely selected into the sample of current durations, and this renders their estimation unstable. We introduce here a Bayesian method for this estimation problem, prove its asymptotic consistency, and compare the method to some variants of the non-parametric maximum likelihood estimators, which have been used previously in this context. The properties of the Bayesian estimation method are studied also empirically, using both simulated data and TTP data on current durations collected by Slama et al. (Hum Reprod 27(5):1489-1498, 2012).
Estimation model of life insurance claims risk for cancer patients by using Bayesian method
NASA Astrophysics Data System (ADS)
Sukono; Suyudi, M.; Islamiyati, F.; Supian, S.
2017-01-01
This paper discussed the estimation model of the risk of life insurance claims for cancer patients using Bayesian method. To estimate the risk of the claim, the insurance participant data is grouped into two: the number of policies issued and the number of claims incurred. Model estimation is done using a Bayesian approach method. Further, the estimator model was used to estimate the risk value of life insurance claims each age group for each sex. The estimation results indicate that a large risk premium for insured males aged less than 30 years is 0.85; for ages 30 to 40 years is 3:58; for ages 41 to 50 years is 1.71; for ages 51 to 60 years is 2.96; and for those aged over 60 years is 7.82. Meanwhile, for insured women aged less than 30 years was 0:56; for ages 30 to 40 years is 3:21; for ages 41 to 50 years is 0.65; for ages 51 to 60 years is 3:12; and for those aged over 60 years is 9.99. This study is useful in determining the risk premium in homogeneous groups based on gender and age.
Funamizu, Akihiro; Ito, Makoto; Doya, Kenji; Kanzaki, Ryohei; Takahashi, Hirokazu
2012-01-01
The estimation of reward outcomes for action candidates is essential for decision making. In this study, we examined whether and how the uncertainty in reward outcome estimation affects the action choice and learning rate. We designed a choice task in which rats selected either the left-poking or right-poking hole and received a reward of a food pellet stochastically. The reward probabilities of the left and right holes were chosen from six settings (high, 100% vs. 66%; mid, 66% vs. 33%; low, 33% vs. 0% for the left vs. right holes, and the opposites) in every 20–549 trials. We used Bayesian Q-learning models to estimate the time course of the probability distribution of action values and tested if they better explain the behaviors of rats than standard Q-learning models that estimate only the mean of action values. Model comparison by cross-validation revealed that a Bayesian Q-learning model with an asymmetric update for reward and non-reward outcomes fit the choice time course of the rats best. In the action-choice equation of the Bayesian Q-learning model, the estimated coefficient for the variance of action value was positive, meaning that rats were uncertainty seeking. Further analysis of the Bayesian Q-learning model suggested that the uncertainty facilitated the effective learning rate. These results suggest that the rats consider uncertainty in action-value estimation and that they have an uncertainty-seeking action policy and uncertainty-dependent modulation of the effective learning rate. PMID:22487046
Reconciling differences in stratospheric ozone composites
NASA Astrophysics Data System (ADS)
Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Rozanov, Eugene V.; Tummon, Fiona; Haigh, Joanna D.
2017-10-01
Observations of stratospheric ozone from multiple instruments now span three decades; combining these into composite datasets allows long-term ozone trends to be estimated. Recently, several ozone composites have been published, but trends disagree by latitude and altitude, even between composites built upon the same instrument data. We confirm that the main causes of differences in decadal trend estimates lie in (i) steps in the composite time series when the instrument source data changes and (ii) artificial sub-decadal trends in the underlying instrument data. These artefacts introduce features that can alias with regressors in multiple linear regression (MLR) analysis; both can lead to inaccurate trend estimates. Here, we aim to remove these artefacts using Bayesian methods to infer the underlying ozone time series from a set of composites by building a joint-likelihood function using a Gaussian-mixture density to model outliers introduced by data artefacts, together with a data-driven prior on ozone variability that incorporates knowledge of problems during instrument operation. We apply this Bayesian self-calibration approach to stratospheric ozone in 10° bands from 60° S to 60° N and from 46 to 1 hPa (˜ 21-48 km) for 1985-2012. There are two main outcomes: (i) we independently identify and confirm many of the data problems previously identified, but which remain unaccounted for in existing composites; (ii) we construct an ozone composite, with uncertainties, that is free from most of these problems - we call this the BAyeSian Integrated and Consolidated (BASIC) composite. To analyse the new BASIC composite, we use dynamical linear modelling (DLM), which provides a more robust estimate of long-term changes through Bayesian inference than MLR. BASIC and DLM, together, provide a step forward in improving estimates of decadal trends. Our results indicate a significant recovery of ozone since 1998 in the upper stratosphere, of both northern and southern midlatitudes, in all four composites analysed, and particularly in the BASIC composite. The BASIC results also show no hemispheric difference in the recovery at midlatitudes, in contrast to an apparent feature that is present, but not consistent, in the four composites. Our overall conclusion is that it is possible to effectively combine different ozone composites and account for artefacts and drifts, and that this leads to a clear and significant result that upper stratospheric ozone levels have increased since 1998, following an earlier decline.
BATSE gamma-ray burst line search. 2: Bayesian consistency methodology
NASA Technical Reports Server (NTRS)
Band, D. L.; Ford, L. A.; Matteson, J. L.; Briggs, M.; Paciesas, W.; Pendleton, G.; Preece, R.; Palmer, D.; Teegarden, B.; Schaefer, B.
1994-01-01
We describe a Bayesian methodology to evaluate the consistency between the reported Ginga and Burst and Transient Source Experiment (BATSE) detections of absorption features in gamma-ray burst spectra. Currently no features have been detected by BATSE, but this methodology will still be applicable if and when such features are discovered. The Bayesian methodology permits the comparison of hypotheses regarding the two detectors' observations and makes explicit the subjective aspects of our analysis (e.g., the quantification of our confidence in detector performance). We also present non-Bayesian consistency statistics. Based on preliminary calculations of line detectability, we find that both the Bayesian and non-Bayesian techniques show that the BATSE and Ginga observations are consistent given our understanding of these detectors.
A Bayesian Approach for Population Pharmacokinetic Modeling of Alcohol in Japanese Individuals.
Nemoto, Asuka; Masaaki, Matsuura; Yamaoka, Kazue
2017-01-01
Blood alcohol concentration data that were previously obtained from 34 healthy Japanese subjects with limited sampling times were reanalyzed. Characteristics of the data were that the concentrations were obtained from only the early part of the time-concentration curve. To explore significant covariates for the population pharmacokinetic analysis of alcohol by incorporating external data using a Bayesian method, and to estimate effects of the covariates. The data were analyzed using a Markov chain Monte Carlo Bayesian estimation with NONMEM 7.3 (ICON Clinical Research LLC, North Wales, Pennsylvania). Informative priors were obtained from the external study. A 1-compartment model with Michaelis-Menten elimination was used. The typical value for the apparent volume of distribution was 49.3 L at the age of 29.4 years. Volume of distribution was estimated to be 20.4 L smaller in subjects with the ALDH2*1/*2 genotype than in subjects with the ALDH2*1/*1 genotype. A population pharmacokinetic model for alcohol was updated. A Bayesian approach allowed interpretation of significant covariate relationships, even if the current dataset is not informative about all parameters. This is the first study reporting an estimate of the effect of the ALDH2 genotype in a PPK model.
Statistical approaches to lifetime measurements with restricted observation times
NASA Astrophysics Data System (ADS)
Chen, X. C.; Zeng, Q.; Litvinov, Yu. A.; Tu, X. L.; Walker, P. M.; Wang, M.; Wang, Q.; Yue, K.; Zhang, Y. H.
2017-09-01
Two generic methods based on frequentism and Bayesianism are presented in this work aiming to adequately estimate decay lifetimes from measured data, while accounting for restricted observation times in the measurements. All the experimental scenarios that can possibly arise from the observation constraints are treated systematically and formulas are derived. The methods are then tested against the decay data of bare isomeric 44+94mRu, which were measured using isochronous mass spectrometry with a timing detector at the CSRe in Lanzhou, China. Applying both methods in three distinct scenarios yields six different but consistent lifetime estimates. The deduced values are all in good agreement with a prediction based on the neutral-atom value modified to take the absence of internal conversion into account. Potential applications of such methods are discussed.
Stoffenmanager exposure model: company-specific exposure assessments using a Bayesian methodology.
van de Ven, Peter; Fransman, Wouter; Schinkel, Jody; Rubingh, Carina; Warren, Nicholas; Tielemans, Erik
2010-04-01
The web-based tool "Stoffenmanager" was initially developed to assist small- and medium-sized enterprises in the Netherlands to make qualitative risk assessments and to provide advice on control at the workplace. The tool uses a mechanistic model to arrive at a "Stoffenmanager score" for exposure. In a recent study it was shown that variability in exposure measurements given a certain Stoffenmanager score is still substantial. This article discusses an extension to the tool that uses a Bayesian methodology for quantitative workplace/scenario-specific exposure assessment. This methodology allows for real exposure data observed in the company of interest to be combined with the prior estimate (based on the Stoffenmanager model). The output of the tool is a company-specific assessment of exposure levels for a scenario for which data is available. The Bayesian approach provides a transparent way of synthesizing different types of information and is especially preferred in situations where available data is sparse, as is often the case in small- and medium sized-enterprises. Real-world examples as well as simulation studies were used to assess how different parameters such as sample size, difference between prior and data, uncertainty in prior, and variance in the data affect the eventual posterior distribution of a Bayesian exposure assessment.
NASA Astrophysics Data System (ADS)
Scharnagl, B.; Vrugt, J. A.; Vereecken, H.; Herbst, M.
2010-02-01
A major drawback of current soil organic carbon (SOC) models is that their conceptually defined pools do not necessarily correspond to measurable SOC fractions in real practice. This not only impairs our ability to rigorously evaluate SOC models but also makes it difficult to derive accurate initial states of the individual carbon pools. In this study, we tested the feasibility of inverse modelling for estimating pools in the Rothamsted carbon model (ROTHC) using mineralization rates observed during incubation experiments. This inverse approach may provide an alternative to existing SOC fractionation methods. To illustrate our approach, we used a time series of synthetically generated mineralization rates using the ROTHC model. We adopted a Bayesian approach using the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm to infer probability density functions of the various carbon pools at the start of incubation. The Kullback-Leibler divergence was used to quantify the information content of the mineralization rate data. Our results indicate that measured mineralization rates generally provided sufficient information to reliably estimate all carbon pools in the ROTHC model. The incubation time necessary to appropriately constrain all pools was about 900 days. The use of prior information on microbial biomass carbon significantly reduced the uncertainty of the initial carbon pools, decreasing the required incubation time to about 600 days. Simultaneous estimation of initial carbon pools and decomposition rate constants significantly increased the uncertainty of the carbon pools. This effect was most pronounced for the intermediate and slow pools. Altogether, our results demonstrate that it is particularly difficult to derive reasonable estimates of the humified organic matter pool and the inert organic matter pool from inverse modelling of mineralization rates observed during incubation experiments.
Fernandes, Ricardo; Grootes, Pieter; Nadeau, Marie-Josée; Nehlich, Olaf
2015-07-14
The island cemetery site of Ostorf (Germany) consists of individual human graves containing Funnel Beaker ceramics dating to the Early or Middle Neolithic. However, previous isotope and radiocarbon analysis demonstrated that the Ostorf individuals had a diet rich in freshwater fish. The present study was undertaken to quantitatively reconstruct the diet of the Ostorf population and establish if dietary habits are consistent with the traditional characterization of a Neolithic diet. Quantitative diet reconstruction was achieved through a novel approach consisting of the use of the Bayesian mixing model Food Reconstruction Using Isotopic Transferred Signals (FRUITS) to model isotope measurements from multiple dietary proxies (δ 13 C collagen , δ 15 N collagen , δ 13 C bioapatite , δ 34 S methione , 14 C collagen ). The accuracy of model estimates was verified by comparing the agreement between observed and estimated human dietary radiocarbon reservoir effects. Quantitative diet reconstruction estimates confirm that the Ostorf individuals had a high protein intake due to the consumption of fish and terrestrial animal products. However, FRUITS estimates also show that plant foods represented a significant source of calories. Observed and estimated human dietary radiocarbon reservoir effects are in good agreement provided that the aquatic reservoir effect at Lake Ostorf is taken as reference. The Ostorf population apparently adopted elements associated with a Neolithic culture but adapted to available local food resources and implemented a subsistence strategy that involved a large proportion of fish and terrestrial meat consumption. This case study exemplifies the diversity of subsistence strategies followed during the Neolithic. Am J Phys Anthropol, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Bayesian network learning for natural hazard assessments
NASA Astrophysics Data System (ADS)
Vogel, Kristin
2016-04-01
Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables and incomplete observations. Further studies rise the challenge of relying on very small data sets. Since parameter estimates for complex models based on few observations are unreliable, it is necessary to focus on simplified, yet still meaningful models. A so called Markov Blanket approach is developed to identify the most relevant model components and to construct a simple Bayesian network based on those findings. Since the proceeding is completely data driven, it can easily be transferred to various applications in natural hazard domains. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training programme GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at Potsdam University.
Marchetta, Claire M; Devine, Owen J; Crider, Krista S; Tsang, Becky L; Cordero, Amy M; Qi, Yan Ping; Guo, Jing; Berry, Robert J; Rosenthal, Jorge; Mulinare, Joseph; Mersereau, Patricia; Hamner, Heather C
2015-04-10
Folate is found naturally in foods or as synthetic folic acid in dietary supplements and fortified foods. Adequate periconceptional folic acid intake can prevent neural tube defects. Folate intake impacts blood folate concentration; however, the dose-response between natural food folate and blood folate concentrations has not been well described. We estimated this association among healthy females. A systematic literature review identified studies (1 1992-3 2014) with both natural food folate intake alone and blood folate concentration among females aged 12-49 years. Bayesian methods were used to estimate regression model parameters describing the association between natural food folate intake and subsequent blood folate concentration. Seven controlled trials and 29 observational studies met the inclusion criteria. For the six studies using microbiologic assay (MA) included in the meta-analysis, we estimate that a 6% (95% Credible Interval (CrI): 4%, 9%) increase in red blood cell (RBC) folate concentration and a 7% (95% CrI: 1%, 12%) increase in serum/plasma folate concentration can occur for every 10% increase in natural food folate intake. Using modeled results, we estimate that a natural food folate intake of ≥ 450 μg dietary folate equivalents (DFE)/day could achieve the lower bound of an RBC folate concentration (~ 1050 nmol/L) associated with the lowest risk of a neural tube defect. Natural food folate intake affects blood folate concentration and adequate intakes could help women achieve a RBC folate concentration associated with a risk of 6 neural tube defects/10,000 live births.
Bayesian molecular dating: opening up the black box.
Bromham, Lindell; Duchêne, Sebastián; Hua, Xia; Ritchie, Andrew M; Duchêne, David A; Ho, Simon Y W
2018-05-01
Molecular dating analyses allow evolutionary timescales to be estimated from genetic data, offering an unprecedented capacity for investigating the evolutionary past of all species. These methods require us to make assumptions about the relationship between genetic change and evolutionary time, often referred to as a 'molecular clock'. Although initially regarded with scepticism, molecular dating has now been adopted in many areas of biology. This broad uptake has been due partly to the development of Bayesian methods that allow complex aspects of molecular evolution, such as variation in rates of change across lineages, to be taken into account. But in order to do this, Bayesian dating methods rely on a range of assumptions about the evolutionary process, which vary in their degree of biological realism and empirical support. These assumptions can have substantial impacts on the estimates produced by molecular dating analyses. The aim of this review is to open the 'black box' of Bayesian molecular dating and have a look at the machinery inside. We explain the components of these dating methods, the important decisions that researchers must make in their analyses, and the factors that need to be considered when interpreting results. We illustrate the effects that the choices of different models and priors can have on the outcome of the analysis, and suggest ways to explore these impacts. We describe some major research directions that may improve the reliability of Bayesian dating. The goal of our review is to help researchers to make informed choices when using Bayesian phylogenetic methods to estimate evolutionary rates and timescales. © 2017 Cambridge Philosophical Society.
Bayesian Correlation Analysis for Sequence Count Data
Lau, Nelson; Perkins, Theodore J.
2016-01-01
Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities’ measurements based on high-throughput sequencing data. These entities could be different genes or miRNAs whose expression is measured by RNA-seq, different transcription factors or histone marks whose expression is measured by ChIP-seq, or even combinations of different types of entities. Our Bayesian formulation accounts for both measured signal levels and uncertainty in those levels, due to varying sequencing depth in different experiments and to varying absolute levels of individual entities, both of which affect the precision of the measurements. In comparison with a traditional Pearson correlation analysis, we show that our Bayesian correlation analysis retains high correlations when measurement confidence is high, but suppresses correlations when measurement confidence is low—especially for entities with low signal levels. In addition, we consider the influence of priors on the Bayesian correlation estimate. Perhaps surprisingly, we show that naive, uniform priors on entities’ signal levels can lead to highly biased correlation estimates, particularly when different experiments have widely varying sequencing depths. However, we propose two alternative priors that provably mitigate this problem. We also prove that, like traditional Pearson correlation, our Bayesian correlation calculation constitutes a kernel in the machine learning sense, and thus can be used as a similarity measure in any kernel-based machine learning algorithm. We demonstrate our approach on two RNA-seq datasets and one miRNA-seq dataset. PMID:27701449
Yen, A M-F; Liou, H-H; Lin, H-L; Chen, T H-H
2006-01-01
The study aimed to develop a predictive model to deal with data fraught with heterogeneity that cannot be explained by sampling variation or measured covariates. The random-effect Poisson regression model was first proposed to deal with over-dispersion for data fraught with heterogeneity after making allowance for measured covariates. Bayesian acyclic graphic model in conjunction with Markov Chain Monte Carlo (MCMC) technique was then applied to estimate the parameters of both relevant covariates and random effect. Predictive distribution was then generated to compare the predicted with the observed for the Bayesian model with and without random effect. Data from repeated measurement of episodes among 44 patients with intractable epilepsy were used as an illustration. The application of Poisson regression without taking heterogeneity into account to epilepsy data yielded a large value of heterogeneity (heterogeneity factor = 17.90, deviance = 1485, degree of freedom (df) = 83). After taking the random effect into account, the value of heterogeneity factor was greatly reduced (heterogeneity factor = 0.52, deviance = 42.5, df = 81). The Pearson chi2 for the comparison between the expected seizure frequencies and the observed ones at two and three months of the model with and without random effect were 34.27 (p = 1.00) and 1799.90 (p < 0.0001), respectively. The Bayesian acyclic model using the MCMC method was demonstrated to have great potential for disease prediction while data show over-dispersion attributed either to correlated property or to subject-to-subject variability.
Bayesian relaxed clock estimation of divergence times in foraminifera.
Groussin, Mathieu; Pawlowski, Jan; Yang, Ziheng
2011-10-01
Accurate and precise estimation of divergence times during the Neo-Proterozoic is necessary to understand the speciation dynamic of early Eukaryotes. However such deep divergences are difficult to date, as the molecular clock is seriously violated. Recent improvements in Bayesian molecular dating techniques allow the relaxation of the molecular clock hypothesis as well as incorporation of multiple and flexible fossil calibrations. Divergence times can then be estimated even when the evolutionary rate varies among lineages and even when the fossil calibrations involve substantial uncertainties. In this paper, we used a Bayesian method to estimate divergence times in Foraminifera, a group of unicellular eukaryotes, known for their excellent fossil record but also for the high evolutionary rates of their genomes. Based on multigene data we reconstructed the phylogeny of Foraminifera and dated their origin and the major radiation events. Our estimates suggest that Foraminifera emerged during the Cryogenian (650-920 Ma, Neo-Proterozoic), with a mean time around 770 Ma, about 220 Myr before the first appearance of reliable foraminiferal fossils in sediments (545 Ma). Most dates are in agreement with the fossil record, but in general our results suggest earlier origins of foraminiferal orders. We found that the posterior time estimates were robust to specifications of the prior. Our results highlight inter-species variations of evolutionary rates in Foraminifera. Their effect was partially overcome by using the partitioned Bayesian analysis to accommodate rate heterogeneity among data partitions and using the relaxed molecular clock to account for changing evolutionary rates. However, more coding genes appear necessary to obtain more precise estimates of divergence times and to resolve the conflicts between fossil and molecular date estimates. Copyright © 2011 Elsevier Inc. All rights reserved.
Fancher, Chris M.; Han, Zhen; Levin, Igor; Page, Katharine; Reich, Brian J.; Smith, Ralph C.; Wilson, Alyson G.; Jones, Jacob L.
2016-01-01
A Bayesian inference method for refining crystallographic structures is presented. The distribution of model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability distributions are constructed for all model parameters to properly quantify uncertainty by appropriately modeling the heteroskedasticity and correlation of the error structure. The proposed method is demonstrated by analyzing a National Institute of Standards and Technology silicon standard reference material. The results obtained by Bayesian inference are compared with those determined by Rietveld refinement. Posterior probability distributions of model parameters provide both estimates and uncertainties. The new method better estimates the true uncertainties in the model as compared to the Rietveld method. PMID:27550221
An introduction to using Bayesian linear regression with clinical data.
Baldwin, Scott A; Larson, Michael J
2017-11-01
Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to standard frequentist methods. This article provides researchers with an introduction to fundamental ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to illustrate Bayesian models. Specifically, the models examine the relationship between error-related negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered include: how to set up a regression model in a Bayesian framework, specifying priors, examining convergence of the model, visualizing and interpreting posterior distributions, interval estimates, expected and predicted values, and model comparison tools. We also discuss situations where Bayesian methods can outperform frequentist methods as well has how to specify more complicated regression models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian methods in their own research. We provide data and R code for replicating our analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spatial Modelling of Soil-Transmitted Helminth Infections in Kenya: A Disease Control Planning Tool
Pullan, Rachel L.; Gething, Peter W.; Smith, Jennifer L.; Mwandawiro, Charles S.; Sturrock, Hugh J. W.; Gitonga, Caroline W.; Hay, Simon I.; Brooker, Simon
2011-01-01
Background Implementation of control of parasitic diseases requires accurate, contemporary maps that provide intervention recommendations at policy-relevant spatial scales. To guide control of soil transmitted helminths (STHs), maps are required of the combined prevalence of infection, indicating where this prevalence exceeds an intervention threshold of 20%. Here we present a new approach for mapping the observed prevalence of STHs, using the example of Kenya in 2009. Methods and Findings Observed prevalence data for hookworm, Ascaris lumbricoides and Trichuris trichiura were assembled for 106,370 individuals from 945 cross-sectional surveys undertaken between 1974 and 2009. Ecological and climatic covariates were extracted from high-resolution satellite data and matched to survey locations. Bayesian space-time geostatistical models were developed for each species, and were used to interpolate the probability that infection prevalence exceeded the 20% threshold across the country for both 1989 and 2009. Maps for each species were integrated to estimate combined STH prevalence using the law of total probability and incorporating a correction factor to adjust for associations between species. Population census data were combined with risk models and projected to estimate the population at risk and requiring treatment in 2009. In most areas for 2009, there was high certainty that endemicity was below the 20% threshold, with areas of endemicity ≥20% located around the shores of Lake Victoria and on the coast. Comparison of the predicted distributions for 1989 and 2009 show how observed STH prevalence has gradually decreased over time. The model estimated that a total of 2.8 million school-age children live in districts which warrant mass treatment. Conclusions Bayesian space-time geostatistical models can be used to reliably estimate the combined observed prevalence of STH and suggest that a quarter of Kenya's school-aged children live in areas of high prevalence and warrant mass treatment. As control is successful in reducing infection levels, updated models can be used to refine decision making in helminth control. PMID:21347451
Bayesian approach to inverse statistical mechanics.
Habeck, Michael
2014-05-01
Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.
Bayesian approach to inverse statistical mechanics
NASA Astrophysics Data System (ADS)
Habeck, Michael
2014-05-01
Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.
Classical and Bayesian Seismic Yield Estimation: The 1998 Indian and Pakistani Tests
NASA Astrophysics Data System (ADS)
Shumway, R. H.
2001-10-01
- The nuclear tests in May, 1998, in India and Pakistan have stimulated a renewed interest in yield estimation, based on limited data from uncalibrated test sites. We study here the problem of estimating yields using classical and Bayesian methods developed by Shumway (1992), utilizing calibration data from the Semipalatinsk test site and measured magnitudes for the 1998 Indian and Pakistani tests given by Murphy (1998). Calibration is done using multivariate classical or Bayesian linear regression, depending on the availability of measured magnitude-yield data and prior information. Confidence intervals for the classical approach are derived applying an extension of Fieller's method suggested by Brown (1982). In the case where prior information is available, the posterior predictive magnitude densities are inverted to give posterior intervals for yield. Intervals obtained using the joint distribution of magnitudes are comparable to the single-magnitude estimates produced by Murphy (1998) and reinforce the conclusion that the announced yields of the Indian and Pakistani tests were too high.
Classical and Bayesian Seismic Yield Estimation: The 1998 Indian and Pakistani Tests
NASA Astrophysics Data System (ADS)
Shumway, R. H.
The nuclear tests in May, 1998, in India and Pakistan have stimulated a renewed interest in yield estimation, based on limited data from uncalibrated test sites. We study here the problem of estimating yields using classical and Bayesian methods developed by Shumway (1992), utilizing calibration data from the Semipalatinsk test site and measured magnitudes for the 1998 Indian and Pakistani tests given by Murphy (1998). Calibration is done using multivariate classical or Bayesian linear regression, depending on the availability of measured magnitude-yield data and prior information. Confidence intervals for the classical approach are derived applying an extension of Fieller's method suggested by Brown (1982). In the case where prior information is available, the posterior predictive magnitude densities are inverted to give posterior intervals for yield. Intervals obtained using the joint distribution of magnitudes are comparable to the single-magnitude estimates produced by Murphy (1998) and reinforce the conclusion that the announced yields of the Indian and Pakistani tests were too high.
Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures
Moore, Brian R.; Höhna, Sebastian; May, Michael R.; Rannala, Bruce; Huelsenbeck, John P.
2016-01-01
Bayesian analysis of macroevolutionary mixtures (BAMM) has recently taken the study of lineage diversification by storm. BAMM estimates the diversification-rate parameters (speciation and extinction) for every branch of a study phylogeny and infers the number and location of diversification-rate shifts across branches of a tree. Our evaluation of BAMM reveals two major theoretical errors: (i) the likelihood function (which estimates the model parameters from the data) is incorrect, and (ii) the compound Poisson process prior model (which describes the prior distribution of diversification-rate shifts across branches) is incoherent. Using simulation, we demonstrate that these theoretical issues cause statistical pathologies; posterior estimates of the number of diversification-rate shifts are strongly influenced by the assumed prior, and estimates of diversification-rate parameters are unreliable. Moreover, the inability to correctly compute the likelihood or to correctly specify the prior for rate-variable trees precludes the use of Bayesian approaches for testing hypotheses regarding the number and location of diversification-rate shifts using BAMM. PMID:27512038
Dommert, M; Reginatto, M; Zboril, M; Fiedler, F; Helmbrecht, S; Enghardt, W; Lutz, B
2017-11-28
Bonner sphere measurements are typically analyzed using unfolding codes. It is well known that it is difficult to get reliable estimates of uncertainties for standard unfolding procedures. An alternative approach is to analyze the data using Bayesian parameter estimation. This method provides reliable estimates of the uncertainties of neutron spectra leading to rigorous estimates of uncertainties of the dose. We extend previous Bayesian approaches and apply the method to stray neutrons in proton therapy environments by introducing a new parameterized model which describes the main features of the expected neutron spectra. The parameterization is based on information that is available from measurements and detailed Monte Carlo simulations. The validity of this approach has been validated with results of an experiment using Bonner spheres carried out at the experimental hall of the OncoRay proton therapy facility in Dresden. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mean Field Variational Bayesian Data Assimilation
NASA Astrophysics Data System (ADS)
Vrettas, M.; Cornford, D.; Opper, M.
2012-04-01
Current data assimilation schemes propose a range of approximate solutions to the classical data assimilation problem, particularly state estimation. Broadly there are three main active research areas: ensemble Kalman filter methods which rely on statistical linearization of the model evolution equations, particle filters which provide a discrete point representation of the posterior filtering or smoothing distribution and 4DVAR methods which seek the most likely posterior smoothing solution. In this paper we present a recent extension to our variational Bayesian algorithm which seeks the most probably posterior distribution over the states, within the family of non-stationary Gaussian processes. Our original work on variational Bayesian approaches to data assimilation sought the best approximating time varying Gaussian process to the posterior smoothing distribution for stochastic dynamical systems. This approach was based on minimising the Kullback-Leibler divergence between the true posterior over paths, and our Gaussian process approximation. So long as the observation density was sufficiently high to bring the posterior smoothing density close to Gaussian the algorithm proved very effective, on lower dimensional systems. However for higher dimensional systems, the algorithm was computationally very demanding. We have been developing a mean field version of the algorithm which treats the state variables at a given time as being independent in the posterior approximation, but still accounts for their relationships between each other in the mean solution arising from the original dynamical system. In this work we present the new mean field variational Bayesian approach, illustrating its performance on a range of classical data assimilation problems. We discuss the potential and limitations of the new approach. We emphasise that the variational Bayesian approach we adopt, in contrast to other variational approaches, provides a bound on the marginal likelihood of the observations given parameters in the model which also allows inference of parameters such as observation errors, and parameters in the model and model error representation, particularly if this is written as a deterministic form with small additive noise. We stress that our approach can address very long time window and weak constraint settings. However like traditional variational approaches our Bayesian variational method has the benefit of being posed as an optimisation problem. We finish with a sketch of the future directions for our approach.
On the predictive information criteria for model determination in seismic hazard analysis
NASA Astrophysics Data System (ADS)
Varini, Elisa; Rotondi, Renata
2016-04-01
Many statistical tools have been developed for evaluating, understanding, and comparing models, from both frequentist and Bayesian perspectives. In particular, the problem of model selection can be addressed according to whether the primary goal is explanation or, alternatively, prediction. In the former case, the criteria for model selection are defined over the parameter space whose physical interpretation can be difficult; in the latter case, they are defined over the space of the observations, which has a more direct physical meaning. In the frequentist approaches, model selection is generally based on an asymptotic approximation which may be poor for small data sets (e.g. the F-test, the Kolmogorov-Smirnov test, etc.); moreover, these methods often apply under specific assumptions on models (e.g. models have to be nested in the likelihood ratio test). In the Bayesian context, among the criteria for explanation, the ratio of the observed marginal densities for two competing models, named Bayes Factor (BF), is commonly used for both model choice and model averaging (Kass and Raftery, J. Am. Stat. Ass., 1995). But BF does not apply to improper priors and, even when the prior is proper, it is not robust to the specification of the prior. These limitations can be extended to two famous penalized likelihood methods as the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), since they are proved to be approximations of -2log BF . In the perspective that a model is as good as its predictions, the predictive information criteria aim at evaluating the predictive accuracy of Bayesian models or, in other words, at estimating expected out-of-sample prediction error using a bias-correction adjustment of within-sample error (Gelman et al., Stat. Comput., 2014). In particular, the Watanabe criterion is fully Bayesian because it averages the predictive distribution over the posterior distribution of parameters rather than conditioning on a point estimate, but it is hardly applicable to data which are not independent given parameters (Watanabe, J. Mach. Learn. Res., 2010). A solution is given by Ando and Tsay criterion where the joint density may be decomposed into the product of the conditional densities (Ando and Tsay, Int. J. Forecast., 2010). The above mentioned criteria are global summary measures of model performance, but more detailed analysis could be required to discover the reasons for poor global performance. In this latter case, a retrospective predictive analysis is performed on each individual observation. In this study we performed the Bayesian analysis of Italian data sets by four versions of a long-term hazard model known as the stress release model (Vere-Jones, J. Physics Earth, 1978; Bebbington and Harte, Geophys. J. Int., 2003; Varini and Rotondi, Environ. Ecol. Stat., 2015). Then we illustrate the results on their performance evaluated by Bayes Factor, predictive information criteria and retrospective predictive analysis.
Nowakowska, Marzena
2017-04-01
The development of the Bayesian logistic regression model classifying the road accident severity is discussed. The already exploited informative priors (method of moments, maximum likelihood estimation, and two-stage Bayesian updating), along with the original idea of a Boot prior proposal, are investigated when no expert opinion has been available. In addition, two possible approaches to updating the priors, in the form of unbalanced and balanced training data sets, are presented. The obtained logistic Bayesian models are assessed on the basis of a deviance information criterion (DIC), highest probability density (HPD) intervals, and coefficients of variation estimated for the model parameters. The verification of the model accuracy has been based on sensitivity, specificity and the harmonic mean of sensitivity and specificity, all calculated from a test data set. The models obtained from the balanced training data set have a better classification quality than the ones obtained from the unbalanced training data set. The two-stage Bayesian updating prior model and the Boot prior model, both identified with the use of the balanced training data set, outperform the non-informative, method of moments, and maximum likelihood estimation prior models. It is important to note that one should be careful when interpreting the parameters since different priors can lead to different models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bayesian multimodel inference for dose-response studies
Link, W.A.; Albers, P.H.
2007-01-01
Statistical inference in dose?response studies is model-based: The analyst posits a mathematical model of the relation between exposure and response, estimates parameters of the model, and reports conclusions conditional on the model. Such analyses rarely include any accounting for the uncertainties associated with model selection. The Bayesian inferential system provides a convenient framework for model selection and multimodel inference. In this paper we briefly describe the Bayesian paradigm and Bayesian multimodel inference. We then present a family of models for multinomial dose?response data and apply Bayesian multimodel inferential methods to the analysis of data on the reproductive success of American kestrels (Falco sparveriuss) exposed to various sublethal dietary concentrations of methylmercury.
Servanty, Sabrina; Converse, Sarah J.; Bailey, Larissa L.
2014-01-01
The reintroduction of threatened and endangered species is now a common method for reestablishing populations. Typically, a fundamental objective of reintroduction is to establish a self-sustaining population. Estimation of demographic parameters in reintroduced populations is critical, as these estimates serve multiple purposes. First, they support evaluation of progress toward the fundamental objective via construction of population viability analyses (PVAs) to predict metrics such as probability of persistence. Second, PVAs can be expanded to support evaluation of management actions, via management modeling. Third, the estimates themselves can support evaluation of the demographic performance of the reintroduced population, e.g., via comparison with wild populations. For each of these purposes, thorough treatment of uncertainties in the estimates is critical. Recently developed statistical methods - namely, hierarchical Bayesian implementations of state-space models - allow for effective integration of different types of uncertainty in estimation. We undertook a demographic estimation effort for a reintroduced population of endangered whooping cranes with the purpose of ultimately developing a Bayesian PVA for determining progress toward establishing a self-sustaining population, and for evaluating potential management actions via a Bayesian PVA-based management model. We evaluated individual and temporal variation in demographic parameters based upon a multi-state mark-recapture model. We found that survival was relatively high across time and varied little by sex. There was some indication that survival varied by release method. Survival was similar to that observed in the wild population. Although overall reproduction in this reintroduced population is poor, birds formed social pairs when relatively young, and once a bird was in a social pair, it had a nearly 50% chance of nesting the following breeding season. Also, once a bird had nested, it had a high probability of nesting again. These results are encouraging considering that survival and reproduction have been major challenges in past reintroductions of this species. The demographic estimates developed will support construction of a management model designed to facilitate exploration of management actions of interest, and will provide critical guidance in future planning for this reintroduction. An approach similar to what we describe could be usefully applied to many reintroduced populations.
Park, Subok; Clarkson, Eric
2010-01-01
The Bayesian ideal observer is optimal among all observers and sets an absolute upper bound for the performance of any observer in classification tasks [Van Trees, Detection, Estimation, and Modulation Theory, Part I (Academic, 1968).]. Therefore, the ideal observer should be used for objective image quality assessment whenever possible. However, computation of ideal-observer performance is difficult in practice because this observer requires the full description of unknown, statistical properties of high-dimensional, complex data arising in real life problems. Previously, Markov-chain Monte Carlo (MCMC) methods were developed by Kupinski et al. [J. Opt. Soc. Am. A 20, 430(2003) ] and by Park et al. [J. Opt. Soc. Am. A 24, B136 (2007) and IEEE Trans. Med. Imaging 28, 657 (2009) ] to estimate the performance of the ideal observer and the channelized ideal observer (CIO), respectively, in classification tasks involving non-Gaussian random backgrounds. However, both algorithms had the disadvantage of long computation times. We propose a fast MCMC for real-time estimation of the likelihood ratio for the CIO. Our simulation results show that our method has the potential to speed up ideal-observer performance in tasks involving complex data when efficient channels are used for the CIO. PMID:19884916
Open-Universe Theory for Bayesian Inference, Decision, and Sensing (OUTBIDS)
2014-01-01
using a novel dynamic programming algorithm [6]. The second allows for tensor data, in which observations at a given time step exhibit...unlimited. 5 We developed a dynamical tensor model that gives far better estimation and system- identification results than the standard vectorization...inference. Third, unlike prior work that learns different pieces of the model independently, use matching between 3D models and 2D views and/or voting
An accessible method for implementing hierarchical models with spatio-temporal abundance data
Ross, Beth E.; Hooten, Melvin B.; Koons, David N.
2012-01-01
A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, ‘INLA’). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time.
Description of cervical cancer mortality in Belgium using Bayesian age-period-cohort models
2009-01-01
Objective To correct cervical cancer mortality rates for death cause certification problems in Belgium and to describe the corrected trends (1954-1997) using Bayesian models. Method Cervical cancer (cervix uteri (CVX), corpus uteri (CRP), not otherwise specified (NOS) uterus cancer and other very rare uterus cancer (OTH) mortality data were extracted from the WHO mortality database together with population data for Belgium and the Netherlands. Different ICD (International Classification of Diseases) were used over time for death cause certification. In the Netherlands, the proportion of not-otherwise specified uterine cancer deaths was small over large periods and therefore internal reallocation could be used to estimate the corrected rates cervical cancer mortality. In Belgium, the proportion of improperly defined uterus deaths was high. Therefore, the age-specific proportions of uterus cancer deaths that are probably of cervical origin for the Netherlands was applied to Belgian uterus cancer deaths to estimate the corrected number of cervix cancer deaths (corCVX). A Bayesian loglinear Poisson-regression model was performed to disentangle the separate effects of age, period and cohort. Results The corrected age standardized mortality rate (ASMR) decreased regularly from 9.2/100 000 in the mid 1950s to 2.5/100,000 in the late 1990s. Inclusion of age, period and cohort into the models were required to obtain an adequate fit. Cervical cancer mortality increases with age, declines over calendar period and varied irregularly by cohort. Conclusion Mortality increased with ageing and declined over time in most age-groups, but varied irregularly by birth cohort. In global, with some discrete exceptions, mortality decreased for successive generations up to the cohorts born in the 1930s. This decline stopped for cohorts born in the 1940s and thereafter. For the youngest cohorts, even a tendency of increasing risk of dying from cervical cancer could be observed, reflecting increased exposure to risk factors. The fact that this increase was limited for the youngest cohorts could be explained as an effect of screening. Bayesian modeling provided similar results compared to previously used classical Poisson models. However, Bayesian models are more robust for estimating rates when data are sparse (youngest age groups, most recent cohorts) and can be used to for predicting future trends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirian, Yves; Foffa, Stefano; Kunz, Martin
We present a comprehensive and updated comparison with cosmological observations of two non-local modifications of gravity previously introduced by our group, the so called RR and RT models. We implement the background evolution and the cosmological perturbations of the models in a modified Boltzmann code, using CLASS. We then test the non-local models against the Planck 2015 TT, TE, EE and Cosmic Microwave Background (CMB) lensing data, isotropic and anisotropic Baryonic Acoustic Oscillations (BAO) data, JLA supernovae, H {sub 0} measurements and growth rate data, and we perform Bayesian parameter estimation. We then compare the RR, RT and ΛCDM models,more » using the Savage-Dickey method. We find that the RT model and ΛCDM perform equally well, while the performance of the RR model with respect to ΛCDM depends on whether or not we include a prior on H {sub 0} based on local measurements.« less
A Bayesian technique for improving the sensitivity of the atmospheric neutrino L/E analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, A. S. T.; Chapman, J. D.; Thomson, M. A.
Tmore » his paper outlines a method for improving the precision of atmospheric neutrino oscillation measurements. One experimental signature for these oscillations is an observed deficit in the rate of ν μ charged-current interactions with an oscillatory dependence on L ν / E ν , where L ν is the neutrino propagation distance and E mrow is="true"> ν is the neutrino energy. For contained-vertex atmospheric neutrino interactions, the L ν / E ν resolution varies significantly from event to event. he precision of the oscillation measurement can be improved by incorporating information on L ν / E ν resolution into the oscillation analysis. In the analysis presented here, a Bayesian technique is used to estimate the L ν / E ν resolution of observed atmospheric neutrinos on an event-by-event basis. By separating the events into bins of L ν / E ν resolution in the oscillation analysis, a significant improvement in oscillation sensitivity can be achieved.« less
Nariai, N; Kim, S; Imoto, S; Miyano, S
2004-01-01
We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.
Love, Jeffrey J.
2012-01-01
Statistical analysis is made of rare, extreme geophysical events recorded in historical data -- counting the number of events $k$ with sizes that exceed chosen thresholds during specific durations of time $\\tau$. Under transformations that stabilize data and model-parameter variances, the most likely Poisson-event occurrence rate, $k/\\tau$, applies for frequentist inference and, also, for Bayesian inference with a Jeffreys prior that ensures posterior invariance under changes of variables. Frequentist confidence intervals and Bayesian (Jeffreys) credibility intervals are approximately the same and easy to calculate: $(1/\\tau)[(\\sqrt{k} - z/2)^{2},(\\sqrt{k} + z/2)^{2}]$, where $z$ is a parameter that specifies the width, $z=1$ ($z=2$) corresponding to $1\\sigma$, $68.3\\%$ ($2\\sigma$, $95.4\\%$). If only a few events have been observed, as is usually the case for extreme events, then these "error-bar" intervals might be considered to be relatively wide. From historical records, we estimate most likely long-term occurrence rates, 10-yr occurrence probabilities, and intervals of frequentist confidence and Bayesian credibility for large earthquakes, explosive volcanic eruptions, and magnetic storms.
NASA Astrophysics Data System (ADS)
Ben Abdessalem, Anis; Dervilis, Nikolaos; Wagg, David; Worden, Keith
2018-01-01
This paper will introduce the use of the approximate Bayesian computation (ABC) algorithm for model selection and parameter estimation in structural dynamics. ABC is a likelihood-free method typically used when the likelihood function is either intractable or cannot be approached in a closed form. To circumvent the evaluation of the likelihood function, simulation from a forward model is at the core of the ABC algorithm. The algorithm offers the possibility to use different metrics and summary statistics representative of the data to carry out Bayesian inference. The efficacy of the algorithm in structural dynamics is demonstrated through three different illustrative examples of nonlinear system identification: cubic and cubic-quintic models, the Bouc-Wen model and the Duffing oscillator. The obtained results suggest that ABC is a promising alternative to deal with model selection and parameter estimation issues, specifically for systems with complex behaviours.
Sparse Bayesian learning for DOA estimation with mutual coupling.
Dai, Jisheng; Hu, Nan; Xu, Weichao; Chang, Chunqi
2015-10-16
Sparse Bayesian learning (SBL) has given renewed interest to the problem of direction-of-arrival (DOA) estimation. It is generally assumed that the measurement matrix in SBL is precisely known. Unfortunately, this assumption may be invalid in practice due to the imperfect manifold caused by unknown or misspecified mutual coupling. This paper describes a modified SBL method for joint estimation of DOAs and mutual coupling coefficients with uniform linear arrays (ULAs). Unlike the existing method that only uses stationary priors, our new approach utilizes a hierarchical form of the Student t prior to enforce the sparsity of the unknown signal more heavily. We also provide a distinct Bayesian inference for the expectation-maximization (EM) algorithm, which can update the mutual coupling coefficients more efficiently. Another difference is that our method uses an additional singular value decomposition (SVD) to reduce the computational complexity of the signal reconstruction process and the sensitivity to the measurement noise.
Improvement of Storm Forecasts Using Gridded Bayesian Linear Regression for Northeast United States
NASA Astrophysics Data System (ADS)
Yang, J.; Astitha, M.; Schwartz, C. S.
2017-12-01
Bayesian linear regression (BLR) is a post-processing technique in which regression coefficients are derived and used to correct raw forecasts based on pairs of observation-model values. This study presents the development and application of a gridded Bayesian linear regression (GBLR) as a new post-processing technique to improve numerical weather prediction (NWP) of rain and wind storm forecasts over northeast United States. Ten controlled variables produced from ten ensemble members of the National Center for Atmospheric Research (NCAR) real-time prediction system are used for a GBLR model. In the GBLR framework, leave-one-storm-out cross-validation is utilized to study the performances of the post-processing technique in a database composed of 92 storms. To estimate the regression coefficients of the GBLR, optimization procedures that minimize the systematic and random error of predicted atmospheric variables (wind speed, precipitation, etc.) are implemented for the modeled-observed pairs of training storms. The regression coefficients calculated for meteorological stations of the National Weather Service are interpolated back to the model domain. An analysis of forecast improvements based on error reductions during the storms will demonstrate the value of GBLR approach. This presentation will also illustrate how the variances are optimized for the training partition in GBLR and discuss the verification strategy for grid points where no observations are available. The new post-processing technique is successful in improving wind speed and precipitation storm forecasts using past event-based data and has the potential to be implemented in real-time.
Approximate Bayesian Computation in the estimation of the parameters of the Forbush decrease model
NASA Astrophysics Data System (ADS)
Wawrzynczak, A.; Kopka, P.
2017-12-01
Realistic modeling of the complicated phenomena as Forbush decrease of the galactic cosmic ray intensity is a quite challenging task. One aspect is a numerical solution of the Fokker-Planck equation in five-dimensional space (three spatial variables, the time and particles energy). The second difficulty arises from a lack of detailed knowledge about the spatial and time profiles of the parameters responsible for the creation of the Forbush decrease. Among these parameters, the central role plays a diffusion coefficient. Assessment of the correctness of the proposed model can be done only by comparison of the model output with the experimental observations of the galactic cosmic ray intensity. We apply the Approximate Bayesian Computation (ABC) methodology to match the Forbush decrease model to experimental data. The ABC method is becoming increasing exploited for dynamic complex problems in which the likelihood function is costly to compute. The main idea of all ABC methods is to accept samples as an approximate posterior draw if its associated modeled data are close enough to the observed one. In this paper, we present application of the Sequential Monte Carlo Approximate Bayesian Computation algorithm scanning the space of the diffusion coefficient parameters. The proposed algorithm is adopted to create the model of the Forbush decrease observed by the neutron monitors at the Earth in March 2002. The model of the Forbush decrease is based on the stochastic approach to the solution of the Fokker-Planck equation.
Bayesian ensemble refinement by replica simulations and reweighting.
Hummer, Gerhard; Köfinger, Jürgen
2015-12-28
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Bayesian ensemble refinement by replica simulations and reweighting
NASA Astrophysics Data System (ADS)
Hummer, Gerhard; Köfinger, Jürgen
2015-12-01
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
NASA Astrophysics Data System (ADS)
Paudel, Y.; Botzen, W. J. W.; Aerts, J. C. J. H.
2013-03-01
This study applies Bayesian Inference to estimate flood risk for 53 dyke ring areas in the Netherlands, and focuses particularly on the data scarcity and extreme behaviour of catastrophe risk. The probability density curves of flood damage are estimated through Monte Carlo simulations. Based on these results, flood insurance premiums are estimated using two different practical methods that each account in different ways for an insurer's risk aversion and the dispersion rate of loss data. This study is of practical relevance because insurers have been considering the introduction of flood insurance in the Netherlands, which is currently not generally available.
A Bayesian framework to estimate diversification rates and their variation through time and space
2011-01-01
Background Patterns of species diversity are the result of speciation and extinction processes, and molecular phylogenetic data can provide valuable information to derive their variability through time and across clades. Bayesian Markov chain Monte Carlo methods offer a promising framework to incorporate phylogenetic uncertainty when estimating rates of diversification. Results We introduce a new approach to estimate diversification rates in a Bayesian framework over a distribution of trees under various constant and variable rate birth-death and pure-birth models, and test it on simulated phylogenies. Furthermore, speciation and extinction rates and their posterior credibility intervals can be estimated while accounting for non-random taxon sampling. The framework is particularly suitable for hypothesis testing using Bayes factors, as we demonstrate analyzing dated phylogenies of Chondrostoma (Cyprinidae) and Lupinus (Fabaceae). In addition, we develop a model that extends the rate estimation to a meta-analysis framework in which different data sets are combined in a single analysis to detect general temporal and spatial trends in diversification. Conclusions Our approach provides a flexible framework for the estimation of diversification parameters and hypothesis testing while simultaneously accounting for uncertainties in the divergence times and incomplete taxon sampling. PMID:22013891
Extreme-Scale Bayesian Inference for Uncertainty Quantification of Complex Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biros, George
Uncertainty quantification (UQ)—that is, quantifying uncertainties in complex mathematical models and their large-scale computational implementations—is widely viewed as one of the outstanding challenges facing the field of CS&E over the coming decade. The EUREKA project set to address the most difficult class of UQ problems: those for which both the underlying PDE model as well as the uncertain parameters are of extreme scale. In the project we worked on these extreme-scale challenges in the following four areas: 1. Scalable parallel algorithms for sampling and characterizing the posterior distribution that exploit the structure of the underlying PDEs and parameter-to-observable map. Thesemore » include structure-exploiting versions of the randomized maximum likelihood method, which aims to overcome the intractability of employing conventional MCMC methods for solving extreme-scale Bayesian inversion problems by appealing to and adapting ideas from large-scale PDE-constrained optimization, which have been very successful at exploring high-dimensional spaces. 2. Scalable parallel algorithms for construction of prior and likelihood functions based on learning methods and non-parametric density estimation. Constructing problem-specific priors remains a critical challenge in Bayesian inference, and more so in high dimensions. Another challenge is construction of likelihood functions that capture unmodeled couplings between observations and parameters. We will create parallel algorithms for non-parametric density estimation using high dimensional N-body methods and combine them with supervised learning techniques for the construction of priors and likelihood functions. 3. Bayesian inadequacy models, which augment physics models with stochastic models that represent their imperfections. The success of the Bayesian inference framework depends on the ability to represent the uncertainty due to imperfections of the mathematical model of the phenomena of interest. This is a central challenge in UQ, especially for large-scale models. We propose to develop the mathematical tools to address these challenges in the context of extreme-scale problems. 4. Parallel scalable algorithms for Bayesian optimal experimental design (OED). Bayesian inversion yields quantified uncertainties in the model parameters, which can be propagated forward through the model to yield uncertainty in outputs of interest. This opens the way for designing new experiments to reduce the uncertainties in the model parameters and model predictions. Such experimental design problems have been intractable for large-scale problems using conventional methods; we will create OED algorithms that exploit the structure of the PDE model and the parameter-to-output map to overcome these challenges. Parallel algorithms for these four problems were created, analyzed, prototyped, implemented, tuned, and scaled up for leading-edge supercomputers, including UT-Austin’s own 10 petaflops Stampede system, ANL’s Mira system, and ORNL’s Titan system. While our focus is on fundamental mathematical/computational methods and algorithms, we will assess our methods on model problems derived from several DOE mission applications, including multiscale mechanics and ice sheet dynamics.« less
Multilevel Sequential2 Monte Carlo for Bayesian inverse problems
NASA Astrophysics Data System (ADS)
Latz, Jonas; Papaioannou, Iason; Ullmann, Elisabeth
2018-09-01
The identification of parameters in mathematical models using noisy observations is a common task in uncertainty quantification. We employ the framework of Bayesian inversion: we combine monitoring and observational data with prior information to estimate the posterior distribution of a parameter. Specifically, we are interested in the distribution of a diffusion coefficient of an elliptic PDE. In this setting, the sample space is high-dimensional, and each sample of the PDE solution is expensive. To address these issues we propose and analyse a novel Sequential Monte Carlo (SMC) sampler for the approximation of the posterior distribution. Classical, single-level SMC constructs a sequence of measures, starting with the prior distribution, and finishing with the posterior distribution. The intermediate measures arise from a tempering of the likelihood, or, equivalently, a rescaling of the noise. The resolution of the PDE discretisation is fixed. In contrast, our estimator employs a hierarchy of PDE discretisations to decrease the computational cost. We construct a sequence of intermediate measures by decreasing the temperature or by increasing the discretisation level at the same time. This idea builds on and generalises the multi-resolution sampler proposed in P.S. Koutsourelakis (2009) [33] where a bridging scheme is used to transfer samples from coarse to fine discretisation levels. Importantly, our choice between tempering and bridging is fully adaptive. We present numerical experiments in 2D space, comparing our estimator to single-level SMC and the multi-resolution sampler.
NASA Astrophysics Data System (ADS)
Freni, Gabriele; Mannina, Giorgio
In urban drainage modelling, uncertainty analysis is of undoubted necessity. However, uncertainty analysis in urban water-quality modelling is still in its infancy and only few studies have been carried out. Therefore, several methodological aspects still need to be experienced and clarified especially regarding water quality modelling. The use of the Bayesian approach for uncertainty analysis has been stimulated by its rigorous theoretical framework and by the possibility of evaluating the impact of new knowledge on the modelling predictions. Nevertheless, the Bayesian approach relies on some restrictive hypotheses that are not present in less formal methods like the Generalised Likelihood Uncertainty Estimation (GLUE). One crucial point in the application of Bayesian method is the formulation of a likelihood function that is conditioned by the hypotheses made regarding model residuals. Statistical transformations, such as the use of Box-Cox equation, are generally used to ensure the homoscedasticity of residuals. However, this practice may affect the reliability of the analysis leading to a wrong uncertainty estimation. The present paper aims to explore the influence of the Box-Cox equation for environmental water quality models. To this end, five cases were considered one of which was the “real” residuals distributions (i.e. drawn from available data). The analysis was applied to the Nocella experimental catchment (Italy) which is an agricultural and semi-urbanised basin where two sewer systems, two wastewater treatment plants and a river reach were monitored during both dry and wet weather periods. The results show that the uncertainty estimation is greatly affected by residual transformation and a wrong assumption may also affect the evaluation of model uncertainty. The use of less formal methods always provide an overestimation of modelling uncertainty with respect to Bayesian method but such effect is reduced if a wrong assumption is made regarding the residuals distribution. If residuals are not normally distributed, the uncertainty is over-estimated if Box-Cox transformation is not applied or non-calibrated parameter is used.
Moving beyond qualitative evaluations of Bayesian models of cognition.
Hemmer, Pernille; Tauber, Sean; Steyvers, Mark
2015-06-01
Bayesian models of cognition provide a powerful way to understand the behavior and goals of individuals from a computational point of view. Much of the focus in the Bayesian cognitive modeling approach has been on qualitative model evaluations, where predictions from the models are compared to data that is often averaged over individuals. In many cognitive tasks, however, there are pervasive individual differences. We introduce an approach to directly infer individual differences related to subjective mental representations within the framework of Bayesian models of cognition. In this approach, Bayesian data analysis methods are used to estimate cognitive parameters and motivate the inference process within a Bayesian cognitive model. We illustrate this integrative Bayesian approach on a model of memory. We apply the model to behavioral data from a memory experiment involving the recall of heights of people. A cross-validation analysis shows that the Bayesian memory model with inferred subjective priors predicts withheld data better than a Bayesian model where the priors are based on environmental statistics. In addition, the model with inferred priors at the individual subject level led to the best overall generalization performance, suggesting that individual differences are important to consider in Bayesian models of cognition.
Visual and Auditory Components in the Perception of Asynchronous Audiovisual Speech
Alcalá-Quintana, Rocío
2015-01-01
Research on asynchronous audiovisual speech perception manipulates experimental conditions to observe their effects on synchrony judgments. Probabilistic models establish a link between the sensory and decisional processes underlying such judgments and the observed data, via interpretable parameters that allow testing hypotheses and making inferences about how experimental manipulations affect such processes. Two models of this type have recently been proposed, one based on independent channels and the other using a Bayesian approach. Both models are fitted here to a common data set, with a subsequent analysis of the interpretation they provide about how experimental manipulations affected the processes underlying perceived synchrony. The data consist of synchrony judgments as a function of audiovisual offset in a speech stimulus, under four within-subjects manipulations of the quality of the visual component. The Bayesian model could not accommodate asymmetric data, was rejected by goodness-of-fit statistics for 8/16 observers, and was found to be nonidentifiable, which renders uninterpretable parameter estimates. The independent-channels model captured asymmetric data, was rejected for only 1/16 observers, and identified how sensory and decisional processes mediating asynchronous audiovisual speech perception are affected by manipulations that only alter the quality of the visual component of the speech signal. PMID:27551361
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrugt, Jasper A; Robinson, Bruce A; Ter Braak, Cajo J F
In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented usingmore » the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.« less
A Bayesian estimate of the concordance correlation coefficient with skewed data.
Feng, Dai; Baumgartner, Richard; Svetnik, Vladimir
2015-01-01
Concordance correlation coefficient (CCC) is one of the most popular scaled indices used to evaluate agreement. Most commonly, it is used under the assumption that data is normally distributed. This assumption, however, does not apply to skewed data sets. While methods for the estimation of the CCC of skewed data sets have been introduced and studied, the Bayesian approach and its comparison with the previous methods has been lacking. In this study, we propose a Bayesian method for the estimation of the CCC of skewed data sets and compare it with the best method previously investigated. The proposed method has certain advantages. It tends to outperform the best method studied before when the variation of the data is mainly from the random subject effect instead of error. Furthermore, it allows for greater flexibility in application by enabling incorporation of missing data, confounding covariates, and replications, which was not considered previously. The superiority of this new approach is demonstrated using simulation as well as real-life biomarker data sets used in an electroencephalography clinical study. The implementation of the Bayesian method is accessible through the Comprehensive R Archive Network. Copyright © 2015 John Wiley & Sons, Ltd.
Funamizu, Akihiro; Ito, Makoto; Doya, Kenji; Kanzaki, Ryohei; Takahashi, Hirokazu
2012-04-01
The estimation of reward outcomes for action candidates is essential for decision making. In this study, we examined whether and how the uncertainty in reward outcome estimation affects the action choice and learning rate. We designed a choice task in which rats selected either the left-poking or right-poking hole and received a reward of a food pellet stochastically. The reward probabilities of the left and right holes were chosen from six settings (high, 100% vs. 66%; mid, 66% vs. 33%; low, 33% vs. 0% for the left vs. right holes, and the opposites) in every 20-549 trials. We used Bayesian Q-learning models to estimate the time course of the probability distribution of action values and tested if they better explain the behaviors of rats than standard Q-learning models that estimate only the mean of action values. Model comparison by cross-validation revealed that a Bayesian Q-learning model with an asymmetric update for reward and non-reward outcomes fit the choice time course of the rats best. In the action-choice equation of the Bayesian Q-learning model, the estimated coefficient for the variance of action value was positive, meaning that rats were uncertainty seeking. Further analysis of the Bayesian Q-learning model suggested that the uncertainty facilitated the effective learning rate. These results suggest that the rats consider uncertainty in action-value estimation and that they have an uncertainty-seeking action policy and uncertainty-dependent modulation of the effective learning rate. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Pisharady, Pramod Kumar; Sotiropoulos, Stamatios N; Duarte-Carvajalino, Julio M; Sapiro, Guillermo; Lenglet, Christophe
2018-02-15
We present a sparse Bayesian unmixing algorithm BusineX: Bayesian Unmixing for Sparse Inference-based Estimation of Fiber Crossings (X), for estimation of white matter fiber parameters from compressed (under-sampled) diffusion MRI (dMRI) data. BusineX combines compressive sensing with linear unmixing and introduces sparsity to the previously proposed multiresolution data fusion algorithm RubiX, resulting in a method for improved reconstruction, especially from data with lower number of diffusion gradients. We formulate the estimation of fiber parameters as a sparse signal recovery problem and propose a linear unmixing framework with sparse Bayesian learning for the recovery of sparse signals, the fiber orientations and volume fractions. The data is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible diffusion directions. Volume fractions of fibers along these directions define the dictionary weights. The proposed sparse inference, which is based on the dictionary representation, considers the sparsity of fiber populations and exploits the spatial redundancy in data representation, thereby facilitating inference from under-sampled q-space. The algorithm improves parameter estimation from dMRI through data-dependent local learning of hyperparameters, at each voxel and for each possible fiber orientation, that moderate the strength of priors governing the parameter variances. Experimental results on synthetic and in-vivo data show improved accuracy with a lower uncertainty in fiber parameter estimates. BusineX resolves a higher number of second and third fiber crossings. For under-sampled data, the algorithm is also shown to produce more reliable estimates. Copyright © 2017 Elsevier Inc. All rights reserved.
True versus Apparent Malaria Infection Prevalence: The Contribution of a Bayesian Approach
Claes, Filip; Van Hong, Nguyen; Torres, Kathy; Mao, Sokny; Van den Eede, Peter; Thi Thinh, Ta; Gamboa, Dioni; Sochantha, Tho; Thang, Ngo Duc; Coosemans, Marc; Büscher, Philippe; D'Alessandro, Umberto; Berkvens, Dirk; Erhart, Annette
2011-01-01
Aims To present a new approach for estimating the “true prevalence” of malaria and apply it to datasets from Peru, Vietnam, and Cambodia. Methods Bayesian models were developed for estimating both the malaria prevalence using different diagnostic tests (microscopy, PCR & ELISA), without the need of a gold standard, and the tests' characteristics. Several sources of information, i.e. data, expert opinions and other sources of knowledge can be integrated into the model. This approach resulting in an optimal and harmonized estimate of malaria infection prevalence, with no conflict between the different sources of information, was tested on data from Peru, Vietnam and Cambodia. Results Malaria sero-prevalence was relatively low in all sites, with ELISA showing the highest estimates. The sensitivity of microscopy and ELISA were statistically lower in Vietnam than in the other sites. Similarly, the specificities of microscopy, ELISA and PCR were significantly lower in Vietnam than in the other sites. In Vietnam and Peru, microscopy was closer to the “true” estimate than the other 2 tests while as expected ELISA, with its lower specificity, usually overestimated the prevalence. Conclusions Bayesian methods are useful for analyzing prevalence results when no gold standard diagnostic test is available. Though some results are expected, e.g. PCR more sensitive than microscopy, a standardized and context-independent quantification of the diagnostic tests' characteristics (sensitivity and specificity) and the underlying malaria prevalence may be useful for comparing different sites. Indeed, the use of a single diagnostic technique could strongly bias the prevalence estimation. This limitation can be circumvented by using a Bayesian framework taking into account the imperfect characteristics of the currently available diagnostic tests. As discussed in the paper, this approach may further support global malaria burden estimation initiatives. PMID:21364745
Quantitative estimation of source complexity in tsunami-source inversion
NASA Astrophysics Data System (ADS)
Dettmer, Jan; Cummins, Phil R.; Hawkins, Rhys; Jakir Hossen, M.
2016-04-01
This work analyses tsunami waveforms to infer the spatiotemporal evolution of sea-surface displacement (the tsunami source) caused by earthquakes or other sources. Since the method considers sea-surface displacement directly, no assumptions about the fault or seafloor deformation are required. While this approach has no ability to study seismic aspects of rupture, it greatly simplifies the tsunami source estimation, making it much less dependent on subjective fault and deformation assumptions. This results in a more accurate sea-surface displacement evolution in the source region. The spatial discretization is by wavelet decomposition represented by a trans-D Bayesian tree structure. Wavelet coefficients are sampled by a reversible jump algorithm and additional coefficients are only included when required by the data. Therefore, source complexity is consistent with data information (parsimonious) and the method can adapt locally in both time and space. Since the source complexity is unknown and locally adapts, no regularization is required, resulting in more meaningful displacement magnitudes. By estimating displacement uncertainties in a Bayesian framework we can study the effect of parametrization choice on the source estimate. Uncertainty arises from observation errors and limitations in the parametrization to fully explain the observations. As a result, parametrization choice is closely related to uncertainty estimation and profoundly affects inversion results. Therefore, parametrization selection should be included in the inference process. Our inversion method is based on Bayesian model selection, a process which includes the choice of parametrization in the inference process and makes it data driven. A trans-dimensional (trans-D) model for the spatio-temporal discretization is applied here to include model selection naturally and efficiently in the inference by sampling probabilistically over parameterizations. The trans-D process results in better uncertainty estimates since the parametrization adapts parsimoniously (in both time and space) according to the local data resolving power and the uncertainty about the parametrization choice is included in the uncertainty estimates. We apply the method to the tsunami waveforms recorded for the great 2011 Japan tsunami. All data are recorded on high-quality sensors (ocean-bottom pressure sensors, GPS gauges, and DART buoys). The sea-surface Green's functions are computed by JAGURS and include linear dispersion effects. By treating the noise level at each gauge as unknown, individual gauge contributions to the source estimate are appropriately and objectively weighted. The results show previously unreported detail of the source, quantify uncertainty spatially, and produce excellent data fits. The source estimate shows an elongated peak trench-ward from the hypo centre that closely follows the trench, indicating significant sea-floor deformation near the trench. Also notable is a bi-modal (negative to positive) displacement feature in the northern part of the source near the trench. The feature has ~2 m amplitude and is clearly resolved by the data with low uncertainties.
We use Bayesian uncertainty analysis to explore how to estimate pollutant exposures from biomarker concentrations. The growing number of national databases with exposure data makes such an analysis possible. They contain datasets of pharmacokinetic biomarkers for many polluta...
Hierarchical models of animal abundance and occurrence
Royle, J. Andrew; Dorazio, R.M.
2006-01-01
Much of animal ecology is devoted to studies of abundance and occurrence of species, based on surveys of spatially referenced sample units. These surveys frequently yield sparse counts that are contaminated by imperfect detection, making direct inference about abundance or occurrence based on observational data infeasible. This article describes a flexible hierarchical modeling framework for estimation and inference about animal abundance and occurrence from survey data that are subject to imperfect detection. Within this framework, we specify models of abundance and detectability of animals at the level of the local populations defined by the sample units. Information at the level of the local population is aggregated by specifying models that describe variation in abundance and detection among sites. We describe likelihood-based and Bayesian methods for estimation and inference under the resulting hierarchical model. We provide two examples of the application of hierarchical models to animal survey data, the first based on removal counts of stream fish and the second based on avian quadrat counts. For both examples, we provide a Bayesian analysis of the models using the software WinBUGS.
Statistical estimation via convex optimization for trending and performance monitoring
NASA Astrophysics Data System (ADS)
Samar, Sikandar
This thesis presents an optimization-based statistical estimation approach to find unknown trends in noisy data. A Bayesian framework is used to explicitly take into account prior information about the trends via trend models and constraints. The main focus is on convex formulation of the Bayesian estimation problem, which allows efficient computation of (globally) optimal estimates. There are two main parts of this thesis. The first part formulates trend estimation in systems described by known detailed models as a convex optimization problem. Statistically optimal estimates are then obtained by maximizing a concave log-likelihood function subject to convex constraints. We consider the problem of increasing problem dimension as more measurements become available, and introduce a moving horizon framework to enable recursive estimation of the unknown trend by solving a fixed size convex optimization problem at each horizon. We also present a distributed estimation framework, based on the dual decomposition method, for a system formed by a network of complex sensors with local (convex) estimation. Two specific applications of the convex optimization-based Bayesian estimation approach are described in the second part of the thesis. Batch estimation for parametric diagnostics in a flight control simulation of a space launch vehicle is shown to detect incipient fault trends despite the natural masking properties of feedback in the guidance and control loops. Moving horizon approach is used to estimate time varying fault parameters in a detailed nonlinear simulation model of an unmanned aerial vehicle. An excellent performance is demonstrated in the presence of winds and turbulence.
Efficient, adaptive estimation of two-dimensional firing rate surfaces via Gaussian process methods.
Rad, Kamiar Rahnama; Paninski, Liam
2010-01-01
Estimating two-dimensional firing rate maps is a common problem, arising in a number of contexts: the estimation of place fields in hippocampus, the analysis of temporally nonstationary tuning curves in sensory and motor areas, the estimation of firing rates following spike-triggered covariance analyses, etc. Here we introduce methods based on Gaussian process nonparametric Bayesian techniques for estimating these two-dimensional rate maps. These techniques offer a number of advantages: the estimates may be computed efficiently, come equipped with natural errorbars, adapt their smoothness automatically to the local density and informativeness of the observed data, and permit direct fitting of the model hyperparameters (e.g., the prior smoothness of the rate map) via maximum marginal likelihood. We illustrate the method's flexibility and performance on a variety of simulated and real data.
Slice sampling technique in Bayesian extreme of gold price modelling
NASA Astrophysics Data System (ADS)
Rostami, Mohammad; Adam, Mohd Bakri; Ibrahim, Noor Akma; Yahya, Mohamed Hisham
2013-09-01
In this paper, a simulation study of Bayesian extreme values by using Markov Chain Monte Carlo via slice sampling algorithm is implemented. We compared the accuracy of slice sampling with other methods for a Gumbel model. This study revealed that slice sampling algorithm offers more accurate and closer estimates with less RMSE than other methods . Finally we successfully employed this procedure to estimate the parameters of Malaysia extreme gold price from 2000 to 2011.
Alderman, Phillip D.; Stanfill, Bryan
2016-10-06
Recent international efforts have brought renewed emphasis on the comparison of different agricultural systems models. Thus far, analysis of model-ensemble simulated results has not clearly differentiated between ensemble prediction uncertainties due to model structural differences per se and those due to parameter value uncertainties. Additionally, despite increasing use of Bayesian parameter estimation approaches with field-scale crop models, inadequate attention has been given to the full posterior distributions for estimated parameters. The objectives of this study were to quantify the impact of parameter value uncertainty on prediction uncertainty for modeling spring wheat phenology using Bayesian analysis and to assess the relativemore » contributions of model-structure-driven and parameter-value-driven uncertainty to overall prediction uncertainty. This study used a random walk Metropolis algorithm to estimate parameters for 30 spring wheat genotypes using nine phenology models based on multi-location trial data for days to heading and days to maturity. Across all cases, parameter-driven uncertainty accounted for between 19 and 52% of predictive uncertainty, while model-structure-driven uncertainty accounted for between 12 and 64%. Here, this study demonstrated the importance of quantifying both model-structure- and parameter-value-driven uncertainty when assessing overall prediction uncertainty in modeling spring wheat phenology. More generally, Bayesian parameter estimation provided a useful framework for quantifying and analyzing sources of prediction uncertainty.« less
Inverse and forward modeling under uncertainty using MRE-based Bayesian approach
NASA Astrophysics Data System (ADS)
Hou, Z.; Rubin, Y.
2004-12-01
A stochastic inverse approach for subsurface characterization is proposed and applied to shallow vadose zone at a winery field site in north California and to a gas reservoir at the Ormen Lange field site in the North Sea. The approach is formulated in a Bayesian-stochastic framework, whereby the unknown parameters are identified in terms of their statistical moments or their probabilities. Instead of the traditional single-valued estimation /prediction provided by deterministic methods, the approach gives a probability distribution for an unknown parameter. This allows calculating the mean, the mode, and the confidence interval, which is useful for a rational treatment of uncertainty and its consequences. The approach also allows incorporating data of various types and different error levels, including measurements of state variables as well as information such as bounds on or statistical moments of the unknown parameters, which may represent prior information. To obtain minimally subjective prior probabilities required for the Bayesian approach, the principle of Minimum Relative Entropy (MRE) is employed. The approach is tested in field sites for flow parameters identification and soil moisture estimation in the vadose zone and for gas saturation estimation at great depth below the ocean floor. Results indicate the potential of coupling various types of field data within a MRE-based Bayesian formalism for improving the estimation of the parameters of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passos de Figueiredo, Leandro, E-mail: leandrop.fgr@gmail.com; Grana, Dario; Santos, Marcio
We propose a Bayesian approach for seismic inversion to estimate acoustic impedance, porosity and lithofacies within the reservoir conditioned to post-stack seismic and well data. The link between elastic and petrophysical properties is given by a joint prior distribution for the logarithm of impedance and porosity, based on a rock-physics model. The well conditioning is performed through a background model obtained by well log interpolation. Two different approaches are presented: in the first approach, the prior is defined by a single Gaussian distribution, whereas in the second approach it is defined by a Gaussian mixture to represent the well datamore » multimodal distribution and link the Gaussian components to different geological lithofacies. The forward model is based on a linearized convolutional model. For the single Gaussian case, we obtain an analytical expression for the posterior distribution, resulting in a fast algorithm to compute the solution of the inverse problem, i.e. the posterior distribution of acoustic impedance and porosity as well as the facies probability given the observed data. For the Gaussian mixture prior, it is not possible to obtain the distributions analytically, hence we propose a Gibbs algorithm to perform the posterior sampling and obtain several reservoir model realizations, allowing an uncertainty analysis of the estimated properties and lithofacies. Both methodologies are applied to a real seismic dataset with three wells to obtain 3D models of acoustic impedance, porosity and lithofacies. The methodologies are validated through a blind well test and compared to a standard Bayesian inversion approach. Using the probability of the reservoir lithofacies, we also compute a 3D isosurface probability model of the main oil reservoir in the studied field.« less
NASA Astrophysics Data System (ADS)
Licquia, Timothy C.; Newman, Jeffrey A.
2016-11-01
The exponential scale length (L d ) of the Milky Way’s (MW’s) disk is a critical parameter for describing the global physical size of our Galaxy, important both for interpreting other Galactic measurements and helping us to understand how our Galaxy fits into extragalactic contexts. Unfortunately, current estimates span a wide range of values and are often statistically incompatible with one another. Here, we perform a Bayesian meta-analysis to determine an improved, aggregate estimate for L d , utilizing a mixture-model approach to account for the possibility that any one measurement has not properly accounted for all statistical or systematic errors. Within this machinery, we explore a variety of ways of modeling the nature of problematic measurements, and then employ a Bayesian model averaging technique to derive net posterior distributions that incorporate any model-selection uncertainty. Our meta-analysis combines 29 different (15 visible and 14 infrared) photometric measurements of L d available in the literature; these involve a broad assortment of observational data sets, MW models and assumptions, and methodologies, all tabulated herein. Analyzing the visible and infrared measurements separately yields estimates for L d of {2.71}-0.20+0.22 kpc and {2.51}-0.13+0.15 kpc, respectively, whereas considering them all combined yields 2.64 ± 0.13 kpc. The ratio between the visible and infrared scale lengths determined here is very similar to that measured in external spiral galaxies. We use these results to update the model of the Galactic disk from our previous work, constraining its stellar mass to be {4.8}-1.1+1.5× {10}10 M ⊙, and the MW’s total stellar mass to be {5.7}-1.1+1.5× {10}10 M ⊙.
NASA Astrophysics Data System (ADS)
Cox, M.; Shirono, K.
2017-10-01
A criticism levelled at the Guide to the Expression of Uncertainty in Measurement (GUM) is that it is based on a mixture of frequentist and Bayesian thinking. In particular, the GUM’s Type A (statistical) uncertainty evaluations are frequentist, whereas the Type B evaluations, using state-of-knowledge distributions, are Bayesian. In contrast, making the GUM fully Bayesian implies, among other things, that a conventional objective Bayesian approach to Type A uncertainty evaluation for a number n of observations leads to the impractical consequence that n must be at least equal to 4, thus presenting a difficulty for many metrologists. This paper presents a Bayesian analysis of Type A uncertainty evaluation that applies for all n ≥slant 2 , as in the frequentist analysis in the current GUM. The analysis is based on assuming that the observations are drawn from a normal distribution (as in the conventional objective Bayesian analysis), but uses an informative prior based on lower and upper bounds for the standard deviation of the sampling distribution for the quantity under consideration. The main outcome of the analysis is a closed-form mathematical expression for the factor by which the standard deviation of the mean observation should be multiplied to calculate the required standard uncertainty. Metrological examples are used to illustrate the approach, which is straightforward to apply using a formula or look-up table.
Bayesian estimation of differential transcript usage from RNA-seq data.
Papastamoulis, Panagiotis; Rattray, Magnus
2017-11-27
Next generation sequencing allows the identification of genes consisting of differentially expressed transcripts, a term which usually refers to changes in the overall expression level. A specific type of differential expression is differential transcript usage (DTU) and targets changes in the relative within gene expression of a transcript. The contribution of this paper is to: (a) extend the use of cjBitSeq to the DTU context, a previously introduced Bayesian model which is originally designed for identifying changes in overall expression levels and (b) propose a Bayesian version of DRIMSeq, a frequentist model for inferring DTU. cjBitSeq is a read based model and performs fully Bayesian inference by MCMC sampling on the space of latent state of each transcript per gene. BayesDRIMSeq is a count based model and estimates the Bayes Factor of a DTU model against a null model using Laplace's approximation. The proposed models are benchmarked against the existing ones using a recent independent simulation study as well as a real RNA-seq dataset. Our results suggest that the Bayesian methods exhibit similar performance with DRIMSeq in terms of precision/recall but offer better calibration of False Discovery Rate.
Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.
Kutschireiter, Anna; Surace, Simone Carlo; Sprekeler, Henning; Pfister, Jean-Pascal
2017-08-18
The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.
Bayesian estimation of realized stochastic volatility model by Hybrid Monte Carlo algorithm
NASA Astrophysics Data System (ADS)
Takaishi, Tetsuya
2014-03-01
The hybrid Monte Carlo algorithm (HMCA) is applied for Bayesian parameter estimation of the realized stochastic volatility (RSV) model. Using the 2nd order minimum norm integrator (2MNI) for the molecular dynamics (MD) simulation in the HMCA, we find that the 2MNI is more efficient than the conventional leapfrog integrator. We also find that the autocorrelation time of the volatility variables sampled by the HMCA is very short. Thus it is concluded that the HMCA with the 2MNI is an efficient algorithm for parameter estimations of the RSV model.
Jiang, Zhehan; Skorupski, William
2017-12-12
In many behavioral research areas, multivariate generalizability theory (mG theory) has been typically used to investigate the reliability of certain multidimensional assessments. However, traditional mG-theory estimation-namely, using frequentist approaches-has limits, leading researchers to fail to take full advantage of the information that mG theory can offer regarding the reliability of measurements. Alternatively, Bayesian methods provide more information than frequentist approaches can offer. This article presents instructional guidelines on how to implement mG-theory analyses in a Bayesian framework; in particular, BUGS code is presented to fit commonly seen designs from mG theory, including single-facet designs, two-facet crossed designs, and two-facet nested designs. In addition to concrete examples that are closely related to the selected designs and the corresponding BUGS code, a simulated dataset is provided to demonstrate the utility and advantages of the Bayesian approach. This article is intended to serve as a tutorial reference for applied researchers and methodologists conducting mG-theory studies.
Orhan, U.; Erdogmus, D.; Roark, B.; Oken, B.; Purwar, S.; Hild, K. E.; Fowler, A.; Fried-Oken, M.
2013-01-01
RSVP Keyboard™ is an electroencephalography (EEG) based brain computer interface (BCI) typing system, designed as an assistive technology for the communication needs of people with locked-in syndrome (LIS). It relies on rapid serial visual presentation (RSVP) and does not require precise eye gaze control. Existing BCI typing systems which uses event related potentials (ERP) in EEG suffer from low accuracy due to low signal-to-noise ratio. Henceforth, RSVP Keyboard™ utilizes a context based decision making via incorporating a language model, to improve the accuracy of letter decisions. To further improve the contributions of the language model, we propose recursive Bayesian estimation, which relies on non-committing string decisions, and conduct an offline analysis, which compares it with the existing naïve Bayesian fusion approach. The results indicate the superiority of the recursive Bayesian fusion and in the next generation of RSVP Keyboard™ we plan to incorporate this new approach. PMID:23366432
NASA Astrophysics Data System (ADS)
Shen, Chien-wen
2009-01-01
During the processes of TFT-LCD manufacturing, steps like visual inspection of panel surface defects still heavily rely on manual operations. As the manual inspection time of TFT-LCD manufacturing could range from 4 hours to 1 day, the reliability of time forecasting is thus important for production planning, scheduling and customer response. This study would like to propose a practical and easy-to-implement prediction model through the approach of Bayesian networks for time estimation of manual operated procedures in TFT-LCD manufacturing. Given the lack of prior knowledge about manual operation time, algorithms of necessary path condition and expectation-maximization are used for structural learning and estimation of conditional probability distributions respectively. This study also applied Bayesian inference to evaluate the relationships between explanatory variables and manual operation time. With the empirical applications of this proposed forecasting model, approach of Bayesian networks demonstrates its practicability and prediction accountability.
Bayesian analyses of seasonal runoff forecasts
NASA Astrophysics Data System (ADS)
Krzysztofowicz, R.; Reese, S.
1991-12-01
Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to the ex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971 1988.
Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip.
Paesani, S; Gentile, A A; Santagati, R; Wang, J; Wiebe, N; Tew, D P; O'Brien, J L; Thompson, M G
2017-03-10
Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shor's factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability for near-term, nonfault tolerant, quantum devices. Here we report experimental results demonstrating that this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum phase estimation and use it to simulate molecular energies on a silicon quantum photonic device. The approach is verified to be well suited for prethreshold quantum processors by investigating its superior robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a promising route to unlock the power of quantum phase estimation much sooner than previously believed.
Yu, Rongjie; Abdel-Aty, Mohamed
2013-07-01
The Bayesian inference method has been frequently adopted to develop safety performance functions. One advantage of the Bayesian inference is that prior information for the independent variables can be included in the inference procedures. However, there are few studies that discussed how to formulate informative priors for the independent variables and evaluated the effects of incorporating informative priors in developing safety performance functions. This paper addresses this deficiency by introducing four approaches of developing informative priors for the independent variables based on historical data and expert experience. Merits of these informative priors have been tested along with two types of Bayesian hierarchical models (Poisson-gamma and Poisson-lognormal models). Deviance information criterion (DIC), R-square values, and coefficients of variance for the estimations were utilized as evaluation measures to select the best model(s). Comparison across the models indicated that the Poisson-gamma model is superior with a better model fit and it is much more robust with the informative priors. Moreover, the two-stage Bayesian updating informative priors provided the best goodness-of-fit and coefficient estimation accuracies. Furthermore, informative priors for the inverse dispersion parameter have also been introduced and tested. Different types of informative priors' effects on the model estimations and goodness-of-fit have been compared and concluded. Finally, based on the results, recommendations for future research topics and study applications have been made. Copyright © 2013 Elsevier Ltd. All rights reserved.
The impact of the rate prior on Bayesian estimation of divergence times with multiple Loci.
Dos Reis, Mario; Zhu, Tianqi; Yang, Ziheng
2014-07-01
Bayesian methods provide a powerful way to estimate species divergence times by combining information from molecular sequences with information from the fossil record. With the explosive increase of genomic data, divergence time estimation increasingly uses data of multiple loci (genes or site partitions). Widely used computer programs to estimate divergence times use independent and identically distributed (i.i.d.) priors on the substitution rates for different loci. The i.i.d. prior is problematic. As the number of loci (L) increases, the prior variance of the average rate across all loci goes to zero at the rate 1/L. As a consequence, the rate prior dominates posterior time estimates when many loci are analyzed, and if the rate prior is misspecified, the estimated divergence times will converge to wrong values with very narrow credibility intervals. Here we develop a new prior on the locus rates based on the Dirichlet distribution that corrects the problematic behavior of the i.i.d. prior. We use computer simulation and real data analysis to highlight the differences between the old and new priors. For a dataset for six primate species, we show that with the old i.i.d. prior, if the prior rate is too high (or too low), the estimated divergence times are too young (or too old), outside the bounds imposed by the fossil calibrations. In contrast, with the new Dirichlet prior, posterior time estimates are insensitive to the rate prior and are compatible with the fossil calibrations. We re-analyzed a phylogenomic data set of 36 mammal species and show that using many fossil calibrations can alleviate the adverse impact of a misspecified rate prior to some extent. We recommend the use of the new Dirichlet prior in Bayesian divergence time estimation. [Bayesian inference, divergence time, relaxed clock, rate prior, partition analysis.]. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
A Bayesian approach to multivariate measurement system assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Michael Scott
This article considers system assessment for multivariate measurements and presents a Bayesian approach to analyzing gauge R&R study data. The evaluation of variances for univariate measurement becomes the evaluation of covariance matrices for multivariate measurements. The Bayesian approach ensures positive definite estimates of the covariance matrices and easily provides their uncertainty. Furthermore, various measurement system assessment criteria are easily evaluated. The approach is illustrated with data from a real gauge R&R study as well as simulated data.
A Bayesian approach to multivariate measurement system assessment
Hamada, Michael Scott
2016-07-01
This article considers system assessment for multivariate measurements and presents a Bayesian approach to analyzing gauge R&R study data. The evaluation of variances for univariate measurement becomes the evaluation of covariance matrices for multivariate measurements. The Bayesian approach ensures positive definite estimates of the covariance matrices and easily provides their uncertainty. Furthermore, various measurement system assessment criteria are easily evaluated. The approach is illustrated with data from a real gauge R&R study as well as simulated data.
2014-10-01
de l’exactitude et de la précision), comparativement au modèle de mesure plus simple qui n’utilise pas de multiplicateurs. Importance pour la défense...3) Bayesian experimental design for receptor placement in order to maximize the expected information in the measured concen- tration data for...applications of the Bayesian inferential methodology for source recon- struction have used high-quality concentration data from well- designed atmospheric
iSEDfit: Bayesian spectral energy distribution modeling of galaxies
NASA Astrophysics Data System (ADS)
Moustakas, John
2017-08-01
iSEDfit uses Bayesian inference to extract the physical properties of galaxies from their observed broadband photometric spectral energy distribution (SED). In its default mode, the inputs to iSEDfit are the measured photometry (fluxes and corresponding inverse variances) and a measurement of the galaxy redshift. Alternatively, iSEDfit can be used to estimate photometric redshifts from the input photometry alone. After the priors have been specified, iSEDfit calculates the marginalized posterior probability distributions for the physical parameters of interest, including the stellar mass, star-formation rate, dust content, star formation history, and stellar metallicity. iSEDfit also optionally computes K-corrections and produces multiple "quality assurance" (QA) plots at each stage of the modeling procedure to aid in the interpretation of the prior parameter choices and subsequent fitting results. The software is distributed as part of the impro IDL suite.
A Bayesian method for inferring transmission chains in a partially observed epidemic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzouk, Youssef M.; Ray, Jaideep
2008-10-01
We present a Bayesian approach for estimating transmission chains and rates in the Abakaliki smallpox epidemic of 1967. The epidemic affected 30 individuals in a community of 74; only the dates of appearance of symptoms were recorded. Our model assumes stochastic transmission of the infections over a social network. Distinct binomial random graphs model intra- and inter-compound social connections, while disease transmission over each link is treated as a Poisson process. Link probabilities and rate parameters are objects of inference. Dates of infection and recovery comprise the remaining unknowns. Distributions for smallpox incubation and recovery periods are obtained from historicalmore » data. Using Markov chain Monte Carlo, we explore the joint posterior distribution of the scalar parameters and provide an expected connectivity pattern for the social graph and infection pathway.« less
A study of finite mixture model: Bayesian approach on financial time series data
NASA Astrophysics Data System (ADS)
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-07-01
Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.
NASA Astrophysics Data System (ADS)
Anderson, Kyle R.; Poland, Michael P.
2016-08-01
Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35-100% between 2001 and 2006 (from 0.11-0.17 to 0.18-0.28 km3/yr), before subsequently decreasing to 0.08-0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60-150% between 2001 and 2006, and subsequent decline by as much as 60% by 2012. We also demonstrate the occurrence of temporal changes in the proportion of Kīlauea's magma supply that is stored versus erupted, with the supply ;surge; in 2006 associated with increased accumulation of magma at the summit. Finally, we are able to place some constraints on sulfur concentrations in Kīlauea magma and the scrubbing of sulfur by the volcano's hydrothermal system. Multiphysical, Bayesian constraint on magma flow rates may be used to monitor evolving volcanic hazard not just at Kīlauea but at other volcanoes around the world.
NASA Astrophysics Data System (ADS)
Lundquist, K. A.; Jensen, D. D.; Lucas, D. D.
2017-12-01
Atmospheric source reconstruction allows for the probabilistic estimate of source characteristics of an atmospheric release using observations of the release. Performance of the inversion depends partially on the temporal frequency and spatial scale of the observations. The objective of this study is to quantify the sensitivity of the source reconstruction method to sparse spatial and temporal observations. To this end, simulations of atmospheric transport of noble gasses are created for the 2006 nuclear test at the Punggye-ri nuclear test site. Synthetic observations are collected from the simulation, and are taken as "ground truth". Data denial techniques are used to progressively coarsen the temporal and spatial resolution of the synthetic observations, while the source reconstruction model seeks to recover the true input parameters from the synthetic observations. Reconstructed parameters considered here are source location, source timing and source quantity. Reconstruction is achieved by running an ensemble of thousands of dispersion model runs that sample from a uniform distribution of the input parameters. Machine learning is used to train a computationally-efficient surrogate model from the ensemble simulations. Monte Carlo sampling and Bayesian inversion are then used in conjunction with the surrogate model to quantify the posterior probability density functions of source input parameters. This research seeks to inform decision makers of the tradeoffs between more expensive, high frequency observations and less expensive, low frequency observations.
Bucci, Melanie E.; Callahan, Peggy; Koprowski, John L.; Polfus, Jean L.; Krausman, Paul R.
2015-01-01
Stable isotope analysis of diet has become a common tool in conservation research. However, the multiple sources of uncertainty inherent in this analysis framework involve consequences that have not been thoroughly addressed. Uncertainty arises from the choice of trophic discrimination factors, and for Bayesian stable isotope mixing models (SIMMs), the specification of prior information; the combined effect of these aspects has not been explicitly tested. We used a captive feeding study of gray wolves (Canis lupus) to determine the first experimentally-derived trophic discrimination factors of C and N for this large carnivore of broad conservation interest. Using the estimated diet in our controlled system and data from a published study on wild wolves and their prey in Montana, USA, we then investigated the simultaneous effect of discrimination factors and prior information on diet reconstruction with Bayesian SIMMs. Discrimination factors for gray wolves and their prey were 1.97‰ for δ13C and 3.04‰ for δ15N. Specifying wolf discrimination factors, as opposed to the commonly used red fox (Vulpes vulpes) factors, made little practical difference to estimates of wolf diet, but prior information had a strong effect on bias, precision, and accuracy of posterior estimates. Without specifying prior information in our Bayesian SIMM, it was not possible to produce SIMM posteriors statistically similar to the estimated diet in our controlled study or the diet of wild wolves. Our study demonstrates the critical effect of prior information on estimates of animal diets using Bayesian SIMMs, and suggests species-specific trophic discrimination factors are of secondary importance. When using stable isotope analysis to inform conservation decisions researchers should understand the limits of their data. It may be difficult to obtain useful information from SIMMs if informative priors are omitted and species-specific discrimination factors are unavailable. PMID:25803664
Derbridge, Jonathan J; Merkle, Jerod A; Bucci, Melanie E; Callahan, Peggy; Koprowski, John L; Polfus, Jean L; Krausman, Paul R
2015-01-01
Stable isotope analysis of diet has become a common tool in conservation research. However, the multiple sources of uncertainty inherent in this analysis framework involve consequences that have not been thoroughly addressed. Uncertainty arises from the choice of trophic discrimination factors, and for Bayesian stable isotope mixing models (SIMMs), the specification of prior information; the combined effect of these aspects has not been explicitly tested. We used a captive feeding study of gray wolves (Canis lupus) to determine the first experimentally-derived trophic discrimination factors of C and N for this large carnivore of broad conservation interest. Using the estimated diet in our controlled system and data from a published study on wild wolves and their prey in Montana, USA, we then investigated the simultaneous effect of discrimination factors and prior information on diet reconstruction with Bayesian SIMMs. Discrimination factors for gray wolves and their prey were 1.97‰ for δ13C and 3.04‰ for δ15N. Specifying wolf discrimination factors, as opposed to the commonly used red fox (Vulpes vulpes) factors, made little practical difference to estimates of wolf diet, but prior information had a strong effect on bias, precision, and accuracy of posterior estimates. Without specifying prior information in our Bayesian SIMM, it was not possible to produce SIMM posteriors statistically similar to the estimated diet in our controlled study or the diet of wild wolves. Our study demonstrates the critical effect of prior information on estimates of animal diets using Bayesian SIMMs, and suggests species-specific trophic discrimination factors are of secondary importance. When using stable isotope analysis to inform conservation decisions researchers should understand the limits of their data. It may be difficult to obtain useful information from SIMMs if informative priors are omitted and species-specific discrimination factors are unavailable.
NASA Astrophysics Data System (ADS)
Wong, T. E.; Noone, D. C.; Kleiber, W.
2014-12-01
The single largest uncertainty in climate model energy balance is the surface latent heating over tropical land. Furthermore, the partitioning of the total latent heat flux into contributions from surface evaporation and plant transpiration is of great importance, but notoriously poorly constrained. Resolving these issues will require better exploiting information which lies at the interface between observations and advanced modeling tools, both of which are imperfect. There are remarkably few observations which can constrain these fluxes, placing strict requirements on developing statistical methods to maximize the use of limited information to best improve models. Previous work has demonstrated the power of incorporating stable water isotopes into land surface models for further constraining ecosystem processes. We present results from a stable water isotopically-enabled land surface model (iCLM4), including model experiments partitioning the latent heat flux into contributions from plant transpiration and surface evaporation. It is shown that the partitioning results are sensitive to the parameterization of kinetic fractionation used. We discuss and demonstrate an approach to calibrating select model parameters to observational data in a Bayesian estimation framework, requiring Markov Chain Monte Carlo sampling of the posterior distribution, which is shown to constrain uncertain parameters as well as inform relevant values for operational use. Finally, we discuss the application of the estimation scheme to iCLM4, including entropy as a measure of information content and specific challenges which arise in calibration models with a large number of parameters.
Dynamic Denoising of Tracking Sequences
Michailovich, Oleg; Tannenbaum, Allen
2009-01-01
In this paper, we describe an approach to the problem of simultaneously enhancing image sequences and tracking the objects of interest represented by the latter. The enhancement part of the algorithm is based on Bayesian wavelet denoising, which has been chosen due to its exceptional ability to incorporate diverse a priori information into the process of image recovery. In particular, we demonstrate that, in dynamic settings, useful statistical priors can come both from some reasonable assumptions on the properties of the image to be enhanced as well as from the images that have already been observed before the current scene. Using such priors forms the main contribution of the present paper which is the proposal of the dynamic denoising as a tool for simultaneously enhancing and tracking image sequences. Within the proposed framework, the previous observations of a dynamic scene are employed to enhance its present observation. The mechanism that allows the fusion of the information within successive image frames is Bayesian estimation, while transferring the useful information between the images is governed by a Kalman filter that is used for both prediction and estimation of the dynamics of tracked objects. Therefore, in this methodology, the processes of target tracking and image enhancement “collaborate” in an interlacing manner, rather than being applied separately. The dynamic denoising is demonstrated on several examples of SAR imagery. The results demonstrated in this paper indicate a number of advantages of the proposed dynamic denoising over “static” approaches, in which the tracking images are enhanced independently of each other. PMID:18482881
White, Simon R; Muniz-Terrera, Graciela; Matthews, Fiona E
2018-05-01
Many medical (and ecological) processes involve the change of shape, whereby one trajectory changes into another trajectory at a specific time point. There has been little investigation into the study design needed to investigate these models. We consider the class of fixed effect change-point models with an underlying shape comprised two joined linear segments, also known as broken-stick models. We extend this model to include two sub-groups with different trajectories at the change-point, a change and no change class, and also include a missingness model to account for individuals with incomplete follow-up. Through a simulation study, we consider the relationship of sample size to the estimates of the underlying shape, the existence of a change-point, and the classification-error of sub-group labels. We use a Bayesian framework to account for the missing labels, and the analysis of each simulation is performed using standard Markov chain Monte Carlo techniques. Our simulation study is inspired by cognitive decline as measured by the Mini-Mental State Examination, where our extended model is appropriate due to the commonly observed mixture of individuals within studies who do or do not exhibit accelerated decline. We find that even for studies of modest size ( n = 500, with 50 individuals observed past the change-point) in the fixed effect setting, a change-point can be detected and reliably estimated across a range of observation-errors.
Is probabilistic bias analysis approximately Bayesian?
MacLehose, Richard F.; Gustafson, Paul
2011-01-01
Case-control studies are particularly susceptible to differential exposure misclassification when exposure status is determined following incident case status. Probabilistic bias analysis methods have been developed as ways to adjust standard effect estimates based on the sensitivity and specificity of exposure misclassification. The iterative sampling method advocated in probabilistic bias analysis bears a distinct resemblance to a Bayesian adjustment; however, it is not identical. Furthermore, without a formal theoretical framework (Bayesian or frequentist), the results of a probabilistic bias analysis remain somewhat difficult to interpret. We describe, both theoretically and empirically, the extent to which probabilistic bias analysis can be viewed as approximately Bayesian. While the differences between probabilistic bias analysis and Bayesian approaches to misclassification can be substantial, these situations often involve unrealistic prior specifications and are relatively easy to detect. Outside of these special cases, probabilistic bias analysis and Bayesian approaches to exposure misclassification in case-control studies appear to perform equally well. PMID:22157311
Kharroubi, Samer A; Brazier, John E; McGhee, Sarah
2013-01-01
This article reports on the findings from applying a recently described approach to modeling health state valuation data and the impact of the respondent characteristics on health state valuations. The approach applies a nonparametric model to estimate a Bayesian six-dimensional health state short form (derived from short-form 36 health survey) health state valuation algorithm. A sample of 197 states defined by the six-dimensional health state short form (derived from short-form 36 health survey)has been valued by a representative sample of the Hong Kong general population by using standard gamble. The article reports the application of the nonparametric model and compares it to the original model estimated by using a conventional parametric random effects model. The two models are compared theoretically and in terms of empirical performance. Advantages of the nonparametric model are that it can be used to predict scores in populations with different distributions of characteristics than observed in the survey sample and that it allows for the impact of respondent characteristics to vary by health state (while ensuring that full health passes through unity). The results suggest an important age effect with sex, having some effect, but the remaining covariates having no discernible effect. The nonparametric Bayesian model is argued to be more theoretically appropriate than previously used parametric models. Furthermore, it is more flexible to take into account the impact of covariates. Copyright © 2013, International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc.
Analytical study to define a helicopter stability derivative extraction method, volume 1
NASA Technical Reports Server (NTRS)
Molusis, J. A.
1973-01-01
A method is developed for extracting six degree-of-freedom stability and control derivatives from helicopter flight data. Different combinations of filtering and derivative estimate are investigated and used with a Bayesian approach for derivative identification. The combination of filtering and estimate found to yield the most accurate time response match to flight test data is determined and applied to CH-53A and CH-54B flight data. The method found to be most accurate consists of (1) filtering flight test data with a digital filter, followed by an extended Kalman filter (2) identifying a derivative estimate with a least square estimator, and (3) obtaining derivatives with the Bayesian derivative extraction method.
An, Lihua; Fung, Karen Y; Krewski, Daniel
2010-09-01
Spontaneous adverse event reporting systems are widely used to identify adverse reactions to drugs following their introduction into the marketplace. In this article, a James-Stein type shrinkage estimation strategy was developed in a Bayesian logistic regression model to analyze pharmacovigilance data. This method is effective in detecting signals as it combines information and borrows strength across medically related adverse events. Computer simulation demonstrated that the shrinkage estimator is uniformly better than the maximum likelihood estimator in terms of mean squared error. This method was used to investigate the possible association of a series of diabetic drugs and the risk of cardiovascular events using data from the Canada Vigilance Online Database.
NASA Astrophysics Data System (ADS)
Goodlet, Brent R.; Mills, Leah; Bales, Ben; Charpagne, Marie-Agathe; Murray, Sean P.; Lenthe, William C.; Petzold, Linda; Pollock, Tresa M.
2018-06-01
Bayesian inference is employed to precisely evaluate single crystal elastic properties of novel γ -γ ' Co- and CoNi-based superalloys from simple and non-destructive resonant ultrasound spectroscopy (RUS) measurements. Nine alloys from three Co-, CoNi-, and Ni-based alloy classes were evaluated in the fully aged condition, with one alloy per class also evaluated in the solution heat-treated condition. Comparisons are made between the elastic properties of the three alloy classes and among the alloys of a single class, with the following trends observed. A monotonic rise in the c_{44} (shear) elastic constant by a total of 12 pct is observed between the three alloy classes as Co is substituted for Ni. Elastic anisotropy ( A) is also increased, with a large majority of the nearly 13 pct increase occurring after Co becomes the dominant constituent. Together the five CoNi alloys, with Co:Ni ratios from 1:1 to 1.5:1, exhibited remarkably similar properties with an average A 1.8 pct greater than the Ni-based alloy CMSX-4. Custom code demonstrating a substantial advance over previously reported methods for RUS inversion is also reported here for the first time. CmdStan-RUS is built upon the open-source probabilistic programing language of Stan and formulates the inverse problem using Bayesian methods. Bayesian posterior distributions are efficiently computed with Hamiltonian Monte Carlo (HMC), while initial parameterization is randomly generated from weakly informative prior distributions. Remarkably robust convergence behavior is demonstrated across multiple independent HMC chains in spite of initial parameterization often very far from actual parameter values. Experimental procedures are substantially simplified by allowing any arbitrary misorientation between the specimen and crystal axes, as elastic properties and misorientation are estimated simultaneously.
Maximum likelihood-based analysis of single-molecule photon arrival trajectories
NASA Astrophysics Data System (ADS)
Hajdziona, Marta; Molski, Andrzej
2011-02-01
In this work we explore the statistical properties of the maximum likelihood-based analysis of one-color photon arrival trajectories. This approach does not involve binning and, therefore, all of the information contained in an observed photon strajectory is used. We study the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion and the Bayesian information criterion (BIC) in selecting the true kinetic model. We focus on the low excitation regime where photon trajectories can be modeled as realizations of Markov modulated Poisson processes. The number of observed photons is the key parameter in determining model selection and parameter estimation. For example, the BIC can select the true three-state model from competing two-, three-, and four-state kinetic models even for relatively short trajectories made up of 2 × 103 photons. When the intensity levels are well-separated and 104 photons are observed, the two-state model parameters can be estimated with about 10% precision and those for a three-state model with about 20% precision.
Bayesian structural inference for hidden processes.
Strelioff, Christopher C; Crutchfield, James P
2014-04-01
We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ε-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ε-machines, irrespective of estimated transition probabilities. Properties of ε-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.
Bayesian structural inference for hidden processes
NASA Astrophysics Data System (ADS)
Strelioff, Christopher C.; Crutchfield, James P.
2014-04-01
We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ɛ-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ɛ-machines, irrespective of estimated transition probabilities. Properties of ɛ-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.
Statistical Bayesian method for reliability evaluation based on ADT data
NASA Astrophysics Data System (ADS)
Lu, Dawei; Wang, Lizhi; Sun, Yusheng; Wang, Xiaohong
2018-05-01
Accelerated degradation testing (ADT) is frequently conducted in the laboratory to predict the products’ reliability under normal operating conditions. Two kinds of methods, degradation path models and stochastic process models, are utilized to analyze degradation data and the latter one is the most popular method. However, some limitations like imprecise solution process and estimation result of degradation ratio still exist, which may affect the accuracy of the acceleration model and the extrapolation value. Moreover, the conducted solution of this problem, Bayesian method, lose key information when unifying the degradation data. In this paper, a new data processing and parameter inference method based on Bayesian method is proposed to handle degradation data and solve the problems above. First, Wiener process and acceleration model is chosen; Second, the initial values of degradation model and parameters of prior and posterior distribution under each level is calculated with updating and iteration of estimation values; Third, the lifetime and reliability values are estimated on the basis of the estimation parameters; Finally, a case study is provided to demonstrate the validity of the proposed method. The results illustrate that the proposed method is quite effective and accuracy in estimating the lifetime and reliability of a product.
A Bayesian Method for Identifying Contaminated Detectors in Low-Level Alpha Spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maclellan, Jay A.; Strom, Daniel J.; Joyce, Kevin E.
2011-11-02
Analyses used for radiobioassay and other radiochemical tests are normally designed to meet specified quality objectives, such relative bias, precision, and minimum detectable activity (MDA). In the case of radiobioassay analyses for alpha emitting radionuclides, a major determiner of the process MDA is the instrument background. Alpha spectrometry detectors are often restricted to only a few counts over multi-day periods in order to meet required MDAs for nuclides such as plutonium-239 and americium-241. A detector background criterion is often set empirically based on experience, or frequentist or classical statistics are applied to the calculated background count necessary to meet amore » required MDA. An acceptance criterion for the detector background is set at the multiple of the estimated background standard deviation above the assumed mean that provides an acceptably small probability of observation if the mean and standard deviation estimate are correct. The major problem with this method is that the observed background counts used to estimate the mean, and thereby the standard deviation when a Poisson distribution is assumed, are often in the range of zero to three counts. At those expected count levels it is impossible to obtain a good estimate of the true mean from a single measurement. As an alternative, Bayesian statistical methods allow calculation of the expected detector background count distribution based on historical counts from new, uncontaminated detectors. This distribution can then be used to identify detectors showing an increased probability of contamination. The effect of varying the assumed range of background counts (i.e., the prior probability distribution) from new, uncontaminated detectors will be is discussed.« less
MC 2: A Deeper Look at ZwCl 2341.1+0000 with Bayesian Galaxy Clustering and Weak Lensing Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, B.; Wittman, D. M.; Golovich, N.
ZwCl 2341.1+0000, a merging galaxy cluster with disturbed X-ray morphology and widely separated (~3 Mpc) double radio relics, was thought to be an extremely massive (10 - 30 X 10 14M⊙) and complex system with little known about its merger history. We present JVLA 2-4 GHz observations of the cluster, along with new spectroscopy from our Keck/DEIMOS survey, and apply Gaussian Mixture Modeling to the three-dimensional distribution of 227 con rmed cluster galaxies. After adopting the Bayesian Information Criterion to avoid over tting, which we discover can bias total dynamical mass estimates high, we nd that a three-substructure model withmore » a total dynamical mass estimate of 9:39 ± 0:81 X 10 14M⊙ is favored. We also present deep Subaru imaging and perform the rst weak lensing analysis on this system, obtaining a weak lensing mass estimate of 5:57±2:47X10 14M⊙. This is a more robust estimate because it does not depend on the dynamical state of the system, which is disturbed due to the merger. Our results indicate that ZwCl 2341.1+0000 is a multiple merger system comprised of at least three substructures, with the main merger that produced the radio relics occurring near to the plane of the sky, and a younger merger in the North occurring closer to the line of sight. Dynamical modeling of the main merger reproduces observed quantities (relic positions and polarizations, subcluster separation and radial velocity difference), if the merger axis angle of ~10 +34 -6 degrees and the collision speed at pericenter is ~1900 +300 -200 km/s.« less
MC 2: A Deeper Look at ZwCl 2341.1+0000 with Bayesian Galaxy Clustering and Weak Lensing Analyses
Benson, B.; Wittman, D. M.; Golovich, N.; ...
2017-05-16
ZwCl 2341.1+0000, a merging galaxy cluster with disturbed X-ray morphology and widely separated (~3 Mpc) double radio relics, was thought to be an extremely massive (10 - 30 X 10 14M⊙) and complex system with little known about its merger history. We present JVLA 2-4 GHz observations of the cluster, along with new spectroscopy from our Keck/DEIMOS survey, and apply Gaussian Mixture Modeling to the three-dimensional distribution of 227 con rmed cluster galaxies. After adopting the Bayesian Information Criterion to avoid over tting, which we discover can bias total dynamical mass estimates high, we nd that a three-substructure model withmore » a total dynamical mass estimate of 9:39 ± 0:81 X 10 14M⊙ is favored. We also present deep Subaru imaging and perform the rst weak lensing analysis on this system, obtaining a weak lensing mass estimate of 5:57±2:47X10 14M⊙. This is a more robust estimate because it does not depend on the dynamical state of the system, which is disturbed due to the merger. Our results indicate that ZwCl 2341.1+0000 is a multiple merger system comprised of at least three substructures, with the main merger that produced the radio relics occurring near to the plane of the sky, and a younger merger in the North occurring closer to the line of sight. Dynamical modeling of the main merger reproduces observed quantities (relic positions and polarizations, subcluster separation and radial velocity difference), if the merger axis angle of ~10 +34 -6 degrees and the collision speed at pericenter is ~1900 +300 -200 km/s.« less
NASA Astrophysics Data System (ADS)
Wang, L.-P.; Ochoa-Rodríguez, S.; Onof, C.; Willems, P.
2015-09-01
Gauge-based radar rainfall adjustment techniques have been widely used to improve the applicability of radar rainfall estimates to large-scale hydrological modelling. However, their use for urban hydrological applications is limited as they were mostly developed based upon Gaussian approximations and therefore tend to smooth off so-called "singularities" (features of a non-Gaussian field) that can be observed in the fine-scale rainfall structure. Overlooking the singularities could be critical, given that their distribution is highly consistent with that of local extreme magnitudes. This deficiency may cause large errors in the subsequent urban hydrological modelling. To address this limitation and improve the applicability of adjustment techniques at urban scales, a method is proposed herein which incorporates a local singularity analysis into existing adjustment techniques and allows the preservation of the singularity structures throughout the adjustment process. In this paper the proposed singularity analysis is incorporated into the Bayesian merging technique and the performance of the resulting singularity-sensitive method is compared with that of the original Bayesian (non singularity-sensitive) technique and the commonly used mean field bias adjustment. This test is conducted using as case study four storm events observed in the Portobello catchment (53 km2) (Edinburgh, UK) during 2011 and for which radar estimates, dense rain gauge and sewer flow records, as well as a recently calibrated urban drainage model were available. The results suggest that, in general, the proposed singularity-sensitive method can effectively preserve the non-normality in local rainfall structure, while retaining the ability of the original adjustment techniques to generate nearly unbiased estimates. Moreover, the ability of the singularity-sensitive technique to preserve the non-normality in rainfall estimates often leads to better reproduction of the urban drainage system's dynamics, particularly of peak runoff flows.