Sample records for observations including surface

  1. On the Direct Assimilation of Along-track Sea Surface Height Observations into a Free-surface Ocean Model Using a Weak Constraints Four Dimensional Variational (4dvar) Method

    NASA Astrophysics Data System (ADS)

    Ngodock, H.; Carrier, M.; Smith, S. R.; Souopgui, I.; Martin, P.; Jacobs, G. A.

    2016-02-01

    The representer method is adopted for solving a weak constraints 4dvar problem for the assimilation of ocean observations including along-track SSH, using a free surface ocean model. Direct 4dvar assimilation of SSH observations along the satellite tracks requires that the adjoint model be integrated with Dirac impulses on the right hand side of the adjoint equations for the surface elevation equation. The solution of this adjoint model will inevitably include surface gravity waves, and it constitutes the forcing for the tangent linear model (TLM) according to the representer method. This yields an analysis that is contaminated by gravity waves. A method for avoiding the generation of the surface gravity waves in the analysis is proposed in this study; it consists of removing the adjoint of the free surface from the right hand side (rhs) of the free surface mode in the TLM. The information from the SSH observations will still propagate to all other variables via the adjoint of the balance relationship between the barotropic and baroclinic modes, resulting in the correction to the surface elevation. Two assimilation experiments are carried out in the Gulf of Mexico: one with adjoint forcing included on the rhs of the TLM free surface equation, and the other without. Both analyses are evaluated against the assimilated SSH observations, SSH maps from Aviso and independent surface drifters, showing that the analysis that did not include adjoint forcing in the free surface is more accurate. This study shows that when a weak constraint 4dvar approach is considered for the assimilation of along-track SSH observations using a free surface model, with the aim of correcting the mesoscale circulation, an independent model error should not be assigned to the free surface.

  2. Boundary layer transition observations on a body of revolution with surface heating and cooling in water

    NASA Astrophysics Data System (ADS)

    Arakeri, V. H.

    1980-04-01

    Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. (1970).

  3. Three-and-a-Half Mars Years of Surface Albedo Changes Observed by the Mars Reconnaissance Orbiter MARCI Investigation

    NASA Astrophysics Data System (ADS)

    Wellington, D. F.; Bell, J. F.

    2013-12-01

    The Mars Color Imager (MARCI) wide-angle camera aboard the Mars Reconnaissance Orbiter (MRO) has gathered over three-and-a-half Mars years' worth of observations at approximately 1 km/pixel resolution. The MARCI instrument has seven bands in the ultraviolet, visible, and near-infrared, five of which (the longer wavelength 420, 550, 600, 650, and 750 nm bands) are amenable to observations of surface albedo (the two short-wave ultraviolet bands are primarily intended for ozone measurements). MRO's near-polar orbit and MARCI's wide angle field-of-view (180°) allows it to make almost daily observations of large portions of the planet. As a global multi-year dataset, the MARCI observations are well-suited to examining surface albedo changes on both local and regional scales, including investigating any repeatability and seasonality in such changes. Because Mars displays considerable interannual variability, long-term continuous observations such as MARCI's are necessary in order to adequately describe and distinguish typical surface variance from unusual and longer-term secular changes. We have produced time-lapse animations of sections of the Martian surface from calibrated, map-projected, and mosaicked MARCI observations, altogether comprising the surface of Mars within +/- 65 degrees of the equator. These animations show many albedo changes that have occurred on the surface since 2006, including changes in traditionally variable regions such as Syrtis Major, Alcyonius, Hyblaeus, and Cerberus, as well as a dramatic brightening of Propontis and variations in the appearance and orientation of mesoscale linear streaks in Amazonis. Many regions show alternating periods of dust deposition and removal that, while not producing a persistent change in the surface albedo, nevertheless yield information on the local near-surface conditions that drive these variations. We present a descriptive classification of the types and locations of surface albedo changes observed on Mars over the course of the MRO mission (2006-present), including the nature, seasonal timing, and extent of such changes. The surface albedo features are shown to vary quasi-seasonally, with changes sometimes in concurrence with local or regional dust storms. Dust storm events typically brighten the surface and are followed by months of subsequent darkening, though occasionally an associated darkening or brightening may persist. Changes in the boundaries of albedo features usually occur in discrete episodes, followed by periods of stasis, and often affect regions with historical precedent for variability. These observations and analyses can yield information on near-surface wind conditions, which can be used to test existing atmospheric circulation and climate models. Furthermore, changes in surface albedo markings can provide constraints on surface albedo as an important input parameter to global and mesoscale climate models.

  4. A scheme for computing surface layer turbulent fluxes from mean flow surface observations

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Storch, J.

    1978-01-01

    A physical model and computational scheme are developed for generating turbulent surface stress, sensible heat flux and humidity flux from mean velocity, temperature and humidity at some fixed height in the atmospheric surface layer, where conditions at this reference level are presumed known from observations or the evolving state of a numerical atmospheric circulation model. The method is based on coupling the Monin-Obukov surface layer similarity profiles which include buoyant stability effects on mean velocity, temperature and humidity to a force-restore formulation for the evolution of surface soil temperature to yield the local values of shear stress, heat flux and surface temperature. A self-contained formulation is presented including parameterizations for solar and infrared radiant fluxes at the surface. Additional parameters needed to implement the scheme are the thermal heat capacity of the soil per unit surface area, surface aerodynamic roughness, latitude, solar declination, surface albedo, surface emissivity and atmospheric transmissivity to solar radiation.

  5. Application of spatially gridded temperature and land cover data sets for urban heat island analysis

    USGS Publications Warehouse

    Gallo, Kevin; Xian, George Z.

    2014-01-01

    Two gridded data sets that included (1) daily mean temperatures from 2006 through 2011 and (2) satellite-derived impervious surface area, were combined for a spatial analysis of the urban heat-island effect within the Dallas-Ft. Worth Texas region. The primary advantage of using these combined datasets included the capability to designate each 1 × 1 km grid cell of available temperature data as urban or rural based on the level of impervious surface area within the grid cell. Generally, the observed differences in urban and rural temperature increased as the impervious surface area thresholds used to define an urban grid cell were increased. This result, however, was also dependent on the size of the sample area included in the analysis. As the spatial extent of the sample area increased and included a greater number of rural defined grid cells, the observed urban and rural differences in temperature also increased. A cursory comparison of the spatially gridded temperature observations with observations from climate stations suggest that the number and location of stations included in an urban heat island analysis requires consideration to assure representative samples of each (urban and rural) environment are included in the analysis.

  6. Observations of the evening transition processes on opposing slopes of a north-south oriented mountain

    NASA Astrophysics Data System (ADS)

    Pardyjak, E.

    2014-12-01

    The MATERHORN (Mountain Terrain Atmospheric Modeling and Observation) Program is a multiuniversity, multidisciplinary research initiative designed to improve numerical weather prediction in complex terrain and to better understand the physics of complex terrain flow phenomena across a wide range of scales. As part of MATERHORN, field campaigns were conducted at Dugway, UT, USA in Autumn 2012 and Spring 2013. A subset of the campaigns included dense observations along the East Slope of Granite Peak (40.096° N, -113.253° W), as well as additional observations on the opposing west facing slope. East Slope observations included five multi-sonic anemometer eddy covariance towers (two with full energy budget stations), eleven small energy budget stations, fifteen automated weather stations, a distributed temperature sensing (DTS) system, hot-film anemometry, infrared camera surface temperature observations and up to three Doppler lidars. West Slope operations were less intense with three main towers, two of which included sonic anemometry and one, which included full surface energy balance observations. For this presentation, our analysis will focus on characterizing and contrasting the response of mean wind circulations and thermodynamics variables, as well as turbulence quantities during the evening transitions on both the East Slope and West Slope when solar irradiation differences of the slope surfaces is extremely large.

  7. Development of a fire weather index using meteorological observations within the Northeast United States

    Treesearch

    Michael J. Erickson; Joseph J. Charney; Brian A. Colle

    2016-01-01

    A fire weather index (FWI) is developed using wildfire occurrence data and Automated Surface Observing System weather observations within a subregion of the northeastern United States (NEUS) from 1999 to 2008. Average values of several meteorological variables, including near-surface temperature, relative humidity, dewpoint, wind speed, and cumulative daily...

  8. GCM simulations of Titan's middle and lower atmosphere and comparison to observations

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Lunine, Jonathan I.; Russell, Joellen L.

    2015-04-01

    Simulation results are presented from a new general circulation model (GCM) of Titan, the Titan Atmospheric Model (TAM), which couples the Flexible Modeling System (FMS) spectral dynamical core to a suite of external/sub-grid-scale physics. These include a new non-gray radiative transfer module that takes advantage of recent data from Cassini-Huygens, large-scale condensation and quasi-equilibrium moist convection schemes, a surface model with "bucket" hydrology, and boundary layer turbulent diffusion. The model produces a realistic temperature structure from the surface to the lower mesosphere, including a stratopause, as well as satisfactory superrotation. The latter is shown to depend on the dynamical core's ability to build up angular momentum from surface torques. Simulated latitudinal temperature contrasts are adequate, compared to observations, and polar temperature anomalies agree with observations. In the lower atmosphere, the insolation distribution is shown to strongly impact turbulent fluxes, and surface heating is maximum at mid-latitudes. Surface liquids are unstable at mid- and low-latitudes, and quickly migrate poleward. The simulated humidity profile and distribution of surface temperatures, compared to observations, corroborate the prevalence of dry conditions at low latitudes. Polar cloud activity is well represented, though the observed mid-latitude clouds remain somewhat puzzling, and some formation alternatives are suggested.

  9. A Comparative Evaluation of Adherence of Microorganism to Different Types of Brackets: A Scanning Electron Microscopic Study.

    PubMed

    Shashidhar, E P; Sahitya, M; Sunil, T; Murthy, Anup R; Rani, M S

    2015-09-01

    The purpose of this study was to evaluate and compare the adherence of microorganism to different types of brackets using the scanning electron microscope (SEM). A double-blinded study was undertaken to evaluate and adherence of microorganisms to different types of brackets using SEM. At random, 12 patients reporting for treatment to the department of Orthodontics VS Dental College and Hospital were selected. Four types of brackets were included in the present study stainless steel, titanium, composite, and ceramic. Brackets were bonded to teeth of the patient on all the four quadrants. The teeth included for bonding were lateral incisor, canine, first premolar, and second premolar. The brackets were left for 72 h. After 72 h brackets were debonded, and they were evaluated by SEM for adherence of microorganism in the slot and tie wings surface. The SEM images were graded, and the adherence of microorganism to the brackets in the surfaces and the four different quadrants were recorded. There is a significant difference in adherence of microorganisms to the various types of brackets (P < 0.001) and the surfaces (P < 0.05) included in the study. However, there is no significance in the mean adherence of microorganisms in the different quadrants (P > 0.05) included in the study. The interaction of bracket/surface, bracket/quadrant, surface/quadrants was analyzed, there was no significance of comparison of bracket/surfaces/quadrant but the interaction of bracket/quadrant was found to be significant (<0.011). The interaction of bracket/surfaces/quadrant was also found to be significant (<0.003). The maximum adherence of microorganisms was observed with the composite bracket material and the least adherence of microorganisms was observed with the titanium bracket material. The adherence of microorganisms is relatively more in the slot area, when compare to the tie wings surface maximum adherence of microorganism is observed in the upper left quadrant and least adherence of microorganism is observed in the lower right quadrant. There is a significant difference in adherence of microorganisms to various types of brackets and the surfaces included in the study. There is no significant difference in the adherence of microorganism to the bracket surfaces in the four quadrants included in the study.

  10. A Comparative Evaluation of Adherence of Microorganism to Different Types of Brackets: A Scanning Electron Microscopic Study

    PubMed Central

    Shashidhar, E P; Sahitya, M; Sunil, T; Murthy, Anup R; Rani, M S

    2015-01-01

    Background: The purpose of this study was to evaluate and compare the adherence of microorganism to different types of brackets using the scanning electron microscope (SEM). A double-blinded study was undertaken to evaluate and adherence of microorganisms to different types of brackets using SEM. Materials and Methods: At random, 12 patients reporting for treatment to the department of Orthodontics VS Dental College and Hospital were selected. Four types of brackets were included in the present study stainless steel, titanium, composite, and ceramic. Brackets were bonded to teeth of the patient on all the four quadrants. The teeth included for bonding were lateral incisor, canine, first premolar, and second premolar. The brackets were left for 72 h. After 72 h brackets were debonded, and they were evaluated by SEM for adherence of microorganism in the slot and tie wings surface. The SEM images were graded, and the adherence of microorganism to the brackets in the surfaces and the four different quadrants were recorded. Results: There is a significant difference in adherence of microorganisms to the various types of brackets (P < 0.001) and the surfaces (P < 0.05) included in the study. However, there is no significance in the mean adherence of microorganisms in the different quadrants (P > 0.05) included in the study. The interaction of bracket/surface, bracket/quadrant, surface/quadrants was analyzed, there was no significance of comparison of bracket/surfaces/quadrant but the interaction of bracket/quadrant was found to be significant (<0.011). The interaction of bracket/surfaces/quadrant was also found to be significant (<0.003). Conclusion: The maximum adherence of microorganisms was observed with the composite bracket material and the least adherence of microorganisms was observed with the titanium bracket material. The adherence of microorganisms is relatively more in the slot area, when compare to the tie wings surface maximum adherence of microorganism is observed in the upper left quadrant and least adherence of microorganism is observed in the lower right quadrant. There is a significant difference in adherence of microorganisms to various types of brackets and the surfaces included in the study. There is no significant difference in the adherence of microorganism to the bracket surfaces in the four quadrants included in the study. PMID:26435612

  11. Measurements of the surface energy budget in the southern Gobi Desert of China, and in the Rocky Mountains of Colorado

    NASA Technical Reports Server (NTRS)

    Reiter, E. R.; Smith, E. A.; Sheaffer, J. D.

    1985-01-01

    Observations of the land surface energy balance were made in the Gobi desert and at two mountain sites in northern Colorado. The Gobi study included 12 days of observations in spring (April 8 to 20, 1984) and 31 days in summer at the same site (June 17 to July 18, 1984). The Colorado study included 126 days (March 13 to July 17, 1984) at a valley site and 34 days (July 31 to September 3, 1984) at a mountain top location. The data for each study included continuous observations of upward and downward radiative fluxes in three wave bands, soil temperature and moisture at four levels, air temperature and humidity at four levels and UVW wind components at three levels. Analyses of the Gobi data include definition of the impact of variable atmospheric moisture on the surface energy balance between spring and summer. In addition, diurnal wind circulations forced by heating of the northern edge of the Tibetan Plateau were observed during both periods.

  12. SAMOS Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Smith, Shawn; Bourassa, Mark

    2014-05-01

    The development of a new surface flux dataset based on underway meteorological observations from research vessels will be presented. The research vessel data center at the Florida State University routinely acquires, quality controls, and distributes underway surface meteorological and oceanographic observations from over 30 oceanographic vessels. These activities are coordinated by the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative in partnership with the Rolling Deck to Repository (R2R) project. Recently, the SAMOS data center has used these underway observations to produce bulk flux estimates for each vessel along individual cruise tracks. A description of this new flux product, along with the underlying data quality control procedures applied to SAMOS observations, will be provided. Research vessels provide underway observations at high-temporal frequency (1 min. sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Vessels recruited to the SAMOS initiative collect a high concentration of data within the U.S. continental shelf and also frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern, Arctic, South Atlantic, and South Pacific oceans). These observations are atypical for their spatial and temporal sampling, making them very useful for many applications including validation of numerical models and satellite retrievals, as well as local assessments of natural variability. Individual SAMOS observations undergo routine automated quality control and select vessels receive detailed visual data quality inspection. The result is a quality-flagged data set that is ideal for calculating turbulent flux estimates. We will describe the bulk flux algorithms that have been applied to the observations and the choices of constants that are used. Analysis of the preliminary SAMOS flux products will be presented, including spatial and temporal coverage for each derived parameter. The unique quality and sampling locations of research vessel observations and their independence from many models and products makes them ideal for validation studies. The strengths and limitations of research observations for flux validation studies will be discussed. The authors welcome a discussion with the flux community regarding expansion of the SAMOS program to include additional international vessels, thus facilitating and expansion of this research vessel-based flux product.

  13. ICOADS: A Foundational Database with a new Release

    NASA Astrophysics Data System (ADS)

    Angel, W.; Freeman, E.; Woodruff, S. D.; Worley, S. J.; Brohan, P.; Dumenil-Gates, L.; Kent, E. C.; Smith, S. R.

    2016-02-01

    The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) offers surface marine data spanning the past three centuries and is the world's largest collection of marine surface in situ observations with approximately 300 million unique records from 1662 to the present in a common International Maritime Meteorological Archive (IMMA) format. Simple gridded monthly summary products (including netCDF) for 2° latitude x 2° longitude boxes back to 1800 and 1° x 1° boxes since 1960 are computed for each month. ICOADS observations made available in the IMMA format are taken primarily from ships (merchant, ocean research, fishing, navy, etc.) and moored and drifting buoys. Each report contains individual observations of meteorological and oceanographic variables, such as sea surface and air temperatures, winds, pressure, humidity, wet bulb, dew point, ocean waves and cloudiness. A monthly summary for an area box includes ten statistics (e.g. mean, median, standard deviation, etc.) for 22 observed and computed variables (e.g. sea surface and air temperature, wind, pressure, humidity, cloudiness, etc.). ICOADS is the most complete and heterogeneous collection of surface marine data in existence. A major new historical update, Release 3.0 (R3.0), now in production (with availability anticipated in mid-2016) will contain a variety of important updates. These updates will include unique IDs (UIDs), new IMMA attachments, ICOADS Value-Added Database (IVAD), and numerous new or improved historical and contemporary data sources. UIDs are assigned to each individual marine report, which will greatly facilitate interaction between users and data developers, and affords record traceability. A new Near-Surface Oceanographic (Nocn) attachment has been developed to include oceanographic profile elements, such as sea surface salinity, sea surface temperatures, and their associated measurement depths. Additionally, IVAD allows a feedback mechanism of data adjustments which can be stored within each IMMA report. R3.0 includes near-surface ocean profile measurements from sources such as the World Ocean Database (WOD), Shipboard Automated Meteorological and Oceanographic System (SAMOS), as well as many others. An in-depth look at the improvements and the data inputs planned for R3.0 will be further discussed.

  14. Hydrogeologic and water-quality data for the main site, Naval Surface Warfare Center, Dahlgren Laboratory, Dahlgren, Virginia

    USGS Publications Warehouse

    Bell, Clifton F.; Bolles, Thomas P.; Harlow, George E.

    1994-01-01

    Hydrogeologic and water-quality data were collected at the Naval Surface Warfare Center, Dahlgren Laboratory at Dahlgren, Virginia, as part of a hydrogeologic assessment of the shallow aquifer system begun in 1992. The U.S. Geological Survey conducted this study to provide the Navy with hydrogeologic data to meet the requirements of a Spill Contingency Plan. This report describes the ground-water observation-well network, hydro- geologic, and water-quality data collected between August 1992 and September 1993. The report includes a description of the locations and con- struction of 35 observation wells on the Main Site. Hydrologic data include lithologic core samples, geophysical logs, and vertical hydraulic conductivity measurements of selected core intervals. Hydrologic data include synoptic and hourly measurements of ground-water levels, observation-well slug tests to determine horizontal hydraulic conductivity, and tide data. Water-quality data include analyses of major dissolved constituents in ground water and surface water.

  15. Validation of Land-Surface Mosaic Heterogeneity in the GEOS DAS

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Molod, Andrea; Houser, Paul R.; Schubert, Siegfried

    1999-01-01

    The Mosaic Land-surface Model (LSM) has been included into the current GEOS Data Assimilation System (DAS). The LSM uses a more advanced representation of physical processes than previous versions of the GEOS DAS, including the representation of sub-grid heterogeneity of the land-surface through the Mosaic approach. As a first approximation, Mosaic assumes that all similar surface types within a grid-cell can be lumped together as a single'tile'. Within one GCM grid-cell, there might be 1 - 5 different tiles or surface types. All tiles are subjected to the grid-scale forcing (radiation, air temperature and specific humidity, and precipitation), and the sub-grid variability is a function of the tile characteristics. In this paper, we validate the LSM sub-grid scale variability (tiles) using a variety of surface observing stations from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program. One of the primary goals of SGP ARM is to study the variability of atmospheric radiation within a G,CM grid-cell. Enough surface data has been collected by ARM to extend this goal to sub-grid variability of the land-surface energy and water budgets. The time period of this study is the Summer of 1998 (June I - September 1). The ARM site data consists of surface meteorology, energy flux (eddy correlation and bowen ratio), soil water observations spread over an area similar to the size of a G-CM grid-cell. Various ARM stations are described as wheat and alfalfa crops, pasture and range land. The LSM tiles considered at the grid-space (2 x 2.5) nearest the ARM site include, grassland, deciduous forests, bare soil and dwarf trees. Surface energy and water balances for each tile type are compared with observations. Furthermore, we will discuss the land-surface sub-grid variability of both the ARM observations and the DAS.

  16. Connecting Satellite Observations with Water Cycle Variables Through Land Data Assimilation: Examples Using the NASA GEOS-5 LDAS

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Forman, Barton A.; Draper, Clara S.; Liu, Qing

    2013-01-01

    A land data assimilation system (LDAS) can merge satellite observations (or retrievals) of land surface hydrological conditions, including soil moisture, snow, and terrestrial water storage (TWS), into a numerical model of land surface processes. In theory, the output from such a system is superior to estimates based on the observations or the model alone, thereby enhancing our ability to understand, monitor, and predict key elements of the terrestrial water cycle. In practice, however, satellite observations do not correspond directly to the water cycle variables of interest. The present paper addresses various aspects of this seeming mismatch using examples drawn from recent research with the ensemble-based NASA GEOS-5 LDAS. These aspects include (1) the assimilation of coarse-scale observations into higher-resolution land surface models, (2) the partitioning of satellite observations (such as TWS retrievals) into their constituent water cycle components, (3) the forward modeling of microwave brightness temperatures over land for radiance-based soil moisture and snow assimilation, and (4) the selection of the most relevant types of observations for the analysis of a specific water cycle variable that is not observed (such as root zone soil moisture). The solution to these challenges involves the careful construction of an observation operator that maps from the land surface model variables of interest to the space of the assimilated observations.

  17. Leveraging Oceanic and Surface Intensive Field Campaign Data Sets for Validation and Improvement of Recent Hyperspectral IR Satellite Data Products

    NASA Astrophysics Data System (ADS)

    Joseph, E.; Nalli, N. R.; Oyola, M. I.; Morris, V. R.; Sakai, R.

    2014-12-01

    An overview is given of research to validate or improve the retrieval of environmental data records (EDRs) from recently deployed hyperspectral IR satellite sensors such as Suomi NPP Cross-track Infrared Microwave Sounder Suite (CrIMSS). The effort centers around several surface field intensive campaigns that are designed or leveraged for EDR validation. These data include ship-based observations of upper air ozone, pressure, temperature and relative humidity soundings; aerosol and cloud properties; and sea surface temperature. Similar intensive data from two land-based sites are also utilized as well. One site, the Howard University Beltsville site, is at a single point location but has a comprehensive array of observations for an extended period of time. The other land site, presently being deployed by the University at Albany, is under development with limited upper air soundings but will have regionally distributed surface based microwave profiling of temperature and relative humidity on the scale of 10 - 50 km and other standard meteorological observations. Combined these observations provide data that are unique in their wide range including, a variety of meteorological conditions and atmospheric compositions over the ocean and urban-suburban environments. With the distributed surface sites the variability of atmospheric conditions are captured concurrently across a regional spatial scale. Some specific examples are given of comparisons of moisture and temperature correlative EDRs from the satellite sensors and surface based observations. An additional example is given of the use of this data to correct sea surface temperature (SST) retrieval biases from the hyperspectral IR satellite observations due to aerosol contamination.

  18. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    NASA Technical Reports Server (NTRS)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  19. Technical Report Series on Global Modeling and Data Assimilation. Volume 14; A Comparison of GEOS Assimilated Data with FIFE Observations

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Suarez, Max J. (Editor); Schubert, Siegfried D.

    1998-01-01

    First ISLSCP Field Experiment (FIFE) observations have been used to validate the near-surface proper- ties of various versions of the Goddard Earth Observing System (GEOS) Data Assimilation System. The site- averaged FIFE data set extends from May 1987 through November 1989, allowing the investigation of several time scales, including the annual cycle, daily means and diurnal cycles. Furthermore, the development of the daytime convective planetary boundary layer is presented for several days. Monthly variations of the surface energy budget during the summer of 1988 demonstrate the affect of the prescribed surface soil wetness boundary conditions. GEOS data comes from the first frozen version of the assimilation system (GEOS-1 DAS) and two experimental versions of GEOS (v. 2.0 and 2.1) with substantially greater vertical resolution and other changes that influence the boundary layer. This report provides a baseline for future versions of the GEOS data assimilation system that will incorporate a state-of-the-art land surface parameterization. Several suggestions are proposed to improve the generality of future comparisons. These include the use of more diverse field experiment observations and an estimate of gridpoint heterogeneity from the new land surface parameterization.

  20. The distribution of particulate material on Mars

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.

    1991-01-01

    The surface materials on Mars were extensively studied using a variety of spacecraft and Earth-based remote sensing observations. These measurements include: (1) diurnal thermal measurements, used to determine average particle size, rock abundance, and the presence of crusts; (2) radar observations, used to estimate the surface slope distributions, wavelength scale roughness, and density; (3) radio emission observations, used to estimate subsurface density; (4) broadband albedo measurements, used to study the time variation of surface brightness and dust deposition and removal; and (5) color observations, used to infer composition, mixing, and the presence of crusts. Remote sensing observations generally require some degree of modeling to interpret, making them more difficult to interpret than direct observations from the surface. They do, however, provide a means for examining the surface properties over the entire planet and a means of sampling varying depths within the regolith. Albedo and color observations only indicate the properties of the upper-most few microns, but are very sensitive to thin, sometimes emphemeral dust coatings. Thermal observations sample the upper skin depth, generally 2 to 10 cm. Rock abundance measurements give an indirect indication of surface mantling, where the absence of rocks suggests mantles of several meters. Finally, radar and radio emission data can penetrate several meters into the surface, providing an estimate of subsurface density and roughness.

  1. Exploring Mercury's Surface-Bound Exosphere with the Mercury Atmospheric and Surface Composition Spectrometer: AN Overview of Observations during the First Messenger Flyby

    NASA Astrophysics Data System (ADS)

    McClintock, W. E.; Bradley, E. T.; Izenberg, N. R.; Killen, R. M.; Kochte, M. C.; Lankton, M. R.; Mouawad, N.; Sprague, A. L.; Vervack, R. J.

    2008-12-01

    Mercury's surface-bound exosphere is the interface between the planet's surface and the external stimuli that interact with it. Its composition and structure are controlled by surface, magnetosphere, and solar-wind processes. Prior to the MESSENGER mission the exosphere was known to contain H, He, and O from Mariner 10 observations, as well as Na, K, and Ca that were discovered during ground-based observations. Na has been extensively studied since its discovery in 1985, including observations of a neutral Na tail first reported in 2002. Undetected species, including Mg, Fe, Al, and S, are also expected to exist in the exosphere. MESSENGER's initial flyby of Mercury, which occurred on January 14, 2008, offered the first opportunity to measure the planet's neutral tail from space. As the spacecraft approached the planet from the nightside, the UltraViolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) scanned the tail beginning at altitudes of 24,500 km behind Mercury's nightside surface and covering a region of space approximately three planet diameters tall and centered on the Sun-Mercury line. The UVVS measured emissions from Na during the entire observation. It also observed neutral hydrogen beginning approximately 5,000 km above the nightside surface. The spatial distributions of both species were seen to be asymmetric, with enhanced densities occurring in the northern hemisphere. UVVS observations of Ca, which were made as the spacecraft traversed the nightside exosphere, exhibited enhanced emission toward the dawn terminator, with north-south behavior similar to that of Na and H. These observations suggest that the relatively high-energy source processes that give rise to species observed in the tail were localized near the northern and morning hemispheres during the flyby. This inference is supported by magnetic field observations made with the MESSENGER Magnetometer, which observed a strong radial component of the interplanetary magnetic field (Bx) directed antisunward after MESSENGER passed outside the magnetosphere. This magnetic field orientation is expected to result in a greater number of open field lines in the northern hemisphere, preferentially allowing solar wind plasma to impinge upon the surface in that region.

  2. Interactive Computing and Processing of NASA Land Surface Observations Using Google Earth Engine

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Bell, Jordan

    2016-01-01

    Google's Earth Engine offers a "big data" approach to processing large volumes of NASA and other remote sensing products. h\\ps://earthengine.google.com/ Interfaces include a Javascript or Python-based API, useful for accessing and processing over large periods of record for Landsat and MODIS observations. Other data sets are frequently added, including weather and climate model data sets, etc. Demonstrations here focus on exploratory efforts to perform land surface change detection related to severe weather, and other disaster events.

  3. Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max

    2016-01-01

    This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.

  4. Mechanical Properties Degradation of Teflon(Trademark) FEP Returned from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; deGroh, Kim K.; Townsend, Jacqueline A.; Wang, L. Len

    1998-01-01

    After 6.8 years on orbit, degradation has been observed in the mechanical properties of second-surface metalized Teflon(Reg) FEP (fluorinated ethylene propylene) used on the Hubble Space Telescope (HST) on the outer surface of the multi-layer insulation (MLI) blankets and on radiator surfaces. Cracking of FEP surfaces on HST was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission (SM1) conducted 3.6 years after HST was put into orbit. Astronaut observations and photographs from the second servicing mission (SM2), conducted after 6.8 years on orbit, revealed severe cracks in the FEP surfaces of the MLI on many locations around the telescope. This paper describes results of mechanical properties testing of FEP surfaces exposed for 3.6 years and 6.8 years to the space environment on HST. These tests include tensile testing, surface micro-hardness testing, and bend testing.

  5. 50 CFR 216.244 - Mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... watch whose duties include observing the water surface around the vessel. (vii) All surface ships... lookout shall employ visual search procedures employing a scanning methodology in accordance with the Lookout Training Handbook (NAVEDTRA 12968-D). Surface lookouts should scan the water from the ship to the...

  6. 50 CFR 216.244 - Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... watch whose duties include observing the water surface around the vessel. (vii) All surface ships... lookout shall employ visual search procedures employing a scanning methodology in accordance with the Lookout Training Handbook (NAVEDTRA 12968-D). Surface lookouts should scan the water from the ship to the...

  7. The Use of CASES-97 Observations to Assess and Parameterize the Impact of Land-Surface Heterogeneity on Area-Average Surface Heat Fluxes for Large-Scale Coupled Atmosphere-Hydrology Models

    NASA Technical Reports Server (NTRS)

    Chen, Fei; Yates, David; LeMone, Margaret

    2001-01-01

    To understand the effects of land-surface heterogeneity and the interactions between the land-surface and the planetary boundary layer at different scales, we develop a multiscale data set. This data set, based on the Cooperative Atmosphere-Surface Exchange Study (CASES97) observations, includes atmospheric, surface, and sub-surface observations obtained from a dense observation network covering a large region on the order of 100 km. We use this data set to drive three land-surface models (LSMs) to generate multi-scale (with three resolutions of 1, 5, and 10 kilometers) gridded surface heat flux maps for the CASES area. Upon validating these flux maps with measurements from surface station and aircraft, we utilize them to investigate several approaches for estimating the area-integrated surface heat flux for the CASES97 domain of 71x74 square kilometers, which is crucial for land surface model development/validation and area water and energy budget studies. This research is aimed at understanding the relative contribution of random turbulence versus organized mesoscale circulations to the area-integrated surface flux at the scale of 100 kilometers, and identifying the most important effective parameters for characterizing the subgrid-scale variability for large-scale atmosphere-hydrology models.

  8. An Investigation of Concrete Deterioration at South Florida Water Management District Structure S65E

    DTIC Science & Technology

    2014-02-01

    24 Figure 19. SEM micrographs of deterioration observed on fracture surface including borehole near exposed surface and transition between...photomicrographs of repaired concrete surface. ........................................ 36 Figure A6. Supplemental photomicrographs of fractured sample...38 Figure B1. Supplemental SEM micrographs of inner non-deteriorated concrete fracture surface

  9. An investigation of the observability of ocean-surface parameters using GEOS-3 backscatter data

    NASA Technical Reports Server (NTRS)

    Miller, L. S.; Priester, R. W.

    1978-01-01

    The degree to which ocean surface roughness can be synoptically observed through use of the information extracted from the GEOS-3 backscattered waveform data was evaluated. Algorithms are given for use in estimating the radar sensed waveheight distribution or ocean-surface impulse response. Other factors discussed include comparisons between theoretical and experimental radar cross section values, sea state bias effects, spatial variability of significant waveheight data, and sensor-related considerations.

  10. Intense deformation field at oceanic front inferred from directional sea surface roughness observations

    NASA Astrophysics Data System (ADS)

    Rascle, Nicolas; Molemaker, Jeroen; Marié, Louis; Nouguier, Frédéric; Chapron, Bertrand; Lund, Björn; Mouche, Alexis

    2017-06-01

    Fine-scale current gradients at the ocean surface can be observed by sea surface roughness. More specifically, directional surface roughness anomalies are related to the different horizontal current gradient components. This paper reports results from a dedicated experiment during the Lagrangian Submesoscale Experiment (LASER) drifter deployment. A very sharp front, 50 m wide, is detected simultaneously in drifter trajectories, sea surface temperature, and sea surface roughness. A new observational method is applied, using Sun glitter reflections during multiple airplane passes to reconstruct the multiangle roughness anomaly. This multiangle anomaly is consistent with wave-current interactions over a front, including both cross-front convergence and along-front shear with cyclonic vorticity. Qualitatively, results agree with drifters and X-band radar observations. Quantitatively, the sharpness of roughness anomaly suggests intense current gradients, 0.3 m s-1 over the 50 m wide front. This work opens new perspectives for monitoring intense oceanic fronts using drones or satellite constellations.

  11. Influence of aerosols, clouds, and sunglint on polarization spectra of Earthshine

    NASA Astrophysics Data System (ADS)

    Emde, Claudia; Buras-Schnell, Robert; Sterzik, Michael; Bagnulo, Stefano

    2017-08-01

    Context. Ground-based observations of the Earthshine, I.e., the light scattered by Earth to the Moon, and then reflected back to Earth, simulate space observations of our planet and represent a powerful benchmark for the studies of Earth-like planets. Earthshine spectra are strongly linearly polarized, owing to scattering by molecules and small particles in the atmosphere of the Earth and surface reflection, and may allow us to measure global atmospheric and surface properties of planet Earth. Aims: We aim to interpret already published spectropolarimetric observations of the Earthshine by comparing them with new radiative transfer model simulations including a fully realistic three-dimensional (3D) surface-atmosphere model for planet Earth. Methods: We used the highly advanced Monte Carlo radiative transfer model MYSTIC to simulate polarized radiative transfer in the atmosphere of the Earth without approximations regarding the geometry, taking into account the polarization from surface reflection and multiple scattering by molecules, aerosol particles, cloud droplets, and ice crystals. Results: We have shown that Earth spectropolarimetry is highly sensitive to all these input parameters, and we have presented simulations of a fully realistic Earth atmosphere-surface model including 3D cloud fields and two-dimensional (2D) surface property maps. Our modeling results show that scattering in high ice water clouds and reflection from the ocean surface are crucial to explain the continuum polarization at longer wavelengths as has been reported in Earthshine observations taken at the Very Large Telescope in 2011 (3.8% and 6.6% at 800 nm, depending on which part of Earth was visible from the Moon at the time of the observations). We found that the relatively high degree of polarization of 6.6% can be attributed to light reflected by the ocean surface in the sunglint region. High ice-water clouds reduce the amount of absorption in the O2A band and thus explain the weak O2A band feature in the observations.

  12. High-resolution CO2 and CH4 flux inverse modeling combining GOSAT, OCO-2 and ground-based observations

    NASA Astrophysics Data System (ADS)

    Maksyutov, S. S.; Oda, T.; Saito, M.; Ito, A.; Janardanan Achari, R.; Sasakawa, M.; Machida, T.; Kaiser, J. W.; Belikov, D.; Valsala, V.; O'Dell, C.; Yoshida, Y.; Matsunaga, T.

    2017-12-01

    We develop a high-resolution CO2 and CH4 flux inversion system that is based on the Lagrangian-Eulerian coupled tracer transport model, and is designed to estimate surface fluxes from atmospheric CO2 and CH4 data observed by the GOSAT and OCO-2 satellites and by global in-situ networks, including observation in Siberia. We use the Lagrangian particle dispersion model (LPDM) FLEXPART to estimate the surface flux footprints for each observation at 0.1-degree spatial resolution for three days of transport. The LPDM is coupled to a global atmospheric tracer transport model (NIES-TM). The adjoint of the coupled transport model is used in an iterative optimization procedure based on either quasi-Newtonian algorithm or singular value decomposition. Combining surface and satellite data for use in inversion requires correcting for biases present in satellite observation data, that is done in a two-step procedure. As a first step, bi-weekly corrections to prior flux fields are estimated for the period of 2009 to 2015 from in-situ CO2 and CH4 data from global observation network, included in Obspack-GVP (for CO2), WDCGG (CH4) and JR-STATION datasets. High-resolution prior fluxes were prepared for anthropogenic emissions (ODIAC and EDGAR), biomass burning (GFAS), and the terrestrial biosphere. The terrestrial biosphere flux was constructed using a vegetation mosaic map and separate simulations of CO2 fluxes by the VISIT model for each vegetation type present in a grid. The prior flux uncertainty for land is scaled proportionally to monthly mean GPP by the MODIS product for CO2 and EDGAR emissions for CH4. Use of the high-resolution transport leads to improved representation of the anthropogenic plumes, often observed at continental continuous observation sites. OCO-2 observations are aggregated to 1 second averages, to match the 0.1 degree resolution of the transport model. Before including satellite observations in the inversion, the monthly varying latitude-dependent bias is estimated by comparing satellite observations with column abundance simulated with surface fluxes optimized by surface inversion. The bias-corrected GOSAT and OCO-2 data are then used in the inversion together with ground-based observations. Application of the bias correction to satellite data reduces the difference between the flux estimates based on ground-based and satellite observations.

  13. Observation duration analysis for Earth surface features from a Moon-based platform

    NASA Astrophysics Data System (ADS)

    Ye, Hanlin; Guo, Huadong; Liu, Guang; Ren, Yuanzhen

    2018-07-01

    Earth System Science is a discipline that performs holistic and comprehensive research on various components of the Earth. One of a key issue for the Earth monitoring and observation is to enhance the observation duration, the time intervals during which the Earth surface features can be observed by sensors. In this work, we propose to utilise the Moon as an Earth observation platform. Thanks to the long distance between the Earth and the Moon, and the vast space on the lunar surface which is suitable for sensor installation, this Earth observation platform could have large spatial coverage, long temporal duration, and could perform multi-layer detection of the Earth. The line of sight between a proposed Moon-based platform and the Earth will change with different lunar surface positions; therefore, in this work, the position of the lunar surface was divided into four regions, including one full observation region and three incomplete observation regions. As existing methods are not able to perform global-scale observations, a Boolean matrix method was established to calculate the necessary observation durations from a Moon-based platform. Based on Jet Propulsion Laboratory (JPL) ephemerides and Earth Orientation Parameters (EOP), a formula was developed to describe the geometrical relationship between the Moon-based platform and Earth surface features in the unified spatial coordinate system and the unified time system. In addition, we compared the observation geometries at different positions on the lunar surface and two parameters that are vital to observation duration calculations were considered. Finally, an analysis method was developed. We found that the observation duration of a given Earth surface feature shows little difference regardless of sensor position within the full observation region. However, the observation duration for sensors in the incomplete observation regions is reduced by at least half. In summary, our results demonstrate the suitability of a Moon-based platform located in the full observation region.

  14. Microgravity: Teacher's guide with activities for physical science

    NASA Technical Reports Server (NTRS)

    Vogt, Gregory L.; Wargo, Michael J.; Rosenberg, Carla B. (Editor)

    1995-01-01

    This guide is an educational tool for teachers of grades 5 through 12. It is an introduction to microgravity and its application to spaceborne laboratory experiments. Specific payloads and missions are mentioned with limited detail, including Spacelab, the International Microgravity Laboratory, and the United States Microgravity Laboratory. Activities for students demonstrate chemistry, mathematics, and physics applications of microgravity. Activity objectives include: modeling how satellites orbit Earth; demonstrating that free fall eliminates the local effects of gravity; measuring the acceleration environments created by different motions; using a plasma sheet to observe acceleration forces that are experienced on board a space vehicle; demonstrating how mass can be measured in microgravity; feeling how inertia affects acceleration; observing the gravity-driven fluid flow that is caused by differences in solution density; studying surface tension and the fluid flows caused by differences in surface tension; illustrating the effects of gravity on the burning rate of candles; observing candle flame properties in free fall; measuring the contact angle of a fluid; illustrating the effects of gravity and surface tension on fiber pulling; observing crystal growth phenomena in a 1-g environment; investigating temperature effects on crystal growth; and observing crystal nucleation and growth rate during directional solidification. Each activity includes a background section, procedure, and follow-up questions.

  15. Electrostatic dust transport on the surfaces of airless bodies

    NASA Astrophysics Data System (ADS)

    Wang, X.; Schwan, J.; Hsu, H. W.; Horanyi, M.

    2015-12-01

    The surfaces of airless bodies are charged due to the exposure to solar wind plasma and UV radiation. Dust particles on the regolith of these surfaces can become charged, and may move and even get lofted due to electrostatic force. Electrostatic dust transport has been a long-standing problem that may be related to many observed phenomena on the surfaces of airless planetary bodies, including the lunar horizon glow, the dust ponds on asteroid Eros, the spokes in Saturn's rings, and more recently, the collection of dust particles ejected off Comet 67P, observed by Rosetta. In order to resolve these puzzles, a handful of laboratory experiments have been performed in the past and demonstrated that dust indeed moves and lifts from surfaces exposed to plasma. However, the exact mechanisms for the mobilization of dust particles still remain a mystery. Current charging models, including the so-called "shared charge model" and the charge fluctuation theory, will be discussed. It is found that neither of these models can explain the results from either laboratory experiments or in-situ observations. Recently, single dust trajectories were captured with our new dust experiments, enabling novel micro-scale investigations. The particles' initial launch speeds and size distributions are analyzed, and a new so-called "patched charge model" is proposed to explain our findings. We identify the role of plasma micro-cavities that are formed in-between neighboring dust particles. The emitted secondary or photo- electrons are proposed to be absorbed inside the micro-cavities, resulting in significant charge accumulation on the exposed patches of the surfaces of neighboring particles. The resulting enhanced Coulomb force (repulsion) between particles is likely the dominant force to mobilize and lift them off the surface. The role of other properties, including surface morphology, cohesion and photoelectron charging, will also be discussed.

  16. An observational study of frequency of provider hand contacts in child care facilities in North Carolina and South Carolina.

    PubMed

    Fraser, Angela; Wohlgenant, Kelly; Cates, Sheryl; Chen, Xi; Jaykus, Lee-Ann; Li, You; Chapman, Benjamin

    2015-02-01

    Children enrolled in child care are 2.3-3.5 times more likely to experience acute gastrointestinal illness than children cared for in their own homes. The purpose of this study was to determine the frequency surfaces were touched by child care providers to identify surfaces that should be cleaned and sanitized. Observation data from a convenience sample of 37 child care facilities in North Carolina and South Carolina were analyzed. Trained data collectors used iPods (Apple, Cupertino, CA) to record hand touch events of 1 child care provider for 45 minutes in up to 2 classrooms in each facility. Across the 37 facilities, 10,134 hand contacts were observed in 51 classrooms. Most (4,536) were contacts with porous surfaces, with an average of 88.9 events per classroom observation. The most frequently touched porous surface was children's clothing. The most frequently touched nonporous surface was food contact surfaces (18.6 contacts/observation). Surfaces commonly identified as high-touch surfaces (ie, light switches, handrails, doorknobs) were touched the least. General cleaning and sanitizing guidelines should include detailed procedures for cleaning and sanitizing high-touch surfaces (ie, clothes, furniture, soft toys). Guidelines are available for nonporous surfaces but not for porous surfaces (eg, clothing, carpeting). Additional research is needed to inform the development of evidence-based practices to effectively treat porous surfaces. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  17. Contents of the JPL Distributed Active Archive Center (DAAC) archive, version 2-91

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)

    1991-01-01

    The Distributed Active Archive Center (DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea surface height, surface wind vector, sea surface temperature, atmospheric liquid water, and surface pigment concentration. The Jet Propulsion Laboratory DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for the Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.

  18. A Comparison of Statistical Techniques for Combining Modeled and Observed Concentrations to Create High-Resolution Ozone Air Quality Surfaces

    EPA Science Inventory

    Air quality surfaces representing pollutant concentrations across space and time are needed for many applications, including tracking trends and relating air quality to human and ecosystem health. The spatial and temporal characteristics of these surfaces may reveal new informat...

  19. Thermal Infrared Observations and Thermophysical Modeling of Phobos

    NASA Astrophysics Data System (ADS)

    Smith, Nathan Michael; Edwards, Christopher Scott; Mommert, Michael; Trilling, David E.; Glotch, Timothy

    2016-10-01

    Mars-observing spacecraft have the opportunity to study Phobos from Mars orbit, and have produced a sizeable record of observations using the same instruments that study the surface of the planet below. However, these observations are generally infrequent, acquired only rarely over each mission.Using observations gathered by Mars Global Surveyor's (MGS) Thermal Emission Spectrometer (TES), we can investigate the fine layer of regolith that blankets Phobos' surface, and characterize its thermal properties. The mapping of TES observations to footprints on the Phobos surface has not previously been undertaken, and must consider the orientation and position of both MGS and Phobos, and TES's pointing mirror angle. Approximately 300 fully resolved observations are available covering a significant subset of Phobos' surface at a variety of scales.The properties of the surface regolith, such as grain size, density, and conductivity, determine how heat is absorbed, transferred, and reradiated to space. Thermophysical modeling allows us to simulate these processes and predict, for a given set of assumed parameters, how the observed thermal infrared spectra will appear. By comparing models to observations, we can constrain the properties of the regolith, and see how these properties vary with depth, as well as regionally across the Phobos surface. These constraints are key to understanding how Phobos formed and evolved over time, which in turn will help inform the environment and processes that shaped the solar system as a whole.We have developed a thermophysical model of Phobos adapted from a model used for unresolved observations of asteroids. The model has been modified to integrate thermal infrared flux across each observed portion of Phobos. It will include the effects of surface roughness, temperature-dependent conductivity, as well as radiation scattered, reflected, and thermally emitted from the Martian surface. Combining this model with the newly-mapped TES observations will reveal variations of thermophysical parameters across the surface. We will present our results on what parameters best reproduce TES's measurements.

  20. Testing for the Possible Influence of Unknown Climate Forcings upon Global Temperature Increases from 1950-2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Bruce T.; Knight, Jeff R.; Ringer, Mark A.

    2012-10-15

    Global-scale variations in the climate system over the last half of the twentieth century, including long-term increases in global-mean near-surface temperatures, are consistent with concurrent human-induced emissions of radiatively active gases and aerosols. However, such consistency does not preclude the possible influence of other forcing agents, including internal modes of climate variability or unaccounted for aerosol effects. To test whether other unknown forcing agents may have contributed to multidecadal increases in global-mean near-surface temperatures from 1950 to 2000, data pertaining to observed changes in global-scale sea surface temperatures and observed changes in radiatively active atmospheric constituents are incorporated into numericalmore » global climate models. Results indicate that the radiative forcing needed to produce the observed long-term trends in sea surface temperatures—and global-mean near-surface temperatures—is provided predominantly by known changes in greenhouse gases and aerosols. Further, results indicate that less than 10% of the long-term historical increase in global-mean near-surface temperatures over the last half of the twentieth century could have been the result of internal climate variability. In addition, they indicate that less than 25%of the total radiative forcing needed to produce the observed long-term trend in global-mean near-surface temperatures could have been provided by changes in net radiative forcing from unknown sources (either positive or negative). These results, which are derived from simple energy balance requirements, emphasize the important role humans have played in modifying the global climate over the last half of the twentieth century.« less

  1. Modelling Internal Heterogeneities in Debris-Covered Glaciers: the Potential to Link Morphology and Climate

    NASA Astrophysics Data System (ADS)

    Stuurman, C. M.; Holt, J.; Levy, J.

    2016-12-01

    On Earth and Mars, debris-covered glaciers (DCGs) often exhibit arcuate ridges transverse to the flow direction. Additionally, there exists some evidence linking internal structure (which is controlled in part by climate) in DCGs with surface microtopography. A better understanding of the relationship between englacial debris bands, compressional stresses, and debris-covered glacier microtopography will augment understanding of formational environments and mechanisms for terrestrial and martian DCGs. In order to better understand relationships between DCG surface morphology and internal debris bands, we combine field observations with finite-element modeling techniques to relate internal structure of DCGs to their surface morphologies. A geophysical survey including time-domain electromagnetic and ground-penetrating radar techniques of the Galena Creek Rock Glacier, WY was conducted over two field seasons in 2015/2016. Geomorphic analysis by surface observation and photogrammetry, including examination of a cirque-based thermokarst, was used to guide and complement geophysical sounding methods. Very clean ice below a 1 m thick layer of debris was directly observed on the walls of a 40 m diameter thermokarst pond near the accumulation zone. An englacial debris band 0.7 m thick dipping 30o intersected the wall of the pond. Transverse ridges occur at varying ridge-to-ridge wavelengths at different locations on the glacier. The GPR data supports the idea that surface ridges correlate with the intersection of debris layers and the surface. Modelling evidence is consistent with the observation of ridges at debris-layer/surface intersections, with compressional stresses buckling ice up-stream of the debris band.

  2. GRAVITATIONAL CONTRACTION VERSUS SUPERNOVA DRIVING AND THE ORIGIN OF THE VELOCITY DISPERSION–SIZE RELATION IN MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibáñez-Mejía, Juan C.; Mac Low, Mordecai-Mark; Klessen, Ralf S.

    Molecular cloud (MC) observations show that clouds have non-thermal velocity dispersions that scale with the cloud size as σ ∝ R {sup 1/2} at a constant surface density, and for varying surface density scale with both the cloud’s size and surface density, σ {sup 2} ∝ R Σ. The energy source driving these chaotic motions remains poorly understood. We describe the velocity dispersions observed in a cloud population formed in a numerical simulation of a magnetized, stratified, supernova (SN)-driven, interstellar medium, including diffuse heating and radiative cooling, before and after we include the effects of the self-gravity of the gas.more » We compare the relationships between velocity dispersion, size, and surface density measured in the simulated cloud population to those found in observations of Galactic MCs. Our simulations prior to the onset of self-gravity suggest that external SN explosions alone do not drive turbulent motions of the observed magnitudes within dense clouds. On the other hand, self-gravity induces non-thermal motions as gravitationally bound clouds begin to collapse in our model, approaching the observed relations between velocity dispersion, size, and surface density. Energy conservation suggests that the observed behavior is consistent with the kinetic energy being proportional to the gravitational energy. However, the clouds in our model show no sign of reaching a stable equilibrium state at any time, even for strongly magnetized clouds. We conclude that gravitationally bound MCs are always in a state of gravitational contraction and their properties are a natural result of this chaotic collapse. In order to agree with observed star formation efficiencies, this process must be terminated by the early destruction of the clouds, presumably from internal stellar feedback.« less

  3. Enhancing the Arctic Mean Sea Surface and Mean Dynamic Topography with CryoSat-2 Data

    NASA Astrophysics Data System (ADS)

    Stenseng, Lars; Andersen, Ole B.; Knudsen, Per

    2014-05-01

    A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models that includes CryoSat-2 data to improve the reliability in the Arctic Ocean. In an attempt to extrapolate across the gap above 82 degrees latitude the previously models included ICESat data, gravimetrical geoids, ocean circulation models and various combinations hereof. Unfortunately cloud cover and the short periods of operation has a negative effect on the number of ICESat sea surface observations. DTU13MSS and DTU13MDT are the new generation of state of the art global high-resolution models that includes CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.

  4. Examining Environmental Gradients with satellite data in permafrost regions - the current state of the ESA GlobPermafrost initative

    NASA Astrophysics Data System (ADS)

    Grosse, G.; Bartsch, A.; Kääb, A.; Westermann, S.; Strozzi, T.; Wiesmann, A.; Duguay, C. R.; Seifert, F. M.; Obu, J.; Nitze, I.; Heim, B.; Haas, A.; Widhalm, B.

    2017-12-01

    Permafrost cannot be directly detected from space, but many surface features of permafrost terrains and typical periglacial landforms are observable with a variety of EO sensors ranging from very high to medium resolution at various wavelengths. In addition, landscape dynamics associated with permafrost changes and geophysical variables relevant for characterizing the state of permafrost, such as land surface temperature or freeze-thaw state can be observed with spaceborne Earth Observation. Suitable regions to examine environmental gradients across the Arctic have been defined in a community white paper (Bartsch et al. 2014, hdl:10013/epic.45648.d001). These transects have been revised and adjusted within the DUE GlobPermafrost initiative of the European Space Agency. The ESA DUE GlobPermafrost project develops, validates and implements Earth Observation (EO) products to support research communities and international organisations in their work on better understanding permafrost characteristics and dynamics. Prototype product cases will cover different aspects of permafrost by integrating in situ measurements of subsurface and surface properties, Earth Observation, and modelling to provide a better understanding of permafrost today. The project will extend local process and permafrost monitoring to broader spatial domains, support permafrost distribution modelling, and help to implement permafrost landscape and feature mapping in a GIS framework. It will also complement active layer and thermal observing networks. Both lowland (latitudinal) and mountain (altitudinal) permafrost issues are addressed. The status of the Permafrost Information System and first results will be presented. Prototypes of GlobPermafrost datasets include: Modelled mean annual ground temperature by use of land surface temperature and snow water equivalent from satellites Land surface characterization including shrub height, land cover and parameters related to surface roughness Trends from Landsat time-series over selected transects For selected sites: subsidence, ground fast lake ice, land surface features and rock glacier monitoring

  5. Research Vessel Meteorological and Oceanographic Systems Support Satellite and Model Validation Studies

    NASA Astrophysics Data System (ADS)

    Smith, S. R.; Lopez, N.; Bourassa, M. A.; Rolph, J.; Briggs, K.

    2012-12-01

    The research vessel data center at the Florida State University routinely acquires, quality controls, and distributes underway surface meteorological and oceanographic observations from vessels. The activities of the center are coordinated by the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative in partnership with the Rolling Deck to Repository (R2R) project. The data center evaluates the quality of the observations, collects essential metadata, provides data quality feedback to vessel operators, and ensures the long-term data preservation at the National Oceanographic Data Center. A description of the SAMOS data stewardship protocols will be provided, including dynamic web tools that ensure users can select the highest quality observations from over 30 vessels presently recruited to the SAMOS initiative. Research vessels provide underway observations at high-temporal frequency (1 min. sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Recruited vessels collect a high concentration of data within the U.S. continental shelf and also frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern Ocean, Arctic, South Atlantic and Pacific). The unique quality and sampling locations of research vessel observations and there independence from many models and products (RV data are rarely distributed via normal marine weather reports) makes them ideal for validation studies. We will present comparisons between research vessel observations and model estimates of the sea surface temperature and salinity in the Gulf of Mexico. The analysis reveals an underestimation of the freshwater input to the Gulf from rivers, resulting in an overestimation of near coastal salinity in the model. Additional comparisons between surface atmospheric products derived from satellite observations and the underway research vessel observations will be shown. The strengths and limitations of research observations for validation studies will be highlighted through these case studies.

  6. High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea

    NASA Astrophysics Data System (ADS)

    Park, Moon-Soo; Park, Sung-Hwa; Chae, Jung-Hoon; Choi, Min-Hyeok; Song, Yunyoung; Kang, Minsoo; Roh, Joon-Woo

    2017-04-01

    To improve our knowledge of urban meteorology, including those processes applicable to high-resolution meteorological models in the Seoul Metropolitan Area (SMA), the Weather Information Service Engine (WISE) Urban Meteorological Observation System (UMS-Seoul) has been designed and installed. The UMS-Seoul incorporates 14 surface energy balance (EB) systems, 7 surface-based three-dimensional (3-D) meteorological observation systems and applied meteorological (AP) observation systems, and the existing surface-based meteorological observation network. The EB system consists of a radiation balance system, sonic anemometers, infrared CO2/H2O gas analyzers, and many sensors measuring the wind speed and direction, temperature and humidity, precipitation, and air pressure. The EB-produced radiation, meteorological, and turbulence data will be used to quantify the surface EB according to land use and to improve the boundary-layer and surface processes in meteorological models. The 3-D system, composed of a wind lidar, microwave radiometer, aerosol lidar, or ceilometer, produces the cloud height, vertical profiles of backscatter by aerosols, wind speed and direction, temperature, humidity, and liquid water content. It will be used for high-resolution reanalysis data based on observations and for the improvement of the boundary-layer, radiation, and microphysics processes in meteorological models. The AP system includes road weather information, mosquito activity, water quality, and agrometeorological observation instruments. The standardized metadata for networks and stations are documented and renewed periodically to provide a detailed observation environment. The UMS-Seoul data are designed to support real-time acquisition and display and automatically quality check within 10 min from observation. After the quality check, data can be distributed to relevant potential users such as researchers and policy makers. Finally, two case studies demonstrate that the observed data have a great potential to help to understand the boundary-layer structures more deeply, improve the performance of high-resolution meteorological models, and provide useful information customized based on the user demands in the SMA.

  7. Two Surface Temperature Retrieval Methods Compared Over Agricultural Lands

    NASA Technical Reports Server (NTRS)

    French, Andrew N.; Schmugge, Thomas J.; Jacob, Frederic; Ogawa, Kenta; Houser, Paul R. (Technical Monitor)

    2002-01-01

    Accurate, spatially distributed surface temperatures are required for modeling evapotranspiration (ET) over agricultural fields under wide ranging conditions, including stressed and unstressed vegetation. Modeling approaches that use surface temperature observations, however, have the burden of estimating surface emissivities. Emissivity estimation, the subject of much recent research, is facilitated by observations in multiple thermal infrared bands. But it is nevertheless a difficult task. Using observations from a multiband thermal sensor, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), estimated surface emissivities and temperatures are retrieved in two different ways: the temperature emissivity separation approach (TES) and the normalized emissivity approach (NEM). Both rely upon empirical relationships, but the assumed relationships are different. TES relies upon a relationship between the minimum spectral emissivity and the range of observed emissivities. NEM relies upon an assumption that at least one thermal band has a pre-determined emissivity (close to 1.0). The benefits and consequences of each approach will be demonstrated for two different landscapes: one in central Oklahoma, USA and another in southern New Mexico.

  8. Assimilation of Freeze - Thaw Observations into the NASA Catchment Land Surface Model

    NASA Technical Reports Server (NTRS)

    Farhadi, Leila; Reichle, Rolf H.; DeLannoy, Gabrielle J. M.; Kimball, John S.

    2014-01-01

    The land surface freeze-thaw (F-T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, we developed an F-T assimilation algorithm for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F-T state in the GEOS-5 Catchment land surface model. The F-T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F-T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F-T observations. The assimilation of perfect (error-free) F-T observations reduced the root-mean-square errors (RMSE) of surface temperature and soil temperature by 0.206 C and 0.061 C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7 percent and 3.1 percent, respectively). For a maximum classification error (CEmax) of 10 percent in the synthetic F-T observations, the F-T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178 C and 0.036 C, respectively. For CEmax=20 percent, the F-T assimilation still reduces the RMSE of model surface temperature estimates by 0.149 C but yields no improvement over the model soil temperature estimates. The F-T assimilation scheme is being developed to exploit planned operational F-T products from the NASA Soil Moisture Active Passive (SMAP) mission.

  9. The CEOS-Land Surface Imaging Constellation Portal for GEOSS: A resource for land surface imaging system information and data access

    USGS Publications Warehouse

    Holm, Thomas; Gallo, Kevin P.; Bailey, Bryan

    2010-01-01

    The Committee on Earth Observation Satellites is an international group that coordinates civil space-borne observations of the Earth, and provides the space component of the Global Earth Observing System of Systems (GEOSS). The CEOS Virtual Constellations concept was implemented in an effort to engage and coordinate disparate Earth observing programs of CEOS member agencies and ultimately facilitate their contribution in supplying the space-based observations required to satisfy the requirements of the GEOSS. The CEOS initially established Study Teams for four prototype constellations that included precipitation, land surface imaging, ocean surface topography, and atmospheric composition. The basic mission of the Land Surface Imaging (LSI) Constellation [1] is to promote the efficient, effective, and comprehensive collection, distribution, and application of space-acquired image data of the global land surface, especially to meet societal needs of the global population, such as those addressed by the nine Group on Earth Observations (GEO) Societal Benefit Areas (SBAs) of agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather. The LSI Constellation Portal is the result of an effort to address important goals within the LSI Constellation mission and provide resources to assist in planning for future space missions that might further contribute to meeting those goals.

  10. Surface modification to prevent oxide scale spallation

    DOEpatents

    Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A

    2013-07-16

    A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.

  11. Sensitivity analysis of observed reflectivity to ice particle surface roughness using MISR satellite observations

    NASA Astrophysics Data System (ADS)

    Bell, A.; Hioki, S.; Wang, Y.; Yang, P.; Di Girolamo, L.

    2016-12-01

    Previous studies found that including ice particle surface roughness in forward light scattering calculations significantly reduces the differences between observed and simulated polarimetric and radiometric observations. While it is suggested that some degree of roughness is desirable, the appropriate degree of surface roughness to be assumed in operational cloud property retrievals and the sensitivity of retrieval products to this assumption remains uncertain. In an effort to extricate this ambiguity, we will present a sensitivity analysis of space-borne multi-angle observations of reflectivity, to varying degrees of surface roughness. This process is two fold. First, sampling information and statistics of Multi-angle Imaging SpectroRadiometer (MISR) sensor data aboard the Terra platform, will be used to define the most coming viewing observation geometries. Using these defined geometries, reflectivity will be simulated for multiple degrees of roughness using results from adding-doubling radiative transfer simulations. Sensitivity of simulated reflectivity to surface roughness can then be quantified, thus yielding a more robust retrieval system. Secondly, sensitivity of the inverse problem will be analyzed. Spherical albedo values will be computed by feeding blocks of MISR data comprising cloudy pixels over ocean into the retrieval system, with assumed values of surface roughness. The sensitivity of spherical albedo to the inclusion of surface roughness can then be quantified, and the accuracy of retrieved parameters can be determined.

  12. Utility of Lava Tubes on Other Worlds

    NASA Technical Reports Server (NTRS)

    Walden, Bryce E.; Billings, T. L.; York, Cheryl Lynn; Gillett, S. L.; Herbert, M. V.

    1998-01-01

    On Mars, as on Earth, lava tubes are found in the extensive lava fields associated with shield volcanism. Lunar lava-tube traces are located near mare-highland boundaries, giving access to a variety of minerals and other resources, including steep slopes, prominent heights for local area communications and observation, large-surface areas in shade, and abundant basalt plains suitable for landing sites, mass-drivers, surface transportation, regolith harvesting, and other uses. Methods for detecting lava tubes include visual observations of collapse trenches and skylights, ground-penetrating radar, gravimetry, magnetometry, seismography, atmospheric effects, laser, lidar, infrared, and human or robotic exploration.

  13. Driving CO2 to a Quasi-Condensed Phase at the Interface between a Nanoparticle Surface and a Metal-Organic Framework at 1 bar and 298 K.

    PubMed

    Lee, Hiang Kwee; Lee, Yih Hong; Morabito, Joseph V; Liu, Yejing; Koh, Charlynn Sher Lin; Phang, In Yee; Pedireddy, Srikanth; Han, Xuemei; Chou, Lien-Yang; Tsung, Chia-Kuang; Ling, Xing Yi

    2017-08-23

    We demonstrate a molecular-level observation of driving CO 2 molecules into a quasi-condensed phase on the solid surface of metal nanoparticles (NP) under ambient conditions of 1 bar and 298 K. This is achieved via a CO 2 accumulation in the interface between a metal-organic framework (MOF) and a metal NP surface formed by coating NPs with a MOF. Using real-time surface-enhanced Raman scattering spectroscopy, a >18-fold enhancement of surface coverage of CO 2 is observed at the interface. The high surface concentration leads CO 2 molecules to be in close proximity with the probe molecules on the metal surface (4-methylbenzenethiol), and transforms CO 2 molecules into a bent conformation without the formation of chemical bonds. Such linear-to-bent transition of CO 2 is unprecedented at ambient conditions in the absence of chemical bond formation, and is commonly observed only in pressurized systems (>10 5 bar). The molecular-level observation of a quasi-condensed phase induced by MOF coating could impact the future design of hybrid materials in diverse applications, including catalytic CO 2 conversion and ambient solid-gas operation.

  14. Contents of the NASA ocean data system archive, version 11-90

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)

    1990-01-01

    The National Aeronautics and Space Administration (NASA) Ocean Data System (NODS) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and surface pigment concentration. NODS will become the Data Archive and Distribution Service of the JPL Distributed Active Archive Center for the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.

  15. Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties.

    PubMed

    Zhang, Z; Fenter, P; Cheng, L; Sturchio, N C; Bedzyk, M J; Predota, M; Bandura, A; Kubicki, J D; Lvov, S N; Cummings, P T; Chialvo, A A; Ridley, M K; Bénézeth, P; Anovitz, L; Palmer, D A; Machesky, M L; Wesolowski, D J

    2004-06-08

    A comprehensive picture of the interface between aqueous solutions and the (110) surface of rutile (alpha-TiO2) is being developed by combining molecular-scale and macroscopic approaches, including experimental measurements, quantum calculations, molecular simulations, and Gouy-Chapman-Stern models. In situ X-ray reflectivity and X-ray standing-wave measurements are used to define the atomic arrangement of adsorbed ions, the coordination of interfacial water molecules, and substrate surface termination and structure. Ab initio calculations and molecular dynamics simulations, validated through direct comparison with the X-ray results, are used to predict ion distributions not measured experimentally. Potentiometric titration and ion adsorption results for rutile powders having predominant (110) surface expression provide macroscopic constraints of electrical double layer (EDL) properties (e.g., proton release) which are evaluated by comparison with a three-layer EDL model including surface oxygen proton affinities calculated using ab initio bond lengths and partial charges. These results allow a direct correlation of the three-dimensional, crystallographically controlled arrangements of various species (H2O, Na+, Rb+, Ca2+, Sr2+, Zn2+, Y3+, Nd3+) with macroscopic observables (H+ release, metal uptake, zeta potential) and thermodynamic/electrostatic constraints. All cations are found to be adsorbed as "inner sphere" species bonded directly to surface oxygen atoms, while the specific binding geometries and reaction stoichiometries are dependent on ionic radius. Ternary surface complexes of sorbed cations with electrolyte anions are not observed. Finally, surface oxygen proton affinities computed using the MUSIC model are improved by incorporation of ab initio bond lengths and hydrogen bonding information derived from MD simulations. This multitechnique and multiscale approach demonstrates the compatibility of bond-valence models of surface oxygen proton affinities and Stern-based models of the EDL structure, with the actual molecular interfacial distributions observed experimentally, revealing new insight into EDL properties including specific binding sites and hydration states of sorbed ions, interfacial solvent properties (structure, diffusivity, dielectric constant), surface protonation and hydrolysis, and the effect of solution ionic strength.

  16. Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS)

    NASA Astrophysics Data System (ADS)

    Turner, Andrew; Bhat, Gs; Evans, Jonathan; Marsham, John; Martin, Gill; Parker, Douglas; Taylor, Chris; Bhattacharya, Bimal; Madan, Ranju; Mitra, Ashis; Mrudula, Gm; Muddu, Sekhar; Pattnaik, Sandeep; Rajagopal, En; Tripathi, Sachida

    2015-04-01

    The monsoon supplies the majority of water in South Asia, making understanding and predicting its rainfall vital for the growing population and economy. However, modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly, with significant inter-model differences pointing to errors in physical parametrizations such as convection, the boundary layer and land surface. These errors persist into climate projections and many of these errors persist even when increasing resolution. At the same time, a lack of detailed observations is preventing a more thorough understanding of monsoon circulation and its interaction with the land surface: a process governed by the boundary layer and convective cloud dynamics. The INCOMPASS project will support and develop modelling capability in Indo-UK monsoon research, including test development of a new Met Office Unified Model 100m-resolution domain over India. The first UK detachment of the FAAM research aircraft to India, in combination with an intensive ground-based observation campaign, will gather new observations of the surface, boundary layer structure and atmospheric profiles to go with detailed information on the timing of monsoon rainfall. Observations will be focused on transects in the northern plains of India (covering a range of surface types from irrigated to rain-fed agriculture, and wet to dry climatic zones) and across the Western Ghats and rain shadow in southern India (including transitions from land to ocean and across orography). A pilot observational campaign is planned for summer 2015, with the main field campaign to take place during spring/summer 2016. This project will advance our ability to forecast the monsoon, through a programme of measurements and modelling that aims to capture the key surface-atmosphere feedback processes in models. The observational analysis will allow a unique and unprecedented characterization of monsoon processes that will feed directly into model development at the UK Met Office and Indian NCMRWF, through model evaluation at a range of scales and leading to model improvement by working directly with parametrization developers. The project will institute a new long-term series of measurements of land surface fluxes, a particularly unconstrained observation for India, through eddy covariance flux towers. Combined with detailed land surface modelling using the Joint UK Land Environment Simulator (JULES) model, this will allow testing of land surface initialization in monsoon forecasts and improved land-atmosphere coupling.

  17. Detecting surface runoff location in a small catchment using distributed and simple observation method

    NASA Astrophysics Data System (ADS)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall parameters, soil or land cover. This study opens interesting prospects for the use of spatially distributed measurement for surface runoff detection, spatially distributed hydrological models implementation and validation at a reasonable cost.

  18. Close encounters with PHOBOS

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.

    1988-07-01

    Aspects of the Soviet mission to Phobos are examined, including the objectives of the mission, the spapcecraft, experiments, and landers. Past Mars research and unanswered questions concerning Mars and its satellites are discussed. The spacecraft is expected to reach Mars in early 1989 and to observe the planet from two orbits, coming as close as 500 km from the surface, before moving into a third path close to Phobos. After studying the Phobos terrain from above, the craft will jettison one or two small long-duration automated landers, which will perform surface experiments, including work on celestial mechanics, the history of the Phobos orbit, surface composition, and mechanical properties. In addition to studying Phobos and Mars, the craft will examine the interplanetary medium, make observations of the Sun, and possibly study Deimos.

  19. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2018-05-23

    ... from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Campaign including Maryland, Texas, California, and ... observations to diagnose near-surface conditions relating to air quality. To diagnose air quality conditions from space, reliable satellite ...

  20. Influence of Agricultural Practice on Surface Temperature

    NASA Astrophysics Data System (ADS)

    Czajkowski, K.; Ault, T.; Hayase, R.; Benko, T.

    2006-12-01

    Changes in land uses/covers can have a significant effect on the temperature of the Earth's surface. Agricultural fields exhibit a significant change in land cover within a single year and from year to year as different crops are planted. These changes in agricultural practices including tillage practice and crop type influence the energy budget as reflected in differences in surface temperature. In this project, Landsat 5 and 7 imagery were used to investigate the influence of crop type and tillage practice on surface temperature in Iowa and NW Ohio. In particular, the three crop rotation of corn, soybeans and wheat, as well as no-till, conservation tillage and tradition tillage methods, were investigated. Crop type and conservation tillage practices were identified using supervised classification. Student surface temperature observations from the GLOBE program were used to correct for the effects of the atmosphere for some of the satellite thermal observations. Students took surface temperature observations in field sites near there schools using hand- held infrared thermometers.

  1. The hourly updated US High-Resolution Rapid Refresh (HRRR) storm-scale forecast model

    NASA Astrophysics Data System (ADS)

    Alexander, Curtis; Dowell, David; Benjamin, Stan; Weygandt, Stephen; Olson, Joseph; Kenyon, Jaymes; Grell, Georg; Smirnova, Tanya; Ladwig, Terra; Brown, John; James, Eric; Hu, Ming

    2016-04-01

    The 3-km convective-allowing High-Resolution Rapid Refresh (HRRR) is a US NOAA hourly updating weather forecast model that use a specially configured version of the Advanced Research WRF (ARW) model and assimilate many novel and most conventional observation types on an hourly basis using Gridpoint Statistical Interpolation (GSI). Included in this assimilation is a procedure for initializing ongoing precipitation systems from observed radar reflectivity data (and proxy reflectivity from lightning and satellite data), a cloud analysis to initialize stable layer clouds from METAR and satellite observations, and special techniques to enhance retention of surface observation information. The HRRR is run hourly out to 15 forecast hours over a domain covering the entire conterminous United States using initial and boundary conditions from the hourly-cycled 13km Rapid Refresh (RAP, using similar physics and data assimilation) covering North America and a significant part of the Northern Hemisphere. The HRRR is continually developed and refined at NOAA's Earth System Research Laboratory, and an initial version was implemented into the operational NOAA/NCEP production suite in September 2014. Ongoing experimental RAP and HRRR model development throughout 2014 and 2015 has culminated in a set of data assimilation and model enhancements that will be incorporated into the first simultaneous upgrade of both the operational RAP and HRRR that is scheduled for spring 2016 at NCEP. This presentation will discuss the operational RAP and HRRR changes contained in this upgrade. The RAP domain is being expanded to encompass the NAM domain and the forecast lengths of both the RAP and HRRR are being extended. RAP and HRRR assimilation enhancements have focused on (1) extending surface data assimilation to include mesonet observations and improved use of all surface observations through better background estimates of 2-m temperature and dewpoint including projection of 2-m temperature observations through the model boundary layer and (2) extending the use of radar observations to include both radial velocity and 3-D retrieval of rain hydrometeors from observed radar reflectivities in the warm-season. The RAP hybrid EnKF 3D-variational data assimilation will increase weighting of GFS ensemble-based background error covariance estimation and introduce this hybrid data assimilation configuration in the HRRR. Enhancement of RAP and HRRR model physics include improved land surface and boundary layer prediction using the updated Mellor-Yamada-Nakanishi-Niino (MYNN) parameterization scheme, Grell-Freitas-Olson (GFO) shallow and deep convective parameterization, aerosol-aware Thompson microphysics and upgraded Rapid Update Cycle (RUC) land-surface model. The presentation will highlight improvements in the RAP and HRRR model physics to reduce certain systematic forecast biases including a warm and dry daytime bias over the central and eastern CONUS during the warm season along with improved convective forecasts in more weakly-forced diurnally-driven events. Examples of RAP and HRRR forecast improvements will be demonstrated through both retrospective and real-time verification statistics and case-study examples.

  2. Neural Network-Based Retrieval of Surface and Root Zone Soil Moisture using Multi-Frequency Remotely-Sensed Observations

    NASA Astrophysics Data System (ADS)

    Hamed Alemohammad, Seyed; Kolassa, Jana; Prigent, Catherine; Aires, Filipe; Gentine, Pierre

    2017-04-01

    Knowledge of root zone soil moisture is essential in studying plant's response to different stress conditions since plant photosynthetic activity and transpiration rate are constrained by the water available through their roots. Current global root zone soil moisture estimates are based on either outputs from physical models constrained by observations, or assimilation of remotely-sensed microwave-based surface soil moisture estimates with physical model outputs. However, quality of these estimates are limited by the accuracy of the model representations of physical processes (such as radiative transfer, infiltration, percolation, and evapotranspiration) as well as errors in the estimates of the surface parameters. Additionally, statistical approaches provide an alternative efficient platform to develop root zone soil moisture retrieval algorithms from remotely-sensed observations. In this study, we present a new neural network based retrieval algorithm to estimate surface and root zone soil moisture from passive microwave observations of SMAP satellite (L-band) and AMSR2 instrument (X-band). SMAP early morning observations are ideal for surface soil moisture retrieval. AMSR2 mid-night observations are used here as an indicator of plant hydraulic properties that are related to root zone soil moisture. The combined observations from SMAP and AMSR2 together with other ancillary observations including the Solar-Induced Fluorescence (SIF) estimates from GOME-2 instrument provide necessary information to estimate surface and root zone soil moisture. The algorithm is applied to observations from the first 18 months of SMAP mission and retrievals are validated against in-situ observations and other global datasets.

  3. Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering.

    PubMed

    Doğan, İlker; Gresback, Ryan; Nozaki, Tomohiro; van de Sanden, Mauritius C M

    2016-07-08

    Temporal evolution of surface chemistry during oxidation of silicon quantum dot (Si-QD) surfaces were probed using surface-enhanced Raman scattering (SERS). A monolayer of hydrogen and chlorine terminated plasma-synthesized Si-QDs were spin-coated on silver oxide thin films. A clearly enhanced signal of surface modes, including Si-Clx and Si-Hx modes were observed from as-synthesized Si-QDs as a result of the plasmonic enhancement of the Raman signal at Si-QD/silver oxide interface. Upon oxidation, a gradual decrease of Si-Clx and Si-Hx modes, and an emergence of Si-Ox and Si-O-Hx modes have been observed. In addition, first, second and third transverse optical modes of Si-QDs were also observed in the SERS spectra, revealing information on the crystalline morphology of Si-QDs. An absence of any of the abovementioned spectral features, but only the first transverse optical mode of Si-QDs from thick Si-QD films validated that the spectral features observed from Si-QDs on silver oxide thin films are originated from the SERS effect. These results indicate that real-time SERS is a powerful diagnostic tool and a novel approach to probe the dynamic surface/interface chemistry of quantum dots, especially when they involve in oxidative, catalytic, and electrochemical surface/interface reactions.

  4. Mineralogy and evolution of the surface of Mars: A review

    NASA Astrophysics Data System (ADS)

    Chevrier, V.; Mathé, P. E.

    2007-02-01

    We review the mineralogy of the surface of Mars, using data from various sources, including in situ characterisations performed by landers, remote observations from orbit, and studies of the SNC meteorites. We also discuss the possible alteration processes and the factor controlling them, and try to relate the mineralogical observations to the chemical evolution of the surface materials on Mars in order to identify the dominant process(es). Then we try to describe a possible chemical and mineralogical evolution of the surface materials, resulting from weathering driven by the abundance and activity of water. Even if weathering is the dominant process responsible for the surface evolution, all observations suggest that it is strongly affected locally in time and space by various other processes including hydrothermalism, volcanism, evaporites, meteoritic impacts and aeolian erosion. Nevertheless, the observed phases on the surface of Mars globally depend on the evolution of the weathering conditions. This hypothesis, if confirmed, could give a new view of the evolution of the martian surface, roughly in three steps. The first would correspond to clay-type weathering process in the Noachian, under a probable thick H 2O/CO 2-rich atmosphere. Then, during the Hesperian when water became scarcer and its activity sporadic, linked to volcanic activity, sulfate-type acidic weathering process would have been predominant. The third period would be like today, a very slow weathering by strongly oxidising agents (H 2O 2, O 2) in cold and dry conditions, through solid-gas or solid-films of water resulting frost-thaw and/or acid fog. This would favour poorly crystalline phases, mainly iron (oxy) hydroxides. But in this scenario many questions remain about the transition between these processes, and about the factors affecting the evolution of the weathering process.

  5. Real-time single-molecule observations of proteins at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Langdon, Blake Brianna

    Non-specific protein adsorption to solid surfaces is pervasive and observed across a broad spectrum of applications including biomaterials, separations, pharmaceuticals, and biosensing. Despite great interest in and considerable literature dedicated to the phenomena, a mechanistic understanding of this complex phenomena is lacking and remains controversial, partially due to the limits of ensemble-averaging techniques used to study it. Single-molecule tracking (SMT) methods allow us to study distinct protein dynamics (e.g. adsorption, desorption, diffusion, and intermolecular associations) on a molecule-by-molecule basis revealing the protein population and spatial heterogeneity inherent in protein interfacial behavior. By employing single-molecule total internal reflection fluorescence microscopy (SM-TIRFM), we have developed SMT methods to directly observe protein interfacial dynamics at the solid-liquid interface to build a better mechanistic understanding of protein adsorption. First, we examined the effects of surface chemistry (e.g. hydrophobicity, hydrogen-bonding capacity), temperature, and electrostatics on isolated protein desorption and interfacial diffusion for fibrinogen (Fg) and bovine serum albumin (BSA). Next, we directly and indirectly probed the effects of protein-protein interactions on interfacial desorption, diffusion, aggregation, and surface spatial heterogeneity on model and polymeric thin films. These studies provided many useful insights into interfacial protein dynamics including the following observations. First, protein adsorption was reversible, with the majority of proteins desorbing from all surface chemistries within seconds. Isolated protein-surface interactions were relatively weak on both hydrophobic and hydrophilic surfaces (apparent desorption activation energies of only a few kBT). However, proteins could dynamically and reversibly associate at the interface, and these interfacial associations led to proteins remaining on the surface for longer time intervals. Surface chemistry and surface spatial heterogeneity (i.e. surface sites with different binding strengths) were shown to influence adsorption, desorption, and interfacial protein-protein associations. For example, faster protein diffusion on hydrophobic surfaces increased protein-protein associations and, at higher protein surface coverage, led to proteins remaining on hydrophobic surfaces longer than on hydrophilic surfaces. Ultimately these studies suggested that surface properties (chemistry, heterogeneity) influence not only protein-surface interactions but also interfacial mobility and protein-protein associations, implying that surfaces that better control protein adsorption can be designed by accounting for these processes.

  6. Airborne Measurement of Insolation Impact on the Atmospheric Surface Boundary Layer

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Chilson, Phil; Houston, Adam; Detweiler, Carrick; Bailey, Sean; Cloud-Map Team

    2017-11-01

    Atmospheric surface boundary layer measurements of wind and thermodynamic parameters are conducted during variable insolation conditions, including the 2017 eclipse, using an unmanned aircraft system. It is well known that the air temperatures can drop significantly during a total solar eclipse as has been previously observed. In past eclipses, these observations have primarily been made on the ground. We present results from airborne measurements of the near surface boundary layer using a small unmanned aircraft with high temporal resolution wind and thermodynamic observations. Questions that motivate the study include: How does the temperature within the lower atmospheric boundary vary during an eclipse? What impact does the immediate removal of radiative heating on the ground have on the lower ABL? Do local wind patterns change during an eclipse event and if so why? Will there be a manifestation of the nocturnal boundary layer wind maximum? Comparisons are made with the DOE ARM SGP site that experiences a lower but still significant insolation. Supported by the National Science Foundation under Award Number 1539070.

  7. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1990-01-01

    A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.

  8. KASCADE2017 - An experimental study of thermal circulations and turbulence in complex terrain

    NASA Astrophysics Data System (ADS)

    Pardyjak, Eric; Dupuy, Florian; Durand, Pierre; Gunawardena, Nipun; Hedde, Thierry; Rubin, Pierre

    2017-04-01

    The KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) 2017 experiment was conducted during winter 2017 with the overarching objective of improving prediction of dispersion in complex terrain during stable atmospheric conditions. The experiment builds on knowledge gathered during the first KASCADE experiment conducted in 2013 (Duine et al., 2016), which provided detailed observations of the vertical structure of the atmosphere during stable conditions. In spite of this improved understanding, considerable uncertainty remains regarding the near-surface horizontal spatial and temporal variability of winds and thermodynamic variables. For this specific campaign, the general aim has been to use a large number of sensors to improve our understanding of the spatial and temporal development, evolution and breakdown of topographically driven flows. KASCADE 2017 consisted of continuous observations, which were broadened during ten Intensive Observation Periods (IOPs) conducted in the Cadarache Valley located in south-eastern France from January through March 2017. The Cadarache Valley is a relatively small valley (6 km x 1 km) with modest slopes and elevation differences between the valley floor and nearby peaks ( 100 m). The valley is embedded in the larger Durance Valley drainage system leading to multi-scale flow interactions. During the winter, winds are light and stably stratified leading to thermal circulations as well as complex near-surface atmospheric layering that impacts dispersion of contaminants. The continuously operating instrumentation deployed included mean near surface (2-m) and sub-surface observations from 12 low-cost Local Energy-budget Measurement Stations (LEMS), four sonic anemometer masts, one full surface flux station, sodar measurements at two locations, wind and temperature measurements from a tall 110 m tower, and two additional met stations. During IOPs, additional deployments included a low-cost tethered balloon temperature profiler as well as regular (every 3 hours) radiosoundings (including recoverable and reusable probes). The presentation will provide an overview of the experiment and several interesting "first-results." First results will include data characterizing highly-regular nocturnal horizontal wind meandering and associated turbulence statistics. In addition, we present data on the development of strong near surface stable stratification hours before sunset.

  9. The effects of diffusion in hot subdwarf progenitors from the common envelope channel

    NASA Astrophysics Data System (ADS)

    Byrne, Conor M.; Jeffery, C. Simon; Tout, Christopher A.; Hu, Haili

    2018-04-01

    Diffusion of elements in the atmosphere and envelope of a star can drastically alter its surface composition, leading to extreme chemical peculiarities. We consider the case of hot subdwarfs, where surface helium abundances range from practically zero to almost 100 percent. Since hot subdwarfs can form via a number of different evolution channels, a key question concerns how the formation mechanism is connected to the present surface chemistry. A sequence of extreme horizontal branch star models was generated by producing post-common envelope stars from red giants. Evolution was computed with MESA from envelope ejection up to core-helium ignition. Surface abundances were calculated at the zero-age horizontal branch for models with and without diffusion. A number of simulations also included radiative levitation. The goal was to study surface chemistry during evolution from cool giant to hot subdwarf and determine when the characteristic subdwarf surface is established. Only stars leaving the giant branch close to core-helium ignition become hydrogen-rich subdwarfs at the zero-age horizontal branch. Diffusion, including radiative levitation, depletes the initial surface helium in all cases. All subdwarf models rapidly become more depleted than observations allow. Surface abundances of other elements follow observed trends in general, but not in detail. Additional physics is required.

  10. Cooling of the North Atlantic by Saharan Dust

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.

    2007-01-01

    Using aerosol optical depth, sea surface temperature, top-of-the-atmosphere solar radiation flux, and oceanic mixed-layer depth from diverse data sources that include NASA satellites, NCEP reanalysis, in situ observations, as well as long-term dust records from Barbados, we examine the possible relationships between Saharan dust and Atlantic sea surface temperature. Results show that the estimated anomalous cooling pattern of the Atlantic during June 2006 relative to June 2005 due to attenuation of surface solar radiation by Saharan dust remarkably resemble observations, accounting for approximately 30-40% of the observed change in sea surface temperature. Historical data analysis show that there is a robust negative correlation between atmospheric dust loading and Atlantic SST consistent with the notion that increased (decreased) Saharan dust is associated with cooling (warming) of the Atlantic during the early hurricane season (July- August-September).

  11. Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations

    NASA Astrophysics Data System (ADS)

    Su, Hua; Li, Wene; Yan, Xiao-Hai

    2018-01-01

    Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.

  12. Effect of polymer coating on the osseointegration of CP-Ti dental implant

    NASA Astrophysics Data System (ADS)

    Al-Hassani, Emad; Al-Hassani, Fatima; Najim, Manar

    2018-05-01

    Modifications achieved coatings of titanium samples were investigated in order to improve their surface characteristics so as to facilitate bio-integration. Chitosan coating was use for commercial pure Ti alloys manufactured by two different methods in which commercial pure titanium rod converted in form of implant screw by using wire cut machine and lathe, second method included the used of powder technology for producing the implant screws. The coating process of chitosan polymer was carried out using advance technology (electrospnning process) to create fibrous structure from Nano to micro scale of the chitosan on the implant surface which result in a bioactive surface. The characterization includes; microstructure observation, surface chemical composition analysis (EDS), surface roughness (AFM), and the histological analysis. from the SEM No morphological differences were observed among the implants surfaces except for some inconsiderable morphological differences that results from the manufacturing process, by using EDX analysis the surfaces chemical compositions were completely changed and there was large decrease in the percentage of titanium element at the surface which indicates that the surface is covered with chitosan and had a new surface composition and topography. The sample was produced by powder technology process have higher roughness (845.36 nm) than sample produced by machining without any surface treatment (531.7nm),finally The histological view of implant samples after 4weeks of implantation, showed active bone formation in all implant surface which give clear indication of tissue acceptance.

  13. Constraining storm-scale forecasts of deep convective initiation with surface weather observations

    NASA Astrophysics Data System (ADS)

    Madaus, Luke

    Successfully forecasting when and where individual convective storms will form remains an elusive goal for short-term numerical weather prediction. In this dissertation, the convective initiation (CI) challenge is considered as a problem of insufficiently resolved initial conditions and dense surface weather observations are explored as a possible solution. To better quantify convective-scale surface variability in numerical simulations of discrete convective initiation, idealized ensemble simulations of a variety of environments where CI occurs in response to boundary-layer processes are examined. Coherent features 1-2 hours prior to CI are found in all surface fields examined. While some features were broadly expected, such as positive temperature anomalies and convergent winds, negative temperature anomalies due to cloud shadowing are the largest surface anomaly seen prior to CI. Based on these simulations, several hypotheses about the required characteristics of a surface observing network to constrain CI forecasts are developed. Principally, these suggest that observation spacings of less than 4---5 km would be required, based on correlation length scales. Furthermore, it is anticipated that 2-m temperature and 10-m wind observations would likely be more relevant for effectively constraining variability than surface pressure or 2-m moisture observations based on the magnitudes of observed anomalies relative to observation error. These hypotheses are tested with a series of observing system simulation experiments (OSSEs) using a single CI-capable environment. The OSSE results largely confirm the hypotheses, and with 4-km and particularly 1-km surface observation spacing, skillful forecasts of CI are possible, but only within two hours of CI time. Several facets of convective-scale assimilation, including the need for properly-calibrated localization and problems from non-Gaussian ensemble estimates of the cloud field are discussed. Finally, the characteristics of one candidate dense surface observing network are examined: smartphone pressure observations. Available smartphone pressure observations (and 1-hr pressure tendency observations) are tested by assimilating them into convective-allowing ensemble forecasts for a three-day active convective period in the eastern United States. Although smartphone observations contain noise and internal disagreement, they are effective at reducing short-term forecast errors in surface pressure, wind and precipitation. The results suggest that smartphone pressure observations could become a viable mesoscale observation platform, but more work is needed to enhance their density and reduce error. This work concludes by reviewing and suggesting other novel candidate observation platforms with a potential to improve convective-scale forecasts of CI.

  14. Seasat data utilization project

    NASA Technical Reports Server (NTRS)

    Born, G. H.; Held, D. N.; Lame, D. B.; Lipes, R. G.; Montgomery, D. R.; Rygh, P. J.; Scott, J. F.

    1981-01-01

    During the three months of orbital operations, the satellite returned data from the world's oceans. Dozens of tropical storms, hurricanes and typhoons were observed, and two planned major intensive surface truth experiments were conducted. The utility of the Seasat-A microwave sensors as oceanographic tools was determined. Sensor and geophysical evaluations are discussed, including surface observations, and evaluation summaries of an altimeter, a scatterometer, a scanning multichannel microwave radiometer, a synthetic aperture radar, and a visible and infrared radiometer.

  15. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders

    NASA Astrophysics Data System (ADS)

    Zaba, Katherine D.; Rudnick, Daniel L.

    2016-02-01

    Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.

  16. Simulation of the West African Monsoon using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Gianotti, Rebecca L.; Eltahir, Elfatih A. B.

    2013-04-01

    We test the performance of the MIT Regional Climate Model (MRCM) in simulating the West African Monsoon. MRCM introduces several improvements over Regional Climate Model version 3 (RegCM3) including coupling of Integrated Biosphere Simulator (IBIS) land surface scheme, a new albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Using MRCM, we carried out a series of experiments implementing two different land surface schemes (IBIS and BATS) and three convection schemes (Grell with the Fritsch-Chappell closure, standard Emanuel, and modified Emanuel that includes the new convective cloud scheme). Our analysis primarily focused on comparing the precipitation characteristics, surface energy balance and large scale circulations against various observations. We document a significant sensitivity of the West African monsoon simulation to the choices of the land surface and convection schemes. In spite of several deficiencies, the simulation with the combination of IBIS and modified Emanuel schemes shows the best performance reflected in a marked improvement of precipitation in terms of spatial distribution and monsoon features. In particular, the coupling of IBIS leads to representations of the surface energy balance and partitioning that are consistent with observations. Therefore, the major components of the surface energy budget (including radiation fluxes) in the IBIS simulations are in better agreement with observation than those from our BATS simulation, or from previous similar studies (e.g Steiner et al., 2009), both qualitatively and quantitatively. The IBIS simulations also reasonably reproduce the dynamical structure of vertically stratified behavior of the atmospheric circulation with three major components: westerly monsoon flow, African Easterly Jet (AEJ), and Tropical Easterly Jet (TEJ). In addition, since the modified Emanuel scheme tends to reduce the precipitation amount, it improves the precipitation over regions suffering from systematic wet bias.

  17. Fluoride glass: Crystallization, surface tension

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1988-01-01

    Fluoride glass was levitated acoustically in the ACES apparatus on STS-11, and the recovered sample had a different microstructure from samples cooled in a container. Further experiments on levitated samples of fluoride glass are proposed. These include nucleation, crystallization, melting observations, measurement of surface tension of molten glass, and observation of bubbles in the glass. Ground experiments are required on sample preparation, outgassing, and surface reactions. The results should help in the development and evaluation of containerless processing, especially of glass, in the development of a contaminent-free method of measuring surface tensions of melts, in extending knowledge of gas and bubble behavior in fluoride glasses, and in increasing insight into the processing and properties of fluoride glasses.

  18. JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC) data availability, version 1-94

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and integrated water vapor. The JPL PO.DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and is the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.

  19. Some surface characteristics and gas interactions of Apollo 14 fines and rock fragments.

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Wagner, N. J.; Jones, B. R.; Stetter, J. R.

    1972-01-01

    Comprehensive survey of the physical surface characteristics of Apollo 14 fines, two fragments of a breccia (14321), and a crystalline rock (14310). The survey was carried out with optical and both scanning and transmission electron microscopy and by studying the adsorption of a variety of gases including nitrogen, hydrogen, and water vapor. Our objective in the optical microscope study was to relate the visible geological and petrological features to the surface properties. Electron microscopy particularly helped relate surface roughness and particle fusion to gas adsorption and pore structure. The fine sample (14163,111) had a surface area of 0.210 sq m/g and a helium density of 2.9 g/cc. Similar values have been observed with breccia fragments. Other observations include physical adsorption of molecular hydrogen at low temperatures and of water vapor at ambient temperatures. It is concluded that these particular lunar materials, while capable of adsorbing water vapor, do not retain it for any significant time at low pressures, nor, under lunar conditions, is there any indication of absorption or penetration.

  20. Rethinking of the regolith transport on airless bodies in the Solar system

    NASA Astrophysics Data System (ADS)

    Hsu, S.; Wang, X.; Seiss, M.; Schwan, J.; Sternovsky, Z.; Horanyi, M.

    2016-12-01

    Recent laboratory experiments provided important constraints on the characteristics of electrostatic dust transport on airless bodies. The proposed "patched charging model" illustrates how regolith particles acquire grain charges much higher than expected to drive the surface dust movements, including rotation and hopping of individual regolith particle as well as the overall smoothing of the regolith surface observed in the experiments. Here we apply the experimental results to re-examine the regolith transport on the airless bodies in the Solar systems, including both observation (e.g., dust ponds on Eros) and theoretical aspects (e.g., electrostatic dust levitation). We will also discuss the observational criteria and implications to be expected from current and future missions, such as Asteroid Redirect Mission, Cassini, Hayabusa 2, and OSIRIS-Rex.

  1. The Bering Sea ice cover during March 1979: Comparison of surface and satellite data with the Nimbus-7 SMMR

    NASA Technical Reports Server (NTRS)

    Martin, S.; Cavalieri, D. J.; Gloersen, P.; Mcnutt, S. L.

    1982-01-01

    During March 1979, field operations were carried out in the Marginal Ice Zone (MIZ) of the Bering Sea. The field measurements which included oceanographic, meteorological and sea ice observations were made nearly coincident with a number of Nimbus-7 and Tiros-N satellite observations. The results of a comparison between surface and aircraft observations, and images from the Tiros-N satellite, with ice concentrations derived from the microwave radiances of the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) are given. Following a brief discussion of the field operations, including a summary of the meteorological conditions during the experiment, the satellite data is described with emphasis on the Nimbus-7 SMMR and the physical basis of the algorithm used to retrieve ice concentrations.

  2. Greenland outlet glacier dynamics from Extreme Ice Survey (EIS) photogrammetry

    NASA Astrophysics Data System (ADS)

    Hawbecker, P.; Box, J. E.; Balog, J. D.; Ahn, Y.; Benson, R. J.

    2010-12-01

    Time Lapse cameras fill gaps in our observational capabilities: 1. By providing much higher temporal resolution than offered by conventional airborne or satellite remote sensing. 2. While GPS or auto-theodolite observations can provide higher time resolution data than from photogrammetry, survival of these instruments on the hazardous glacier surface is limited, plus, the maintenance of such systems can be more expensive than the maintenance of a terrestrial photogrammetry installation. 3. Imagery provide a high spatial density of observations across the glacier surface, higher than is realistically available from GPS or other in-situ observations. 4. time lapse cameras provide observational capabilities in Eulerian and Lagrangian frames while GPS or theodolite targets, going along for a ride on the glacier, provide only Lagrangian data. Photogrammetry techniques are applied to a year-plus of images from multiple west Greenland glaciers to determine the glacier front horizontal velocity variations at hourly to seasonal time scales. The presentation includes comparisons between glacier front velocities and: 1. surface melt rates inferred from surface air temperature and solar radiation observations; 2. major calving events identified from camera images; 3. surface and near-surface ocean temperature; 4. land-fast sea ice breakup; 5. tidal variations; 6. supra-glacial melt lake drainage events observed in daily optical satellite imagery; and 7.) GPS data. Extreme Ice Survey (EIS) time lapse camera overlooking the Petermann glacier, installed to image glacier dynamics and to capture the predicted ice "island" detachment.

  3. Quantifying Spatial and Seasonal Variability in Atmospheric Ammonia with In Situ and Space-Based Observations

    NASA Technical Reports Server (NTRS)

    Pinder, Robert W.; Walker, John T.; Bash, Jesse O.; Cady-Pereira, Karen E.; Henze, Daven K.; Luo, Mingzhao; Osterman, Gregory B.; Shepard, Mark W.

    2011-01-01

    Ammonia plays an important role in many biogeochemical processes, yet atmospheric mixing ratios are not well known. Recently, methods have been developed for retrieving NH3 from space-based observations, but they have not been compared to in situ measurements. We have conducted a field campaign combining co-located surface measurements and satellite special observations from the Tropospheric Emission Spectrometer (TES). Our study includes 25 surface monitoring sites spanning 350 km across eastern North Carolina, a region with large seasonal and spatial variability in NH3. From the TES spectra, we retrieve a NH3 representative volume mixing ratio (RVMR), and we restrict our analysis to times when the region of the atmosphere observed by TES is representative of the surface measurement. We find that the TES NH3 RVMR qualitatively captures the seasonal and spatial variability found in eastern North Carolina. Both surface measurements and TES NH3 show a strong correspondence with the number of livestock facilities within 10 km of the observation. Furthermore, we find that TES H3 RVMR captures the month-to-month variability present in the surface observations. The high correspondence with in situ measurements and vast spatial coverage make TES NH3 RVMR a valuable tool for understanding regional and global NH3 fluxes.

  4. Advancing land surface model development with satellite-based Earth observations

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  5. Empirical retrieval of sea spray aerosol production using satellite microwave radiometry

    NASA Astrophysics Data System (ADS)

    Savelyev, I. B.; Yelland, M. J.; Norris, S. J.; Salisbury, D.; Pascal, R. W.; Bettenhausen, M. H.; Prytherch, J.; Anguelova, M. D.; Brooks, I. M.

    2017-12-01

    This study presents a novel approach to obtaining global sea spray aerosol (SSA) production source term by relying on direct satellite observations of the ocean surface, instead of more traditional approaches driven by surface meteorology. The primary challenge in developing this empirical algorithm is to compile a calibrated, consistent dataset of SSA surface flux collected offshore over a variety of conditions (i.e., regions and seasons), thus representative of the global SSA production variability. Such dataset includes observations from SEASAW, HiWASE, and WAGES field campaigns, during which the SSA flux was measured from the bow of a research vessel using consistent and state-of-the-art eddy covariance methodology. These in situ data are matched to observations of the state of the ocean surface from Windsat polarimetric microwave satellite radiometer. Previous studies demonstrated the ability of WindSat to detect variations in surface waves slopes, roughness and foam, which led to the development of retrieval algorithms for surface wind vector and more recently whitecap fraction. Similarly, in this study, microwave emissions from the ocean surface are matched to and calibrated against in situ observations of the SSA production flux. The resulting calibrated empirical algorithm is applicable for retrieval of SSA source term throughout the duration of Windsat mission, from 2003 to present.

  6. Treading on Thin Water.

    ERIC Educational Resources Information Center

    Haley, Richard D.

    1985-01-01

    Provides a simple introduction to animals whose habitat is the thin surface film of water. Describes adaptive mechanisms of water striders, whirlygigs and riffle bugs and suggests ways to observe them in the wild or as aquarium animals. Includes basic demonstrations of the nature of surface tension. (JHZ)

  7. Variability of the reflectance coefficient of skylight from the ocean surface and its implications to ocean color.

    PubMed

    Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan

    2018-04-16

    The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.

  8. Behavior of fluids in a weightless environment

    NASA Technical Reports Server (NTRS)

    Fester, D. A.; Eberhardt, R. N.; Tegart, J. R.

    1977-01-01

    Fluid behavior in a low-g environment is controlled primarily by surface tension forces. Certain fluid and system characteristics determine the magnitude of these forces for both a free liquid surface and liquid in contact with a solid. These characteristics, including surface tension, wettability or contact angle, system geometry, and the relationships governing their interaction, are discussed. Various aspects of fluid behavior in a low-g environment are then presented. This includes the formation of static interface shapes, oscillation and rotation of drops, coalescence, the formation of foams, tendency for cavitation, and diffusion in liquids which were observed during the Skylab fluid mechanics science demonstrations. Liquid reorientation and capillary pumping to establish equilibrium configurations for various system geometries, observed during various free-fall (drop-tower) low-g tests, are also presented. Several passive low-g fluid storage and transfer systems are discussed. These systems use surface tension forces to control the liquid/vapor interface and provide gas-free liquid transfer and liquid-free vapor venting.

  9. Surface Modeling to Support Small-Body Spacecraft Exploration and Proximity Operations

    NASA Technical Reports Server (NTRS)

    Riedel, Joseph E.; Mastrodemos, Nickolaos; Gaskell, Robert W.

    2011-01-01

    In order to simulate physically plausible surfaces that represent geologically evolved surfaces, demonstrating demanding surface-relative guidance navigation and control (GN&C) actions, such surfaces must be made to mimic the geological processes themselves. A report describes how, using software and algorithms to model body surfaces as a series of digital terrain maps, a series of processes was put in place that evolve the surface from some assumed nominal starting condition. The physical processes modeled in this algorithmic technique include fractal regolith substrate texturing, fractally textured rocks (of empirically derived size and distribution power laws), cratering, and regolith migration under potential energy gradient. Starting with a global model that may be determined observationally or created ad hoc, the surface evolution is begun. First, material of some assumed strength is layered on the global model in a fractally random pattern. Then, rocks are distributed according to power laws measured on the Moon. Cratering then takes place in a temporal fashion, including modeling of ejecta blankets and taking into account the gravity of the object (which determines how much of the ejecta blanket falls back to the surface), and causing the observed phenomena of older craters being progressively buried by the ejecta of earlier impacts. Finally, regolith migration occurs which stratifies finer materials from coarser, as the fine material progressively migrates to regions of lower potential energy.

  10. Vision inspection system and method

    NASA Technical Reports Server (NTRS)

    Huber, Edward D. (Inventor); Williams, Rick A. (Inventor)

    1997-01-01

    An optical vision inspection system (4) and method for multiplexed illuminating, viewing, analyzing and recording a range of characteristically different kinds of defects, depressions, and ridges in a selected material surface (7) with first and second alternating optical subsystems (20, 21) illuminating and sensing successive frames of the same material surface patch. To detect the different kinds of surface features including abrupt as well as gradual surface variations, correspondingly different kinds of lighting are applied in time-multiplexed fashion to the common surface area patches under observation.

  11. Ice Surface Temperature Variability in the Polar Regions and the Relationships to 2 Meter Air Temperatures

    NASA Astrophysics Data System (ADS)

    Hoyer, J.; Madsen, K. S.; Englyst, P. N.

    2017-12-01

    Determining the surface and near surface air temperature from models or observations in the Polar Regions is challenging due to the extreme conditions and the lack of in situ observations. The errors in near surface temperature products are typically larger than for other regions of the world, and the potential for using Earth Observations is large. As part of the EU project, EUSTACE, we have developed empirical models for the relationship between the satellite observed skin ice temperatures and 2m air temperatures. We use the Arctic and Antarctic Sea and sea ice Surface Temperatures from thermal Infrared satellite sensors (AASTI) reanalysis to estimate daily surface air temperature over land ice and sea ice for the Arctic and the Antarctic. Large efforts have been put into collecting and quality controlling in situ observations from various data portals and research projects. The reconstruction is independent of numerical weather prediction models and thus provides an important alternative to modelled air temperature estimates. The new surface air temperature data record has been validated against more than 58.000 independent in situ measurements for the four surface types: Arctic sea ice, Greenland ice sheet, Antarctic sea ice and Antarctic ice sheet. The average correlations are 92-97% and average root mean square errors are 3.1-3.6°C for the four surface types. The root mean square error includes the uncertainty of the in-situ measurement, which ranges from 0.5 to 2°C. A comparison with ERA-Interim shows a consistently better performance of the satellite based air temperatures than the ERA-Interim for the Greenland ice sheet, when compared against observations not used in any of the two estimates. This is encouraging and demonstrates the values of these products. In addition, the procedure presented here works on satellite observations that are available in near real time and this opens up for a near real time estimation of the surface air temperature over ice from satellites.

  12. Observing changes in atmospheric heat content

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-10-01

    Globally, air temperatures near the surface over land have been rising in recent decades, and this has been presented as solid evidence of global warming. However, some scientists have argued that total heat content (energy), rather than temperature, should be used as a metric of warming trends. Surface air temperature is only one component of the energy content of the surface atmosphere—kinetic energy and latent heat also contribute. Peterson et al. present the first study to use observational data to estimate global changes in surface energy of the atmosphere over time. They include temperature, kinetic energy, and latent heat in their analysis. The authors found that total global surface atmospheric energy and heat content have increased since the 1970s, even though kinetic energy decreased slightly and in some regions latent heat declined while temperature increased.

  13. Cloud vertical distribution from combined surface and space radar-lidar observations at two Arctic atmospheric observatories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yinghui; Shupe, Matthew D.; Wang, Zhien

    Detailed and accurate vertical distributions of cloud properties (such as cloud fraction, cloud phase, and cloud water content) and their changes are essential to accurately calculate the surface radiative flux and to depict the mean climate state. Surface and space-based active sensors including radar and lidar are ideal to provide this information because of their superior capability to detect clouds and retrieve cloud microphysical properties. In this study, we compare the annual cycles of cloud property vertical distributions from space-based active sensors and surface-based active sensors at two Arctic atmospheric observatories, Barrow and Eureka. Based on the comparisons, we identifymore » the sensors' respective strengths and limitations, and develop a blended cloud property vertical distribution by combining both sets of observations. Results show that surface-based observations offer a more complete cloud property vertical distribution from the surface up to 11 km above mean sea level (a.m.s.l.) with limitations in the middle and high altitudes; the annual mean total cloud fraction from space-based observations shows 25-40 % fewer clouds below 0.5 km than from surface-based observations, and space-based observations also show much fewer ice clouds and mixed-phase clouds, and slightly more liquid clouds, from the surface to 1 km. In general, space-based observations show comparable cloud fractions between 1 and 2 km a.m.s.l., and larger cloud fractions above 2 km a.m.s.l. than from surface-based observations. A blended product combines the strengths of both products to provide a more reliable annual cycle of cloud property vertical distributions from the surface to 11 km a.m.s.l. This information can be valuable for deriving an accurate surface radiative budget in the Arctic and for cloud parameterization evaluation in weather and climate models. Cloud annual cycles show similar evolutions in total cloud fraction and ice cloud fraction, and lower liquid-containing cloud fraction at Eureka than at Barrow; the differences can be attributed to the generally colder and drier conditions at Eureka relative to Barrow.« less

  14. Cloud vertical distribution from combined surface and space radar-lidar observations at two Arctic atmospheric observatories

    DOE PAGES

    Liu, Yinghui; Shupe, Matthew D.; Wang, Zhien; ...

    2017-05-16

    Detailed and accurate vertical distributions of cloud properties (such as cloud fraction, cloud phase, and cloud water content) and their changes are essential to accurately calculate the surface radiative flux and to depict the mean climate state. Surface and space-based active sensors including radar and lidar are ideal to provide this information because of their superior capability to detect clouds and retrieve cloud microphysical properties. In this study, we compare the annual cycles of cloud property vertical distributions from space-based active sensors and surface-based active sensors at two Arctic atmospheric observatories, Barrow and Eureka. Based on the comparisons, we identifymore » the sensors' respective strengths and limitations, and develop a blended cloud property vertical distribution by combining both sets of observations. Results show that surface-based observations offer a more complete cloud property vertical distribution from the surface up to 11 km above mean sea level (a.m.s.l.) with limitations in the middle and high altitudes; the annual mean total cloud fraction from space-based observations shows 25-40 % fewer clouds below 0.5 km than from surface-based observations, and space-based observations also show much fewer ice clouds and mixed-phase clouds, and slightly more liquid clouds, from the surface to 1 km. In general, space-based observations show comparable cloud fractions between 1 and 2 km a.m.s.l., and larger cloud fractions above 2 km a.m.s.l. than from surface-based observations. A blended product combines the strengths of both products to provide a more reliable annual cycle of cloud property vertical distributions from the surface to 11 km a.m.s.l. This information can be valuable for deriving an accurate surface radiative budget in the Arctic and for cloud parameterization evaluation in weather and climate models. Cloud annual cycles show similar evolutions in total cloud fraction and ice cloud fraction, and lower liquid-containing cloud fraction at Eureka than at Barrow; the differences can be attributed to the generally colder and drier conditions at Eureka relative to Barrow.« less

  15. Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan

    2015-01-01

    Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen (Schwieterman et al., 2014) may provide an alternative means to determine terrestrial atmospheric pressure for both transit transmission and direct imaging observations.

  16. Observation of the Earth by radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1982-01-01

    Techniques and applications of radar observation from Earth satellites are discussed. Images processing and analysis of these images are discussed. Also discussed is radar imaging from aircraft. Uses of this data include ocean wave analysis, surface water evaluation, and topographic analysis.

  17. FIRE Arctic Clouds Experiment

    NASA Technical Reports Server (NTRS)

    Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.; hide

    1998-01-01

    An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.

  18. Surface evolution of two-component stone/ice bodies in the Jupiter region

    NASA Astrophysics Data System (ADS)

    Hartmann, W. K.

    1980-11-01

    Observational and theoretical data converge on the conclusion that planetesimals in Jupiter's region of the solar nebula were initially composed predominantly of a mixture of roughly 39-70% H2O ice by volume, and 30-61% dark stony material resembling carbonaceous chondrites. Recent observations emphasize a division of most asteroid and satellite surfaces in this region into two distinct groups: bright icy material and dark stony material. The present model accounts for these by two main processes: an impact-induced buildup of a dark stony regolith in the absence of surface thermal disturbance, and thermal-disturbance-induced eruption of 'water magmas' that create icy surfaces. 'Thermal disturbances' include tidal and radiative effects caused by nearness of a planet. A correlation of crater density and albedo, Ganymede's dark-ray craters, and other observed phenomena (listed in the summary) appear consistent with the model discussed here.

  19. Effects of visual feedback with a mirror on balance ability in patients with stroke.

    PubMed

    In, Tae-Sung; Cha, Yu-Ri; Jung, Jin-Hwa; Jung, Kyoung-Sim

    2016-01-01

    [Purpose] This study aimed to examine the effects of a visual feedback obtained from a mirror on balance ability during quiet standing in patients with stroke. [Subjects] Fifteen patients with stroke (9 males, 6 females) enrolled in the study. [Methods] Experimental trials (duration, 20s) included three visual conditions (eyes closed, eyes open, and mirror feedback) and two support surface conditions (stable, and unstable). Center of pressure (COP) displacements in the mediolateral and anteroposterior directions were recorded using a force platform. [Results] No effect of condition was observed along all directions on the stable surface. An effect of condition was observed on the unstable surface, with a smaller mediolateral COP distance in the mirror feedback as compared to the other two conditions. Similar results were observed for the COP speed. [Conclusion] Visual feedback from a mirror is beneficial for improving balance ability during quiet standing on an unstable surface in patients with stroke.

  20. Measurement of In Vivo Three-Dimensional Corneal Cell Density and Size Using Two-Photon Imaging in C57BL/6 Mice.

    PubMed

    Zhang, Hongmin; He, Siyu; Liu, Susu; Xie, Yanting; Chen, Guoming; Zhang, Junjie; Sun, Shengtao; Liang, David; Wang, Liya

    2016-04-01

    To measure the cell size and cell density in five layers of the central cornea in the widely used inbred C57BL/6 mouse strain using in vivo three-dimensional (3D) two-photon (2PH) imaging. Corneas were scanned using a 2PH laser scanning fluorescence microscope after staining with plasma membrane stain and Hoechst 33342. Good quality 3D images were selected for the cell density and cell size analysis. Cell density was determined by counting the cell nuclei in a predefined cube of 3D images. Cell size measurements, including cell surface area, cell volume, nuclear surface area and nuclear volume, were automatically quantified using the Imaris software. The cell and nuclear surface-area-to-volume ratio (S:V ratio) and the cell nuclear-cytoplasmic ratio (N:C ratio) were calculated. The highest cell density was observed in the basal epithelium and the lowest in the posterior stroma. The highest cell surface area was found in the anterior stroma, and the highest cell volume was observed in the superficial epithelium. The lowest cell surface area and cell volume were both found in the basal epithelium. The highest S:V ratio was observed in the basal epithelium and the lowest in the superficial epithelium. The highest cell nuclear surface area and volume were both observed in the superficial epithelium and the lowest in the basal epithelium. The highest cell nuclear S:V ratio was observed in the basal epithelium and the lowest in the superficial epithelium. The highest N:C ratio was found in the basal epithelial cells and the lowest in the posterior keratocytes. We are the first to quantify the cell density and size parameters, including cell surface area and volume, cell nuclear surface area and volume, and the S:V ratio, in the five layers of the central cornea. These data provide important cell morphology features for the study of corneal physiology, pathology and disease in mice, particularly in C57BL/6 mice.

  1. Observations During GRIP from HIRAD: Ocean Surface Wind Speed and Rain Rate

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Jones, L.; Ruf, C. S.; Uhlhorn, E. W.; Bailey, M. C.; Buckley, C. D.; Simmons, D. E.; Johnstone, S.; Peterson, A.; hide

    2011-01-01

    HIRAD (Hurricane Imaging Radiometer) flew on the WB-57 during NASA's GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be inferred. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years. The advantage of HIRAD over SFMR is that HIRAD can observe a +/- 60-degree swath, rather than a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. To the extent possible, comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  2. CO2 Condensation Models for Mars

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Haberle, R.

    2004-01-01

    During the polar night in both hemispheres of Mars, regions of low thermal emission, frequently referred to as "cold spots", have been observed by Mariner 9, Viking and Mars Global Surveyor (MGS) spacecraft. These cold spots vary in time and appear to be associated with topographic features suggesting that they are the result of a spectral-emission effect due to surface accumulation of fine-grained frost or snow. Presented here are simulations of the Martian polar night using the NASA Ames General Circulation Cloud Model. This cloud model incorporates all the microphysical processes of carbon dioxide cloud formation, including nucleation, condensation and sedimentation and is coupled to a surface frost scheme that includes both direct surface condensation and precipitation. Using this cloud model we simulate the Mars polar nights and compare model results to observations from the Thermal Emission Spectrometer (TES) and the Mars Orbiter Laser Altimeter (MOLA). Model predictions of "cold spots" compare well with TES observations of low emissivity regions, both spatially and as a function of season. The model predicted frequency of CO2 cloud formation also agrees well with MOLA observations of polar night cloud echoes. Together the simulations and observations in the North indicate a distinct shift in atmospheric state centered about Ls 270 which we believe may be associated with the strength of the polar vortex.

  3. Optimization of Modeled Land-Atmosphere Exchanges of Water and Energy in an Isotopically-Enabled Land Surface Model by Bayesian Parameter Calibration

    NASA Astrophysics Data System (ADS)

    Wong, T. E.; Noone, D. C.; Kleiber, W.

    2014-12-01

    The single largest uncertainty in climate model energy balance is the surface latent heating over tropical land. Furthermore, the partitioning of the total latent heat flux into contributions from surface evaporation and plant transpiration is of great importance, but notoriously poorly constrained. Resolving these issues will require better exploiting information which lies at the interface between observations and advanced modeling tools, both of which are imperfect. There are remarkably few observations which can constrain these fluxes, placing strict requirements on developing statistical methods to maximize the use of limited information to best improve models. Previous work has demonstrated the power of incorporating stable water isotopes into land surface models for further constraining ecosystem processes. We present results from a stable water isotopically-enabled land surface model (iCLM4), including model experiments partitioning the latent heat flux into contributions from plant transpiration and surface evaporation. It is shown that the partitioning results are sensitive to the parameterization of kinetic fractionation used. We discuss and demonstrate an approach to calibrating select model parameters to observational data in a Bayesian estimation framework, requiring Markov Chain Monte Carlo sampling of the posterior distribution, which is shown to constrain uncertain parameters as well as inform relevant values for operational use. Finally, we discuss the application of the estimation scheme to iCLM4, including entropy as a measure of information content and specific challenges which arise in calibration models with a large number of parameters.

  4. Analysis of Viking infrared thermal mapping data of Mars. The effects of non-ideal surfaces on the derived thermal properties of Mars

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Jakosky, B. M.

    1979-01-01

    The thermal interia of the surface of Mars varies spatially by a factor of eight. This is attributable to changes in the average particle size of the fine material, the surface elevation, the atmospheric opacity due to dust, and the fraction of the surface covered by rocks and fine material. The effects of these non-ideal properties on the surface temperatures and derived thermal inertias are modeled, along with the the effects of slopes, CO2 condensed onto the surface, and layering of fine material upon solid rock. The non-ideal models are capable of producing thermal behavior similar to that observed by the Viking Infrared Thermal Mapper, including a morning delay in the post-dawn temperature rise and an enhanced cooling in the afternoon relative to any ideal, homogeneous model. The enhanced afternoon cooling observed at the Viking-1 landing site is reproduced by the non-ideal models while that atop Arsia Mons volcano is not, but may be attributed to the observing geometry.

  5. Surface contamination on LDEF exposed materials

    NASA Technical Reports Server (NTRS)

    Hemminger, Carol S.

    1992-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to study the surface composition and chemistry of Long Duration Exposure Facility (LDEF) exposed materials including silvered Teflon (Ag/FEP), Kapton, S13GLO paint, quartz crystal monitors (QCM's), carbon fiber/organic matrix composites, and carbon fiber/Al Alloy composites. In each set of samples, silicones were the major contributors to the molecular film accumulated on the LDEF exposed surfaces. All surfaces analyzed have been contaminated with Si, O, and C; most have low levels (less than 1 atom percent) of N, S, and F. Occasionally observed contaminants included Cl, Na, K, P, and various metals. Orange/brown discoloration observed near vent slots in some Ag/FEP blankets were higher in carbon, sulfur, and nitrogen relative to other contamination types. The source of contamination has not been identified, but amine/amide functionalities were detected. It is probable that this same source of contamination account for the low levels of sulfur and nitrogen observed on most LDEF exposed surfaces. XPS, which probes 50 to 100 A in depth, detected the major sample components underneath the contaminant film in every analysis. This probably indicates that the contaminant overlayer is patchy, with significant areas covered by less that 100 A of molecular film. Energy dispersive x-ray spectroscopy (EDS) of LDEF exposed surfaces during secondary electron microscopy (SEM) of the samples confirmed contamination of the surfaces with Si and O. In general, particulates were not observed to develop from the contaminant overlayer on the exposed LDEF material surfaces. However, many SiO2 submicron particles were seen on a masked edge of an Ag/FEP blanket. In some cases such as the carbon fiber/organic matrix composites, interpretation of the contamination data was hindered by the lack of good laboratory controls. Examination of laboratory controls for the carbon fiber/Al alloy composites showed that preflight contamination was the most significant factor for all the contaminants generally detected at less than 1 atom percent, or detected only occasionally (i.e., all but Si, O, and C). Flight control surfaces, including sample backsides not exposed to space radiation or atomic oxygen flux, have accumulated some contamination on flight (compared to laboratory controls), but experimentally, the LDEF exposed surface contamination levels are generally higher for the contaminants Si and O. For most materials analyzed, Si contamination levels were higher on the leading edge surfaces than on the trailing edge surfaces. This was true even for the composite samples where considerable atomic oxygen erosion of the leading edge surfaces was observed by SEM. It is probable that the return flux associated with atmospheric backscatter resulted in enhanced deposition of silicones and other contaminants on the leading edge flight surfaces relative to the trailing edge. Although the Si concentration data suggested greater on-flight deposition of contaminants on the leading edge surfaces, the XPS analyses did not conclusively show different relative total thicknesses of flight deposited contamination for leading and trailing edge surfaces. It is possible that atomic oxygen reactions on the leading edge resulted in greater volatilization of the carbon component of the deposited silicones, effectively 'thinning' the leading edge deposited overlayer. Unlike other materials, exposed polymers such as Kapton and FEP-type Teflon had very low contamination on the leading edge surfaces. SEM evidence showed that undercutting of the contaminant overlayer and damaged polymer layers occurred during atomic oxygen erosion, which would enhance loss of material from the exposed surface.

  6. Friction-induced surface activity of some hydrocarbons with clean and oxide-covered iron

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Sliding friction studies were conducted on a clean and oxide-covered iron surface with exposure of that surface to various hydrocarbons. The hydrocarbons included ethane, ethylene ethyl chloride, methyl chloride, and vinyl chloride. Auger cylindrical mirror analysis was used to follow interactions of the hydrocarbon with the iron surface. Results with vinyl chloride indicate friction induced surface reactivity, adsorption to surface oxides, friction sensitivity to concentration and polymerization. Variation in the loads employed influence adsorption and accordingly friction. In contrast with ethyl and vinyl chloride, friction induced surface reactivity was not observed with ethane and ethylene.

  7. Attribution of Trends and Variability in Surface Ozone over the United States

    NASA Technical Reports Server (NTRS)

    Strode, Sarah; Cooper, Owen; Damo, Megan; Logan, Jennifer; Rodriquez, Jose; Strahan, Susan; Witte, Jacquie

    2013-01-01

    Concentrations of tropospheric ozone, a greenhouse gas and air pollutant, are impacted by changes in precursor emissions as well meteorology and influx from the stratosphere. Observations show a decreasing trend in summertime surface ozone at rural stations in the eastern United States, while some western stations show increasing trends, particularly in springtime. We use the Global Modeling Initiative (GMI) global chemical transport model to investigate the roles of precursor emission changes, meteorological variability, and stratosphere-troposphere exchange (STE) in explaining observed trends in surface ozone from rural sites in the United States from 1991-2010. The model's interannual variability shows significant correlations with observations from many of the surface sites. We also compare the simulated ozone to ozonesonde data for several locations with sufficiently long records. We compare a simulation with time-dependent precursor emissions, including emission reductions over the United States and Europe and increases over Asia, to a simulation with fixed emissions to quantify the impact of changing emissions on the surface trends. The simulation with varying emissions reproduces much of the east-west difference in summertime ozone over the U.S., although it generally underestimates the negative trend in the East. In contrast, the fixed-emission simulation shows increasing ozone at both eastern and western sites. We will discuss possible causes of this behavior, including long-range transport and STE.

  8. Surface slope characteristics from Thermal Emission Spectrometer emission phase function observations

    NASA Astrophysics Data System (ADS)

    Edwards, C. S.; Bandfield, J. L.; Christensen, P. R.

    2006-12-01

    It is possible to obtain surface roughness characteristics, by measuring a single surface from multiple emission angles and azimuths in the thermal infrared. Surfaces will have different temperatures depending on their orientation relative to the sun. A different proportion of sunlit versus shaded surfaces will be in the field of view based on the viewing orientation, resulting in apparent temperature differences. This difference in temperature can be utilized to calculate the slope characteristics for the observed area. This technique can be useful for determining surface slope characteristics not resolvable by orbital imagery. There are two main components to this model, a surface DEM, in this case a synthetic, two dimensional sine wave surface, and a thermal model (provided by H. Kieffer). Using albedo, solar longitude, slope, azimuth, along with several other parameters, the temperature for each cell of the DEM is calculated using the thermal model. A temperature is then predicted using the same observation geometries as the Thermal Emission Spectrometer (TES) observations. A temperature difference is calculated for the two complementary viewing azimuths and emission angles from the DEM. These values are then compared to the observed temperature difference to determine the surface slope. This method has been applied to TES Emission Phase Function (EPF) observations for both the spectrometer and bolometer data, with a footprint size of 10s of kilometers. These specialized types of TES observations measure nearly the same surface from several angles. Accurate surface kinetic temperatures are obtained after the application of an atmospheric correction for the TES bolometer and/or spectrometer. Initial results include an application to the northern circumpolar dunes. An average maximum slope of ~33 degrees has been obtained, which makes physical sense since this is near the angle of repose for sand sized particles. There is some scatter in the data from separate observations, which may be due to the large footprint size. This technique can be better understood and characterized by correlation with high resolution imagery. Several different surface maps will also be tested in addition to the two dimensional sine wave surface. Finally, by modeling the thermal effects on different particle sizes and land forms, we can further interpret the scale of these slopes.

  9. A prototype data assimilation framework for generating spatiotemporally continuous SWOT data products

    NASA Astrophysics Data System (ADS)

    Andreadis, K.; Margulis, S. A.; Li, D.; Lettenmaier, D. P.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) satellite will provide critical surface water observations for the hydrologic community. However, production of key SWOT variables, such as river discharge and surface inundation, as well as lake, reservoir, and wetland storage change will be complicated by the discontinuity of the observations in space and time. A methodology that generates products with spatially and temporally continuous fields based on SWOT observables would be highly desirable. Data assimilation provides a mechanism for merging observations from SWOT with model predictions in order to produce estimates of quantities such as river discharge, storage change, and water heights for locations and times when there is no satellite overpass or other constraints (such as layover) render the measurement unusable. We describe here a prototype assimilation system with application to the Upper Mississippi basin, implemented using synthetic SWOT observations. We use a hydrologic model (VIC) coupled with a hydrodynamic model (LISFLOOD-FP) which generates "true" fields of surface water variables. The true fields are then used to generate synthetic SWOT observations using the SWOT Instrument Simulator. We also perform a "first-guess" (or open-loop) simulation with the coupled model using a configuration that contains errors representative of the imperfect knowledge of parameters and input data, including channel topography, bankfull widths and depths, and inflows, to create an ensemble of 20 model trajectories. Subsequently we assimilate the synthetic SWOT observations into the open-loop model results to estimate water surface elevation, discharge, and storage change. Our preliminary results using three data assimilation strategies show that all improve the water surface elevation estimate accuracy by 25% - 35% for a river reach of the upper Mississippi River. Ongoing work is examining whether the improved water surface elevation estimates propagate to improvements in river discharge.

  10. Viewing Mercury's Surface-bound Exosphere from Orbit: Eighteen Months of Observations by the Mercury Atmospheric and Surface Composition Spectrometer aboard the MESSENGER Spacecraft

    NASA Astrophysics Data System (ADS)

    McClintock, W. E.; Benna, M.; Burger, M. H.; Cassidy, T.; Killen, R. M.; Merkel, A. W.; Sarantos, M.; Solomon, S. C.; Sprague, A. L.; Vervack, R. J.

    2012-12-01

    Prior to the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, Mercury's surface-bounded exosphere was known to contain H and He, observed by Mariner 10, as well as Na, K, and Ca, observed from the ground. The exosphere is the interface between the planet's surface and the surrounding space environment. Its composition and structure are controlled by interactions among the surface, magnetosphere, solar wind, sunlight, and impacting meteoroids. When species are liberated from the surface with sufficient energy, they can be accelerated by solar radiation pressure to form an anti-sunward tail. During three flybys en route to orbit, the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) aboard MESSENGER discovered Mg in the tail and detected Ca+ in a narrow region centered ~ 2.5 Mercury radii anti-sunward of the planet's terminator. UVVS began routine orbital observations of both the dayside and nightside exosphere on March 29, 2011. It regularly measures altitude profiles for all previously detected neutral species with the exception of He and K. The former has no emission features within the UVVS wavelength range (115-600 nm), and the latter has only one relatively weak feature there. A single component of Ca is usually observed at lower altitudes (~2000 km) and exhibits the strong equatorial, dawn enhancement observed during the flybys. Mg distributions exhibit two components. The more energetic component has been detected at high altitudes, up to 4000 km above the surface on both the dayside and nightside, and shows a dawn enhancement similar to Ca. Dayside distributions of Na exhibit two components with e-folding heights comparable to profiles above the poles obtained during the third flyby. Concentrations of all three species exhibit seasonal variability. The best studied of these is Na, for which maximum dayside density occurs at a Mercury true anomaly angle of 180°. UVVS also observes H. It is less well studied than Ca, Mg, and Na because signal from the exospheric H is often contaminated by emission from interplanetary hydrogen and sunlight reflected from the surface. O has also been detected near the subsolar point, but its emission is too weak for routine study. UVVS observations also include wavelength scans for neutral species that are known or are predicted to be present in the surface materials (e.g., Si, Al, S, Mn, Fe, and OH), but emissions from these species are not sufficiently bright for detection with current operational scenarios. The UVVS team uses a variety of techniques to relate exosphere composition and structure to source processes, including tomographic inversion and Monte Carlo modeling. Correlations of Mercury's neutral exosphere composition and structure with direct measurements of the space environment from MESSENGER's Magnetometer (MAG) and Energetic Particle and Plasma Spectrometer (EPPS) provide further insight into source processes.

  11. Radiative Transfer Photometric Analysis of Surface Materials at the Mars Exploration Rover Landing Sites

    NASA Astrophysics Data System (ADS)

    Seelos, F. P.; Arvidson, R. E.; Guinness, E. A.; Wolff, M. J.

    2004-12-01

    The Mars Exploration Rover (MER) Panoramic Camera (Pancam) observation strategy included the acquisition of multispectral data sets specifically designed to support the photometric analysis of Martian surface materials (J. R. Johnson, this conference). We report on the numerical inversion of observed Pancam radiance-on-sensor data to determine the best-fit surface bidirectional reflectance parameters as defined by Hapke theory. The model bidirectional reflectance parameters for the Martian surface provide constraints on physical and material properties and allow for the direct comparison of Pancam and orbital data sets. The parameter optimization procedure consists of a spatial multigridding strategy driving a Levenberg-Marquardt nonlinear least squares optimization engine. The forward radiance models and partial derivatives (via finite-difference approximation) are calculated using an implementation of the DIScrete Ordinate Radiative Transfer (DISORT) algorithm with the four-parameter Hapke bidirectional reflectance function and the two-parameter Henyey-Greenstein phase function defining the lower boundary. The DISORT implementation includes a plane-parallel model of the Martian atmosphere derived from a combination of Thermal Emission Spectrometer (TES), Pancam, and Mini-TES atmospheric data acquired near in time to the surface observations. This model accounts for bidirectional illumination from the attenuated solar beam and hemispherical-directional skylight illumination. The initial investigation was limited to treating the materials surrounding the rover as a single surface type, consistent with the spatial resolution of orbital observations. For more detailed analyses the observation geometry can be calculated from the correlation of Pancam stereo pairs (J. M. Soderblom et al., this conference). With improved geometric control, the radiance inversion can be applied to constituent surface material classes such as ripple and dune forms in addition to the soils on the Meridiani plain. Under the assumption of a Henyey-Greenstein phase function, initial results for the Opportunity site suggest a single scattering albedo on the order of 0.25 and a Henyey-Greenstein forward fraction approaching unity at an effective wavelength of 753 nm. As an extension of the photometric modeling, the radiance inversion also provides a means of calculating surface reflectance independent of the radiometric calibration target. This method for determining observed reflectance will provide an additional constraint on the dust deposition model for the calibration target.

  12. Evidence for changes in the angular velocity of the surface regions of the sun and stars

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A round table discussion of problems of solar and stellar spindown and theory is presented. Observational evidence of the angular momentum of the solar wind is included, emphasizing changes in the angular velocity of the surface regions of the sun and stars.

  13. Sideways Views of the Moon: Mapping Directional Thermal Emission with Diviner

    NASA Astrophysics Data System (ADS)

    Greenhagen, B. T.; Bandfield, J.; Bowles, N. E.; Hayne, P. O.; Sefton-Nash, E.; Warren, T.; Paige, D. A.

    2017-12-01

    Systematic off-nadir observations can be used to characterize the emission phase function and radiative balance of the lunar surface. These are critical inputs for thermophysical models used to derive surface properties and study a wide range of dynamic surface properties, such as the stability of volatiles and development and evolution of regolith, on the Moon and other airless bodies. After over eight years in operation and well into its 3rd extended science mission, NASA's Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer (Diviner) continues to reveal the extreme nature of the Moon's thermal environments, thermophysical properties, and surface composition. Diviner data are also used to characterize thermal emission behavior that is fundamental to airless bodies with fine-particulate surfaces, including epiregolith thermal gradients and thermal-scale surface roughness. Diviner's extended operations have provided opportunities to observe the lunar surface with a wide range of viewing geometries. Together Diviner's self-articulation and LRO's non-sun-synchronous polar orbit offer a unique platform to observe the lunar surface and characterize the emission phase behavior and radiative balance. Recently, Diviner completed global off-nadir observations at 50° and 70° in the anti-sun (low phase) direction with 8 different local times each. This fall, we'll begin a third campaign to observe the Moon at 50° emission in the pro-sun (high phase) direction. Here we present this new global off-nadir dataset, highlight models and laboratory experiments used to interpret the data, and describe the role of these data in studying the Moon and other airless bodies.

  14. Benefits and Pitfalls of GRACE Terrestrial Water Storage Data Assimilation

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela

    2018-01-01

    Satellite observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) mission have a coarse resolution in time (monthly) and space (roughly 150,000 sq km at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Nonetheless, data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This presentation illustrates some of the benefits and drawbacks of assimilating TWS observations from GRACE into a land surface model over the continental United States and India. The assimilation scheme yields improved skill metrics for groundwater compared to the no-assimilation simulations. A smaller impact is seen for surface and root-zone soil moisture. Further, GRACE observes TWS depletion associated with anthropogenic groundwater extraction. Results from the assimilation emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.

  15. Impact-induced seismic activity on asteroid 433 Eros: a surface modification process.

    PubMed

    Richardson, James E; Melosh, H Jay; Greenberg, Richard

    2004-11-26

    High-resolution images of the surface of asteroid 433 Eros revealed evidence of downslope movement of a loose regolith layer, as well as the degradation and erasure of small impact craters (less than approximately 100 meters in diameter). One hypothesis to explain these observations is seismic reverberation after impact events. We used a combination of seismic and geomorphic modeling to analyze the response of regolith-covered topography, particularly craters, to impact-induced seismic shaking. Applying these results to a stochastic cratering model for the surface of Eros produced good agreement with the observed size-frequency distribution of craters, including the paucity of small craters.

  16. Evapotranspiration from nonuniform surfaces - A first approach for short-term numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1988-01-01

    Observations of surface heterogeneity of soil moisture from scales of meters to hundreds of kilometers are discussed, and a relationship between grid element size and soil moisture variability is presented. An evapotranspiration model is presented which accounts for the variability of soil moisture, standing surface water, and vegetation internal and stomatal resistance to moisture flow from the soil. The mean values and standard deviations of these parameters are required as input to the model. Tests of this model against field observations are reported, and extensive sensitivity tests are presented which explore the importance of including subgrid-scale variability in an evapotranspiration model.

  17. Control of wave-driven turbulence and surface heating on the mixing of microplastic marine debris

    NASA Astrophysics Data System (ADS)

    Kukulka, T.; Lavender Law, K. L.; Proskurowski, G. K.

    2016-02-01

    Buoyant microplastic marine debris (MPMD) is a pollutant in the ocean surface boundary layer (OSBL) that is submerged by turbulent transport processes. Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that enhances mixing in the OSBL. Sea surface cooling also contributes to OSBL turbulence by driving convection. On the other hand, sea surface heating stratifies and stabilizes the water column to reduce turbulent motion. We analyze observed MPMD surface concentrations in the Atlantic and Pacific Oceans to reveal a significant increase in MPMD concentrations during surface heating and a decrease during surface cooling. Turbulence resolving large eddy simulations of the OSBL for an idealized diurnal heating cycle suggest that turbulent downward fluxes of buoyant tracers are enhanced at night, facilitating deep submergence of plastics, and suppressed in heating conditions, resulting in surface trapped MPMD. Simulations agree with observations if enhanced mixing due to LC is included. Our results demonstrate the controlling influence of surface heat fluxes and LC on turbulent transport in the OSBL and on vertical distributions of buoyant marine particles.

  18. Space-Based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Fiore, Arlene M.; VanDonkelaar, Aaron

    2004-01-01

    We present a novel capability in satellite remote sensing with implications for air pollution control strategy. We show that the ratio of formaldehyde columns to tropospheric nitrogen dioxide columns is an indicator of the relative sensitivity of surface ozone to emissions of nitrogen oxides (NO(x) = NO + NO2) and volatile organic compounds (VOCs). The diagnosis from these space-based observations is highly consistent with current understanding of surface ozone chemistry based on in situ observations. The satellite-derived ratios indicate that surface ozone is more sensitive to emissions of NO(x) than of VOCs throughout most continental regions of the Northern Hemisphere during summer. Exceptions include Los Angeles and industrial areas of Germany. A seasonal transition occurs in the fall when surface ozone becomes less sensitive to NOx and more sensitive to VOCs.

  19. Assessment of arsenic surface contamination in a museum anthropology department.

    PubMed

    Gribovich, Andrey; Lacey, Steven; Franke, John; Hinkamp, David

    2013-02-01

    To assess potential arsenic (As) contamination of work surfaces to improve upon the control strategy at an anthropology department in a large natural history museum. Work practices were observed and control strategy reviewed to inform an occupational hygiene assessment strategy utilizing surface wipe sampling. A total of 35 sampling targets were identified, focusing on surfaces that receive high touch traffic, including workstations, artifact transport carts, and elevator buttons. Arsenic sampling and analysis were performed using reference method Occupational Safety and Health Administration ID-125G. Four of the sampling areas returned detectable levels of As, ranging from 0.052 to 0.350 μg/100 cm. Workplace observations and wipe sampling data enabled the development of recommendations to help to further reduce potential occupational exposure to As. Continuous reduction of surface contamination is prudent for known human carcinogens.

  20. Utilization of Satellite Data in Land Surface Hydrology: Sensitivity and Assimilation

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman; Susskind, Joel

    1999-01-01

    This paper investigates the sensitivity of potential evapotranspiration to input meteorological variables, viz- surface air temperature and surface vapor pressure. The sensitivity studies have been carried out for a wide range of land surface variables such as wind speed, leaf area index and surface temperatures. Errors in the surface air temperature and surface vapor pressure result in errors of different signs in the computed potential evapotranspiration. This result has implications for use of estimated values from satellite data or analysis of surface air temperature and surface vapor pressure in large scale hydrological modeling. The comparison of cumulative potential evapotranspiration estimates using ground observations and satellite observations over Manhattan, Kansas for a period of several months shows very little difference between the two. The cumulative differences between the ground based and satellite based estimates of potential evapotranspiration amounted to less that 20mm over a 18 month period and a percentage difference of 15%. The use of satellite estimates of surface skin temperature in hydrological modeling to update the soil moisture using a physical adjustment concept is studied in detail including the extent of changes in soil moisture resulting from the assimilation of surface skin temperature. The soil moisture of the surface layer is adjusted by 0.9mm over a 10 day period as a result of a 3K difference between the predicted and the observed surface temperature. This is a considerable amount given the fact that the top layer can hold only 5mm of water.

  1. Land Surface Model Biases and their Impacts on the Assimilation of Snow-related Observations

    NASA Astrophysics Data System (ADS)

    Arsenault, K. R.; Kumar, S.; Hunter, S. M.; Aman, R.; Houser, P. R.; Toll, D.; Engman, T.; Nigro, J.

    2007-12-01

    Some recent snow modeling studies have employed a wide range of assimilation methods to incorporate snow cover or other snow-related observations into different hydrological or land surface models. These methods often include taking both model and observation biases into account throughout the model integration. This study focuses more on diagnosing the model biases and presenting their subsequent impacts on assimilating snow observations and modeled snowmelt processes. In this study, the land surface model, the Community Land Model (CLM), is used within the Land Information System (LIS) modeling framework to show how such biases impact the assimilation of MODIS snow cover observations. Alternative in-situ and satellite-based observations are used to help guide the CLM LSM in better predicting snowpack conditions and more realistic timing of snowmelt for a western US mountainous region. Also, MODIS snow cover observation biases will be discussed, and validation results will be provided. The issues faced with inserting or assimilating MODIS snow cover at moderate spatial resolutions (like 1km or less) will be addressed, and the impacts on CLM will be presented.

  2. Sinuous flow in metals

    PubMed Central

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-01-01

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick “chip.” This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode—sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect. PMID:26216980

  3. Sinuous flow in metals.

    PubMed

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-08-11

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick "chip." This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode--sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect.

  4. Comparative Perspectives on Recent Trends in Land Surface Dynamics in the Grasslands of North and South America

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Valle De Carvalho E Oliveira, P.; Zheng, B.; de Beurs, K.; Owsley, B.

    2015-12-01

    In our current era of intensive earth observation the time is ripe to shift away from studies relying on single sensors or single products to the synergistic use of multiple sensors and products at complementary spatial, temporal, and spectral scales. The use of multiple time series can not only reveal hotspots of change in land surface dynamics, but can indicate plausible proximate causes of the changes and suggest their possible consequences. Here we explore recent trends in the land surface dynamics of exemplary semi-arid grasslands in the western hemisphere, including the shortgrass prairie of eastern Colorado and New Mexico, the sandhills prairie of Nebraska, the "savana gramineo-lenhosa" variety of cerrado in central Brazil, and the pampas of Argentina. Observational datasets include (1) NBAR-based vegetation indices, land surface temperature, and evapotranspiration from MODIS, (2) air temperature, water vapor, and vegetation optical depth from AMSR-E and AMSR2, (3) surface air temperature, water vapor, and relative humidity from AIRS, and (4) surface shortwave, longwave, and total net flux from CERES. The spatial resolutions of these nested data include 500 m, 1000 m, 0.05 degree, 25 km, and 1 degree. We apply the nonparametric Seasonal Kendall trend test to each time series independently to identify areas of significant change. We then examine polygons of co-occurrence of significant change in two or more types of products using the surface radiation and energy budgets as guides to interpret the multiple changes. Changes occurring across broad areas are more likely to be of climatic origin; whereas, changes that are abrupt in space and time and of limited area are more likely anthropogenic. Results illustrate the utility of considering multiple remote sensing products as complementary views of land surface dynamics.

  5. Land Surface Data Assimilation and the Northern Gulf Coast Land/Sea Breeze

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske; Arnold, James E. (Technical Monitor)

    2002-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSU/NCAR MM5 V3-4 and applied on a 4-km domain for this particular application. It is recognized that a 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.

  6. Application of Land Surface Data Assimilation to Simulations of Sea Breeze Circulations

    NASA Technical Reports Server (NTRS)

    Mackaro, Scott; Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske

    2003-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite- observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSUNCAR MM5 V3-5 and applied at spatial resolutions of 12- and 4-km. It is recognized that even 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.

  7. The Global Ocean Observing System

    NASA Technical Reports Server (NTRS)

    Kester, Dana

    1992-01-01

    A Global Ocean Observing System (GOOS) should be established now with international coordination (1) to address issues of global change, (2) to implement operational ENSO forecasts, (3) to provide the data required to apply global ocean circulation models, and (4) to extract the greatest value from the one billion dollar investment over the next ten years in ocean remote sensing by the world's space agencies. The objectives of GOOS will focus on climatic and oceanic predictions, on assessing coastal pollution, and in determining the sustainability of living marine resources and ecosystems. GOOS will be a complete system including satellite observations, in situ observations, numerical modeling of ocean processes, and data exchange and management. A series of practical and economic benefits will be derived from the information generated by GOOS. In addition to the marine science community, these benefits will be realized by the energy industries of the world, and by the world's fisheries. The basic oceanic variables that are required to meet the oceanic and predictability objectives of GOOS include wind velocity over the ocean, sea surface temperature and salinity, oceanic profiles of temperature and salinity, surface current, sea level, the extent and thickness of sea ice, the partial pressure of CO2 in surface waters, and the chlorophyll concentration of surface waters. Ocean circulation models and coupled ocean-atmosphere models can be used to evaluate observing system design, to assimilate diverse data sets from in situ and remotely sensed observations, and ultimately to predict future states of the system. The volume of ocean data will increase enormously over the next decade as new satellite systems are launched and as complementary in situ measuring systems are deployed. These data must be transmitted, quality controlled, exchanged, analyzed, and archived with the best state-of-the-art computational methods.

  8. Mapping products of Titan's surface

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouelic, Stephane; Lorenz, Ralf D.; Perry, Jason; Brown, Robert H.; Lebreton, Jean-Pierre

    2009-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  9. Measuring Ocean Surface Waves using Signal Reflections from Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Ouellette, J. D.; Dowgiallo, D. J.; Hwang, P. A.; Toporkov, J. V.

    2017-12-01

    The delay-Doppler response of communications signals (such as GNSS) reflected off the ocean surface is well-known to have properties which strongly correlate with surface wind conditions and ocean surface roughness. This study extends reflectometry techniques currently applied to the GNSS constellation to include geostationary communications satellites such as XM Radio. In this study, ocean wind conditions and significant wave height will be characterized using the delay-Doppler response of XM Radio signals reflected off of ocean surface waves. Using geostationary satellites for reflectometry-based remote sensing of oceans presents two primary advantages. First, longer coherent integration times can be achieved, which boosts signal processing gain and allows for finer Doppler resolution. Second, being designed for wide-area broadcast communications, the ground-received power of these geostationary satellite signals tends to be many orders of magnitude stronger than e.g. GNSS signals. Reflections of such signals from the ocean are strong enough to be received well outside of the specular region. This flexibility of viewing geometry allows signal processing to be performed on data received from multiple incidence/reception angles, which can provide a more complete characterization of ocean surface roughness and surface wind vectors. This work will include studies of simulated and measured delay-Doppler behavior of XM Radio signals reflected from dynamic ocean surfaces. Simulation studies will include inter-comparison between a number of hydrodynamic and electromagnetic models. Results from simulations will be presented as delay-Doppler plots and will be compared with delay-Doppler behavior observed in measured data. Measured data will include field campaign results from early- to mid-2017 in which the US Naval Research Laboratory's in-house XM reflectometer-receiver was deployed near the coasts of Virginia and North Carolina to observe reflections from wind-driven ocean waves. Preliminary results from a significant wave height retrieval algorithm will also be presented.

  10. Regional and Coastal Prediction with the Relocatable Ocean Nowcast/Forecast System

    DTIC Science & Technology

    2014-09-01

    and those that may be resolved with a suite of satellite altimeters when several are present and operational (~ 100 km). The altimeter data provide...September 2014 47 The observational data used for assimilation include satellite sea surface temperature (SST), satellite altimeter sea surface height...anomaly (SSHA), satellite microwave-derived sea ice concentration, and in situ surface and profile data from sensors on ships; drifters; fixed buoys

  11. Adsorption and decontamination of α-synuclein from medically and environmentally-relevant surfaces.

    PubMed

    Phan, Hanh T M; Bartz, Jason C; Ayers, Jacob; Giasson, Benoit I; Schubert, Mathias; Rodenhausen, Keith B; Kananizadeh, Negin; Li, Yusong; Bartelt-Hunt, Shannon L

    2018-06-01

    The assembly and accumulation of α-synuclein fibrils are implicated in the development of several neurodegenerative disorders including multiple system atrophy and Parkinson's disease. Pre-existing α-synuclein fibrils can recruit and convert soluble non-fibrillar α-synuclein to the fibrillar form similar to what is observed in prion diseases. This raises concerns regarding attachment of fibrillary α-synuclein to medical instruments and subsequent exposure of patients to α-synuclein similar to what has been observed in iatrogenic transmission of prions. Here, we evaluated adsorption and desorption of α-synuclein to two surfaces: stainless steel and a gold surface coated with a 11-Amino-1-undecanethiol hydrochloride self-assembled-monolayer (SAM) using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. α-Synuclein was found to attach to both surfaces, however, increased α-synuclein adsorption was observed onto the positively charged SAM surface compared to the stainless steel surface. Dynamic light scattering data showed that larger α-synuclein fibrils were preferentially attached to the stainless steel surface when compared with the distributions in the original α-synuclein solution and on the SAM surface. We determined that after attachment, introduction of a 1N NaOH solution could completely remove α-synuclein adsorbed on the stainless steel surface while α-synuclein was retained on the SAM surface. Our results indicate α-synuclein can bind to multiple surface types and that decontamination is surface-dependent. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  13. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  14. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  15. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  16. 47 CFR 87.525 - Scope of service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Automatic Weather Stations (AWOS/ASOS) § 87.525 Scope of service. Automatic weather observation stations (AWOS) and automatic surface observation stations (ASOS) must provide up-to-date weather information including the time of the latest weather sequence, altimeter setting, wind speed and direction, dew point...

  17. Space Photography 1977 Index

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An index is provided to representative photographs and transparencies available from NASA. Subjects include spacecraft, astronauts, lunar surface, planets and outer space phenomena, earth observations, and aviation. High altitude aircraft infrared photographs are included along with artists' conceptions of space shuttle and space colonies.

  18. NASA Cold Land Processes Experiment (CLPX 2002/03): Ground-based and near-surface meteorological observations

    Treesearch

    Kelly Elder; Don Cline; Angus Goodbody; Paul Houser; Glen E. Liston; Larry Mahrt; Nick Rutter

    2009-01-01

    A short-term meteorological database has been developed for the Cold Land Processes Experiment (CLPX). This database includes meteorological observations from stations designed and deployed exclusively for CLPXas well as observations available from other sources located in the small regional study area (SRSA) in north-central Colorado. The measured weather parameters...

  19. Impact of the Fraser River Geometry on Tides and the River Plumes in a Model of the Fraser River Plume

    NASA Astrophysics Data System (ADS)

    Liu, J.; Allen, S. E.; Soontiens, N. K.

    2016-02-01

    Fraser River is the largest river on the west coast of Canada. It empties into the Strait of Georgia, which is a large, semi-enclosed body of water between Vancouver Island and the mainland of British Columbia. We have developed a three-dimensional model of the Strait of Georgia, including the Fraser River plume, using the NEMO model in its regional configuration. This operational model produces daily nowcasts and forecasts for salinity, temperature, currents and sea surface heights. Observational data available for evaluation of the model includes daily British Columbia ferry salinity data, profile data and surface drifter data. The salinity of the modelled Fraser River plume agrees well with ferry based measurements of salinity. However, large discrepencies exist between the modelled and observed position of the plume. Modelled surface currents compared to drifter observations show that the model has too strong along-strait velocities and too weak cross-strait velocities. We investigated the impact of river geometry. A sensitivity experiment was performed comparing the original, short, shallow river channel to an extended and deepened river channel. With the latter bathymetry, tidal amplitudes within Fraser River correspond well with observations. Comparisons to drifter tracks show that the surface currents have been improved with the new bathymetry. However, substantial discrepencies remain. We will discuss how reducing vertical eddy viscosity and other changes further improve the modelled position of the plume.

  20. New Observations of C-band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate From the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Buckley, C. D.; Biswas, S.; May, C.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; hide

    2012-01-01

    HIRAD flew on the WB-57 during NASA's GRIP (Genesis and Rapid Intensification Processes) campaign in August September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  1. Calculating clear-sky radiative heating rates using the Fu-Liou RTM with inputs from observed and reanalyzed profiles

    NASA Astrophysics Data System (ADS)

    Dolinar, E. K.; Dong, X.; Xi, B.

    2015-12-01

    One-dimensional radiative transfer models (RTM) are a common tool used for calculating atmospheric heating rates and radiative fluxes. In the forward sense, RTMs use known (or observed) quantities of the atmospheric state and surface characteristics to determine the appropriate surface and top-of-atmosphere (TOA) radiative fluxes. The NASA CERES science team uses the modified Fu-Liou RTM to calculate atmospheric heating rates and surface and TOA fluxes using the CERES observed TOA shortwave (SW) and longwave (LW) fluxes as constraints to derive global surface and TOA radiation budgets using a reanalyzed atmospheric state (e.g. temperature and various greenhouse gases) from the newly developed MERRA-2. However, closure studies have shown that using the reanalyzed state as input to the RTM introduces some disparity between the RTM calculated fluxes and surface observed ones. The purpose of this study is to generate a database of observed atmospheric state profiles, from satellite and ground-based sources, at several permanent Atmospheric Radiation Measurement (ARM) Program sites, including the Southern Great Plains (SGP), Northern Slope of Alaska (NSA) and Tropical Western Pacific Nauru (TWP-C2), and Eastern North Atlantic (ENA) permanent facilities. Since clouds are a major modulator of radiative transfer within the Earth's atmosphere, we will focus on the clear-sky conditions in this study, which will set up the baseline for our cloudy studies in the future. Clear-sky flux profiles are calculated using the Edition 4 NASA LaRC modified Fu-Liou RTM. The aforementioned atmospheric profiles generated in-house are used as input into the RTM, as well as from reanalyses. The calculated surface and TOA fluxes are compared with ARM surface measured and CERES satellite observed SW and LW fluxes, respectively. Clear-sky cases are identified by the ARM radar-lidar observations, as well as satellite observations, at the select ARM sites.

  2. Synergistic use of multispectral satellite data for monitoring land surface change

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.

    1991-01-01

    Observations by the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA satellites were used to compute visible and near infrared reflectances and surface temperature, while passive microwave observations at 37 GHz frequency by the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave Imager (SSM/I) on board, respectively, the Nimbus-7 and DMSP-F8 satellites were used to compute polarization difference. These observations were analyzed along transects from rainforest to desert over northern Africa for the period 1979-1987, which included an unprecedented drought during 1984 over the Sahel zone. Model simulations were made to understand the interrelationship among multispectral data.

  3. Yield Estimation for Semipalatinsk Underground Nuclear Explosions Using Seismic Surface-wave Observations at Near-regional Distances

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.

    - A statistical procedure is described for estimating the yields of underground nuclear tests at the former Soviet Semipalatinsk test site using the peak amplitudes of short-period surface waves observed at near-regional distances (Δ < 150 km) from these explosions. This methodology is then applied to data recorded from a large sample of the Semipalatinsk explosions, including the Soviet JVE explosion of September 14, 1988, and it is demonstrated that it provides seismic estimates of explosion yield which are typically within 20% of the yields determined for these same explosions using more accurate, non-seismic techniques based on near-source observations.

  4. Surface Soil Moisture Estimates Across China Based on Multi-satellite Observations and A Soil Moisture Model

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Yang, Tao; Ye, Jinyin; Li, Zhijia; Yu, Zhongbo

    2017-04-01

    Soil moisture is a key variable that regulates exchanges of water and energy between land surface and atmosphere. Soil moisture retrievals based on microwave satellite remote sensing have made it possible to estimate global surface (up to about 10 cm in depth) soil moisture routinely. Although there are many satellites operating, including NASA's Soil Moisture Acitive Passive mission (SMAP), ESA's Soil Moisture and Ocean Salinity mission (SMOS), JAXA's Advanced Microwave Scanning Radiometer 2 mission (AMSR2), and China's Fengyun (FY) missions, key differences exist between different satellite-based soil moisture products. In this study, we applied a single-channel soil moisture retrieval model forced by multiple sources of satellite brightness temperature observations to estimate consistent daily surface soil moisture across China at a spatial resolution of 25 km. By utilizing observations from multiple satellites, we are able to estimate daily soil moisture across the whole domain of China. We further developed a daily soil moisture accounting model and applied it to downscale the 25-km satellite-based soil moisture to 5 km. By comparing our estimated soil moisture with observations from a dense observation network implemented in Anhui Province, China, our estimated soil moisture results show a reasonably good agreement with the observations (RMSE < 0.1 and r > 0.8).

  5. Various fates of neuronal progenitor cells observed on several different chemical functional groups

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Wang, Ying; He, Jin; Wang, Xiu-Mei; Cui, Fu-Zhai; Xu, Quan-Yuan

    2011-12-01

    Neuronal progenitor cells cultured on gold-coated glass surfaces modified by different chemical functional groups, including hydroxyl (-OH), carboxyl (-COOH), amino (-NH2), bromo (-Br), mercapto (-SH), - Phenyl and methyl (-CH3), were studied here to investigate the influence of surface chemistry on the cells' adhesion, morphology, proliferation and functional gene expression. Focal adhesion staining indicated in the initial culture stage cells exhibited morphological changes in response to different chemical functional groups. Cells cultured on -NH2 grafted surface displayed focal adhesion plaque and flattened morphology and had the largest contact area. However, their counter parts on -CH3 grafted surface displayed no focal adhesion and rounded morphology and had the smallest contact area. After 6 days culture, the proliferation trend was as follows: -NH2 > -SH> -COOH> - Phenyl > - Br > -OH> -CH3. To determine the neural functional properties of the cells affected by surface chemistry, the expression of glutamate decarboxylase (GAD67), nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) were characterized. An increase of GAD67 expression was observed on -NH2, -COOH and -SH grafted surfaces, while no increase in NGF and BDNF expression was observed on any chemical surfaces. These results highlight the importance of surface chemistry in the fate determination of neuronal progenitor cells, and suggest that surface chemistry must be considered in the design of biomaterials for neural tissue engineering.

  6. Science objectives and observing strategy for the OMEGA imaging spectrometer on Mars-Express

    NASA Astrophysics Data System (ADS)

    Erard, S.; Bibring, J.-P.; Drossart, P.; Forget, F.; Schmitt, B.; OMEGA Team

    2003-04-01

    The science objectives of OMEGA, which were first defined at the time of instruments selection for Mars-Express, were recently updated to integrate new results from MGS and Odyssey concerning three main fields: Martian surface and atmosphere, and polar processes. Thematic categories of observations are derived from the scientific objectives whenever spectral observations from OMEGA are expected to provide insights to Mars present situation and evolution. Targets within these categories are selected on the basis of their expected usefulness, which is related to their intrinsic properties and to the instrument capabilities. The whole surface will be mapped at low resolution (~5 km/pixel) in the course of the nominal mission, and possibly routinely at very coarse resolution to monitor time-varying processes from apocenter. However, only 5% of the surface can be observed at high resolution (up to 350 m/pixel) owing to constraints on telemetry rate. HR targets are therefore selected on the basis of telemetry constraints, orbital parameters, observing opportunities (visibility under given conditions), and spacecraft functionalities (e.g., depointing capacity), then prioritized within each category according to the probability to perform significant observations with OMEGA (in many situations, according to the estimated dust coverage). Target selection is performed interactively between OMEGA co-Is, in close contact with teams from other MEx experiments (mostly HRSC, PFS and Spicam) and other missions (e.g., MER and MRO). Most HR surface targets are selected on the basis of deep examination of Viking, THEMIS, and MOC HR images. Other surface targets include areas presenting unusual spectral properties in previous observations, or suspected to exhibit signatures of hydrothermal activity. Proposed landing sites and suggested source areas for the SNC meteorites are also included. Atmospheric/polar objectives more often translate as particular observing modes, sometimes at HR (e.g., limb observations, EPF sequences). The constraints are related to local time and seasonal occurrence of particular processes, and to spacecraft pointing. About 1000 HR targets are currently identified in the Southern hemisphere (first six month in orbit). The targets are described in a database with geographic coordinates in IAU-2000 system, context and detailed images, optimum observing conditions, science rationale and references. This database is currently being interfaced with ESA's MAPSS planning software.

  7. Sulfur-induced structural motifs on copper and gold surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walen, Holly

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence ofmore » metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.« less

  8. Locating potential biosignatures on Europa from surface geology observations.

    PubMed

    Figueredo, Patricio H; Greeley, Ronald; Neuer, Susanne; Irwin, Louis; Schulze-Makuch, Dirk

    2003-01-01

    We evaluated the astrobiological potential of the major classes of geologic units on Europa with respect to possible biosignatures preservation on the basis of surface geology observations. These observations are independent of any formational model and therefore provide an objective, though preliminary, evaluation. The assessment criteria include high mobility of material, surface concentration of non-ice components, relative youth, textural roughness, and environmental stability. Our review determined that, as feature classes, low-albedo smooth plains, smooth bands, and chaos hold the highest potential, primarily because of their relative young age, the emplacement of low-viscosity material, and indications of material exchange with the subsurface. Some lineaments and impact craters may be promising sites for closer study despite the comparatively lower astrobiological potential of their classes. This assessment will be expanded by multidisciplinary examination of the potential for habitability of specific features.

  9. Reanalysis of and attribution to near-surface ozone concentrations in Sweden during 1990-2013

    NASA Astrophysics Data System (ADS)

    Andersson, Camilla; Alpfjord, Heléne; Robertson, Lennart; Karlsson, Per Erik; Engardt, Magnuz

    2017-11-01

    We have constructed two data sets of hourly resolution reanalyzed near-surface ozone (O3) concentrations for the period 1990-2013 for Sweden. Long-term simulations from a chemistry-transport model (CTM) covering Europe were combined with hourly ozone concentration observations at Swedish and Norwegian background measurement sites using retrospective variational data analysis. The reanalysis data sets show improved performance over the original CTM when compared to independent observations. In one of the reanalyses, we included all available hourly near-surface O3 observations, whilst in the other we carefully selected time-consistent observations. Based on the second reanalysis we investigated statistical aspects of the distribution of the near-surface O3 concentrations, focusing on the linear trend over the 24-year period. We show that high near-surface O3 concentrations are decreasing and low O3 concentrations are increasing, which is reflected in observed improvement of many health and vegetation indices (apart from those with a low threshold). Using the CTM we also conducted sensitivity simulations to quantify the causes of the observed change, focusing on three factors: change in hemispheric background concentrations, meteorology and anthropogenic emissions. The rising low concentrations of near-surface O3 in Sweden are caused by a combination of all three factors, whilst the decrease in the highest O3 concentrations is caused by European O3 precursor emissions reductions. While studying the impact of anthropogenic emissions changes, we identified systematic differences in the modeled trend compared to observations that must be caused by incorrect trends in the utilized emissions inventory or by too high sensitivity of our model to emissions changes.

  10. Titan's surface at 2.2-cm wavelength imaged by the Cassini RADAR radiometer: Calibration and first results

    USGS Publications Warehouse

    Janssen, M.A.; Lorenz, R.D.; West, R.; Paganelli, F.; Lopes, R.M.; Kirk, R.L.; Elachi, C.; Wall, S.D.; Johnson, W.T.K.; Anderson, Y.; Boehmer, R.A.; Callahan, P.; Gim, Y.; Hamilton, G.A.; Kelleher, K.D.; Roth, L.; Stiles, B.; Le, Gall A.

    2009-01-01

    The first comprehensive calibration and mapping of the thermal microwave emission from Titan's surface is reported based on radiometric data obtained at 2.2-cm wavelength by the passive radiometer included in the Cassini Radar instrument. The data reported were accumulated from 69 separate observational segments in Titan passes from Ta (October 2004) through T30 (May 2007) and include emission from 94% of Titan's surface. They are diverse in the key observing parameters of emission angle, polarization, and spatial resolution, and their reduction into calibrated global mosaic maps involved several steps. Analysis of the polarimetry obtained at low to moderate resolution (50+ km) enabled integration of the radiometry into a single mosaic of the equivalent brightness temperature at normal incidence with a relative precision of about 1 K. The Huygens probe measurement of Titan's surface temperature and radiometry obtained on Titan's dune fields allowed us to infer an absolute calibration estimated to be accurate to a level approaching 1 K. The results provide evidence for a surface that is complex and varied on large scales. The radiometry primarily constrains physical properties of the surface, where we see strong evidence for subsurface (volume) scattering as a dominant mechanism that determines the emissivity, with the possibility of a fluffy or graded-density surface layer in many regions. The results are consistent with, but not necessarily definitive of a surface composition resulting from the slow deposition and processing of organic compounds from the atmosphere. ?? 2008 Elsevier Inc.

  11. Impact of Aquarius and SMAP Sea Surface Salinity Observations on Seasonal Predictions of the 2015 El Nino

    NASA Technical Reports Server (NTRS)

    Hackert, E.; Kovach, R.; Marshak, J.; Borovikov, A.; Molod, A.; Vernieres, G.

    2018-01-01

    We assess the impact of satellite sea surface salinity (SSS) observations on dynamical ENSO forecasts for the big 2015 El Nino event. From March to June 2015, the availability of two overlapping satellite SSS instruments, Aquarius and SMAP (Soil Moisture Active Passive Mission), allows a unique opportunity to compare and contrast forecasts generated with the benefit of these two satellite SSS observation types. Four distinct experiments are presented that include 1) freely evolving model SSS (i.e. no satellite SSS), relaxation to 2) climatological SSS (i.e. WOA13 SSS), 3) Aquarius, and 4) SMAP initialization. Coupled hindcasts are then generated from these initial conditions for March 2015. These forecasts are then validated against observations and evaluated with respect to the observed El Nino development.

  12. Amplified effect of Brownian motion in bacterial near-surface swimming

    PubMed Central

    Li, Guanglai; Tam, Lick-Kong; Tang, Jay X.

    2008-01-01

    Brownian motion influences bacterial swimming by randomizing displacement and direction. Here, we report that the influence of Brownian motion is amplified when it is coupled to hydrodynamic interaction. We examine swimming trajectories of the singly flagellated bacterium Caulobacter crescentus near a glass surface with total internal reflection fluorescence microscopy and observe large fluctuations over time in the distance of the cell from the solid surface caused by Brownian motion. The observation is compared with computer simulation based on analysis of relevant physical factors, including electrostatics, van der Waals force, hydrodynamics, and Brownian motion. The simulation reproduces the experimental findings and reveals contribution from fluctuations of the cell orientation beyond the resolution of present observation. Coupled with hydrodynamic interaction between the bacterium and the boundary surface, the fluctuations in distance and orientation subsequently lead to variation of the swimming speed and local radius of curvature of swimming trajectory. These results shed light on the fundamental roles of Brownian motion in microbial motility, nutrient uptake, and adhesion. PMID:19015518

  13. Aquarius/SAC-D soil moisture product using V3.0 observations

    USDA-ARS?s Scientific Manuscript database

    Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scope to include the retrieval of surface soil moisture. The soil moisture retrieval algorithm development ...

  14. Estimation of Multiple Parameters over Vegetated Surfaces by Integrating Optical-Thermal Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Ma, H.

    2016-12-01

    Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface parameters are generally parameter-specific algorithms and are based on instantaneous physical models, which result in spatial, temporal and physical inconsistencies in current global products. Besides, optical and Thermal Infrared (TIR) remote sensing observations are usually separated to use based on different models , and the Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal that mixes both reflected and emitted fluxes. In this paper, we proposed a unified algorithm for simultaneously retrieving a total of seven land surface parameters, including Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Temperature (LST), surface emissivity, downward and upward longwave radiation, by exploiting remote sensing observations from visible to TIR domain based on a common physical Radiative Transfer (RT) model and a data assimilation framework. The coupled PROSPECT-VISIR and 4SAIL RT model were used for canopy reflectance modeling. At first, LAI was estimated using a data assimilation method that combines MODIS daily reflectance observation and a phenology model. The estimated LAI values were then input into the RT model to simulate surface spectral emissivity and surface albedo. Besides, the background albedo and the transmittance of solar radiation, and the canopy albedo were also calculated to produce FAPAR. Once the spectral emissivity of seven MODIS MIR to TIR bands were retrieved, LST can be estimated from the atmospheric corrected surface radiance by exploiting an optimization method. At last, the upward longwave radiation were estimated using the retrieved LST, broadband emissivity (converted from spectral emissivity) and the downward longwave radiation (modeled by MODTRAN). These seven parameters were validated over several representative sites with different biome type, and compared with MODIS and GLASS product. Results showed that this unified inversion algorithm can retrieve temporally complete and physical consistent land surface parameters with high accuracy.

  15. Plausible surface models for Titan

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1992-01-01

    Current understanding of the nature of Titan's surface and some new ideas for explaining the curious radar returns from Saturn's largest satellite are reviewed. Pre-Voyager models of the surface, based largely on cosmochemistry and the discovery of atmospheric methane, allowed for a range of possibilities, including pure methane oceans. The Voyager 1 flyby ruled out this last possibility, replacing it with compelling observational arguments in favor of a mixed light hydrocarbon and nitrogen ocean. Ground based radar observations indicated a surprisingly reflective surface which is inconsistent with a hydrocarbon ocean and more reminiscent of the Galilean Satellites. Nonetheless, passive radiometric measurements of the surface do not support the notion that Titan's surface is like that of the Galilean satellites. One of the arguments against hydrocarbon oceans reflecting radar energy is that most solid, complex hydrocarbon and nitriles will be denser than the liquid and sink. Nonetheless, many of the aerosol species will coagulate in highly nonspherical patterns, and some species probably polymerize in long chains. Such chains will have very low sedimendation velocities in the ocean and may remain near the surface through ocean mixing process. The prospect of an oceanic 'soup' of polar polymers acting as volume reflectors at radio wevelengths suggests that the interpretation of radar observations needs evaluation.

  16. Diurnal variation in martian dust devil activity

    NASA Astrophysics Data System (ADS)

    Chapman, R. M.; Lewis, S. R.; Balme, M.; Steele, L. J.

    2017-08-01

    We show that the dust devil parameterisation in use in most Mars Global Circulation Models (MGCMs) results in an unexpectedly high level of dust devil activity during morning hours. Prior expectations of the diurnal variation of Martian dust devils are based mainly upon the observed behaviour of terrestrial dust devils: i.e. that the majority occur during the afternoon. We instead find that large areas of the Martian surface experience dust devil activity during the morning in our MGCM, and that many locations experience a peak in dust devil activity before mid-sol. We find that the diurnal variation in dust devil activity is governed by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce higher levels of dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. Evidence for whether the phenomenon we observe is real or an artefact of the parameterisation is inconclusive. We compare our results with surface-based observations of Martian dust devil timings and obtain a good match with the majority of surveys. We do not find a good match with orbital observations, which identify a diurnal distribution more closely matching that of terrestrial dust devils, but orbital observations have limited temporal coverage, biased towards the early afternoon. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further surveys of dust devil observations are required to support any such modifications. These surveys should include both surface and orbital observations, and the range of observations must encompass the full diurnal period and consider the wider meteorological context surrounding the observations.

  17. New Insights in Tropospheric Ozone and its Variability

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.; Douglass, Anne R.; Ziemke, Jerry R.; Rodriquez, Jose M.

    2011-01-01

    We have produced time-slice simulations using the Goddard Earth Observing System Version 5 (GEOS-5) coupled to a comprehensive stratospheric and tropospheric chemical mechanism. These simulations are forced with observed sea surface temperatures over the past 25 years and use constant specified surface emissions, thereby providing a measure of the dynamically controlled ozone response. We examine the model performance in simulating tropospheric ozone and its variability. Here we show targeted comparisons results from our simulations with a multi-decadal tropical tropospheric column ozone dataset obtained from satellite observations of total column ozone. We use SHADOZ ozonesondes to gain insight into the observed vertical response and compare with the simulated vertical structure. This work includes but is not limited to ENSO related variability.

  18. Confirmation of saturation equilibrium conditions in crater populations

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.; Gaskell, Robert W.

    1993-01-01

    We have continued work on realistic numerical models of cratered surfaces, as first reported at last year's LPSC. We confirm the saturation equilibrium level with a new, independent test. One of us has developed a realistic computer simulation of a cratered surface. The model starts with a smooth surface or fractal topography, and adds primary craters according to the cumulative power law with exponent -1.83, as observed on lunar maria and Martian plains. Each crater has an ejecta blanket with the volume of the crater, feathering out to a distance of 4 crater radii. We use the model to test the levels of saturation equilibrium reached in naturally occurring systems, by increasing crater density and observing its dependence on various parameters. In particular, we have tested to see if these artificial systems reach the level found by Hartmann on heavily cratered planetary surfaces, hypothesized to be the natural saturation equilibrium level. This year's work gives the first results of a crater population that includes secondaries. Our model 'Gaskell-4' (September, 1992) includes primaries as described above, but also includes a secondary population, defined by exponent -4. We allowed the largest secondary from each primary to be 0.10 times the size of the primary. These parameters will be changed to test their effects in future models. The model gives realistic images of a cratered surface although it appears richer in secondaries than real surfaces are. The effect of running the model toward saturation gives interesting results for the diameter distribution. Our most heavily cratered surface had the input number of primary craters reach about 0.65 times the hypothesized saturation equilibrium, but the input number rises to more than 100 times that level for secondaries below 1.4 km in size.

  19. Accurate Modelling of Surface Currents and Internal Tides in a Semi-enclosed Coastal Sea

    NASA Astrophysics Data System (ADS)

    Allen, S. E.; Soontiens, N. K.; Dunn, M. B. H.; Liu, J.; Olson, E.; Halverson, M. J.; Pawlowicz, R.

    2016-02-01

    The Strait of Georgia is a deep (400 m), strongly stratified, semi-enclosed coastal sea on the west coast of North America. We have configured a baroclinic model of the Strait of Georgia and surrounding coastal waters using the NEMO ocean community model. We run daily nowcasts and forecasts and publish our sea-surface results (including storm surge warnings) to the web (salishsea.eos.ubc.ca/storm-surge). Tides in the Strait of Georgia are mixed and large. The baroclinic model and previous barotropic models accurately represent tidal sea-level variations and depth mean currents. The baroclinic model reproduces accurately the diurnal but not the semi-diurnal baroclinic tidal currents. In the Southern Strait of Georgia, strong internal tidal currents at the semi-diurnal frequency are observed. Strong semi-diurnal tides are also produced in the model, but are almost 180 degrees out of phase with the observations. In the model, in the surface, the barotropic and baroclinic tides reinforce, whereas the observations show that at the surface the baroclinic tides oppose the barotropic. As such the surface currents are very poorly modelled. Here we will present evidence of the internal tidal field from observations. We will discuss the generation regions of the tides, the necessary modifications to the model required to correct the phase, the resulting baroclinic tides and the improvements in the surface currents.

  20. Validation of Satellite Retrieved Land Surface Variables

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman; Susskind, Joel

    1999-01-01

    The effective use of satellite observations of the land surface is limited by the lack of high spatial resolution ground data sets for validation of satellite products. Recent large scale field experiments include FIFE, HAPEX-Sahel and BOREAS which provide us with data sets that have large spatial coverage and long time coverage. It is the objective of this paper to characterize the difference between the satellite estimates and the ground observations. This study and others along similar lines will help us in utilization of satellite retrieved data in large scale modeling studies.

  1. Dyess AFB, Texas. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1988-01-01

    Observations (RUSSWO); Dyess AFB TX; Texas; Abilene TX; Army Airfield Abilene TX; USTX722665. 19 Abstract: A six-part statistical data summary of...ELAT. AND S TANDARD Di-V I AtIONjS PEEESNTCVIS [’j ,T INCLUDE INCOMPLETE MONTHS. FOUR OR MORE MONTHS ARE NEEDED TO ADMILTE THE SE STATISTIC S AND...TA L NLMMYt (,F OPSIRW8IONS: 93" 6LOfAL CLPUATOLOGV FRANC " PERCENTAGE FPEiUtICY OF OCCURRENCE OF SURFACE WIND DIRECTION VERSUS WIND SPEED LiSAF7 I

  2. Infrared Algorithm Development for Ocean Observations with EOS/MODIS

    NASA Technical Reports Server (NTRS)

    Brown, Otis B.

    1997-01-01

    Efforts continue under this contract to develop algorithms for the computation of sea surface temperature (SST) from MODIS infrared measurements. This effort includes radiative transfer modeling, comparison of in situ and satellite observations, development and evaluation of processing and networking methodologies for algorithm computation and data accession, evaluation of surface validation approaches for IR radiances, development of experimental instrumentation, and participation in MODIS (project) related activities. Activities in this contract period have focused on radiative transfer modeling, evaluation of atmospheric correction methodologies, undertake field campaigns, analysis of field data, and participation in MODIS meetings.

  3. Warming and Inhibition of Salinization at the Ocean's Surface by Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Wurl, O.; Bird, K.; Cunliffe, M.; Landing, W. M.; Miller, U.; Mustaffa, N. I. H.; Ribas-Ribas, M.; Witte, C.; Zappa, C. J.

    2018-05-01

    This paper describes high-resolution in situ observations of temperature and, for the first time, of salinity in the uppermost skin layer of the ocean, including the influence of large surface blooms of cyanobacteria on those skin properties. In the presence of the blooms, large anomalies of skin temperature and salinity of 0.95°C and -0.49 practical salinity unit were found, but a substantially cooler (-0.22°C) and saltier skin layer (0.19 practical salinity unit) was found in the absence of surface blooms. The results suggest that biologically controlled warming and inhibition of salinization of the ocean's surface occur. Less saline skin layers form during precipitation, but our observations also show that surface blooms of Trichodesmium sp. inhibit evaporation decreasing the salinity at the ocean's surface. This study has important implications in the assessment of precipitation over the ocean using remotely sensed salinity, but also for a better understanding of heat exchange and the hydrologic cycle on a regional scale.

  4. Remote sensing of surface currents with single shipborne high-frequency surface wave radar

    NASA Astrophysics Data System (ADS)

    Wang, Zhongbao; Xie, Junhao; Ji, Zhenyuan; Quan, Taifan

    2016-01-01

    High-frequency surface wave radar (HFSWR) is a useful technology for remote sensing of surface currents. It usually requires two (or more) stations spaced apart to create a two-dimensional (2D) current vector field. However, this method can only obtain the measurements within the overlapping coverage, which wastes most of the data from only one radar observation. Furthermore, it increases observation's costs significantly. To reduce the number of required radars and increase the ocean area that can be measured, this paper proposes an economical methodology for remote sensing of the 2D surface current vector field using single shipborne HFSWR. The methodology contains two parts: (1) a real space-time multiple signal classification (MUSIC) based on sparse representation and unitary transformation techniques is developed for measuring the radial currents from the spreading first-order spectra, and (2) the stream function method is introduced to obtain the 2D surface current vector field. Some important conclusions are drawn, and simulations are included to validate the correctness of them.

  5. Differences between near-surface equivalent temperature and temperature trends for the Eastern United States. Equivalent temperature as an alternative measure of heat content

    USGS Publications Warehouse

    Davey, C.A.; Pielke, R.A.; Gallo, K.P.

    2006-01-01

    There is currently much attention being given to the observed increase in near-surface air temperatures during the last century. The proper investigation of heating trends, however, requires that we include surface heat content to monitor this aspect of the climate system. Changes in heat content of the Earth's climate are not fully described by temperature alone. Moist enthalpy or, alternatively, equivalent temperature, is more sensitive to surface vegetation properties than is air temperature and therefore more accurately depicts surface heating trends. The microclimates evident at many surface observation sites highlight the influence of land surface characteristics on local surface heating trends. Temperature and equivalent temperature trend differences from 1982-1997 are examined for surface sites in the Eastern U.S. Overall trend differences at the surface indicate equivalent temperature trends are relatively warmer than temperature trends in the Eastern U.S. Seasonally, equivalent temperature trends are relatively warmer than temperature trends in winter and are relatively cooler in the fall. These patterns, however, vary widely from site to site, so local microclimate is very important. ?? 2006 Elsevier B.V. All rights reserved.

  6. Visual Inspection of Surfaces

    NASA Technical Reports Server (NTRS)

    Hughes, David; Perez, Xavier

    2007-01-01

    This presentation evaluates the parameters that affect visual inspection of cleanliness. Factors tested include surface reflectance, surface roughness, size of the largest particle, exposure time, inspector and distance from sample surface. It is concluded that distance predictions were not great, particularly because the distance at which contamination is seen may depend on more variables than those tested. Most parameters estimates had confidence of 95% or better, except for exposure and reflectance. Additionally, the distance at which surface is visibly contaminated decreases with increasing reflectance, roughness, and exposure. The distance at which the surface is visually contaminated increased with the largest particle size. These variables were only slightly affected the observer.

  7. Cell Adhesion on RGD-Displaying Knottins with Varying Numbers of Tryptophan Amino Acids to Tune the Affinity for Assembly on Cucurbit[8]uril Surfaces.

    PubMed

    Sankaran, Shrikrishnan; Cavatorta, Emanuela; Huskens, Jurriaan; Jonkheijm, Pascal

    2017-09-05

    Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form a heteroternary complex with cucurbit[8]uril (CB[8]) and surface-tethered methylviologen (MV 2+ ). The binding affinity of the knottins with CB[8] and MV 2+ surfaces was evaluated using surface plasmon resonance spectroscopy. Specific binding occurred, and the affinity increased with the valency of tryptophans on the knottin. Additionally, increased multilayer formation was observed, attributed to homoternary complex formation between tryptophan residues of different knottins and CB[8]. Thus, we were able to control the surface coverage of the knottins by valency and concentration. Cell experiments with mouse myoblast (C2C12) cells on the self-assembled knottin surfaces showed specific integrin recognition by the RGD-displaying knottins. Moreover, cells were observed to elongate more on the supramolecular knottin surfaces with a higher valency, and in addition, more pronounced focal adhesion formation was observed on the higher-valency knottin surfaces. We attribute this effect to the enhanced coverage and the enhanced affinity of the knottins in their interaction with the CB[8] surface. Collectively, these results are promising for the development of biomaterials including knottins via CB[8] ternary complexes for tunable interactions with cells.

  8. Satellite Applications to Acoustic Prediction Systems.

    DTIC Science & Technology

    1982-10-01

    Spin Scan Radiometer (VISSR) Channlization. . .1. . . . . . . . * 0 .0 35 III Coastal Zone Color Scanner (CZCS) Channelization. • .o . ... ....... 38...surface condit.ions observable remotely by satellite include sea surface temperature, ocean color , and topography. C. EXPERINENTAL BASIS FOR THIS...resolution at infrared wavelengths) . The limbus-7 spacecraft carries the Coastal Zone Color Scanner (CZCS), which is a visual radiation instrument

  9. Dynamics of Phenanthrenequinone on Carbon Nano-Onion Surfaces Probed by Quasielastic Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjos, Daniela M; Mamontov, Eugene; Brown, Gilbert M

    We used quasielastic neutron scattering (QENS) to study the dynamics of phenanthrenequinone (PQ) on the surface of onion-like carbon (OLC), or so called carbon onions, as a function of surface coverage and temperature. For both the high- and low-coverage samples, we observed two diffusion processes; a faster process and nearly an order of magnitude slower process. On the high-coverage surface, the slow diffusion process is of long-range translational character, whereas the fast diffusion process is spatially localized on the length scale of ~ 4.7 . On the low-coverage surface, both diffusion processes are spatially localized; on the same length scalemore » of ~ 4.7 for the fast diffusion and a somewhat larger length scale for the slow diffusion. Arrhenius temperature dependence is observed except for the long-range diffusion on the high-coverage surface. We attribute the fast diffusion process to the generic localized in-cage dynamics of PQ molecules, and the slow diffusion process to the long-range translational dynamics of PQ molecules, which, depending on the coverage, may be either spatially restricted, or long-range. On the low-coverage surface, uniform surface coverage is not attained, and the PQ molecules experience the effect of spatial constraints on their long-range translational dynamics. Unexpectedly, the dynamics of PQ molecules on OLC as a function of temperature and surface coverage bears qualitative resemblance to the dynamics of water molecules on oxide surfaces, including practically temperature-independent residence times for the low-coverage surface. The dynamics features that we observed may be universal across different classes of surface adsorbates.« less

  10. Observations and models of Co- and Post-Seismic Deformation Due to the 2015 Mw 7.8 Gorkha (Nepal) Earthquake

    NASA Astrophysics Data System (ADS)

    Wang, K.; Fialko, Y. A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha (Nepal) earthquake occurred along the central Himalayan arc, a convergent boundary between India and Eurasian plates. We use space geodetic data to investigate co- and post-seismic deformation due to the Gorkha earthquake. Because the epicentral area of the earthquake is characterized by strong variations in surface relief and material properties, we developed finite element models that explicitly account for topography and 3-D elastic structure. Compared with slip models obtained using homogenous elastic half-space models, the model including elastic heterogeneity and topography exhibits greater (up to 10%) slip amplitude. GPS observations spanning more than 1 year following the earthquake show overall southward movement and uplift after the Gorkha earthquake, qualitatively similar to the coseismic deformation pattern. Kinematic inversions of GPS data, and forward modeling of stress-driven creep indicate that the observed post-seismic transient is consistent with afterslip on a down-dip extention of the seismic rupture. The Main Himalayan Thrust (MHT) has negligible creep updip of the 2015 rupture, reiterating a future seismic hazard. A poro-elastic rebound may contribute to the observed uplift southward motion, but the predicted surface displacements are small (on the order of 1 cm or less). We also tested a wide range of visco-elastic relaxation models, including 1-D and 3-D variations in the viscosity structure. All tested visco-elastic models predict the opposite signs of horizontal and vertical displacements compared to those observed. Available surface deformation data allow one to rule out a model of a low viscosity channel beneath Tibetan Plateau invoked to explain variations in surface relief at the plateau margins.

  11. Mapping products of Titan's surface: Chapter 19

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Kirk, Randolph L.; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouélic, Stéphane; Lorenz, Ralph D.; Perry, Jason; Brown, Robert; Lebreton, Jean-Pierre; Waite, J. Hunter

    2010-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  12. Validation and Inter-comparison Against Observations of GODAE Ocean View Ocean Prediction Systems

    NASA Astrophysics Data System (ADS)

    Xu, J.; Davidson, F. J. M.; Smith, G. C.; Lu, Y.; Hernandez, F.; Regnier, C.; Drevillon, M.; Ryan, A.; Martin, M.; Spindler, T. D.; Brassington, G. B.; Oke, P. R.

    2016-02-01

    For weather forecasts, validation of forecast performance is done at the end user level as well as by the meteorological forecast centers. In the development of Ocean Prediction Capacity, the same level of care for ocean forecast performance and validation is needed. Herein we present results from a validation against observations of 6 Global Ocean Forecast Systems under the GODAE OceanView International Collaboration Network. These systems include the Global Ocean Ice Forecast System (GIOPS) developed by the Government of Canada, two systems PSY3 and PSY4 from the French Mercator-Ocean Ocean Forecasting Group, the FOAM system from UK met office, HYCOM-RTOFS from NOAA/NCEP/NWA of USA, and the Australian Bluelink-OceanMAPS system from the CSIRO, the Australian Meteorological Bureau and the Australian Navy.The observation data used in the comparison are sea surface temperature, sub-surface temperature, sub-surface salinity, sea level anomaly, and sea ice total concentration data. Results of the inter-comparison demonstrate forecast performance limits, strengths and weaknesses of each of the six systems. This work establishes validation protocols and routines by which all new prediction systems developed under the CONCEPTS Collaborative Network will be benchmarked prior to approval for operations. This includes anticipated delivery of CONCEPTS regional prediction systems over the next two years including a pan Canadian 1/12th degree resolution ice ocean prediction system and limited area 1/36th degree resolution prediction systems. The validation approach of comparing forecasts to observations at the time and location of the observation is called Class 4 metrics. It has been adopted by major international ocean prediction centers, and will be recommended to JCOMM-WMO as routine validation approach for operational oceanography worldwide.

  13. Extended Edited Synoptic Cloud Reports from Ships and Land Stations Over the Globe, 1952-2009 (NDP-026C)

    DOE Data Explorer

    Hahn, C. J. [University of Arizona; Warren, S. G. [University of Washington; Eastman, R.

    1999-08-01

    This database contains surface synoptic weather reports for the entire globe, gathered from various available data sets. The reports were processed, edited, and rewritten to provide a single dataset of individual observations of clouds, spanning the 57 years 1952-2008 for ship data and the 39 years 1971-2009 for land station data. In addition to the cloud portion of the synoptic report, each edited report also includes the associated pressure, present weather, wind, air temperature, and dew point (and sea surface temperature over oceans). This data set is called the "Extended Edited Cloud Report Archive" (EECRA). The EECRA is based solely on visual cloud observations from weather stations, reported in the WMO synoptic code (WMO, 1974). Reports must contain cloud-type information to be included in the archive. Past data sources include those from the Fleet Numerical Oceanographic Center (FNOC, 1971-1976) and the National Centers for Environmental Prediction (NCEP, 1977-1996). This update uses data from a new source, the 'Integrated Surface Database' (ISD, 1997-2009; Smith et al., 2011). Our past analyses of the EECRA identified a subset of 5388 weather stations that were determined to produce reliable day and night observations of cloud amount and type. The update contains observations only from this subset of stations. Details concerning processing, previous problems, contents, and comments are available in the archive's original documentation . The EECRA contains about 81 million cloud observations from ships and 380 million from land stations. The data files have been compressed using unix. Unix/linux users can "uncompress" or "gunzip" the files after downloading. If you're interested in the NDP-026C database, then you'll also want to explore its related data products, NDP-026D and NDP-026E.

  14. EPIC Radiance Simulator for Deep Space Climate ObserVatoRy (DSCOVR)

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Marshak, Alexander; Wang, Yujie; Korkin, Sergey; Herman, Jay

    2011-01-01

    The Deep Space Climate ObserVatoRy (DSCOVR) is a planned space weather mission for the Sun and Earth observations from the Lagrangian L1 point. Onboard of DSCOVR is a multispectral imager EPIC designed for unique observations of the full illuminated disk of the Earth with high temporal and 10 km spatial resolution. Depending on latitude, EPIC will observe the same Earth surface area during the course of the day in a wide range of solar and view zenith angles in the backscattering view geometry with the scattering angle of 164-172 . To understand the information content of EPIC data for analysis of the Earth clouds, aerosols and surface properties, an EPIC radiance Simulator was developed covering the UV -VIS-NIR range including the oxygen A and B-bands (A=340, 388, 443, 555, 680, 779.5, 687.7, 763.3 nm). The Simulator uses ancillary data (surface pressure/height, NCEP wind speed) as well as MODIS-based geophysical fields such as spectral surface bidirectional reflectance, column water vapor, and properties of aerosols and clouds including optical depth, effective radius, phase and cloud top height. The original simulations are conducted at 1 km resolution using the look-up table approach and then are averaged to 10 km EPIC radiances. This talk will give an overview of the EPIC Simulator with analysis of results over the continental USA and northern Atlantic.

  15. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    PubMed

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.

  16. Temperature and size variabilities of the Western Pacific Warm Pool

    NASA Technical Reports Server (NTRS)

    Yan, Xiao-Hai; Ho, Chung-Ru; Zheng, Quanan; Klemas, Vic

    1992-01-01

    Variabilities in sea-surface temperature and size of the Western Pacific Warm Pool were tracked with 10 years of satellite multichannel sea-surface temperature observations from 1982 to 1991. The results show that both annual mean sea-surface temperature and the size of the warm pool increased from 1983 to 1987 and fluctuated after 1987. Possible causes of these variations include solar irradiance variabilities, El Nino-Southern Oscillaton events, volcanic activities, and global warming.

  17. Some unique surface patterns on ignimbrites on Earth: A "bird's eye" view as a guide for planetary mappers

    NASA Astrophysics Data System (ADS)

    de Silva, Shanaka L.; Bailey, John E.

    2017-08-01

    Observations of terrestrial analogs are critical to aiding planetary mappers in interpreting surface lithologies on other planets. For instance, the presence of ignimbrites on Mars has been debated for over three decades and is supported by analogy with deposits on Earth. Critical evidence includes the geomorphic and surface expression of the deposits, and those in the Central Andes of South America are amongst the most-cited analogs. Herein we describe some prominent surface textures and patterns seen in ignimbrites on the scale of high-resolution remotely sensed data (10-1 m per pixel). These include pervasive joints and fractures that contribute to yardang form and development as well as prominent mounds, fissures, and fracture networks ("spiders", "bugs", "boxworks") on ignimbrite surfaces. While all these features are related to intrinsic cooling and degassing processes, the involvement of external water buried by hot pyroclastic flows enhances fumarolic activity, advective cooling, and joint development. Observations of these geomorphic expressions using remote sensing are only possible with the highest resolution data and limited surface erosion. For Mars, where similarly high resolution datasets are available (for example, the High Resolution Imaging Sensor Experiment or HiRISE) extensive dust cover may limit the recognition of similar features there. However significant relief on some of these features on Earth indicate they might still be detectable on Mars.

  18. Global Distribution and Density of Constructed Impervious Surfaces.

    PubMed

    Elvidge, Christopher D; Tuttle, Benjamin T; Sutton, Paul C; Baugh, Kimberly E; Howard, Ara T; Milesi, Cristina; Bhaduri, Budhendra; Nemani, Ramakrishna

    2007-09-21

    We present the first global inventory of the spatial distribution and density ofconstructed impervious surface area (ISA). Examples of ISA include roads, parking lots,buildings, driveways, sidewalks and other manmade surfaces. While high spatialresolution is required to observe these features, the new product reports the estimateddensity of ISA on a one-km² grid based on two coarse resolution indicators of ISA - thebrightness of satellite observed nighttime lights and population count. The model wascalibrated using 30-meter resolution ISA of the USA from the U.S. Geological Survey.Nominally the product is for the years 2000-01 since both the nighttime lights andreference data are from those two years. We found that 1.05% of the United States landarea is impervious surface (83,337 km²) and 0.43 % of the world's land surface (579,703km²) is constructed impervious surface. China has more ISA than any other country(87,182 km²), but has only 67 m² of ISA per person, compared to 297 m² per person in theUSA. The distribution of ISA in the world's primary drainage basins indicates that watersheds damaged by ISA are primarily concentrated in the USA, Europe, Japan, China and India. The authors believe the next step for improving the product is to include reference ISA data from many more areas around the world.

  19. MESSENGER Searches for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Mercury's exosphere is composed of material that originates at the planet's surface, whether that material is native or delivered by the solar wind and micrometeoroids. Many exospheric species have been detected by remote sensing, including H and He by Mariner 10, Na, K, and Ca by ground-based observations, and H, Na, Ca, Mg, and Ca+ by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Other exospheric species, including Fe, AI, Si, 0, S, Mn, CI, Ti, OH, and their ions, are expected to be present on the basis of MESSENGER surface measurements and models of Mercury's surface chemistry. Here we report on searches for these species made with the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). No obvious signatures of the listed species have yet been observed in Mercury's exosphere by the UVVS as of this writing. It is possible that detections are elusive because the optimum regions of the exosphere have not been sampled. The Sun-avoidance constraints on MESSENGER place tight limits on instrument boresight directions, and some regions are probed infrequently. If there are strong spatial gradients in the distribution of weakly emitting species, a high-resolution sampling of specific regions may be required to detect them. Summing spectra over time will also aid in the ability to detect weaker emission. Observations to date nonetheless permit strong upper limits to be placed on the abundances of many undetected species, in some cases as functions of time and space. As those limits are lowered with time, the absence of detections can provide insight into surface composition and the potential source mechanisms of exospheric material.

  20. Mini-RF and LROC observations of mare crater layering relationships

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Patterson, G. W.; Cahill, J. T. S.; Bussey, D. B. J.

    2016-07-01

    The lunar maria cover approximately 17% of the Moon's surface. Discerning discrete subsurface layers in the mare provides some constraints on thickness and volume estimates of mare volcanism. Multiple types of data and measurement techniques allow probing the subsurface and provide insights into these layers, including detailed examination of impact craters, mare pits and sinuous rilles, and radar sounders. Unfortunately, radar sounding includes many uncertainties about the material properties of the lunar surface that may influence estimates of layer depth and thickness. Because they distribute material from depth onto the surface, detailed examination of impact ejecta blankets provides a reliable way to examine deeper material using orbital instruments such as cameras, spectrometers, or imaging radars. Here, we utilize Miniature Radio Frequency (Mini-RF) data to investigate the scattering characteristics of ejecta blankets of young lunar craters. We use Circular Polarization Ratio (CPR) information from twenty-two young, fresh lunar craters to examine how the scattering behavior changes as a function of radius from the crater rim. Observations across a range of crater size and relative ages exhibit significant diversity within mare regions. Five of the examined craters exhibit profiles with no shelf of constant CPR near the crater rim. Comparing these CPR profiles with LROC imagery shows that the magnitude of the CPR may be an indication of crater degradation state; this may manifest differently at radar compared to optical wavelengths. Comparisons of radar and optical data also suggest relationships between subsurface stratigraphy and structure in the mare and the block size of the material found within the ejecta blanket. Of the examined craters, twelve have shelves of approximately constant CPR as well as discrete layers outcropping in the subsurface, and nine fall along a trend line when comparing shelf-width with thickness of subsurface layers. These observations suggest that surface CPR measurements may be used to identify near-surface layering. Here, we use ejected material to probe the subsurface, allowing observations of near-surface stratigraphy that may be otherwise hidden by layers higher from remote observations.

  1. Observations and simulations of microplastic marine debris in the ocean surface boundary layer

    NASA Astrophysics Data System (ADS)

    Kukulka, T.; Brunner, K.; Proskurowski, G. K.; Lavender Law, K. L.

    2016-02-01

    Motivated by observations of buoyant microplastic marine debris (MPMD) in the ocean surface boundary layer (OSBL), this study applies a large eddy simulation model and a parametric one-dimensional column model to examine vertical distributions of MPMD. MPMD is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant whose distribution is subject to upper ocean turbulence. The models capture wind-driven turbulence, Langmuir turbulence (LT), and enhanced turbulent kinetic energy input due to breaking waves (BW). Model results are only consistent with MPMD observations if LT effects are included. Neither BW nor shear-driven turbulence is capable of deeply submerging MPMD, suggesting that the observed vertical MPMD distributions are a characteristic signature of wave-driven LT. Thus, this study demonstrates that LT substantially increases turbulent transport in the OSBL, resulting in deep submergence of buoyant tracers. The parametric model is applied to eleven years of observations in the North Atlantic and North Pacific subtropical gyres to show that surface measurements substantially underestimate MPMD concentrations by a factor of three to thirteen.

  2. Evolution of Near-Surface Internal and External Oxide Morphology During High-Temperature Selective Oxidation of Steels

    NASA Astrophysics Data System (ADS)

    Story, Mary E.; Webler, Bryan A.

    2018-05-01

    In this work we examine some observations made using high-temperature confocal scanning laser microscopy (HT-CSLM) during selective oxidation experiments. A plain carbon steel and advanced high-strength steel (AHSS) were selectively oxidized at high temperature (850-900°C) in either low oxygen or water vapor atmospheres. Surface evolution, including thermal grooving along grain boundaries and oxide growth, was viewed in situ during heating. Experiments investigated the influence of the microstructure and oxidizing atmosphere on selective oxidation behavior. Sequences of CSLM still frames collected during the experiment were processed with ImageJ to obtain histograms that showed a general darkening trend indicative of oxidation over time with all samples. Additional ex situ scanning electron microscopy and energy dispersive spectroscopy analysis supported in situ observations. Distinct oxidation behavior was observed for each case. Segregation, grain orientation, and extent of internal oxidation were all found to strongly influence surface evolution.

  3. An analytical formalism accounting for clouds and other `surfaces' for exoplanet transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Bétrémieux, Yan; Swain, Mark R.

    2017-05-01

    Although the formalism of Lecavelier des Etangs et al. is extremely useful to understand what shapes transmission spectra of exoplanets, it does not include the effects of a sharp change in flux with altitude generally associated with surfaces and optically thick clouds. Recent advances in understanding the effects of refraction in exoplanet transmission spectra have, however, demonstrated that even clear thick atmospheres have such a sharp change in flux due to a refractive boundary. We derive a more widely applicable analytical formalism by including first-order effects from all these 'surfaces' to compute an exoplanet's effective radius, effective atmospheric thickness and spectral modulation for an atmosphere with a constant scaleheight. We show that the effective radius cannot be located below these 'surfaces' and that our formalism matches the formalism of Lecavelier des Etangs et al. in the case of a clear atmosphere. Our formalism explains why clouds and refraction reduce the contrast of spectral features, and why refraction decreases the Rayleigh scattering slope as wavelength increases, but also shows that these are common effects of all 'surfaces'. We introduce the concept of a 'surface' cross-section, the minimum mean cross-section that can be observed, as an index to characterize the location of 'surfaces' and provide a simple method to estimate their effects on the spectral modulation of homogeneous atmospheres. We finally devise a numerical recipe that extends our formalism to atmospheres with a non-constant scaleheight and arbitrary sources of opacity, a potentially necessary step to interpret observations.

  4. Surface analysis of selected hydrophobic materials

    NASA Astrophysics Data System (ADS)

    Wisniewska, Sylwia Katarzyna

    This dissertation contains a series of studies on hydrophobic surfaces by various surface sensitive techniques such as contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Hydrophobic surfaces have been classified as mineral surfaces, organic synthetic surfaces, or natural biological surfaces. As a model hydrophobic mineral surface, elemental sulfur has been selected. The sulfur surface has been characterized for selected allotropic forms of sulfur such as rhombic, monoclinic, plastic, and cyclohexasulfur. Additionally, dextrin adsorption at the sulfur surface was measured. The structure of a dextrin molecule showing hydrophobic sites has been presented to support the proposed hydrophobic bonding nature of dextrin adsorption at the sulfur surface. As a model organic hydrophobic surface, primary fatty amines such as dodecylamine, hexadecylamine, and octadecylamine were chosen. An increase of hydrophobicity, significant changes of infrared bands, and surface topographical changes with time were observed for each amine. Based on the results it was concluded that hydrocarbon chain rearrangement associated with recrystallization took place at the surface during contact with air. A barley straw surface was selected as a model of biological hydrophobic surfaces. The differences in the contact angles for various straw surfaces were explained by the presence of a wax layer. SEM images confirmed the heterogeneity and complexity of the wax crystal structure. AFM measurements provided additional structural details including a measure of surface roughness. Additionally, straw degradation as a result of conditioning in an aqueous environment was studied. Significant contact angle changes were observed as soon as one day after conditioning. FTIR studies showed a gradual wax layer removal due to straw surface decomposition. SEM and AFM images revealed topographical changes and biological life development as part of the straw degradation process. Three different classes of hydrophobic surfaces have been studied, and in each case important surface chemistry issues have been identified that influence the hydrophobic state. Many of the studies are unique to the particular system, but common phenomena that influence the hydrophobic state of all of these surfaces include time dependence due to crystallization and chemical degradation (oxidation, hydration, biological activity).

  5. Terrestrial Observations from NOAA Operational Satellites.

    PubMed

    Yates, H; Strong, A; McGinnis, D; Tarpley, D

    1986-01-31

    Important applications to oceanography, hydrology, and agriculture have been developed from operational satellites of the National Oceanic and Atmospheric Administration and are currently expanding rapidly. Areas of interest involving the oceans include sea surface temperature, ocean currents, and ocean color. Satellites can monitor various hydrological phenomena, including regional and global snow cover, river and sea ice extent, and areas of global inundation. Agriculturally important quantities derived from operational satellite observations include precipitation, daily temperature extremes, canopy temperatures, insolation, and snow cover. This overview describes the current status of each area.

  6. A 15 year legacy of cloud and atmosphere observations in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Shupe, M.

    2012-12-01

    For the past 15 years, the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program has operated the North Slope of Alaska (NSA) atmospheric observatory in Barrow, Alaska. Barrow offers many valuable perspectives on the Arctic environment that complement observations at lower latitudes. Unique features of the Arctic region include cold and dry atmospheric conditions, strong annual variability in sun light, a seasonally high-reflective surface, and persistent clouds that involve mixed-phase processes. ARM's ultimate objective with its flagship observatory at the northernmost point in U.S. territory is to provide measurements that can be used to improve the understanding of these atmospheric physical and radiative properties and processes such that they can be better represented in climate models. The NSA is the most detailed and long-lasting cloud-radiation-atmosphere observatory in the Arctic, providing continuous, sophisticated measurements of climate-relevant parameters. Instrument suites include active radars and lidars at various frequencies, passive radiometers monitoring radiation in microwave, infrared, visible and ultraviolet wavelengths, meteorological towers, and sounding systems. Together these measurements are used to characterize many of the important properties of clouds, aerosols, atmospheric radiation, dynamics, thermodynamics, and the surface. The coordinated nature of these measurements offers important multi-dimensional insight into many fundamental processes linking these different elements of the climate system. Moreover, the continuous operations of the facility support these observations over the full diurnal cycle and in all seasons of the year. This presentation will highlight a number of important studies and key findings that have been facilitated by the NSA observations during the first 15 years in operation. Some of these include: a thorough documentation of clouds, their occurrence frequency, phase, microphysical properties, and impacts on surface radiation; the indirect effect of aerosols on the surface longwave radiative effects of Arctic clouds; improved measurements of low amounts of atmospheric water vapor and their impacts on atmospheric radiation; dynamical and microphysical processes that are responsible for long-lived Arctic stratiform clouds; evaluation of satellite observations in extreme and observationally-difficult regimes; and assessment of model performance for models ranging from very high resolution to climate model simulations in the Arctic. The observational legacy at Barrow continues as ARM works to expand and enhance its impact. Plans are underway to install observational capabilities at a sister location in Oliktok Point to the east of Barrow, including enhanced capabilities of tethered balloon profiling and flying unmanned aerial vehicles over the adjacent Arctic Ocean. A new set of scanning cloud and precipitation radars have recently come online at Barrow that will allow for new insights on the spatial context of measurements at Barrow, including important information on the variability of atmospheric processes associated with the coastline. And lastly, there are many opportunities for the intensive observations at Barrow to inform important regional research on permafrost and sea-ice loss, while also serving as an unmatched, long-term record for evaluating atmospheric processes in regional and global climate models.

  7. AERI Observations of Antarctic Clouds Properties During AWARE

    NASA Astrophysics Data System (ADS)

    Gero, P. J.; Rowe, P. M.; Walden, V. P.

    2017-12-01

    The ARM West Antarctic Radiation Experiment (AWARE) was a recent field campaign by the US Dept. of Energy's Atmospheric Radiation Measurement (ARM) program, in collaboration with the National Science Foundation, to measure the state of the atmosphere, the surface energy balance, and cloud properties in Antarctica. The main observing facility for AWARE, located near McMurdo Station, consisted of a wide variety of instrumentation, including an eddy-covariance system, surface aerosol measurements, cloud radar and lidar, broadband radiometers, microwave radiometer, and an infrared spectroradiometer (AERI). Collectively these measurements can be used to improve our understanding of the connections between the atmospheric state, cloud processes, and their effects on the surface energy budget. Thus, AWARE data have the potential to revolutionize our understanding of how the atmosphere and clouds impact the surface energy budget in this important region. The Atmospheric Emitted Radiance Interferometer (AERI) is a ground-based instrument developed at the University of Wisconsin-Madison that measures downwelling thermal infrared radiance from the atmosphere. Observations are made in the 400-3020 cm-1 (3.3-19 μm) spectral range with a resolution of 1 cm-1, with an accuracy better than 1% of ambient radiance. These observations can be used to obtain vertical profiles of tropospheric temperature and water vapor in the lower troposphere, as well as measurements of the concentration of various trace gases and microphysical and optical properties of clouds. We present some preliminary results from the AERI dataset from AWARE, including analysis of the downwelling radiation and cloud structure over the annual cycle.

  8. Surface Brillouin scattering of opaque solids and thin supported films

    PubMed

    Comins; Every; Stoddart; Zhang; Crowhurst; Hearne

    2000-03-01

    Surface Brillouin scattering (SBS) has been used successfully for the study of acoustic excitations in opaque solids and thin supported films, at both ambient and high temperatures. A number of different systems have been investigated recently by SBS including crystalline silicon, amorphous silicon layers produced by ion bombardment and their high temperature recrystallisation, vanadium carbides, and a nickel-based superalloy. The most recent development includes the measurement of a supported gold film at high pressure. The extraction of the elastic constants is successfully accomplished by a combination of the angular dependence of surface wave velocities and the longitudinal wave threshold within the Lamb shoulder. The application of surface Green's function methods successfully reproduces the experimental SBS spectra. The discrepancies often observed between surface wave velocities and by ultrasonics measurements have been investigated and a detailed correction procedure for the SBS measurements has been developed.

  9. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    NASA Technical Reports Server (NTRS)

    Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.; Roman, Miguel O.; Wanik, David W.

    2016-01-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes.However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre-and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  10. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    NASA Astrophysics Data System (ADS)

    Cole, T.; Molthan, A.; Schultz, L. A.; Roman, M. O.; Wanik, D. W.

    2016-12-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes. However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre- and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  11. The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John

    2010-01-01

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture that are informed by and consistent with SMAP observations. Such estimates are obtained by merging SMAP observations with estimates from a land surface model in a soil moisture data assimilation system. The land surface model component of the assimilation system is driven with observations-based surface meteorological forcing data, including precipitation, which is the most important driver for soil moisture. The model also encapsulates knowledge of key land surface processes, including the vertical transfer of soil moisture between the surface and root zone reservoirs. Finally, the model interpolates and extrapolates SMAP observations in time and in space. The L4_SM product thus provides a comprehensive and consistent picture of land surface hydrological conditions based on SMAP observations and complementary information from a variety of sources. The assimilation algorithm considers the respective uncertainties of each component and yields a product that is superior to satellite or model data alone. Error estimates for the L4_SM product are generated as a by-product of the data assimilation system.

  12. Observation of Wood's anomalies on surface gravity waves propagating on a channel.

    PubMed

    Schmessane, Andrea

    2016-09-01

    I report on experiments demonstrating the appearance of Wood's anomalies in surface gravity waves propagating along a channel with a submerged obstacle. Space-time measurements of surface gravity waves allow one to compute the stationary complex field of the wave and the amplitude growth of localized and propagative modes over all the entire channel, including the scattering region. This allows one to access the near and far field dynamics, which constitute a new and complementary way of observation of mode resonances of the incoming wave displaying Wood's anomalies. Transmission coefficient, dispersion relations and normalized wave energy of the incoming wave and the excited mode are measured and found to be in good agreement with theoretical predictions.

  13. The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate

    NASA Astrophysics Data System (ADS)

    Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.

    2017-12-01

    Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan GCMs, including infiltration and subsurface flow.

  14. Multiplatform observations enabling albedo retrievals with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Riihelä, Aku; Manninen, Terhikki; Key, Jeffrey; Sun, Qingsong; Sütterlin, Melanie; Lattanzio, Alessio; Schaaf, Crystal

    2017-04-01

    In this paper we show that combining observations from different polar orbiting satellite families (such as AVHRR and MODIS) is physically justifiable and technically feasible. Our proposed approach will lead to surface albedo retrievals at higher temporal resolution than the state of the art, with comparable or better accuracy. This study is carried out in the World Meteorological Organization (WMO) Sustained and coordinated processing of Environmental Satellite data for Climate Monitoring (SCOPE-CM) project SCM-02 (http://www.scope-cm.org/projects/scm-02/). Following a spectral homogenization of the Top-of-Atmosphere reflectances of bands 1 & 2 from AVHRR and MODIS, both observation datasets are atmospherically corrected with a coherent atmospheric profile and algorithm. The resulting surface reflectances are then fed into an inversion of the RossThick-LiSparse-Reciprocal surface bidirectional reflectance distribution function (BRDF) model. The results of the inversion (BRDF kernels) may then be integrated to estimate various surface albedo quantities. A key principle here is that the larger number of valid surface observations with multiple satellites allows us to invert the BRDF coefficients within a shorter time span, enabling the monitoring of relatively rapid surface phenomena such as snowmelt. The proposed multiplatform approach is expected to bring benefits in particular to the observation of the albedo of the polar regions, where persistent cloudiness and long atmospheric path lengths present challenges to satellite-based retrievals. Following a similar logic, the retrievals over tropical regions with high cloudiness should also benefit from the method. We present results from a demonstrator dataset of a global combined AVHRR-GAC and MODIS dataset covering the year 2010. The retrieved surface albedo is compared against quality-monitored in situ albedo observations from the Baseline Surface Radiation Network (BSRN). Additionally, the combined retrieval dataset is compared against MODIS C6 albedo/BRDF datasets to assess the quality of the multiplatform approach against current state of the art. This approach is not limited to AHVRR and MODIS observations. Provided that the spectral homogenization produces an acceptably good match, any instrument observing the Earth's surface in the visible and near-infrared wavelengths could, in principal, be included to further enhance the temporal resolution and accuracy of the retrievals. The SCOPE-CM initiative provides a potential framework for such expansion in the future.

  15. The TOAR database on observations of surface ozone (and more)

    NASA Astrophysics Data System (ADS)

    Schultz, M. G.; Schröder, S.; Cooper, O. R.; Galbally, I. E.; Petropavlovskikh, I. V.; von Schneidemesser, E.; Tanimoto, H.; Elshorbany, Y. F.; Naja, M. K.; Seguel, R. J.

    2017-12-01

    In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues. Cooperation among many data centers and individual researchers worldwide made it possible to build the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. This presentation will provide a summary of the TOAR surface observations database including recent additions of ozone precursor and meteorological data. We will demonstrate how the database can be accessed and the data can be used, and we will discuss its limitations and the potential for closing some of teh remaining data gaps.

  16. Remote sensing of atmosphere and oceans; Proceedings of Symposium 1 and of the Topical Meeting of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Raschke, E. (Editor); Ghazi, A. (Editor); Gower, J. F. R. (Editor); Mccormick, P. (Editor); Gruber, A. (Editor); Hasler, A. F. (Editor)

    1989-01-01

    Papers are presented on the contribution of space remote sensing observations to the World Climate Research Program and the Global Change Program, covering topics such as space observations for global environmental monitoring, experiments related to land surface fluxes, studies of atmospheric composition, structure, motions, and precipitation, and remote sensing for oceanography, observational studies of the atmosphere, clouds, and the earth radiation budget. Also, papers are given on results from space observations for meteorology, oceanography, and mesoscale atmospheric and ocean processes. The topics include vertical atmospheric soundings, surface water temperature determination, sea level variability, data on the prehurricane atmosphere, linear and circular mesoscale convective systems, Karman vortex clouds, and temporal patterns of phytoplankton abundance.

  17. Site Directed Nucleation and Growth of Ceramic Films on Metallic Surfaces

    DTIC Science & Technology

    2009-04-30

    ceramics and other nanoscale composite materials research with the ultimate goal being the cell-free, nanocrystalline assembly of adaptive bioceramic...for high temperature or high wear environments. Other applications/technology developments for this research include adaptive materials, wear...bound vesicles that form the surface membrane of gastropod nacre. 19 Folia formation was observed by recovering titanium and aluminum disc implants

  18. Three-dimensional geologic map of the Hayward fault, northern California: Correlation of rock unites with variations in seismicity, creep rate, and fault dip

    USGS Publications Warehouse

    Graymer, R.W.; Ponce, D.A.; Jachens, R.C.; Simpson, R.W.; Phelps, G.A.; Wentworth, C.M.

    2005-01-01

    In order to better understand mechanisms of active faults, we studied relationships between fault behavior and rock units along the Hayward fault using a three-dimensional geologic map. The three-dimensional map-constructed from hypocenters, potential field data, and surface map data-provided a geologic map of each fault surface, showing rock units on either side of the fault truncated by the fault. The two fault-surface maps were superimposed to create a rock-rock juxtaposition map. The three maps were compared with seismicity, including aseismic patches, surface creep, and fault dip along the fault, by using visuallization software to explore three-dimensional relationships. Fault behavior appears to be correlated to the fault-surface maps, but not to the rock-rock juxtaposition map, suggesting that properties of individual wall-rock units, including rock strength, play an important role in fault behavior. Although preliminary, these results suggest that any attempt to understand the detailed distribution of earthquakes or creep along a fault should include consideration of the rock types that abut the fault surface, including the incorporation of observations of physical properties of the rock bodies that intersect the fault at depth. ?? 2005 Geological Society of America.

  19. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    2016-12-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of `polar ice' mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm `carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.

  20. A parametric study of Io’s thermophysical surface properties and subsequent numerical atmospheric simulations based on the best fit parameters

    NASA Astrophysics Data System (ADS)

    Walker, Andrew C.; Moore, Chris H.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2012-07-01

    Io’s sublimation atmosphere is inextricably linked to the SO2 surface frost temperature distribution which is poorly constrained by observations. We constrain Io’s surface thermal distribution by a parametric study of its thermophysical properties in an attempt to better model the morphology of Io’s sublimation atmosphere. Io’s surface thermal distribution is represented by three thermal units: sulfur dioxide (SO2) frosts/ices, non-frosts (probably sulfur allotropes and/or pyroclastic dusts), and hot spots. The hot spots included in our thermal model are static high temperature surfaces with areas and temperatures based on Keck infrared observations. Elsewhere, over frosts and non-frosts, our thermal model solves the one-dimensional heat conduction equation in depth into Io’s surface and includes the effects of eclipse by Jupiter, radiation from Jupiter, and latent heat of sublimation and condensation. The best fit parameters for the SO2 frost and non-frost units are found by using a least-squares method and fitting to observations of the Hubble Space Telescope’s Space Telescope Imaging Spectrograph (HST STIS) mid- to near-UV reflectance spectra and Galileo PPR brightness temperature. The thermophysical parameters are the frost Bond albedo, αF, and thermal inertia, ΓF, as well as the non-frost surface Bond albedo, αNF, and thermal inertia, ΓNF. The best fit parameters are found to be αF ≈ 0.55 ± 0.02 and ΓF ≈ 200 ± 50 J m-2 K-1 s-1/2 for the SO2 frost surface and αNF ≈ 0.49 ± 0.02 and ΓNF ≈ 20 ± 10 J m-2 K-1 s-1/2 for the non-frost surface. These surface thermophysical parameters are then used as boundary conditions in global atmospheric simulations of Io’s sublimation-driven atmosphere using the direct simulation Monte Carlo (DSMC) method. These simulations are unsteady, three-dimensional, parallelized across 360 processors, and include the following physical effects: inhomogeneous surface frosts, plasma heating, and a temperature-dependent residence time on the non-frost surface. The DSMC simulations show that the sub-jovian hemisphere is significantly affected by the daily solar eclipse. The simulated SO2 surface frost temperature is found to drop only ∼5 K during eclipse due to the high thermal inertia of SO2 surface frosts but the SO2 gas column density falls by a factor of 20 compared to the pre-eclipse column due to the exponential dependence of the SO2 vapor pressure on the SO2 surface frost temperature. Supersonic winds exist prior to eclipse but become subsonic during eclipse because the collapse of the atmosphere significantly decreases the day-to-night pressure gradient that drives the winds. Prior to eclipse, the supersonic winds condense on and near the cold nightside and form a highly non-equilibrium oblique shock near the dawn terminator. In eclipse, no shock exists since the gas is subsonic and the shock only reestablishes itself an hour or more after egress from eclipse. Furthermore, the excess gas that condenses on the non-frost surface during eclipse leads to an enhancement of the atmosphere near dawn. The dawn atmospheric enhancement drives winds that oppose those that are driven away from the peak pressure region above the warmest area of the SO2 frost surface. These opposing winds meet and are collisional enough to form stagnation point flow. The simulations are compared to Lyman-α observations in an attempt to explain the asymmetry between the dayside atmospheres of the anti-jovian and sub-jovian hemispheres. Lyman-α observations indicate that the anti-jovian hemisphere has higher column densities than the sub-jovian hemisphere and also has a larger latitudinal extent. A composite “average dayside atmosphere” is formed from a collisionless simulation of Io’s atmosphere throughout an entire orbit. This composite “average dayside” atmosphere without the effect of global winds indicates that the sub-jovian hemisphere has lower average column densities than the anti-jovian hemisphere (with the strongest effect at the sub-jovian point) due primarily to the diurnally averaged effect of eclipse. This is in qualitative agreement with the sub-jovian/anti-jovian asymmetry in the Lyman-α observations which were alternatively explained by the bias of volcanic centers on the anti-jovian hemisphere. Lastly, the column densities in the simulated average dayside atmosphere agree with those inferred from Lyman-α observations despite the thermophysical parameters being constrained by mid- to near UV observations which show much higher instantaneous SO2 gas column densities. This may resolve the apparent discrepancy between the lower “average dayside” column densities observed in the Lyman-α and the higher instantaneous column densities observed in the mid- to near UV.

  1. Promise and Capability of NASA's Earth Observing System to Monitor Human-Induced Climate Variations

    NASA Technical Reports Server (NTRS)

    King, M. D.

    2003-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. This sensor and multi-platform observing system is especially well suited to observing detailed interdisciplinary components of the Earth s surface and atmosphere in and around urban environments, including aerosol optical properties, cloud optical and microphysical properties of both liquid water and ice clouds, land surface reflectance, fire occurrence, and many other properties that influence the urban environment and are influenced by them. In this presentation I will summarize the current capabilities of MODIS and other EOS sensors currently in orbit to study human-induced climate variations.

  2. Development of a real time bistatic radar receiver using signals of opportunity

    NASA Astrophysics Data System (ADS)

    Rainville, Nicholas

    Passive bistatic radar remote sensing offers a novel method of monitoring the Earth's surface by observing reflected signals of opportunity. The Global Positioning System (GPS) has been used as a source of signals for these observations and the scattering properties of GPS signals from rough surfaces are well understood. Recent work has extended GPS signal reflection observations and scattering models to include communications signals such as XM radio signals. However the communication signal reflectometry experiments to date have relied on collecting raw, high data-rate signals which are then post-processed after the end of the experiment. This thesis describes the development of a communication signal bistatic radar receiver which computes a real time correlation waveform, which can be used to retrieve measurements of the Earth's surface. The real time bistatic receiver greatly reduces the quantity of data that must be stored to perform the remote sensing measurements, as well as offering immediate feedback. This expands the applications for the receiver to include space and bandwidth limited platforms such as aircraft and satellites. It also makes possible the adjustment of flight plans to the observed conditions. This real time receiver required the development of an FGPA based signal processor, along with the integration of commercial Satellite Digital Audio Radio System (SDARS) components. The resulting device was tested both in a lab environment as well on NOAA WP-3D and NASA WB-57 aircraft.

  3. Lubricant-impregnated surfaces for drag reduction in viscous laminar flow

    NASA Astrophysics Data System (ADS)

    Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team

    2013-11-01

    For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).

  4. Surface energy fluxes in complex terrain

    NASA Technical Reports Server (NTRS)

    Reiter, E. R.; Sheaffer, J. D.; Bossert, J. E.

    1986-01-01

    The emphasis of the 1985 NASA project activity was on field measurements of wind data and heat balance data. Initiatives included a 19 station mountaintop monitoring program, testing and refining the surface flux monitoring systems and packing and shipping equipment to the People's Republic of China in preparation for the 1986 Tibet Experiment. Other work included more extensive analyses of the 1984 Gobi Desert and Rocky Mountain observations plus some preliminary analyses of the 1985 mountaintop network data. Details of our field efforts are summarized and results of our data analyses are presented.

  5. Data catalog for JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC)

    NASA Technical Reports Server (NTRS)

    Digby, Susan

    1995-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory contains satellite data sets and ancillary in-situ data for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Geophysical parameters available from the archive include sea-surface height, surface-wind vector, surface-wind speed, surface-wind stress vector, sea-surface temperature, atmospheric liquid water, integrated water vapor, phytoplankton pigment concentration, heat flux, and in-situ data. PO.DAAC is an element of the Earth Observing System Data and Information System and is the United States distribution site for TOPEX/POSEIDON data and metadata.

  6. History of surface weather observations in the United States

    NASA Astrophysics Data System (ADS)

    Fiebrich, Christopher A.

    2009-04-01

    In this paper, the history of surface weather observations in the United States is reviewed. Local weather observations were first documented in the 17th Century along the East Coast. For many years, the progression of a weather observation from an initial reading to dissemination remained a slow and laborious process. The number of observers remained small and unorganized until agencies including the Surgeon General, Army, and General Land Office began to request regular observations at satellite locations in the 1800s. The Smithsonian was responsible for first organizing a large "network" of volunteer weather observers across the nation. These observers became the foundation for today's Cooperative Observer network. As applications of weather data continued to grow and users required the data with an ever-decreasing latency, automated weather networks saw rapid growth in the later part of the 20th century. Today, the number of weather observations across the U.S. totals in the tens of thousands due largely to privately-owned weather networks and amateur weather observers who submit observations over the internet.

  7. Topographic Effects on the Surface Emissivity of a Mountainous Area Observed by a Spaceborne Microwave Radiometer

    PubMed Central

    Pulvirenti, Luca; Pierdicca, Nazzareno; Marzano, Frank S.

    2008-01-01

    A simulation study to understand the influence of topography on the surface emissivity observed by a satellite microwave radiometer is carried out. We analyze the effects due to changes in observation angle, including the rotation of the polarization plane. A mountainous area in the Alps (Northern Italy) is considered and the information on the relief extracted from a digital elevation model is exploited. The numerical simulation refers to a radiometric image, acquired by a conically-scanning radiometer similar to AMSR-E, i.e., flying at 705 km of altitude with an observation angle of 55°. To single out the impact on surface emissivity, scattering of the radiation due to the atmosphere or neighboring elevated surfaces is not considered. C and X bands, for which atmospheric effects are negligible, and Ka band are analyzed. The results indicate that the changes in the local observation angle tend to lower the apparent emissivity of a radiometric pixel with respect to the corresponding flat surface characteristics. The effect of the rotation of the polarization plane enlarges (vertical polarization), or attenuates (horizontal polarization) this decrease. By doing some simplifying assumptions for the radiometer antenna, the conclusion is that the microwave emissivity at vertical polarization is underestimated, whilst the opposite occurs for horizontal polarization, except for Ka band, for which both under- and overprediction may occur. A quantification of the differences with respect to a flat soil and an approximate evaluation of their impact on soil moisture retrieval are yielded. PMID:27879773

  8. The Effect of Impacts on the Early Martian Climate

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Haberle, R. M.; Segura, T. L.; Toon, O. B.; Zahnle, K.

    2004-01-01

    The first images returned by the Mariner 7 spacecraft of the Martian surface showed a landscape heavily scared by impacts. Mariner 9 imaging revealed geomorphic features including valley networks and outflow channels that suggest liquid water once flowed at the surface of Mars. Further evidence for water erosion and surface modification has come from the Viking Spacecraft, Mars Pathfinder, Mars Global Surveyor's (MGS) Mars Orbiter Camera (MOC), and Mars Odyssey's THEMIS instrument. In addition to network channels, this evidence includes apparent paleolake beds, fluvial fans and sedimentary layers. The estimated erosion rates necessary to explain the observed surface morphologies present a conundrum. The rates of erosion appear to be highest when the early sun was fainter and only 75% as luminous as it is today. All of this evidence points to a very different climate than what exists on Mars today. The most popular paradigm for the formation of the valley networks is that Mars had at one time a warm (T average > 273), wetter and stable climate. Possible warming mechanisms have included increased surface pressures, carbon dioxide clouds and trace greenhouse gasses. Yet to date climate models have not been able to produce a continuously warm and wet early Mars. The rates of erosion appear to correlate with the rate at which Mars was impacted thus an alternate possibility is transient warm and wet conditions initiated by large impacts. It is widely accepted that even relatively small impacts (approx. 10 km) have altered the past climate of Earth to such an extent as to cause mass extinctions. Mars has been impacted with a similar distribution of objects. The impact record at Mars is preserved in the abundance of observable craters on it surface. Impact induced climate change must have occurred on Mars.

  9. Separating Atmospheric and Surface Contributions in Hyperspectral Imager for the Coastal Ocean (HICO) Scenes using Informed Non-Negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Wright, L.; Coddington, O.; Pilewskie, P.

    2016-12-01

    Hyperspectral instruments are a growing class of Earth observing sensors designed to improve remote sensing capabilities beyond discrete multi-band sensors by providing tens to hundreds of continuous spectral channels. Improved spectral resolution, range and radiometric accuracy allow the collection of large amounts of spectral data, facilitating thorough characterization of both atmospheric and surface properties. These new instruments require novel approaches for processing imagery and separating surface and atmospheric signals. One approach is numerical source separation, which allows the determination of the underlying physical causes of observed signals. Improved source separation will enable hyperspectral imagery to better address key science questions relevant to climate change, including land-use changes, trends in clouds and atmospheric water vapor, and aerosol characteristics. We developed an Informed Non-negative Matrix Factorization (INMF) method for separating atmospheric and surface sources. INMF offers marked benefits over other commonly employed techniques including non-negativity, which avoids physically impossible results; and adaptability, which tailors the method to hyperspectral source separation. The INMF algorithm is adapted to separate contributions from physically distinct sources using constraints on spectral and spatial variability, and library spectra to improve the initial guess. We also explore methods to produce an initial guess of the spatial separation patterns. Using this INMF algorithm we decompose hyperspectral imagery from the NASA Hyperspectral Imager for the Coastal Ocean (HICO) with a focus on separating surface and atmospheric signal contributions. HICO's coastal ocean focus provides a dataset with a wide range of atmospheric conditions, including high and low aerosol optical thickness and cloud cover, with only minor contributions from the ocean surfaces in order to isolate the contributions of the multiple atmospheric sources.

  10. Influence of boundary conditions on the existence and stability of minimal surfaces of revolution made of soap films

    NASA Astrophysics Data System (ADS)

    Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent

    2014-09-01

    Because of surface tension, soap films seek the shape that minimizes their surface energy and thus their surface area. This mathematical postulate allows one to predict the existence and stability of simple minimal surfaces. After briefly recalling classical results obtained in the case of symmetric catenoids that span two circular rings with the same radius, we discuss the role of boundary conditions on such shapes, working with two rings having different radii. We then investigate the conditions of existence and stability of other shapes that include two portions of catenoids connected by a planar soap film and half-symmetric catenoids for which we introduce a method of observation. We report a variety of experimental results including metastability—an hysteretic evolution of the shape taken by a soap film—explained using simple physical arguments. Working by analogy with the theory of phase transitions, we conclude by discussing universal behaviors of the studied minimal surfaces in the vicinity of their existence thresholds.

  11. Understanding the spatial complexity of surface hoar from slope to range scale

    NASA Astrophysics Data System (ADS)

    Hendrikx, J.

    2015-12-01

    Surface hoar, once buried, is a common weak layer type in avalanche accidents in continental and intermountain snowpacks around the World. Despite this, there is still limited understanding of the spatial variability in both the formation of, and eventual burial of, surface hoar at spatial scales which are of critical importance to avalanche forecasters. While it is relatively well understood that aspect plays an important role in the spatial location of the formation, and burial of these grain forms, due to the unequal distribution of incoming radiation, this factor alone does not explain the complex and often confusing spatial pattern of these grains forms throughout the landscape at different spatial scales. In this paper we present additional data from a unique data set including over two hundred days of manual observations of surface hoar at sixteen locations on Pioneer Mountain at the Yellowstone Club in southwestern Montana. Using this wealth of observational data located on different aspects, elevations and exposures, coupled with detailed meteorological observations, and detailed slope scale observation, we examine the spatial variability of surface hoar at this scale, and examine the factors that control its spatial distribution. Our results further supports our preliminary work, which shows that small-scale slope conditions, meteorological differences, and local scale lapse rates, can greatly influence the spatial variability of surface hoar, over and above that which aspect alone can explain. These results highlight our incomplete understanding of the processes at both the slope and range scale, and are likely to have implications for both regional and local scale avalanche forecasting in environments where surface hoar cause ongoing instabilities.

  12. Surface-Based Observations of Contrail Occurrence Over the US, Apr. 1993 to Apr. 1994

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Ayers, J. Kirk; Weaver, Steven P.

    1997-01-01

    Surface observers stationed at 19 U.S. Air Force Bases and Army Air Stations recorded the daytime occurrence of contrails and cloud fraction on an hourly basis for the period April 1993 through April 1994. Each observation uses one of four main categories to report contrails as unobserved, non-persistent, persistent, and indeterminate. Additional classification includes the co-occurrence of cirrus with each report. The data cover much of the continental U.S. including locations near major commercial air routes. The mean annual frequency of occurrence in unobstructed viewing conditions is 13 percent for these sites. Contrail occurrence varied substantially with location and season. Most contrails occurred during the winter months and least during the summer with a pronounced minimum during July. Although nocturnal observations are not available, it appears that the contrails have a diurnal variation that peaks during mid morning over most areas. Contrails were most often observed in areas near major commercial air corridors and least often over areas far removed from the heaviest air traffic. A significant correlation exists between mean contrail frequency and aircraft fuel usage above 7 km suggesting predictive potential for assessing future contrail effects on climate.

  13. Thermodynamic Control of Two-Dimensional Molecular Ionic Nanostructures on Metal Surfaces

    DOE PAGES

    Jeon, Seokmin; Doak, Peter W.; Sumpter, Bobby G.; ...

    2016-07-26

    Bulk molecular ionic solids exhibit fascinating electronic properties, including electron correlations, phase transitions and superconducting ground states. In contrast, few of these phenomena have so far been observed in low-dimensional molecular structures, including thin films, nanoparticles and molecular blends, not in the least because most of such structures have so far been composed of nearly closed-shell molecules. It is therefore desirable to develop low-dimensional molecular structures of ionic molecules toward fundamental studies and potential applications. Here we present detailed analysis of monolayer-thick structures of the canonical TTF-TCNQ (tetrathiafulvalene 7,7,8,8-tetracyanoquinodimethane) system grown on low-index gold and silver surfaces. The most distinctivemore » property of the epitaxial growth is the wide abundance of stable TTF/TCNQ ratios, in sharp contrast to the predominance of 1:1 ratio in the bulk. We propose the existence of the surface phase-diagram that controls the structures of TTF-TCNQ on the surfaces, and demonstrate phase-transitions that occur upon progressively increasing the density of TCNQ while keeping the surface coverage of TTF fixed. Based on direct observations, we propose the binding motif behind the stable phases and infer the dominant interactions that enable the existence of the rich spectrum of surface structures. Finally, we also show that the surface phase diagram will control the epitaxy beyond monolayer coverage. Multiplicity of stable surface structures, the corollary rich phase diagram and the corresponding phase-transitions present an interesting opportunity for low-dimensional molecular systems, particularly if some of the electronic properties of the bulk can be preserved or modified in the surface phases.« less

  14. Application of surface analysis to solve problems of wear

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1981-01-01

    Results are presented for the use of surface analytical tools including field ion microscopy, Auger emission spectroscopy analysis (AES), cylindrical mirror Auger analysis and X-ray photoelectron spectroscopy (XPS). Data from the field ion microscope reveal adhesive transfer (wear) at the atomic level with the formation of surface compounds not found in the bulk, and AES reveals that this transfer will occur even in the presence of surface oxides. Both AES and XPS reveal that in abrasive wear with silicon carbide and diamond contacting the transition metals, the surface and the abrasive undergo a chemical or structural change which effects wear. With silicon carbide, silicon volatilizes leaving behind a pseudo-graphitic surface and the surface of diamond is observed to graphitize.

  15. Applications of laser-induced periodic surface structures (LIPSS)

    NASA Astrophysics Data System (ADS)

    Bonse, Jörn; Kirner, Sabrina V.; Höhm, Sandra; Epperlein, Nadja; Spaltmann, Dirk; Rosenfeld, Arkadi; Krüger, Jörg

    2017-02-01

    Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the picosecond to femtosecond range. During the past few years significantly increasing research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical or chemical properties. In this contribution current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces.

  16. A System for Monitoring and Forecasting Land Surface Phenology Using Time Series of JPSS VIIRS Observations and Its Applications

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Yu, Y.; Liu, L.

    2015-12-01

    Land surface phenology quantifies seasonal dynamics of vegetation properties including the timing and magnitude of vegetation greenness from satellite observations. Over the last decade, historical time series of AVHRR and MODIS data has been used to characterize the seasonal and interannual variation in terrestrial ecosystems and their responses to a changing and variable climate. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on board the operational JPSS satellites provides land surface observations in a timely fashion, which has the capability to monitor phenological development in near real time. This capability is particularly important for assisting agriculture, natural resource management, and land modeling for weather prediction systems. Here we introduce a system to monitor in real time and forecast in the short term phenological development based on daily VIIRS observations available with a one-day latency. The system integrates a climatological land surface phenology from long-term MODIS data and available VIIRS observations to simulate a set of potential temporal trajectories of greenness development at a given time and pixel. The greenness trajectories, which are qualified using daily two-band Enhanced Vegetation Index (EVI2), are applied to identify spring green leaf development and autumn color foliage status in real time and to predict the occurrence of future phenological events. This system currently monitors vegetation development across the North America every three days and makes prediction to 10 days ahead. We further introduce the applications of near real time spring green leaf and fall color foliage. Specifically, this system is used for tracing the crop progress across the United States, guiding the field observations in US National Phenology Network, servicing tourists for the observation of color fall foliage, and parameterizing seasonal surface physical conditions for numerical weather prediction models.

  17. Ab Initio Investigation of Frictional Properties of Graphene on SiC Surfaces

    NASA Astrophysics Data System (ADS)

    Sayin, Ceren; Gülseren, Oğuz

    The exact origin and nature of various nanotribological observations on graphene such as dependence of friction on layer thickness, direction and surface morphology are yet to be fully understood. In this talk, we report on the frictional properties of graphene on 4H-SiC{0001} surfaces obtained from first principles calculations. We investigate sliding of graphene layers of various thickness along different directions on both the Si- and C-terminated faces including van-der Waals interactions. We observe that upon sliding under certain conditions, the interaction between the surface and graphene layers alternates between van-der Waals and covalent forces which dramatically affects friction. We examine the relation of frictional force to applied normal load, small out-of-plane geometric deformations of graphene and electronic structure of the systems. This work is supported by TUBITAK Project No:114F162.

  18. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove.

    PubMed

    Kafka, K R P; Austin, D R; Li, H; Yi, A Y; Cheng, J; Chowdhury, E A

    2015-07-27

    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse (probe) from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form asynchronously, with the first one forming after 50 ps and others forming sequentially outward from the groove edge at larger time delays. A 1-D analytical model of electron heating including both the laser pulse and surface plasmon polariton excitation at the groove edge predicts ripple period, melt spot diameter, and qualitatively explains the asynchronous time-evolution of LIPSS formation.

  19. Internal processes affecting surfaces of low-density satellites - Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Head, J. W.

    1979-01-01

    Possible significant physical processes on low-density (icy) satellites, particularly Ganymede and Callisto, are outlined, and the relations of these interior processes to the formation and evolution of satellite surfaces are discussed. A variety of mechanisms is shown to lead to interior melting in early satellite history and a configuration characterized by a predominantly water ice lithosphere overlying a mantle containing liquid water. Physical processes capable of affecting the lithosphere of an ice-silicate body and thus creating observable surface features are assessed, including tectonic stresses from tidal deformation and volume changes, gravitational effects on density differences and water volcanism. The residence time of surface features on icy bodies produced by the outlined processes and by impact cratering is considered, and a tentative outline of the geologic history of Ganymede and Callisto is presented. Observations from Voyager and Galileo are expected to provide evidence on the evolution and geologic history of low-density satellites.

  20. Mechanical Strength and Broadband Transparency Improvement of Glass Wafers via Surface Nanostructures.

    PubMed

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T; Yeh, J Andrew

    2016-06-17

    In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400-800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained.

  1. Mechanical Strength and Broadband Transparency Improvement of Glass Wafers via Surface Nanostructures

    PubMed Central

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T.; Yeh, J. Andrew

    2016-01-01

    In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400–800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained. PMID:27322276

  2. Investigation of the possible effects of comet Encke's meteoroid stream on the Ca exosphere of Mercury

    NASA Astrophysics Data System (ADS)

    Plainaki, Christina; Mura, Alessandro; Milillo, Anna; Orsini, Stefano; Livi, Stefano; Mangano, Valeria; Massetti, Stefano; Rispoli, Rosanna; De Angelis, Elisabetta

    2017-06-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) observations of the seasonal variability of Mercury's Ca exosphere are consistent with the general idea that the Ca atoms originate from the bombardment of the surface by particles from comet 2P/Encke. The generating mechanism is believed to be a combination of different processes including the release of atomic and molecular surface particles and the photodissociation of exospheric molecules. Considering different generation and loss mechanisms, we perform simulations with a 3-D Monte Carlo model based on the exosphere generation model by Mura et al. (2009). We present for the first time the 3-D spatial distribution of the CaO and Ca exospheres generated through the process of micrometeoroid impact vaporization, and we show that the morphology of the latter is consistent with the available MESSENGER/Mercury Atmospheric and Surface Composition Spectrometer observations. The results presented in this paper can be useful in the exosphere observations planning for BepiColombo, the upcoming European Space Agency-Japanese Aerospace Exploration Agency mission to Mercury.

  3. 2001 Mars Odyssey THEMIS: Thermophysics at a New Local Time

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Christensen, P. R.

    2017-12-01

    During its sixth extended mission, the 2001 Mars Odyssey transitioned to a new, rarely-seen, post-sunset (morning daylight) local time designed to reduce stress on the spacecraft. Since then, Thermal Emission Imaging System (THEMIS) observations have provided an unprecedented opportunity to investigate dynamic phenomena in the atmosphere and on the surface. In this new local time ( 6:45 am/pm) orbit, Odyssey's camera is acquiring expanded diurnal thermal imaging coverage, providing insight into surface texture, layering, and ice content, as well as dynamic, temperature-dependent surface, atmospheric, and polar processes. New THEMIS observations at dawn and dusk local times are filling major gaps in current knowledge about the diurnal variation of clouds, hazes and surface frost. In this presentation, we will highlight some of these data and discuss the unique scientific results that can be obtained from Mars Odyssey THEMIS observations, including: insights into potential past and present habitability of Mars, the processes and history of climate, the nature and evolution of geologic processes, and aspects of the environment relevant to future human exploration.

  4. Io meteorology - How atmospheric pressure is controlled locally by volcanos and surface frosts

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    1989-01-01

    The present modification of the Ingersoll et al. (1985) hydrodynamic model of the SO2 gas sublimation-driven flow from the day to the night side of Io includes the effects of nonuniform surface properties noted in observational studies. Calculations are conducted for atmospheric pressures, horizontal winds, sublimation rates, and condensation rates for such surface conditions as patchy and continuous frost cover, volcanic venting, surface temperature discontinuities, subsurface cold trapping, and the propagation of insolation into the frost. While pressure is found to follow local vapor pressure away from the plumes, it becomes higher inside them.

  5. An observational philosophy for GEOS-C satellite altimetry

    NASA Technical Reports Server (NTRS)

    Weiffenbach, G. C.

    1972-01-01

    The parameters necessary for obtaining a 10 cm accuracy for GEOS-C satellite altimetry are outlined. These data include oceanographic parameters, instrument calibration, pulse propagation, sea surface effects, and optimum design.

  6. Use of Linear Prediction Uncertainty Analysis to Guide Conditioning of Models Simulating Surface-Water/Groundwater Interactions

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; White, J.; Doherty, J.

    2011-12-01

    Linear prediction uncertainty analysis in a Bayesian framework was applied to guide the conditioning of an integrated surface water/groundwater model that will be used to predict the effects of groundwater withdrawals on surface-water and groundwater flows. Linear prediction uncertainty analysis is an effective approach for identifying (1) raw and processed data most effective for model conditioning prior to inversion, (2) specific observations and periods of time critically sensitive to specific predictions, and (3) additional observation data that would reduce model uncertainty relative to specific predictions. We present results for a two-dimensional groundwater model of a 2,186 km2 area of the Biscayne aquifer in south Florida implicitly coupled to a surface-water routing model of the actively managed canal system. The model domain includes 5 municipal well fields withdrawing more than 1 Mm3/day and 17 operable surface-water control structures that control freshwater releases from the Everglades and freshwater discharges to Biscayne Bay. More than 10 years of daily observation data from 35 groundwater wells and 24 surface water gages are available to condition model parameters. A dense parameterization was used to fully characterize the contribution of the inversion null space to predictive uncertainty and included bias-correction parameters. This approach allows better resolution of the boundary between the inversion null space and solution space. Bias-correction parameters (e.g., rainfall, potential evapotranspiration, and structure flow multipliers) absorb information that is present in structural noise that may otherwise contaminate the estimation of more physically-based model parameters. This allows greater precision in predictions that are entirely solution-space dependent, and reduces the propensity for bias in predictions that are not. Results show that application of this analysis is an effective means of identifying those surface-water and groundwater data, both raw and processed, that minimize predictive uncertainty, while simultaneously identifying the maximum solution-space dimensionality of the inverse problem supported by the data.

  7. Field Investigation of Surface-Lake Processes on Ice Shelves: Results of the 2015/16 Field Campaign on McMurdo Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    MacAyeal, Doug; Banwell, Alison; Willis, Ian; Macdonald, Grant

    2016-04-01

    Ice-shelf instability and breakup of the style exhibited by Larsen B Ice Shelf in 2002 remains the most difficult glaciological process of consequence to observe in detail. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain, thereby changing the surface loads the ice-shelf must adjust to. Our model suggest that these fractures resulted in a chain-reaction style drainage of >2750 surface lakes on the Larsen B in the days prior to its demise. To validate this and other models, we began a field project on the McMurdo Ice Shelf (MIS) during the 2015/16 austral summer. Advantages of the MIS study site are: there is considerable surface melting during 3-6 weeks of the summer season, the ice is sufficiently thin (< 30 m in places) to allow observable viscoelastic responses to relatively small loads, and it is close to a center of logistical support (McMurdo Station). Here we show initial results from the field campaign, including GPS and water-depth observations of a lake that has filled and drained over multiple week timescales in previous austral summers. We also report on the analysis of high-resolution WorldView satellite imagery from several summers that reveals the complexity of surface meltwater movement in channels and subsurface void spaces. Initial reconnaissance of the largest surface-lake features reveal that they have a central circular depression surrounded by an uplifted ring, which supports one of the central tenets of our ice-shelf flexure theory. A second field season is anticipated for the 2016/17 austral summer.

  8. Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.

    PubMed

    Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray

    2002-04-01

    Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE.

  9. Model for the dynamics of two interacting axisymmetric spherical bubbles undergoing small shape oscillations

    PubMed Central

    Kurihara, Eru; Hay, Todd A.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2011-01-01

    Interaction between acoustically driven or laser-generated bubbles causes the bubble surfaces to deform. Dynamical equations describing the motion of two translating, nominally spherical bubbles undergoing small shape oscillations in a viscous liquid are derived using Lagrangian mechanics. Deformation of the bubble surfaces is taken into account by including quadrupole and octupole perturbations in the spherical-harmonic expansion of the boundary conditions on the bubbles. Quadratic terms in the quadrupole and octupole amplitudes are retained, and surface tension and shear viscosity are included in a consistent manner. A set of eight coupled second-order ordinary differential equations is obtained. Simulation results, obtained by numerical integration of the model equations, exhibit qualitative agreement with experimental observations by predicting the formation of liquid jets. Simulations also suggest that bubble-bubble interactions act to enhance surface mode instability. PMID:22088009

  10. Simultaneous inversion of multiple land surface parameters from MODIS optical-thermal observations

    NASA Astrophysics Data System (ADS)

    Ma, Han; Liang, Shunlin; Xiao, Zhiqiang; Shi, Hanyu

    2017-06-01

    Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface variables usually focus on individual parameters separately even from the same satellite observations, resulting in inconsistent products. Moreover, no efforts have been made to generate global products from integrated observations from the optical to Thermal InfraRed (TIR) spectrum. Particularly, Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal, which contains both reflected and emitted radiation. In this paper, we propose a unified algorithm for simultaneously retrieving six land surface parameters - Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Emissivity (LSE), Land Surface Temperature (LST), and Upwelling Longwave radiation (LWUP) by exploiting MODIS visible-to-TIR observations. We incorporate a unified physical radiative transfer model into a data assimilation framework. The MODIS visible-to-TIR time series datasets include the daily surface reflectance product and MIR-to-TIR surface radiance, which are atmospherically corrected from the MODIS data using the Moderate Resolution Transmittance program (MODTRAN, ver. 5.0). LAI was first estimated using a data assimilation method that combines MODIS daily reflectance data and a LAI phenology model, and then the LAI was input to the unified radiative transfer model to simulate spectral surface reflectance and surface emissivity for calculating surface broadband albedo and emissivity, and FAPAR. LST was estimated from the MIR-TIR surface radiance data and the simulated emissivity, using an iterative optimization procedure. Lastly, LWUP was estimated using the LST and surface emissivity. The retrieved six parameters were extensively validated across six representative sites with different biome types, and compared with MODIS, GLASS, and GlobAlbedo land surface products. The results demonstrate that the unified inversion algorithm can retrieve temporally complete and physically consistent land surface parameters, and provides more accurate estimates of surface albedo, LST, and LWUP than existing products, with R2 values of 0.93 and 0.62, RMSE of 0.029 and 0.037, and BIAS values of 0.016 and 0.012 for the retrieved and MODIS albedo products, respectively, compared with field albedo measurements; R2 values of 0.95 and 0.93, RMSE of 2.7 and 4.2 K, and BIAS values of -0.6 and -2.7 K for the retrieved and MODIS LST products, respectively, compared with field LST measurements; and R2 values of 0.93 and 0.94, RMSE of 18.2 and 22.8 W/m2, and BIAS values of -2.7 and -14.6 W/m2 for the retrieved and MODIS LWUP products, respectively, compared with field LWUP measurements.

  11. Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study.

    PubMed

    Gao, Shan; Liao, Quanwen; Liu, Wei; Liu, Zhichun

    2017-10-31

    Recently, numerous studies focused on the wetting process of droplets on various surfaces at a microscale level. However, there are a limited number of studies about the mechanism of condensation on patterned surfaces. The present study performed the dynamic wetting behavior of water droplets and condensation process of water molecules on substrates with different pillar structure parameters, through molecular dynamic simulation. The dynamic wetting results indicated that droplets exhibit Cassie state, PW state, and Wenzel state successively on textured surfaces with decreasing solid fraction. The droplets possess a higher static contact angle and a smaller spreading exponent on textured surfaces than those on smooth surfaces. The condensation processes, including the formation, growth, and coalescence of a nanodroplet, are simulated and quantitatively recorded, which are difficult to be observed by experiments. In addition, a wetting transition and a dewetting transition were observed and analyzed in condensation on textured surfaces. Combining these simulation results with previous theoretical and experimental studies will guide us to understand the hypostasis and mechanism of the condensation more clearly.

  12. Geologic Studies of Planetary Surfaces Using Radar Polarimetric Imaging

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Campbell, Donald B.; Campbell, Bruce A.

    2010-01-01

    Radar is a useful remote sensing tool for studying planetary geology because it is sensitive to the composition, structure, and roughness of the surface and can penetrate some materials to reveal buried terrain. The Arecibo Observatory radar system transmits a single sense of circular polarization, and both senses of circular polarization are received, which allows for the construction of the Stokes polarization vector. From the Stokes vector, daughter products such as the circular polarization ratio, the degree of linear polarization, and linear polarization angle are obtained. Recent polarimetric imaging using Arecibo has included Venus and the Moon. These observations can be compared to radar data for terrestrial surfaces to better understand surface physical properties and regional geologic evolution. For example, polarimetric radar studies of volcanic settings on Venus, the Moon and Earth display some similarities, but also illustrate a variety of different emplacement and erosion mechanisms. Polarimetric radar data provides important information about surface properties beyond what can be obtained from single-polarization radar. Future observations using polarimetric synthetic aperture radar will provide information on roughness, composition and stratigraphy that will support a broader interpretation of surface evolution.

  13. Microclimatic modeling of the desert in the United Arab Emirates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, A.K.; Abdrabboh, M.A.; Kamel, K.A.

    1996-10-01

    The present study is concerned with the prediction of the weather parameters in the microclimate layer (less than 2 m above the ground surface) in the desert and sparsely vegetated areas in the United Arab Emirates. A survey was made of the weather data in these regions including solar radiation, wind speed, screen temperatures and relative humidity. Additionally, wind speed data were obtained at heights below two meters and surface albedo was recorded for various soil and vegetation conditions. A survey was also carried out for the different plant species in various areas of the U.A.E. Data on soil andmore » surface temperature were then analyzed. An energy balance model was formulated including incident short- and long-wave length radiation between earth and sky, convective heat transfer to/from earth surface, surface reflection of solar radiation and soil/plant evapotranspiration. An explicit one dimensional finite difference scheme was adapted to solve the resulting algebraic finite difference equations. The equation for surface nodes included thermal radiation as well as convection effects. The heat transfer coefficient was evaluated on the basis of wind speed and surface roughness at the site where the energy balance was set. Theoretical predictions of air and soil temperatures were accordingly compared to experimental measurements in selected sites, where reasonable agreements were observed.« less

  14. Recent global-warming hiatus tied to equatorial Pacific surface cooling.

    PubMed

    Kosaka, Yu; Xie, Shang-Ping

    2013-09-19

    Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

  15. Site Directed Nucleation and Growth of Ceramic Films on Metallic Surfaces

    DTIC Science & Technology

    2009-04-30

    the ultimate goal being the cell-free, nanocrystalline assembly of adaptive bioceramic material systems. The ability to control or determine the...applications/technology developments for this research include adaptive materials, wear-resistant coatings, and optical coatings and gratings, and many...by Checa et al., which identified lipid bound vesicles that form the surface membrane of gastropod nacre.19 Folia formation was observed by

  16. SAMOS - A Decade of High-Quality, Underway Meteorological and Oceanographic Data from Research Vessels

    NASA Astrophysics Data System (ADS)

    Smith, S. R.; Rolph, J.; Briggs, K.; Elya, J. L.; Bourassa, M. A.

    2016-02-01

    The authors will describe the successes and lessons learned from the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative. Over the past decade, SAMOS has acquired, quality controlled, and distributed underway surface meteorological and oceanographic observations from nearly 40 oceanographic research vessels. Research vessels provide underway observations at high-temporal frequency (1-minute sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Vessels recruited to the SAMOS initiative collect a high concentration of data within the U.S. continental shelf, around Hawaii and the islands of the tropical Pacific, and frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern, Arctic, South Atlantic, and South Pacific oceans) desired by the air-sea exchange, modeling, and satellite remote sensing communities. The presentation will highlight the data stewardship practices of the SAMOS initiative. Activities include routine automated and visual data quality evaluation, feedback to vessel technicians and operators regarding instrumentation errors, best practices for instrument siting and exposure on research vessels, and professional development activities for research vessel technicians. Best practices for data, metadata, and quality evaluation will be presented. We will discuss ongoing efforts to expand data services to enhance interoperability between marine data centers. Data access and archival protocols will also be presented, including how these data may be referenced and accessed via NCEI.

  17. Observation of `third sound' in superfluid 3He

    NASA Astrophysics Data System (ADS)

    Schechter, A. M. R.; Simmonds, R. W.; Packard, R. E.; Davis, J. C.

    1998-12-01

    Waves on the surface of a fluid provide a powerful tool for studying the fluid itself and the surrounding physical environment. For example, the wave speed is determined by the force per unit mass at the surface, and by the depth of the fluid: the decreasing speed of ocean waves as they approach the shore reveals the changing depth of the sea and the strength of gravity. Other examples include propagating waves in neutron-star oceans and on the surface of levitating liquid drops. Although gravity is a common restoring force, others exist, including the electrostatic force which causes a thin liquid film to adhere to a solid. Usually surface waves cannot occur on such thin films because viscosity inhibits their motion. However, in the special case of thin films of superfluid 4He, surface waves do exist and are called `third sound'. Here we report the detection of similar surface waves in thin films of superfluid 3He. We describe studies of the speed of these waves, the properties of the surface force, and the film's superfluid density.

  18. The Mars atmosphere as seen from Curiosity

    NASA Astrophysics Data System (ADS)

    Mischna, Michael

    Study of the Mars atmosphere by the Mars Science Laboratory (MSL) has been ongoing since immediately after landing on August 6, 2012 (UTC) at the bottom of Gale Crater. The MSL Rover Environmental Monitoring Station (REMS) has been the primary payload for atmospheric monitoring, while additional observations from the ChemCam, Mastcam, Navcam and Sample Analysis at Mars (SAM) instruments have augmented our understanding of the local martian environment at Gale. The REMS instrument consists of six separate sensor types, observing air and ground temperature, near-surface winds, relative humidity, surface pressure and UV radiation. The standard cadence of REMS observations consists of five-minute observations of 1 Hz frequency at the top of each hour, augmented by several one-hour “extended blocks” each sol, also at 1 Hz frequency, together yielding one of the most richly diverse and detailed samplings of the martian atmosphere. Among the intriguing atmospheric phenomena observed during the first 359 sols of the mission is a substantially greater (˜12% of the diurnal mean) diurnal pressure cycle than found in previous surface measurements by Viking at a similar season (˜3-4%), likely due to the topography of the crater environment. Measurements of air and ground temperature by REMS are seen to reflect both changes in atmospheric opacity as well as transitions in the surface geology (and surface thermal properties) along the rover’s traverse. The REMS UV sensor has provided the first measurements of ultraviolet flux at the martian surface, and identified dust events that reduce solar insolation at the surface. The REMS RH sensor has observed a seasonal change in humidity in addition to the expected diurnal variations in relative humidity; however, no surface frost has been detected through the first 360 sols of the mission. With a weekly cadence, Navcam images the local zenith for purposes of tracking cloud motion and wind direction, and likewise observes the horizon to search (thus far unsuccessfully) for visible dust devil activity. The Mastcam operates with a similar observing frequency for quantifying atmospheric opacity, while ChemCam is used in its ‘passive’ mode, while pointed at the sky, to measure atmospheric water vapor abundance. Lastly, the SAM suite has provided information about atmospheric composition, including trace species abundances and isotopic ratios, which may be used to infer the history and evolution of the martian atmosphere.

  19. Shell anomalies observed in a population of Archaias angulatus (Foraminifera) from the Florida Keys (USA) sampled in 1982-83 and 2006-07

    USGS Publications Warehouse

    Souder, H.C.; McCloskey, B.; Hallock, P.; Byrne, R.

    2010-01-01

    Archived specimens of Archaias angulatus collected live at a depth of < 2. m in John Pennekamp Coral Reef State Park, Key Largo, Florida, in June, September and December 1982, and March 1983, were compared to specimens collected live from the same site and months in 2006-07. Shells were examined using light microscopy for anomalous features, which were then documented using scanning electron microscopy. Seven different types of morphological abnormalities and five different surface texture anomalies were observed. Physical abnormalities included profoundly deformed, curled, asymmetrical, and uncoiled shells, irregular suture lines, surface protrusions, and breakage/repair. Textural anomalies observed were surface pits, dissolution features, microborings, microbial biofilms, and the presence of epibionts including bryzoans, cyanobacteria and foraminifers. The same kinds of features were found in this A. angulatus population in both 1982-83 collections and 2006-07 collections. Within-date variability was higher in specimens collected in 1982-83, while between-date variability was higher in 2006-07; overall the range of variability was similar. Given that the site was originally chosen for study because these foraminifers were so abundant, the lack of significant change indicates that the variability of the geochemical habitat is still within the range that A. angulatus can thrive. ?? 2010.

  20. Hyperspectral interferometry: Sizing microscale surface features in the pine bark beetle.

    PubMed

    Beach, James M; Uertz, James L; Eckhardt, Lori G

    2015-10-01

    A new method of interferometry employing a Fabry-Perot etalon model was used to locate and size microscale features on the surface of the pine bark beetle. Oscillations in the reflected light spectrum, caused by self-interference of light reflecting from surfaces of foreleg setae and spores on the elytrum, were recorded using white light hyperspectral microscopy. By making the assumption that pairs of reflecting surfaces produce an etalon effect, the distance between surfaces could be determined from the oscillation frequency. Low frequencies of less than 0.08 nm(-1) were observed in the spectrum below 700 nm while higher frequencies generally occupied wavelengths from 600 to 850 nm. In many cases, two frequencies appeared separately or in combination across the spectrum. The etalon model gave a mean spore size of 3.04 ± 1.27 μm and a seta diameter of 5.44 ± 2.88 μm. The tapering near the setae tip was detected as a lowering of frequency. Spatial fringes were observed together with spectral oscillations from surfaces on the exoskeleton at higher magnification. These signals were consistent with embedded multi-layer reflecting surfaces. Possible applications for hyperspectral interferometry include medical imaging, detection of spore loads in insects and other fungal carriers, wafer surface and subsurface inspection, nanoscale materials, biological surface analysis, and spectroscopy calibration. This is, to our knowledge, the first report of oscillations directly observed by microscopy in the reflected light spectra from Coleoptera, and the first demonstration of broadband hyperspectral interferometry using microscopy that does not employ an internal interferometer. © 2015 Wiley Periodicals, Inc.

  1. Evaluation of Methods to Estimate the Surface Downwelling Longwave Flux during Arctic Winter

    NASA Technical Reports Server (NTRS)

    Chiacchio, Marc; Francis, Jennifer; Stackhouse, Paul, Jr.

    2002-01-01

    Surface longwave radiation fluxes dominate the energy budget of nighttime polar regions, yet little is known about the relative accuracy of existing satellite-based techniques to estimate this parameter. We compare eight methods to estimate the downwelling longwave radiation flux and to validate their performance with measurements from two field programs in thc Arctic: the Coordinated Eastern Arctic Experiment (CEAREX ) conducted in the Barents Sea during the autumn and winter of 1988, and the Lead Experiment performed in the Beaufort Sea in the spring of 1992. Five of the eight methods were developed for satellite-derived quantities, and three are simple parameterizations based on surface observations. All of the algorithms require information about cloud fraction, which is provided from the NASA-NOAA Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) polar pathfinder dataset (Path-P): some techniques ingest temperature and moisture profiles (also from Path-P): one-half of the methods assume that clouds are opaque and have a constant geometric thickness of 50 hPa, and three include no thickness information whatsoever. With a somewhat limited validation dataset, the following primary conclusions result: (1) all methods exhibit approximately the same correlations with measurements and rms differences, but the biases range from -34 W sq m (16% of the mean) to nearly 0; (2) the error analysis described here indicates that the assumption of a 50-hPa cloud thickness is too thin by a factor of 2 on average in polar nighttime conditions; (3) cloud-overlap techniques. which effectively increase mean cloud thickness, significantly improve the results; (4) simple Arctic-specific parameterizations performed poorly, probably because they were developed with surface-observed cloud fractions; and (5) the single algorithm that includes an estimate of cloud thickness exhibits the smallest differences from observations.

  2. Observations and modelling of inflation in the Lazufre volcanic region, South America

    NASA Astrophysics Data System (ADS)

    Pearse, J.; Lundgren, P.

    2010-12-01

    The Central Volcanic Zone (CVZ) is an active volcanic arc in the central Andes, extending through Peru, southwestern Bolivia, Chile, and northwestern Argentina [De Silva, 1989; De Silva and Francis, 1991]. The CVZ includes a number of collapsed calderas, remnants of catastrophic eruptions, which are now thought to be inactive. However, recent Interferometric Synthetic Aperture Radar (InSAR) observations [Pritchard and Simons, 2004] show surface deformation occurring at some of these large ancient volcanic regions, indicating that magma chambers are slowly inflating beneath the surface. The mechanisms responsible for the initiation and growth of large midcrustal magma chambers remains poorly understood, and InSAR provides an opportunity for us to observe volcanic systems in remote regions that are otherwise difficult to monitor and observe. The Lastarria-Cordon del Azufre ("Lazufre" [Pritchard and Simons, 2002]) volcanic area is one such complex showing recent deformation, with average surface uplift rates of approximately 2.5 cm/year [Froger et al., 2007; Ruch et al, 2008]. We have processed InSAR data from ERS-1/2 and Envisat in the Lazufre volcanic area, including both ascending and descending satellite tracks. Time series analysis of the data shows steady uplift beginning in about 2000, continuing into 2010. We use boundary-element elastic models to invert for the depth and shape of the magmatic source responsible for the surface deformation. Given data from both ascending and descending tracks, we are able to resolve the ambiguity between the source depth and size, and constrain the geometry of the inflating magma source. Finite element modelling allows us to understand the effect of viscoelasticity on the development of the magma chamber.

  3. Bulk mineralogy of the NE Syrtis and Jezero crater regions of Mars derived through thermal infrared spectral analyses

    NASA Astrophysics Data System (ADS)

    Salvatore, M. R.; Goudge, T. A.; Bramble, M. S.; Edwards, C. S.; Bandfield, J. L.; Amador, E. S.; Mustard, J. F.; Christensen, P. R.

    2018-02-01

    We investigated the area to the northwest of the Isidis impact basin (hereby referred to as "NW Isidis") using thermal infrared emission datasets to characterize and quantify bulk surface mineralogy throughout this region. This area is home to Jezero crater and the watershed associated with its two deltaic deposits in addition to NE Syrtis and the strong and diverse visible/near-infrared spectral signatures observed in well-exposed stratigraphic sections. The spectral signatures throughout this region show a diversity of primary and secondary surface mineralogies, including olivine, pyroxene, smectite clays, sulfates, and carbonates. While previous thermal infrared investigations have sought to characterize individual mineral groups within this region, none have systematically assessed bulk surface mineralogy and related these observations to visible/near-infrared studies. We utilize an iterative spectral unmixing method to statistically evaluate our linear thermal infrared spectral unmixing models to derive surface mineralogy. All relevant primary and secondary phases identified in visible/near-infrared studies are included in the unmixing models and their modeled spectral contributions are discussed in detail. While the stratigraphy and compositional diversity observed in visible/near-infrared spectra are much better exposed and more diverse than most other regions of Mars, our thermal infrared analyses suggest the dominance of basaltic compositions with less observed variability in the amount and diversity of alteration phases. These results help to constrain the mineralogical context of these previously reported visible/near-infrared spectral identifications. The results are also discussed in the context of future in situ investigations, as the NW Isidis region has long been promoted as a region of paleoenvironmental interest on Mars.

  4. Investigating the thermophysical properties of indurated materials on Mars

    NASA Astrophysics Data System (ADS)

    Murphy, Nathaniel William

    Indurated materials have been observed on the surface of Mars at every landing site and inferred from orbital remote-sensing data by the Viking, Mars Global Surveyor, and Mars Odyssey spacecraft. However, indurated materials on Mars are poorly understood because there is no ground truth for the indurated surfaces inferred from thermal remote-sensing data. I adopted two approaches to investigate indurated materials on Mars: (1) remote-sensing analysis of the Isidis basin, which shows some of the highest thermal inertia values derived from TES 1 observations, and (2) laboratory analyses of terrestrial indurated materials. To characterize the surface of the Isidis basin, I combined a variety of remote-sensing datasets, including thermal inertia data derived from TES and MO-THEMIS, TES albedo, THEMIS thermal and visible imaging, and Earth-based radar observations. From these observations I concluded that the thermal inertia values in the Isidis basin are likely the result of variations in the degree of cementation of indurated materials. To examine the thermophysical properties of indurated materials I collected four examples of terrestrial indurated materials. These included two types of gypcrete collected from a gypcrete deposit near Upham Hills, NM, clay-materials from Lunar Lake Playa, NV, and a pyroclastic material from the Bandelier Tuff near Los Alamos, NM. Despite significant differences in their physical properties and origins, all of these materials have thermal inertia values consistent with inferred indurated surfaces on Mars. There are no strong correlations between the thermal and physical properties of the collected samples due to thermal effects of the fabrics of the indurated materials. 1 Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft. 2 Thermal Emission Imaging System onboard the Mars Odyssey spacecraft

  5. Advances in Land Data Assimilation at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf

    2009-01-01

    Research in land surface data assimilation has grown rapidly over the last decade. In this presentation we provide a brief overview of key research contributions by the NASA Goddard Space Flight Center (GSFC). The GSFC contributions to land assimilation primarily include the continued development and application of the Land Information System (US) and the ensemble Kalman filter (EnKF). In particular, we have developed a method to generate perturbation fields that are correlated in space, time, and across variables and that permit the flexible modeling of errors in land surface models and observations, along with an adaptive filtering approach that estimates observation and model error input parameters. A percentile-based scaling method that addresses soil moisture biases in model and observational estimates opened the path to the successful application of land data assimilation to satellite retrievals of surface soil moisture. Assimilation of AMSR-E surface soil moisture retrievals into the NASA Catchment model provided superior surface and root zone assimilation products (when validated against in situ measurements and compared to the model estimates or satellite observations alone). The multi-model capabilities of US were used to investigate the role of subsurface physics in the assimilation of surface soil moisture observations. Results indicate that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Building on this experience, GSFC leads the development of the Level 4 Surface and Root-Zone Soil Moisture (L4_SM) product for the planned NASA Soil-Moisture-Active-Passive (SMAP) mission. A key milestone was the design and execution of an Observing System Simulation Experiment that quantified the contribution of soil moisture retrievals to land data assimilation products as a function of retrieval and land model skill and yielded an estimate of the error budget for the SMAP L4_SM product. Terrestrial water storage observations from GRACE satellite system were also successfully assimilated into the NASA Catchment model and provided improved estimates of groundwater variability when compared to the model estimates alone. Moreover, satellite-based land surface temperature (LST) observations from the ISCCP archive were assimilated using a bias estimation module that was specifically designed for LST assimilation. As with soil moisture, LST assimilation provides modest yet statistically significant improvements when compared to the model or satellite observations alone. To achieve the improvement, however, the LST assimilation algorithm must be adapted to the specific formulation of LST in the land model. An improved method for the assimilation of snow cover observations was also developed. Finally, the coupling of LIS to the mesoscale Weather Research and Forecasting (WRF) model enabled investigations into how the sensitivity of land-atmosphere interactions to the specific choice of planetary boundary layer scheme and land surface model varies across surface moisture regimes, and how it can be quantified and evaluated against observations. The on-going development and integration of land assimilation modules into the Land Information System will enable the use of GSFC software with a variety of land models and make it accessible to the research community.

  6. Steric Shielding of Surface Epitopes and Impaired Immune Recognition Induced by the Ebola Virus Glycoprotein

    PubMed Central

    Francica, Joseph R.; Varela-Rohena, Angel; Medvec, Andrew; Plesa, Gabriela; Riley, James L.; Bates, Paul

    2010-01-01

    Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC) class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV) glycoprotein (GP) was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection. PMID:20844579

  7. New approaches to observation and modeling of fast-moving glaciers and ice streams

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; Trantow, T.; Markle, M. J.; Medley, G.; Markus, T.; Neumann, T.

    2016-12-01

    In this paper, we will give an overview of several new approaches to remote-sensing observations and analysis and to modeling of fast glacier flow. The approaches will be applied in case studies of different types of fast-moving glaciers: (1) The Bering-Bagley Glacier System, Alaska (a surge-type glacier system), (2) Jakobshavn Isbræ, Greenland (a tide-water terminating fjord glacier and outlet of the Greenland Inland Ice), and (3) Icelandic Ice Caps (manifestations of the interaction of volcanic and glaciologic processes). On the observational side, we will compare the capabilities of lidar and radar altimeters, including ICESat's Geoscience Laser Altimeter System (GLAS), CryoSat-2's Synthetic Aperture Interferometric Radar Altimeter (SIRAL) and the future ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS), especially regarding retrieval of surface heights over crevassed regions as typical of spatial and temporal acceleration. Properties that can be expected from ICESat-2 ATLAS data will be illustrated based on analyses of data from ICESat-2 simulator instruments: the Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) and the Multiple Altimeter Beam Experimental Lidar (MABEL). Information from altimeter data will be augmented by an automated surface classification based on image data, which includes satellite imagery such as LANDSAT and WorldView as well as airborne video imagery of ice surfaces. Numerical experiments using Elmer/Ice will be employed to link parameters derived in observations to physical processes during the surge of the Bering Bagley Glacier System. This allows identification of processes that can be explained in an existing framework and processes that may require new concepts for glacier evolution. Topics include zonation of surge progression in a complex glacier system and crevassing as an indication, storage of glacial water, influence of basal topography and the role of friction laws.

  8. Estimating snow water equivalent from GPS vertical site-position observations in the western United States

    PubMed Central

    Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S

    2013-01-01

    [1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508–2518, doi:10.1002/wrcr.20173. PMID:24223442

  9. SMAP Data Assimilation at the GMAO

    NASA Technical Reports Server (NTRS)

    Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.

    2016-01-01

    The NASA Soil Moisture Active Passive (SMAP) mission has been providing L-band (1.4 GHz) passive microwave brightness temperature (Tb) observations since April 2015. These observations are sensitive to surface(0-5 cm) soil moisture. Several of the key applications targeted by SMAP, however, require knowledge of deeper-layer, root zone (0-100 cm) soil moisture, which is not directly measured by SMAP. The NASA Global Modeling and Assimilation Office (GMAO) contributes to SMAP by providing Level 4 data, including the Level 4 Surface and Root Zone Soil Moisture(L4_SM) product, which is based on the assimilation of SMAP Tb observations in the ensemble-based NASA GEOS-5 land surface data assimilation system. The L4_SM product offers global data every three hours at 9 km resolution, thereby interpolating and extrapolating the coarser- scale (40 km) SMAP observations in time and in space (both horizontally and vertically). Since October 31, 2015, beta-version L4_SM data have been available to the public from the National Snow and Ice Data Center for the period March 31, 2015, to near present, with a mean latency of approx. 2.5 days.

  10. IMPACT OF SUPERNOVA AND COSMIC-RAY DRIVING ON THE SURFACE BRIGHTNESS OF THE GALACTIC HALO IN SOFT X-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Thomas; Girichidis, Philipp; Gatto, Andrea

    2015-11-10

    The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less

  11. Laboratory Simulations of the Titan Surface to Elucidate the Huygens Probe GCMS Observations

    NASA Technical Reports Server (NTRS)

    Trainer, M. G.; Niemann, H. B.; Harpold, D. N.; Atreya, S. K.; Owen, T. C.; Kasprzak, W. T.

    2011-01-01

    The Cassini/Huygens mission has vastly increased the information we have available to stndy Satnro's moon Titan. The complete mission has included an array of observational methods including remote sensing techniques, upper atmosphere in-situ saropling, and the descent of the Huygens probe directly through the atmosphere to the surface [1,2]. The instruments on the Huygens probe remain the ouly source of in-situ measurements at the surface of Titan, and work evaluating these measurements to create a pict.rre of the surface environment is ongoing. In particular, the Gas Chromatograph Mass Spectrometer (GCMS) experiment on Huygens found that although there were no heavy hydrocarbons detected in the lower atmosphere, a rich spectrum of mass peaks arose once the probe landed on the surface [3,4], However, to date it has not been possible to extract the identity and abundances of the many minor components of the spectra due to a lack of temperatnre- and instrumentappropriate data for the relevant species. We are performing laboratory stndies designed to elucidate the spectrum collected on Titan's surface, utilizing a cryogenic charober maintained at appropriate temperature and pressure conditions. The experiments will simulate the temperatnre rise experienced by the surface, which led to an enhanced signal of volatiles detected by the Huygens GCMS. The objective of this study is to exaroine the characteristics of various surface analogs as measured by the Huygens GCMS flight spare instrument, which is currently housed in our laboratory at NASA Goddard Space Flight Center (GSFC). This identification cannot be adequately accomplished through theoretical work alone since the thermodynamic properties of many species at these temperatnres (94 K, HASI measurement [5]) are not known.

  12. The Role of Structural Enthalpy in Spherical Nucleic Acid Hybridization.

    PubMed

    Fong, Lam-Kiu; Wang, Ziwei; Schatz, George C; Luijten, Erik; Mirkin, Chad A

    2018-05-23

    DNA hybridization onto DNA-functionalized nanoparticle surfaces (e.g., in the form of a spherical nucleic acid (SNA)) is known to be enhanced relative to hybridization free in solution. Surprisingly, via isothermal titration calorimetry, we reveal that this enhancement is enthalpically, as opposed to entropically, dominated by ∼20 kcal/mol. Coarse-grained molecular dynamics simulations suggest that the observed enthalpic enhancement results from structurally confining the DNA on the nanoparticle surface and preventing it from adopting enthalpically unfavorable conformations like those observed in the solution case. The idea that structural confinement leads to the formation of energetically more stable duplexes is evaluated by decreasing the degree of confinement a duplex experiences on the nanoparticle surface. Both experiment and simulation confirm that when the surface-bound duplex is less confined, i.e., at lower DNA surface density or at greater distance from the nanoparticle surface, its enthalpy of formation approaches the less favorable enthalpy of duplex formation for the linear strand in solution. This work provides insight into one of the most important and enabling properties of SNAs and will inform the design of materials that rely on the thermodynamics of hybridization onto DNA-functionalized surfaces, including diagnostic probes and therapeutic agents.

  13. Fourier Transform Infrared Absorption Spectroscopy of Gas-Phase and Surface Reaction Products during Si Etching in Inductively Coupled Cl2 Plasmas

    NASA Astrophysics Data System (ADS)

    Miyata, Hiroki; Tsuda, Hirotaka; Fukushima, Daisuke; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2011-10-01

    A better understanding of plasma-surface interactions is indispensable during etching, including the behavior of reaction or etch products, because the products on surfaces and in the plasma are important in passivation layer formation through their redeposition on surfaces. In practice, the nanometer-scale control of plasma etching would still rely largely on such passivation layer formation as well as ion-enhanced etching on feature surfaces. This paper presents in situ Fourier transform infrared (FTIR) absorption spectroscopy of gas-phase and surface reaction products during inductively coupled plasma (ICP) etching of Si in Cl2. The observation was made in the gas phase by transmission absorption spectroscopy (TAS), and also on the substrate surface by reflection absorption spectroscopy (RAS). The quantum chemical calculation was also made of the vibrational frequency of silicon chloride molecules. The deconvolution of the TAS spectrum revealed absorption features of Si2Cl6 and SiClx (x = 1-3) as well as SiCl4, while that of the RAS spectrum revealed relatively increased absorption features of unsaturated silicon chlorides. A different behavior was also observed in bias power dependence between the TAS and RAS spectra.

  14. Documentation for Program SOILSIM: A computer program for the simulation of heat and moisture flow in soils and between soils, canopy and atmosphere

    NASA Technical Reports Server (NTRS)

    Field, Richard T.

    1990-01-01

    SOILSIM, a digital model of energy and moisture fluxes in the soil and above the soil surface, is presented. It simulates the time evolution of soil temperature and moisture, temperature of the soil surface and plant canopy the above surface, and the fluxes of sensible and latent heat into the atmosphere in response to surface weather conditions. The model is driven by simple weather observations including wind speed, air temperature, air humidity, and incident radiation. The model intended to be useful in conjunction with remotely sensed information of the land surface state, such as surface brightness temperature and soil moisture, for computing wide area evapotranspiration.

  15. Hurricane Imaging Radiometer (HIRAD) Observations of Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate During NASA's GRIP and HS3 Campaigns

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2012-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain spatial resolution of approximately 2 km, out to roughly 30 km each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. The physical retrieval technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  16. Observations of C-band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate from the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; May, C.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.

    2012-01-01

    HIRAD flew on the WB-57 over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new Cband radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. (The resulting swath width for a platform at 60,000 feet is roughly 60 km, and resolution for most of the swath is around 2 km.) By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  17. Observations During GRIP from HIRAD: Images of C-Band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Jones, W. L.; Ruf, C. S.; Uhlhorn, E. W.; Biswas, S.; May, C.; Shah, G.; Black, P.; Buckley, C. D.

    2012-01-01

    HIRAD (Hurricane Imaging Radiometer) flew on the WB-57 during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be inferred. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years. The advantage of HIRAD over SFMR is that HIRAD can observe a +/- 60-degree swath, rather than a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. To the extent possible, comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of vortex wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  18. Comparison of Surface Ground Temperature from Satellite Observations and the Off-Line Land Surface GEOS Assimilation System

    NASA Technical Reports Server (NTRS)

    Yang, R.; Houser, P.; Joiner, J.

    1998-01-01

    The surface ground temperature (Tg) is an important meteorological variable, because it represents an integrated thermal state of the land surface determined by a complex surface energy budget. Furthermore, Tg affects both the surface sensible and latent heat fluxes. Through these fluxes. the surface budget is coupled with the atmosphere above. Accurate Tg data are useful for estimating the surface radiation budget and fluxes, as well as soil moisture. Tg is not included in conventional synoptical weather station reports. Currently, satellites provide Tg estimates globally. It is necessary to carefully consider appropriate methods of using these satellite data in a data assimilation system. Recently, an Off-line Land surface GEOS Assimilation (OLGA) system was implemented at the Data Assimilation Office at NASA-GSFC. One of the goals of OLGA is to assimilate satellite-derived Tg data. Prior to the Tg assimilation, a thorough investigation of satellite- and model-derived Tg, including error estimates, is required. In this study we examine the Tg from the n Project (ISCCP DI) data and the OLGA simulations. The ISCCP data used here are 3-hourly DI data (2.5x2.5 degree resolution) for 1992 summer months (June, July, and August) and winter months (January and February). The model Tg for the same periods were generated by OLGA. The forcing data for this OLGA 1992 simulation were generated from the GEOS-1 Data Assimilation System (DAS) at Data Assimilation Office NASA-GSFC. We examine the discrepancies between ISCCP and OLGA Tg with a focus on its spatial and temporal characteristics, particularly on the diurnal cycle. The error statistics in both data sets, including bias, will be estimated. The impact of surface properties, including vegetation cover and type, topography, etc, on the discrepancies will be addressed.

  19. Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system.

    PubMed

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2017-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts.

  20. Assimilation for Skin SST in the NASA GEOS Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2017-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modelling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near-surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extend beyond the thermal infrared bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld insitu buoy measurement of near-surface SST. Evaluation of forecast skill scores show neutral to marginal benefit from the modified Ts.

  1. Reconstructing solar magnetic fields from historical observations. II. Testing the surface flux transport model

    NASA Astrophysics Data System (ADS)

    Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.

    2017-07-01

    Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.

  2. Photometric Properties of Soils at the Mars Phoenix Landing Site: Preliminary Analysis from CRISM EPF Data

    NASA Astrophysics Data System (ADS)

    Cull, S. C.; Arvidson, R. E.; Seelos, F.; Wolff, M. J.

    2010-03-01

    Using data from CRISM's Emission Phase Function observations, we attempt to constrain Phoenix soil scattering properties, including soil grain size, single-scattering albedo, and surface phase function.

  3. Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica

    NASA Astrophysics Data System (ADS)

    Carlsen, Tim; Birnbaum, Gerit; Ehrlich, André; Freitag, Johannes; Heygster, Georg; Istomina, Larysa; Kipfstuhl, Sepp; Orsi, Anaïs; Schäfer, Michael; Wendisch, Manfred

    2017-11-01

    The optical-equivalent snow grain size affects the reflectivity of snow surfaces and, thus, the local surface energy budget in particular in polar regions. Therefore, the specific surface area (SSA), from which the optical snow grain size is derived, was observed for a 2-month period in central Antarctica (Kohnen research station) during austral summer 2013/14. The data were retrieved on the basis of ground-based spectral surface albedo measurements collected by the COmpact RAdiation measurement System (CORAS) and airborne observations with the Spectral Modular Airborne Radiation measurement sysTem (SMART). The snow grain size and pollution amount (SGSP) algorithm, originally developed to analyze spaceborne reflectance measurements by the MODerate Resolution Imaging Spectroradiometer (MODIS), was modified in order to reduce the impact of the solar zenith angle on the retrieval results and to cover measurements in overcast conditions. Spectral ratios of surface albedo at 1280 and 1100 nm wavelength were used to reduce the retrieval uncertainty. The retrieval was applied to the ground-based and airborne observations and validated against optical in situ observations of SSA utilizing an IceCube device. The SSA retrieved from CORAS observations varied between 27 and 89 m2 kg-1. Snowfall events caused distinct relative maxima of the SSA which were followed by a gradual decrease in SSA due to snow metamorphism and wind-induced transport of freshly fallen ice crystals. The ability of the modified algorithm to include measurements in overcast conditions improved the data coverage, in particular at times when precipitation events occurred and the SSA changed quickly. SSA retrieved from measurements with CORAS and MODIS agree with the in situ observations within the ranges given by the measurement uncertainties. However, SSA retrieved from the airborne SMART data slightly underestimated the ground-based results.

  4. Global Soil Moisture from the Aquarius/SAC-D Satellite: Description and Initial Assessment

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas; Cosh, Michael; Zhao, Tianjie; O'Neil, Peggy

    2015-01-01

    Aquarius satellite observations over land offer a new resource for measuring soil moisture from space. Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scope to include the retrieval of surface soil moisture. The soil moisture retrieval algorithm development focused on using only the radiometer data because of the extensive heritage of passive microwave retrieval of soil moisture. The single channel algorithm (SCA) was implemented using the Aquarius observations to estimate surface soil moisture. Aquarius radiometer observations from three beams (after bias/gain modification) along with the National Centers for Environmental Prediction model forecast surface temperatures were then used to retrieve soil moisture. Ancillary data inputs required for using the SCA are vegetation water content, land surface temperature, and several soil and vegetation parameters based on land cover classes. The resulting global spatial patterns of soil moisture were consistent with the precipitation climatology and with soil moisture from other satellite missions (Advanced Microwave Scanning Radiometer for the Earth Observing System and Soil Moisture Ocean Salinity). Initial assessments were performed using in situ observations from the U.S. Department of Agriculture Little Washita and Little River watershed soil moisture networks. Results showed good performance by the algorithm for these land surface conditions for the period of August 2011-June 2013 (rmse = 0.031 m(exp 3)/m(exp 3), Bias = -0.007 m(exp 3)/m(exp 3), and R = 0.855). This radiometer-only soil moisture product will serve as a baseline for continuing research on both active and combined passive-active soil moisture algorithms. The products are routinely available through the National Aeronautics and Space Administration data archive at the National Snow and Ice Data Center.

  5. Geomorphology: Perspectives on observation, history, and the field tradition

    NASA Astrophysics Data System (ADS)

    Vitek, John D.

    2013-10-01

    Other than a common interest in form and process, current geomorphologists have little in common with those who established the foundations of this science. Educated people who had an interest in Earth processes during the nineteenth century cannot be compared to the scholars who study geomorphology in the twenty-first century. Whereas Earth has undergone natural change from the beginning of time, the human record of observing and recording processes and changes in the surface Is but a recent phenomena. Observation is the only thread, however, that connects all practitioners of geomorphology through time. As people acquired knowledge related to all aspects of life, technological revolutions, such as the Iron Age, Bronze Age, agricultural revolution, the atomic age, and the digital age, shaped human existence and thought. Technology has greatly changed the power of human observation, including inward to the atomic scale and outward into the realm of space.Books and articles describe how to collect and analyze data but few references document the field experience. Each of us, however, has experienced unique circumstances during field work and we learned from various mentors how to observe. The surface of Earth on which we practice the vocation of geomorphology may not be much different from a hundred years ago but many things about how we collect data, analyze it and disseminate the results have changed. How we function in the field, including what we wear, what we eat, how we get there, and where we choose to collect data, clearly reflects the complexity of the human system on Earth and the processes and forms that arouse our interest. Computers, miniaturization of electronics, satellite communications and observation platforms in space provide access to data to aid in our quest to understand Earth surface processes. Once, people lived closer to nature in primitive shelters in contrast with life in urban environments. But as urban life continues to expand and people need to know how Earth operates, geomorphologists, therefore, serve humanity today as the primary observers and reporters in the realm of Earth surface processes.

  6. Surface Currents and Winds at the Delaware Bay Mouth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muscarella, P A; Barton, N P; Lipphardt, B L

    2011-04-06

    Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds andmore » currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.« less

  7. Relating Radiative Fluxes on Arctic Sea Ice Area Using Arctic Observation and Reanalysis Integrated System (ArORIS)

    NASA Astrophysics Data System (ADS)

    Sledd, A.; L'Ecuyer, T. S.

    2017-12-01

    With Arctic sea ice declining rapidly and Arctic temperatures rising faster than the rest of the globe, a better understanding of the Arctic climate, and ice cover-radiation feedbacks in particular, is needed. Here we present the Arctic Observation and Reanalysis Integrated System (ArORIS), a dataset of integrated products to facilitate studying the Arctic using satellite, reanalysis, and in-situ datasets. The data include cloud properties, radiative fluxes, aerosols, meteorology, precipitation, and surface properties, to name just a few. Each dataset has uniform grid-spacing, time-averaging and naming conventions for ease of use between products. One intended use of ArORIS is to assess Arctic radiation and moisture budgets. Following that goal, we use observations from ArORIS - CERES-EBAF radiative fluxes and NSIDC sea ice fraction and area to quantify relationships between the Arctic energy balance and surface properties. We find a discernable difference between energy budgets for years with high and low September sea ice areas. Surface fluxes are especially responsive to the September sea ice minimum in months both leading up to September and the months following. In particular, longwave fluxes at the surface show increased sensitivity in the months preceding September. Using a single-layer model of solar radiation we also investigate the individual responses of surface and planetary albedos to changes in sea ice area. By partitioning the planetary albedo into surface and atmospheric contributions, we find that the atmospheric contribution to planetary albedo is less sensitive to changes in sea ice area than the surface contribution. Further comparisons between observations and reanalyses can be made using the available datasets in ArORIS.

  8. Lunar Surface Habitat Configuration Assessment: Methodology and Observations

    NASA Technical Reports Server (NTRS)

    Carpenter, Amanda

    2008-01-01

    The Lunar Habitat Configuration Assessment evaluated the major habitat approaches that were conceptually developed during the Lunar Architecture Team II Study. The objective of the configuration assessment was to identify desired features, operational considerations, and risks to derive habitat requirements. This assessment only considered operations pertaining to the lunar surface and did not consider all habitat conceptual designs developed. To examine multiple architectures, the Habitation Focus Element Team defined several adequate concepts which warranted the need for a method to assess the various configurations. The fundamental requirement designed into each concept included the functional and operational capability to support a crew of four on a six-month lunar surface mission; however, other conceptual aspects were diverse in comparison. The methodology utilized for this assessment consisted of defining figure of merits, providing relevant information, and establishing a scoring system. In summary, the assessment considered the geometric configuration of each concept to determine the complexity of unloading, handling, mobility, leveling, aligning, mating to other elements, and the accessibility to the lunar surface. In theory, the assessment was designed to derive habitat requirements, potential technology development needs and identify risks associated with living and working on the lunar surface. Although the results were more subjective opposed to objective, the assessment provided insightful observations for further assessments and trade studies of lunar surface habitats. This overall methodology and resulting observations will be describe in detail and illustrative examples will be discussed.

  9. Frictional heterogeneities on carbonate-bearing normal faults: Insights from the Monte Maggio Fault, Italy

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Scuderi, M. M.; Collettini, C.; Marone, C.

    2014-12-01

    Observations of heterogeneous and complex fault slip are often attributed to the complexity of fault structure and/or spatial heterogeneity of fault frictional behavior. Such complex slip patterns have been observed for earthquakes on normal faults throughout central Italy, where many of the Mw 6 to 7 earthquakes in the Apennines nucleate at depths where the lithology is dominated by carbonate rocks. To explore the relationship between fault structure and heterogeneous frictional properties, we studied the exhumed Monte Maggio Fault, located in the northern Apennines. We collected intact specimens of the fault zone, including the principal slip surface and hanging wall cataclasite, and performed experiments at a normal stress of 10 MPa under saturated conditions. Experiments designed to reactivate slip between the cemented principal slip surface and cataclasite show a 3 MPa stress drop as the fault surface fails, then velocity-neutral frictional behavior and significant frictional healing. Overall, our results suggest that (1) earthquakes may readily nucleate in areas of the fault where the slip surface separates massive limestone and are likely to propagate in areas where fault gouge is in contact with the slip surface; (2) postseismic slip is more likely to occur in areas of the fault where gouge is present; and (3) high rates of frictional healing and low creep relaxation observed between solid fault surfaces could lead to significant aftershocks in areas of low stress drop.

  10. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    PubMed Central

    2016-01-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of ‘polar ice’ mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm ‘carbonyl’ absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes. PMID:28083090

  11. Development of the mechanical cryocooler system for the Sea Land Surface Temperature Radiometer

    NASA Astrophysics Data System (ADS)

    Camilletti, Adam; Burgess, Christopher; Donchev, Anton; Watson, Stuart; Weatherstone Akbar, Shane; Gamo-Albero, Victoria; Romero-Largacha, Victor; Caballero-Olmo, Gema

    2014-11-01

    The Sea Land Surface Temperature Radiometer is a dual view Earth observing instrument developed as part of the European Global Monitoring for Environment and Security programme. It is scheduled for launch on two satellites, Sentinel 3A and 3B in 2014. The instrument detectors are cooled to below 85 K by two split Stirling Cryocoolers running in hot redundancy. These coolers form part of a cryocooler system that includes a support structure and drive electronics. Aspects of the system design, including control and reduction of exported vibration are discussed; and results, including thermal performance and exported vibration from the Engineering Model Cryooler System test campaign are presented.

  12. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions

    NASA Astrophysics Data System (ADS)

    Fiore, A. M.; Lin, M.; Cooper, O. R.; Horowitz, L. W.; Naik, V.; Levy, H.; Langford, A. O.; Johnson, B. J.; Oltmans, S. J.; Senff, C. J.

    2011-12-01

    As the National Ambient Air Quality (NAAQS) standard for ozone (O_{3}) is lowered, it pushes closer to policy-relevant background levels (O_{3} concentrations that would exist in the absence of North American anthropogenic emissions), making attainment more difficult with local controls. We quantify the Asian and stratospheric components of this North American background, with a primary focus on the western United States. Prior work has identified this region as a hotspot for deep stratospheric intrusions in spring. We conduct global simulations at 200 km and 50 km horizontal resolution with the GFDL AM3 model, including a stratospheric O_{3} tracer and two sensitivity simulations with anthropogenic emissions from Asia and North America turned off. The model is evaluated with a suite of in situ and satellite measurements during the NOAA CalNex campaign (May-June 2010). The model reproduces the principle features in the observed surface to near tropopause distribution of O_{3} along the California coast, including its latitudinal variation and the development of regional high-O_{3} episodes. Four deep tropopause folds are diagnosed and we find that the remnants of these stratospheric intrusions are transported to the surface of Southern California and Western U.S. Rocky Mountains, contributing 10-30 ppbv positive anomalies relative to the simulated campaign mean stratospheric component in the model surface layer. We further examine the contribution of North American background, including its stratospheric and Asian components, to the entire distribution of observed MDA8 O_{3} at 12 high-elevation CASTNet sites in the Mountain West. We find that the stratospheric O_{3} tracer constitutes 50% of the North American background, and can enhance surface maximum daily 8-hour average (MDA8) O_{3} by 20 ppb when observed surface O_{3} is in the range of 60-80 ppbv. Our analysis highlights the potential for natural sources such as deep stratospheric intrusions to contribute to high surface O_{3} episodes in the western U.S., representing a major challenge if the NAAQS were to be tightened. We further demonstrate the potential for using satellite (AIRS and OMI) measurements of total column O_{3} to develop space-based criteria to define these exceptional events in support of regional air quality management.

  13. Gas-phase chemistry in dense interstellar clouds including grain surface molecular depletion and desorption

    NASA Technical Reports Server (NTRS)

    Bergin, E. A.; Langer, W. D.; Goldsmith, P. F.

    1995-01-01

    We present time-dependent models of the chemical evolution of molecular clouds which include depletion of atoms and molecules onto grain surfaces and desorption, as well as gas-phase interactions. We have included three mechanisms to remove species from the grain mantles: thermal evaporation, cosmic-ray-induced heating, and photodesorption. A wide range of parameter space has been explored to examine the abundance of species present both on the grain mantles and in the gas phase as a function of both position in the cloud (visual extinction) and of evolutionary state (time). The dominant mechanism that removes molecules from the grain mantles is cosmic-ray desorption. At times greater than the depletion timescale, the abundances of some simple species agree with abundances observed in the cold dark cloud TMC-1. Even though cosmic-ray desorption preserves the gas-phase chemistry at late times, molecules do show significant depletions from the gas phase. Examination of the dependence of depletion as a function of density shows that when the density increases from 10(exp 3)/cc to 10(exp 5)/cc several species including HCO(+), HCN, and CN show gas-phase abundance reductions of over an order of magnitude. The CO: H2O ratio in the grain mantles for our standard model is on the order of 10:1, in reasonable agreement with observations of nonpolar CO ice features in rho Ophiuchus and Serpens. We have also examined the interdependence of CO depletion with the space density of molecular hydrogen and binding energy to the grain surface. We find that the observed depletion of CO in Taurus in inconsistent with CO bonding in an H2O rich mantle, in agreement with observations. We suggest that if interstellar grains consist of an outer layer of CO ice, then the binding energies for many species to the grain mantle may be lower than commonly used, and a significant portion of molecular material may be maintained in the gas phase.

  14. Using Ground Measurements to Examine the Surface Layer Parameterization Scheme in NCEP GFS

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Ek, M. B.; Mitchell, K.

    2017-12-01

    Understanding the behavior and the limitation of the surface layer parameneterization scheme is important for parameterization of surface-atmosphere exchange processes in atmospheric models, accurate prediction of near-surface temperature and identifying the role of different physical processes in contributing to errors. In this study, we examine the surface layer paramerization scheme in the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) using the ground flux measurements including the FLUXNET data. The model simulated surface fluxes, surface temperature and vertical profiles of temperature and wind speed are compared against the observations. The limits of applicability of the Monin-Obukhov similarity theory (MOST), which describes the vertical behavior of nondimensionalized mean flow and turbulence properties within the surface layer, are quantified in daytime and nighttime using the data. Results from unstable regimes and stable regimes are discussed.

  15. Human influence on sub-regional surface air temperature change over India.

    PubMed

    Dileepkumar, R; AchutaRao, Krishna; Arulalan, T

    2018-06-12

    Human activities have been implicated in the observed increase in Global Mean Surface Temperature. Over regional scales where climatic changes determine societal impacts and drive adaptation related decisions, detection and attribution (D&A) of climate change can be challenging due to the greater contribution of internal variability, greater uncertainty in regionally important forcings, greater errors in climate models, and larger observational uncertainty in many regions of the world. We examine the causes of annual and seasonal surface air temperature (TAS) changes over sub-regions (based on a demarcation of homogeneous temperature zones) of India using two observational datasets together with results from a multimodel archive of forced and unforced simulations. Our D&A analysis examines sensitivity of the results to a variety of optimal fingerprint methods and temporal-averaging choices. We can robustly attribute TAS changes over India between 1956-2005 to anthropogenic forcing mostly by greenhouse gases and partially offset by other anthropogenic forcings including aerosols and land use land cover change.

  16. A first principles kinetic Monte Carlo investigation of the adsorption and mobility of gadolinium on the (100) surface of tungsten

    NASA Astrophysics Data System (ADS)

    Samin, Adib J.; Zhang, Jinsuo

    2017-05-01

    An accurate characterization of lanthanide adsorption and mobility on tungsten surfaces is important for pyroprocessing. In the present study, the adsorption and diffusion of gadolinium on the (100) surface of tungsten was investigated. It was found that the hollow sites were the most energetically favorable for the adsorption. It was further observed that a magnetic moment was induced following the adsorption of gadolinium on the tungsten surface and that the system with adsorbed hollow sites had the largest magnetization. A pathway for the surface diffusion of gadolinium was determined to occur by hopping between the nearest neighbor hollow sites via the bridge site and the activation energy for the hop was calculated to be 0.75 eV. The surface diffusion process was further assessed using two distinct kinetic Monte Carlo models; one that accounted for lateral adsorbate interactions up to the second nearest neighbor and one that did not account for such interatomic interactions in the adlayer. When the lateral interactions were included in the simulations, the diffusivity was observed to have a strong dependence on coverage (for the coverage values being studied). The effects of lateral interactions were further observed in a one-dimensional simulation of the diffusion equation where the asymmetry in the surface coverage profile upon its approach to a steady state distribution was clear in comparison with the simulations which did not account for those interactions.

  17. Three-dimensional low Reynolds number flows with a free surface

    NASA Technical Reports Server (NTRS)

    Degani, D.; Gutfinger, C.

    1977-01-01

    The two-dimensional leveling problem (Degani, Gutfinger, 1976) is extended to three dimensions in the case where the flow Re number is very low and attention is paid to the free surface boundary condition with surface tension effects included. The no-slip boundary condition on the wall is observed. The numerical solution falls back on the Marker and Cell (MAC) method (Harlow and Welch, 1965) with the computation region divided into a finite number of stationary rectangular cells (or boxes in the 3-D case) and fluid flow traverses the cells (or boxes).

  18. The design of long wavelength planetary SAR sensor and its applications for monitoring shallow sub-surface of Moon and planets.

    NASA Astrophysics Data System (ADS)

    Kim, K.

    2015-12-01

    SAR observations over planetary surface have been conducted mainly in two ways. The first is the subsurface sounding, for example Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) and Shallow Surface Radar (SHARAD), using ground penetration capability of long wavelength electromagnetic waves. On the other hand, imaging SAR sensors using burst mode design have been employed to acquire surface observations in the presence of opaque atmospheres such as in the case of Venus and Titan. We propose a lightweight SAR imaging system with P/L band wavelength to cover the vertical observation gap of these planetary radar observation schemes. The sensor is for investigating prominent surface and near-subsurface geological structures and physical characteristics. Such measurements will support landers and rover missions as well as future manned missions. We evaluate required power consumption, and estimate mass and horizontal resolution, which can be as good as 3-7 meters. Initial specifications for P/L dual band SARs for the lunar case at 130 km orbital altitude were designed already based on a assumptions that sufficient size antenna (>3m width diameter or width about 3m and >10kg weight) can be equipped. Useful science measurements to be obtained include: (1) derivation of subsurface regolith depth; 2) Surface and shallow subsurface radar imaging, together with radar ranging techniques such as radargrammetry and inteferometry. The concepts in this study can be used as an important technical basis for the future solid plant/satellite missions and already proposed for the 2018 Korean Lunar mission.

  19. Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation.

    PubMed

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-25

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η(2) for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr's hydrodynamic theory.

  20. Calving seismicity from iceberg-sea surface interactions

    USGS Publications Warehouse

    Bartholomaus, T.C.; Larsen, C.F.; O'Neel, S.; West, M.E.

    2012-01-01

    Iceberg calving is known to release substantial seismic energy, but little is known about the specific mechanisms that produce calving icequakes. At Yahtse Glacier, a tidewater glacier on the Gulf of Alaska, we draw upon a local network of seismometers and focus on 80 hours of concurrent, direct observation of the terminus to show that calving is the dominant source of seismicity. To elucidate seismogenic mechanisms, we synchronized video and seismograms to reveal that the majority of seismic energy is produced during iceberg interactions with the sea surface. Icequake peak amplitudes coincide with the emergence of high velocity jets of water and ice from the fjord after the complete submergence of falling icebergs below sea level. These icequakes have dominant frequencies between 1 and 3 Hz. Detachment of an iceberg from the terminus produces comparatively weak seismic waves at frequencies between 5 and 20 Hz. Our observations allow us to suggest that the most powerful sources of calving icequakes at Yahtse Glacier include iceberg-sea surface impact, deceleration under the influence of drag and buoyancy, and cavitation. Numerical simulations of seismogenesis during iceberg-sea surface interactions support our observational evidence. Our new understanding of iceberg-sea surface interactions allows us to reattribute the sources of calving seismicity identified in earlier studies and offer guidance for the future use of seismology in monitoring iceberg calving.

  1. Experimental Observation of Bohr’s Nonlinear Fluidic Surface Oscillation

    PubMed Central

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η2 for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr’s hydrodynamic theory. PMID:26803911

  2. Understanding Arctic Surface Temperature Differences in Reanalyses

    NASA Technical Reports Server (NTRS)

    Cullather, Richard; Zhao, Bin; Shuman, Christopher; Nowicki, Sophie

    2017-01-01

    Reanalyses in the Arctic are widely used for model evaluation and for understanding contemporary climate change. Nevertheless, differences among reanalyses in fundamental meteorological variables including surface air temperature are large. A review of surface temperature differences is presented with a particular focus on differences in contemporary reanalyses. An important consideration is the significant differences in Arctic surfaces, including the central Arctic Ocean, the Greenland Ice Sheet, and non-glaciated land. While there is significant correlation among reanalyses in annual time series, there is substantial disagreement in mean values. For the period 1980-2013, the trend in annual temperature ranges from 0.3 to 0.7K per decade. Over the central Arctic Ocean, differences in mean values and trends are larger. Most of the uncertainty is associated with winter months. This is likely associated with the constraint imposed by melting processes (i.e. 0 deg. Celsius), rather than seasonal changes to the observing system.

  3. Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy.

    PubMed

    Chen, Xiaoyun; Wang, Jie; Paszti, Zoltan; Wang, Fulin; Schrauben, Joel N; Tarabara, Volodymyr V; Schmaier, Alvin H; Chen, Zhan

    2007-05-01

    Electrostatic interactions between negatively charged polymer surfaces and factor XII (FXII), a blood coagulation factor, were investigated by sum frequency generation (SFG) vibrational spectroscopy, supplemented by several analytical techniques including attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), quartz crystal microbalance (QCM), zeta-potential measurement, and chromogenic assay. A series of sulfonated polystyrenes (sPS) with different sulfonation levels were synthesized as model surfaces with different surface charge densities. SFG spectra collected from FXII adsorbed onto PS and sPS surfaces with different surface charge densities showed remarkable differences in spectral features and especially in spectral intensity. Chromogenic assay experiments showed that highly charged sPS surfaces induced FXII autoactivation. ATR-FTIR and QCM results indicated that adsorption amounts on the PS and sPS surfaces were similar even though the surface charge densities were different. No significant conformational change was observed from FXII adsorbed onto surfaces studied. Using theoretical calculations, the possible contribution from the third-order nonlinear optical effect induced by the surface electric field was evaluated, and it was found to be unable to yield the SFG signal enhancement observed. Therefore it was concluded that the adsorbed FXII orientation and ordering were the main reasons for the remarkable SFG amide I signal increase on sPS surfaces. These investigations indicate that negatively charged surfaces facilitate or induce FXII autoactivation on the molecular level by imposing specific orientation and ordering on the adsorbed protein molecules.

  4. ISCCP Cloud Properties Associated with Standard Cloud Types Identified in Individual Surface Observations

    NASA Technical Reports Server (NTRS)

    Hahn, Carole J.; Rossow, William B.; Warren, Stephen G.

    1999-01-01

    Individual surface weather observations from land stations and ships are compared with individual cloud retrievals of the International Satellite Cloud Climatology Project (ISCCP), Stage C1, for an 8-year period (1983-1991) to relate cloud optical thicknesses and cloud-top pressures obtained from satellite data to the standard cloud types reported in visual observations from the surface. Each surface report is matched to the corresponding ISCCP-C1 report for the time of observation for the 280x280-km grid-box containing that observation. Classes of the surface reports are identified in which a particular cloud type was reported present, either alone or in combination with other clouds. For each class, cloud amounts from both surface and C1 data, base heights from surface data, and the frequency-distributions of cloud-top pressure (p(sub c) and optical thickness (tau) from C1 data are averaged over 15-degree latitude zones, for land and ocean separately, for 3-month seasons. The frequency distribution of p(sub c) and tau is plotted for each of the surface-defined cloud types occurring both alone and with other clouds. The average cloud-top pressures within a grid-box do not always correspond well with values expected for a reported cloud type, particularly for the higher clouds Ci, Ac, and Cb. In many cases this is because the satellites also detect clouds within the grid-box that are outside the field of view of the surface observer. The highest average cloud tops are found for the most extensive cloud type, Ns, averaging 7 km globally and reaching 9 km in the ITCZ. Ns also has the greatest average retrieved optical thickness, tau approximately equal 20. Cumulonimbus clouds may actually attain far greater heights and depths, but do not fill the grid-box. The tau-p(sub c) distributions show features that distinguish the high, middle, and low clouds reported by the surface observers. However, the distribution patterns for the individual low cloud types (Cu, Sc, St) occurring alone overlap to such an extent that it is not possible to distinguish these cloud types from each other on the basis of tau-p(sub c) values alone. Other cloud types whose tau-p(sub c) distributions are indistinguishable are Cb, Ns, and thick As. However, the tau-p(sub c) distribution patterns for the different low cloud types are nevertheless distinguishable when all occurrences of a low cloud type are included, indicating that the different low types differ in their probabilities of co-occurrence with middle and high clouds.

  5. Mars: The Viking discoveries

    NASA Technical Reports Server (NTRS)

    French, B. M.

    1977-01-01

    An overview of the Viking Mars probe is presented. The Viking spacecraft is described and a brief history of the earlier observations and exploration of Mars is provided. A number of the Viking photographs of the Martian surface are presented and a discussion of the experiments Viking performed including a confirmation of the general theory of relativity are reported. Martian surface chemistry is discussed and experiments to study the weather on Mars are reported.

  6. Sorption of Heterotrophic and Enteric Bacteria to Glass Surfaces in the Continuous Culture of River Water

    PubMed Central

    Hendricks, Charles W.

    1974-01-01

    A natural population of heterotrophic bacteria, including enterics, was observed to sorb to glass surfaces and multiply during the continuous culture of river water. An initial rate of attachment equivalent to a doubling time of about 2 h was observed with a corresponding increase in the suspended population. After 24 h both the sorbed and suspended populations stabilized with a mass doubling time approximating 100 h at a dilution rate of 0.012/h. On the basis of respiration and degradative enzymatic data, the sorbed microorganisms appeared to be somewhat more metabolically active than the organisms in suspension. PMID:4424694

  7. Flow Observations with Tufts and Lampblack of the Stalling of Four Typical Airfoil Sections in the NACA Variable-density Tunnel

    NASA Technical Reports Server (NTRS)

    Abbott, Ira H; Sherman, Albert

    1938-01-01

    A preliminary investigation of the stalling processes of four typical airfoil sections was made over the critical range of the Reynolds Number. Motion pictures were taken of the movements of small silk tufts on the airfoil surface as the angle of attack increased through a range of angles including the stall. The boundary-layer flow also at certain angles of attack was indicated by the patterns formed by a suspension of lampblack in oil brushed onto the airfoil surface. These observations were analyzed together with corresponding force-test measurements to derive a picture of the stalling processes of airfoils.

  8. Surface Wind Vector and Rain Rate Observation Capability of Future Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Bailey, M. C.; Black, Peter; El-Nimri, Salem; Hood, Robbie; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is the next-generation Stepped Frequency Microwave Radiometer (SFMR), and it will offer the capability of simultaneous wide-swath observations of both extreme ocean surface wind vector and strong precipitation from either aircraft (including UAS) or satellite platforms. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce valid wind observations under hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered by precipitation. The SFMR i s a proven aircraft remote sensing system for simultaneously observing extreme ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. The first version of the instrument will be a single polarization system for wind speed and rain rate, with a dual-polarization system to follow for wind vector capability. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by NASA s Instrument Incubator Program. A brassboard (laboratory) version of the instrument has been completed and successfully tested in a test chamber. Development of the aircraft instrument is underway, with flight testing planned for the fall of 2009. Preliminary Observing System Simulation Experiments (OSSEs) show that HIRAD will have a significant positive impact on surface wind analyses as either a new aircraft or satellite sensor. New off-nadir data collected in 2008 by SFMR that affirms the ability of this measurement technique to obtain wind speed data at non-zero incidence angle will be presented, as well as data from the brassboard instrument chamber tests.

  9. Viscoelastic drops moving on hydrophilic and superhydrophobic surfaces.

    PubMed

    Xu, H; Clarke, A; Rothstein, J P; Poole, R J

    2018-03-01

    So-called "superhydrophobic" surfaces are strongly non-wetting such that fluid droplets very easily roll off when the surface is tilted. Our interest here is in understanding if this is also true, all else held equal, for viscoelastic fluid drops. We study the movement of Newtonian and well-characterised constant-viscosity elastic liquids when various surfaces, including hydrophilic (smooth glass), weakly hydrophobic (embossed polycarbonate) and superhydrophobic surfaces (embossed PTFE), are impulsively tilted. Digital imaging is used to record the motion and extract drop velocity. Optical and SEM imaging is used to probe the surfaces. In comparison with "equivalent" Newtonian fluids (same viscosity, density surface tension and contact angles), profound differences for the elastic fluids are only observed on the superhydrophobic surfaces: the elastic drops slide at a significantly reduced rate and complex branch-like patterns are left on the surface by the drop's wake including, on various scales, beads-on-a-string-like phenomena. The strong viscoelastic effect is caused by stretching filaments of fluid from isolated islands, residing at pinning sites on the surface pillars, of order ∼30 µm in size. On this scale, the local strain rates are sufficient to extend the polymer chains, locally increasing the extensional viscosity of the solution, retarding the drop. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Cross-calibration of Medium Resolution Earth Observing Satellites by Using EO-1 Hyperion-derived Spectral Surface Reflectance from "Lunar Cal Sites"

    NASA Astrophysics Data System (ADS)

    Ungar, S.

    2017-12-01

    Over the past 3 years, the Earth Observing-one (EO-1) Hyperion imaging spectrometer was used to slowly scan the lunar surface at a rate which results in up to 32X oversampling to effectively increase the SNR. Several strategies, including comparison against the USGS RObotic Lunar Observatory (ROLO) mode,l are being employed to estimate the absolute and relative accuracy of the measurement set. There is an existing need to resolve discrepancies as high as 10% between ROLO and solar based calibration of current NASA EOS assets. Although the EO-1 mission was decommissioned at the end of March 2017, the development of a well-characterized exoatmospheric spectral radiometric database, for a range of lunar phase angles surrounding the fully illuminated moon, continues. Initial studies include a comprehensive analysis of the existing 17-year collection of more than 200 monthly lunar acquisitions. Specific lunar surface areas, such as a lunar mare, are being characterized as potential "lunar calibration sites" in terms of their radiometric stability in the presence of lunar nutation and libration. Site specific Hyperion-derived lunar spectral reflectance are being compared against spectrographic measurements made during the Apollo program. Techniques developed through this activity can be employed by future high-quality orbiting imaging spectrometers (such as HyspIRI and EnMap) to further refine calibration accuracies. These techniques will enable the consistent cross calibration of existing and future earth observing systems (spectral and multi-spectral) including those that do not have lunar viewing capability. When direct lunar viewing is not an option for an earth observing asset, orbiting imaging spectrometers can serve as transfer radiometers relating that asset's sensor response to lunar values through near contemporaneous observations of well characterized stable CEOS test sites. Analysis of this dataset will lead to the development of strategies to ensure more accurate cross calibrations when employing the more capable, future imaging spectrometers.

  11. ALMA observation of Ceres' Surface Temperature.

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Li, J. Y.; Sykes, M. V.; Ip, W. H.; Lai, I.; Moullet, A.

    2016-12-01

    Ceres, the largest object in the main asteroid belt, has been mapped by the Dawn spacecraft. The mapping includes measuring surface temperatures using the Visible and Infrared (VIR) spectrometer at high spatial resolution. However, the VIR instrument has a long wavelength cutoff at 5 μm, which prevents the accurate measurement of surface temperatures below 180 K. This restricts temperature determinations to low and mid-latitudes at mid-day. Observations from the Atacama Large Millimeter/submillimeter Array (ALMA) [1], while having lower spatial resolution, are sensitive to the full range of surface temperatures that are expected at Ceres. Forty reconstructed images at 75 km/beam resolution were acquired of Ceres that were consistent with a low thermal inertia surface. The diurnal temperature profiles were compared to the KRC thermal model [2, 3], which has been extensively used for Mars [e.g. 4, 5]. Variations in temperature as a function of local time are observed and are compared to predictions from the KRC model. The model temperatures are converted to radiance (Jy/Steradian) and are corrected for near-surface thermal gradients and limb effects for comparison to observations. Initial analysis is consistent with the presence of near-surface water ice in the north polar region. The edge of the ice table is between 50° and 70° North Latitude, consistent with the enhanced detection of hydrogen by the Dawn GRaND instrument [6]. Further analysis will be presented. This work is supported by the NASA Solar System Observations Program. References: [1] Wootten A. et al. (2015) IAU General Assembly, Meeting #29, #2237199 [2] Kieffer, H. H., et al. (1977) JGR, 82, 4249-4291. [3] Kieffer, Hugh H., (2013) Journal of Geophysical Research: Planets, 118(3), 451-470. [4] Titus, T. N., H. H. Kieffer, and P. N. Christensen (2003) Science, 299, 1048-1051. [5] Fergason, R. L. et al. (2012) Space Sci. Rev, 170, 739-773[6] Prettyman, T. et al. (2016) LPSC 47, #2228.

  12. Thermal inertias in the upper millimeters of the Martian surface derived using Phobos' shadow

    NASA Technical Reports Server (NTRS)

    Betts, Bruce H.; Murray, Bruce C.; Svitek, Tomas

    1995-01-01

    The first thermal images of Phobos' shadow on the surface of Mars, in addition to simultaneous visible images, were obtained by the Phobos'88 Termoskan instrument. The best observed shadow occurrence was on the flanks of Arsia Mons. For this occurrence, we combined the observed decrease in visible illumination of the surface with the observed decrease in brightness temperature to calculate thermal inertias of the Martian surface. The most realistic of our three models of eclipse cooling improves upon our preliminary model by including nonisothermal initial conditions and downward atmospheric flux. Most of our derived inertias fall within the range 38 to 59 J/(sq m s(exp 1/2) K), (0.9 to 1.4 x 10(exp -3) cal/(sq cm s(exp 1/2) K)) corresponding to dust-sized particles (for a homogeneous surface), consistent with previous theories of Tharsis as a current area of dust deposition. Viking infrared thermal mapper (IRTM) inertias are diurnally derived and are sensitive to centimeter depths, whereas the shadow-derived inertias sample the upper tenths of a millimeter of the surface. The shadow-derived inertias are lower than those derived from Viking IRTM measurements (84 to 147), however, uncertainties in both sets of derived inertias make conclusions about layering tenuous. Thus, near-surface millimeter versus centimeter layering may exist in this region, but if it does, it is likely not very significant. Both eclipse and diurnal inertias appear to increase near the eastern end of the shadow occurrence. We also analyzed a shadow occurrence near the crater Herschel that showed no observed cooling. This analysis was limited by cool morning temperatures and instrument sensitivity, but yielded a lower bound of 80 on eclipse inertias in that region. Based upon our results, we strongly recommend future spacecraft thermal observations of Phobos' shadow, and suggest that they will be most useful if they improve upon Terinoskan's geographic and temporal coverage and its accuracy.

  13. Quantifying Dynamic Changes on Surface of Comet 67P/Churyumov-Gerasimenko Using High-Resolution Photoclinometry DTMs

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Birch, S.; Hayes, A.; Kirk, R. L.; Kutsop, N. W. S.; Squyres, S. W.

    2017-12-01

    Observations from ESA's Rosetta spacecraft of comet 67P/Churyumov-Gerasimenko (67P) have provided insights into the geological processes that act to modify the surface of a small, primitive body. The landscapes of 67P are shaped by both large scale violent changes, such as cliff collapses and jet events, as well as smaller and more subtle changes such as the formation of pits and ripples within the larger-scale granular deposits. Explosive jets are located through triangulating the same jet in multiple images. They appear to originate from locations close to numerous newly formed, small-scale pits, which were only observed after known jet events (for example, the jet observed on March 11th, 2015, in image N20150311T053737597ID30F22). This implies a possible link between these two dynamical processes. We generated high-resolution photoclinometric digital terrain models (DTM) of the surface of 67P (at 1.5m/pixel) in locations where recent jet events were observed and over surfaces where newly formed pits are observed. A comparison of DTMs generated of the surface both before and after the appearance of the pits provides insight to the magnitude of dynamical changes, including the volume of the ejected material. By tracking the change in the surface topography at such high resolution, we constrain both the volume of materials that are ejected from the surface during the jet event, and of materials that are retained in nearby deposits. By studying these events and their aftermath, it will be possible to formulate numerical models as to the formation of the jets and explain why and how they occur. We will use this information in conjunction with numerical modeling of the large-scale global transport of sedimentary materials on 67P, to facilitate a better understanding of cometary landscape evolution.

  14. Acceleration of a Static Observer Near the Event Horizon of a Static Isolated Black Hole.

    ERIC Educational Resources Information Center

    Doughty, Noel A.

    1981-01-01

    Compares the magnitude of the proper acceleration of a static observer in a static, isolated, spherically symmetric space-time region with the Newtonian result including the situation in the interior of a perfect-fluid star. This provides a simple physical interpretation of surface gravity and illustrates the global nature of the event horizon.…

  15. Subtle Variations in Surface Properties of Black Silicon Surfaces Influence the Degree of Bactericidal Efficiency

    NASA Astrophysics Data System (ADS)

    Bhadra, Chris M.; Werner, Marco; Baulin, Vladimir A.; Truong Khanh, Vi; Kobaisi, Mohammad Al; Nguyen, Song Ha; Balcytis, Armandas; Juodkazis, Saulius; Wang, James Y.; Mainwaring, David E.; Crawford, Russell J.; Ivanova, Elena P.

    2018-06-01

    One of the major challenges faced by the biomedical industry is the development of robust synthetic surfaces that can resist bacterial colonization. Much inspiration has been drawn recently from naturally occurring mechano-bactericidal surfaces such as the wings of cicada ( Psaltoda claripennis) and dragonfly ( Diplacodes bipunctata) species in fabricating their synthetic analogs. However, the bactericidal activity of nanostructured surfaces is observed in a particular range of parameters reflecting the geometry of nanostructures and surface wettability. Here, several of the nanometer-scale characteristics of black silicon (bSi) surfaces including the density and height of the nanopillars that have the potential to influence the bactericidal efficiency of these nanostructured surfaces have been investigated. The results provide important evidence that minor variations in the nanoarchitecture of substrata can substantially alter their performance as bactericidal surfaces.[Figure not available: see fulltext.

  16. Needs, opportunities and strategies for a long-term oceanic sciences satellite program

    NASA Technical Reports Server (NTRS)

    Ruttenberg, S. (Editor)

    1981-01-01

    Several areas of the National Oceanic Satellite System are addressed including Satellite-borne communication systems, subsurface remote sensing, data coordination, color scanners, formatting important historical data sets, and sea surface temperature observations.

  17. Weather Measurements around Your School. Mapping Variations in Temperature and Humidity.

    ERIC Educational Resources Information Center

    Smith, David R.; And Others

    1991-01-01

    Presented is an activity where students conduct a micrometeorological study in their neighborhood using temperature, humidity measurements, and mapping skills. Included are a discussion of surface weather observations, the experiment, and directions. (KR)

  18. Recurrent filmwise and dropwise condensation on a beetle mimetic surface.

    PubMed

    Hou, Youmin; Yu, Miao; Chen, Xuemei; Wang, Zuankai; Yao, Shuhuai

    2015-01-27

    Vapor condensation plays a key role in a wide range of industrial applications including power generation, thermal management, water harvesting and desalination. Fast droplet nucleation and efficient droplet departure as well as low interfacial thermal resistance are important factors that determine the thermal performances of condensation; however, these properties have conflicting requirements on the structural roughness and surface chemistry of the condensing surface or condensation modes (e.g., filmwise vs dropwise). Despite intensive efforts over the past few decades, almost all studies have focused on the dropwise condensation enabled by superhydrophobic surfaces. In this work, we report the development of a bioinspired hybrid surface with high wetting contrast that allows for seamless integration of filmwise and dropwise condensation modes. We show that the synergistic cooperation in the observed recurrent condensation modes leads to improvements in all aspects of heat transfer properties including droplet nucleation density, growth rate, and self-removal, as well as overall heat transfer coefficient. Moreover, we propose an analytical model to optimize the surface morphological features for dramatic heat transfer enhancement.

  19. Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces

    DOE PAGES

    Gruber, J.; Zhou, X. W.; Jones, R. E.; ...

    2017-05-15

    Here, we investigate the formation of extended defects during molecular-dynamics (MD) simulations of GaN and InGaN growth on (0001) and (11more » $$\\bar{2}$$0) wurtzite-GaN surfaces. The simulated growths are conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN surface; we apply time-and-position-dependent boundary constraints that vary the ensemble treatments of the vapor-phase, the near-surface solid-phase, and the bulk-like regions of the growing layer. The simulations employ newly optimized Stillinger-Weber In-Ga-N-system potentials, wherein multiple binary and ternary structures are included in the underlying density-functional-theory training sets, allowing improved treatment of In-Ga-related atomic interactions. To examine the effect of growth conditions, we study a matrix of >30 different MD-growth simulations for a range of InxGa1-xN-alloy compositions (0 ≤ x ≤ 0.4) and homologous growth temperatures [0.50 ≤ T/T* m(x) ≤ 0.90], where T* m(x) is the simulated melting point. Growths conducted on polar (0001) GaN substrates exhibit the formation of various extended defects including stacking faults/polymorphism, associated domain boundaries, surface roughness, dislocations, and voids. In contrast, selected growths conducted on semi-polar (11$$\\bar{2}$$0) GaN, where the wurtzite-phase stacking sequence is revealed at the surface, exhibit the formation of far fewer stacking faults. We discuss variations in the defect formation with the MD growth conditions, and we compare the resulting simulated films to existing experimental observations in InGaN/GaN. Finally, while the palette of defects observed by MD closely resembles those observed in the past experiments, further work is needed to achieve truly predictive large-scale simulations of InGaN/GaN crystal growth using MD methodologies.« less

  20. Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces

    NASA Astrophysics Data System (ADS)

    Gruber, J.; Zhou, X. W.; Jones, R. E.; Lee, S. R.; Tucker, G. J.

    2017-05-01

    We investigate the formation of extended defects during molecular-dynamics (MD) simulations of GaN and InGaN growth on (0001) and ( 11 2 ¯ 0 ) wurtzite-GaN surfaces. The simulated growths are conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN surface; we apply time-and-position-dependent boundary constraints that vary the ensemble treatments of the vapor-phase, the near-surface solid-phase, and the bulk-like regions of the growing layer. The simulations employ newly optimized Stillinger-Weber In-Ga-N-system potentials, wherein multiple binary and ternary structures are included in the underlying density-functional-theory training sets, allowing improved treatment of In-Ga-related atomic interactions. To examine the effect of growth conditions, we study a matrix of >30 different MD-growth simulations for a range of InxGa1-xN-alloy compositions (0 ≤ x ≤ 0.4) and homologous growth temperatures [0.50 ≤ T/T*m(x) ≤ 0.90], where T*m(x) is the simulated melting point. Growths conducted on polar (0001) GaN substrates exhibit the formation of various extended defects including stacking faults/polymorphism, associated domain boundaries, surface roughness, dislocations, and voids. In contrast, selected growths conducted on semi-polar ( 11 2 ¯ 0 ) GaN, where the wurtzite-phase stacking sequence is revealed at the surface, exhibit the formation of far fewer stacking faults. We discuss variations in the defect formation with the MD growth conditions, and we compare the resulting simulated films to existing experimental observations in InGaN/GaN. While the palette of defects observed by MD closely resembles those observed in the past experiments, further work is needed to achieve truly predictive large-scale simulations of InGaN/GaN crystal growth using MD methodologies.

  1. Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces.

    PubMed

    Gruber, J; Zhou, X W; Jones, R E; Lee, S R; Tucker, G J

    2017-05-21

    We investigate the formation of extended defects during molecular-dynamics (MD) simulations of GaN and InGaN growth on (0001) and ([Formula: see text]) wurtzite-GaN surfaces. The simulated growths are conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN surface; we apply time-and-position-dependent boundary constraints that vary the ensemble treatments of the vapor-phase, the near-surface solid-phase, and the bulk-like regions of the growing layer. The simulations employ newly optimized Stillinger-Weber In-Ga-N-system potentials, wherein multiple binary and ternary structures are included in the underlying density-functional-theory training sets, allowing improved treatment of In-Ga-related atomic interactions. To examine the effect of growth conditions, we study a matrix of >30 different MD-growth simulations for a range of In x Ga 1-x N-alloy compositions (0 ≤  x  ≤ 0.4) and homologous growth temperatures [0.50 ≤  T/T * m ( x ) ≤ 0.90], where T * m ( x ) is the simulated melting point. Growths conducted on polar (0001) GaN substrates exhibit the formation of various extended defects including stacking faults/polymorphism, associated domain boundaries, surface roughness, dislocations, and voids. In contrast, selected growths conducted on semi-polar ([Formula: see text]) GaN, where the wurtzite-phase stacking sequence is revealed at the surface, exhibit the formation of far fewer stacking faults. We discuss variations in the defect formation with the MD growth conditions, and we compare the resulting simulated films to existing experimental observations in InGaN/GaN. While the palette of defects observed by MD closely resembles those observed in the past experiments, further work is needed to achieve truly predictive large-scale simulations of InGaN/GaN crystal growth using MD methodologies.

  2. Predictability of Malaria Transmission Intensity in the Mpumalanga Province, South Africa, Using Land Surface Climatology and Autoregressive Analysis

    NASA Technical Reports Server (NTRS)

    Grass, David; Jasinski, Michael F.; Govere, John

    2003-01-01

    There has been increasing effort in recent years to employ satellite remotely sensed data to identify and map vector habitat and malaria transmission risk in data sparse environments. In the current investigation, available satellite and other land surface climatology data products are employed in short-term forecasting of infection rates in the Mpumalanga Province of South Africa, using a multivariate autoregressive approach. The climatology variables include precipitation, air temperature and other land surface states computed by the Off-line Land-Surface Global Assimilation System (OLGA) including soil moisture and surface evaporation. Satellite data products include the Normalized Difference Vegetation Index (NDVI) and other forcing data used in the Goddard Earth Observing System (GEOS-1) model. Predictions are compared to long- term monthly records of clinical and microscopic diagnoses. The approach addresses the high degree of short-term autocorrelation in the disease and weather time series. The resulting model is able to predict 11 of the 13 months that were classified as high risk during the validation period, indicating the utility of applying antecedent climatic variables to the prediction of malaria incidence for the Mpumalanga Province.

  3. Observations on the behavior of bowhead whales (Balaena mysticetus) in the presence of operating seismic exploration vessels in the Alaskan Beaufort Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ljungblad, D.K.; Wuersig, B.; Swartz, S.L.

    1985-10-01

    The response of bowhead whales to active geophysical vessels was observed during the course of 4 field experiments conducted in the Alaskan Beaufort Sea, September 1984. Conspicuous short-term behavioral changes were observed when active vessels approached to within 10km of bowheads, with the strongest responses occurring when whales were within 5km of active vessels. Behavioral responses included shorter surfacing and dive times, fewer blows per surfacing, and longer blow intervals. Total avoidance responses occured at vessel distances of 1.25km, 7.2km, 3.5km and 3.5km with associated measured sound levels from the seismic airgun arrays of 152dB, 164dB, 178dB and 163dB, respectively.

  4. Assessment of the improvements in accuracy of aerosol characterization resulted from additions of polarimetric measurements to intensity-only observations using GRASP algorithm (Invited)

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Herman, M.; Fedorenko, A.; Lopatin, A.; Goloub, P.; Ducos, F.; Aspetsberger, M.; Planer, W.; Federspiel, C.

    2013-12-01

    During last few years we were developing GRASP (Generalized Retrieval of Aerosol and Surface Properties) algorithm designed for the enhanced characterization of aerosol properties from spectral, multi-angular polarimetric remote sensing observations. The concept of GRASP essentially relies on the accumulated positive research heritage from previous remote sensing aerosol retrieval developments, in particular those from the AERONET and POLDER retrieval activities. The details of the algorithm are described by Dubovik et al. (Atmos. Meas. Tech., 4, 975-1018, 2011). The GRASP retrieves properties of both aerosol and land surface reflectance in cloud-free environments. It is based on highly advanced statistically optimized fitting and deduces nearly 50 unknowns for each observed site. The algorithm derives a similar set of aerosol parameters as AERONET including detailed particle size distribution, the spectrally dependent the complex index of refraction and the fraction of non-spherical particles. The algorithm uses detailed aerosol and surface models and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are done on-line without using traditional look-up tables. In addition, the algorithm uses the new multi-pixel retrieval concept - a simultaneous fitting of a large group of pixels with additional constraints limiting the time variability of surface properties and spatial variability of aerosol properties. This principle is expected to result in higher consistency and accuracy of aerosol products compare to conventional approaches especially over bright surfaces where information content of satellite observations in respect to aerosol properties is limited. The GRASP is a highly versatile algorithm that allows input from both satellite and ground-based measurements. It also has essential flexibility in measurement processing. For example, if observation data set includes spectral measurements of both total intensity and polarization, the algorithm can be easily set to use either total intensity or polarization, as well as both of them in the same retrieval. Using this feature of the algorithm design we have studied the relative importance of total intensity and polarization measurements for retrieving different parameters of aerosol. In this presentation, we present the quantitative assessment of the improvements in aerosol retrievals associated with additions of polarimetric measurements to the intensity-only observations. The study has been performed using satellite measurements by POLDER/PARASOL polarimeter and ground-based measurements by new generation AERONET sun/sky-radiometers implementing measurements of polarization at each spectral channel.

  5. 30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... properly or if any fluid flow is observed during the leakage test, the valve shall be repaired or replaced... maintenance of all fire- and gas-detection systems shall include the following: (i) Type, location, and number of detection sensors; (ii) Type and kind of alarms, including emergency equipment to be activated...

  6. Understanding the science of climate change: Talking points - Impacts to the Atlantic Coast

    Treesearch

    Rachel Loehman; Greer Anderson

    2009-01-01

    Observed 20th century climate changes in the Atlantic Coast bioregion include warmer air and sea surface temperatures, increased winter precipitation (especially rainfall), and an increased frequency of extreme precipitation events. Climate change impacts during the century include phenological shifts in plant and animals species, such as earlier occurrence of lilac...

  7. Friction, wear, and lubrication in vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1971-01-01

    A review of studies and observations on the friction, wear, and lubrication behavior of materials in a vacuum environment is presented. The factors that determine and influence friction and wear are discussed. They include topographical, physical, mechanical, and the chemical nature of the surface. The effects of bulk properties such as deformation characteristics, fracture behavior, and structure are included.

  8. Spectroscopy from Space

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Swayze, G. A.; Carlson, R.; Grundy, W.; Noll, K.

    2014-01-01

    This chapter reviews detection of materials on solid and liquid (lakes and ocean) surfaces in the solar system using ultraviolet to infrared spectroscopy from space, or near space (high altitude aircraft on the Earth), or in the case of remote objects, earth-based and earth-orbiting telescopes. Point spectrometers and imaging spectrometers have been probing the surfaces of our solar system for decades. Spacecraft carrying imaging spectrometers are currently in orbit around Mercury, Venus, Earth, Mars, and Saturn, and systems have recently visited Jupiter, comets, asteroids, and one spectrometer-carrying spacecraft is on its way to Pluto. Together these systems are providing a wealth of data that will enable a better understanding of the composition of condensed matter bodies in the solar system. Minerals, ices, liquids, and other materials have been detected and mapped on the Earth and all planets and/or their satellites where the surface can be observed from space, with the exception of Venus whose thick atmosphere limits surface observation. Basaltic minerals (e.g., pyroxene and olivine) have been detected with spectroscopy on the Earth, Moon, Mars and some asteroids. The greatest mineralogic diversity seen from space is observed on the Earth and Mars. The Earth, with oceans, active tectonic and hydrologic cycles, and biological processes, displays the greatest material diversity including the detection of amorphous and crystalline inorganic materials, organic compounds, water and water ice. Water ice is a very common mineral throughout the Solar System and has been unambiguously detected or inferred in every planet and/or their moon(s) where good spectroscopic data has been obtained. In addition to water ice, other molecular solids have been observed in the solar system using spectroscopic methods. Solid carbon dioxide is found on all systems beyond the Earth except Pluto, although CO2 sometimes appears to be trapped in other solids rather than as an ice on some objects. The largest deposits of carbon dioxide ice are found on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn's moon Titan probably has the most complex active extra-terrestrial surface chemistry involving organic compounds. Some of the observed or inferred compounds include ices of benzene (C6H6), cyanoacetylene (HC3N), toluene (C7H8), cyanogen (C2N2), acetonitrile (CH3CN), water (H2O), carbon dioxide (CO2), and ammonia (NH3). Confirming compounds on Titan is hampered by its thick smoggy atmosphere, where in relative terms the atmospheric interferences that hamper surface characterization lie between that of Venus and Earth. In this chapter we exclude discussion of the planets Jupiter, Saturn, Uranus, and Neptune because their thick atmospheres preclude observing the surface, even if surfaces exist. However, we do discuss spectroscopic observations on a number of the extra-terrestrial satellite bodies. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with possible exceptions on Charon and possible trace amounts on some of the Saturnian satellites. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces from spectroscopy. Only two asteroids have had a direct detection of surface water ice, although its presence can be inferred in others.

  9. Sensitivity of Active and Passive Microwave Observations to Soil Moisture during Growing Corn

    NASA Astrophysics Data System (ADS)

    Judge, J.; Monsivais-Huertero, A.; Liu, P.; De Roo, R. D.; England, A. W.; Nagarajan, K.

    2011-12-01

    Soil moisture (SM) in the root zone is a key factor governing water and energy fluxes at the land surface and its accurate knowledge is critical to predictions of weather and near-term climate, nutrient cycles, crop-yield, and ecosystem productivity. Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The two satellite-based missions dedicated to soil moisture estimation include, the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission and the planned NASA Soil Moisture Active/Passive (SMAP) [4] mission. The SMAP mission will include active and passive sensors at L-band to provide global observations of SM, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture estimates through data assimilation into land surface models (LSMs). Both the active (radar) and passive (radiometer) microwave sensors measure radiation quantities that are functions of soil dielectric constant and exhibit similar sensitivities to SM. In addition to the SM sensitivity, radar backscatter is highly sensitive to roughness of soil surface and scattering within the vegetation. These effects may produce a much larger dynamic range in backscatter than that produced due to SM changes alone. In this study, we discuss the field observations of active and passive signatures of growing corn at L-band from several seasons during the tenth Microwave, Water and Energy Balance Experiment (MicroWEX-10) conducted in North Central Florida, and to understand the sensitivity of these signatures to soil moisture under dynamic vegetation conditions. The MicroWEXs are a series of season-long field experiments conducted during the growing seasons of sweet corn, cotton, and energy cane over the past six years (for example, [22]). The corn was planted on July 5 and harvested on September 23, 2011 during MicroWEX-10. The size of the field was 0.04 km2 and the soils at the site were Lakeland fine sand, with 89% sand content by volume. The crop was heavily irrigated via a linear move irrigation system. Every 15-minute ground-based passive and active microwave observations at L-band were conducted at an incidence angle of 40°. In addition, concurrent observations were conducted of soil moisture, temperature, heat flux at various depths in the root zone, along with concurrent micrometeorological conditions. Weekly vegetation sampling included measurements of LAI, green and dry biomass of stems, leaves, and ears, crop height and width, vertical distribution of moisture in the canopy, leaf size and orientation, other phonological observations. Such observations at high temporal density allow detailed sensitivity analyses as the vegetation grows.

  10. Estimation of Global Subsurface Thermal Structure from Satellite Remote Sensing Observations Based on Machine Learning

    NASA Astrophysics Data System (ADS)

    Su, H.; Yan, X. H.

    2017-12-01

    Subsurface thermal structure of the global ocean is a key factor that reflects the impact of the global climate variability and change. Accurately determining and describing the global subsurface and deeper ocean thermal structure from satellite measurements is becoming even more important for understanding the ocean interior anomaly and dynamic processes during recent global warming and hiatus. It is essential but challenging to determine the extent to which such surface remote sensing observations can be used to develop information about the global ocean interior. This study proposed a Support Vector Regression (SVR) method to estimate Subsurface Temperature Anomaly (STA) in the global ocean. The SVR model can well estimate the global STA upper 1000 m through a suite of satellite remote sensing observations of sea surface parameters (including Sea Surface Height Anomaly (SSHA), Sea Surface Temperature Anomaly (SSTA), Sea Surface Salinity Anomaly (SSSA) and Sea Surface Wind Anomaly (SSWA)) with in situ Argo data for training and testing at different depth levels. Here, we employed the MSE and R2 to assess SVR performance on the STA estimation. The results from the SVR model were validated for the accuracy and reliability using the worldwide Argo STA data. The average MSE and R2 of the 15 levels are 0.0090 / 0.0086 / 0.0087 and 0.443 / 0.457 / 0.485 for 2-attributes (SSHA, SSTA) / 3-attributes (SSHA, SSTA, SSSA) / 4-attributes (SSHA, SSTA, SSSA, SSWA) SVR, respectively. The estimation accuracy was improved by including SSSA and SSWA for SVR input (MSE decreased by 0.4% / 0.3% and R2 increased by 1.4% / 4.2% on average). While, the estimation accuracy gradually decreased with the increase of the depth from 500 m. The results showed that SSSA and SSWA, in addition to SSTA and SSHA, are useful parameters that can help estimate the subsurface thermal structure, as well as improve the STA estimation accuracy. In future, we can figure out more potential and useful sea surface parameters from satellite remote sensing as input attributes so as to further improve the STA sensing accuracy from machine learning. This study can provide a helpful technique for studying thermal variability in the ocean interior which has played an important role in recent global warming and hiatus from satellite observations over global scale.

  11. Luminance-based specular gloss characterization.

    PubMed

    Leloup, Frédéric B; Pointer, Michael R; Dutré, Philip; Hanselaer, Peter

    2011-06-01

    Gloss is a feature of visual appearance that arises from the directionally selective reflection of light incident on a surface. Especially when a distinct reflected image is perceptible, the luminance distribution of the illumination scene above the sample can strongly influence the gloss perception. For this reason, industrial glossmeters do not provide a satisfactory gloss estimation of high-gloss surfaces. In this study, the influence of the conditions of illumination on specular gloss perception was examined through a magnitude estimation experiment in which 10 observers took part. A light booth with two light sources was utilized: the mirror image of only one source being visible in reflection by the observer. The luminance of both the reflected image and the adjacent sample surface could be independently varied by separate adjustment of the intensity of the two light sources. A psychophysical scaling function was derived, relating the visual gloss estimations to the measured luminance of both the reflected image and the off-specular sample background. The generalization error of the model was estimated through a validation experiment performed by 10 other observers. In result, a metric including both surface and illumination properties is provided. Based on this metric, improved gloss evaluation methods and instruments could be developed.

  12. External Surface Changes Observed on the International Space Station (ISS) Through 2012

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2012-01-01

    As the International Space Station (ISS) surpasses 13 years of on-orbit operation, 11 of those years continuously inhabited, external surfaces of the vehicle have shown a wide variety of visible environmental effects. Throughout, the ISS program has maintained a significant effort to routinely document the vehicle external surface condition and to monitor those changes with time. The impacts of micrometeoroids and orbital debris, surface changes from molecular contamination of various sources, and the effects of ultraviolet radiation and atomic oxygen have all been noted. The tremendous size and complexity of the ISS vehicle has yielded a wide variety of observations of interest to the spacecraft materials engineer concerning long-term, low earth orbit (LEO) space environmental effects (SEE). In addition, inadvertent materials substitutions have been identified because of these environmental effects, as well as inadequate contamination control practices likely occurring during hardware manufacture and assembly. Some of the observations from our photography are purely artifacts of the unusual lighting conditions and environments that exist in space. A compilation of ISS on-orbit photography representing all of these aspects is presented, demonstrating the various SEE and their impacts as a function of time in LEO, including interpretations of those effects.

  13. Recurring slope lineae in equatorial regions of Mars

    USGS Publications Warehouse

    McEwen, Alfred S.; Dundas, Colin M.; Mattson, Sarah S.; Toigo, Anthony D.; Ojha, Lujendra; Wray, James J.; Chojnacki, Matthew; Byrne, Shane; Murchie, Scott L.; Thomas, Nicolas

    2014-01-01

    The presence of liquid water is a requirement of habitability on a planet. Possible indicators of liquid surface water on Mars include intermittent flow-like features observed on sloping terrains. These recurring slope lineae are narrow, dark markings on steep slopes that appear and incrementally lengthen during warm seasons on low-albedo surfaces. The lineae fade in cooler seasons and recur over multiple Mars years. Recurring slope lineae were initially reported to appear and lengthen at mid-latitudes in the late southern spring and summer and are more common on equator-facing slopes where and when the peak surface temperatures are higher. Here we report extensive activity of recurring slope lineae in equatorial regions of Mars, particularly in the deep canyons of Valles Marineris, from analysis of data acquired by the Mars Reconnaissance Orbiter. We observe the lineae to be most active in seasons when the slopes often face the sun. Expected peak temperatures suggest that activity may not depend solely on temperature. Although the origin of the recurring slope lineae remains an open question, our observations are consistent with intermittent flow of briny water. Such an origin suggests surprisingly abundant liquid water in some near-surface equatorial regions of Mars.

  14. Re-osseointegration of Dental Implants After Periimplantitis Treatments: A Systematic Review.

    PubMed

    Madi, Marwa; Htet, Moe; Zakaria, Osama; Alagl, Adel; Kasugai, Shohei

    2018-02-01

    This review considers possible surgical treatment modalities for induced periimplantitis to regain re-osseointegration as reported in the recent literature. Electronic searches in MEDLINE/PubMed and Google Scholar databases were performed on experimental studies considering induced periimplantitis and attempts to achieve re-osseointegration from 2003 up to December 2016. Conflicts about articles were solved by authors' discussion. A total of 15 studies of 159 were finally included in the review. Various implant surface decontamination techniques chemical and/or mechanical have been used either alone or simultaneously with/without guided bone regeneration. Despite the access-flap surgery, it was observed that application of single decontamination measure either chemical or mechanical was not adequate to provide a better treatment outcome. Laser application such as CO2, diode, and Er: YAG has been a new treatment approach used for periimplantitis treatment. Er: YAG laser had showed no implant surface alteration and provided favorable environment for re-osseointegration. Promising results were observed in the studies that used combination of bone substitutes together with guided bone regeneration for the regenerative therapy. Regarding implant surfaces, better re-osseointegration was observed with rough implant surfaces rather than smooth ones.

  15. Highly Sensitive Detection of Target Biomolecules on Cell Surface Using Gold Nanoparticle Conjugated with Aptamer Probe

    NASA Astrophysics Data System (ADS)

    Kim, Hyonchol; Terazono, Hideyuki; Hayashi, Masahito; Takei, Hiroyuki; Yasuda, Kenji

    2012-06-01

    A method of gold nanoparticle (Au NP) labeling with backscattered electron (BE) imaging of field emission scanning electron microscopy (FE-SEM) was applied for specific detection of target biomolecules on a cell surface. A single-stranded DNA aptamer, which specifically binds to the target molecule on a human acute lymphoblastic leukemia cell, was conjugated with a 20 nm Au NP and used as a probe to label its target molecule on the cell. The Au NP probe was incubated with the cell, and the interaction was confirmed using BE imaging of FE-SEM through direct counting of the number of Au NPs attached on the target cell surface. Specific Au NP-aptamer probes were observed on a single cell surface and their spatial distributions including submicron-order localizations were also clearly visualized, whereas the nonspecific aptamer probes were not observed on it. The aptamer probe can be potentially dislodged from the cell surface with treatment of nucleases, indicating that Au NP-conjugated aptamer probes can be used as sensitive and reversible probes to label target biomolecules on cells.

  16. Laboratory-based geoelectric monitoring of water infiltration in consolidated ground

    NASA Astrophysics Data System (ADS)

    Yang, Lining; Sun, Qiang; Yang, Haiping

    2018-04-01

    Infiltration usually plays a significant role in construction failures and transfer of contaminants. Therefore, it is very important to monitor underground water migration. In this study, a soil infiltration experiment was carried out using an indoor model test. The water infiltration characteristics were recorded and analyzed based on the response of the geoelectric field, including the primary field potential, self-potential, excitation current and apparent resistivity. The phreatic water surface and the infiltration velocity were determined. The inversion results were compared with direct observations. The results showed that the changes in the geoelectric field parameters explain the principles of groundwater flow. The infiltration velocity and the phreatic surface can be determined based on the primary field potential response and the excitation current. When the phreatic surface reached the location of the electrodes, the primary field potential and self-potential decreased rapidly whereas the excitation current increased rapidly. The height of the phreatic surface and the infiltration time exhibited a linear relationship for both the observation data and the calculations of the excitation current. The apparent resistivity described the infiltration status in the soil and tracked the phreatic surface accurately.

  17. A review of our understanding of the role played in the climate system by land surface processes (Invited)

    NASA Astrophysics Data System (ADS)

    Nicholson, S. E.

    2013-12-01

    The paper provides an historical review of research on the impact of the land surface on climate. It commences will the seminal work of Jule Charney on albedo as a potential cause of drought and follows the trail of follow-up studies on the question of desertification and its role in climate. With the exception of a very early paper by Namias, early work was limited mainly to modeling efforts. At the same time, several observational studies provided evidence that land surface feedbacks could enhance and prolong drought, especially in the African Sahel. Later work emphasized the role of soil moisture rather than albedo. Several important field studies also examined the role of the land surface. Examples include FIFE, HAPEX-Sahel and BOREAS. In recent years some major changes in the concept have occurred. There is now substantial observational evidence of an impact at the mesoscale. The role of land surface feedback on climate has become mainstream. Finally, a new subdiscipline has emerged that emphasizes feedbacks between the water cycle, vegetation and climate, namely ecohydrology.

  18. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun; Dickinson, Robert E.

    2012-06-01

    This review surveys the basic theories, observational methods, satellite algorithms, and land surface models for terrestrial evapotranspiration, E (or λE, i.e., latent heat flux), including a long-term variability and trends perspective. The basic theories used to estimate E are the Monin-Obukhov similarity theory (MOST), the Bowen ratio method, and the Penman-Monteith equation. The latter two theoretical expressions combine MOST with surface energy balance. Estimates of E can differ substantially between these three approaches because of their use of different input data. Surface and satellite-based measurement systems can provide accurate estimates of diurnal, daily, and annual variability of E. But their estimation of longer time variability is largely not established. A reasonable estimate of E as a global mean can be obtained from a surface water budget method, but its regional distribution is still rather uncertain. Current land surface models provide widely different ratios of the transpiration by vegetation to total E. This source of uncertainty therefore limits the capability of models to provide the sensitivities of E to precipitation deficits and land cover change.

  19. A Model for the Formation and Melting of Ice on Surface Waters.

    NASA Astrophysics Data System (ADS)

    de Bruin, H. A. R.; Wessels, H. R. A.

    1988-02-01

    Ice covers have an important influence on the hydrology of surface waters. The growth of ice layer on stationary waters, such as lakes or canals, depends primarily on meteorological parameters like temperature and humidity of the air, windspeed and radiation balance. The more complicated ice formation in rapidly flowing rivers is not considered in this study. A model is described that simulates ice growth and melting utilizing observed or forecast weather data. The model includes situations with a snow cover. Special attention is given to the optimal estimation of the net radiation and to the role of the stability of the near-surface air. Since a major practical application in the Netherlands is the use of frozen waters for recreation skating, the model is extended to include artificial ice tracks.

  20. GGFC Special Bureau for Loading: current status and plans

    NASA Astrophysics Data System (ADS)

    van Dam, T.; Plag, H.-P.; Francis, O.; Gegout, P.

    The Earth's surface is perpetually being displaced due to temporally varying atmospheric, oceanic and continental water mass surface loads. These non-geodynamic signals are of substantial magnitude that they contribute significantly to the scatter in geodetic observations of crustal motion. In February, 2002, the International Earth Rotation Service (IERS) established a Special Bureau of Loading (SBL) whose primary charge is to provide consistent and valid estimates of surface mass loading effects to the IERS community for the purpose of correcting geodetic time series. Here we outline the primary principles involved in modelling the surface displacements and gravity changes induced by surface mass loading including the basic theory, the Earth model and the surface load data. We then identify a list of operational issues, including product validation, that need to be addressed by the SBL before products can be provided to the community. Finally, we outline areas for future research to further improve the loading estimates. We conclude by formulating a recommendation on the best procedure for including loading corrections into geodetic data. Success of the SBL will depend on our ability to efficiently provide consistent and reliable estimates of surface mass loading effects. It is imperative that we work closely with the existing Global Geophysical Fluids Center (GGFC) Special Bureaus and with the community to as much as possible to verify the products.

  1. A Prototype Physical Database for Passive Microwave Retrievals of Precipitation over the US Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.

    2015-01-01

    An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.

  2. Development and verification of a new wind speed forecasting system using an ensemble Kalman filter data assimilation technique in a fully coupled hydrologic and atmospheric model

    NASA Astrophysics Data System (ADS)

    Williams, John L.; Maxwell, Reed M.; Monache, Luca Delle

    2013-12-01

    Wind power is rapidly gaining prominence as a major source of renewable energy. Harnessing this promising energy source is challenging because of the chaotic nature of wind and its inherently intermittent nature. Accurate forecasting tools are critical to support the integration of wind energy into power grids and to maximize its impact on renewable energy portfolios. We have adapted the Data Assimilation Research Testbed (DART), a community software facility which includes the ensemble Kalman filter (EnKF) algorithm, to expand our capability to use observational data to improve forecasts produced with a fully coupled hydrologic and atmospheric modeling system, the ParFlow (PF) hydrologic model and the Weather Research and Forecasting (WRF) mesoscale atmospheric model, coupled via mass and energy fluxes across the land surface, and resulting in the PF.WRF model. Numerous studies have shown that soil moisture distribution and land surface vegetative processes profoundly influence atmospheric boundary layer development and weather processes on local and regional scales. We have used the PF.WRF model to explore the connections between the land surface and the atmosphere in terms of land surface energy flux partitioning and coupled variable fields including hydraulic conductivity, soil moisture, and wind speed and demonstrated that reductions in uncertainty in these coupled fields realized through assimilation of soil moisture observations propagate through the hydrologic and atmospheric system. The sensitivities found in this study will enable further studies to optimize observation strategies to maximize the utility of the PF.WRF-DART forecasting system.

  3. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    NASA Astrophysics Data System (ADS)

    Sych, N. V.; Trofymenko, S. I.; Poddubnaya, O. I.; Tsyba, M. M.; Sapsay, V. I.; Klymchuk, D. O.; Puziy, A. M.

    2012-11-01

    Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 °C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (SBET = 2081 m2/g, Vtot = 1.1 cm3/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  4. Muiti-Sensor Historical Climatology of Satellite-Derived Global Land Surface Moisture

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Richard; Holmes, Thomas

    2007-01-01

    A historical climatology of continuous satellite derived global land surface soil moisture is being developed. The data set consists of surface soil moisture retrievals from observations of both historical and currently active satellite microwave sensors, including Nimbus-7 SMMR, DMSP SSM/I, TRMM TMI, and AQUA AMSR-E. The data sets span the period from November 1978 through the end of 2006. The soil moisture retrievals are made with the Land Parameter Retrieval Model, a physically-based model which was developed jointly by researchers from the above institutions. These data are significant in that they are the longest continuous data record of observational surface soil moisture at a global scale. Furthermore, while previous reports have intimated that higher frequency sensors such as on SSM/I are unable to provide meaningful information on soil moisture, our results indicate that these sensors do provide highly useful soil moisture data over significant parts of the globe, and especially in critical areas located within the Earth's many arid and semi-arid regions.

  5. The hydration structure at yttria-stabilized cubic zirconia (110)-water interface with sub-Ångström resolution

    DOE PAGES

    Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...

    2016-06-15

    The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5 Å resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic oxygen vacancies, both of which are apparently filled by water species. Above this top surface layer, two additional adsorbed layers are observed forming a characteristic interfacial hydration structure. The first adsorbed layer shows abnormally high density as pure water and likely includes metal species, whereas themore » second layer consists of pure water. The observed interfacial hydration structure seems responsible for local equilibration of the defective surface in water and eventually regulating the long-term degradation processes. As a result, the multitude of water interactions with the zirconia surface results in the complex but highly ordered interfacial structure constituting the reaction front.« less

  6. Quasi-Geostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field

    NASA Astrophysics Data System (ADS)

    Chavanne, C. P.; Klein, P.

    2016-02-01

    A new quasi-geostrophic model has been developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasi-geostrophic framework considered before since it takes into account the stratification within the surface mixed-layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant-stratification layers : a finite-thickness surface layer (or the mixed-layer) and an infinitely-deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal-wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive-equation numerical simulation. Correlation between simulated and diagnosed vertical velocities are significantly improved in the mixed-layer for the new model compared to the classical surface quasi-geostrophic model, reaching 0.9 near the surface.

  7. Preliminary evaluation of cavitation resistance of type 316LN stainless steel in mercury using a vibratory horn

    NASA Astrophysics Data System (ADS)

    Pawel, S. J.; Manneschmidt, E. T.

    2003-05-01

    Type 316LN stainless steel in a variety of conditions (annealed, cold-worked, surface-modified) was exposed to cavitation conditions in stagnant mercury using a vibratory horn. The test conditions included peak-to-peak displacement of the specimen surface of 25 μm at a frequency of 20 kHz and a mercury temperature in the range -5 to 80 °C. Following a brief incubation period in which little or no damage was observed, specimens of annealed 316LN exhibited increasing weight loss and surface roughening with increasing exposure times. Examination of test surfaces with the scanning electron microscope revealed primarily general/uniform wastage in all cases but, for long exposure times, a few randomly oriented 'pits' were also observed. Type 316LN that was 50% cold-worked was considerably more resistant to cavitation erosion damage than annealed material, but the surface modifications (CrN coating, metallic glass coating, laser treatment to form a diamond-like surface) provided little or no protection for the substrate. In addition, the cavitation erosion resistance of other materials - Inconel 718, Nitronic 60, and Stellite 3 - was also compared with that of 316LN for identical screening test conditions.

  8. Area densitometry using rotating Scheimpflug photography for posterior capsule opacification and surface light scattering analyses.

    PubMed

    Minami, Keiichiro; Honbo, Masato; Mori, Yosai; Kataoka, Yasushi; Miyata, Kazunori

    2015-11-01

    To compare area densitometry analysis using rotating Scheimpflug photography in quantifications of posterior capsule opacification (PCO) and surface light scattering with previous anterior-segment analyzer measurement. Miyata Eye Hospital, Miyazaki, Japan. Prospective observational case series. Scheimpflug images of eyes with foldable intraocular lenses (IOLs) were obtained using rotating and fixed Scheimpflug photography. Area densitometry on the posterior and anterior surfaces was conducted for PCO and surface light scattering analyses, respectively, with an identical area size. Correlation between two measurements was analyzed using linear regression. The study included 105 eyes of 74 patients who received IOLs 1 to 18 years (mean, 4.9 ± 4.5 years) postoperatively. In the PCO analysis on the posterior IOL surface, there was a significant correlation between the two measurements (P < .001, R(2) = 0.60). In the surface light scattering analysis, a significant and higher correlation was obtained (P < .001, R(2) = 0.91) until the fixed Scheimpflug photography exhibited saturation due to intensive scatterings. Area densitometry combined with a rotating Scheimpflug photography was exchangeable to previously established densitometry measurement, and allowed successive evaluation in longer-term observations. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Chemical and Physical Interactions of Martian Surface Material

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.

    1999-09-01

    A model of alteration and maturation of the Martian surface material is described involving both chemical and physical interactions. Physical processes involve distribution and mixing of the fine-grained soil particles across the surface and into the atmosphere. Chemical processes include reaction of sulfate, salt and oxidizing components of the soil particles; these agents in the soils deposited on rocks will chew through the rock minerals forming coatings and will bind surface soils together to form duricrust deposits. Formation of crystalline iron oxide/oxyhydroxide minerals through hydrothermal processes and of poorly crystalline and amorphous phases through palagonitic processes both contribute to formation of the soil particles. Chemical and physical alteration of these soil minerals and phases contribute to producing the chemical, magnetic and spectroscopic character of the Martian soil as observed by Mars Pathfinder and Mars Global Surveyor. Minerals such as maghemite/magnetite and jarosite/alunite have been observed in terrestrial volcanic soils near steam vents and may be important components of the Martian surface material. The spectroscopic properties of several terrestrial volcanic soils containing these minerals have been analyzed and evaluated in terms of the spectroscopic character of the surface material on Mars.

  10. Multi-Sensory Aerosol Data and the NRL NAAPS model for Regulatory Exceptional Event Analysis

    NASA Astrophysics Data System (ADS)

    Husar, R. B.; Hoijarvi, K.; Westphal, D. L.; Haynes, J.; Omar, A. H.; Frank, N. H.

    2013-12-01

    Beyond scientific exploration and analysis, multi-sensory observations along with models are finding increasing applications for operational air quality management. EPA's Exceptional Event (EE) Rule allows the exclusion of data strongly influenced by impacts from "exceptional events," such as smoke from wildfires or dust from abnormally high winds. The EE Rule encourages the use of satellite observations and other non-standard data along with models as evidence for formal documentation of EE samples for exclusion. Thus, the implementation of the EE Rule is uniquely suited for the direct application of integrated multi-sensory observations and indirectly through the assimilation into an aerosol simulation model. Here we report the results of a project: NASA and NAAPS Products for Air Quality Decision Making. The project uses of observations from multiple satellite sensors, surface-based aerosol measurements and the NRL Aerosol Analysis and Prediction System (NAAPS) model that assimilates key satellite observations. The satellite sensor data for detecting and documenting smoke and dust events include: MODIS AOD and Images; OMI Aerosol Index, Tropospheric NO2; AIRS, CO. The surface observations include the EPA regulatory PM2.5 network; the IMPROVE/STN aerosol chemical network; AIRNOW PM2.5 mass network, and surface met. data. Within this application, crucial role is assigned to the NAAPS model for estimating the surface concentration of windblown dust and biomass smoke. The operational model assimilates quality-assured daily MODIS data and 2DVAR to adjust the model concentrations and CALIOP-based climatology to adjust the vertical profiles at 6-hour intervals. The assimilation of satellite data from multiple satellites significantly contributes to the usefulness of NAAPS for EE analysis. The NAAPS smoke and dust simulations were evaluated using the IMPROVE/STN chemical data. The multi-sensory observations along with the model simulations are integrated into a web-based Exceptional Event Decision System (EE DSS) application program, designed to support air quality analysts at the Federal and Regional EPA offices and the EE-affected States. EE DSS screening tool automatically identifies the EPA PM2.5 mass samples that are candidates for EE flagging, based mainly on the NAAPS-simulated surface concentration of dust and smoke. The AQ analysts at the States and the EPA can also use the EE DSS to gather further evidence from the examination of spatio-temporal pattern, Absorbing Aerosol Index, CO and NO2 concentration, backward and forward airmass trajectories and other signatures. Since early 2013, the DSS has been used for the identification and analysis of dozens of events. Hence, integration of multi-sensory observations and modeling with data assimilation is maturing to support real-world operational AQ management applications. The remaining challenges can be resolved by seeking ';closure' of the system components; i.e. the systematic adjustments to reconcile the satellite and surface observations, the emissions and their integration through a suitable AQ model.

  11. Variational Assimilation of Sparse and Uncertain Satellite Data For 1D Saint-Venant River Models

    NASA Astrophysics Data System (ADS)

    Garambois, P. A.; Brisset, P.; Monnier, J.; Roux, H.

    2016-12-01

    Profusion of satellites are providing increasingly accurate measurements of continental water cyle, and water bodies variations while in situ observability is declining. The future Surface Water and Ocean Topography (SWOT) mission will provide maps of river surface elevations widths and slopes with an almost global coverage and temporal revisits. This will offer the possibility to address a larger variety of inverse problems in surface hydrology. Data assimilation techniques, that are broadly used in several scientific fields, aim to optimally combine models, system observations and prior information. Variational assimilation consists in iterative minimization of a discrepency measure between model outputs and observations, here for retrieving boundary conditions and parameters of a 1D Saint Venant model. Nevertheless, inferring river discharge and hydraulic parameters thanks to the observation of river surface is not straightforward. This is particularly true in the case of sparse and uncertain observations of flow state variables since they are governed by nonlinear physical processes. This paper investigates the identifiability of hydraulic controls given sparse and uncertain satellite observations of a river. The identifiability of river discharge alone and with roughness is tested for several spatio temporal patterns of river observations, including SWOT like observations. A new 1D Shallow water model with variational data assimilation, within the DassFlow chain is presented as well as postprocessing and observation operator dedicated to the future SWOT and SWOT simulator data. In view to decrease inverse problem dimensionality discharge is represented in a reduced basis. Moreover we introduce an original and reduced parametrization of the flow resistance that can account for various flow regimes along with a cross section design dedicated to remote sensing. We show which discharge temporal frequencies can be identified w.r.t observation ones and at which accuracy. Eventually the important question of the discharge identifiability potential between observation times and depending on the spatio-temporal sampling is adressed with respect to the wave lengths of the hydrological signals.

  12. Properties of the surface snow in Princess Elizabeth Land, East Antarctica - climate and non-climate dependent variability of the surface mass balance and stable water isotopic composition

    NASA Astrophysics Data System (ADS)

    Vladimirova, D.; Ekaykin, A.; Lipenkov, V.; Popov, S. V.; Petit, J. R.; Masson-Delmotte, V.

    2017-12-01

    Glaciological and meteorological observations conducted during the past four decades in Princess Elizabeth Land, East Antarctica, are compiled. The database is used to investigate spatial patterns of surface snow isotopic composition and surface mass balance, including detailed information near subglacial lake Vostok. We show diverse relationships between snow isotopic composition and surface temperature. In the most inland part (elevation 3200-3400 m a.s.l.), surface snow isotopic composition varies independently from surface temperature, and is closely related to the distance to the open water source (with a slope of 0.98±0.17 ‰ per 100 km). Surface mass balance values are higher along the ice sheet slope, and relatively evenly distributed inland. The minimum values of snow isotopic composition and surface mass balance are identified in an area XX km southwestward from Vostok station. The spatial distribution of deuterium excess delineates regions influenced by the Indian Ocean and Pacific Ocean air masses, with Vostok area being situated close to their boundary. Anomalously high deuterium excess values are observed near Dome A, suggesting high kinetic fractionation for its moisture source, or specifically high post-deposition artifacts. The dataset is available for further studies such as the assessment of skills of general circulation or regional atmospheric models, and the search for the oldest ice.

  13. Modeling of surface roughness effects on glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark

    1990-01-01

    A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.

  14. Thermal effects in equilibrium surface segregation in a copper/10-atomic-percent-aluminum alloy using Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1972-01-01

    Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.

  15. An evaluation of the impact of biomass burning smoke aerosol particles on near surface temperature forecasts

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Reid, J. S.; Benedetti, A.; Christensen, M.; Marquis, J. W.

    2016-12-01

    Currently, with the improvements in aerosol forecast accuracies through aerosol data assimilation, the community is unavoidably facing a scientific question: is it worth the computational time to insert real-time aerosol analyses into numerical models for weather forecasts? In this study, by analyzing a significant biomass burning aerosol event that occurred in 2015 over the Northern part of the Central US, the impact of aerosol particles on near-surface temperature forecasts is evaluated. The aerosol direct surface cooling efficiency, which links surface temperature changes to aerosol loading, is derived from observational-based data for the first time. The potential of including real-time aerosol analyses into weather forecasting models for near surface temperature forecasts is also investigated.

  16. Surface ozone variability at Kislovodsk Observatory

    NASA Technical Reports Server (NTRS)

    Elansky, Nikolay F.; Makarov, Oleg V.; Senik, Irina A.

    1994-01-01

    The results of the surface ozone observations at the Observatory 'Kislovodsk', situated in the North Caucasus at the altitude 2070 m a.s.l., are given. The observatory is in the background conditions and the variations of the surface ozone are determined by the natural dynamic and photochemical processes. The mean value of the concentration and its seasonal variations are very near to those obtained at the high-mountain stations in Alps. The daily variations have the features, which remain stable during all warm period of the year (April-October). These features, including the minimum of the surface ozone at noon, are formed by the mountain-valley circulation. The significant variations of the surface ozone are connected with the unstationary lee waves.

  17. A soil-canopy scheme for use in a numerical model of the atmosphere: 1D stand-alone model

    NASA Astrophysics Data System (ADS)

    Kowalczyk, E. A.; Garratt, J. R.; Krummel, P. B.

    We provide a detailed description of a soil-canopy scheme for use in the CSIRO general circulation models (GCMs) (CSIRO-4 and CSIRO-9), in the form of a one-dimensional stand-alone model. In addition, the paper documents the model's ability to simulate realistic surface fluxes by comparison with mesoscale model simulations (involving more sophisticated soil and boundary-layer treatments) and observations, and the diurnal range in surface quantities, including extreme maximum surface temperatures. The sensitivity of the model to values of the surface resistance is also quantified. The model represents phase 1 of a longer-term plan to improve the atmospheric boundary layer (ABL) and surface schemes in the CSIRO GCMs.

  18. Chemical modification of TiO2 surfaces with methylsilanes and characterization by infrared absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Finklea, H. O.; Vithanage, R.

    1982-01-01

    Infrared absorption spectra of methylsilanes bonded to a TiO2 powder were obtained. The reacting silanes include Me sub (4-n)SiX sub n (n=1-4; X=Cl, OMe) and hexamethyldisilazane (HMDS). Reactions were performed on hydroxylated-but-anhydrous TiO2 surfaces in the gas phase. IR spectra confirm the presence of a bonded silane layer. Terminal surface OH groups are found to react more readily than bridging OH groups. By-products of the modification adsorp tenaciously to the surface. The various silanes show only small differences in their ability to sequester surface OH groups. Following hydrolysis in moist air, Si-OH groups are observed only for the tetrafunctional silanes.

  19. Surface atmosphere exchange in dry and a wet regime over the Ganges valley: a comprehensive investigation with direct observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Sathyanadh, Anusha; Prabhakaran, Thara; Karipot, Anandakumar

    2017-04-01

    Land atmosphere interactions in the Ganges Valley basin is a topic of significant importance as it is most vulnerable region due to extreme weather, air pollution, etc. The complete energy balance observations over this region was conducted as part of the CAIPEEX-IGOC (Cloud Aerosol Interaction and Precipitation Enhancement Experiment - Integrated Ground based Observational Campaign) experiment for an entire year. These observations give first insight into the partitioning of energy in this vulnerable environment during the dry and wet regimes, which are typically part of the intraseasonal oscillations during the Indian monsoon season. These transitions wet-dry and dry-wet are poorly represented in GCMs and is the motivation for the detailed investigation here. Observations conducted with micrometeorological tower instrumented with eddy covariance sensors, radiation balance, soil heat flux measurements, microwave radiometer, sodar, radiosonde data are used in the present study. A set of numerical investigations of different Planetary Boundary Layer (PBL) schemes is also carried out to investigate features of the diurnal cycle during the wet and dry regimes. General behaviour of both local and nonlocal PBL schemes found from the investigation is to accomplish enhanced mixing, leading to a deeper PBL in the valley. However, observations give clear evidence of residual boundary layer characterised by a weak stratification, playing a key role in the exchange of PBL air mass with that of free atmosphere. Impact of changes in parameterization and controlling factors on the PBL height are investigated. Case studies for a dry phase during the incidence of a heat wave and a wet phase during a land depression are presented. Observed diurnal features of the surface meteorological parameters including the surface energy budget components were well captured by local and nonlocal PBL schemes during both the cases. Vertical profiles of temperature, mixing ratio and winds from microwave radiometer, radiosonde sounding and SODAR measurements compared well with the model vertical profiles. All the schemes are able to capture the development of a drying phase, its persistence and revival after the drying, similar to observation. The characteristic features of the drying such as decrease in mixing ratio, PBL warming, enhanced PBL growth, variations in wind speed, etc were reproduced by the model simulations. Results indicate that model is simulating a drier and deeper surface and mixed layer, compared to the observations, which is assisted by enhanced mixing through deep updrafts rooted from the surface layer and downdrafts associated with the subsiding air reaching down to the surface. Two issues are identified with model as a) relating to enhanced mixing also assisted by the subsiding air at top of the boundary layer and b) the energy partitioning at the surface with significantly excess energy partitioned in to sensible heat flux, thus warming the model surface layer. A few aircraft observations are used to investigate entrainment issue and results from these analysis and inferences will be presented. The surface layer eddy covariance measurements of sensible and latent heat fluxes and surface layer relationships are used to tune the surface layer exchanges.

  20. A post-new horizons global climate model of Pluto including the N2, CH4 and CO cycles

    NASA Astrophysics Data System (ADS)

    Forget, F.; Bertrand, T.; Vangvichith, M.; Leconte, J.; Millour, E.; Lellouch, E.

    2017-05-01

    We have built a new 3D Global Climate Model (GCM) to simulate Pluto as observed by New Horizons in 2015. All key processes are parametrized on the basis of theoretical equations, including atmospheric dynamics and transport, turbulence, radiative transfer, molecular conduction, as well as phases changes for N2, CH2 and CO. Pluto's climate and ice cycles are found to be very sensitive to model parameters and initial states. Nevertheless, a reference simulation is designed by running a fast, reduced version of the GCM with simplified atmospheric transport for 40,000 Earth years to initialize the surface ice distribution and sub-surface temperatures, from which a 28-Earth-year full GCM simulation is performed. Assuming a topographic depression in a Sputnik-planum (SP)-like crater on the anti-Charon hemisphere, a realistic Pluto is obtained, with most N2 and CO ices accumulated in the crater, methane frost covering both hemispheres except for the equatorial regions, and a surface pressure near 1.1 Pa in 2015 with an increase between 1988 and 2015, as reported from stellar occultations. Temperature profiles are in qualitative agreement with the observations. In particular, a cold atmospheric layer is obtained in the lowest kilometers above Sputnik Planum, as observed by New Horizons's REX experiment. It is shown to result from the combined effect of the topographic depression and N2 daytime sublimation. In the reference simulation with surface N2 ice exclusively present in Sputnik Planum, the global circulation is only forced by radiative heating gradients and remains relatively weak. Surface winds are locally induced by topography slopes and by N2 condensation and sublimation around Sputnik Planum. However, the circulation can be more intense depending on the exact distribution of surface N2 frost. This is illustrated in an alternative simulation with N2 condensing in the South Polar regions and N2 frost covering latitudes between 35°N and 48°N. A global condensation flow is then created, inducing strong surface winds everywhere, a prograde jet in the southern high latitudes, and an equatorial superrotation likely forced by barotropic instabilities in the southern jet. Using realistic parameters, the GCM predict atmospheric concentrations of CO and CH4 in good agreement with the observations. N2 and CO do not condense in the atmosphere, but CH4 ice clouds can form during daytime at low altitude near the regions covered by N2 ice (assuming that nucleation is efficient enough). This global climate model can be used to study many aspects of the Pluto environment. For instance, organic hazes are included in the GCM and analysed in a companion paper (Bertrand and Forget, Icarus, this issue).

  1. Development of an eddy-resolving reanalysis using the 1/12° global HYbrid Coordinate Ocean Model and the Navy Coupled Ocean Data Assimilation Scheme

    NASA Astrophysics Data System (ADS)

    Allard, Richard; Metzger, E. Joseph; Broome, Robert; Franklin, Deborah; Smedstad, Ole Martin; Wallcraft, Alan

    2013-04-01

    Multiple international agencies have performed atmospheric reanalyses using static dynamical models and assimilation schemes while ingesting all available quality controlled observational data. Some are clearly aimed at climate time scales while others focus on the more recent time period in which assimilated satellite data are used to constrain the system. Typically these are performed at horizontal and vertical resolutions that are coarser than the existing operational atmospheric prediction system. Multiple agencies have also performed ocean reanalyses using some of the atmospheric forcing products described above. However, only a few are eddy-permitting and none are capable of resolving oceanic mesoscale features (eddies and current meanders) across the entire globe. To fill this void, the Naval Research Laboratory is performing an eddy-resolving 1993-2010 ocean reanalysis using the 1/12° global HYbrid Coordinate Ocean Model (HYCOM) that employs the Navy Coupled Ocean Data Assimilation (NCODA) scheme. A 1/12° global HYCOM/NCODA prediction system has been running in real-time at the Naval Oceanographic Office (NAVOCEANO) since 22 December 2006. It has undergone operational testing and will become an operational product by early 2013. It is capable of nowcasting and forecasting the oceanic "weather" which includes the 3D ocean temperature, salinity and current structure, the surface mixed layer, and the location of mesoscale features such as eddies, meandering currents and fronts. The system has a mid-latitude resolution of ~7 km and employs 32 hybrid vertical coordinate surfaces. Compared to traditional isopycnal coordinate models, the hybrid vertical coordinate extends the geographic range of applicability toward shallow coastal seas and the unstratified parts of the world ocean. HYCOM contains a built-in thermodynamic ice model, where ice grows and melts due to heat flux and sea surface temperature (SST) changes, but it does not contain advanced rheological physics. The ice edge is constrained by satellite ice concentration. Once per day, NCODA performs a 3D ocean analysis using all available observational data and the 1-day HYCOM forecast as the first guess in a sequential incremental update cycle. Observational data include surface observations from satellites, including sea surface height (SSH) anomalies, SST, and sea ice concentrations, plus in-situ SST observations from ships and buoys as well as temperature and salinity profiles from XBTs, CTDs and Argo profiling floats. Surface information is projected downward using synthetic profiles from the Modular Ocean Data Assimilation System (MODAS) at those locations with a predefined SSH anomaly. Unlike previous reanalyses, this ocean reanalysis will be integrated at the same horizontal and vertical resolution as the operational system running at NAVOCEANO. The system is forced with atmospheric output from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) and the observations listed above. The reanalysis began in 1993 because of the advent of satellite altimeter data that will constrain the oceanic mesoscale. Significant effort has been put into obtaining and quality controlling all input observational data, with special emphasis on the profile data. The computational resources are obtained through the High Performance Computing Modernization Office.

  2. Surface models of Mars, 1975

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Data derived from Mariners 6, 7, and 9, Russian Mars probes, and photographic and radar observations conducted from earth are used to develop engineering models of Martian surface properties. These models are used in mission planning and in the design of landing and exploration vehicles. Optical models needed in the design of camera systems, dielectric properties needed in the design of radar systems, and thermal properties needed in the design of the spacecraft thermal control system are included.

  3. Phase-Angle Dependence of Determinations of Diameter, Albedo, and Taxonomy: A Case Study of NEO 3691 Bede

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Howell, Ellen S.; Fernandez, Yan; Harker, David E.; Ryan, Erin; Lovell, Amy; Woodward, Charles E.; Benner, Lance A.

    2015-01-01

    Parameters important for NEO risk assessment and mitigation include Near-Earth Object diameter and taxonomic classification, which translates to surface composition. Diameters of NEOs are derived from the thermal fluxes measured by WISE, NEOWISE, Spitzer Warm Mission and ground-based telescopes including the IRTF and UKIRT. Diameter and its coupled parameters Albedo and IR beaming parameter (a proxy for thermal inertia and/or surface roughness) are dependent upon the phase angle, which is the Sun-target-observer angle. Orbit geometries of NEOs, however, typically provide for observations at phase angles greater than 20 degrees. At higher phase angles, the observed thermal emission is sampling both the day and night sides of the NEO. We compare thermal models for NEOs that exclude (NEATM) and include (NESTM) night-side emission. We present a case study of NEO 3691 Bede, which is a higher albedo object, X (Ec) or Cgh taxonomy, to highlight the range of H magnitudes for this object (depending on the albedo and phase function slope parameter G), and to examine at different phase angles the taxonomy and thermal model fits for this NEO. Observations of 3691 Bede include our observations with IRTF+SpeX and with the 10 micrometer UKIRT+Michelle instrument, as well as WISE and Spitzer Warm mission data. By examining 3691 Bede as a case study, we highlight the interplay between the derivation of basic physical parameters and observing geometry, and we discuss the uncertainties in H magnitude, taxonomy assignment amongst the X-class (P, M, E), and diameter determinations. Systematic dependencies in the derivation of basic characterization parameters of H-magnitude, diameter, albedo and taxonomy with observing geometry are important to understand. These basic characterization parameters affect the statistical assessments of the NEO population, which in turn, affects the assignment of statistically-assessed basic parameters to discovered but yet-to-be-fully-characterized NEOs.

  4. Liouville master equation for multi-electron dynamics during ion-surface interactions

    NASA Astrophysics Data System (ADS)

    Wirtz, L.; Reinhold, C. O.; Lemell, C.; Burgdorfer, J.

    2003-05-01

    We present a simulation of the neutralization of highly charged ions in front of a LiF(100) surface including the close-collision regime above the surface. Our approach employs a Monte-Carlo solution of the Liouville master equation for the joint probability density of the ionic motion and the electronic population of the projectile and the target surface. It includes single as well as double particle-hole (de)excitation processes and incorporates electron correlation effects through the conditional dynamics of population strings. The input in terms of elementary one- and two-electron transfer rates is determined from CTMC calculations as well as quantum mechanical Auger calculations. For slow projectiles and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration towards the surface and repulsion by an ensemble of positive hole charges in the surface (``trampoline effect"). For Ne10+ ions we find that image acceleration dominates and no collective backscattering high above the surface takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In accordance with recent experimental observations, most ions are reflected as neutrals or even as singly charged negative particles, irrespective of the charge state of the incoming ion.

  5. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces

    PubMed Central

    Chen, Xuemei; Weibel, Justin A.; Garimella, Suresh V.

    2015-01-01

    Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on the evaporation dynamics of water and ethanol droplets. Compared to a water droplet, the ethanol droplet not only evaporates faster, but also inhibits Cassie-to-Wenzel wetting transitions on surfaces with certain geometries. We use an interfacial energy-based description of the system, including the transition energy barrier and triple line energy, to explain the underlying transition mechanism and behaviour observed. Suppression of the wetting transition during evaporation of droplets provides an important metric for evaluating the robustness of omniphobic surfaces requiring such functionality. PMID:26603940

  6. Mini-Magnetospheres at the Moon in the Solar Wind and the Earth's Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Futaana, Y.; Barabash, S. V.; Wieser, M.; Wurz, P.; Bhardwaj, A.; Asamura, K.; Saito, Y.; Yokota, S.; Tsunakawa, H.; Machida, S.

    2014-12-01

    Lunar mini-magnetospheres are formed as a consequence of solar-wind interaction with remanent crustal magnetization on the Moon. A variety of plasma and field perturbations have been observed in a vicinity of the lunar magnetic anomalies, including electron energization, ion reflection/deflection, magnetic field enhancements, electrostatic and electromagnetic wave activities, and low-altitude ion deceleration and electron acceleration. Recent Chandrayaan-1 observations of the backscattered energetic neutral atoms (ENAs) from the Moon in the solar wind revealed upward ENA flux depletion (and thus depletion of the proton flux impinging on the lunar surface) in association with strongly magnetized regions. These ENA observations demonstrate that the lunar surface is shielded from the solar wind protons by the crustal magnetic fields. On the other hand, when the Moon was located in the Earth's plasma sheet, no significant depletion of the backscattered ENA flux was observed above the large and strong magnetic anomaly. It suggests less effective magnetic shielding of the surface from the plasma sheet protons than from the solar wind protons. We conduct test-particle simulations showing that protons with a broad velocity distribution are more likely to reach a strongly magnetized surface than those with a beam-like velocity distribution. The ENA observations together with the simulation results suggest that the lunar crustal magnetic fields are no longer capable of standing off the ambient plasma when the Moon is immersed in the hot magnetospheric plasma.

  7. Short-Period Surface Wave Based Seismic Event Relocation

    NASA Astrophysics Data System (ADS)

    White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.

    2017-12-01

    Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.

  8. Using Flux Site Observations to Calibrate Root System Architecture Stencils for Water Uptake of Plant Functional Types in Land Surface Models.

    NASA Astrophysics Data System (ADS)

    Bouda, M.

    2017-12-01

    Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, RSA has not been included because of its three-dimensional complexity, which makes RSA modelling generally too computationally costly. This work builds upon the recently introduced "RSA stencil," a process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA in response to heterogeneous soil moisture profiles. In validations using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, the RSA stencil predicts plant water potentials within 2% of the outputs of full 3D models, despite its trivial computational cost. In transient simulations, the RSA stencil yields improved predictions of water uptake and soil moisture profiles compared to a 1D model based on root fraction alone. Here I show how the RSA stencil can be calibrated to time-series observations of soil moisture and transpiration to yield a water uptake PFT definition for use in terrestrial models. This model-data integration exercise aims to improve LSM predictions of soil moisture dynamics and, under water-limiting conditions, surface fluxes. These improvements can be expected to significantly impact predictions of downstream variables, including surface fluxes, climate-vegetation feedbacks and soil nutrient cycling.

  9. A Modeling and Experimental Investigation of the Effects of Antigen Density, Binding Affinity, and Antigen Expression Ratio on Bispecific Antibody Binding to Cell Surface Targets*

    PubMed Central

    Rhoden, John J.; Dyas, Gregory L.

    2016-01-01

    Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. PMID:27022022

  10. Observational evidence for enhanced magnetic activity of superflare stars.

    PubMed

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-03-24

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

  11. Observational evidence for enhanced magnetic activity of superflare stars

    PubMed Central

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-01-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares. PMID:27009381

  12. Pluto's Paleoglaciation: Processes and Bounds

    NASA Astrophysics Data System (ADS)

    Umurhan, Orkan; Howard, Alan D.; White, Oliver L.; Moore, Jeffrey M.; Grundy, William M.; Schenk, Paul M.; Beyer, Ross A.; McKinnon, William B.; Singer, Kelsi N.; Lauer, Tod R.; Cheng, Andrew F.; Stern, S. Alan; Weaver, Harold A.; Young, Leslie; Ennico, Kimberly; Olkin, Catherine; New Horizons Science Team

    2017-10-01

    New Horizons imaging of Pluto’s surface shows eroded landscapes reminiscent of assorted glaciated terrains found on the Earth such as alpine valleys, dendritic networks and others. For example, LORRI imaging of fluted craters show radially oriented ridging which also resembles Pluto’s washboard terrain. Digital elevation modeling indicates that these down-gradient oriented ridges are about 3-4 km spaced apart with depths ranging from 0.2-0.5 km. Present day glaciation on Pluto is characterized by moving N2 ice blocks presumably riding over a H2O ice bedrock substrate. Assuming Pluto’s ancient surface was sculpted by N2 glaciation, what remains a mystery is the specific nature of the glacial erosion mechanism(s) responsible for the observed features.To better resolve this puzzle, we perform landform evolution modeling of several glacial erosion processes known from terrestrial H2O ice glaciation studies. These terrestrial processes, which depend upon whether or not the glacier’s base is wet or dry, include quarrying/plucking and fluvial erosion. We also consider new erosional processes (to be described in this presentation) which are unique to the highly insulating character of solid N2 including both phase change induced hydrofracture and geothermally driven basal melt. Until improvements in our knowledge of solid N2’s rheology are made available (including its mechanical behavior as a binary/trinary mixture of CH4 and CO), it is difficult to assess with high precision which of the aforementioned erosion mechanisms are responsible for the observed surface etchings.Nevertheless, we consider a model crater surface and examine its erosional development due to flowing N2 glacial ice as built up over time according to N2 deposition rates based on GCM modeling of Pluto’s ancient atmosphere. For given erosional mechanism our aim is to determine the permissible ranges of model input parameters (e.g., ice strength, flow rates, grain sizes, quarrying rates, etc.) that best reproduces the observed length scales found on the observed fluted craters. As of the writing of this abstract, both the processes of quarrying and phase change induced hydrofracture appear to be most promising at explaining the fluted crater ridging.

  13. Pluto's Paleoglaciation: Processes and Bounds.

    NASA Astrophysics Data System (ADS)

    Umurhan, O. M.; Howard, A. D.; White, O. L.; Moore, J. M.; Grundy, W. M.; Schenk, P.; Beyer, R. A.; McKinnon, W. B.; Singer, K. N.; Lauer, T.; Cheng, A. F.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Olkin, C.

    2017-12-01

    New Horizons imaging of Pluto's surface shows eroded landscapes reminiscent of assorted glaciated terrains found on the Earth such as alpine valleys, dendritic networks and others. For example, LORRI imaging of fluted craters show radially oriented ridging which also resembles Pluto's washboard terrain. Digital elevation modeling indicates that these down-gradient oriented ridges are about 3-4 km spaced apart with depths ranging from 0.2-0.5 km. Present day glaciation on Pluto is characterized by moving N2 ice blocks presumably riding over a H2O ice bedrock substrate. Assuming Pluto's ancient surface was sculpted by N2 glaciation, what remains a mystery is the specific nature of the glacial erosion mechanism(s) responsible for the observed features. To better resolve this puzzle, we perform landform evolution modeling of several glacial erosion processes known from terrestrial H2O ice glaciation studies. These terrestrial processes, which depend upon whether or not the glacier's base is wet or dry, include quarrying/plucking and fluvial erosion. We also consider new erosional processes (to be described in this presentation) which are unique to the highly insulating character of solid N2 including both phase change induced hydrofracture and geothermally driven basal melt. Until improvements in our knowledge of solid N2's rheology are made available (including its mechanical behavior as a binary/trinary mixture of CH4 and CO), it is difficult to assess with high precision which of the aforementioned erosion mechanisms are responsible for the observed surface etchings. Nevertheless, we consider a model crater surface and examine its erosional development due to flowing N2 glacial ice as built up over time according to N2 deposition rates based on GCM modeling of Pluto's ancient atmosphere. For given erosional mechanism our aim is to determine the permissible ranges of model input parameters (e.g., ice strength, flow rates, grain sizes, quarrying rates, etc.) that best reproduces the observed length scales found on the observed fluted craters. As of the writing of this abstract, both the processes of quarrying and phase change induced hydrofracture appear to be most promising at explaining the fluted crater ridging.

  14. GEWEX Water and Energy Budget Study

    NASA Technical Reports Server (NTRS)

    Roads, J.; Bainto, E.; Masuda, K.; Rodell, Matthew; Rossow, W. B.

    2008-01-01

    Closing the global water and energy budgets has been an elusive Global Energy and Water-cycle Experiment (GEWEX) goal. It has been difficult to gather many of the needed global water and energy variables and processes, although, because of GEWEX, we now have globally gridded observational estimates for precipitation and radiation and many other relevant variables such as clouds and aerosols. Still, constrained models are required to fill in many of the process and variable gaps. At least there are now several atmospheric reanalyses ranging from the early National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and NCEP/Department of Energy (DOE) reanalyses to the more recent ERA40 and JRA-25 reanalyses. Atmospheric constraints include requirements that the models state variables remain close to in situ observations or observed satellite radiances. This is usually done by making short-term forecasts from an analyzed initial state; these short-term forecasts provide the next guess, which is corrected by comparison to available observations. While this analysis procedure is likely to result in useful global descriptions of atmospheric temperature, wind and humidity, there is no guarantee that relevant hydroclimate processes like precipitation, which we can observe and evaluate, and evaporation over land, which we cannot, have similar verisimilitude. Alternatively, the Global Land Data Assimilation System (GLDAS), drives uncoupled land surface models with precipitation, surface solar radiation, and surface meteorology (from bias-corrected reanalyses during the study period) to simulate terrestrial states and surface fluxes. Further constraints are made when a tuned water balance model is used to characterize the global runoff observational estimates. We use this disparate mix of observational estimates, reanalyses, GLDAS and calibrated water balance simulations to try to characterize and close global and terrestrial atmospheric and surface water and energy budgets to within 10-20% for long term (1986-1995), large-scale global to regional annual means.

  15. In vivo confocal microscopy of human cornea covered with human amniotic membrane.

    PubMed

    Mimura, Tatsuya; Yamagami, Satoru; Usui, Tomohiko; Honda, Norihiko; Araki, Fumiyuki; Amano, Shiro

    2008-01-01

    Amniotic membrane transplantation has been widely performed to reconstruct the surface of the eye and treat chemical burns or epithelial defects. However, we have difficulty observing the cornea through the opaque transplanted amniotic membrane by slit-lamp biomicroscopy. We investigated the use of confocal microscopy for observation of human corneas covered with amniotic membrane. Human amniotic membrane was placed onto the normal corneas of five volunteers aged 22-24 years. Then, all layers of the covered corneas were observed by in vivo confocal microscopy. Confocal microscopy displayed the epithelium, basement membrane, and stroma of the amniotic membrane. It also displayed the corneal epithelium. Furthermore, corneal stromal keratocytes and the corneal endothelium were clearly observed through the amniotic membrane by confocal microscopy. We demonstrated that in vivo confocal microscopy enabled us to observe all layers of corneas covered with amniotic membrane in normal human eyes. Our findings suggest that confocal microscopy may have advantages for clinical examination of the ocular surface, including all layers of the cornea.

  16. Observations of C-Band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate from the Hurricane Imaging Radiometer (HIRAD) during GRIP and HS3

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2013-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and at the time of this writing plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  17. Surface Structure and Surface Electronic States Related to Plasma Cleaning of Silicon and Germanium

    NASA Astrophysics Data System (ADS)

    Cho, Jaewon

    This thesis discusses the surface structure and the surface electronic states of Si and Ge(100) surfaces as well as the effects of oxidation process on the silicon oxide/Si(100) interface structure. The H-plasma exposure was performed in situ at low temperatures. The active species, produced in the H-plasma by the rf-excitation of H_2 gas, not only remove microcontaminants such as oxygen and carbon from the surface, but also passivate the surface with atomic hydrogen by satisfying the dangling bonds of the surface atoms. The surfaces were characterized by Angle Resolved UV-Photoemission Spectroscopy (ARUPS) and Low Energy Electron Diffraction (LEED). In the case of Si(100), H-plasma exposure produced ordered H-terminated crystallographic structures with either a 2 x 1 or 1 x 1 LEED pattern. The hydride phases, found on the surfaces of the cleaned Si(100), were shown to depend on the temperature of the surface during H-plasma cleaning. The electronic states for the monohydride and dihydride phases were identified by ARUPS. When the plasma cleaned surface was annealed, the phase transition from the dihydride to monohydride was observed. The monohydride Si-H surface bond was stable up to 460^circC, and the dangling bond surface states were identified after annealing at 500^circC which was accompanied by the spectral shift. The H-terminated surface were characterized to have a flat band structure. For the Ge(100) surface, an ordered 2 x 1 monohydride phase was obtained from the surface cleaned at 180 ^circC. After plasma exposure at <=170^circC a 1 x 1 surface was observed, but the ARUPS indicated that the surface was predominantly composed of disordered monohydride structures. After annealing above the H-dissociation temperatures, the shift in the spectrum was shown to occur with the dangling bond surface states. The H-terminated surfaces were identified to be unpinned. The interface structure of silicon oxide/Si(100) was studied using ARUPS. Spectral shifts were observed, which were dependent on the processes of surface preparation and oxidation. The shift was characterized in association with the band bending. The origins of the spectral shifts were discussed, including defects at interface and H-passivation in Si. The interface structure is considered to be dependent on the surface preparation and oxidation process.

  18. Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water.

    PubMed

    de Jongh, Cindy M; Kooij, Pascal J F; de Voogt, Pim; ter Laak, Thomas L

    2012-06-15

    Numerous studies describe the presence of pharmaceuticals in the water cycle, while their transformation products are usually not included. In the current study 17 common pharmaceuticals and 9 transformation products were monitored in the Dutch waters, including surface waters, pre-treated surface waters, river bank filtrates, two groundwater samples affected by surface water and drinking waters. In these samples, 12 pharmaceuticals and 7 transformation products were present. Concentrations were generally highest in surface waters, intermediate in treated surface waters and river bank filtrates and lowest or not detected in produced drinking water. However, the concentrations of phenazone and its environmental transformation product AMPH were significantly higher in river bank filtrates, which is likely due to historical contamination. Fairly constant ratios were observed between concentrations of transformation products and parent pharmaceuticals. This might enable prediction of concentrations of transformation products from concentrations of parent pharmaceuticals. The toxicological relevance of the observed pharmaceuticals and transformation products was assessed by deriving (i) a substance specific provisional guideline value (pGLV) and (ii) a group pGLV for groups of related compounds were under the assumption of additivity of effects within each group. A substantial margin exists between the maximum summed concentrations of these compounds present in different water types and the derived (group) pGLVs. Based on the results of this limited screening campaign no adverse health effects of the studied compounds are expected in (sources of) drinking water in the Netherlands. The presence of transformation products with similar pharmacological activities and concentration levels as their parents illustrates the relevance of monitoring transformation products, and including these in risk assessment. More thorough monitoring yielding information on statistical uncertainty and variability in time and space, and research on possible synergistic effects of low concentration mixtures of compounds belonging to similar pharmacological classes require attention. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Climate modeling. [for use in understanding earth's radiation budget

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The requirements for radiation measurements suitable for the understanding, improvement, and verification of models used in performing climate research are considered. Both zonal energy balance models and three dimensional general circulation models are considered, and certain problems are identified as common to all models. Areas of emphasis include regional energy balance observations, spectral band observations, cloud-radiation interaction, and the radiative properties of the earth's surface.

  20. The Blue Marble

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This spectacular Moderate Resolution Imaging Spectroradiometer (MODIS) 'blue marble' image is based on the most detailed collection of true-color imagery of the entire Earth to date. Using a collection of satellite-based observations, scientists and visualizers stitched together months of observations of the land surface, oceans, sea ice, and clouds into a seamless, true-color mosaic of every square kilometer (.386 square mile) of our planet. Most of the information contained in this image came from MODIS, illustrating MODIS' outstanding capacity to act as an integrated tool for observing a variety of terrestrial, oceanic, and atmospheric features of the Earth. The land and coastal ocean portions of this image is based on surface observations collected from June through September 2001 and combined, or composited, every eight days to compensate for clouds that might block the satellite's view on any single day. Global ocean color (or chlorophyll) data was used to simulate the ocean surface. MODIS doesn't measure 3-D features of the Earth, so the surface observations were draped over topographic data provided by the U.S. Geological Survey EROS Data Center. MODIS observations of polar sea ice were combined with observations of Antarctica made by the National Oceanic and Atmospheric Administration's AVHRR sensor-the Advanced Very High Resolution Radiometer. The cloud image is a composite of two days of MODIS imagery collected in visible light wavelengths and a third day of thermal infra-red imagery over the poles. A large collection of imagery based on the blue marble in a variety of sizes and formats, including animations and the full (1 km) resolution imagery, is available at the Blue Marble page. Image by Reto Stockli, Render by Robert Simmon. Based on data from the MODIS Science Team

  1. Development of Innovative Technology to Expand Precipitation Observations in Satellite Precipitation Validation in Under-developed Data-sparse Regions

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Steinson, M.

    2016-12-01

    Accurate and reliable real-time monitoring and dissemination of observations of precipitation and surface weather conditions in general is critical for a variety of research studies and applications. Surface precipitation observations provide important reference information for evaluating satellite (e.g., GPM) precipitation estimates. High quality surface observations of precipitation, temperature, moisture, and winds are important for applications such as agriculture, water resource monitoring, health, and hazardous weather early warning systems. In many regions of the World, surface weather station and precipitation gauge networks are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR), with support from USAID, has started an initiative to develop and deploy low-cost weather instrumentation including tipping bucket and weighing-type precipitation gauges in sparsely observed regions of the world. The goal is to improve the number of observations (temporally and spatially) for the evaluation of satellite precipitation estimates in data-sparse regions and to improve the quality of applications for environmental monitoring and early warning alert systems on a regional to global scale. One important aspect of this initiative is to make the data open to the community. The weather station instrumentation have been developed using innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. An initial pilot project have been implemented in the country of Zambia. This effort could be expanded to other data sparse regions around the globe. The presentation will provide an overview and demonstration of 3D printed weather station development and initial evaluation of observed precipitation datasets.

  2. Evaluating the Utility of Satellite Soil Moisture Retrievals over Irrigated Areas and the Ability of Land Data Assimilation Methods to Correct for Unmodeled Processes

    NASA Technical Reports Server (NTRS)

    Kumar, S. V.; Peters-Lidard, C. D.; Santanello, J. A.; Reichle, R. H.; Draper, C. S.; Koster, R. D.; Nearing, G.; Jasinski, M. F.

    2015-01-01

    Earth's land surface is characterized by tremendous natural heterogeneity and human-engineered modifications, both of which are challenging to represent in land surface models. Satellite remote sensing is often the most practical and effective method to observe the land surface over large geographical areas. Agricultural irrigation is an important human-induced modification to natural land surface processes, as it is pervasive across the world and because of its significant influence on the regional and global water budgets. In this article, irrigation is used as an example of a human-engineered, often unmodeled land surface process, and the utility of satellite soil moisture retrievals over irrigated areas in the continental US is examined. Such retrievals are based on passive or active microwave observations from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Soil Moisture Ocean Salinity (SMOS) mission, WindSat and the Advanced Scatterometer (ASCAT). The analysis suggests that the skill of these retrievals for representing irrigation effects is mixed, with ASCAT-based products somewhat more skillful than SMOS and AMSR2 products. The article then examines the suitability of typical bias correction strategies in current land data assimilation systems when unmodeled processes dominate the bias between the model and the observations. Using a suite of synthetic experiments that includes bias correction strategies such as quantile mapping and trained forward modeling, it is demonstrated that the bias correction practices lead to the exclusion of the signals from unmodeled processes, if these processes are the major source of the biases. It is further shown that new methods are needed to preserve the observational information about unmodeled processes during data assimilation.

  3. Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation

    NASA Astrophysics Data System (ADS)

    Keep, Myra; Hansen, Vicki L.

    1994-12-01

    Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surface deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus' northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structure fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength and inferred amplitude of mapped structures are small; (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implications of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a 'deformation-from-below' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.

  4. JWST Planetary Observations Within the Solar System

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan; Hammel, Heidi; Schaller, Emily; Sonneborn, George; Orton, Glenn; Rieke, George; Rieke, Marcia

    2010-01-01

    JWST provides capabilities unmatched by other telescopic facilities in the near to mid infrared part of the electromagnetic spectrum. Its combination of broad wavelength range, high sensitivity and near diffraction-limited imaging around two microns wavelength make it a high value facility for a variety of Solar System targets. Beyond Neptune, a class of cold, large bodies that include Pluto, Triton and Eris exhibits surface deposits of nitrogen, methane, and other molecules that are poorly observed from the ground, but for which JWST might provide spectral mapping at high sensitivity and spatial resolution difficult to match with the current generation of ground-based observatories. The observatory will also provide unique sensitivity in a variety of near and mid infrared windows for observing relatively deep into the atmospheres of Uranus and Neptune, searching there for minor species. It will examine the Jovian aurora in a wavelength regime where the background atmosphere is dark. Special provision of a subarray observing strategy may allow observation of Jupiter and Saturn over a larger wavelength range despite their large surface brightnesses, allowing for detailed observation of transient phenomena including large scale storms and impact-generation disturbances. JWST's observations of Saturn's moon Titan will overlap with and go beyond the 2017 end-of-mission for Cassini, providing an important extension to the time-series of meteorological studies for much of northern hemisphere summer. It will overlap with a number of other planetary missions to targets for which JWST can make unique types of observations. JWST provides a platform for linking solar system and extrasolar planet studies through its unique observational capabilities in both arenas.

  5. Measured and modeled dry deposition velocities over the ESCOMPTE area

    NASA Astrophysics Data System (ADS)

    Michou, M.; Laville, P.; Serça, D.; Fotiadi, A.; Bouchou, P.; Peuch, V.-H.

    2005-03-01

    Measurements of the dry deposition velocity of ozone have been made by the eddy correlation method during ESCOMPTE (Etude sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions). The strong local variability of natural ecosystems was sampled over several weeks in May, June and July 2001 for four sites with varying surface characteristics. The sites included a maize field, a Mediterranean forest, a Mediterranean shrub-land, and an almost bare soil. Measurements of nitrogen oxide deposition fluxes by the relaxed eddy correlation method have also been carried out at the same bare soil site. An evaluation of the deposition velocities computed by the surface module of the multi-scale Chemistry and Transport Model MOCAGE is presented. This module relies on a resistance approach, with a detailed treatment of the stomatal contribution to the surface resistance. Simulations at the finest model horizontal resolution (around 10 km) are compared to observations. If the seasonal variations are in agreement with the literature, comparisons between raw model outputs and observations, at the different measurement sites and for the specific observing periods, are contrasted. As the simulated meteorology at the scale of 10 km nicely captures the observed situations, the default set of surface characteristics (averaged at the resolution of a grid cell) appears to be one of the main reasons for the discrepancies found with observations. For each case, sensitivity studies have been performed in order to see the impact of adjusting the surface characteristics to the observed ones, when available. Generally, a correct agreement with the observations of deposition velocities is obtained. This advocates for a sub-grid scale representation of surface characteristics for the simulation of dry deposition velocities over such a complex area. Two other aspects appear in the discussion. Firstly, the strong influence of the soil water content to the plant response, specifically in conditions of stress, is confirmed. Second, we point out the difficulty in interpreting measurements of nitrogen oxide deposition velocities: a synergetic approach combining measurements and modeling is practical.

  6. The Europa Imaging System (EIS): High-Resolution, 3-D Insight into Europa's Geology, Ice Shell, and Potential for Current Activity

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; McEwen, A. S.; Collins, G. C.; Fletcher, L. N.; Hansen, C. J.; Hayes, A.; Hurford, T., Jr.; Kirk, R. L.; Barr, A.; Nimmo, F.; Patterson, G.; Quick, L. C.; Soderblom, J. M.; Thomas, N.

    2015-12-01

    The Europa Imaging System will transform our understanding of Europa through global decameter-scale coverage, three-dimensional maps, and unprecedented meter-scale imaging. EIS combines narrow-angle and wide-angle cameras (NAC and WAC) designed to address high-priority Europa science and reconnaissance goals. It will: (A) Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar; (B) Constrain formation processes of surface features and the potential for current activity by characterizing endogenic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure, and by searching for evidence of recent activity, including potential plumes; and (C) Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. The NAC provides very high-resolution, stereo reconnaissance, generating 2-km-wide swaths at 0.5-m pixel scale from 50-km altitude, and uses a gimbal to enable independent targeting. NAC observations also include: near-global (>95%) mapping of Europa at ≤50-m pixel scale (to date, only ~14% of Europa has been imaged at ≤500 m/pixel, with best pixel scale 6 m); regional and high-resolution stereo imaging at <1-m/pixel; and high-phase-angle observations for plume searches. The WAC is designed to acquire pushbroom stereo swaths along flyby ground-tracks, generating digital topographic models with 32-m spatial scale and 4-m vertical precision from 50-km altitude. These data support characterization of cross-track clutter for radar sounding. The WAC also performs pushbroom color imaging with 6 broadband filters (350-1050 nm) to map surface units and correlations with geologic features and topography. EIS will provide comprehensive data sets essential to fulfilling the goal of exploring Europa to investigate its habitability and perform collaborative science with other investigations, including cartographic and geologic maps, regional and high-resolution digital topography, GIS products, color and photometric data products, a geodetic control network tied to radar altimetry, and a database of plume-search observations.

  7. Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system

    PubMed Central

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2018-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts. PMID:29628531

  8. A further assessment of vegetation feedback on decadal Sahel rainfall variability

    NASA Astrophysics Data System (ADS)

    Kucharski, Fred; Zeng, Ning; Kalnay, Eugenia

    2013-03-01

    The effect of vegetation feedback on decadal-scale Sahel rainfall variability is analyzed using an ensemble of climate model simulations in which the atmospheric general circulation model ICTPAGCM ("SPEEDY") is coupled to the dynamic vegetation model VEGAS to represent feedbacks from surface albedo change and evapotranspiration, forced externally by observed sea surface temperature (SST) changes. In the control experiment, where the full vegetation feedback is included, the ensemble is consistent with the observed decadal rainfall variability, with a forced component 60 % of the observed variability. In a sensitivity experiment where climatological vegetation cover and albedo are prescribed from the control experiment, the ensemble of simulations is not consistent with the observations because of strongly reduced amplitude of decadal rainfall variability, and the forced component drops to 35 % of the observed variability. The decadal rainfall variability is driven by SST forcing, but significantly enhanced by land-surface feedbacks. Both, local evaporation and moisture flux convergence changes are important for the total rainfall response. Also the internal decadal variability across the ensemble members (not SST-forced) is much stronger in the control experiment compared with the one where vegetation cover and albedo are prescribed. It is further shown that this positive vegetation feedback is physically related to the albedo feedback, supporting the Charney hypothesis.

  9. Growth of carbon nanotubes in arc plasma treated graphite disc: microstructural characterization and electrical conductivity study

    NASA Astrophysics Data System (ADS)

    Nayak, B. B.; Sahu, R. K.; Dash, T.; Pradhan, S.

    2018-03-01

    Circular graphite discs were treated in arc plasma by varying arcing time. Analysis of the plasma treated discs by field emission scanning electron microscope revealed globular grain morphologies on the surfaces, but when the same were observed at higher magnification and higher resolution under transmission electron microscope, growth of multiwall carbon nanotubes of around 2 nm diameter was clearly seen. In situ growth of carbon nanotube bundles/bunches consisting of around 0.7 nm tube diameter was marked in the case of 6 min treated disc surface. Both the untreated and the plasma treated graphite discs were characterized by X-ray diffraction, energy dispersive spectra of X-ray, X-ray photoelectron spectroscopy, transmission electron microscopy, micro Raman spectroscopy and BET surface area measurement. From Raman spectra, BET surface area and microstructure observed in transmission electron microscope, growth of several layers of graphene was identified. Four-point probe measurements for electrical resistivity/conductivity of the graphite discs treated under different plasma conditions showed significant increase in conductivity values over that of untreated graphite conductivity value and the best result, i.e., around eightfold increase in conductivity, was observed in the case of 6 min plasma treated sample exhibiting carbon nanotube bundles/bunches grown on disc surface. By comparing the microstructures of the untreated and plasma treated graphite discs, the electrical conductivity increase in graphite disc is attributed to carbon nanotubes (including bundles/bunches) growth on disc surface by plasma treatment.

  10. Toward a Comprehensive Carbon Budget for North America: Potential Applications of Adjoint Methods with Diverse Datasets

    NASA Technical Reports Server (NTRS)

    Andrews, A.

    2002-01-01

    A detailed mechanistic understanding of the sources and sinks of CO2 will be required to reliably predict future COS levels and climate. A commonly used technique for deriving information about CO2 exchange with surface reservoirs is to solve an "inverse problem," where CO2 observations are used with an atmospheric transport model to find the optimal distribution of sources and sinks. Synthesis inversion methods are powerful tools for addressing this question, but the results are disturbingly sensitive to the details of the calculation. Studies done using different atmospheric transport models and combinations of surface station data have produced substantially different distributions of surface fluxes. Adjoint methods are now being developed that will more effectively incorporate diverse datasets in estimates of surface fluxes of CO2. In an adjoint framework, it will be possible to combine CO2 concentration data from long-term surface monitoring stations with data from intensive field campaigns and with proposed future satellite observations. A major advantage of the adjoint approach is that meteorological and surface data, as well as data for other atmospheric constituents and pollutants can be efficiently included in addition to observations of CO2 mixing ratios. This presentation will provide an overview of potentially useful datasets for carbon cycle research in general with an emphasis on planning for the North American Carbon Project. Areas of overlap with ongoing and proposed work on air quality/air pollution issues will be highlighted.

  11. Evaluation of satellite and reanalysis‐based global net surface energy flux and uncertainty estimates

    PubMed Central

    Allan, Richard P.; Mayer, Michael; Hyder, Patrick; Loeb, Norman G.; Roberts, Chris D.; Valdivieso, Maria; Edwards, John M.; Vidale, Pier‐Luigi

    2017-01-01

    Abstract The net surface energy flux is central to the climate system yet observational limitations lead to substantial uncertainty. A combination of satellite‐derived radiative fluxes at the top of atmosphere adjusted using the latest estimation of the net heat uptake of the Earth system, and the atmospheric energy tendencies and transports from the ERA‐Interim reanalysis are used to estimate surface energy flux globally. To consider snowmelt and improve regional realism, land surface fluxes are adjusted through a simple energy balance approach at each grid point. This energy adjustment is redistributed over the oceans to ensure energy conservation and maintain realistic global ocean heat uptake, using a weighting function to avoid meridional discontinuities. Calculated surface energy fluxes are evaluated through comparison to ocean reanalyses. Derived turbulent energy flux variability is compared with the Objectively Analyzed air‐sea Fluxes (OAFLUX) product, and inferred meridional energy transports in the global ocean and the Atlantic are also evaluated using observations. Uncertainties in surface fluxes are investigated using a variety of approaches including comparison with a range of atmospheric reanalysis products. Decadal changes in the global mean and the interhemispheric energy imbalances are quantified, and present day cross‐equator heat transports are reevaluated at 0.22 ± 0.15 PW (petawatts) southward by the atmosphere and 0.32 ± 0.16 PW northward by the ocean considering the observed ocean heat sinks. PMID:28804697

  12. High LMD GCM Resolution Modeling of the Seasonal Evolution of the Martian Northern Permanent Cap: Comparison with Mars Express OMEGA Observations

    NASA Technical Reports Server (NTRS)

    Levrard, B.; Forget, F.; Montmessin, F.; Schmitt, B.; Doute, S.; Langevin, Y.; Poulet, F.; Bibring, J. P.; Gondet, B.

    2005-01-01

    Analyses of imaging data from Mariner, Viking and MGS have shown that surface properties (albedo, temperature) of the northern cap present significant differences within the summer season and between Mars years. These observations include differential brightening and/or darkening between polar areas from the end of the spring to midsummer. These differences are attributed to changes in grain size or dust content of surface ice. To better understand the summer behavior of the permanent northern polar cap, we perfomed a high resolution modeling (approximately 1 deg x 1 deg.) of northern cap in the Martian Climate/water cycle as simulated by the Laboratoire de Meteorologie Dynamique (LMD) global climate model. We compare the predicted properties of the surface ice (ice thickness, temperature) with the Mars Express Omega summer observations of the northern cap. albedo and thermal inertia svariations model. In particular, albedo variations could be constrained by OMEGA data. Meteorological predictions of the LMD GCM wil be presented at the conference to interpret the unprecedently resolved OMEGA observations. The specific evolution of regions of interest (cap center, Chasma Boreal...) and the possibility of late summer global cap brightening will be discussed.

  13. Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces

    NASA Astrophysics Data System (ADS)

    Olceroglu, Emre

    Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces. A variety of engineered surfaces have been fabricated and characterized, including nanostructured and hierarchically-structured superhydrophobic surfaces. The Tobacco mosaic virus (TMV) is used here as a biological template for the fabrication of nickel nanostructures, which are subsequently functionalized to achieve superhydrophobicity. This technique is simple and sustainable, and requires no applied heat or external power, thus making it easily extendable to a variety of common heat transfer materials and complex geometries. To measure heat transfer rates during superhydrophobic condensation in the presence of non-condensable gases (NCGs), a novel characterization technique has been developed based on image tracking of droplet growth rates. The full-field dynamic characterization of superhydrophobic surfaces during condensation has been achieved using high-speed microscopy coupled with image-processing algorithms. This method is able to resolve heat fluxes as low as 20 W/m 2 and heat transfer coefficients of up to 1000 kW/m2, across an array of 1000's of microscale droplets simultaneously. Nanostructured surfaces with mixed wettability have been used to demonstrate delayed flooding during superhydrophobic condensation. These surfaces have been optimized and characterized using optical and electron microscopy, leading to the observation of self-organizing microscale droplets. The self-organization of small droplets effectively delays the onset of surface flooding, allowing the superhydrophobic surfaces to operate at higher supersaturations. Additionally, hierarchical surfaces have been fabricated and characterized showing enhanced droplet growth rates as compared to existing models. This enhancement has been shown to be derived from the presence of small feeder droplets nucleating within the microscale unit cells of the hierarchical surfaces. Based on the experimental observations, a mechanistic model for growth rates has been developed for superhydrophobic hierarchical surfaces. While superhydrophobic surfaces exhibit high heat transfer rates they are inherently unstable due to the necessity to maintain a non-wetted state in a condensing environment. As an alternative condensation surface, a novel design is introduced here using ambiphilic structures to promote the formation of a thin continuous liquid film across the surface which can still provide the benefits of superhydrophobic condensation. Preliminary results show that the ambiphilic structures restrain the film thickness, thus maintaining a low thermal resistance while simultaneously maximizing the liquid-vapor interface available for condensation.

  14. Why are the Daily Sunspot Observations Interesting? One Observer's Perspective (Abstract)

    NASA Astrophysics Data System (ADS)

    Dempsey, F.

    2016-06-01

    (Abstract only) Daily sunspot counts made for the AAVSO Solar Section may cause the observer to feel in touch with the daily (and longer-term) changes on the sun's surface, and this connection may be more interesting when the solar observer remains aware of the larger solar and geomagnetic environment. The daily sunspot observations may become more interesting when correlated with transient events including solar flares, filaments, coronal holes, and coronal mass ejections that can be followed in near-real time multi-wavelength X-ray and UV solar images as well as particle flux and magnetic field measurements.

  15. Hotspot or Heatwave? Getting to Grips with Neutron Star Burst Oscillations

    NASA Technical Reports Server (NTRS)

    Watts, A.

    2005-01-01

    Many accreting neutron stars, including two of the millisecond pulsars, exhibit high frequency oscillations during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. The mechanism that gives rise to the aspzetry, however , remains unclear: possibilities include a hotspot due to uneven fuel distribution, modes of oscillation in the surface layers of the neutron star, or vortices driven by the Coriolis force. I will review some of the latest theory and observations, and present the results of a recent study of variability in the burst oscillations of the millisecond pulsar 51814-338.

  16. Flash pyrolysis of adsorbed aromatic organic acids on carbonate minerals: Assessing the impact of mineralogy for the identification of organic compounds in extraterrestrial bodies

    NASA Astrophysics Data System (ADS)

    Zafar, R.

    2017-12-01

    The relationship between minerals and organics is an essential factor in comprehending the origin of life on extraterrestrial bodies. So far organic molecules have been detected on meteorites, comets, interstellar medium and interplanetary dust particles. While on Mars, organic molecules may also be present as indicated by the Sample Analysis at Mars (SAM) instrument suite on the Curiosity Rover in Martian sediments. Minerals including hydrated phyllosilicate, carbonate, and sulfate minerals have been confirmed in carbonaceous chondrites. The presence of phyllosilicate minerals on Mars has been indicated by in situ elemental analysis by the Viking Landers, remote sensing infrared observations and the presence of smectites in meteorites. Likewise, the presence of carbonate minerals on the surface of Mars has been indicated by both Phoenix Lander and Spirit Rover. Considering the fact that both mineral and organic matter are present on the surface of extraterrestrial bodies including Mars, a comprehensive work is required to understand the interaction of minerals with specific organic compounds. The adsorption of the organic molecule at water/mineral surface is a key process of concentrating organic molecules on the surface of minerals. Carboxylic acids are abundantly observed in extraterrestrial material such as meteorites and interstellar space. It is highly suspected that carboxylic acids are also present on Mars due to the average organic carbon infall rate of 108 kg/yr. Further aromatic organic acids have also been observed in carbonaceous chondrite meteorites. This work presents the adsorption of an aromatic carboxylic acid at the water/calcite interface and characterization of the products formed after adsorption via on-line pyrolysis. Adsorption and online pyrolysis results are used to gain insight into adsorbed aromatic organic acid-calcite interaction. Adsorption and online pyrolysis results are related to the interpretation of organic compounds identified on extraterrestrial bodies including meteorites and Mars.

  17. Evaluation of WRF PBL parameterization schemes against direct observations during a dry event over the Ganges valley

    NASA Astrophysics Data System (ADS)

    Sathyanadh, Anusha; Prabha, Thara V.; Balaji, B.; Resmi, E. A.; Karipot, Anandakumar

    2017-09-01

    Accurate representations of the planetary boundary layer (PBL) are important in all weather forecast systems, especially in simulations of turbulence, wind and air quality in the lower atmosphere. In the present study, detailed observations from the Cloud Aerosol Interaction and Precipitation Enhancement Experiment - Integrated Ground based Observational Campaign (CAIPEEX-IGOC) 2014 comprising of the complete surface energy budget and detailed boundary layer observations are used to validate Advanced Research Weather Research and Forecasting (WRF) model simulations over a diverse terrain over the Ganges valley region, Uttar Pradesh, India. A drying event in June 2014 associated with a heat wave is selected for validation.Six local and nonlocal PBL schemes from WRF at 1 km resolution are compared with hourly observations during the diurnal cycle. Near-surface observations of weather parameters, radiation components and eddy covariance fluxes from micrometeorological tower, and profiles of variables from microwave radiometer, and radiosonde observations are used for model evaluations. Models produce a warmer, drier surface layer with higher wind speed, sensible heat flux and temperature than observations. Layered boundary layer dynamics, including the residual layer structure as illustrated in the observations over the Ganges valley are missed in the model, which lead to deeper mixed layers and excessive drying.Although it is difficult to identify any single scheme as the best, the qualitative and quantitative analyses for the entire study period and overall reproducibility of the observations indicate that the MYNN2 simulations describe lower errors and more realistic simulation of spatio-temporal variations in the boundary layer height.

  18. (abstract) Satellite Physical Oceanography Data Available From an EOSDIS Archive

    NASA Technical Reports Server (NTRS)

    Digby, Susan A.; Collins, Donald J.

    1996-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory archives and distributes data as part of the Earth Observing System Data and Information System (EOSDIS). Products available from JPL are largely satellite derived and include sea-surface height, surface-wind speed and vectors, integrated water vapor, atmospheric liquid water, sea-surface temperature, heat flux, and in-situ data as it pertains to satellite data. Much of the data is global and spans fourteen years.There is email access, a WWW site, product catalogs, and FTP capabilities. Data is free of charge.

  19. Dynamics of the small-scale changes of metal optic surfaces induced by pulsed light

    NASA Astrophysics Data System (ADS)

    Liukonen, R. A.; Trofimenko, A. M.

    1991-10-01

    A study is made of small-scale changes in the relief and absorptivity of mirror metal surfaces due to interaction with pulsed infrared irradiation. Several singularities are identified which are associated with the pulsed nature of the interaction and which cannot be explained by the surface temperature change alone. These include small-scale deformations observed even in the case of uniform distribution of the incident radiation intensity; an increase in deformation in excess of the increase attributable to heating only; and a change in the absorptivity of metal mirrors in excess of the theoretically predicted value.

  20. Geometric, Kinematic and Radiometric Aspects of Image-Based Measurements

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu

    2002-01-01

    This paper discusses theoretical foundations of quantitative image-based measurements for extracting and reconstructing geometric, kinematic and dynamic properties of observed objects. New results are obtained by using a combination of methods in perspective geometry, differential geometry. radiometry, kinematics and dynamics. Specific topics include perspective projection transformation. perspective developable conical surface, perspective projection under surface constraint, perspective invariants, the point correspondence problem. motion fields of curves and surfaces. and motion equations of image intensity. The methods given in this paper arc useful for determining morphology and motion fields of deformable bodies such as elastic bodies. viscoelastic mediums and fluids.

  1. IR spectral properties of dust and ice at the Mars south polar cap

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Kieffer, H. H.

    2001-11-01

    Removal of atmospheric dust effects is required to derive surface IR spectral emissivity. Commonly, the atmospheric-surface separation is based on radiative transfer (RT) spectral inversion methods using nadir-pointing observations. This methodology depends on a priori knowledge of the spectral shape of each atmospheric aerosol (e.g. dust or water ice) and a large thermal contrast between the surface and atmosphere. RT methods fail over the polar caps due to low thermal contrast between the atmosphere and the surface. We have used multi-angle Emission Phase Function (EPF) observations to estimate the opacity spectrum of dust over the springtime south polar cap and the underlying surface radiance, and thus, the surface emissivity. We include a few EPFs from Hellas Basin as a basis for comparisons between the spectral shape of polar and non-polar dust. Surface spectral emissivities over the seasonal cap are compared to CO2 models. Our results show that the spectral shape of the polar dust opacity is not constant, but is a two-parameter family that can be characterized by the 9 um and 20 um opacities. The 9 um opacity varies from 0.15 to 0.45 and characterizes the overall atmospheric conditions. The 9 um to 20 um opacity ratio varies from 2.0 to 5.1, suggesting changes in dust size distribution over the polar caps. Derived surface temperatures from the EPFs confirm that the slightly elevated temperatures (relative to CO2 frost temperature) observed in ``cryptic'' regions are a surface effect, not atmospheric. Comparison of broad-band reflectivity and surface emissivities to model spectra suggest the bright regions (e.g. perennial cap, Mountains of Mitchell) have higher albedos due to a thin surface layer of fine-grain CO2 (perhaps either frost or fractured ice) with an underlying layer of either coarse grain or slab CO2 ice.

  2. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  3. Informed Source Separation of Atmospheric and Surface Signal Contributions in Shortwave Hyperspectral Imagery using Non-negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Wright, L.; Coddington, O.; Pilewskie, P.

    2015-12-01

    Current challenges in Earth remote sensing require improved instrument spectral resolution, spectral coverage, and radiometric accuracy. Hyperspectral instruments, deployed on both aircraft and spacecraft, are a growing class of Earth observing sensors designed to meet these challenges. They collect large amounts of spectral data, allowing thorough characterization of both atmospheric and surface properties. The higher accuracy and increased spectral and spatial resolutions of new imagers require new numerical approaches for processing imagery and separating surface and atmospheric signals. One potential approach is source separation, which allows us to determine the underlying physical causes of observed changes. Improved signal separation will allow hyperspectral instruments to better address key science questions relevant to climate change, including land-use changes, trends in clouds and atmospheric water vapor, and aerosol characteristics. In this work, we investigate a Non-negative Matrix Factorization (NMF) method for the separation of atmospheric and land surface signal sources. NMF offers marked benefits over other commonly employed techniques, including non-negativity, which avoids physically impossible results, and adaptability, which allows the method to be tailored to hyperspectral source separation. We adapt our NMF algorithm to distinguish between contributions from different physically distinct sources by introducing constraints on spectral and spatial variability and by using library spectra to inform separation. We evaluate our NMF algorithm with simulated hyperspectral images as well as hyperspectral imagery from several instruments including, the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), NASA Hyperspectral Imager for the Coastal Ocean (HICO) and National Ecological Observatory Network (NEON) Imaging Spectrometer.

  4. Hydrologic connections between environmental and societal change at the Bonneville Salt Flats, Utah

    NASA Astrophysics Data System (ADS)

    Bowen, B. B.; Harman, C. J.; Kipnis, E. L.; Liu, T.; Bernau, J. A.; Horel, J.

    2017-12-01

    The Bonneville Salt Flats (BSF) is an ephemeral and valued salt pan in northwestern Utah where a century of land speed racing and potash mining have created a complex and intertwined social and hydrologic system. The character of BSF changes on daily, weekly, monthly, annual, and geologic time scales in response to fluctuations in water balance, solute flux, and groundwater flow which is impacted by both local meteorology and water management associated with potash mining. In addition, the texture of the salt surface is changed by land use including racing activities, which impacts water fluxes through the crust. Ongoing research is focused on characterizing physical changes in the BSF environment and attributing observed changes in the landscape to specific processes and drivers. Five years of field observations and sampling, analyses of satellite imagery dating back the 1980s, and geochemical analysis of surface brines have shown that spatiotemporal changes in surface water and fluctuations in the surface salt footprint are linked to both climate and land use. Climate data over the last 30 years are examined to identify annual patterns in surface water balance at BSF to identify annual and seasonal climate constraints on flooding, evaporation, and desiccation cycles. A new weather station installed in the Fall of 2016 in the middle of BSF allows for unprecedented analyses of halite surface dynamics. Spatiotemporally dispersed stable isotope analyses of BSF surface brine samples constrain brine sources and evolution. An understanding of the processes that change the surface composition and texture through time inform interpretation of subsurface saline deposits at BSF. The wide range of temporal and spatial scales of observation help to guide to best management practices of this iconic natural resource.

  5. Space telescopes planetary monitoring (PM) and Zvezdny (eng. star) patrol (ZP) for planetary science and exoplanets exploration

    NASA Astrophysics Data System (ADS)

    Tavrov, Alexander; Frolov, Pavel; Korablev, Oleg; Vedenkin, Nikolai; Barabanov, Sergey

    2017-11-01

    Solar System planetology requires a wide use of observing spectroscopy for surface geology to atmosphere climatology. A high-contrast imaging is required to study and to characterize extra-solar planetary systems among other faint astronomical targets observed in the vicinity of bright objects. Two middle class space telescopes projects aimed to observe Solar system planets by a long term monitoring via spectroscopy and polarimetry. Extra solar planets (exoplanets) engineering and scientific explorations are included in science program.

  6. Interactive Mapping on Virtual Terrain Models Using RIMS (Real-time, Interactive Mapping System)

    NASA Astrophysics Data System (ADS)

    Bernardin, T.; Cowgill, E.; Gold, R. D.; Hamann, B.; Kreylos, O.; Schmitt, A.

    2006-12-01

    Recent and ongoing space missions are yielding new multispectral data for the surfaces of Earth and other planets at unprecedented rates and spatial resolution. With their high spatial resolution and widespread coverage, these data have opened new frontiers in observational Earth and planetary science. But they have also precipitated an acute need for new analytical techniques. To address this problem, we have developed RIMS, a Real-time, Interactive Mapping System that allows scientists to visualize, interact with, and map directly on, three-dimensional (3D) displays of georeferenced texture data, such as multispectral satellite imagery, that is draped over a surface representation derived from digital elevation data. The system uses a quadtree-based multiresolution method to render in real time high-resolution (3 to 10 m/pixel) data over large (800 km by 800 km) spatial areas. It allows users to map inside this interactive environment by generating georeferenced and attributed vector-based elements that are draped over the topography. We explain the technique using 15 m ASTER stereo-data from Iraq, P.R. China, and other remote locations because our particular motivation is to develop a technique that permits the detailed (10 m to 1000 m) neotectonic mapping over large (100 km to 1000 km long) active fault systems that is needed to better understand active continental deformation on Earth. RIMS also includes a virtual geologic compass that allows users to fit a plane to geologic surfaces and thereby measure their orientations. It also includes tools that allow 3D surface reconstruction of deformed and partially eroded surfaces such as folded bedding planes. These georeferenced map and measurement data can be exported to, or imported from, a standard GIS (geographic information systems) file format. Our interactive, 3D visualization and analysis system is designed for those who study planetary surfaces, including neotectonic geologists, geomorphologists, marine geophysicists, and planetary scientists. The strength of our system is that it combines interactive rendering with interactive mapping and measurement of features observed in topographic and texture data. Comparison with commercially available software indicates that our system improves mapping accuracy and efficiency. More importantly, it enables Earth scientists to rapidly achieve a deeper level of understanding of remotely sensed data, as observations can be made that are not possible with existing systems.

  7. Diagnostic examination of thermally abused high-power lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Abraham, D. P.; Roth, E. P.; Kostecki, R.; McCarthy, K.; MacLaren, S.; Doughty, D. H.

    The inherent thermal instability of lithium-ion cells is a significant impediment to their widespread commercialization for hybrid-electric vehicle applications. Cells containing conventional organic electrolyte-based chemistries are prone to thermal runaway at temperatures around 180 °C. We conducted accelerating rate calorimetry measurements on high-power 18650-type lithium-ion cells in an effort to decipher the sequence of events leading to thermal runaway. In addition, electrode and separator samples harvested from a cell that was heated to 150 °C then air-quenched to room temperature were examined by microscopy, spectroscopy, and diffraction techniques. Self-heating of the cell began at 84 °C. The gases generated in the cell included CO 2 and CO, and smaller quantities of H 2, C 2H 4, CH 4, and C 2H 6. The main changes on cell heating to 150 °C were observed on the anode surface, which was covered by a thick layer of surface deposits that included LiF and inorganic and organo-phosphate compounds. The sources of gas generation and the mechanisms leading to the formation of compounds observed on the electrode surfaces are discussed.

  8. Measurement of Photoelectron Emission Using Vacuum Ultraviolet Ray Irradiation

    NASA Astrophysics Data System (ADS)

    Okamura, Shugo; Iwao, Toru; Yumoto, Motoshige; Miyake, Hiroaki; Nitta, Kumi

    2009-01-01

    Satellites have come to play many roles depending on their purpose, including communication, weather observation, astronomy observation, and space development. A satellite requires long life and high reliability in such a situation. However, at an altitude of several hundred kilometers, atomic oxygen (AO) is a destructive factor. With density of about 1015 atoms/m3, AO also has high reactivity. As the satellite collides with AO, surface materials of the satellite are degraded, engendering surface roughness and oxidation. Accordingly, it is necessary to monitor the surface conditions. In this study, photoemission characteristics of several materials, such as metals, glasses, and polymers are measured using a deuterium lamp and band pass filters. The threshold energy for photoemission and the quantum efficiency were evaluated from those measurements. Consequently, for the investigated materials the threshold energies for photoelectron emission were found to be 4.9-5.7 eV. The quantum efficiency of metals is about 100 times higher than that of other samples. The quantum efficiency of PS that includes a benzene ring is several times higher than that of either PP or PTFE, suggesting that deteriorated materials emit large amounts of photoelectrons.

  9. Did Irving Langmuir Observe Langmuir Circulations?

    NASA Astrophysics Data System (ADS)

    D'Asaro, E. A.; Harcourt, R. R.; Shcherbina, A.; Thomson, J. M.; Fox-Kemper, B.

    2012-12-01

    Although surface waves are known to play an important role in mixing the upper ocean, the current generation of upper ocean boundary layer parameterizations does not include the explicit effects of surface waves. Detailed simulations using LES models which include the Craik-Leibovich wave-current interactions, now provide quantitative predictions of the enhancement of boundary layer mixing by waves. Here, using parallel experiments in Lake Washington and at Ocean Station Papa, we show a clear enhancement of vertical kinetic energy across the entire upper ocean boundary layer which can be attributed to surface wave effects. The magnitude of this effect is close to that predicted by LES models, but is not large, less than a factor of 2 on average, and increased by large Stokes drift and shallow mixed layers. Global estimates show the largest wave enhancements occur on the equatorial side of the westerlies in late Spring, due to the combination of large waves, shallow mixed layers and weak winds. In Lakes, however, the waves and the Craik-Leibovich interactions are weak, making it likely that the counter-rotating vortices famously observed by Irving Langmuir in Lake George were not driven by wave-current interactions.

  10. Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas

    2013-01-01

    Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.

  11. Canopies to Continents: What spatial scales are needed to represent landcover distributions in earth system models?

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Duhl, T.

    2011-12-01

    Increasing computational resources have enabled a steady improvement in the spatial resolution used for earth system models. Land surface models and landcover distributions have kept ahead by providing higher spatial resolution than typically used in these models. Satellite observations have played a major role in providing high resolution landcover distributions over large regions or the entire earth surface but ground observations are needed to calibrate these data and provide accurate inputs for models. As our ability to resolve individual landscape components improves, it is important to consider what scale is sufficient for providing inputs to earth system models. The required spatial scale is dependent on the processes being represented and the scientific questions being addressed. This presentation will describe the development a contiguous U.S. landcover database using high resolution imagery (1 to 1000 meters) and surface observations of species composition and other landcover characteristics. The database includes plant functional types and species composition and is suitable for driving land surface models (CLM and MEGAN) that predict land surface exchange of carbon, water, energy and biogenic reactive gases (e.g., isoprene, sesquiterpenes, and NO). We investigate the sensitivity of model results to landcover distributions with spatial scales ranging over six orders of magnitude (1 meter to 1000000 meters). The implications for predictions of regional climate and air quality will be discussed along with recommendations for regional and global earth system modeling.

  12. Imaging Strong Lateral Heterogeneities with USArray using Body-to-Surface Wave Scattering

    NASA Astrophysics Data System (ADS)

    Yu, C.; Zhan, Z.; Hauksson, E.; Cochran, E. S.

    2017-12-01

    Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers remains challenging. In this study, we analyze broadband waveforms recorded by the USArray across the entire conterminous US. With array analysis, we observe strong scattered surface waves following the arrival of teleseismic body waves over several hundreds of kilometers. We use back-projection to locate the body-to-surface scattering sources, and detect strong scatterers both around and within the conterminous US. For the former, strong scattering is associated with pronounced bathymetric relief, such as the Patton Escarpment in the Southern California Continental Borderland. For the latter, scatterers are consistent with sharp lateral heterogeneities, such as near the Yellowstone hotspot and Southern California fault zones. We further model the body-to-surface wave scattering using finite-difference simulations. As an example, in the Southern California Continental Borderland a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling also suggests a relatively low shear wave velocity in the Continental Borderland. These observation of strong body-to-surface wave scattering and waveform modeling not only helps us image sharp heterogeneities but also are useful for assessing seismic hazard, including the calibration and refinement of seismic velocity models used to locate earthquakes and simulate strong ground motions.

  13. The Global Drifter Program Currents, Sea Surface Temperature, Atmospheric Pressure and Waves in the World's OceanThe Global Drifter Program Currents, Sea Surface Temperature, Atmospheric Pressure and Waves in the World's Ocean

    NASA Astrophysics Data System (ADS)

    Centurioni, Luca

    2017-04-01

    The Global Drifter Program is the principal component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observing System and a scientific project of the Data Buoy Cooperation Panel (DBCP). The DBCP is an international program coordinating the use of autonomous data buoys to observe atmospheric and oceanographic conditions over ocean areas where few other measurements are taken. The Global Drifter Program maintains an array of over 1,250 Lagrangian drifters, reporting in near real-time and designed measure 15 m depth Lagrangian currents, sea surface temperature (SST) and sea level atmospheric pressure (SLP), among others, to fulfill the needs to observe the air-sea interface at temporal and spatial scales adequate to support short to medium-range weather forecasting, ocean state estimates and climate science. This overview talk will discuss the main achievements of the program, the main impacts for satellite SST calibration and validation, for numerical weather prediction, and it will review the main scientific findings based on the use of Lagrangian currents. Finally, we will present new developments in Lagrangian drifter technology, which include special drifters designed to measure sea surface salinity, wind and directional wave spectra. New opportunities for expanding the scope of the Global Drifter Program will be discussed.

  14. Ice-like water supports hydration forces and eases sliding friction

    PubMed Central

    Dhopatkar, Nishad; Defante, Adrian P.; Dhinojwala, Ali

    2016-01-01

    The nature of interfacial water is critical in several natural processes, including the aggregation of lipids into the bilayer, protein folding, lubrication of synovial joints, and underwater gecko adhesion. The nanometer-thin water layer trapped between two surfaces has been identified to have properties that are very different from those of bulk water, but the molecular cause of such discrepancy is often undetermined. Using surface-sensitive sum frequency generation (SFG) spectroscopy, we discover a strongly coordinated water layer confined between two charged surfaces, formed by the adsorption of a cationic surfactant on the hydrophobic surfaces. By varying the adsorbed surfactant coverage and hence the surface charge density, we observe a progressively evolving water structure that minimizes the sliding friction only beyond the surfactant concentration needed for monolayer formation. At complete surfactant coverage, the strongly coordinated confined water results in hydration forces, sustains confinement and sliding pressures, and reduces dynamic friction. Observing SFG signals requires breakdown in centrosymmetry, and the SFG signal from two oppositely oriented surfactant monolayers cancels out due to symmetry. Surprisingly, we observe the SFG signal for the water confined between the two charged surfactant monolayers, suggesting that this interfacial water layer is noncentrosymmetric. The structure of molecules under confinement and its macroscopic manifestation on adhesion and friction have significance in many complicated interfacial processes prevalent in biology, chemistry, and engineering. PMID:27574706

  15. CERES Fast Longwave And SHortwave Radiative Flux (FLASHFlux) Version4A.

    NASA Astrophysics Data System (ADS)

    Sawaengphokhai, P.; Stackhouse, P. W., Jr.; Kratz, D. P.; Gupta, S. K.

    2017-12-01

    The agricultural, renewable energy management, and science communities need global surface and top-of-atmosphere (TOA) radiative fluxes on a low latency basis. The Clouds and Earth's Radiant Energy System (CERES) FLASHFlux (Fast Longwave and SHortwave radiative Flux) data products address this need by enhancing the speed of CERES processing using simplified calibration and parameterized model of surface fluxes to provide a daily global radiative fluxes data set within one week of satellite observations. The CERES FLASHFlux provides two data products: 1) an overpass swath Level 2 Single Scanner Footprint (SSF) data products separately for both Aqua and Terra observations, and 2) a daily Level 3 Time Interpolated and Spatially Averaged (TISA) 1o x 1o gridded data that combines Aqua and Terra observations. The CERES FLASHFlux data product is being promoted to Version4A. Updates to FLASHFlux Version4A include a new cloud retrieval algorithm and an improved shortwave surface flux parameterization. We inter-compared FLASHFlux Version4A, FLASHFlux Version3C, CERES Edition 4 Syn1Deg and at the monthly scale CERES Edition4 EBAF (Energy Balanced and Filled) Top-of-Atmosphere and Edition 4 Surface EBAF fluxes to evaluate these improvements. We also analyze the impact of the new inputs and cloud algorithm to the surface shortwave and longwave radiative fluxes using ground sites measurement provided by CAVE (CERES/ARM Validation Experiment).

  16. IUE observing programs: NSOSS, VEOEB, and PCOEB

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The data reduction and analysis of IUE observations were completed. These results were presented from Venus SO2 (of the VEOEB program). The three IUE observing programs were NSOSS, VEOEB, and PCOEB. NSOSS consisted of comparative UV studies. The objectives of NSOSS included: making the first UV observations of 4179 Toutatis (a near-Earth asteroid), Himalia (a satellite of Jupiter), and Hyperion (the Saturnian satellite); obtaining the first radially-dependent information on the UV color of Saturn's rings; gathering uncontaminated UV spectra of Iapetus's bright and dark hemispheres; and obtaining a spectrum of Titania to initiate the comparative study of UV photometric properties in the Uranian system. VEOEB, as stated above, was a study of the SO2 of the Venus atmosphere and surface. Based on past Pioneer Venus and IUE observations, significant SO2 variations have been interpreted as indicating that the long term atmospheric SO2 abundance may be related to large, episodic infections from the surface or interior of Venus. If episodic events occur, then continuing observations of SO2 in the Venus atmosphere play a vital role in understanding Venus's current and past geologic evolution. PCOEB was a study of the Pluto-Charon system. The primary objective of PCOEB was to complete the coverage of the system's UV light curve in order to analyze the surface properties of Pluto-Charon. Publications, abstracts and articles, resulting from this grant are appended to this report.

  17. Temporal Stability of Surface Roughness Effects on Radar Based Soil Moisture Retrieval During the Corn Growth Cycle

    NASA Technical Reports Server (NTRS)

    Joseph, A.T.; Lang, R.; O'Neill, P.E.; van der Velde, R.; Gish, T.

    2008-01-01

    A representative soil surface roughness parameterization needed for the retrieval of soil moisture from active microwave satellite observation is difficult to obtain through either in-situ measurements or remote sensing-based inversion techniques. Typically, for the retrieval of soil moisture, temporal variations in surface roughness are assumed to be negligible. Although previous investigations have suggested that this assumption might be reasonable for natural vegetation covers (Moran et al. 2002, Thoma et al. 2006), insitu measurements over plowed agricultural fields (Callens et al. 2006) have shown that the soil surface roughness can change considerably over time. This paper reports on the temporal stability of surface roughness effects on radar observations and soil moisture retrieved from these radar observations collected once a week during a corn growth cycle (May 10th - October 2002). The data set employed was collected during the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) field campaign covering this 2002 corn growth cycle and consists of dual-polarized (HH and VV) L-band (1.6 GHz) acquired at view angles of 15, 35, and 55 degrees. Cross-polarized L baud radar data were also collected as part of this experiment, but are not used in the analysis reported on here. After accounting for vegetation effects on radar observations, time-invariant optimum roughness parameters were determined using the Integral Equation Method (IEM) and radar observations acquired over bare soil and cropped conditions (the complete radar data set includes entire corn growth cycle). The optimum roughness parameters, soil moisture retrieval uncertainty, temporal distribution of retrieval errors and its relationship with the weather conditions (e.g. rainfall and wind speed) have been analyzed. It is shown that over the corn growth cycle, temporal roughness variations due to weathering by rain are responsible for almost 50% of soil moisture retrieval uncertainty depending on the sensing configuration. The effects of surface roughness variations are found to be smallest for observations acquired at a view angle of 55 degrees and HH polarization. A possible explanation for this result is that at 55 degrees and HH polarization the effect of vertical surface height changes on the observed radar response are limited because the microwaves travel parallel to the incident plane and as a result will not interact directly with vertically oriented soil structures.

  18. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations

    NASA Astrophysics Data System (ADS)

    Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L.

    2014-12-01

    We have developed a novel framework ("Tan-Tracker") for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations and the surface CO2 fluxes as part of the large state vector to be simultaneously estimated from assimilation of atmospheric CO2 observations. Compared to most modern top-down flux inversion approaches, where only surface fluxes are considered as control variables, one major advantage of our joint data assimilation system is that, in principle, no assumption on perfect transport models is needed. In addition, the possibility for Tan-Tracker to use a complete dynamic model to consistently describe the time evolution of CO2 surface fluxes (CFs) and the atmospheric CO2 concentrations represents a better use of observation information for recycling the analyses at each assimilation step in order to improve the forecasts for the following assimilations. An experimental Tan-Tracker system has been built based on a complete augmented dynamical model, where (1) the surface atmosphere CO2 exchanges are prescribed by using a persistent forecasting model for the scaling factors of the first-guess net CO2 surface fluxes and (2) the atmospheric CO2 transport is simulated by using the GEOS-Chem three-dimensional global chemistry transport model. Observing system simulation experiments (OSSEs) for assimilating synthetic in situ observations of surface CO2 concentrations are carefully designed to evaluate the effectiveness of the Tan-Tracker system. In particular, detailed comparisons are made with its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation precision for both CO2 concentrations and CO2 fluxes, mainly due to the simultaneous estimation of CO2 concentrations and CFs in our Tan-Tracker data assimilation system. A experiment for assimilating the real dry-air column CO2 retrievals (XCO2) from the Japanese Greenhouse Gases Observation Satellite (GOSAT) further demonstrates its potential wide applications.

  19. Surface and electronic structure of Bi-Ca-Sr-Cu-O superconductors studied by LEED, UPS and XPS

    NASA Astrophysics Data System (ADS)

    Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Eom, C. B.; Kapitulnik, A.; Geballe, T. H.; Soukiassian, P.

    1989-02-01

    Single crystal and polycrystalline samples of Bi2CaSr2Cu2O8 have been studied by various surface sensitive techniques, including low energy electron diffraction (LEED), ultraviolet photoemission spectroscopy (UPS) and x-ray photoemission spectroscopy (XPS). The surface structure of the single crystals was characterized by LEED to be consistent with that of the bulk structure. Our data suggest that Bi2CaSr2Cu2O8 single crystals are very stable in the ultrahigh vacuu. No change of XPS spectra with temperature was observed. We have also studied the electronic structure of Bi2Sr2CuO6, which has a lower superconducting transition temperature Tc. Comparing the electronic structure of the two Bi-Ca-Sr-Cu-O superconductors, an important difference in the density of states near EF was observed which seems to be related to the difference in Tc.

  20. Imaging of surface spin textures on bulk crystals by scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru

    2016-11-01

    Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.

  1. [Biliary calculi resistant to dissolution with bile acids: their heterogeneous composition and diversity of treatment response].

    PubMed

    Ruíz de Aguiar, A; Medina, J A; Garrido, G; Villacorta, J; Berenguer, J

    1992-05-01

    We have studied thirteen biliary stones resistant to biliary acids, using technical methods of stereomicroscopy, scanning electronic microscopy and EDX analyses. We have investigated changes on surface. Three biliary stones did not change and were considered resistant. Seven biliary stones appear partially dissolved and we observed many irregularities on surface and/or concentric dips in relation with cholesterol dissolution. In six cases, biliary pigment alternates with cholesterol. In three cases we observed a calcium carbonate coat on surface. One case included organic fibers. One biliary stone showed cholesterol with spherical bodies of calcium carbonate and pigment. It was a relapsed case of combined treatment. Three stones are composed of small black portions of polymerized calcium bilirubinate, rich in copper and iron. Our results demonstrate that biliary stones previously selected for treatment are a heterogeneous group. Because of this fact we get variable and unpredictable results.

  2. Preliminary results from the Viking orbiter imaging experiment

    USGS Publications Warehouse

    Carr, M.H.; Masursky, H.; Baum, W.A.; Blasius, K.R.; Briggs, G.A.; Cutts, J.A.; Duxbury, T.; Greeley, R.; Guest, J.E.; Smith, B.A.; Soderblom, L.A.; Veverka, J.; Wellman, J.B.

    1976-01-01

    During its first 30 orbits around Mars, the Viking orbiter took approximately 1000 photographic frames of the surface of Mars with resolutions that ranged from 100 meters to a little more than 1 kilometer. Most were of potential landing sites in Chryse Planitia and Cydonia and near Capri Chasma. Contiguous high-resolution coverage in these areas has led to an increased understanding of surface processes, particularly cratering, fluvial, and mass-wasting phenomena. Most of the surfaces examined appear relatively old, channel features abound, and a variety of features suggestive of permafrost have been identified. The ejecta patterns around large craters imply that fluid flow of ejecta occurred after ballistic deposition. Variable features in the photographed area appear to have changed little since observed 5 years ago from Mariner 9. A variety of atmospheric phenomena were observed, including diffuse morning hazes, both stationary and moving discrete white clouds, and wave clouds covering extensive areas.

  3. Effects of surface wave breaking on the oceanic boundary layer

    NASA Astrophysics Data System (ADS)

    He, Hailun; Chen, Dake

    2011-04-01

    Existing laboratory studies suggest that surface wave breaking may exert a significant impact on the formation and evolution of oceanic surface boundary layer, which plays an important role in the ocean-atmosphere coupled system. However, present climate models either neglect the effects of wave breaking or treat them implicitly through some crude parameterization. Here we use a one-dimensional ocean model (General Ocean Turbulence Model, GOTM) to investigate the effects of wave breaking on the oceanic boundary layer on diurnal to seasonal time scales. First a set of idealized experiments are carried out to demonstrate the basic physics and the necessity to include wave breaking. Then the model is applied to simulating observations at the northern North Sea and the Ocean Weather Station Papa, which shows that properly accounting for wave breaking effects can improve model performance and help it to successfully capture the observed upper ocean variability.

  4. Self-organization of S adatoms on Au(111): √3R30° rows at low coverage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walen, Holly, E-mail: hwalen@iastate.edu; Liu, Da-Jiang; Oh, Junepyo

    Using scanning tunneling microscopy, we observe an adlayer structure that is dominated by short rows of S atoms, on unreconstructed regions of a Au(111) surface. This structure forms upon adsorption of low S coverage (less than 0.1 monolayer) on a fully reconstructed clean surface at 300 K, then cooling to 5 K for observation. The rows adopt one of three orientations that are rotated by 30° from the close-packed directions of the Au(111) substrate, and adjacent S atoms in the rows are separated by √3 times the surface lattice constant, a. Monte Carlo simulations are performed on lattice-gas models, derivedmore » using a limited cluster expansion based on density functional theory energetics. Models which include long-range pairwise interactions (extending to 5a), plus selected trio interactions, successfully reproduce the linear rows of S atoms at reasonable temperatures.« less

  5. Self-organization of S adatoms on Au(111): √3R30° rows at low coverage.

    PubMed

    Walen, Holly; Liu, Da-Jiang; Oh, Junepyo; Lim, Hyunseob; Evans, J W; Kim, Yousoo; Thiel, P A

    2015-07-07

    Using scanning tunneling microscopy, we observe an adlayer structure that is dominated by short rows of S atoms, on unreconstructed regions of a Au(111) surface. This structure forms upon adsorption of low S coverage (less than 0.1 monolayer) on a fully reconstructed clean surface at 300 K, then cooling to 5 K for observation. The rows adopt one of three orientations that are rotated by 30° from the close-packed directions of the Au(111) substrate, and adjacent S atoms in the rows are separated by √3 times the surface lattice constant, a. Monte Carlo simulations are performed on lattice-gas models, derived using a limited cluster expansion based on density functional theory energetics. Models which include long-range pairwise interactions (extending to 5a), plus selected trio interactions, successfully reproduce the linear rows of S atoms at reasonable temperatures.

  6. S-layers: principles and applications

    PubMed Central

    Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva-Maria; Pum, Dietmar

    2014-01-01

    Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology. PMID:24483139

  7. XPS and ToF-SIMS analysis of natural rubies and sapphires heat-treated in a reducing (5 mol% H 2/Ar) atmosphere

    NASA Astrophysics Data System (ADS)

    Achiwawanich, S.; James, B. D.; Liesegang, J.

    2008-12-01

    Surface effects on Mong Hsu rubies and Kanchanaburi sapphires after heat treatment in a controlled reducing atmosphere (5 mol% H 2/Ar) have been investigated using advanced surface science techniques including X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Visual appearance of the gemstones is clearly affected by the heat treatment in a reducing atmosphere. Kanchanaburi sapphires, in particular, exhibit Fe-containing precipitates after the heat treatment which have not been observed in previous studies under an inert atmosphere. Significant correlation between changes in visual appearance of the gemstones and variations in surface concentration of trace elements, especially Ti and Fe are observed. The XPS and ToF-SIMS results suggest that; (1) a reducing atmosphere affects the oxidation state of Fe; (2) dissociation of Fe-Ti interaction may occur during heat treatment.

  8. Mojave remote sensing field experiment

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.; Petroy, S. B.; Plaut, J. J.; Shepard, Michael K.; Evans, D.; Farr, T.; Greeley, Ronald; Gaddis, L.; Lancaster, N.

    1991-01-01

    The Mojave Remote Sensing Field Experiment (MFE), conducted in June 1988, involved acquisition of Thermal Infrared Multispectral Scanner (TIMS); C, L, and P-band polarimetric radar (AIRSAR) data; and simultaneous field observations at the Pisgah and Cima volcanic fields, and Lavic and Silver Lake Playas, Mojave Desert, California. A LANDSAT Thematic Mapper (TM) scene is also included in the MFE archive. TM-based reflectance and TIMS-based emissivity surface spectra were extracted for selected surfaces. Radiative transfer procedures were used to model the atmosphere and surface simultaneously, with the constraint that the spectra must be consistent with field-based spectral observations. AIRSAR data were calibrated to backscatter cross sections using corner reflectors deployed at target sites. Analyses of MFE data focus on extraction of reflectance, emissivity, and cross section for lava flows of various ages and degradation states. Results have relevance for the evolution of volcanic plains on Venus and Mars.

  9. The effects of surface tension on flooding in counter-current two-phase flow in an inclined tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deendarlianto; Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden; Ousaka, Akiharu

    2010-10-15

    The purpose of the present study is to investigate the effects of surface tension on flooding phenomena in counter-current two-phase flow in an inclined tube. Previous studies by other researchers have shown that surface tension has a stabilizing effect on the falling liquid film under certain conditions and a destabilizing or unclear trend under other conditions. Experimental results are reported herein for air-water systems in which a surfactant has been added to vary the liquid surface tension without altering other liquid properties. The flooding section is a tube of 16 mm in inner diameter and 1.1 m length, inclined atmore » 30-60 from horizontal. The flooding mechanisms were observed by using two high-speed video cameras and by measuring the time variation of liquid hold-up along the test tube. The results show that effects of surface tension are significant. The gas velocity needed to induce flooding is lower for a lower surface tension. There was no upward motion of the air-water interfacial waves upon flooding occurrence, even for lower a surface tension. Observations on the liquid film behavior after flooding occurred suggest that the entrainment of liquid droplets plays an important role in the upward transport of liquid. Finally, an empirical correlation for flooding velocities is proposed that includes functional dependencies on surface tension and tube inclination. (author)« less

  10. How Do Martian Dust Devils Vary Throughout the Sol?

    NASA Astrophysics Data System (ADS)

    Chapman, R.; Lewis, S.; Balme, M. R.; Steele, L.

    2016-12-01

    Dust devils are vortices of air made visible by entrained dust particles. Dust devils have been observed on Earth and captured in many Mars lander and orbiter images. Martian dust devils may be important to the global climate and are parameterised within Mars Global Circulation Models (MGCMs). We show that the dust devil parameterisation in use within most MGCMs results in an unexpectedly high level of dust devil activity during morning hours. In contrast to expectations, based on the observed behaviour of terrestrial dust devils and the diurnal maximum thermal contrast at the surface, we find that large areas of the modelled Martian surface experience dust devil activity during the morning as well as in the afternoon, and that many locations experience a peak in dust devil activity before mid-sol. Using the UK MGCM, we study the amount of surface dust lifted by dust devils throughout the diurnal cycle as a proxy for the level of dust devil activity occurring. We compare the diurnal variation in dust devil activity with the diurnal variation of the variables included in the dust devil parameterisation. We find that the diurnal variation in dust devil activity is strongly modulated by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce more dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. We compare our results with observations of Martian dust devil timings and obtain a good match with the majority of surface-based surveys. We do not find such a good match with orbital observations, but these data tend to be biased in their temporal coverage. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further dust devil observations are required to support any such modifications.

  11. Thermal inertias in the upper millimeters of the Martian surace derived using Phobus' shadow

    NASA Technical Reports Server (NTRS)

    Betts, Bruce H.; Murray, Bruce C.; Svitek, Tomas

    1995-01-01

    The first thermal images of Phobos' shadow on the surface of Mars, in addition to simultaneous visible images, were obtained by the Phobus '88 Termoskan instrument. The best observed shadow occurence was on the flanks of Arsia Mons. For this occurence, we combined the observed decrease in visible illumination of the surface with the observed decrease in brightness temperature to calculate thermal inertias of the Martian surface. The most realistic of our three models of eclipse cooling improves upon our preliminary model by including nonisothermal initial conditions and downward atmospheric flux. Most of our derived inertias fall within the range 38 to 59 J/Sq m/S(exp 0.5)K (0.9 to 1.4 10(exp -3)Cal/Sq m/S(exp 0.5)/K), corresponding to dust-sized particles (for a homogeneous surface), consistent with previous theories of Tharsis as a currrent area of dust deposition. Viking infrared thermal mapper (IRTM) inertias are diurnally derived and are sensitive to centimeter depths, whereas the shadow-derived inertias sample the upper tenths of a millimeter of the surface. The shadow-derived inertias are lower than those derived from Viking IRTM measurements (84 to 147), however, uncertainties in both sets of derived inertias make conclusions about layering tenuous. Thus, near-surface millimeter versus centimeter layering may exist in this region, but if it does, it is likely not very significant. Both eclipse and diurnal inertias appear to increase near the eastern end of the shadow occurence. We also analyzed a shadow occurence near the crater Herschel that showed no observed cooling. This analysis was limited by cool morning temperatures and instrument sensitivity, but yielded a lower bound of 80 on eclipse inertias in that region. Based upon our results, we strongly recommend future spacecraft thermal observations of Phobus' shadow, and suggest that they will be most useful if they improve upon Termoskan's geographic and temporal coverage and its accuracy.

  12. Surface-Enhanced Separation of Water from Hydrocarbons: Potential Dewatering Membranes for the Catalytic Fast Pyrolysis of Pine Biomass

    DOE PAGES

    Engtrakul, Dr. Chaiwat; Hu, Michael Z.; Bischoff, Brian L; ...

    2016-01-01

    The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach utilized high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over 1-ring upgraded biomass pyrolysis hydrocarbons was observed due to amore » surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations suggesting that water can be selectively removed from the CFP product vapors.« less

  13. Surface-Enhanced Separation of Water from Hydrocarbons: Potential Dewatering Membranes for the Catalytic Fast Pyrolysis of Pine Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engtrakul, Chaiwat; Hu, Michael Z.; Bischoff, Brian L.

    2016-10-20

    The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach used high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over one-ring upgraded biomass pyrolysis hydrocarbons was observed as a resultmore » of a surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations, suggesting that water can be selectively removed from the CFP product vapors.« less

  14. Graphene device and method of using graphene device

    DOEpatents

    Bouchiat, Vincent; Girit, Caglar; Kessler, Brian; Zettl, Alexander K.

    2015-08-11

    An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.

  15. Stem cell behavior on tailored porous oxide surface coatings.

    PubMed

    Lavenus, Sandrine; Poxson, David J; Ogievetsky, Nika; Dordick, Jonathan S; Siegel, Richard W

    2015-07-01

    Nanoscale surface topographies are known to have a profound influence on cell behavior, including cell guidance, migration, morphology, proliferation, and differentiation. In this study, we have observed the behavior of human mesenchymal stem cells cultured on a range of tailored porous SiO2 and TiO2 nanostructured surface coatings fabricated via glancing angle electron-beam deposition. By controlling the physical vapor deposition angle during fabrication, we could control systematically the deposited coating porosity, along with associated topographic features. Immunocytochemistry and image analysis quantitatively revealed the number of adherent cells, as well as their basic cellular morphology, on these surfaces. Signaling pathway studies showed that even with subtle changes in nanoscale surface structures, the behavior of mesenchymal stem cells was strongly influenced by the precise surface structures of these porous coatings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Assessment of Aerothermal Heating Augmentation Attributed to Surface Catalysis in High Enthalpy Shock Tunnel Flows

    NASA Astrophysics Data System (ADS)

    MacLean, M.; Holden, M.

    2009-01-01

    The effect of gas/surface interaction in making CFD predictions of convective heating has been considered with application to ground tests performed in high enthalpy shock tunnels where additional heating augmentation attributable to surface recombination has been observed for nitrogen, air and carbon dioxide flows. For test articles constructed of stainless steel and aluminum, measurements have been made with several types of heat transfer instrumentation including thin- film, calorimeter, and coaxial thermocouple sensors. These experiments have been modeled by computations made with the high quality, chemically reacting, Navier- Stokes solver, DPLR and the heating results compared. Some typical cases considered include results on an axisymmetric sphere-cone, axisymmetric spherical capsule, spherical capsule at angle of attack, and two- dimensional cylinder. In nitrogen flows, cases considered show a recombination probability on the order of 10-3, which agrees with published data. In many cases in air and CO2, measurements exceeding the predicted level of convective heating have been observed which are consistent with approximately complete recombination (to O2/N2 or CO2) on the surface of the model (sometimes called a super-catalytic wall). It has been recognized that the conclusion that this behavior is tied to an excessively high degree of catalytic efficiency is dependent on the current understanding of the freestream and shock-layer state of the gas.

  17. Mars. [evolution and surface features

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1975-01-01

    The evolution and physical structure of Mars are discussed primarily on the basis of Mariner 9 observations. The Martian atmosphere, density, and iron abundance are compared with those of earth, and it is noted that the planet was probably formed in less than 100,000 years. Stages in Martian differentiation are described together with the atmospheric composition, condensation and dust clouds, and surface winds. The surface is shown to have a wide diversity of geological landforms resulting from a variety of processes, including meteoroid bombardment, volcanic and tectonic activity, sapping, the action of running water, and wind action. Described landforms include impact craters, volcanic plains and domes, shield volcanoes, sinuous channels and gullies apparently formed by running water, and the enormous canyon system. Mechanisms for climatic change are considered, and questions are posed regarding the possibility of life on Mars.

  18. Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2013-01-01

    The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.

  19. Evaluation of Aerosol-cloud Interaction in the GISS Model E Using ARM Observations

    NASA Technical Reports Server (NTRS)

    DeBoer, G.; Bauer, S. E.; Toto, T.; Menon, Surabi; Vogelmann, A. M.

    2013-01-01

    Observations from the US Department of Energy's Atmospheric Radiation Measurement (ARM) program are used to evaluate the ability of the NASA GISS ModelE global climate model in reproducing observed interactions between aerosols and clouds. Included in the evaluation are comparisons of basic meteorology and aerosol properties, droplet activation, effective radius parameterizations, and surface-based evaluations of aerosol-cloud interactions (ACI). Differences between the simulated and observed ACI are generally large, but these differences may result partially from vertical distribution of aerosol in the model, rather than the representation of physical processes governing the interactions between aerosols and clouds. Compared to the current observations, the ModelE often features elevated droplet concentrations for a given aerosol concentration, indicating that the activation parameterizations used may be too aggressive. Additionally, parameterizations for effective radius commonly used in models were tested using ARM observations, and there was no clear superior parameterization for the cases reviewed here. This lack of consensus is demonstrated to result in potentially large, statistically significant differences to surface radiative budgets, should one parameterization be chosen over another.

  20. Post Impact Mars Climate Simulations Using a GCM

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Haberle, R. M.; Segura, T. L.; Toon, O. B.; Zahnle, K.

    2003-01-01

    The first images returned by the Mariner 7 spacecraft of the Martian surface showed a landscape heavily scared by impacts. Mariner 9 imaging revealed geomorphic features including valley networks and outflow channels that suggest liquid water once flowed at the surface of Mars. Further evidence for water erosion and surface modification has come from the Viking Spacecraft, Mars Pathfinder and Mars Global Surveyor's (MGS) Mars Obiter Camera (MOC). This evidence includes apparent paleolake beds, fluvial fans and sedimentary layers (Cabrol and Grinn, 1999; Heberle et al., 2001). There is evidence for subsurface water as well. Rampart crates suggest an abundance of water in the near surface regolith (Mouginis-Mark, 1986). The estimated erosion rates necessary to explain the observed surface morphologies (Golombek and Bridges, 2000) present a conundrum. The rates of erosion appear to be highest when the early sun was fainter and only 75% as luminous as it is today. Furthermore the rates of erosion appear to correlate with the rate at which Mars was impacted (Carr and Waenke, 1992). All of this evidence suggests to a very different climate than what exists on Mars today.

  1. Scanning probe microscopy induced surface modifications of the topological insulator Bi2Te3 in different environments

    NASA Astrophysics Data System (ADS)

    Netsou, Asteriona-Maria; Thupakula, Umamahesh; Debehets, Jolien; Chen, Taishi; Hirsch, Brandon; Volodin, Alexander; Li, Zhe; Song, Fengqi; Seo, Jin Won; De Feyter, Steven; Schouteden, Koen; Van Haesendonck, Chris

    2017-08-01

    We investigated the topological insulator (TI) Bi2Te3 in four different environments (ambient, ultra-high vacuum (UHV), nitrogen gas and organic solvent environment) using scanning probe microscopy (SPM) techniques. Upon prolonged exposure to ambient conditions and organic solvent environments the cleaved surface of the pristine Bi2Te3 is observed to be strongly modified during SPM measurements, while imaging of freshly cleaved Bi2Te3 in UHV and nitrogen gas shows considerably less changes of the Bi2Te3 surface. We conclude that the reduced surface stability upon exposure to ambient conditions is triggered by adsorption of molecular species from ambient, including H2O, CO2, etc which is verified by Auger electron spectroscopy. Our findings of the drastic impact of exposure to ambient on the Bi2Te3 surface are crucial for further in-depth studies of the intrinsic properties of the TI Bi2Te3 and for potential applications that include room temperature TI based devices operated under ambient conditions.

  2. Comparison of HF radar measurements with Eulerian and Lagrangian surface currents

    NASA Astrophysics Data System (ADS)

    Röhrs, Johannes; Sperrevik, Ann Kristin; Christensen, Kai Håkon; Broström, Göran; Breivik, Øyvind

    2015-05-01

    High-frequency (HF) radar-derived ocean currents are compared with in situ measurements to conclude if the radar observations include effects of surface waves that are of second order in the wave amplitude. Eulerian current measurements from a high-resolution acoustic Doppler current profiler and Lagrangian measurements from surface drifters are used as references. Directional wave spectra are obtained from a combination of pressure sensor data and a wave model. Our analysis shows that the wave-induced Stokes drift is not included in the HF radar-derived currents, that is, HF radars measure the Eulerian current. A disputed nonlinear correction to the phase velocity of surface gravity waves, which may affect HF radar signals, has a magnitude of about half the Stokes drift at the surface. In our case, this contribution by nonlinear dispersion would be smaller than the accuracy of the HF radar currents, hence no conclusion can be made. Finally, the analysis confirms that the HF radar data represent an exponentially weighted vertical average where the decay scale is proportional to the wavelength of the transmitted signal.

  3. Steady Boundary Layer Disturbances Created By Two-Dimensional Surface Ripples

    NASA Astrophysics Data System (ADS)

    Kuester, Matthew

    2017-11-01

    Multiple experiments have shown that surface roughness can enhance the growth of Tollmien-Schlichting (T-S) waves in a laminar boundary layer. One of the common observations from these studies is a ``wall displacement'' effect, where the boundary layer profile shape remains relatively unchanged, but the origin of the profile pushes away from the wall. The objective of this work is to calculate the steady velocity field (including this wall displacement) of a laminar boundary layer over a surface with small, 2D surface ripples. The velocity field is a combination of a Blasius boundary layer and multiple disturbance modes, calculated using the linearized Navier-Stokes equations. The method of multiple scales is used to include non-parallel boundary layer effects of O (Rδ- 1) ; the non-parallel terms are necessary, because a wall displacement is mathematically inconsistent with a parallel boundary layer assumption. This technique is used to calculate the steady velocity field over ripples of varying height and wavelength, including cases where a separation bubble forms on the leeward side of the ripple. In future work, the steady velocity field will be the input for stability calculations, which will quantify the growth of T-S waves over rough surfaces. The author would like to acknowledge the support of the Kevin T. Crofton Aerospace & Ocean Engineering Department at Virginia Tech.

  4. Solar-terrestrial research for the 1980's

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The solar-terrestrial system is described. Techniques for observations involving all relevant platforms: spacecraft, the Earth's surface, aircraft, balloons, and rockets are proposed. The need for interagency coordination of programs, efficient data management, theoretical studies and modeling, the continuity of long time series observations, and innovative instrument design is emphasized. Examples of the practical impact of interactions between solar terrestrial phenomena and the environment, including technological systems are presented.

  5. An Iterative, Geometric, Tilt Correction Method for Radiation and Albedo Observed by Automatic Weather Stations on Snow-Covered Surfaces: Application to Greenland

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zender, C. S.; van As, D.; Smeets, P.; van den Broeke, M.

    2015-12-01

    Surface melt and mass loss of Greenland Ice Sheet may play crucial roles in global climate change due to their positive feedbacks and large fresh water storage. With few other regular meteorological observations available in this extreme environment, measurements from Automatic Weather Stations (AWS) are the primary data source for the surface energy budget studies, and for validating satellite observations and model simulations. However, station tilt, due to surface melt and compaction, results in considerable biases in the radiation and thus albedo measurements by AWS. In this study, we identify the tilt-induced biases in the climatology of surface radiative flux and albedo, and then correct them based on geometrical principles. Over all the AWS from the Greenland Climate Network (GC-Net), the Kangerlussuaq transect (K-transect) and the Programme for Monitoring of the Greenland Ice Sheet (PROMICE), only ~15% of clear days have the correct solar noon time, with the largest bias to be 3 hours. Absolute hourly biases in the magnitude of surface insolation can reach up to 200 W/m2, with daily average exceeding 100 W/m2. The biases are larger in the accumulation zone due to the systematic tilt at each station, although variabilities of tilt angles are larger in the ablation zone. Averaged over the whole Greenland Ice Sheet in the melting season, the absolute bias in insolation is ~23 W/m2, enough to melt 0.51 m snow water equivalent. We estimate the tilt angles and their directions by comparing the simulated insolation at a horizontal surface with the observed insolation by these tilted AWS under clear-sky conditions. Our correction reduces the RMSE against satellite measurements and reanalysis by ~30 W/m2 relative to the uncorrected data, with correlation coefficients over 0.95 for both references. The corrected diurnal changes of albedo are more smooth, with consistent semi-smiling patterns (see Fig. 1). The seasonal cycles and annual variabilities of albedo are in a better agreement with previous studies (see Fig. 2 and 3). The consistent tilt-corrected shortwave radiation dataset derived here will provide better observations and validations for surface energy budget studies on Greenland Ice Sheet, including albedo variation, surface melt simulations and cloud radiative forcing estimates.

  6. Evaluation of NASA GEOS-ADAS Modeled Diurnal Warming Through Comparisons to SEVIRI and AMSR2 SST Observations

    NASA Astrophysics Data System (ADS)

    Gentemann, C. L.; Akella, S.

    2018-02-01

    An analysis of the ocean skin Sea Surface Temperature (SST) has been included in the Goddard Earth Observing System (GEOS) - Atmospheric Data Assimilation System (ADAS), Version 5 (GEOS-ADAS). This analysis is based on the GEOS atmospheric general circulation model (AGCM) that simulates near-surface diurnal warming and cool skin effects. Analysis for the skin SST is performed along with the atmospheric state, including Advanced Very High Resolution Radiometer (AVHRR) satellite radiance observations as part of the data assimilation system. One month (September, 2015) of GEOS-ADAS SSTs were compared to collocated satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSTs to examine how the GEOS-ADAS diurnal warming compares to the satellite measured warming. The spatial distribution of warming compares well to the satellite observed distributions. Specific diurnal events are analyzed to examine variability within a single day. The dependence of diurnal warming on wind speed, time of day, and daily average insolation is also examined. Overall the magnitude of GEOS-ADAS warming is similar to the warming inferred from satellite retrievals, but several weaknesses in the GEOS-AGCM simulated diurnal warming are identified and directly related back to specific features in the formulation of the diurnal warming model.

  7. The New Horizons Radio Science Experiment: Expected Performance in Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Surface Temperature

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Linscott, I.; Woods, W. W.; Tyler, G. L.; Bird, M. K.; Paetzold, M.; Strobel, D. F.

    2014-12-01

    The New Horizons (NH) payload includes a Radio Science Experiment (REX) for investigating key characteristics of Pluto and Charon during the upcoming flyby in July 2015. REX flight equipment augments the NH radio transceiver used for spacecraft communications and tracking. The REX hardware implementation requires 1.6 W and 160 g. This presentation will focus on the final design and the predicted performance of two high-priority observations. First, REX will receive signals from a pair of 70-m antennas on Earth - each transmitting 20 kW at 4.2-cm wavelength - during a diametric radio occultation by Pluto. The data recorded by REX will reveal the surface pressure, the temperature structure of the lower atmosphere, and the surface radius. Second, REX will measure the thermal emission from Pluto at 4.2-cm wavelength during two linear scans across the disk at close range when both the dayside and the nightside are visible, allowing the surface temperature and its spatial variations to be determined. Both scans extend from limb to limb with a resolution of about 10 pixels; one bisects Pluto whereas the second crosses the winter pole. We will illustrate the capabilities of REX by reviewing the method of analysis and the precision achieved in a lunar occultation observed by New Horizons in May 2011. Re-analysis of radio occultation measurements by Voyager 2 at Triton is also under way. More generally, REX objectives include a radio occultation search for Pluto's ionosphere; examination of Charon through both radio occultation and radiometry; a search for a radar echo from Pluto's surface; and improved knowledge of the Pluto system mass and the Pluto-Charon mass ratio from a combination of two-way and one-way Doppler frequency measurements.

  8. Getting the temperature right: Understanding thermal emission from airless bodies

    NASA Astrophysics Data System (ADS)

    Bandfield, J.; Greenhagen, B. T.; Hayne, P. O.; Williams, J. P.; Paige, D. A.

    2016-12-01

    Thermal infrared measurements are crucial for understanding a wide variety of processes present on airless bodies throughout the solar system. Although these data can be complex, they also contain an enormous amount of useful information. By building a framework for understanding thermal infrared datasets, significant advances are possible in the understanding of regolith development, detection of H2O and OH-, characterizing the nature and magnitude of Yarkovsky and YORP effects, and determination of the properties of newly identified asteroids via telescopic measurements. Airless bodies can have both extremely rough and insulating surfaces. For example, these two properties allow for sunlit and shaded or buried lunar materials separated by just a few centimeters to vary by 200K. In this sense, there is no "correct" temperature interpretable from orbital, or even in-situ, measurements. The surface contains a wide mixture of temperatures in the field of view, and rougher surfaces greatly enhance this anisothermality. We have used the Lunar Reconnaissance Orbiter Diviner Radiometer to characterize these effects by developing new targeting and analysis methods, including extended off-nadir observations and combined surface roughness and thermal modeling (Fig. 1). These measurements and models have shown up to 100K brightness temperature differences from measurements that differ only in the viewing angle of the observation. In addition, the thermal emission near 3 μm can be highly dependent on the surface roughness, resulting in more extensive and prominent lunar 3 μm H2O and OH-absorptions than indicated in data corrected by isothermal models. The datasets serve as a foundation for the derivation and understanding of surface spectral and thermophysical properties. Roughness and anisothermality effects are likely to dominate infrared measurements from many spacecraft, including LRO, Dawn, BepiColombo, OSIRIS-REx, Hayabusa-2, and Europa Clipper.

  9. Estimates of Soil Moisture Using the Land Information System for Land Surface Water Storage: Case Study for the Western States Water Mission

    NASA Astrophysics Data System (ADS)

    Liu, P. W.; Famiglietti, J. S.; Levoe, S.; Reager, J. T., II; David, C. H.; Kumar, S.; Li, B.; Peters-Lidard, C. D.

    2017-12-01

    Soil moisture is one of the critical factors in terrestrial hydrology. Accurate soil moisture information improves estimation of terrestrial water storage and fluxes, that is essential for water resource management including sustainable groundwater pumping and agricultural irrigation practices. It is particularly important during dry periods when water stress is high. The Western States Water Mission (WSWM), a multiyear mission project of NASA's Jet Propulsion Laboratory, is operated to understand and estimate quantities of the water availability in the western United States by integrating observations and measurements from in-situ and remote sensing sensors, and hydrological models. WSWM data products have been used to assess and explore the adverse impacts of the California drought (2011-2016) and provide decision-makers information for water use planning. Although the observations are often more accurate, simulations using land surface models can provide water availability estimates at desired spatio-temporal scales. The Land Information System (LIS), developed by NASA's Goddard Space Flight Center, integrates developed land surface models and data processing and management tools, that enables to utilize the measurements and observations from various platforms as forcings in the high performance computing environment to forecast the hydrologic conditions. The goal of this study is to implement the LIS in the western United States for estimates of soil moisture. We will implement the NOAH-MP model at the 12km North America Land Data Assimilation System grid and compare to other land surface models included in the LIS. Findings will provide insight into the differences between model estimates and model physics. Outputs from a multi-model ensemble from LIS can also be used to enhance estimated reliability and provide quantification of uncertainty. We will compare the LIS-based soil moisture estimates to the SMAP enhanced 9 km soil moisture product to understand the mechanistic differences between the model and observation. These outcomes will contribute to the WSWM for providing robust products.

  10. Facile method for preparing superoleophobic surfaces with hierarchical microcubic/nanowire structures

    NASA Astrophysics Data System (ADS)

    Kwak, Wonshik; Hwang, Woonbong

    2016-02-01

    To facilitate the fabrication of superoleophobic surfaces having hierarchical microcubic/nanowire structures (HMNS), even for low surface tension liquids including octane (surface tension = 21.1 mN m-1), and to understand the influences of surface structures on the oleophobicity, we developed a convenient method to achieve superoleophobic surfaces on aluminum substrates using chemical acid etching, anodization and fluorination treatment. The liquid repellency of the structured surface was validated through observable experimental results the contact and sliding angle measurements. The etching condition required to ensure high surface roughness was established, and an optimal anodizing condition was determined, as a critical parameter in building the superoleophobicity. The microcubic structures formed by acid etching are essential for achieving the formation of the hierarchical structure, and therefore, the nanowire structures formed by anodization lead to an enhancement of the superoleophobicity for low surface tension liquids. Under optimized morphology by microcubic/nanowire structures with fluorination treatment, the contact angle over 150° and the sliding angle less than 10° are achieved even for octane.

  11. How well Can We Classify SWOT-derived Water Surface Profiles?

    NASA Astrophysics Data System (ADS)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  12. Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.

    PubMed

    Itoh, S; Nakamura, S; Kobayashi, T; Shinomiya, K; Yamashita, K; Itoh, S

    2006-03-01

    Large surface charges can be induced on hydroxyapatite (HAp) ceramics by proton transport polarization, but this does not affect beta-tricalcium phosphate (TCP) because of its low polarizability. We wished to examine differences in osteogenic cell activity and new bone growth between positively or negatively surface-charged HAp and HAp/TCP plates using a calvarial bone defect model. In the first group of rats, test pieces were placed with their positively charged surfaces face down on the dura mater. In the second group, test pieces were placed with their negatively charged surfaces face down on the dura mater. A third group received noncharged test pieces. Histological examination, including enzymatic staining for osteoblasts and osteoclasts, was carried out. While no bone formation was observed at the pericranium, direct bone formation on the cranial bone debris and new bone growth expanded from the margins of the sites of injury to bridge across both the positively and negatively charged surfaces of HAp and HAp/TCP plates occurred. Electrical polarization of implanted plates, including positive charge, led to enhanced osteoblast activity, though decreased osteoclast activity was seen on the positively charged plate surface. Thus, polarization of HAp ceramics may modulate new bone formation and resorption.

  13. A continuum model for meltwater flow through compacting snow

    NASA Astrophysics Data System (ADS)

    Meyer, Colin R.; Hewitt, Ian J.

    2017-12-01

    Meltwater is produced on the surface of glaciers and ice sheets when the seasonal energy forcing warms the snow to its melting temperature. This meltwater percolates into the snow and subsequently runs off laterally in streams, is stored as liquid water, or refreezes, thus warming the subsurface through the release of latent heat. We present a continuum model for the percolation process that includes heat conduction, meltwater percolation and refreezing, as well as mechanical compaction. The model is forced by surface mass and energy balances, and the percolation process is described using Darcy's law, allowing for both partially and fully saturated pore space. Water is allowed to run off from the surface if the snow is fully saturated. The model outputs include the temperature, density, and water-content profiles and the surface runoff and water storage. We compare the propagation of freezing fronts that occur in the model to observations from the Greenland Ice Sheet. We show that the model applies to both accumulation and ablation areas and allows for a transition between the two as the surface energy forcing varies. The largest average firn temperatures occur at intermediate values of the surface forcing when perennial water storage is predicted.

  14. Surface brightness profiles and structural parameters for 53 rich stellar clusters in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Gilmore, G. F.

    2003-01-01

    We have compiled a pseudo-snapshot data set of two-colour observations from the Hubble Space Telescope archive for a sample of 53 rich LMC clusters with ages of 106-1010 yr. We present surface brightness profiles for the entire sample, and derive structural parameters for each cluster, including core radii, and luminosity and mass estimates. Because we expect the results presented here to form the basis for several further projects, we describe in detail the data reduction and surface brightness profile construction processes, and compare our results with those of previous ground-based studies. The surface brightness profiles show a large amount of detail, including irregularities in the profiles of young clusters (such as bumps, dips and sharp shoulders), and evidence for both double clusters and post-core-collapse (PCC) clusters. In particular, we find power-law profiles in the inner regions of several candidate PCC clusters, with slopes of approximately -0.7, but showing considerable variation. We estimate that 20 +/- 7 per cent of the old cluster population of the Large Magellanic Cloud (LMC) has entered PCC evolution, a similar fraction to that for the Galactic globular cluster system. In addition, we examine the profile of R136 in detail and show that it is probably not a PCC cluster. We also observe a trend in core radius with age that has been discovered and discussed in several previous publications by different authors. Our diagram has better resolution, however, and appears to show a bifurcation at several hundred Myr. We argue that this observed relationship reflects true physical evolution in LMC clusters, with some experiencing small-scale core expansion owing to mass loss, and others large-scale expansion owing to some unidentified characteristic or physical process.

  15. The Potential of Time Series Based Earth Observation for the Monitoring of Large River Deltas

    NASA Astrophysics Data System (ADS)

    Kuenzer, C.; Leinenkugel, P.; Huth, J.; Ottinger, M.; Renaud, F.; Foufoula-Georgiou, E.; Vo Khac, T.; Trinh Thi, L.; Dech, S.; Koch, P.; Le Tissier, M.

    2015-12-01

    Although river deltas only contribute 5% to the overall land surface, nearly six hundred million people live in these complex social-ecological environments, which combine a variety of appealing locational advantages. In many countries deltas provide the major national contribution to agricultural and industrial production. At the same time these already very dynamic environments are exposed to a variety of threats, including the disturbance and replacement of valuable ecosystems, increasing water, soil, and air pollution, human induced land subsidence, sea level rise, as well upstream developments impacting water and sediment supplies. A constant monitoring of delta systems is thus of utmost relevance for understanding past and current land surface change and anticipating possible future developments. We present the potential of Earth Observation based analyses and derived novel information products that can play a key role in this context. Along with the current trend of opening up numerous satellite data archives go increasing capabilities to explore big data. Whereas in past decades remote sensing data were analysed based on the spectral-reflectance-defined 'finger print' of individual surfaces, we mainly exploit the 'temporal fingerprints' of our land surface in novel pathways of data analyses at differing spatial-, and temporally-dense scales. Following our results on an Earth Observation based characterization of large deltas globally, we present in depth results from the Mekong Delta in Vietnam, the Yellow River Delta in China, the Niger Delta in Nigeria, as well as additional deltas, focussing on the assessment of river delta flood and inundation dynamics, river delta coastline dynamics, delta morphology dynamics including the quantification of erosion and accretion processes, river delta land use change and trends, as well as the monitoring of compliance to environmental regulations.

  16. Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile.

    PubMed

    Whelley, Patrick L; Jay, J; Calder, E S; Pritchard, M E; Cassidy, N J; Alcaraz, S; Pavez, A

    Unconsolidated pyroclastic flow deposits of the 1993 eruption of Lascar Volcano, Chile, have, with time, become increasingly dissected by a network of deeply penetrating fractures. The fracture network comprises orthogonal sets of decimeter-wide linear voids that form a pseudo-polygonal grid visible on the deposit surface. In this work, we combine shallow surface geophysical imaging tools with remote sensing observations and direct field measurements of the deposit to investigate these fractures and their underlying causal mechanisms. Based on ground penetrating radar images, the fractures are observed to have propagated to depths of up to 10 m. In addition, orbiting radar interferometry shows that deposit subsidence of up to 1 cm/year -1 occurred between 1993 and 1996 with continued subsidence occurring at a slower rate thereafter. In situ measurements show that 1 m below the surface, the 1993 deposits remain 5°C to 15°C hotter, 18 years after emplacement, than adjacent deposits. Based on the observed subsidence as well as estimated cooling rates, the fractures are inferred to be the combined result of deaeration, thermal contraction, and sedimentary compaction in the months to years following deposition. Significant environmental factors, including regional earthquakes in 1995 and 2007, accelerated settling at punctuated moments in time. The spatially variable fracture pattern relates to surface slope and lithofacies variations as well as substrate lithology. Similar fractures have been reported in other ignimbrites but are generally exposed only in cross section and are often attributed to formation by external forces. Here we suggest that such interpretations should be invoked with caution, and deformation including post-emplacement subsidence and fracturing of loosely packed ash-rich deposits in the months to years post-emplacement is a process inherent in the settling of pyroclastic material.

  17. Pluto's surface composition and atmosphere

    NASA Astrophysics Data System (ADS)

    Young, L. A.; Gladstone, R.; Summers, M. E.; Strobel, D. F.; Kammer, J.; Hinson, D. P.; Grundy, W. M.; Cruikshank, D. P.; Protopapa, S.; Schmitt, B.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.

    2017-12-01

    New Horizons studied Pluto's N2-dominated neutral atmosphere through radio (at 4.2 cm with the REX radio experiment), solar and stellar occultations and airglow (at 52-187 nm with the Alice ultraviolet spectrograph), and imaging (with the LORRI and MVIC visible-wavelength cameras). It studied the plasma environment and solar wind interaction with in situ instruments (PEPPSI and SWAP). Contemporaneous observations of Pluto's atmosphere from Earth included a ground-based stellar occultation and ALMA observations of gaseous CO and HCN. Joint analysis of these datasets reveal a variable boundary layer; a stable lower atmosphere; radiative heating and cooling; haze production and hydrocarbon chemistry; diffusive equilibrium; and slower-than-expected escape. New Horizons studied Pluto's surface composition with the LEISA near-infrared spectral imager from 1.25 to 2.5 micron. Additional compositional information at higher spatial resolution came from the MVIC 4-channel color imager, which included a channel centered at 0.89 micron specifically designed to detect solid CH4. These instruments allow mapping of the volatiles N2, CO, and CH4, the surface expression of the H2O bedrock, and the dark, reddish material presumed to be tholins. These observations reveal a large equatorial basin (informally named Sptunik Planitia), filled with N2 ice with minor amounts of CO and CH4, surrounded by hills of CH4 and H2O ice. Broadly speaking, composition outside of Sptunik Planitia follows latitudinal banding, with dark, mainly volatile free terrains near the equator, with N2, CO, and CH4 at mid-northern latitudes, and mainly CH4 at high northern latitudes. Deviations from these broad trends are seen, and point to complex surface-atmosphere interactions at diurnal, seasonal, perennial, and million-year timescales.

  18. Peering to the Heart of Massive Star Birth - II. A Survey of 8 Protostars

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan

    2012-10-01

    We propose to follow-up our SOFIA FORCAST Basic Science observation of G35.20-0.74 with similar observations of seven other massive protostars, with a total time request of about 5 hours. Our goal is to use mid-infrared (MIR) and far-infrared (FIR) imaging, especially at wavelengths of 31 and 37 microns that are unique to SOFIA, to constrain detailed radiative transfer models of massive star formation. In particular, we show that if massive stars are forming from high mass surface density cores, then the observed MIR and FIR morphologies are strongly influenced by the presence of protostellar outflow cavities. For typical surface densities of ~1 g cm^2, the observed radiation at wavelengths less than about 30 microns escapes preferentially along the near-facing outflow cavity. At longer wavelengths we begin to see emission from the far-facing cavity, and thus the proposed SOFIA FORCAST observations are particularly powerful for constraining the properties of the star-forming core such as the mass surface density in the immediate vicinity of the protostar. Our full analysis will involve comparing these SOFIA FORCAST data with images at other wavelengths, including Spitzer IRAC (3 to 8 microns), ground-based (10 & 20 microns) and Herschel (70 microns), to derive flux profiles and spectral energy distributions as a function of projected distance along the outflow axis. These observations have the potential to: (1) test basic scenarios of massive star formation; (2) begin to provide detailed measurements such as the mass surface density structure of massive star-forming cores and the line-of-sight orientation, opening angle, degree of symmetry and dust content of their outflow cavities. With a sample of eight protostars in total we will begin to be able to search for trends in these properties with core mass surface density and protostellar luminosity.

  19. Joint Retrieval Of Surface Reflectance And Aerosol Properties: Application To MSG/SEVIRI in the framework of the aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Luffarelli, Marta; Govaerts, Yves; Goossens, Cedric

    2017-04-01

    A new versatile algorithm for the joint retrieval of surface reflectance and aerosol properties has been developed and tested at Rayference. This algorithm, named Combined Inversion of Surface and Aerosols (CISAR), includes a fast physically-based Radiative Transfer Model (RTM) accounting for the surface reflectance anisotropy and its coupling with aerosol scattering. This RTM explicitly solves the radiative transfer equation during the inversion process, without relying on pre-calculated integrals stored in LUT, allowing for a continuous variation of the state variables in the solution space. The inversion is based on a Optimal Estimation (OE) approach, which seeks for the best balance between the information coming from the observation and the a priori information. The a priori information is any additional knowledge on the observed system and it can concern the magnitude of the state variable or constraints on temporal and spectral variability. Both observations and priori information are provided with the corresponding uncertainty. For each processed spectral band, CISAR delivers the surface Bidirectional Reflectance Factor (BRF) and aerosol optical thickness, discriminating the effects of small and large particles. It also provides the associated uncertainty covariance matrix for every processed pixels. In the framework of the ESA aerosol_cci project, CISAR is applied on TOA BRF acquired by SEVIRI onboard Meteosat Second Generation (MSG) in the VIS0.6, VIS0.8 and NIR1.6 spectral bands. SEVIRI observations are accumulated during several days to document the surface anisotropy and minimize the impact of clouds. While surface radiative properties are supposed constant during this accumulation period, aerosol properties are derived on an hourly basis. The information content of each MSG/SEVIRI band will be provided based on the analysis of the posterior uncertainty covariance matrix. The analysis will demonstrate in particular the capability of CISAR to decouple the fraction of TOA BRF signal coming from the surface from the one originating from the aerosols. The results of the algorithm are compared with independent data sets of AOD and surface reflectance. Comparison with ground observations from the AERONET network shows a good agreement between these data. The surface reflectance evaluation is performed comparing white-sky albedo retrieved by CISAR with the MODIS surface product. This evaluation shows a very good consistency. The retrieved aerosol optical depth is consistent also in term of spatial distribution, being comparable in terms of geographical location and intensity.

  20. Physical and chemical characterization of waste wood derived biochars.

    PubMed

    Yargicoglu, Erin N; Sadasivam, Bala Yamini; Reddy, Krishna R; Spokas, Kurt

    2015-02-01

    Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties. Favorable properties of biochar include its high surface area and porosity, and ability to adsorb a variety of compounds, including nutrients, organic contaminants, and some gases. Physical and chemical properties of biochars are dictated by the feedstock and production processes (pyrolysis or gasification temperature, conversion technology and pre- and post-treatment processes, if any), which vary widely across commercially produced biochars. In this study, several commercially available biochars derived from waste wood are characterized for physical and chemical properties that can signify their relevant environmental applications. Parameters characterized include: physical properties (particle size distribution, specific gravity, density, porosity, surface area), hydraulic properties (hydraulic conductivity and water holding capacity), and chemical and electrochemical properties (organic matter and organic carbon contents, pH, oxidation-reduction potential and electrical conductivity, zeta potential, carbon, nitrogen and hydrogen (CHN) elemental composition, polycyclic aromatic hydrocarbons (PAHs), heavy metals, and leachable PAHs and heavy metals). A wide range of fixed carbon (0-47.8%), volatile matter (28-74.1%), and ash contents (1.5-65.7%) were observed among tested biochars. A high variability in surface area (0.1-155.1g/m(2)) and PAH and heavy metal contents of the solid phase among commercially available biochars was also observed (0.7-83 mg kg(-1)), underscoring the importance of pre-screening biochars prior to application. Production conditions appear to dictate PAH content--with the highest PAHs observed in biochar produced via fast pyrolysis and lowest among the gasification-produced biochars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Surface Complexation Modeling of Fluoride Adsorption by Soil and the Role of Dissolved Aluminum on Adsorption

    NASA Astrophysics Data System (ADS)

    Padhi, S.; Tokunaga, T.

    2017-12-01

    Adsorption of fluoride (F) on soil can control the mobility of F and subsequent contamination of groundwater. Hence, accurate evaluation of adsorption equilibrium is a prerequisite for understanding transport and fate of F in the subsurface. While there have been studies for the adsorption behavior of F with respect to single mineral constituents based on surface complexation models (SCM), F adsorption to natural soil in the presence of complexing agents needs much investigation. We evaluated the adsorption processes of F on a natural granitic soil from Tsukuba, Japan, as a function of initial F concentration, ionic strength, and initial pH. A SCM was developed to model F adsorption behavior. Four possible surface complexation reactions were postulated with and without including dissolved aluminum (Al) and Al-F complex sorption. Decrease in F adsorption with the increase in initial pH was observed in between the initial pH range of 4 to 9, and a decrease in the rate of the reduction of adsorbed F with respect to the increase in the initial pH was observed in the initial pH range of 5 to 7. Ionic strength variation in the range of 0 to 100mM had insignificant effect on F removal. Changes in solution pH were observed by comparing the solution before and after F adsorption experiments. At acidic pH, the solution pH increased, whereas at alkaline pH, the solution pH decreased after equilibrium. The SCM including dissolved Al and the adsorption of Al-F complex can simulate the experimental results quite successfully. Also, including dissolved Al and the adsorption of Al-F complex to the model explained the change in solution pH after F adsorption.

  2. CentNet—A deployable 100-station network for surface exchange research

    NASA Astrophysics Data System (ADS)

    Oncley, S.; Horst, T. W.; Semmer, S.; Militzer, J.; Maclean, G.; Knudson, K.

    2014-12-01

    Climate, air quality, atmospheric composition, surface hydrology, and ecological processes are directly affected by the Earth's surface. Complexity of this surface exists at multiple spatial scales, which complicates the understanding of these processes. NCAR/EOL currently provides a facility to the research community to make direct eddy-covariance flux observations to quantify surface-atmosphere interactions. However, just as model resolution has continued to increase, there is a need to increase the spatial density of flux measurements to capture the wide variety of scales that contribute to exchange processes close to the surface. NCAR/EOL now has developed the CentNet facility, that is envisioned to have on the order of 100 surface flux stations deployable for periods of months to years. Each station would measure standard meteorological variables, all components of the surface energy balance (including turbulence fluxes and radiation), atmospheric composition, and other quantities to characterize the surface. Thus, CentNet can support observational research in the biogeosciences, hydrology, urban meteorology, basic meteorology, and turbulence. CentNet has been designed to be adaptable to a wide variety of research problems while keeping operations manageable. Tower infrastructure has been designed to be lightweight, easily deployed, and with a minimal set-up footprint. CentNet uses sensor networks to increase spatial sampling at each station. The data system saves every sample on site to retain flexibility in data analysis. We welcome guidance on development and funding priorities as we build CentNet.

  3. Multi-Scale Observation and Modelling of Energy and Matter Exchange in the Atmospheric Boundary-Layer (ScaleX Campaigns)

    NASA Astrophysics Data System (ADS)

    Zeeman, M. J.; Wolz, K.; Adler, B.; Brenner, C.; De Roo, F.; Emeis, S.; Kalthoff, N.; Mauder, M.; Schäfer, K.; Wohlfahrt, G.; Zhao, P.

    2016-12-01

    We investigated biosphere-atmosphere exchange processes in relation to the atmospheric boundary-layer (ABL) flow in a shallow valley. Land-use heterogeneity and topography can force local atmospheric flow patterns, including local circulations. Such flow patterns can impair current techniques for the quantification and source attribution of surface-exchange fluxes due to flux-divergence, advection and decoupling. Wind field, temperature and humidity structures in the ABL were observed in high resolution with spatially distributed observations in a 1 km3 experimental domain. Remote-sensing observations of wind, temperature and particles in the ABL (Raman-lidar; RASS; ceilometer; microwave radiometer; 3D Doppler-lidar) were combined with a high-resolution network of in-situ observations that included vertical and horizontal profiles of wind, temperature, carbon dioxide, methane and water vapor concentrations. The experiments were co-located with the long-term eddy covariance (EC) observatory Fendt (DE-Fen; ICOS, TERENO) and were part of international cooperative efforts in 2015 and 2016 (the ScaleX campaigns). The gathered experimental data offers a scale-transcending insight in local flow patterns in mountainous terrain and their influence on surface-exchange fluxes of energy and matter as observed by EC and flux-gradient methodology. In addition, the data is used for validation of Large-Eddy Simulations in complex terrain using PALM-LES. Within this modelling framework, virtual measurements are conducted to further assess the importance of three-dimensional advective and horizontal turbulent transport terms.

  4. Towards a regional coastal ocean observing system: An initial design for the Southeast Coastal Ocean Observing Regional Association

    NASA Astrophysics Data System (ADS)

    Seim, H. E.; Fletcher, M.; Mooers, C. N. K.; Nelson, J. R.; Weisberg, R. H.

    2009-05-01

    A conceptual design for a southeast United States regional coastal ocean observing system (RCOOS) is built upon a partnership between institutions of the region and among elements of the academic, government and private sectors. This design envisions support of a broad range of applications (e.g., marine operations, natural hazards, and ecosystem-based management) through the routine operation of predictive models that utilize the system observations to ensure their validity. A distributed information management system enables information flow, and a centralized information hub serves to aggregate information regionally and distribute it as needed. A variety of observing assets are needed to satisfy model requirements. An initial distribution of assets is proposed that recognizes the physical structure and forcing in the southeast U.S. coastal ocean. In-situ data collection includes moorings, profilers and gliders to provide 3D, time-dependent sampling, HF radar and surface drifters for synoptic sampling of surface currents, and satellite remote sensing of surface ocean properties. Nested model systems are required to properly represent ocean conditions from the outer edge of the EEZ to the watersheds. An effective RCOOS will depend upon a vital "National Backbone" (federally supported) system of in situ and satellite observations, model products, and data management. This dependence highlights the needs for a clear definition of the National Backbone components and a Concept of Operations (CONOPS) that defines the roles, functions and interactions of regional and federal components of the integrated system. A preliminary CONOPS is offered for the Southeast (SE) RCOOS. Thorough system testing is advocated using a combination of application-specific and process-oriented experiments. Estimates of costs and personnel required as initial components of the SE RCOOS are included. Initial thoughts on the Research and Development program required to support the RCOOS are also outlined.

  5. Variations in Near-Infrared Emissivity of Venus Surface Observed by the Galileo Near-Infrared Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Hashimoto, G. L.; Roos-Serote, M.; Sugita, S.

    2004-11-01

    We evaluate the spatial variation of venusian surface emissivity at a near-infrared wavelength using multispectral images obtained by the Near-Infrared Mapping Spectrometer (NIMS) on board the Galileo spacecraft. The Galileo made a close flyby to Venus in February 1990. During this flyby, NIMS observed the nightside of Venus with 17 spectral channels, which includes the well-known spectral windows at 1.18, 1.74, and 2.3 μ m. The surface emissivity is evaluated at 1.18 μ m, at which thermal radiation emitted from the planetary surface could be detected. To analyze the NIMS observations, synthetic spectra have been generated by means of a line-by-line radiative transfer program which includes both scattering and absorption. We used the discrete ordinate method to calculate the spectra of vertically inhomogeneous plane-parallel atmosphere. Gas opacity is calculated based on the method of Pollack et al. (1993), though binary absorption coefficients for continuum opacity are adjusted to achieve an acceptable fit to the NIMS data. We used Mie scattering theory and a cloud model developed by Pollack et al. (1993) to determine the single scattering albedo and scattering phase function of the cloud particles. The vertical temperature profile of Venus International Reference Atmosphere (VIRA) is used in all our calculations. The procedure of the analysis is the followings. We first made a correction for emission angle. Then, a modulation of emission by the cloud opacities is removed using simultaneously measured 1.74 and 2.3 μ m radiances. The resulting images are correlated with the topographic map of Magellan. To search for variations in surface emissivity, this cloud corrected images are divided by synthetic radiance maps that were created from the Magellan data. This work has been supported by The 21st Century COE Program of Origin and Evolution of Planetary Systems of Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  6. Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains

    NASA Astrophysics Data System (ADS)

    Luo, Lifeng; Robock, Alan; Mitchell, Kenneth E.; Houser, Paul R.; Wood, Eric F.; Schaake, John C.; Lohmann, Dag; Cosgrove, Brian; Wen, Fenghua; Sheffield, Justin; Duan, Qingyun; Higgins, R. Wayne; Pinker, Rachel T.; Tarpley, J. Dan

    2003-11-01

    Atmospheric forcing used by land surface models is a critical component of the North American Land Data Assimilation System (NLDAS) and its quality crucially affects the final product of NLDAS and our work on model improvement. A three-year (September 1996-September 1999) retrospective forcing data set was created from the Eta Data Assimilation System and observations and used to run the NLDAS land surface models for this period. We compared gridded NLDAS forcing with station observations obtained from networks including the Oklahoma Mesonet and Atmospheric Radiation Measurement/Cloud and Radiation Testbed at the southern Great Plains. Differences in all forcing variables except precipitation between the NLDAS forcing data set and station observations are small at all timescales. While precipitation data do not agree very well at an hourly timescale, they do agree better at longer timescales because of the way NLDAS precipitation forcing is generated. A small high bias in downward solar radiation and a low bias in downward longwave radiation exist in the retrospective forcing. To investigate the impact of these differences on land surface modeling we compared two sets of model simulations, one forced by the standard NLDAS product and one with station-observed meteorology. The differences in the resulting simulations of soil moisture and soil temperature for each model were small, much smaller than the differences between the models and between the models and observations. This indicates that NLDAS retrospective forcing provides an excellent state-of-the-art data set for land surface modeling, at least over the southern Great Plains region.

  7. Polar boundary layer bromine explosion and ozone depletion events in the chemistry-climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    NASA Astrophysics Data System (ADS)

    Falk, Stefanie; Sinnhuber, Björn-Martin

    2018-03-01

    Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.

  8. The influence of surface roughness of deserts on the July circulation - A numerical study

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Smith, W. E.

    1985-01-01

    The effect of the low surface roughness characteristics of deserts on atmospheric circulation in July is examined using numerical simulations with the GCM of the Goddard Laboratory for Atmospheric Science (GLAS). Identical sets of simulations were carried out with the model starting from the initial state of the atmosphere on June 15, for the years 1979 and 1980. The first simulation included a surface roughness factor of 45 cm, and the second set had a surface roughness factor of 0.02 cm for desert regions, and 45 cm for all other land. A comparative analysis of the numerical data was carried out in order to study the variations for the desert regions. It is shown that rainfall in the Sahara desert was reduced significantly in the data set with the nonuniform surface roughness factor in comparison with the other data set. The inter-tropical convergence zone (ITCZ) moved southward to about 15 degrees, which was close to its observed location at about 10 degrees N. In other deserts, the North American Great Plains, Rajputana in India, and the Central Asian desert, no similar changes were observed. Detailed contour maps of the weather conditions in the different desert regions are provided.

  9. D.R.O.P: The Durable Reconnaissance and Observation Platform

    NASA Technical Reports Server (NTRS)

    McKenzie, Clifford; Parness, Aaron

    2011-01-01

    Robots can provide a remote presence in areas that are either inaccessible or too dangerous for humans. However, robots are often limited by their ability to adapt to the terrain or resist environmental factors. The Durable Reconnaissance and Observation Platform (DROP) is a lightweight robot that addresses these challenges with the capability to survive falls from significant heights, carry a useable payload, and traverse a variety of surfaces, including climbing vertical surfaces like wood, stone, and concrete. DROP is manufactured using a combination of rapid prototyping and shape deposition manufacturing. It uses microspine technology to create a new wheel-like design for vertical climbing. To date, DROP has successfully engaged several vertical surfaces, hanging statically without assistance, and traversed horizontal surfaces at approximately 30 cm/s. Unassisted vertical climbing is capable on surfaces up to 85deg at a rate of approximately 25cm*s(sup -1). DROP can also survive falls from up to 3 meters and has the ability to be thrown off of and onto rooftops. Future efforts will focus on improving the microspine wheels, selecting more resilient materials, customizing the controls, and performing more rigorous and quantifiable testing.

  10. Observations of Equatorial Kelvin Waves and their Convective Coupling with the Atmosphere/Ocean Surface Layer

    NASA Astrophysics Data System (ADS)

    Conry, Patrick; Fernando, H. J. S.; Leo, Laura; Blomquist, Byron; Amelie, Vincent; Lalande, Nelson; Creegan, Ed; Hocut, Chris; MacCall, Ben; Wang, Yansen; Jinadasa, S. U. P.; Wang, Chien; Yeo, Lik-Khian

    2016-11-01

    Intraseasonal disturbances with their genesis in the equatorial Indian Ocean (IO) are an important component of global climate. The disturbances, which include Madden-Julian Oscillation and equatorial Kelvin and Rossby waves in the atmosphere and ocean, carry energy which affects El Niño, cyclogenesis, and monsoons. A recent field experiment in IO (ASIRI-RAWI) observed disturbances at three sites across IO with arrays of instruments probing from surface layer to lower stratosphere. During the field campaign the most pronounced planetary-scale disturbances were Kelvin waves in tropical tropopause layer. In Seychelles, quasi-biweekly westerly wind bursts were documented and linked to the Kelvin waves aloft, which breakdown in the upper troposphere due to internal shear instabilities. Convective coupling between waves' phase in upper troposphere and surface initiates rapid (turbulent) vertical transport and resultant wind bursts at surface. Such phenomena reveal linkages between planetary-scale waves and small-scale turbulence in the surface layer that can affect air-sea property exchanges and should be parameterized in atmosphere-ocean general circulation models. Funded by ONR Grants N00014-14-1-0279 and N00014-13-1-0199.

  11. Contact lens-related dry eye and ocular surface changes with mapping technique in long-term soft silicone hydrogel contact lens wearers.

    PubMed

    Sengor, Tomris; Aydin Kurna, Sevda; Ozbay, Nurver; Ertek, Semahat; Aki, Suat; Altun, Ahmet

    2012-01-01

    To evaluate ocular surface changes in long-term silicone hydrogel contact lens wearers. Thirty patients were included in this study. Twenty patients (40 eyes) using contact lenses constituted group 1 and 10 (20 eyes) volunteers constituted group 2. The duration of average contact lens usage was 7.74 ± 3.3 years. Ocular surface was evaluated by surface staining, tear film break-up time (TBUT), Schirmer I test, and conjunctival impression cytology with color-coded mapping technique and by the Ocular Surface Disease Index (OSDI). The mean break-up time was lower and staining scores were higher in group 1 (p<0.001) but Schirmer values were not significantly different from group 2 (p>0.05). The mean OSDI score was 34.59 ± 11.93 to 19.28 ± 6.7 in group 1 and 2. Increased metaplastic predominant changes of grade II and III were observed in the interpalpebral and perilimbal areas in group 1. Significant correlations were observed in TBUT, cornea staining, and grade II to grade III metaplasia ratios between duration of the lens usage and contact lens wear time in a day. Silicone hydrogel lenses produce significant changes on tear film and impression cytology of the ocular surface in long-term use.

  12. Effects of including surface depressions in the application of the Precipitation-Runoff Modeling System in the Upper Flint River Basin, Georgia

    USGS Publications Warehouse

    Viger, Roland J.; Hay, Lauren E.; Jones, John W.; Buell, Gary R.

    2010-01-01

    This report documents an extension of the Precipitation Runoff Modeling System that accounts for the effect of a large number of water-holding depressions in the land surface on the hydrologic response of a basin. Several techniques for developing the inputs needed by this extension also are presented. These techniques include the delineation of the surface depressions, the generation of volume estimates for the surface depressions, and the derivation of model parameters required to describe these surface depressions. This extension is valuable for applications in basins where surface depressions are too small or numerous to conveniently model as discrete spatial units, but where the aggregated storage capacity of these units is large enough to have a substantial effect on streamflow. In addition, this report documents several new model concepts that were evaluated in conjunction with the depression storage functionality, including: ?hydrologically effective? imperviousness, rates of hydraulic conductivity, and daily streamflow routing. All of these techniques are demonstrated as part of an application in the Upper Flint River Basin, Georgia. Simulated solar radiation, potential evapotranspiration, and water balances match observations well, with small errors for the first two simulated data in June and August because of differences in temperatures from the calibration and evaluation periods for those months. Daily runoff simulations show increasing accuracy with streamflow and a good fit overall. Including surface depression storage in the model has the effect of decreasing daily streamflow for all but the lowest flow values. The report discusses the choices and resultant effects involved in delineating and parameterizing these features. The remaining enhancements to the model and its application provide a more realistic description of basin geography and hydrology that serve to constrain the calibration process to more physically realistic parameter values.

  13. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    NASA Astrophysics Data System (ADS)

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, H. A. M.; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2016-09-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.

  14. A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Borge, Rafael; Alexandrov, Vassil; José del Vas, Juan; Lumbreras, Julio; Rodríguez, Encarnacion

    Meteorological inputs play a vital role on regional air quality modelling. An extensive sensitivity analysis of the Weather Research and Forecasting (WRF) model was performed, in the framework of the Integrated Assessment Modelling System for the Iberian Peninsula (SIMCA) project. Up to 23 alternative model configurations, including Planetary Boundary Layer schemes, Microphysics, Land-surface models, Radiation schemes, Sea Surface Temperature and Four-Dimensional Data Assimilation were tested in a 3 km spatial resolution domain. Model results for the most significant meteorological variables, were assessed through a series of common statistics. The physics options identified to produce better results (Yonsei University Planetary Boundary Layer, WRF Single-Moment 6-class microphysics, Noah Land-surface model, Eta Geophysical Fluid Dynamics Laboratory longwave radiation and MM5 shortwave radiation schemes) along with other relevant user settings (time-varying Sea Surface Temperature and combined grid-observational nudging) where included in a "best case" configuration. This setup was tested and found to produce more accurate estimation of temperature, wind and humidity fields at surface level than any other configuration for the two episodes simulated. Planetary Boundary Layer height predictions showed a reasonable agreement with estimations derived from routine atmospheric soundings. Although some seasonal and geographical differences were observed, the model showed an acceptable behaviour overall. Despite being useful to define the most appropriate setup of the WRF model for air quality modelling over the Iberian Peninsula, this study provides a general overview of WRF sensitivity and can constitute a reference for future mesoscale meteorological modelling exercises.

  15. A Modeling and Experimental Investigation of the Effects of Antigen Density, Binding Affinity, and Antigen Expression Ratio on Bispecific Antibody Binding to Cell Surface Targets.

    PubMed

    Rhoden, John J; Dyas, Gregory L; Wroblewski, Victor J

    2016-05-20

    Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Tropical Ocean Global Atmosphere (TOGA) Meteorological and Oceanographic Data Sets for 1985 and 1986

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Ashby, H.; Finch, C.; Smith, E.; Robles, J.

    1990-01-01

    The Tropical Ocean Global Atmosphere (TOGA) Program is a component of the World Meteorological Organization (WMO)/International Council of Scientific Unions (ICSU) World Climate Research Program (WCRP). One of the objectives of TOGA, which began in 1985, is to determine the limits of predictability of monthly mean sea surface temperature variations in tropical regions. The TOGA program created a raison d'etre for an explosive growth of the tropical ocean observing system and a substantial improvement in numerical simulations from atmospheric and oceanic general circulation models. Institutions located throughout the world are involved in the TOGA-distributed active data archive system. The diverse TOGA data sets for 1985 and 1986, including results from general circulation models, are included on a CD-ROM. Variables on the CD-ROM are barometric pressure, surface air temperature, dewpoint temperature Cartesian components of surface wind, surface sensible and latent heat fluxes,Cartesian components of surface wind stress and of an index of surface wind stress, sea level, sea surface temperature, and depth profiles of temperature and current in the upper ocean. Some data sets are global in extent, some are regional and cover portions of an ocean basin. Data on the CD-ROM can be extracted with an Apple Macintosh or an IBM PC.

  17. Liouville master equation for multielectron dynamics: Neutralization of highly charged ions near a LiF surface

    NASA Astrophysics Data System (ADS)

    Wirtz, Ludger; Reinhold, Carlos O.; Lemell, Christoph; Burgdörfer, Joachim

    2003-01-01

    We present a simulation of the neutralization of highly charged ions in front of a lithium fluoride surface including the close-collision regime above the surface. The present approach employs a Monte Carlo solution of the Liouville master equation for the joint probability density of the ionic motion and the electronic population of the projectile and the target surface. It includes single as well as double particle-hole (de)excitation processes and incorporates electron correlation effects through the conditional dynamics of population strings. The input in terms of elementary one- and two-electron transfer rates is determined from classical trajectory Monte Carlo calculations as well as quantum-mechanical Auger calculations. For slow projectiles and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration towards the surface and repulsion by an ensemble of positive hole charges in the surface (“trampoline effect”). For Ne10+ we find that image acceleration is dominant and no collective backscattering high above the surface takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In accordance with recent experimental observations, most ions are reflected as neutral or even as singly charged negative particles, irrespective of the charge state of the incoming ions.

  18. Imaging Stellar Surface with The CHARA Array

    NASA Astrophysics Data System (ADS)

    Schaefer, Gail

    2018-04-01

    I will provide an overview of results on imaging stellar surfaces with the CHARA Array. These include imaging gravity darkening on rapid rotators, starspots on magnetically active stars, convective cells on red supergiants, and stellar winds from massive stars. In binary systems, the CHARA Array has been used to observe tidal distortions from Roche lobe filling in interactive binaries, transiting companions as they move through eclipse, and the angular expansion of novae explosions. I will discuss the impact of these results in an astrophysical context.

  19. Physical properties of Aten, Apollo and Amor asteroids

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy-Ann; Tholen, David J.; Veeder, Glenn J.

    1989-01-01

    Data available on the physical properties of a group of planet-crossing asteroids, the Aten, Apollo, and Amor objects (AAAO) (include data on the taxonomy, mineralogical surface composition, diameter, rotation rate, shape, and surface texture) are presented together with the type of observations used for obtaining these data. These data show that the population of the AAAO is diverse in all of their physical characteristics. This diversity implies that the AAAO come from multiple sources and had different evolutionary histories.

  20. Three mirror glancing incidence system for X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, R. B. (Inventor)

    1974-01-01

    A telescope suitable for soft X-ray astronomical observations consists of a paraboloid section for receiving rays at a grazing angle and a hyperboloid section which receives reflections from the paraboloid at a grazing angle and directs them to a predetermined point of focus. A second hyperboloid section is centrally located from the other two surfaces and positioned to reflect from its outer surface radiation which was not first reflected by the paraboloid. A shutter is included to assist in calibration.

  1. Mathematical model of solar radiation based on climatological data from NASA SSE

    NASA Astrophysics Data System (ADS)

    Obukhov, S. G.; Plotnikov, I. A.; Masolov, V. G.

    2018-05-01

    An original model of solar radiation arriving at the arbitrarily oriented surface has been developed. The peculiarity of the model is that it uses numerical values of the atmospheric transparency index and the surface albedo from the NASA SSE database as initial data. The model is developed in the MatLab/Simulink environment to predict the main characteristics of solar radiation for any geographical point in Russia, including those for territories with no regular actinometric observations.

  2. SIMULATION OF SUMMER-TIME DIURNAL BACTERIAL DYNAMICS IN THE ATMOSPHERIC SURFACE LAYER

    EPA Science Inventory

    A model was prepared to simulate the observed concentration dynamics of culturable bacteria in the diurnal summer atmosphere at a Willamette River Valley, Oregon location. The meteorological and bacterial mechanisms included in a dynamic null-dimensional model with one-second tim...

  3. Atmospheric Visual and Infrared Transmission Deduced from Surface Weather Observations: Weather and Warplanes. V1

    DTIC Science & Technology

    1976-10-01

    record is about 12 years (4]. TablP I lists, Table I RAW9AB FILES FOR GERMANY Dates of Record (mo/yr) Observation Interval Number of Location From To...60 6 12,907 Magdeburg 1/52 12/63 3, 6 22,796 Minster 8/59 11/71 3 32,594 Neubiberg 2/46 1/58 1 104,778 aMaialy daytime observations. - • for...illustration, the RAWDAB files for West and East Germany , including the dates of record, observation interval, and total number of observa- tions for each

  4. A reanalysis dataset of the South China Sea.

    PubMed

    Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu

    2014-01-01

    Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992-2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability.

  5. The Lunar Atmosphere: History, Status, Current Problems, and Context

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan .

    1997-01-01

    After decades of speculation and fruitless searches, the lunar atmosphere was first observed by Apollo surface and orbital instruments between 1970 and 1972. With the demise of Apollo in 1972, and the termination of funding for Apollo lunar ground station studies in 1977, the field withered for many years, but has recently enjoyed a renaissance. This reflowering has been driven by the discovery and exploration of sodium and potassium in the lunar exosphere by groundbased observers, the detection of metal ions derived from the Moon in interplanetary space, the possible discoveries of H2O ice at the poles of the Moon and Mercury, and the detections of tenuous atmospheres around more remote sites in the solar system, including Mercury and the Galilean satellites. In this review we summarize the present state of knowledge about the lunar atmosphere, describe the important physical processes taking place within it, and then discuss related topics including a comparison of the lunar atmosphere to other surface boundary exospheres in the solar system.

  6. A reanalysis dataset of the South China Sea

    PubMed Central

    Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu

    2014-01-01

    Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992–2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability. PMID:25977803

  7. UV Signatures of Ices: Moons in the Solar System

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Hansen, C. J.; Retherford, K. D.; Vilas, F.

    2017-12-01

    Using Earth-orbiting telescopes such as the International Ultraviolet Explorer and the Hubble Space Telescope, significant advances have been made in the area of ultraviolet observations of solar system objects. More in-depth studies have been made using interplanetary probes such as Galileo, Cassini and Lunar Reconnaissance Orbiter (LRO). While the UV spectral range has traditionally been used to study atmospheric and auroral processes, there is much to be learned by examining solid surfaces in the UV, including surface composition, weathering processes and effects, and the generation of thin atmospheres. Here we focus on moons in the solar system, including Earth's moon and the Saturnian satellites. The diagnostic UV signature of H2O is used to study ice in the lunar polar regions as well as hydration at lower latitudes, in observations from LRO LAMP. The water ice signature is nearly ubiquitous in the Saturn system; Cassini UVIS datasets are used to study grain sizes, exogenic processes/effects and non-ice species.

  8. Ultraviolet Views of Enceladus, Tethys, and Dione

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Hendrix, A. R.

    2005-01-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has collected ultraviolet observations of many of Saturn's icy moons since Cassini's insertion into orbit around Saturn. We will report on results from Enceladus, Tethys and Dione, orbiting in the Saturn system at distances of 3.95, 4.88 and 6.26 Saturn radii, respectively. Icy satellite science objectives of the UVIS include investigations of surface age and evolution, surface composition and chemistry, and tenuous exospheres. We address these objectives by producing albedo maps, and reflection and emission spectra, and observing stellar occultations. UVIS has four channels: EUV: Extreme Ultraviolet (55 nm to 110 nm), FUV: Far Ultraviolet (110 to 190 nm), HSP: High Speed Photometer, and HDAC: Hydrogen-Deuterium Absorption Cell. The EUV and FUV spectrographs image onto a 2-dimensional detector, with 64 spatial rows by 1024 spectral columns. To-date we have focused primarily on the far ultraviolet data acquired with the low resolution slit width (4.8 angstrom spectral resolution). Additional information is included in the original extended abstract.

  9. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux

    NASA Astrophysics Data System (ADS)

    Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.

    2015-07-01

    Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of -30 Wm-2 that persists for several months during winter, significantly affecting sea ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, M.; Kudo, T.; Terada, H.

    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H{sub 2}O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without themore » photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models.« less

  11. The use of satellite observations of the ocean surface in commercial fishing operations

    NASA Technical Reports Server (NTRS)

    Montgomery, D. R.

    1983-01-01

    Commercial fishermen are interested in the safety of their crews, boats, and gear, and in making the best catch for their time and money. Rising fuel costs, increased competition from foreign fisheries, improved knowledge about fish habits and the new 200 mile economic zone have all had an impact on the U.S. fishing industry. As a consequence, the modern fisherman, more than ever, requires reliable and timely information about the marine environment. This paper describes an experimental program to utilize satellite observations of the ocean surface, in conjunction with conventional observations and products, to prepare special fisheries aids charts for daily radio facsimile broadcasts to commercial fishermen. These special fisheries products aggregate a broad set of ocean observations, including ocean color structure, to depict oceanographic conditions of importance to commercial fishing tactics. Results to date have shown that improved safety at sea and decreased fuel costs can be achieved through the applied use of these special fisheries charts.

  12. Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  13. Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts

    DOE PAGES

    Ukkola, A. M.; De Kauwe, M. G.; Pitman, A. J.; ...

    2016-10-13

    Land surface models (LSMs) must accurately simulate observed energy and water fluxes during droughts in order to provide reliable estimates of future water resources. We evaluated 8 different LSMs (14 model versions) for simulating evapotranspiration (ET) during periods of evaporative drought (Edrought) across six flux tower sites. Using an empirically defined Edrought threshold (a decline in ET below the observed 15th percentile), we show that LSMs simulated 58 Edrought days per year, on average, across the six sites, ~3 times as many as the observed 20 d. The simulated Edrought magnitude was ~8 times greater than observed and twice asmore » intense. Our findings point to systematic biases across LSMs when simulating water and energy fluxes under water-stressed conditions. The overestimation of key Edrought characteristics undermines our confidence in the models' capability in simulating realistic drought responses to climate change and has wider implications for phenomena sensitive to soil moisture, including heat waves.« less

  14. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters, and the single scattering albedo. After this climatological calibration, the modeling system can provide L-band brightness temperatures with a global mean absolute bias of less than 10K against SMOS observations, across multiple incidence angles and for horizontal and vertical polarization. Third, seasonal and regional variations in the residual biases are addressed by estimating the vegetation optical depth through state augmentation during the assimilation of the L-band brightness temperatures. This strategy, tested here with SMOS data, is part of the baseline approach for the Level 4 Surface and Root Zone Soil Moisture data product from the planned Soil Moisture Active Passive (SMAP) satellite mission.

  15. The impact of Surface Wind Velocity Data Assimilation on the Predictability of Plume Advection in the Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Sekiyama, Thomas; Kajino, Mizuo; Kunii, Masaru

    2017-04-01

    The authors investigated the impact of surface wind velocity data assimilation on the predictability of plume advection in the lower troposphere exploiting the radioactive cesium emitted by the Fukushima nuclear accident in March 2011 as an atmospheric tracer. It was because the radioactive cesium plume was dispersed from the sole point source exactly placed at the Fukushima Daiichi Nuclear Power Plant and its surface concentration was measured at many locations with a high frequency and high accuracy. We used a non-hydrostatic regional weather prediction model with a horizontal resolution of 3 km, which was coupled with an ensemble Kalman filter data assimilation system in this study, to simulate the wind velocity and plume advection. The main module of this weather prediction model has been developed and used operationally by the Japan Meteorological Agency (JMA) since before March 2011. The weather observation data assimilated into the model simulation were provided from two data resources; [#1] the JMA observation archives collected for numerical weather predictions (NWPs) and [#2] the land-surface wind velocity data archived by the JMA surface weather observation network. The former dataset [#1] does not contain land-surface wind velocity observations because their spatial representativeness is relatively small and therefore the land-surface wind velocity data assimilation normally deteriorates the more than one day NWP performance. The latter dataset [#2] is usually used for real-time weather monitoring and never used for the data assimilation of more than one day NWPs. We conducted two experiments (STD and TEST) to reproduce the radioactive cesium plume behavior for 48 hours from 12UTC 14 March to 12UTC 16 March 2011 over the land area of western Japan. The STD experiment was performed to replicate the operational NWP using only the #1 dataset, not assimilating land-surface wind observations. In contrast, the TEST experiment was performed assimilating both the #1 dataset and the #2 dataset including land-surface wind observations measured at more than 200 stations in the model domain. The meteorological boundary conditions for both the experiments were imported from the JMA operational global NWP model results. The modeled radioactive cesium concentrations were examined for plume arrival timing at each observatory comparing with the hourly-measured "suspended particulate matter" filter tape's cesium concentrations retrieved by Tsuruta et al. at more than 40 observatories. The averaged difference of the plume arrival times at 40 observatories between the observational reality and the STD experiment was 82.0 minutes; at this time, the forecast period was 13 hours on average. Meanwhile, The averaged difference of the TEST experiment was 72.8 minutes, which was smaller than that of the STD experiment with a statistical significance of 99.2 %. In summary, the land-surface wind velocity data assimilation improves the predictability of plume advection in the lower troposphere at least in the case of wintertime air pollution over complex terrain. We need more investigation into the data assimilation impact of land-surface weather observations on the predictability of pollutant dispersion especially in the planetary boundary layer.

  16. Mercury's Exosphere During MESSENGER's Second Flyby: Detection of Magnesium and Distinct Distributions of Neutral Species

    NASA Technical Reports Server (NTRS)

    McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Killen, Rosemary M.; Mouawad, Nelly; Sprague, Ann L.; Burger, Matthew H.; Solomon, Sean C.; Izenberg, Noam R.

    2009-01-01

    During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

  17. Chromospheric Heating in Late-Type Stars: Evidence for Magnetic and Nonmagnetic Surface Structure

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred

    1996-01-01

    The aim of this paper is to evaluate recent observational and theoretical results concerning the physics of chromospheric heating as inferred from IUE, HST-GHRS and ROSAT data. These results are discussed in conjunction with theoretical model calculations based on acoustic and magnetic heating to infer some conclusions about the magnetic and non-magnetic surface structure of cool luminous stars. I find that most types of stars may exhibit both magnetic and nonmagnetic structures. Candidates for pure nonmagnetic surface structure include M-type giants and super-giants. M-type supergiants are also ideal candidates for identifying direct links between the appearance of hot spots on the stellar surface (perhaps caused by large convective bubbles) and temporarily increased chromospheric heating and emission.

  18. Analytical bond order potential for simulations of BeO 1D and 2D nanostructures and plasma-surface interactions

    NASA Astrophysics Data System (ADS)

    Byggmästar, J.; Hodille, E. A.; Ferro, Y.; Nordlund, K.

    2018-04-01

    An analytical interatomic bond order potential for the Be-O system is presented. The potential is fitted and compared to a large database of bulk BeO and point defect properties obtained using density functional theory. Its main applications include simulations of plasma-surface interactions involving oxygen or oxide layers on beryllium, as well as simulations of BeO nanotubes and nanosheets. We apply the potential in a study of oxygen irradiation of Be surfaces, and observe the early stages of an oxide layer forming on the Be surface. Predicted thermal and elastic properties of BeO nanotubes and nanosheets are simulated and compared with published ab initio data.

  19. Novel surface diffusion characteristics for a robust pentacene derivative on Au(1 1 1) surfaces

    NASA Astrophysics Data System (ADS)

    Miller, Ryan A.; Larson, Amanda; Pohl, Karsten

    2017-06-01

    Molecular dynamics simulations have been performed in both the ab initio and classical mechanics frameworks of 5,6,7-trithiapentacene-13-one (TTPO) molecules on flat Au(1 1 1) surfaces. Results show new surface diffusion characteristics including a strong preference for the molecule to align its long axis parallel to the sixfold Au(1 1 1) symmetry directions and subsequently diffuse along these close-packed directions, and a calculated activation energy for diffusion of 0.142 eV, about four times larger than that for pure pentacene on Au. The temperature-dependent diffusion coefficients were calculated to help quantify the molecular mobility during the experimentally observed process of forming self-assembled monolayers on gold electrodes.

  20. Applications of Geomatics in Surface Mining

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Górniak-Zimroz, Justyna; Milczarek, Wojciech; Pactwa, Katarzyna

    2017-12-01

    In terms of method of extracting mineral from deposit, mining can be classified into: surface, underground, and borehole mining. Surface mining is a form of mining, in which the soil and the rock covering the mineral deposits are removed. Types of surface mining include mainly strip and open-cast methods, as well as quarrying. Tasks associated with surface mining of minerals include: resource estimation and deposit documentation, mine planning and deposit access, mine plant development, extraction of minerals from deposits, mineral and waste processing, reclamation and reclamation of former mining grounds. At each stage of mining, geodata describing changes occurring in space during the entire life cycle of surface mining project should be taken into consideration, i.e. collected, analysed, processed, examined, distributed. These data result from direct (e.g. geodetic) and indirect (i.e. remote or relative) measurements and observations including airborne and satellite methods, geotechnical, geological and hydrogeological data, and data from other types of sensors, e.g. located on mining equipment and infrastructure, mine plans and maps. Management of such vast sources and sets of geodata, as well as information resulting from processing, integrated analysis and examining such data can be facilitated with geomatic solutions. Geomatics is a discipline of gathering, processing, interpreting, storing and delivering spatially referenced information. Thus, geomatics integrates methods and technologies used for collecting, management, processing, visualizing and distributing spatial data. In other words, its meaning covers practically every method and tool from spatial data acquisition to distribution. In this work examples of application of geomatic solutions in surface mining on representative case studies in various stages of mine operation have been presented. These applications include: prospecting and documenting mineral deposits, assessment of land accessibility for a potential large-scale surface mining project, modelling mineral deposit (granite) management, concept of a system for management of conveyor belt network technical condition, project of a geoinformation system of former mining terrains and objects, and monitoring and control of impact of surface mining on mine surroundings with satellite radar interferometry.

  1. Earthquake rupture process recreated from a natural fault surface

    USGS Publications Warehouse

    Parsons, Thomas E.; Minasian, Diane L.

    2015-01-01

    What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M~1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, though we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties, and suggest that larger ruptures might begin and end in a similar way, though the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude dependent phenomenon and could vary with each subsequent rupture.

  2. Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol A.

    2012-01-01

    The Eastern tropical ocean basins are regions of significant atmosphere-ocean interaction and are important to variability across subseasonal to decadal time scales. The numerous physical processes at play in these areas strain the abilities of coupled general circulation models to accurately reproduce observed upper ocean variability. Furthermore, limitations in the observing system of important terms in the surface temperature balance (e.g., turbulent and radiative heat fluxes, advection) introduce uncertainty into the analyses of processes controlling sea surface temperature variability. This study presents recent efforts to close the surface temperature balance through estimation of the terms in the mixed layer temperature budget using state-of-the-art remotely sensed and model-reanalysis derived products. A set of twelve net heat flux estimates constructed using combinations of radiative and turbulent heat flux products - including GEWEX-SRB, ISCCP-SRF, OAFlux, SeaFlux, among several others - are used with estimates of oceanic advection, entrainment, and mixed layer depth variability to investigate the seasonal variability of ocean surface temperatures. Particular emphasis is placed on how well the upper ocean temperature balance is, or is not, closed on these scales using the current generation of observational and model reanalysis products. That is, the magnitudes and spatial variability of residual imbalances are addressed. These residuals are placed into context within the current uncertainties of the surface net heat fluxes and the role of the mixed layer depth variability in scaling the impact of those uncertainties, particularly in the shallow mixed layers of the Eastern tropical ocean basins.

  3. Nanomorphology of Itokawa regolith particles: Application to space-weathering processes affecting the Itokawa asteroid

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toru; Tsuchiyama, Akira; Uesugi, Kentaro; Nakano, Tsukasa; Uesugi, Masayuki; Matsuno, Junya; Nagano, Takashi; Shimada, Akira; Takeuchi, Akihisa; Suzuki, Yoshio; Nakamura, Tomoki; Nakamura, Michihiko; Gucsik, Arnold; Nagaki, Keita; Sakaiya, Tatsuhiro; Kondo, Tadashi

    2016-08-01

    The morphological properties of 26 regolith particles from asteroid Itokawa were observed using scanning electron microscopes in combination with an investigation of their three-dimensional shapes obtained through X-ray microtomography. Surface observations of a cross section of the LL5 chondrite, and of crystals of olivine and pyroxene, were also performed for comparison. Some Itokawa particles have surfaces corresponding to walls of microdruses in the LL chondrite, where concentric polygonal steps develop and euhedral or subhedral grains exist. These formed through vapor growth owing to thermal annealing, which might have been caused by thermal metamorphism or shock-induced heating in Itokawa's parent body. Most of the Itokawa particles have more or less fractured surfaces, indicating that they were formed by disaggregation, probably caused by impacts. Itokawa particles with angular and rounded edges observed in computed tomography images are associated with surfaces exhibiting clear and faint structures, respectively. These surfaces can be interpreted by invoking different degrees of abrasion after regolith formation. A possible mechanism for the abrasion process is grain migration caused by impact-driven seismic waves. Space-weathered rims with blisters are distributed heterogeneously across the Itokawa regolith particles. This heterogeneous distribution can be explained by particle motion and fracturing, combined with solar-wind irradiation of the particle surfaces. The regolith activity-including grain motion, fracturing, and abrasion-might effectively act as refreshing process of Itokawa particles against space-weathered rim formation. The space-weathering processes affecting Itokawa would have developed simultaneously with space-weathered rim formation and regolith particle refreshment.

  4. Pulsar and CV Observations

    NASA Astrophysics Data System (ADS)

    Malina, R. F.

    PSR_0656+14: Measurement of surface thermal emission from neutron stars (NS) is essential to theories regarding the condensed matter state equation, the thermal evolution of NS, and of NS atmospheres. We propose to conduct 50 Ang band FUV photometric observations of PSR B0656+14, an X-ray, SXR and EUV bright isolated NS with an optical counterpart. FUV photometry will provide critical characterization of the NS's surface thermal radiation. Higher energy observations may be effected by poorly established effects including magnetized atmospheres, chemical compositions, temperature gradients and gravitational effects. Optical observations may be subject to non-thermal effects. V3885 Sgr: V3885 Sgr is one of the brightest nonmagnetic cataclysmic variables. We propose to observe V3885 Sgr for 5 to 6 contiguous FUSE orbits, achieving a S/N of about 12 at full resolution even at the troughs of the source's O VI absorption lines in each spectrum (assuming 2000 sec visibility per orbit). The primary purpose of the observations is to use the source as a bright continuum against which to study local interstellar absorption lines. Although observed on Malina's Co-I Program, the data will be analyzed in collaboration with members of the O VI Project.

  5. Observations, models, and mechanisms of failure of surface rocks surrounding planetary surface loads

    NASA Technical Reports Server (NTRS)

    Schultz, R. A.; Zuber, M. T.

    1994-01-01

    Geophysical models of flexural stresses in an elastic lithosphere due to an axisymmetric surface load typically predict a transition with increased distance from the center of the load of radial thrust faults to strike-slip faults to concentric normal faults. These model predictions are in conflict with the absence of annular zones of strike-slip faults around prominent loads such as lunar maria, Martian volcanoes, and the Martian Tharsis rise. We suggest that this paradox arises from difficulties in relating failure criteria for brittle rocks to the stress models. Indications that model stresses are inappropriate for use in fault-type prediction include (1) tensile principal stresses larger than realistic values of rock tensile strength, and/or (2) stress differences significantly larger than those allowed by rock-strength criteria. Predictions of surface faulting that are consistent with observations can be obtained instead by using tensile and shear failure criteria, along with calculated stress differences and trajectories, with model stress states not greatly in excess of the maximum allowed by rock fracture criteria.

  6. Is the perception of 3D shape from shading based on assumed reflectance and illumination?

    PubMed

    Todd, James T; Egan, Eric J L; Phillips, Flip

    2014-01-01

    The research described in the present article was designed to compare three types of image shading: one generated with a Lambertian BRDF and homogeneous illumination such that image intensity was determined entirely by local surface orientation irrespective of position; one that was textured with a linear intensity gradient, such that image intensity was determined entirely by local surface position irrespective of orientation; and another that was generated with a Lambertian BRDF and inhomogeneous illumination such that image intensity was influenced by both position and orientation. A gauge figure adjustment task was used to measure observers' perceptions of local surface orientation on the depicted surfaces, and the probe points included 60 pairs of regions that both had the same orientation. The results show clearly that observers' perceptions of these three types of stimuli were remarkably similar, and that probe regions with similar apparent orientations could have large differences in image intensity. This latter finding is incompatible with any process for computing shape from shading that assumes any plausible reflectance function combined with any possible homogeneous illumination.

  7. Is the perception of 3D shape from shading based on assumed reflectance and illumination?

    PubMed Central

    Todd, James T.; Egan, Eric J. L.; Phillips, Flip

    2014-01-01

    The research described in the present article was designed to compare three types of image shading: one generated with a Lambertian BRDF and homogeneous illumination such that image intensity was determined entirely by local surface orientation irrespective of position; one that was textured with a linear intensity gradient, such that image intensity was determined entirely by local surface position irrespective of orientation; and another that was generated with a Lambertian BRDF and inhomogeneous illumination such that image intensity was influenced by both position and orientation. A gauge figure adjustment task was used to measure observers' perceptions of local surface orientation on the depicted surfaces, and the probe points included 60 pairs of regions that both had the same orientation. The results show clearly that observers' perceptions of these three types of stimuli were remarkably similar, and that probe regions with similar apparent orientations could have large differences in image intensity. This latter finding is incompatible with any process for computing shape from shading that assumes any plausible reflectance function combined with any possible homogeneous illumination. PMID:26034561

  8. Method for detecting surface motions and mapping small terrestrial or planetary surface deformations with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Gabriel, Andrew K. (Inventor); Goldstein, Richard M. (Inventor); Zebker, Howard A. (Inventor)

    1990-01-01

    A technique based on synthetic aperture radar (SAR) interferometry is used to measure very small (1 cm or less) surface deformations with good resolution (10 m) over large areas (50 km). It can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual, vertical and lateral displacements from seismic events, and prevolcanic swelling. Two SAR images are made of a scene by two spaced antennas and a difference interferogram of the scene is made. After unwrapping phases of pixels of the difference interferogram, surface motion or deformation changes of the surface are observed. A second interferogram of the same scene is made from a different pair of images, at least one of which is made after some elapsed time. The second interferogram is then compared with the first interferogram to detect changes in line of sight position of pixels. By resolving line of sight observations into their vector components in other sets of interferograms along at least one other direction, lateral motions may be recovered in their entirety. Since in general, the SAR images are made from flight tracks that are separated, it is not possible to distinguish surface changes from the parallax caused by topography. However, a third image may be used to remove the topography and leave only the surface changes.

  9. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 - Part 2: Antarctica (1979-2016)

    NASA Astrophysics Data System (ADS)

    Melchior van Wessem, Jan; van de Berg, Willem Jan; Noël, Brice P. Y.; van Meijgaard, Erik; Amory, Charles; Birnbaum, Gerit; Jakobs, Constantijn L.; Krüger, Konstantin; Lenaerts, Jan T. M.; Lhermitte, Stef; Ligtenberg, Stefan R. M.; Medley, Brooke; Reijmer, Carleen H.; van Tricht, Kristof; Trusel, Luke D.; van Ulft, Lambertus H.; Wouters, Bert; Wuite, Jan; van den Broeke, Michiel R.

    2018-04-01

    We evaluate modelled Antarctic ice sheet (AIS) near-surface climate, surface mass balance (SMB) and surface energy balance (SEB) from the updated polar version of the regional atmospheric climate model, RACMO2 (1979-2016). The updated model, referred to as RACMO2.3p2, incorporates upper-air relaxation, a revised topography, tuned parameters in the cloud scheme to generate more precipitation towards the AIS interior and modified snow properties reducing drifting snow sublimation and increasing surface snowmelt. Comparisons of RACMO2 model output with several independent observational data show that the existing biases in AIS temperature, radiative fluxes and SMB components are further reduced with respect to the previous model version. The model-integrated annual average SMB for the ice sheet including ice shelves (minus the Antarctic Peninsula, AP) now amounts to 2229 Gt y-1, with an interannual variability of 109 Gt y-1. The largest improvement is found in modelled surface snowmelt, which now compares well with satellite and weather station observations. For the high-resolution ( ˜ 5.5 km) AP simulation, results remain comparable to earlier studies. The updated model provides a new, high-resolution data set of the contemporary near-surface climate and SMB of the AIS; this model version will be used for future climate scenario projections in a forthcoming study.

  10. Numerical solution of the geoelectrodynamic problem

    NASA Technical Reports Server (NTRS)

    Cain, Joseph C.

    1990-01-01

    The primary goal is to understand the sources of the near-Earth ambient magnetic field as observed by recent spacecraft surveys and surface variational magnetic observations so as to determine the electrical properties of the crust and upper mantle. Also included is the structure and changes on a short time scale of the core field which must be separated and identified. The Magsat data collection interval provides an opportunity to compare the vector field projections of ionospheric currents computed from surface data above the ionosphere as does the POGO data for scalar projections. The limitation of Magsat is its sun-synchronous orbit, which only sampled low latitudes at dawn and dusk, whereas POGO, though only making observations of the scalar field, sampled all local times. Magsat operated at a lower altitude than POGO (down to 350 km) whereas the orbits of the three POGO spacecraft ranged up to 1500 km and were never lower than about 400 km.

  11. Model for interface formation and the resulting electrical properties for barium-strontium-titanate films on silicon

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.; Suvorova, N. A.; Irene, E. A.; Auciello, O.; Schultz, J. A.

    2003-04-01

    The interface formation between sputtered barium strontium titanate (BST) films and both Si and SiO2 substrate surfaces has been followed using real-time spectroscopic ellipsometry and the mass spectrometry of recoiled ions. In both substrates an intermixed interface layer was observed and subcutaneous Si oxidation occurred. A model for the interface formation is proposed in which the interface includes an SiO2 film on Si, and an intermixed film on which is pure BST. During the deposition of BST the interfaces films were observed to change in time. Electrical characterization of the resulting metal-BST interface capacitors indicates that those samples with SiO2 on the Si surface had the best electrical characteristics.

  12. How much hydrogen is there in a white dwarf?

    NASA Technical Reports Server (NTRS)

    Macdonald, James; Vennes, Stephane

    1991-01-01

    Stratified hydrogen/helium envelope models in diffusive equilibrium are calculated for a 0.6-solar-mass white dwarf for effective temperatures between 10,000 and 80,000 K in order to investigate the observational constraints placed on the total hydrogen mass. Convective mixing is included ab initio in the calculations, and synthetic spectra are used for comparing these models with observational materials. It is shown that evolutionary changes in the surface composition of white dwarfs cannot be explained by a model in which a small amount of hydrogen floats to the surface from initially being mixed in the outer parts of a helium envelope. It is pointed out that the shape of the hydrogen lines can be used for constraining theories of convective overshoot.

  13. Fluorescent detection of apoptotic cells using a family of zinc coordination complexes with selective affinity for membrane surfaces that are enriched with phosphatidylserine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Bradley D.; Lambert, Timothy N.; Lakshmi, C.

    2005-03-01

    The appearance of phosphatidylserine on the membrane surface of apoptotic cells (Jurkat, CHO, HeLa) is monitored by using a family of bis(Zn{sup 2+}-2,2{prime}-dipicolylamine) coordination compounds with appended fluorescein or biotin groups as reporter elements. The phosphatidylserine affinity group is also conjugated directly to a CdSe/CdS quantum dot to produce a probe suitable for prolonged observation without photobleaching. Apoptosis can be detected under a wide variety of conditions, including variations in temperature, incubation time, and binding media. Binding of each probe appears to be restricted to the cell membrane exterior, because no staining of organelles or internal membranes is observed.

  14. Multisite evaluation of environmental cleanliness of high-touch surfaces in intensive care unit patient rooms.

    PubMed

    Hopman, Joost; Donskey, Curtis J; Boszczowski, Icaro; Alfa, Michelle J

    2018-05-23

    The efficacy of discharge cleaning and disinfection of high-touch surfaces of intensive care unit patient rooms in Brazil, Canada, the Netherlands, and the United States was evaluated and the effect of an educational intervention was determined. Significant site-to-site differences in cleaning regimens and baseline cleanliness levels were observed using ATP levels, colony-forming units, and reflective surface marker removal percent pass rates. An educational intervention that includes rapid feedback of the ATP measurements could significantly improve the quality of the cleaning and disinfection regimens. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. All rights reserved.

  15. Ground-water and surface-water elevations in the Fairbanks International Airport area, Alaska, 1990-94

    USGS Publications Warehouse

    Claar, D.V.; Lilly, M.R.

    1995-01-01

    Ground-water and surface-water elevation data were collected at 52 sites from 1990 to 1994 by the U.S. Geological Survey in cooperation with the Alaska Department of Transportation and Public Facilities, Fairbanks International Airport. Water elevations were measured in 32 ground-water observation wells and at 20 surface-water sites to help characterize the geohydrology of the Fairbanks International Airport area. From 1990 to 1993, data were collected in the vicinity of the former fire-training area at the airport. From 1993 to 1994, the data-collection area was expanded to include the entire airport area.

  16. Skylab

    NASA Image and Video Library

    1972-01-01

    This concept illustrates Skylab Earth observation studies, an Earth Resources Experiment Package (EREP). EREP was designed to explore the use of the widest possible portion of the electromagnetic spectrum for Earth resource investigations with sensors that recorded data in the visible, infrared, and microwave spectral regions. Resources subject to this study included a capability of mapping Earth resources and land uses, crop and forestry cover, health of vegetation, types of soil, water storage in snow pack, surface or near-surface mineral deposits, sea surface temperature, and the location of likely feeding areas for fish, etc. A significant feature of EREP was the ability of man to operate the sensors in a laboratory fashion.

  17. Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team.

    PubMed

    McCord, T B; Hansen, G B; Fanale, F P; Carlson, R W; Matson, D L; Johnson, T V; Smythe, W D; Crowley, J K; Martin, P D; Ocampo, A; Hibbitts, C A; Granahan, J C

    1998-05-22

    Reflectance spectra in the 1- to 2.5-micrometer wavelength region of the surface of Europa obtained by Galileo's Near Infrared Mapping Spectrometer exhibit distorted water absorption bands that indicate the presence of hydrated minerals. The laboratory spectra of hydrated salt minerals such as magnesium sulfates and sodium carbonates and mixtures of these minerals provide a close match to the Europa spectra. The distorted bands are only observed in the optically darker areas of Europa, including the lineaments, and may represent evaporite deposits formed by water, rich in dissolved salts, reaching the surface from a water-rich layer underlying an ice crust.

  18. Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer

    USGS Publications Warehouse

    McCord, T.B.; Hansen, G.B.; Fanale, F.P.; Carlson, R.W.; Matson, D.L.; Johnson, T.V.; Smythe, W.D.; Crowley, J.K.; Martin, P.D.; Ocampo, A.; Hibbitts, C.A.; Granahan, J.C.

    1998-01-01

    Reflectance spectra in the 1- to 2.5-micrometer wavelength region of the surface of Europa obtained by Galileo's Near Infrared Mapping Spectrometer exhibit distorted water absorption bands that indicate the presence of hydrated minerals. The laboratory spectra of hydrated salt minerals such as magnesium sulfates and sodium carbonates and mixtures of these minerals provide a close match to the Europa spectra. The distorted bands are only observed in the optically darker areas of Europa, including the lineaments, and may represent evaporite deposits formed by water, rich in dissolved salts, reaching the surface from a water-rich layer underlying an ice crust.

  19. Bulk and surface electronic structures of MgO

    NASA Astrophysics Data System (ADS)

    Schönberger, U.; Aryasetiawan, F.

    1995-09-01

    The bulk electronic structure of MgO is calculated from first principles including correlation effects within the GW approximation. The band gap, the position of the 2s O band, and the valence band width are in good agreement with experiment. From the quasiparticle band structure, optical transitions corresponding to the main optical absorption peaks are identified. The energy-loss spectrum is also calculated and compared with experiment. The surface electronic structure of MgO(100) is calculated self-consistently within the local-density approximation. It is found that states observed in a recent photoemission experiment outside the bulk allowed states are close to surface states.

  20. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

Top