Sample records for observations vertical profiles

  1. Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5: VERTICAL VELOCITY GOAMAZON2014/5

    DOE PAGES

    Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; ...

    2016-11-15

    A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, andmore » mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.« less

  2. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    The reliability of aerosol radiative forcing estimates from climate models depends on the accuracy of simulated global aerosol distribution and composition, as well as on the models' representation of the aerosol-cloud and aerosol-radiation interactions. To help improve on previous modeling studies, we recently developed the new aerosol microphysics submodel MADE3 that explicitly tracks particle mixing state in the Aitken, accumulation, and coarse mode size ranges. We implemented MADE3 into the global atmospheric chemistry general circulation model EMAC and evaluated it by comparison of simulated aerosol properties to observations. Compared properties include continental near-surface aerosol component concentrations and size distributions, continental and marine aerosol vertical profiles, and nearly global aerosol optical depth. Recent studies have shown the specific importance of aerosol vertical profiles for determination of the aerosol radiative forcing. Therefore, our focus here is on the evaluation of simulated vertical profiles. The observational data is taken from campaigns between 1990 and 2011 over the Pacific Ocean, over North and South America, and over Europe. The datasets include black carbon and total aerosol mass mixing ratios, as well as aerosol particle number concentrations. Compared to other models, EMAC with MADE3 yields good agreement with the observations - despite a general high bias of the simulated mass mixing ratio profiles. However, BC concentrations are generally overestimated by many models in the upper troposphere. With MADE3 in EMAC, we find better agreement of the simulated BC profiles with HIPPO data than the multi-model average of the models that took part in the AeroCom project. There is an interesting difference between the profiles from individual campaigns and more "climatological" datasets. For instance, compared to spatially and temporally localized campaigns, the model simulates a more continuous decline in both total

  3. Satellite remote sensing and ozonesonde observation of ozone vertical profile and severe storm development

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.

    1988-01-01

    Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations, and two-and-a-half year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five U.S. stations, were used to study the relationship between the total ozone, vertical distribution of the ozone mixing ratio, height of half the total ozone, and the variation of local tropopause height. In view of the correlation between the variation of the tropopause height and the possible development of severe storms, a better understanding of the effect of the vertical distribution of the local ozone profile on the variation of the tropopause height can give considerable insight into the development of severe storms.

  4. Vertical electromagnetic profiling (VEMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytle, R.J.

    1984-08-01

    Vertical seismic profiling (VSP) is based upon reception measurements performed in a borehole with a source near the ground surface. This technology has seen a surge in application and development in the last decade. The analogous concept of vertical electromagnetic profiling (VEMP) consists of reception measurements performed in a borehole with a source near the ground surface. Although the electromagnetic concept has seen some application, this technology has not been as systematically developed and applied as VSP. Vertical electromagnetic profiling provides distinct and complementary data due to sensing different physical parameters than seismic profiling. Certain of the advantages of VEMPmore » are presented. 28 references, 7 figures.« less

  5. Stratospheric NO2 vertical profile retrieved from ground-based Zenith-Sky DOAS observations at Kiruna, Sweden

    NASA Astrophysics Data System (ADS)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2014-05-01

    Stratospheric NO2 destroys ozone and acts as a buffer against halogen-catalyzed ozone loss through the formation of reservoir species (ClONO2, BrONO2). Since the importance of both mechanisms depends on the altitude, the investigation of stratospheric NO2 vertical distribution can provide more insight into the role of nitrogen compounds in the destruction of ozone. Here we present stratospheric NO2 vertical profiles retrieved from twilight ground-based zenith-sky DOAS observations at Kiruna, Sweden (68.84°N, 20.41°E) covering 1997 - 2013 periods. This instrument observes zenith scattered sunlight. The sensitivity for stratospheric trace gases is highest during twilight due to the maximum altitude of the scattering profile and the light path through the stratosphere, which vary with the solar zenith angle. The profiling algorithm, based on the Optimal Estimation Method, has been developed by IASB-BIRA and successfully applied at other stations (Hendrick et al., 2004). The basic principle behind this profiling approach is that during twilight, the mean Rayleigh scattering altitude scans the stratosphere rapidly, providing height-resolved information on the absorption by stratospheric NO2. In this study, the long-term evolution of the stratospheric NO2 profile at polar latitude will be investigated. Hendrick, F., B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Mazière, F. Goutail, C. Hermans, J.-C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons, Atmospheric Chemistry and Physics, 4, 2091-2106, 2004

  6. ACTRIS aerosol vertical profile data and observations: potentiality and first examples of integrated studies with models

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Benedetti, Angela; D'Amico, Giuseppe; Myhre, Cathrine Lund; Schulz, Michael; Wandinger, Ulla; Laj, Paolo; Pappalardo, Gelsomina

    2016-04-01

    The ACTRIS-2 project, funded by Horizon 2020, addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases, capitalizing on the work of FP7-ACTRIS. It aims at achieving the construction of a user-oriented RI, unique in the EU-RI landscape for providing 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column) which are relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit the harmonization of collected data and their dissemination. ACTRIS secures provision and dissemination of a unique set of data and data-products that would not otherwise be available with the same level of quality and standardization. This results from a 10-year plus effort in constructing a research infrastructure capable of responding to community needs and requirements, and has been engaged since the start of the FP5 EU commission program. ACTRIS ensures compliance with reporting requirements (timing, format, traceability) defined by the major global observing networks. EARLINET (European Aerosol research Lidar NETwork), the aerosol vertical profiling component of ACTRIS, is providing since May 2000 vertical profiles of aerosol extinction and backscatter over Europe. A new structure of the EARLINET database has been designed in a more user oriented approach reporting new data products which are more effective for specific uses of different communities. In particular, a new era is starting with the Copernicus program during which the aerosol vertical profiling capability will be fundamental for assimilation and validation purposes. The new data products have been designed thanks to a strong link with EARLINET data users, first of all modeling and satellite communities, established since the beginning of EARLINET and re-enforced within ACTRIS2

  7. Surface tension profiles in vertical soap films

    NASA Astrophysics Data System (ADS)

    Adami, N.; Caps, H.

    2015-01-01

    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.

  8. Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn.

    PubMed

    Ma, Zhiqiang; Zhang, Xiaoling; Xu, Jing; Zhao, Xiujuan; Meng, Wei

    2011-01-01

    In the autumn of 2008, the vertical profiles of ozone and meteorological parameters in the low troposphere (0-1000 m) were observed at two sites around Beijing, specifically urban Nanjiao and rural Shangdianzi. At night and early morning, the lower troposphere divided into two stratified layers due to temperature inversion. Ozone in the lower layer showed a large gradient due to the titration of NO. Air flow from the southwest brought ozone-rich air to Beijing, and the ozone profiles were marked by a continuous increase in the residual layer at night. The accumulated ozone in the upper layer played an important role in the next day's surface peak ozone concentration, and caused a rapid increase in surface ozone in the morning. Wind direction shear and wind speed shear exhibited different influences on ozone profiles and resulted in different surface ozone concentrations in Beijing.

  9. Seasonal variability of aerosol vertical profiles over east US and west Europe: GEOS-Chem/APM simulation and comparison with CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyan; Yu, Fangqun

    2014-04-01

    In this study, we employed 5 years (2007-2011) of the CALIPSO level-3 monthly aerosol extinction product to compare with the GEOS-Chem/APM simulations for the same time period over two major industrial regions (east US and west Europe). The objective is to understand which aerosol types or species significantly determine the vertical profiles by comparing the seasonal variability between the simulations and observations. Our study shows that the model successfully produces the magnitude of aerosol extinction, profile shape, and their seasonal variability observed by CALIPSO over both east US (EUS) and west Europe (WEU). The extinctions below 1 km make up 44-79% to the total, from either the model simulations or satellite retrievals, with larger percentages in winter seasons (62-79%) and smaller percentages in summer seasons (44-57%) associated with the strength of vertical transport. The shape of the vertical profiles has, therefore, a distinct seasonal variability, with a more like quasi-exponential shape in DJF (December, January, and February) and SON (September, October, and November) than in MAM (March, April, and May) and JJA (June, July, and August), which have been discerned from both measurements and simulations. Analysis of modeled aerosol species indicates that secondary particles (SP), containing sulfate, ammonia, nitrate, and secondary organic aerosols (SOAs), predominantly determine the total aerosol vertical profiles while black carbon (BC), primary organic carbon (OC), and sea salt (SS), only account for a small fraction and are also limited near the surface. Mineral dust (DS) contributes more to the total extinction over WEU than over EUS, particularly in MAM, a result of being adjacent to the North Africa desert. Secondary inorganic aerosol (SIA, i.e. sulfate, ammonia, and nitrate) contributes most of the total SP mass in DJF and SON while SOA is particularly important in MAM and JJA when the emissions from leafed plants are active. Our study also

  10. Observed changes in the vertical profile of stratopheric nitrous oxide at Thule, Greenland, February - March 1992

    NASA Technical Reports Server (NTRS)

    Emmons, Louisa K.; Reeves, John M.; Shindell, Drew T.; Dezafra, Robert L.

    1994-01-01

    Using a ground-based mm-wave spectrometer, we have observed stratospheric N2O over Thule, Greenland (76.3 N, 68.4 W) during late February and March, 1992. Vertical profiles of mixing ratio ranging from 16 to 50 km were recovered from molecular emission spectra. The profiles of early March show an abrupt increase in the lower-stratosphere N2O mixing ratio similar to the spring-to-summer change associated with the break up of the Antarctic polar vortex. This increase is correlated with changes in potential vorticity, air temperature, and ozone mixing ratio.

  11. Investigation of shortcomings in simulated aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Park, S.; Allen, R.

    2017-12-01

    The vertical distribution of aerosols is one important factor for aerosol radiative forcing. Previous studies show that climate models poorly reproduce the aerosol vertical profile, with too much aerosol aloft in the upper troposphere. This bias may be related to several factors, including excessive convective mass flux and wet removal. In this study, we evaluate the aerosol vertical profile from several Coupled Model Intercomparison Project 5 (CMIP5) models, as well as the Community Atmosphere Model 5 (CAM5), relative to the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO). The results show that all models significantly underestimate extinction coefficient in the lower troposphere, while overestimating extinction coefficient in the upper troposphere. In addition, the majority of models indicate a land-ocean dependence in the relationship between aerosol extinction coefficient in the upper troposphere and convective mass flux. Over the continents, more convective mass flux is related to more aerosol aloft; over the ocean, more convective mass flux is associated with less aerosol in upper troposphere. Sensitivity experiments are conducted to investigate the role that convection and wet deposition have in contributing to the deficient simulation of the vertical aerosol profile, including the land-ocean dependence.

  12. Vertical Profiles as Observational Constraints on Nitrous Oxide (N2O) Emissions in an Agricultural Region

    NASA Astrophysics Data System (ADS)

    Pusede, S.; Diskin, G. S.

    2015-12-01

    We use diurnal variability in near-surface N2O vertical profiles to derive N2O emission rates. Our emissions estimates are ~3 times greater than are accounted for by inventories, a discrepancy in line with results from previous studies using different approaches. We quantify the surface N2O concentration's memory of local surface emissions on previous days to be 50-90%. We compare measured profiles both over and away from a dense N2O source region in the San Joaquin Valley, finding that profile shapes, diurnal variability, and changes in integrated near-surface column abundances are distinct according to proximity to source areas. To do this work, we use aircraft observations from the wintertime DISCOVER-AQ project in California's San Joaquin Valley, a region of intense agricultural activity.

  13. The Vertical Dust Profile Over Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Newman, C. E.; Smith, M. D.; Moores, J. E.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D.; Kleinböhl, A.; Mischna, M.; Martín-Torres, F. J.; Zorzano-Mier, M.-P.; Battalio, M.

    2017-12-01

    We create a vertically coarse, but complete, profile of dust mixing ratio from the surface to the upper atmosphere over Gale Crater, Mars, using the frequent joint atmospheric observations of the orbiting Mars Climate Sounder (MCS) and the Mars Science Laboratory Curiosity rover. Using these data and an estimate of planetary boundary layer (PBL) depth from the MarsWRF general circulation model, we divide the vertical column into three regions. The first region is the Gale Crater PBL, the second is the MCS-sampled region, and the third is between these first two. We solve for a well-mixed dust mixing ratio within this third (middle) layer of atmosphere to complete the profile. We identify a unique seasonal cycle of dust within each atmospheric layer. Within the Gale PBL, dust mixing ratio maximizes near southern hemisphere summer solstice (Ls = 270°) and minimizes near winter solstice (Ls = 90-100°) with a smooth sinusoidal transition between them. However, the layer above Gale Crater and below the MCS-sampled region more closely follows the global opacity cycle and has a maximum in opacity near Ls = 240° and exhibits a local minimum (associated with the "solsticial pause" in dust storm activity) near Ls = 270°. With knowledge of the complete vertical dust profile, we can also assess the frequency of high-altitude dust layers over Gale. We determine that 36% of MCS profiles near Gale Crater contain an "absolute" high-altitude dust layer wherein the dust mixing ratio is the maximum in the entire vertical column.

  14. Measurements of the vertical profile of water vapor abundance in the Martian atmosphere from Mars Observer

    NASA Technical Reports Server (NTRS)

    Schofield, J. T.; Mccleese, Daniel J.

    1988-01-01

    An analysis is presented of the Pressure Modulator Infrared Radiometer (PMIRR) capabilities along with how the vertical profiles of water vapor will be obtained. The PMIRR will employ filter and pressure modulation radiometry using nine spectral channels, in both limb scanning and nadir sounding modes, to obtain daily, global maps of temperature, dust extinction, condensate extinction, and water vapor mixing ratio profiles as a function of pressure to half scale height or 5 km vertical resolution. Surface thermal properties will also be mapped, and the polar radiactive balance will be monitored.

  15. The Vertical Dust Profile over Gale Crater

    NASA Astrophysics Data System (ADS)

    Guzewich, S.; Newman, C. E.; Smith, M. D.; Moores, J.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D. M.; Kleinboehl, A.; Martin-Torres, F. J.; Zorzano, M. P.; Battalio, J. M.

    2017-12-01

    Regular joint observations of the atmosphere over Gale Crater from the orbiting Mars Reconnaissance Orbiter/Mars Climate Sounder (MCS) and Mars Science Laboratory (MSL) Curiosity rover allow us to create a coarse, but complete, vertical profile of dust mixing ratio from the surface to the upper atmosphere. We split the atmospheric column into three regions: the planetary boundary layer (PBL) within Gale Crater that is directly sampled by MSL (typically extending from the surface to 2-6 km in height), the region of atmosphere sampled by MCS profiles (typically 25-80 km above the surface), and the region of atmosphere between these two layers. Using atmospheric optical depth measurements from the Rover Environmental Monitoring System (REMS) ultraviolet photodiodes (in conjunction with MSL Mast Camera solar imaging), line-of-sight opacity measurements with the MSL Navigation Cameras (NavCam), and an estimate of the PBL depth from the MarsWRF general circulation model, we can directly calculate the dust mixing ratio within the Gale Crater PBL and then solve for the dust mixing ratio in the middle layer above Gale Crater but below the atmosphere sampled by MCS. Each atmospheric layer has a unique seasonal cycle of dust opacity, with Gale Crater's PBL reaching a maximum in dust mixing ratio near Ls = 270° and a minimum near Ls = 90°. The layer above Gale Crater, however, has a seasonal cycle that closely follows the global opacity cycle and reaches a maximum near Ls = 240° and exhibits a local minimum (associated with the "solsticial pauses") near Ls = 270°. Knowing the complete vertical profile also allows us to determine the frequency of high-altitude dust layers above Gale, and whether such layers truly exhibit the maximum dust mixing ratio within the entire vertical column. We find that 20% of MCS profiles contain an "absolute" high-altitude dust layer, i.e., one in which the dust mixing ratio within the high-altitude dust layer is the maximum dust mixing ratio

  16. Vertical Distribution of Aerosols and Water Vapor Using CRISM Limb Observations

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Wolff, M. J.; Clancy, R. T.; CRISM Science; Operations Teams

    2011-12-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of CO2 (or surface pressure) and H2O gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 nm for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal available

  17. Investigating Methods for Serving Visualizations of Vertical Profiles

    NASA Astrophysics Data System (ADS)

    Roberts, J. T.; Cechini, M. F.; Lanjewar, K.; Rodriguez, J.; Boller, R. A.; Baynes, K.

    2017-12-01

    Several geospatial web servers, web service standards, and mapping clients exist for the visualization of two-dimensional raster and vector-based Earth science data products. However, data products with a vertical component (i.e., vertical profiles) do not have the same mature set of technologies and pose a greater technical challenge when it comes to visualizations. There are a variety of tools and proposed standards, but no obvious solution that can handle the variety of visualizations found with vertical profiles. An effort is being led by members of the NASA Global Imagery Browse Services (GIBS) team to gather a list of technologies relevant to existing vertical profile data products and user stories. The goal is to find a subset of technologies, standards, and tools that can be used to build publicly accessible web services that can handle the greatest number of use cases for the widest audience possible. This presentation will describe results of the investigation and offer directions for moving forward with building a system that is capable of effectively and efficiently serving visualizations of vertical profiles.

  18. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    NASA Technical Reports Server (NTRS)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (<20km), and the Hellas region consistently shows more dust mixed to higher altitudes than other locations. Detached water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  19. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Xing, Chengzhi; Liu, Cheng; Wang, Shanshan; Chan, Ka Lok; Gao, Yang; Huang, Xin; Su, Wenjing; Zhang, Chengxin; Dong, Yunsheng; Fan, Guangqiang; Zhang, Tianshu; Chen, Zhenyi; Hu, Qihou; Su, Hang; Xie, Zhouqing; Liu, Jianguo

    2017-12-01

    Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm, while vertical distribution of ozone (O3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs) measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere.

  20. Vertical Profiles of Light-Absorbing Aerosol: A Combination of In-situ and AERONET Observations during NASA DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C.; Crumeyrolle, S.; Giles, D. M.; Holben, B. N.; Hudgins, C.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.

    2014-12-01

    Understanding the vertical profile of atmospheric aerosols plays a vital role in utilizing spaceborne, column-integrated satellite observations. The properties and distribution of light-absorbing aerosol are particularly uncertain despite significant air quality and climate ramifications. Advanced retrieval algorithms are able to derive complex aerosol properties (e.g., wavelength-dependent absorption coefficient and single scattering albedo) from remote-sensing measurements, but quantitative relationships to surface conditions remain a challenge. Highly systematic atmospheric profiling during four unique deployments for the NASA DISCOVER-AQ project (Baltimore, MD, 2011; San Joaquin Valley, CA, 2013; Houston, TX, 2013; Denver, CO, 2014) allow statistical assessment of spatial, temporal, and source-related variability for light-absorbing aerosol properties in these distinct regions. In-situ sampling in conjunction with a dense network of AERONET sensors also allows evaluation of the sensitivity, limitations, and advantages of remote-sensing data products over a wide range of conditions. In-situ aerosol and gas-phase observations were made during DISCOVER-AQ aboard the NASA P-3B aircraft. Aerosol absorption coefficients were measured by a Particle Soot Absorption Photometer (PSAP). Approximately 200 profiles for each of the four deployments were obtained, from the surface (25-300m altitude) to 5 km, and are used to calculate absorption aerosol optical depths (AAODs). These are quantitatively compared to AAOD derived from AERONET Level 1.5 retrievals to 1) explore discrepancies between measurements, 2) quantify the fraction of AAOD that exists directly at the surface and is often missed by airborne sampling, and 3) evaluate the potential for deriving ground-level black carbon (BC) concentrations for air quality prediction. Aerosol size distributions are used to assess absorption contributions from mineral dust, both at the surface and aloft. SP2 (Single Particle Soot

  1. Vertical profiles of BC direct radiative effect over Italy: high vertical resolution data and atmospheric feedbacks

    NASA Astrophysics Data System (ADS)

    Močnik, Griša; Ferrero, Luca; Castelli, Mariapina; Ferrini, Barbara S.; Moscatelli, Marco; Grazia Perrone, Maria; Sangiorgi, Giorgia; Rovelli, Grazia; D'Angelo, Luca; Moroni, Beatrice; Scardazza, Francesco; Bolzacchini, Ezio; Petitta, Marcello; Cappelletti, David

    2016-04-01

    Black carbon (BC), and its vertical distribution, affects the climate. Global measurements of BC vertical profiles are lacking to support climate change research. To fill this gap, a campaign was conducted over three Italian basin valleys, Terni Valley (Appennines), Po Valley and Passiria Valley (Alps), to characterize the impact of BC on the radiative budget under similar orographic conditions. 120 vertical profiles were measured in winter 2010. The BC vertical profiles, together with aerosol size distribution, aerosol chemistry and meteorological parameters, have been determined using a tethered balloon-based platform equipped with: a micro-Aethalometer AE51 (Magee Scientific), a 1.107 Grimm OPC (0.25-32 μm, 31 size classes), a cascade impactor (Siuotas SKC), and a meteorological station (LSI-Lastem). The aerosol chemical composition was determined from collected PM2.5 samples. The aerosol absorption along the vertical profiles was measured and optical properties calculated using the Mie theory applied to the aerosol size distribution. The aerosol optical properties were validated with AERONET data and then used as inputs to the radiative transfer model libRadtran. Vertical profiles of the aerosol direct radiative effect, the related atmospheric absorption and the heating rate were calculated. Vertical profile measurements revealed some common behaviors over the studied basin valleys. From below the mixing height to above it, a marked concentration drop was found for both BC (from -48.4±5.3% up to -69.1±5.5%) and aerosol number concentration (from -23.9±4.3% up to -46.5±7.3%). These features reflected on the optical properties of the aerosol. Absorption and scattering coefficients decreased from below the MH to above it (babs from -47.6±2.5% up to -71.3±3.0% and bsca from -23.5±0.8% up to -61.2±3.1%, respectively). Consequently, the Single Scattering Albedo increased above the MH (from +4.9±2.2% to +7.4±1.0%). The highest aerosol absorption was

  2. Vertical profile of aerosols in the Himalayan region using an ultralight aircraft platform

    NASA Astrophysics Data System (ADS)

    Singh, A.; Mahata, K.; Rupakheti, M.; Lawrence, M. G.; Junkermann, W.

    2017-12-01

    Indo-gangetic plain (IGP) and Himalayan foothills have large spatial and temporal heterogeneity in aerosols characteristics. Regional meteorology around 850-500 mb plays an important role in the transformation and transportation of aerosols from west Asia to IGP, into Himalayan foothill, as well to high-altitude region of the Himalayas. In order to quantify the vertical and horizontal variation of aerosol properties in the Himalayan , an airborne campaign was carried out in the Pokhara Valley/Nepal (83°50'-84°10' E, 25°7'-28°15' N, 815 masl ) in two phases: test flights during May 2016 and an intensive airborne sampling flight in December-January 2017. This paper provides an overview of airborne measurement campaign from the first phase of measurements in May 2016. A two-seater microlight aircraft (IKARUS C 42) was used as the aerial platform. This was deemed the feasible option in Nepal for an aerial campaign; technical specification of the aircraft include an approximately 6 hrs of flying time, short-take off run, > 100 kgs of payload, suitable for spiral upward and downward profiling. The instrument package consist of GRIMM 1.108 for particle size distribution from 0.3 to 20 um at 6 seconds time resolution, and TSI CPC 3375 for total ultrafine particle (UFP) concentration at 1 s. The package also includes a Magee Scientific Aethalometer (AE42) for aerosol absorption at seven different wavelengths. Meteorological parameters include temperature and dew point at a sampling rate of 1 Hz or higher. The paper provides a snapshot of observed vertical profile (from 800 to 4500masl) of aerosols size, number and black carbon over one of populated mountain valley in Nepal during the pre-monsoon season. During the airborne measurement, local fires- mostly agriculture burn were observed, however no large scale forest fire was captured. Sharp morning and afternoon gradients were observed in the vertical profile for aerosol number and size, mostly dominated by <400 nm. The

  3. Vertical profile of tritium concentration in air during a chronic atmospheric HT release.

    PubMed

    Noguchi, Hiroshi; Yokoyama, Sumi

    2003-03-01

    The vertical profiles of tritium gas and tritiated water concentrations in air, which would have an influence on the assessment of tritium doses as well as on the environmental monitoring of tritium, were measured in a chronic tritium gas release experiment performed in Canada in 1994. While both of the profiles were rather uniform during the day because of atmospheric mixing, large gradients of the profiles were observed at night. The gradient coefficients of the profiles were derived from the measurements. Correlations were analyzed between the gradient coefficients and meteorological conditions: solar radiation, wind speed, and turbulent diffusivity. It was found that the solar radiation was highly correlated with the gradient coefficients of tritium gas and tritiated water profiles and that the wind speed and turbulent diffusivity showed weaker correlations with those of tritiated water profiles. A one-dimensional tritium transport model was developed to analyze the vertical diffusion of tritiated water re-emitted from the ground into the atmosphere. The model consists of processes of tritium gas deposition to soil including oxidation into tritiated water, reemission of tritiated water, dilution of tritiated water in soil by rain, and vertical diffusion of tritiated water in the atmosphere. The model accurately represents the accumulation of tritiated water in soil water and the time variations and vertical profiles of tritiated water concentrations in air.

  4. Vertical Profiles of Aerosol Volume from High Spectral Resolution Infrared Transmission Measurements: Results

    NASA Technical Reports Server (NTRS)

    Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.

    2004-01-01

    The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.

  5. Modeling the CAPTEX Vertical Tracer Concentration Profiles.

    NASA Astrophysics Data System (ADS)

    Draxler, Roland R.; Stunder, Barbara J. B.

    1988-05-01

    Perfluorocarbon tracer concentration profiles measured by aircraft 600-900 km downwind of the release locations during CAPTEX are discussed and compared with some model results. In general, the concentrations decreased with height in the upper half of the boundary layer where the aircraft measurements were made. The results of a model sensitivity study suggested that the shape of the profile was primarily due to winds increasing with height and relative position of the sampling with respect to the upwind and downwind edge of the plume. Further modeling studies showed that relatively simple vertical mixing parameterizations could account for the complex vertical plume structure when the model had sufficient vertical resolution. In general, the model performed better with slower winds and corresponding longer transport times.

  6. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-07-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  7. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  8. Vertical and Spatial Profiling of Arctic Black Carbon on the North Slope of Alaska 2015: Comparison of Model and Observation

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J., III; Feng, Y.; Biraud, S.; Springston, S. R.

    2015-12-01

    One of the major issues confronting aerosol climate simulations of the Arctic and Antarctic Cryospheres is the lack of detailed data on the vertical and spatial distribution of aerosols with which to test these models. This is due, in part, to the inherent difficulty of conducting such measurements in extreme environments. One class of under measured radiative forcing agents in the Polar Region is the absorbing aerosol - black carbon and brown carbon. In particular, vertical profile information of BC is critical in reducing uncertainty in model assessment of aerosol radiative impact at high latitudes. During the summer of 2015, a Single-Particle Soot Photometer (SP2) was deployed aboard the Department of Energy (DOE) Gultstream-1 (G-1) aircraft to measure refractory BC (rBC) concentrations as part of the DOE-sponsored ACME-V (ARM Airborne Carbon Measurements) campaign. This campaign was conducted from June through to mid-September along the North Slope of Alaska and was punctuated by vertical profiling over 5 sites (Atquasuk, Barrow, Ivotuk, Oliktok, and Toolik). In addition, measurement of CO, CO2 and CH4were also taken to provide information on the spatial and seasonal differences in GHG sources and how these sources correlate with BC. Lastly, these aerosol and gas measurements provide an important dataset to assess the representativeness of ground sites at regional scales. Comparisons between observations and a global climate model (CAM5) simulations will be agumented with a discussion on the capability of the model to capture observed monthly mean profiles of BC and stratified aerosol layers. Additionally, the ability of the SP2 to partition rBC-containing particles into nascent or aged species allows an evaluation of how well the CAM5 model captures aging of long distant transported carbonaceous aerosols. Finally model sensitivity studies will be aso be presented that investigated the relative importance of the different emission sectors to the summer Arctic

  9. Evaluation of vertical profiles to design continuous descent approach procedure

    NASA Astrophysics Data System (ADS)

    Pradeep, Priyank

    The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of

  10. Atmospheric soundings by SPICAM occultation observations: aerosol and ozone vertical profiles

    NASA Astrophysics Data System (ADS)

    Montmessin, F.

    2005-12-01

    The SPICAM instrument is a highly versatile, dual spectrometer probing both the UV and the NIR spectral region and is currently flying around Mars onboard Mars Express. Since the beginning of MEx operations, SPICAM has collected about thousand atmospheric profiles while observing in a solar or a stellar occultation mode. UV spectra bear the signatures of several species; i.e carbon dioxide, ozone and aerosols, while infrared spectra potentially bring information on atmospheric condensates and on water vapor. This presentation will focus on the measured aerosol, ozone and water vapor profiles. For the aerosol, we will emphasize the numerous observations made in the polar night and will also discuss some high altitude clouds discovered in the southern hemisphere. Ozone and water vapor profiles will be presented along with some General Circulation Model comparisons. This work has been supported by CNES.

  11. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    NASA Astrophysics Data System (ADS)

    Caccia, J.; Guénard, V.; Benech, B.; Campistron, B.; Drobinski, P.

    2004-11-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program) in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the vertical motions are

  12. Black carbon vertical profiles strongly affect its radiative forcing uncertainty

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2012-11-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  13. Black carbon vertical profiles strongly affect its radiative forcing uncertainty

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2013-03-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  14. Black Carbon Vertical Profiles Strongly Affect Its Radiative Forcing Uncertainty

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; hide

    2013-01-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  15. Retrieving vertical ozone profiles from measurements of global spectral irradiance

    NASA Astrophysics Data System (ADS)

    Bernhard, Germar; Petropavlovskikh, Irina; Mayer, Bernhard

    2017-12-01

    A new method is presented to determine vertical ozone profiles from measurements of spectral global (direct Sun plus upper hemisphere) irradiance in the ultraviolet. The method is similar to the widely used Umkehr technique, which inverts measurements of zenith sky radiance. The procedure was applied to measurements of a high-resolution spectroradiometer installed near the centre of the Greenland ice sheet. Retrieved profiles were validated with balloon-sonde observations and ozone profiles from the space-borne Microwave Limb Sounder (MLS). Depending on altitude, the bias between retrieval results presented in this paper and MLS observations ranges between -5 and +3 %. The magnitude of this bias is comparable, if not smaller, to values reported in the literature for the standard Dobson Umkehr method. Total ozone columns (TOCs) calculated from the retrieved profiles agree to within 0.7±2.0 % (±1σ) with TOCs measured by the Ozone Monitoring Instrument on board the Aura satellite. The new method is called the Global-Umkehr method.

  16. Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity.

    PubMed

    Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H

    2016-01-01

    Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. The power of vertical geolocation of atmospheric profiles from GNSS radio occultation.

    PubMed

    Scherllin-Pirscher, Barbara; Steiner, Andrea K; Kirchengast, Gottfried; Schwärz, Marc; Leroy, Stephen S

    2017-02-16

    High-resolution measurements from Global Navigation Satellite System (GNSS) radio occultation (RO) provide atmospheric profiles with independent information on altitude and pressure. This unique property is of crucial advantage when analyzing atmospheric characteristics that require joint knowledge of altitude and pressure or other thermodynamic atmospheric variables. Here we introduce and demonstrate the utility of this independent information from RO and discuss the computation, uncertainty, and use of RO atmospheric profiles on isohypsic coordinates-mean sea level altitude and geopotential height-as well as on thermodynamic coordinates (pressure and potential temperature). Using geopotential height as vertical grid, we give information on errors of RO-derived temperature, pressure, and potential temperature profiles and provide an empirical error model which accounts for seasonal and latitudinal variations. The observational uncertainty of individual temperature/pressure/potential temperature profiles is about 0.7 K/0.15%/1.4 K in the tropopause region. It gradually increases into the stratosphere and decreases toward the lower troposphere. This decrease is due to the increasing influence of background information. The total climatological error of mean atmospheric fields is, in general, dominated by the systematic error component. We use sampling error-corrected climatological fields to demonstrate the power of having different and accurate vertical coordinates available. As examples we analyze characteristics of the location of the tropopause for geopotential height, pressure, and potential temperature coordinates as well as seasonal variations of the midlatitude jet stream core. This highlights the broad applicability of RO and the utility of its versatile vertical geolocation for investigating the vertical structure of the troposphere and stratosphere.

  18. Determination of accurate vertical atmospheric profiles of extinction and turbulence

    NASA Astrophysics Data System (ADS)

    Hammel, Steve; Campbell, James; Hallenborg, Eric

    2017-09-01

    Our ability to generate an accurate vertical profile characterizing the atmosphere from the surface to a point above the boundary layer top is quite rudimentary. The region from a land or sea surface to an altitude of 3000 meters is dynamic and particularly important to the performance of many active optical systems. Accurate and agile instruments are necessary to provide measurements in various conditions, and models are needed to provide the framework and predictive capability necessary for system design and optimization. We introduce some of the path characterization instruments and describe the first work to calibrate and validate them. Along with a verification of measurement accuracy, the tests must also establish each instruments performance envelope. Measurement of these profiles in the field is a problem, and we will present a discussion of recent field test activity to address this issue. The Comprehensive Atmospheric Boundary Layer Extinction/Turbulence Resolution Analysis eXperiment (CABLE/TRAX) was conducted late June 2017. There were two distinct objectives for the experiment: 1) a comparison test of various scintillometers and transmissometers on a homogeneous horizontal path; 2) a vertical profile experiment. In this paper we discuss only the vertical profiling effort, and we describe the instruments that generated data for vertical profiles of absorption, scattering, and turbulence. These three profiles are the core requirements for an accurate assessment of laser beam propagation.

  19. Normalized vertical ice mass flux profiles from vertically pointing 8-mm-wavelength Doppler radar

    NASA Technical Reports Server (NTRS)

    Orr, Brad W.; Kropfli, Robert A.

    1993-01-01

    During the FIRE 2 (First International Satellite Cloud Climatology Project Regional Experiment) project, NOAA's Wave Propagation Laboratory (WPL) operated its 8-mm wavelength Doppler radar extensively in the vertically pointing mode. This allowed for the calculation of a number of important cirrus cloud parameters, including cloud boundary statistics, cloud particle characteristic sizes and concentrations, and ice mass content (imc). The flux of imc, or, alternatively, ice mass flux (imf), is also an important parameter of a cirrus cloud system. Ice mass flux is important in the vertical redistribution of water substance and thus, in part, determines the cloud evolution. It is important for the development of cloud parameterizations to be able to define the essential physical characteristics of large populations of clouds in the simplest possible way. One method would be to normalize profiles of observed cloud properties, such as those mentioned above, in ways similar to those used in the convective boundary layer. The height then scales from 0.0 at cloud base to 1.0 at cloud top, and the measured cloud parameter scales by its maximum value so that all normalized profiles have 1.0 as their maximum value. The goal is that there will be a 'universal' shape to profiles of the normalized data. This idea was applied to estimates of imf calculated from data obtained by the WPL cloud radar during FIRE II. Other quantities such as median particle diameter, concentration, and ice mass content can also be estimated with this radar, and we expect to also examine normalized profiles of these quantities in time for the 1993 FIRE II meeting.

  20. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  1. On vertical profile of ozone at Syowa

    NASA Technical Reports Server (NTRS)

    Chubachi, Shigeru

    1994-01-01

    The difference in the vertical ozone profile at Syowa between 1966-1981 and 1982-1988 is shown. The month-height cross section of the slope of the linear regressions between ozone partial pressure and 100-mb temperature is also shown. The vertically integrated values of the slopes are in close agreement with the slopes calculated by linear regression of Dobson total ozone on 100-mb temperature in the period of 1982-1988.

  2. An analysis of the vertical structure equation for arbitrary thermal profiles

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1989-01-01

    The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.

  3. An analysis of the vertical structure equation for arbitrary thermal profiles

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1987-01-01

    The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.

  4. Vertical Distribution of Aersols and Water Vapor Using CRISM Limb Observations

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd

    2011-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of C02 (or surface pressure) and H20 gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 run for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal

  5. Radial-vertical profiles of tropical cyclone derived from dropsondes

    NASA Astrophysics Data System (ADS)

    Ren, Yifang

    The scopes of this thesis research are two folds: the first one is to the construct the intensity-based composite radial-vertical profiles of tropical cyclones (TC) using GPS-based dropsonde observations and the second one is to identify the major deficiencies of Mathur vortices against the dropsonde composites of TCs. The intensity-based dropsonde composites of TCs advances our understanding of the dynamic and thermal structure of TCs of different intensity along the radial direction in and above the boundary layer where lies the devastating high wind that causes property damages and storm surges. The identification of the major deficiencies of Mathur vortices in representing the radial-vertical profiles of TC of different intensity helps to improve numerical predictions of TCs since most operational TC forecast models need to utilize bogus vortices, such as Mathur vortices, to initialize TC forecasts and simulations. We first screen all available GPS dropsonde data within and round 35 named TCs over the tropical Atlantic basin from 1996 to 2010 and pair them with TC parameters derived from the best-track data provided by the National Hurricane Center (NHC) and select 1149 dropsondes that have continuous coverage in the lower troposphere. The composite radial-vertical profiles of tangential wind speed, temperature, mixing ratio and humidity are based for each TC category ranging from "Tropical Storm" (TS) to "Hurricane Category 1" (H1) through "Hurricane Category 5" (H5). The key findings of the dropsonde composites are: (i) all TCs have the maximum tangential wind within 1 km above the ground and a distance of 1-2 times of the radius of maximum wind (RMW) at the surface; (ii) all TCs have a cold ring surrounding the warm core near the boundary layer at a distance of 1-3 times of the RMW and the cold ring structure gradually diminishes at a higher elevation where the warm core structure prevails along the radial direction; (iii) the existence of such shallow cold

  6. Importance of A Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Sullivan, J. T.; Liu, X.; Zoogman, P.; Newchurch, M.; Kuang, S.; McGee, T. J.; Leblanc, T.

    2017-12-01

    Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's operational GEOS-5 FP model and reanalysis data from MERRA2) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 km) and tropospheric (0-10 km) TOLNet observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from

  7. Importance of a Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.; Sullivan, John; Liu, Xiong; Zoogman, Peter; Newchurch, Mike; Kuang, Shi; McGee, Thomas; Leblanc, Thierry

    2017-01-01

    Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME (Global Ozone Monitoring Experiment), GOME-2, and OMI (Ozone Monitoring Instrument). This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's (Global Modeling and Assimilation Office) operational GEOS-5 (Goddard Earth Observing System, Version 5) FP (Forecast Products) model and reanalysis data from MERRA2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 kilometers) and tropospheric (0-10 kilometers) TOLNet (Tropospheric Ozone Lidar Network) observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3

  8. MEASURING VERTICAL PROFILES OF HYDRAULIC CONDUCTIVITY WITH IN SITU DIRECT-PUSH METHODS

    EPA Science Inventory

    U.S. EPA (Environmental Protection Agency) staff developed a field procedure to measure hydraulic conductivity using a direct-push system to obtain vertical profiles of hydraulic conductivity. Vertical profiles were obtained using an in situ field device-composed of a
    Geopr...

  9. A measurement system for vertical seawater profiles close to the air-sea interface

    NASA Astrophysics Data System (ADS)

    Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.

    2017-09-01

    This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  10. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Oh, H.-J.; Lefer, B.; Rappenglück, B.; Stutz, J.

    2010-12-01

    Nitrous acid (HONO) often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH) in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS) measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP), near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations. Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced well by the model. The unobserved increase of HONO to NO2 ratio (HONO/NO2) with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of weak precipitation during this night. HONO formation and removal rates averaged over the lowest 300 m of the atmosphere showed that NO2 to HONO conversion on the ground was the dominant source of HONO

  11. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Oh, H.-J.; Lefer, B. L.; Rappenglück, B.; Stutz, J.

    2011-04-01

    Nitrous acid (HONO) often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH) in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS) measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP), near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations. Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced by the model for 1-2 and 7-8 September in the nocturnal boundary layer (NBL). The unobserved increase of HONO to NO2 ratio (HONO/NO2) with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed an increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of weak precipitation during this night. HONO formation and removal rates averaged over the lowest 300 m of the atmosphere showed that NO2 to

  12. Ozone vertical profile changes over South Pole

    NASA Technical Reports Server (NTRS)

    Oltmans, S. J.; Hofmann, D. J.; Komhyr, W. D.; Lathrop, J. A.

    1994-01-01

    Important changes in the ozone vertical profile over South Pole, Antarctica have occurred both during the recent period of measurements, 1986-1991, and since an earlier set of soundings was carried out from 1967-1971. From the onset of the 'ozone hole' over Antarctica in the early 1980s, there has been a tendency for years with lower spring ozone amounts to alternate with years with somewhat higher (although still depleted) ozone amounts. Beginning in 1989 there have been three consecutive years of strong depletion although the timing of the breakdown of the vortex has varied from year to year. Comparison of the vertical profiles between the two periods of study reveals the dramatic decreases in the ozone amounts in the stratosphere between 15-21 km during the spring. In addition, it appears that summer values are also now much lower in this altitude region.

  13. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    DOE Data Explorer

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  14. Vertical Profiling of Air Pollution at RAPCD

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.; Fuller, Kirk A.; Bowdle, David A.; Johnson, Steven; Knupp, Kevin; Gillani, Noor; Biazar, Arastoo; Mcnider, Richard T.; Burris, John

    2004-01-01

    The interaction between local and regional pollution levels occurs at the interface of the Planetary Boundary Layer and the Free Troposphere. Measuring the vertical distribution of ozone, aerosols, and winds with high temporal and vertical resolution is essential to diagnose the nature of this interchange and ultimately for accurately forecasting ozone and aerosol pollution levels. The Regional Atmospheric Profiling Center for Discovery, RAPCD, was built and instrumented to address this critical issue. The ozone W DIAL lidar, Nd:YAG aerosol lidar, and 2.1 micron Doppler wind lidar, along with balloon- borne ECC ozonesondes form the core of the W C D instrumentation for addressing this problem. Instrumentation in the associated Mobile Integrated Profiling (MIPS) laboratory includes 91 5Mhz profiler, sodar, and ceilometer. The collocated Applied particle Optics and Radiometry (ApOR) laboratory hosts an FTIR along with MOUDI and optical particle counters. With MODELS-3 analysis by colleagues in the National Space Science and Technology Center on the UAH campus and the co- located National Weather Service Forecasting Office in Huntsville, AL we are developing a unique facility for advancing the state of the science of pollution forecasting.

  15. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootton, Kent

    2015-09-17

    In recent work, the first quantitative measurements of electron beam vertical emittance using a vertical undulator were presented, with particular emphasis given to ultralow vertical emittances [K. P. Wootton, et al., Phys. Rev. ST Accel. Beams, 17, 112802 (2014)]. Using this apparatus, a geometric vertical emittance of 0.9 ± 0.3 pm rad has been observed. A critical analysis is given of measurement approaches that were attempted, with particular emphasis on systematic and statistical uncertainties. The method used is explained, compared to other techniques and the applicability of these results to other scenarios discussed.

  16. Spectrometeric measurements of vertical profile and column abundance of NO2 at Zvenigorod, Russia: Fourteen years of observations

    NASA Astrophysics Data System (ADS)

    Gruzdev, A.; Elokhov, A.

    Since 1990, NO2 measurements are carried out at Zvenigorod Research Station (56°N, 37°E), Moscow region, with the help of zenith viewing spectrophotometer in spectral range 435-450 nm. The instrument and method of observations were verified in comparison campaigns within the framework of the Network for Detection of Stratospheric Change. Measurements are done during morning and evening twilight at solar zenith angles 84-96°. Slant column NO2 abundances are derived from observed spectra taking into account O3 and NO2 absorption, single molecular and aerosol scattering, and the Ring effect. The NO2 abundances in the vertical column as well as vertical NO2 profiles are derived as solution of inverse mathematical problem (with Chahine method) using a spherical single scattering model and a one-dimensional photochemical model. Derived quantities are (1) NO2 abundances within 5-km thick layers in the stratosphere and troposphere, (2) NO2 abundance in the thin atmospheric near-surface layer and (3) columnar NO2 abundances in the troposphere (0-10 km) and the stratosphere (10-50 km) as integrals over appropriate layers. Results of measurements show variability of stratospheric and tropospheric NO2 at different time scales from the diurnal to the interannual scale. Out of the period affected by the Pinatubo eruption (1992-1994), a general decline of the stratospheric column NO2 abundance is occurring, superimposed by interannual variations. A linear, statistically significant, negative annual trend of about 12% per decade has been detected for both morning and evening stratospheric column NO2 abundances. For interpretation of the observed trend, a simple photochemical model is used, which takes into account the observed changes in N2O and stratospheric ozone abundances, and in temperature. The estimated model trend of the stratospheric column NO2 abundance in the extratropical Northern Hemisphere is about -5% per decade, which is less than observed. Dynamical variability

  17. Global distribution of vertical wavenumber spectra in the lower stratosphere observed using high-vertical-resolution temperature profiles from COSMIC GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Noersomadi; Tsuda, T.

    2016-02-01

    We retrieved temperature (T) profiles with a high vertical resolution using the full spectrum inversion (FSI) method from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation (GPS-RO) data from January 2007 to December 2009. We studied the characteristics of temperature perturbations in the stratosphere at 20-27 km altitude. This height range does not include a sharp jump in the background Brunt-Väisälä frequency squared (N2) near the tropopause, and it was reasonably stable regardless of season and latitude. We analyzed the vertical wavenumber spectra of gravity waves (GWs) with vertical wavelengths ranging from 0.5 to 3.5 km, and we integrated the (total) potential energy EpT. Another integration of the spectra from 0.5 to 1.75 km was defined as EpS for short vertical wavelength GWs, which was not studied with the conventional geometrical optics (GO) retrievals. We also estimated the logarithmic spectral slope (p) for the saturated portion of spectra with a linear regression fitting from 0.5 to 1.75 km.Latitude and time variations in the spectral parameters were investigated in two longitudinal regions: (a) 90-150° E, where the topography was more complicated, and (b) 170-230° E, which is dominated by oceans. We compared EpT, EpS, and p, with the mean zonal winds (U) and outgoing longwave radiation (OLR). We also show a ratio of EpS to EpT and discuss the generation source of EpS. EpT and p clearly showed an annual cycle, with their maximum values in winter at 30-50° N in region (a), and 50-70° N in region (b), which was related to the topography. At 30-50° N in region (b), EpT and p exhibited some irregular variations in addition to an annual cycle. In the Southern Hemisphere, we also found an annual oscillation in EpT and p, but it showed a time lag of about 2 months relative to U. Characteristics of EpTand p in the tropical region seem to be related to convective activity. The ratio of EpT to the

  18. Vertical profiles of fine and coarse aerosol particles over Cyprus: Comparison between in-situ drone measurements and remote sensing observations

    NASA Astrophysics Data System (ADS)

    Mamali, Dimitra; Marinou, Eleni; Pikridas, Michael; Kottas, Michael; Binietoglou, Ioannis; Kokkalis, Panagiotis; Tsekeri, Aleksandra; Amiridis, Vasilis; Sciare, Jean; Keleshis, Christos; Engelmann, Ronny; Ansmann, Albert; Russchenberg, Herman W. J.; Biskos, George

    2017-04-01

    Vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) measurements were compared to airborne dried optical particle counter (OPC MetOne; Model 212) measurements during the INUIT-BACCHUS-ACTRIS campaign. The campaign took place in April 2016 and its main focus was the study of aerosol dust particles. During the campaign the NOA Polly-XT Raman lidar located at Nicosia (35.08° N, 33.22° E) was providing round-the-clock vertical profiles of aerosol optical properties. In addition, an unmanned aerial vehicle (UAV) carrying an OPC flew on 7 days during the first morning hours. The flights were performed at Orounda (35.1018° N, 33.0944° E) reaching altitudes of 2.5 km a.s.l, which allows comparison with a good fraction of the recorded lidar data. The polarization lidar photometer networking method (POLIPHON) was used for the estimation of the fine (non-dust) and coarse (dust) mode aerosol mass concentration profiles. This method uses as input the particle backscatter coefficient and the particle depolarization profiles of the lidar at 532 nm wavelength and derives the aerosol mass concentration. The first step in this approach makes use of the lidar observations to separate the backscatter and extinction contributions of the weakly depolarizing non-dust aerosol components from the contributions of the strongly depolarizing dust particles, under the assumption of an externally mixed two-component aerosol. In the second step, sun photometer retrievals of the fine and the coarse modes aerosol optical thickness (AOT) and volume concentration are used to calculate the associated concentrations from the extinction coefficients retrieved from the lidar. The estimated aerosol volume concentrations were converted into mass concentration with an assumption for the bulk aerosol density, and compared with the OPC measurements. The first results show agreement within the experimental uncertainty. This project received funding from the

  19. Generation of optimum vertical profiles for an advanced flight management system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Waters, M. H.

    1981-01-01

    Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined.

  20. Observations of vertical velocities in the tropical upper troposphere and lower stratosphere using the Arecibo 430-MHz radar

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1988-01-01

    The first clear-air observations of vertical velocities in the tropical upper troposphere and lower stratosphere (8-22 km) using the Arecibo 430-MHz radar are presented. Oscillations in the vertical velocity near the Brunt-Vaisala period are observed in the lower stratosphere during the 12-hour observation period. Frequency power spectra from the vertical velocity time series show a slope between -0.5 and -1.0. Vertical wave number spectra computed from the height profiles of vertical velocities have slopes between -1.0 and -1.5. These observed slopes do not agree well with the slopes of +1/3 and -2.5 for frequency and vertical wave number spectra, respectively, predicted by a universal gravity-wave spectrum model. The spectral power of wave number spectra of a radial beam directed 15 deg off-zenith is enhanced by an order of magnitude over the spectral power levels of the vertical beam. This enhancement suggests that other geophysical processes besides gravity waves are present in the horizontal flow. The steepening of the wave number spectrum of the off-vertical beam in the lower stratosphere to near -2.0 is attributed to a quasi-inertial period wave, which was present in the horizontal flow during the observation period.

  1. Variation of subsurface chlorophyll maximum layer from the vertical profiler and in-situ observation in the eastern coastal region of Korea (the East/Japan Sea)

    NASA Astrophysics Data System (ADS)

    Son, Y. T.; Chang, K. I.; Nam, S.; Kang, D. J.

    2016-02-01

    Coastal monitoring buoy (called it as ESROB) has been continually operated to monitor meteorological (wind, air temperature, air pressure, PAR) and oceanic properties (temperature, salinity, current, chlorophyll fluorescence, DO, turbidity) using equipment such as CTD, fluorometer and WQM (Water Quality Monitor) in the eastern coastal region of Korea (the East/Japan Sea) since April 2011. The ESROB produced temporal evolution of physical and biogeochemical parameters of the water column with high resolution of 10 min interval. In order to understand horizontal influence of physical and biogeochemical parameters on variation of subsurface chlorophyll maximum layer (SCM), interdisciplinary in-situ surveys with small R/V in the study area for about week were conducted in June/October 2014 and in May 2015. A wirewalker, a wave-driven vertically profiling platform (Rainville and Pinkel 2001), was also deployed at two points (about 30 m and 80 m water depth) along cross-shore direction with the ESROB for about one or two weeks with in-situ survey durations. The wirewalker was equipped with CTD, turbidity and chlorophyll a fluorometer profiler, which was completed approximately every 3 10 minute depending on sea surface state. The SCM was observed in almost every deployment nearest coast, except for June in 2014, with variation of semi- and diurnal time periods. Temporal evolution of the wirewalker showed that disappearance and reoccurrence of the SCM within the water column in October 2014, which was associated with vertical mixing induced by strong wind stress. Low salinity plume in the surface layer and shoaling of bottom cold water were concurrently observed after homogeneous water column, affecting another condition to the vertical distribution of chlorophyll a in this coastal region. Moreover in-situ observation with densely points and temporal interval for 1 day revealed that distribution with high concentration of chlorophyll a on isopycnal was association with

  2. Computer programs for generation and evaluation of near-optimum vertical flight profiles

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Waters, M. H.; Patmore, L. C.

    1983-01-01

    Two extensive computer programs were developed. The first, called OPTIM, generates a reference near-optimum vertical profile, and it contains control options so that the effects of various flight constraints on cost performance can be examined. The second, called TRAGEN, is used to simulate an aircraft flying along an optimum or any other vertical reference profile. TRAGEN is used to verify OPTIM's output, examine the effects of uncertainty in the values of parameters (such as prevailing wind) which govern the optimum profile, or compare the cost performance of profiles generated by different techniques. A general description of these programs, the efforts to add special features to them, and sample results of their usage are presented.

  3. Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling.

    PubMed

    Asnicar, Francesco; Manara, Serena; Zolfo, Moreno; Truong, Duy Tin; Scholz, Matthias; Armanini, Federica; Ferretti, Pamela; Gorfer, Valentina; Pedrotti, Anna; Tett, Adrian; Segata, Nicola

    2017-01-01

    The gut microbiome becomes shaped in the first days of life and continues to increase its diversity during the first months. Links between the configuration of the infant gut microbiome and infant health are being shown, but a comprehensive strain-level assessment of microbes vertically transmitted from mother to infant is still missing. We collected fecal and breast milk samples from multiple mother-infant pairs during the first year of life and applied shotgun metagenomic sequencing followed by computational strain-level profiling. We observed that several specific strains, including those of Bifidobacterium bifidum , Coprococcus comes , and Ruminococcus bromii , were present in samples from the same mother-infant pair, while being clearly distinct from those carried by other pairs, which is indicative of vertical transmission. We further applied metatranscriptomics to study the in vivo gene expression of vertically transmitted microbes and found that transmitted strains of Bacteroides and Bifidobacterium species were transcriptionally active in the guts of both adult and infant. By combining longitudinal microbiome sampling and newly developed computational tools for strain-level microbiome analysis, we demonstrated that it is possible to track the vertical transmission of microbial strains from mother to infants and to characterize their transcriptional activity. Our work provides the foundation for larger-scale surveys to identify the routes of vertical microbial transmission and its influence on postinfancy microbiome development. IMPORTANCE Early infant exposure is important in the acquisition and ultimate development of a healthy infant microbiome. There is increasing support for the idea that the maternal microbial reservoir is a key route of microbial transmission, and yet much is inferred from the observation of shared species in mother and infant. The presence of common species, per se , does not necessarily equate to vertical transmission, as species

  4. Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling

    PubMed Central

    Manara, Serena; Truong, Duy Tin; Armanini, Federica; Ferretti, Pamela; Gorfer, Valentina; Pedrotti, Anna

    2017-01-01

    ABSTRACT The gut microbiome becomes shaped in the first days of life and continues to increase its diversity during the first months. Links between the configuration of the infant gut microbiome and infant health are being shown, but a comprehensive strain-level assessment of microbes vertically transmitted from mother to infant is still missing. We collected fecal and breast milk samples from multiple mother-infant pairs during the first year of life and applied shotgun metagenomic sequencing followed by computational strain-level profiling. We observed that several specific strains, including those of Bifidobacterium bifidum, Coprococcus comes, and Ruminococcus bromii, were present in samples from the same mother-infant pair, while being clearly distinct from those carried by other pairs, which is indicative of vertical transmission. We further applied metatranscriptomics to study the in vivo gene expression of vertically transmitted microbes and found that transmitted strains of Bacteroides and Bifidobacterium species were transcriptionally active in the guts of both adult and infant. By combining longitudinal microbiome sampling and newly developed computational tools for strain-level microbiome analysis, we demonstrated that it is possible to track the vertical transmission of microbial strains from mother to infants and to characterize their transcriptional activity. Our work provides the foundation for larger-scale surveys to identify the routes of vertical microbial transmission and its influence on postinfancy microbiome development. IMPORTANCE Early infant exposure is important in the acquisition and ultimate development of a healthy infant microbiome. There is increasing support for the idea that the maternal microbial reservoir is a key route of microbial transmission, and yet much is inferred from the observation of shared species in mother and infant. The presence of common species, per se, does not necessarily equate to vertical transmission, as

  5. pCO2 Observations from a Vertical Profiler on the upper continental slope off Vancouver Island: Physical controls on biogeochemical processes.

    NASA Astrophysics Data System (ADS)

    Mihaly, S. F.

    2016-02-01

    We analyse two six month sets of data collected from a vertical profiler on Ocean Networks Canada's NEPTUNE observatory over the summer and early fall of 2012 and 2014. The profiler is in 400 m of water on the upper slope of the continental shelf. The site is away from direct influence of canyons, but is in a region of strong internal tide generation. Both seasonally varying semidiurnal internal tidal currents and diurnal shelf waves are observed. The near surface mean flow is weak and seasonally alternates between the California and Alaskan Currents. Mid-depth waters are influenced by the poleward flowing Californian undercurrent and the deep waters by seasonally varying wind-driven Ekman transport. The profiling package consists of a CTD, an oxygen optode, a pCO2 sensor, Chlorophyll fluorometer/turbidity, CDOM and is co-located with an upward-looking bottom-mounted 75kHz ADCP that measures currents to 30 m below sea surface. With these first deep-sea profiled time series measurements of pCO2, we endeavor to model how the local physical dynamics exert control over the variability of water properties over the slope and shelf and what the variability of the non-conservative tracers of pCO2 and O2 can tell us about the biogeochemistry of the region.

  6. Shifts of radiocesium vertical profiles in sediments and their modelling in Japanese lakes.

    PubMed

    Fukushima, Takehiko; Komatsu, Eiji; Arai, Hiroyuki; Kamiya, Koichi; Onda, Yuichi

    2018-02-15

    Vertical profiles of radiocesium concentrations were measured in sediment cores collected at various times after the 2011 Fukushima nuclear accident in five Japanese lakes (Hinuma, Kasumigaura, Kitaura, Onogawa and Sohara) with different morphological and trophic characteristics in order to investigate the sedimentation-diffusion processes. In lakes where sediments had high porosities and experienced considerable wave action due to shallowness, we observed rapid penetration of radiocesium to a certain depth just after the accident, followed by downward movement of the peak depths. In contrast, gradual downward transfers of distinct peaks were found in other types of lakes. A one-dimensional differential sediment model with water-sediments interaction processes was constructed to describe the vertical shift of radiocesium profiles. Our proposed submodels relating to the length scales of the mixing using wind-induced stress and porosity of sediments were constructed based on one measurement of the vertical distribution of radiocesium in three lakes (Hinuma, Kasumigaura and Sohara). This model was then validated using samples from those lakes in different years, as well as from two other lakes. Good agreement was obtained. We discuss our findings, the limits of model application, and future research targets. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less

  8. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra

    DOE PAGES

    Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff; ...

    2016-08-02

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less

  9. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    PubMed Central

    Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel

    2014-01-01

    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135

  10. Impact of spatial inhomogeneities on stratospheric species vertical profiles from remote-sensing balloon-borne instruments

    NASA Astrophysics Data System (ADS)

    Berthet, Gwenael; Renard, Jean-Baptiste; Catoire, Valery; Huret, Nathalie; Lefevre, Franck; Hauchecorne, Alain; Chartier, Michel; Robert, Claude

    Remote-sensing balloon observations have recurrently revealed high concentrations of polar stratospheric NO2 in particular in the lower stratosphere as can be seen in various published vertical profiles. A balloon campaign dedicated to the investigation of this problem through comparisons between remote-sensing (SALOMON) and in situ (SPIRALE) measurements of NO2 inside the polar vortex was conducted in January 2006. The published results show unexpected strong enhancements in the slant column densities of NO2 with respect to the elevation angle and displacement of the balloon. These fluctuations result from NO2 spatial inhomogeneities located above the balloon float altitude resulting from mid-latitude air intrusion as revealed by Potential Vorticity (PV) maps. The retrieval of the NO2 vertical profile is subsequently biased in the form of artificial excesses of NO2 concentrations. A direct implication is that the differences previously observed between measurements of NO2 and OClO and model results are probably mostly due to the improper inversion of NO2 in presence of either perturbed dynamical conditions or when mesospheric production events occur as recently highlighted from ENVISAT data. Through the occurrence of such events, we propose to re-examine formerly published high-latitude profiles from the remote-sensing instruments AMON and SALOMON using in parallel PV maps from the MIMOSA advection contour model and the REPROBUS CTM outputs. Mid-latitude profiles of NO2 will also be investigated since they are likely to be biased if presence of air from other latitudes was present at the time of the observations.

  11. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    NASA Astrophysics Data System (ADS)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  12. Vertical velocity variance in the mixed layer from radar wind profilers

    USGS Publications Warehouse

    Eng, K.; Coulter, R.L.; Brutsaert, W.

    2003-01-01

    Vertical velocity variance data were derived from remotely sensed mixed layer turbulence measurements at the Atmospheric Boundary Layer Experiments (ABLE) facility in Butler County, Kansas. These measurements and associated data were provided by a collection of instruments that included two 915 MHz wind profilers, two radio acoustic sounding systems, and two eddy correlation devices. The data from these devices were available through the Atmospheric Boundary Layer Experiment (ABLE) database operated by Argonne National Laboratory. A signal processing procedure outlined by Angevine et al. was adapted and further built upon to derive vertical velocity variance, w_pm???2, from 915 MHz wind profiler measurements in the mixed layer. The proposed procedure consisted of the application of a height-dependent signal-to-noise ratio (SNR) filter, removal of outliers plus and minus two standard deviations about the mean on the spectral width squared, and removal of the effects of beam broadening and vertical shearing of horizontal winds. The scatter associated with w_pm???2 was mainly affected by the choice of SNR filter cutoff values. Several different sets of cutoff values were considered, and the optimal one was selected which reduced the overall scatter on w_pm???2 and yet retained a sufficient number of data points to average. A similarity relationship of w_pm???2 versus height was established for the mixed layer on the basis of the available data. A strong link between the SNR and growth/decay phases of turbulence was identified. Thus, the mid to late afternoon hours, when strong surface heating occurred, were observed to produce the highest quality signals.

  13. Estimating vertical profiles of water-cloud droplet effective radius from SWIR satellite measurements via a statistical model derived from CloudSat observations

    NASA Astrophysics Data System (ADS)

    Nagao, T. M.; Murakami, H.; Nakajima, T. Y.

    2017-12-01

    This study proposes an algorithm to estimate vertical profiles of cloud droplet effective radius (CDER-VP) for water clouds from shortwave infrared (SWIR) measurements of Himawari-8/AHI via a statistical model of CDER-VP derived from CloudSat observation. Several similar algorithms in previous studies utilize a spectral radiance matching on the assumption of simultaneous observations of CloudSat and Aqua/MODIS. However, our algorithm does not assume simultaneous observations with CloudSat. First, in advance, a database (DB) of CDER-VP is prepared by the following procedure: TOA radiances at 0.65, 2.3 and 10.4-μm bands of the AHI are simulated using CDER-VP and cloud optical depth vertical profile (COD-VP) contained in the CloudSat 2B-CWC-RVOD and 2B-TAU products. Cloud optical thickness (COT), Column-CDER and cloud top height (CTH) are retrieved from the simulated radiances using a traditional retrieval algorithm with vertically homogeneous cloud model (1-SWIR VHC method). The CDER-VP is added to the DB by using the COT and Column-CDER retrievals as a key of the DB. Then by using principal component (PC) analysis, up to three PC vectors of the CDER-VPs in the DB are extracted. Next, the algorithm retrieves CDER-VP from actual AHI measurements by the following procedure: First, COT, Column-CDER and CTH are retrieved from TOA radiances at 0.65, 2.3 and 10.4-μm bands of the AHI using by 1-SWIR VHC method. Then, the PC vectors of CDER-VP is fetched from the DB using the COT and Column-CDER retrievals as the key of the DB. Finally, using coefficients of the PC vectors of CDER-VP as variables for retrieval, CDER-VP, COT and CTH are retrieved from TOA radiances at 0.65, 1.6, 2.3, 3.9 and 10.4-μm bands of the AHI based on optimal estimation method with iterative radiative transfer calculation. The simulation result showed the CDER-VP retrieval errors were almost smaller than 3 - 4 μm. The CDER retrieval errors at the cloud base were almost larger than the others (e

  14. Latitudinal Variations In Vertical Cloud Structure Of Jupiter As Determined By Ground- based Observation With Multispectral Imaging

    NASA Astrophysics Data System (ADS)

    Sato, T.; Kasaba, Y.; Takahashi, Y.; Murata, I.; Uno, T.; Tokimasa, N.; Sakamoto, M.

    2008-12-01

    We conducted ground-based observation of Jupiter with the liquid crystal tunable filter (LCTF) and EM-CCD camera in two methane absorption bands (700-757nm, 872-950nm at 3 nm step: total of 47 wavelengths) to derive detailed Jupiter's vertical cloud structure. The 2-meter reflector telescope at Nishi-Harima astronomical observatory in Japan was used for our observation on 26-30 May, 2008. After a series of image processing (composition of high quality images in each wavelength and geometry calibration), we converted observed intensity to absolute reflectivity at each pixel using standard star. As a result, we acquired Jupiter's data cubes with high-spatial resolution (about 1") and narrow band imaging (typically 7nm) in each methane absorption band by superimposing 30 Jupiter's images obtained in short exposure time (50 ms per one image). These data sets enable us to probe different altitudes of Jupiter from 100 mbar down to 1bar level with higher vertical resolution than using convectional interference filters. To interpret observed center-limb profiles, we developed radiative transfer code based on layer adding doubling algorithm to treat multiple scattering of solar light theoretically and extracted information on aerosol altitudes and optical properties using two-cloud model. First, we fit 5 different profiles simultaneously in continuum data (745-757 nm) to retrieve information on optical thickness of haze and single scattering albedo of cloud. Second, we fit 15 different profiles around 727nm methane absorption band and 13 different profiles around 890 nm methane absorption band to retrieve information on the aerosol altitude location and optical thickness of cloud. In this presentation, we present the results of these modeling simulations and discuss the latitudinal variations of Jupiter's vertical cloud structure.

  15. Radially Magnetized Protoplanetary Disk: Vertical Profile

    NASA Astrophysics Data System (ADS)

    Russo, Matthew; Thompson, Christopher

    2015-11-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field Br ˜ (10-4-10-2)(r/ AU)-2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ˜1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10-8 M⊙ yr-1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.

  16. Application of a new vertical profiling tool (ESASS) for sampling groundwater quality during hollow-stem auger drilling

    USGS Publications Warehouse

    Harte, Philip T.; Flanagan, Sarah M.

    2011-01-01

    A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances.

  17. A method for retrieving vertical ozone profiles from limb scattered measurements

    NASA Astrophysics Data System (ADS)

    Wang, Zijun; Chen, Shengbo; Yang, Chunyan; Jin, Lihua

    2011-10-01

    A two-step method is employed in this study to retrieve vertical ozone profiles using scattered measurements from the limb of the atmosphere. The combination of the Differential Optical Absorption Spectroscopy (DOAS) and the Multiplicative Algebraic Reconstruction Technique (MART) is proposed. First, the limb radiance, measured over a range of tangent heights, is processed using the DOAS technique to recover the effective column densities of atmospheric ozone. Second, these effective column densities along the lines of sight (LOSs) are inverted using the MART coupled with a forward model SCIATRAN (radiative transfer model for SCIAMACHY) to derive the ozone profiles. This method is applied to Optical Spectrograph and Infra Red Imager System (OSIRIS) radiance, using the wavelength windows 571-617 nm. Vertical ozone profiles between 10 and 48 km are derived with a vertical resolution of 1 km. The results illustrate a good agreement with the cloud-free coincident SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) ozone measurements, with deviations less than ±10% (±5% for altitudes from 17 to 47 km). Furthermore, sensitivities of retrieved ozone to aerosol, cloud parameters and NO2 concentration are also investigated.

  18. K-band observations of boxy bulges - I. Morphology and surface brightness profiles

    NASA Astrophysics Data System (ADS)

    Bureau, M.; Aronica, G.; Athanassoula, E.; Dettmar, R.-J.; Bosma, A.; Freeman, K. C.

    2006-08-01

    In this first paper of a series on the structure of boxy and peanut-shaped (B/PS) bulges, Kn-band observations of a sample of 30 edge-on spiral galaxies are described and discussed. Kn-band observations best trace the dominant luminous galactic mass and are minimally affected by dust. Images, unsharp-masked images, as well as major-axis and vertically summed surface brightness profiles are presented and discussed. Galaxies with a B/PS bulge tend to have a more complex morphology than galaxies with other bulge types, more often showing centred or off-centred X structures, secondary maxima along the major-axis and spiral-like structures. While probably not uniquely related to bars, those features are observed in three-dimensional N-body simulations of barred discs and may trace the main bar orbit families. The surface brightness profiles of galaxies with a B/PS bulge are also more complex, typically containing three or more clearly separated regions, including a shallow or flat intermediate region (Freeman Type II profiles). The breaks in the profiles offer evidence for bar-driven transfer of angular momentum and radial redistribution of material. The profiles further suggest a rapid variation of the scaleheight of the disc material, contrary to conventional wisdom but again as expected from the vertical resonances and instabilities present in barred discs. Interestingly, the steep inner region of the surface brightness profiles is often shorter than the isophotally thick part of the galaxies, itself always shorter than the flat intermediate region of the profiles. The steep inner region is also much more prominent along the major-axis than in the vertically summed profiles. Similarly to other recent work but contrary to the standard `bulge + disc' model (where the bulge is both thick and steep), we thus propose that galaxies with a B/PS bulge are composed of a thin concentrated disc (a disc-like bulge) contained within a partially thick bar (the B/PS bulge), itself

  19. TOLNet Data Format for Lidar Ozone Profile & Surface Observations

    NASA Astrophysics Data System (ADS)

    Chen, G.; Aknan, A. A.; Newchurch, M.; Leblanc, T.

    2015-12-01

    The Tropospheric Ozone Lidar Network (TOLNet) is an interagency initiative started by NASA, NOAA, and EPA in 2011. TOLNet currently has six Lidars and one ozonesonde station. TOLNet provides high-resolution spatio-temporal measurements of tropospheric (surface to tropopause) ozone and aerosol vertical profiles to address fundamental air-quality science questions. The TOLNet data format was developed by TOLNet members as a community standard for reporting ozone profile observations. The development of this new format was primarily based on the existing NDAAC (Network for the Detection of Atmospheric Composition Change) format and ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) format. The main goal is to present the Lidar observations in self-describing and easy-to-use data files. The TOLNet format is an ASCII format containing a general file header, individual profile headers, and the profile data. The last two components repeat for all profiles recorded in the file. The TOLNet format is both human and machine readable as it adopts standard metadata entries and fixed variable names. In addition, software has been developed to check for format compliance. To be presented is a detailed description of the TOLNet format protocol and scanning software.

  20. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  1. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    NASA Astrophysics Data System (ADS)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  2. Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements

    NASA Astrophysics Data System (ADS)

    Adirosi, E.; Baldini, L.; Roberto, N.; Gatlin, P.; Tokay, A.

    2016-03-01

    A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the

  3. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Matthew; Thompson, Christopher

    2015-11-10

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiencesmore » the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B{sub r} ∼ (10{sup −4}–10{sup −2})(r/ AU){sup −2} G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10{sup −8} M{sub ⊙} yr{sup −1} are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.« less

  4. Mesoscale kinematics derived from X-band Doppler radar observations of convective versus stratiform precipitation and comparison with GPS radiosonde profiles

    NASA Astrophysics Data System (ADS)

    Deshpande, Sachin M.; Dhangar, N.; Das, S. K.; Kalapureddy, M. C. R.; Chakravarty, K.; Sonbawne, S.; Konwar, M.

    2015-11-01

    Single Doppler analysis techniques known as velocity azimuth display (VAD) and volume velocity processing (VVP) are used to analyze kinematics of mesoscale flow such as horizontal wind and divergence using X-band Doppler weather radar observations, for selected cases of convective, stratiform, and shallow cloud systems near tropical Indian sites Pune (18.58°N, 73.92°E, above sea level (asl) 560 m) and Mandhardev (18.51°N, 73.85°E, asl 1297 m). The vertical profiles of horizontal wind estimated from radar VVP/VAD methods agree well with GPS radiosonde profiles, with the low-level jet at about 1.5 km during monsoon season well depicted in both. The vertical structure and temporal variability of divergence and reflectivity profiles are indicative of the dynamical and microphysical characteristics of shallow convective, deep convective, and stratiform cloud systems. In shallow convective systems, vertical development of reflectivity profiles is limited below 5 km. In deep convective systems, reflectivity values as large as 55 dBZ were observed above freezing level. The stratiform system shows the presence of a reflectivity bright band (~35 dBZ) near the melting level. The diagnosed vertical profiles of divergence in convective and stratiform systems are distinct. In shallow convective conditions, convergence was seen below 4 km with divergence above. Low-level convergence and upper level divergence are observed in deep convective profiles, while stratiform precipitation has midlevel convergence present between lower level and upper level divergence. The divergence profiles in stratiform precipitation exhibit intense shallow layers of "melting convergence" at 0°C level, near 4.5 km altitude, with a steep gradient on the both sides of the peak. The level of nondivergence in stratiform situations is lower than that in convective situations. These observed vertical structures of divergence are largely indicative of latent heating profiles in the atmosphere, an

  5. Application of a new vertical profiling tool (ESASS) for sampling groundwater quality during hollow-stem auger drilling

    USGS Publications Warehouse

    Harte, P.T.; Flanagan, S.M.

    2011-01-01

    A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances. Ground Water Monitoring & Remediation ?? 2011, National Ground Water Association. No claim to original US government works.

  6. Measuring vertical oxygen profiles in the hyporheic zone using planar optodes

    NASA Astrophysics Data System (ADS)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2012-04-01

    On of the key parameters, controlling biogeochemical reactions in the hyporheic zone (HZ) is the distribution of oxygen. A reliable measurement of the vertical oxygen distribution is an important tool to understand the dynamic fluctuations of the aerobic zone within the HZ. With repeated measurements of continuous profiles, mixing of surface water and groundwater as well as the consumption of oxygen can be evaluated. We present a novel approach for the in situ measurements of vertical oxygen distribution in the riverbed using a planar optode. The luminescence based optode measurement enables a non invasive measurement without consumption of oxygen, no creation of preferential flow paths and only minimal disturbance of the flow field. Possible atmospheric contamination by pumping pore water into a vessel can be avoided and the readings are independent of flow velocity. A self manufactured planar optode is wrapped around an acrylic tube and installed in the riverbed. The measurement is performed by vertically moving a profiler-piston inside the acrylic tube. The piston holds a robust polymer optical fibre which emits a modulated light signal through the acrylic glass to the optode-foil and transmits the induced luminescence signal back to a commercially available trace oxygen meter. Temperature compensation is accomplished using a depth-oriented temperature probe nearby and processing the raw data within a Matlab script. Robust and unbiased oxygen profiles are obtained by averaging multiple consecutive measurements. To ensure a constant velocity of the profiler for replicating the exact measuring depths, an electric motor device is used. First results at our test site show a variable oxygen profile down to 40 cm depth which is strongly influenced by stream level and upwelling groundwater conditions. The measured oxygen profiles will serve as input parameter for a 3D solute transport and chemical reaction subsurface model of the HZ.

  7. More vertical etch profile using a Faraday cage in plasma etching

    NASA Astrophysics Data System (ADS)

    Cho, Byeong-Ok; Hwang, Sung-Wook; Ryu, Jung-Hyun; Moon, Sang Heup

    1999-05-01

    Scanning electron microscope images of sidewalls obtained by plasma etching of an SiO2 film with and without a Faraday cage have been compared. When the substrate film is etched in the Faraday cage, faceting is effectively suppressed and the etch profile becomes more vertical regardless of the process conditions. This is because the electric potential in the cage is nearly uniform and therefore distortion of the electric field at the convex corner of a microfeature is prevented. The most vertical etch profile is obtained when the cage is used in fluorocarbon plasmas, where faceting is further suppressed due to the decrease in the chemical sputtering yield and the increase in the radical/ion flux on the substrate.

  8. Vertical Position and Current Profile Measurements by Faraday-effect Polarimetry On EAST tokamak

    NASA Astrophysics Data System (ADS)

    Ding, Weixing; Liu, H. Q.; Jie, Y. X.; Brower, D. L.; Qian, J. P.; Zou, Z. Y.; Lian, H.; Wang, S. X.; Luo, Z. P.; Xiao, B. J.; Ucla Team; Asipp Team

    2017-10-01

    A primary goal for ITER and prospective fusion power reactors is to achieve controlled long-pulse/steady-state burning plasmas. For elongated divertor plasmas, both the vertical position and current profile have to be precisely controlled to optimize performance and prevent disruptions. An eleven-channel laser-based POlarimeter-INTerferometer (POINT) system has been developed for measuring the internal magnetic field in the EAST tokamak and can be used to obtain the plasma current profile and vertical position. Current profiles are determined from equilibrium reconstruction including internal magnetic field measurements as internal constraints. Horizontally-viewing chords at/near the mid-plane allow us to determine plasma vertical position non-inductively with subcentimeter spatial resolution and time response up to 1 s. The polarimeter-based position measurement, which does not require equilibrium reconstruction, is benchmarked against conventional flux loop measurements and can be exploited for feedback control. Work supported by US DOE through Grants No. DE-FG02-01ER54615 and No. DC-SC0010469.

  9. Wind-Wave Effects on Vertical Mixing in Chesapeake Bay, USA: comparing observations to second-moment closure predictions.

    NASA Astrophysics Data System (ADS)

    Fisher, A. W.; Sanford, L. P.; Scully, M. E.

    2016-12-01

    Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer

  10. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    PubMed Central

    Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future. PMID:22408531

  11. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing.

    PubMed

    Wong, Man Sing; Nichol, Janet E; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  12. GOSAT TIR radiometric validation toward simultaneous GHG column and profile observation

    NASA Astrophysics Data System (ADS)

    Kataoka, F.; Knuteson, R. O.; Kuze, A.; Shiomi, K.; Suto, H.; Saitoh, N.

    2015-12-01

    The Greenhouse gases Observing SATellite (GOSAT) was launched on January 2009 and continues its operation for more than six years. The thermal and near infrared sensor for carbon observation Fourier-Transform Spectrometer (TANSO-FTS) onboard GOSAT measures greenhouse gases (GHG), such as CO2 and CH4, with wide and high resolution spectra from shortwave infrared (SWIR) to thermal infrared (TIR). This instrument has the advantage of being able to measure simultaneously the same field of view in different spectral ranges. The combination of column-GHG form SWIR band and vertical profile-GHG from TIR band provide better understanding and distribution of GHG, especially in troposphere. This work describes the radiometric validation and sensitivity analysis of TANSO-FTS TIR spectra, especially CO2, atmospheric window and CH4 channels with forward calculation. In this evaluation, we used accurate in-situ dataset of the HIPPO (HIAPER Pole-to-Pole Observation) airplane observation data and GOSAT vicarious calibration and validation campaign data in Railroad Valley, NV. The HIPPO aircraft campaign had taken accurate atmospheric vertical profile dataset (T, RH, O3, CO2, CH4, N2O, CO) approximately pole-to-pole from the surface to the tropopause over the ocean. We implemented these dataset for forward calculation and made the spectral correction model with respect to wavenumber and internal calibration blackbody temperature The GOSAT vicarious calibration campaign have conducted every year since 2009 near summer solstice in Railroad Valley, where high-temperature desert site. In this campaign, we have measured temperature and humidity by a radiosonde and CO2, CH4 and O3 profile by the AJAX airplane at the time of the GOSAT overpass. Sometimes, the GHG profiles over the Railroad Valley show the air mass advection in mid-troposphere depending on upper wind. These advections bring the different concentration of GHG in lower and upper troposphere. Using these cases, we made

  13. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    DOE PAGES

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan; ...

    2016-11-16

    This study describes the characteristics of large-scale vertical velocity, apparent heating source ( Q 1) and apparent moisture sink ( Q 2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wetmore » seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. Here, a set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.« less

  14. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan

    2016-01-01

    This study describes the characteristics of large-scale vertical velocity, apparent heating source ( Q 1) and apparent moisture sink ( Q 2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wetmore » seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.« less

  15. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  16. Local fluctuations of ozone from 16 km to 45 km deduced from in situ vertical ozone profile

    NASA Technical Reports Server (NTRS)

    Moreau, G.; Robert, C.

    1994-01-01

    A vertical ozone profile obtained by an in situ ozone sonde from 16 km to 45 km, has allowed to observe local ozone concentration variations. These variations can be observed, thanks to a fast measurement system based on a UV absorption KrF excimer laser beam in a multipass cell. Ozone standard deviation versus altitude calculated from the mean is derived. Ozone variations or fluctuations are correlated with the different dynamic zones of the stratosphere.

  17. Balloon-borne observations of the development and vertical structure of the Antarctic ozone hole in 1986

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Harder, J. W.; Rolf, S. R.; Rosen, J. M.

    1987-01-01

    The vertical distribution of ozone measured at McMurdo Station, Antarctica using balloon-borne sensors on 33 occasions during November 6, 1986 - August 25, 1986 is described. These observations suggest a highly structured cavity confined to the 12-20 km altitude region. In the 17-19 km altitude range, the ozone volume mixing ratio declined from about 2 ppm at the end of August to about 0.5 ppm by mid-October. The average decay in this region can be described as exponential with a half life of about 25 days. While total ozone, as obtained from profile integration, declined only about 35 percent, the integrated ozone between 14 and 18 km declined more than 70 percent. Vertical ozone profiles in the vortex revealed unusual structure with major features from 1 to 5 km thick which had suffered ozone depletions as great as 90 percent.

  18. Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ran, Liang; Deng, Zhaoze; Xu, Xiaobin; Yan, Peng; Lin, Weili; Wang, Ying; Tian, Ping; Wang, Pucai; Pan, Weilin; Lu, Daren

    2016-08-01

    Black carbon (BC) is a dominant absorber in the visible spectrum and a potent factor in climatic effects. Vertical profiles of BC were measured using a micro-aethalometer attached to a tethered balloon during the Vertical Observations of trace Gases and Aerosols (VOGA) field campaign, in summer 2014 at a semirural site in the North China Plain (NCP). The diurnal cycle of BC vertical distributions following the evolution of the mixing layer (ML) was investigated for the first time in the NCP region. Statistical parameters including identified mixing height (Hm) and average BC mass concentrations within the ML (Cm) and in the free troposphere (Cf) were obtained for a selected dataset of 67 vertical profiles. Hm was usually lower than 0.2 km in the early morning and rapidly rose thereafter due to strengthened turbulence. The maximum height of the ML was reached in the late afternoon. The top of a full developed ML exceeded 1 km on sunny days in summer, while it stayed much lower on cloudy days. The sunset triggered the collapse of the ML, and a stable nocturnal boundary layer (NBL) gradually formed. Accordingly, the highest level Cm was found in the early morning and the lowest was found in the afternoon. In the daytime, BC was almost uniformly distributed within the ML and significantly decreased above the ML. During the field campaign, Cm averaged about 5.16 ± 2.49 µg m-3, with a range of 1.12 to 14.49 µg m-3, comparable with observational results in many polluted urban areas such as Milan in Italy and Shanghai in China. As evening approached, BC gradually built up near the surface and exponentially declined with height. In contrast to the large variability found both in Hm and Cm, Cf stayed relatively unaffected through the day. Cf was less than 10 % of the ground level under clean conditions, while it amounted to half of the ground level in some polluted cases. In situ measurements of BC vertical profiles would hopefully have an important implication for

  19. Analysis and high resolution modelling of black carbon vertical profiles measured over three Italian valleys

    NASA Astrophysics Data System (ADS)

    Gandolfi, Ilaria; Curci, Gabriele; Falasca, Serena; Ferrero, Luca

    2017-04-01

    Analysis and high resolution modelling of black carbon vertical profiles measured over three Italian valleys Ilaria Gandolfi1,2, Gabriele Curci1,2, Serena Falasca1,2, Luca Ferrero3 1 Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy 2 Center of Excellence CETEMPS, University of L'Aquila, L'Aquila, Italy 3 POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy Last decades were characterized by a growing interest in aerosols: mainly for their effect on human health and on the energy balance of solar and planetary radiation, thus their role in climate change. In this study, we analyze the evolution of vertical profile of black carbon (BC) through tethered balloon observations and chemistry-transport modelling. Black carbon is regarded as the second most important anthropogenic climate forcing agent and its concentration varies significantly depending on the altitude and the sources on the territory. In winter of 2010 University Of Milan Bicocca conducted three intensive measurements campaigns over three Italian basin valleys (Terni, Po Valley, Passiria Valley). The choice of the valleys was made taking into consideration the orography and the river basin structure. The measurement campaign was based on a helium-filled tethered balloon, on which the instrumentation for the analysis has been mounted; the instrumentation consisted on a meteorological station, an OPC, a cascade impactor and a micro-Aethalometer. Subsequently, at University of L'Aquila simulations were produced to help interpretation of these vertical aerosol profiles (mass, composition and distribution) and related optical properties (scattering, absorption) using a chemistry-transport model (WRF-CHIMERE) at high horizontal resolution (1 km). The analysis focused primarily on the calculation of the heating rate and of the Direct Radiative Effect (DRE), and on the analysis of the

  20. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  1. Vertical profile of fog microphysics : a case study

    NASA Astrophysics Data System (ADS)

    Burnet, Frédéric; Brilouet, Pierre-Etienne; Mazoyer, Marie; Bourrianne, Thierry; Etcheberry, Jean-Michel; Gaillard, Brigitte; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Barrau, Sébastien; Defoy, Stephan

    2016-04-01

    The occurrence and development of fogs result from the non-linear interaction of competing radiative, thermodynamic, microphysical and dynamical processes and the forecasting of their life cycle still remains a challenging issue. Several field campaigns have been carried out at the SIRTA observatory in the Paris suburb area (France). These experiments have shown that fog events exhibit large differences of the microphysical properties and various evolutions during their life cycle. To better understand relationships between the different processes and to validate numerical simulations it is necessary however to document the vertical profile of the fog microphysics. A CDP (Cloud Droplet Spectrometer) from DMT (Droplet Measurement Technology, Boulder, CO) has been modified to allow measurements of the droplet size distribution in fog layers with a tethered balloon. This instrumental set-up has been used during a field campaign during the winter 2013-214 in the Landes area in the South West of France. To validate the vertical profiles provided by the modified CDP, a mast was equipped with microphysical instruments at 2 altitude levels with an another CDP at 24 m and a Fog Monitor FM100 at 42 m. The instrumental set-up deployed during this campaign is presented. Data collected during a fog event that occurred during the night of 5-6 March 2014 are analysed. We show that microphysical properties such as droplet number concentration, LWC and mean droplet size, exhibit different time evolution during the fog life cycle depending on the altitude level. Droplet size distribution measurements are also investigated. They reveal sharp variations along the vertical close to the top of the fog layer. In addition it is shown that the shape of the size distributions at the top follows a time evolution typical of a quasi-adiabatic droplet growth.

  2. Retrieval of ozone profiles from OMPS limb scattering observations

    NASA Astrophysics Data System (ADS)

    Arosio, Carlo; Rozanov, Alexei; Malinina, Elizaveta; Eichmann, Kai-Uwe; von Clarmann, Thomas; Burrows, John P.

    2018-04-01

    This study describes a retrieval algorithm developed at the University of Bremen to obtain vertical profiles of ozone from limb observations performed by the Ozone Mapper and Profiler Suite (OMPS). This algorithm is based on the technique originally developed for use with data from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument. As both instruments make limb measurements of the scattered solar radiation in the ultraviolet (UV) and visible (Vis) spectral ranges, an underlying objective of the study is to obtain consolidated and consistent ozone profiles from the two satellites and to produce a combined data set. The retrieval algorithm uses radiances in the UV and Vis wavelength ranges normalized to the radiance at an upper tangent height to obtain ozone concentrations in the altitude range of 12-60 km. Measurements at altitudes contaminated by clouds in the instrument field of view are identified and filtered out. An independent aerosol retrieval is performed beforehand and its results are used to account for the stratospheric aerosol load in the ozone inversion. The typical vertical resolution of the retrieved profiles varies from ˜ 2.5 km at lower altitudes ( < 30 km) to ˜ 1.5 km (about 45 km) and becomes coarser at upper altitudes. The retrieval errors resulting from the measurement noise are estimated to be 1-4 % above 25 km, increasing to 10-30 % in the upper troposphere. OMPS data are processed for the whole of 2016. The results are compared with the NASA product and validated against profiles derived from passive satellite observations or measured in situ by balloon-borne sondes. Between 20 and 60 km, OMPS ozone profiles typically agree with data from the Microwave Limb Sounder (MLS) v4.2 within 5-10 %, whereas in the lower altitude range the bias becomes larger, especially in the tropics. The comparison of OMPS profiles with ozonesonde measurements shows differences within ±5 % between 13 and 30 km at

  3. Microwave Radiometer and Lidar Synergy for High Vertical Resolution Thermodynamic Profiling in a Cloudy Scenario

    NASA Astrophysics Data System (ADS)

    Barrera Verdejo, M.; Crewell, S.; Loehnert, U.; Di Girolamo, P.

    2016-12-01

    Continuous monitoring of thermodynamic atmospheric profiles is important for many applications, e.g. assessment of atmospheric stability and cloud formation. Nowadays there is a wide variety of ground-based sensors for atmospheric profiling. However, no single instrument is able to simultaneously provide measurements with complete vertical coverage, high vertical and temporal resolution, and good performance under all weather conditions. For this reason, instrument synergies of a wide range of complementary measurements are more and more considered for improving the quality of atmospheric observations. The current work presents synergetic use of a microwave radiometer (MWR) and Raman lidar (RL) within a physically consistent optimal estimation approach. On the one hand, lidar measurements provide humidity and temperature measurements with a high vertical resolution albeit with limited vertical coverage, due to overlapping function problems, sunlight contamination and the presence of clouds. On the other hand, MWRs obtain humidity, temperature and cloud information throughout the troposphere, with however only a very limited vertical resolution. The benefits of MWR+RL synergy have been previously demonstrated for clear sky cases. This work expands this approach to cloudy scenarios. Consistent retrievals of temperature, absolute and relative humidity as well as liquid water path are analyzed. In addition, different measures are presented to demonstrate the improvements achieved via the synergy compared to individual retrievals, e.g. degrees of freedom or theoretical error. We also demonstrate that, compared to the lidar, the higher temporal resolution of the MWR presents a strong advantage for capturing the high temporal variability of the liquid water cloud.. Finally, the results are compared with independent information sources, e.g. GPS or radiosondes, showing good consistency. The study demonstrates the benefits of the sensor combination, being especially strong

  4. Vertical and Lateral Electron Content in the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Paetzold, M. P.; Peter, K.; Bird, M. K.; Häusler, B.; Tellmann, S.

    2016-12-01

    The radio-science experiment MaRS (Mars Express Radio Science) on the Mars Express spacecraft sounds the neutral atmosphere and ionosphere of Mars since 2004. Approximately 800 vertical profiles of the ionospheric electron density have been acquired until today. The vertical electron content (TEC) is easily computed from the vertical electron density profile by integrating along the altitude. The TEC is typically a fraction of a TEC unit (1E16 m^-2) and depends on the solar zenith angle. The magnitude of the TEC is however fully dominated by the electron density contained in the main layer M2. The contributions by the M1 layer below M2 or the topside is marginal. MaRS is using two radio frequencies for the sounding of the ionosphere. The directly observed differential Doppler from the two received frequencies is a measure of the lateral electron content that means along the ray path and perpendicular to the vertical electron density profile. Combining both the vertical electron density profile, the vertical TEC and the directly observed lateral TEC describes the lateral electron density distribution in the ionosphere.

  5. Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling

    NASA Astrophysics Data System (ADS)

    Barrera-Verdejo, María; Crewell, Susanne; Löhnert, Ulrich; Orlandi, Emiliano; Di Girolamo, Paolo

    2016-08-01

    Continuous monitoring of atmospheric humidity profiles is important for many applications, e.g., assessment of atmospheric stability and cloud formation. Nowadays there are a wide variety of ground-based sensors for atmospheric humidity profiling. Unfortunately there is no single instrument able to provide a measurement with complete vertical coverage, high vertical and temporal resolution and good performance under all weather conditions, simultaneously. For example, Raman lidar (RL) measurements can provide water vapor with a high vertical resolution, albeit with limited vertical coverage, due to sunlight contamination and the presence of clouds. Microwave radiometers (MWRs) receive water vapor information throughout the troposphere, though their vertical resolution is poor. In this work, we present an MWR and RL system synergy, which aims to overcome the specific sensor limitations. The retrieval algorithm combining these two instruments is an optimal estimation method (OEM), which allows for an uncertainty analysis of the retrieved profiles. The OEM combines measurements and a priori information, taking the uncertainty of both into account. The measurement vector consists of a set of MWR brightness temperatures and RL water vapor profiles. The method is applied to a 2-month field campaign around Jülich (Germany), focusing on clear sky periods. Different experiments are performed to analyze the improvements achieved via the synergy compared to the individual retrievals. When applying the combined retrieval, on average the theoretically determined absolute humidity uncertainty is reduced above the last usable lidar range by a factor of ˜ 2 with respect to the case where only RL measurements are used. The analysis in terms of degrees of freedom per signal reveal that most information is gained above the usable lidar range, especially important during daytime when the lidar vertical coverage is limited. The retrieved profiles are further evaluated using

  6. Observations of and Influences on Low-Latitude Vertical Plasma Drifts

    NASA Astrophysics Data System (ADS)

    Miller, E. S.; Chartier, A.; Paxton, L. J.

    2016-12-01

    Many workers have suggested that the morphology (position and relative intensities) of the crests of the equatorial ionization anomaliesis related to the time history of the equatorial vertical drift. In this work, we compare observations of the vertical drift using an HF radiosignals of opportunity in the Central Pacific with UV 135.6-nm observations of the equatorial anomalies from the DMSP/SSUSI andTIMED/GUVI instruments. Furthermore, we explore the role of E region density in modulating the vertical plasma drift using a passive HFsounding experiment in the Caribbean. Coupling between nighttime medium-scale traveling ionospheric disturbances (MSTIDs) and sporadic-Elayers has been suggested as a growth-rate-increasing process. While we observe sporadic-E in the local hemisphere coincident to increases in thealtitude of the F-region altitude, we also observe uplifts without sporadic-E in the local hemisphere. Apart from the trivial explanation that sporadic-E is occurring in the conjugate hemisphere, another possible explanation is that the E region may enhance the vertical drift, but is not required to produce enhanced vertical drifts. These studies represent fruitful areas of future intersection between ground-based observations and ICON and GOLD science.

  7. Simulating CO2 profiles using NIES TM and comparison with HIAPER Pole-to-Pole Observations

    NASA Astrophysics Data System (ADS)

    Song, C.; Maksyutov, S.; Belikov, D.; Takagi, H.; Shu, J.

    2015-03-01

    We present a study on validation of the National Institute for Environmental Studies Transport Model (NIES TM) by comparing to observed vertical profiles of atmospheric CO2. The model uses a hybrid sigma-isentropic (σ-θ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly in the stratosphere. The model transport is driven by reanalyzed meteorological fields and designed to simulate seasonal and diurnal cycles, synoptic variations, and spatial distributions of atmospheric chemical constituents in the troposphere. The model simulations were run for biosphere, fossil fuel, air-ocean exchange, biomass burning and inverse correction fluxes of carbon dioxide (CO2) by GOSAT Level 4 product. We compared the NIES TM simulated fluxes with data from the HIAPER Pole-to-Pole Observations (HIPPO) Merged 10 s Meteorology, Atmospheric Chemistry, and Aerosol Data, including HIPPO-1, HIPPO-2 and HIPPO-3 from 128.0° E to -84.0° W, and 87.0° N to -67.2° S. The simulation results were compared with CO2 observations made in January and November 2009, and March and April 2010. The analysis attests that the model is good enough to simulate vertical profiles with errors generally within 1-2 ppmv, except for the lower stratosphere in the Northern Hemisphere high latitudes.

  8. High-latitude topside ionospheric vertical electron density profile changes in response to large magnetic storms

    NASA Astrophysics Data System (ADS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-05-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst < -100 nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial and/or temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100 km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  9. High-Latitude Topside Ionospheric Vertical Electron Density Profile Changes in Response to Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-01-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst -100nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial andor temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  10. How well can we Measure the Vertical Profile of Tropospheric Aerosol Extinction?

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.

    2005-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (MOP, May 2003) yielded one of the best measurement sets obtained to-date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(sub ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well characterized aerosol sampling ability carrying well proven and new aerosol instrumentation, devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from 6 different instuments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, ground-based Raman lidar and 2 ground-based elastic backscatter lidars. We find the in-situ measured sigma(sub ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002 - 0.004 K/m equivalent to 12-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(sub ep)(lambda) are higher. An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP and we expect better agreement from the recently restored system looking at the collective results from 6 field campaigns conducted since 1996, airborne in situ measurements of sigma(sub ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(sub ep)(lambda). On the other hand, sigma(sub ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state of-the art instrumentation is 15-20% at visible wavelengths and potentially larger in

  11. Vertically-resolved profiles of mass concentrations and particle backscatter coefficients of Asian dust plumes derived from lidar observations of silicon dioxide.

    PubMed

    Noh, Youngmin; Müller, Detlef; Shin, Sung-Kyun; Shin, Dongho; Kim, Young J

    2016-01-01

    This study presents a method to retrieve vertically-resolved profiles of dust mass concentrations by analyzing Raman lidar signals of silicon dioxide (quartz) at 546nm. The observed particle plumes consisted of mixtures of East Asian dust with anthropogenic pollution. Our method for the first time allows for extracting the contribution of the aerosol component "pure dust" contained in the aerosol type "polluted dust". We also propose a method that uses OPAC (Optical Properties of Aerosols and Clouds) and the mass concentrations profiles of dust in order to derive profiles of backscatter coefficients of pure dust in mixed dust/pollution plumes. The mass concentration of silicon dioxide (quartz) in the atmosphere can be estimated from the backscatter coefficient of quartz. The mass concentration of dust is estimated by the weight percentage (38-77%) of mineral quartz in Asian dust. The retrieved dust mass concentrations are classified into water soluble, nucleation, accumulation, mineral-transported and coarse mode according to OPAC. The mass mixing ratio of 0.018, 0.033, 0.747, 0.130 and 0.072, respectively, is used. Dust extinction coefficients at 550nm were calculated by using OPAC and prescribed number concentrations for each of the 5 components. Dust backscatter coefficients were calculated from the dust extinction coefficients on the basis of a lidar ratio of 45±3sr at 532nm. We present results of quartz-Raman measurements carried out on the campus of the Gwangju Institute of Science and Technology (35.10°N, 126.53°E) on 15, 16, and 21 March 2010. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Retrieval of carbon dioxide vertical profiles from solar occultation observations and associated error budgets for ACE-FTS and CASS-FTS

    NASA Astrophysics Data System (ADS)

    Sioris, C. E.; Boone, C. D.; Nassar, R.; Sutton, K. J.; Gordon, I. E.; Walker, K. A.; Bernath, P. F.

    2014-07-01

    An algorithm is developed to retrieve the vertical profile of carbon dioxide in the 5 to 25 km altitude range using mid-infrared solar occultation spectra from the main instrument of the ACE (Atmospheric Chemistry Experiment) mission, namely the Fourier transform spectrometer (FTS). The main challenge is to find an atmospheric phenomenon which can be used for accurate tangent height determination in the lower atmosphere, where the tangent heights (THs) calculated from geometric and timing information are not of sufficient accuracy. Error budgets for the retrieval of CO2 from ACE-FTS and the FTS on a potential follow-on mission named CASS (Chemical and Aerosol Sounding Satellite) are calculated and contrasted. Retrieved THs have typical biases of 60 m relative to those retrieved using the ACE version 3.x software after revisiting the temperature dependence of the N2 CIA (collision-induced absorption) laboratory measurements and accounting for sulfate aerosol extinction. After correcting for the known residual high bias of ACE version 3.x THs expected from CO2 spectroscopic/isotopic inconsistencies, the remaining bias for tangent heights determined with the N2 CIA is -20 m. CO2 in the 5-13 km range in the 2009-2011 time frame is validated against aircraft measurements from CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container), CONTRAIL (Comprehensive Observation Network for Trace gases by Airline), and HIPPO (HIAPER Pole-to-Pole Observations), yielding typical biases of -1.7 ppm in the 5-13 km range. The standard error of these biases in this vertical range is 0.4 ppm. The multi-year ACE-FTS data set is valuable in determining the seasonal variation of the latitudinal gradient which arises from the strong seasonal cycle in the Northern Hemisphere troposphere. The annual growth of CO2 in this time frame is determined to be 2.6 ± 0.4 ppm year-1, in agreement with the currently accepted global growth rate based on

  13. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies

    PubMed Central

    Huang, Wenjiang; Zhou, Xianfeng; Ye, Huichun; Dong, Yingying

    2017-01-01

    Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R2 of 0.84–0.69, and RMSE of 5.37–5.56 µg/cm2 from the top to the bottom layers

  14. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.

    PubMed

    Kong, Weiping; Huang, Wenjiang; Casa, Raffaele; Zhou, Xianfeng; Ye, Huichun; Dong, Yingying

    2017-11-23

    Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R² of 0.84-0.69, and RMSE of 5.37-5.56 µg/cm² from the top to the bottom layers

  15. Potential of collocated radiometer and wind profiler observations for monsoon studies

    NASA Astrophysics Data System (ADS)

    Balaji, B.; Prabha, Thara V.; Jaya Rao, Y.; Kiran, T.; Dinesh, G.; Chakravarty, Kaustav; Sonbawne, S. M.; Rajeevan, M.

    2017-09-01

    Collocated observations from microwave radiometer and wind profiler are used in a pilot study during the monsoon period to derive information on the thermodynamics and winds and association with rainfall characteristics. These instruments were operated throughout the monsoon season of 2015. Continuous vertical profiles of winds, temperature and humidity show significant promise for understanding the low-level jet, its periodicity and its association with moisture transport, clouds and precipitation embedded within the monsoon large-scale convection. Observations showed mutually beneficial in explaining variability that are part of the low frequency oscillations and the diurnal variability during monsoon. These observations highlight the importance of locally driven convective systems, in the presence of weak moisture transport over the area. The episodic moisture convergence showed a periodicity of 9 days which matches with the subsequent convection and precipitation and thermodynamic regimes. Inferences from the diurnal cycle of moisture transport and the convective activity, relationship with the low-level jet characteristics and thermodynamics are also illustrated.

  16. Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan.

    PubMed

    Ferrero, L; Mocnik, G; Ferrini, B S; Perrone, M G; Sangiorgi, G; Bolzacchini, E

    2011-06-15

    Vertical profiles of aerosol number-size distribution and black carbon (BC) concentration were measured between ground-level and 500m AGL over Milan. A tethered balloon was fitted with an instrumentation package consisting of the newly-developed micro-Aethalometer (microAeth® Model AE51, Magee Scientific, USA), an optical particle counter, and a portable meteorological station. At the same time, PM(2.5) samples were collected both at ground-level and at a high altitude sampling site, enabling particle chemical composition to be determined. Vertical profiles and PM(2.5) data were collected both within and above the mixing layer. Absorption coefficient (b(abs)) profiles were calculated from the Aethalometer data: in order to do so, an optical enhancement factor (C), accounting for multiple light-scattering within the filter of the new microAeth® Model AE51, was determined for the first time. The value of this parameter C (2.05±0.03 at λ=880nm) was calculated by comparing the Aethalometer attenuation coefficient and aerosol optical properties determined from OPC data along vertical profiles. Mie calculations were applied to the OPC number-size distribution data, and the aerosol refractive index was calculated using the effective medium approximation applied to aerosol chemical composition. The results compare well with AERONET data. The BC and b(abs) profiles showed a sharp decrease at the mixing height (MH), and fairly constant values of b(abs) and BC were found above the MH, representing 17±2% of those values measured within the mixing layer. The BC fraction of aerosol volume was found to be lower above the MH: 48±8% of the corresponding ground-level values. A statistical mean profile was calculated, both for BC and b(abs), to better describe their behaviour; the model enabled us to compute their average behaviour as a function of height, thus laying the foundations for valid parametrizations of vertical profile data which can be useful in both remote sensing

  17. Interpretation of nitric oxide profile observed in January 1992 over Kiruna

    NASA Astrophysics Data System (ADS)

    Kondo, Y.; Kawa, S. R.; Lary, D.; Sugita, T.; Douglass, Anne R.; Lutman, E.; Koike, M.; Deshler, T.

    1996-05-01

    NO mixing ratios measured from Kiruna (68°N, 20°E), Sweden, on January 22, 1992, revealed values much smaller than those observed at midlatitude near equinox and had a sharper vertical gradient around 25 km. Location of the measurements was close to the terminator and near the edge of the polar vortex, which is highly distorted from concentric flow by strong planetary wave activities. These conditions necessitate accurate calculation, properly taking into account the transport and photochemical processes, in order to quantitatively explain the observed NO profile. A three-dimensional chemistry and transport model (CTM) and a trajectory model (TM) were used to interpret the profile observations within their larger spatial, temporal, and chemical context. The NOy profile calculated by the CTM is in good agreement with that observed on January 31, 1992. In addition, model NOy profiles show small variabilities depending on latitudes, and they change little between January 22 and 31. The TM uses the observed NOy values. The NO values calculated by the CTM and TM agree with observations up to 27 km. Between 20 and 27 km the NO values calculated by the trajectory model including only gas phase chemistry are much larger than those including heterogeneous chemistry, indicating that NO mixing ratios were reduced significantly by heterogeneous chemistry on sulfuric acid aerosols. Very little sunlight to generate NOx from HNO3 was available, also causing the very low NO values. The good agreement between the observed and modeled NO profiles indicates that models can reproduce the photochemical and transport processes in the region where NO values have a sharp horizontal gradient. Moreover, CTM and TM model results show that even when the NOy gradients are weak, the model NO depends upon accurate calculation of the transport and insolation for several days.

  18. Comparison of stratospheric NO2 profiles above Kiruna, Sweden retrieved from ground-based zenith sky DOAS measurements, SAOZ balloon measurements and SCIAMACHY limb observations

    NASA Astrophysics Data System (ADS)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2015-04-01

    Stratospheric NO2 not only destroys ozone but acts as a buffer against halogen catalyzed ozone loss by converting halogen species into stable nitrates. These two roles of stratospheric NO2 depend on the altitude. Hence, the objective of this study is to investigate the vertical distribution of stratospheric NO2. We compare the NO2 profiles derived from the zenith sky DOAS with those obtained from, SAOZ balloon measurements and satellite limb observations. Vertical profiles of stratospheric NO2 are retrieved from ground-based zenith sky DOAS observations operated at Kiruna, Sweden (68.84°N, 20.41°E) since 1996. To determine the profile of stratospheric NO2 measured from ground-based zenith sky DOAS, we apply the Optimal Estimation Method (OEM) to retrieval of vertical profiles of stratospheric NO2 which has been developed by IASB-BIRA. The basic principle behind this profiling approach is the dependence of the mean scattering height on solar zenith angle (SZA). We compare the retrieved profiles to two additional datasets of stratospheric NO2 profile. The first one is derived from satellite limb observations by SCIAMACHY (Scanning Imaging Absorption spectrometer for Atmospheric CHartographY) on EnviSAT. The second is derived from the SAOZ balloon measurements (using a UV/Visible spectrometer) performed at Kiruna in Sweden.

  19. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity

    USGS Publications Warehouse

    Lapham, Wayne W.

    1989-01-01

    The use of temperature profiles beneath streams to determine rates of vertical ground-water flow and effective vertical hydraulic conductivity of sediments was evaluated at three field sites by use of a model that numerically solves the partial differential equation governing simultaneous vertical flow of fluid and heat in the Earth. The field sites are located in Hardwick and New Braintree, Mass., and in Dover, N.J. In New England, stream temperature varies from about 0 to 25 ?C (degrees Celsius) during the year. This stream-temperature fluctuation causes ground-water temperatures beneath streams to fluctuate by more than 0.1 ?C during a year to a depth of about 35 ft (feet) in fine-grained sediments and to a depth of about 50 ft in coarse-grained sediments, if ground-water velocity is 0 ft/d (foot per day). Upward flow decreases the depth affected by stream-temperature fluctuation, and downward flow increases the depth. At the site in Hardwick, Mass., ground-water flow was upward at a rate of less than 0.01 ft/d. The maximum effective vertical hydraulic conductivity of the sediments underlying this site is 0.1 ft/d. Ground-water velocities determined at three locations at the site in New Braintree, Mass., where ground water discharges naturally from the underlying aquifer to the Ware River, ranged from 0.10 to 0.20 ft/d upward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.4 to 17.1 ft/d. Ground-water velocities determined at three locations at the Dover, N.J., site, where infiltration from the Rockaway River into the underlying sediments occurs because of pumping, were 1.5 ft/d downward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.2 to 2.5 ft/d. Independent estimates of velocity at two of the three sites are in general agreement with the velocities determined using temperature profiles. The estimates of velocities and conductivities derived from the

  20. Improving Vertical Jump Profiles Through Prescribed Movement Plans.

    PubMed

    Mayberry, John K; Patterson, Bryce; Wagner, Phil

    2018-06-01

    Mayberry, JK, Patterson, B, and Wagner, P. Improving vertical jump profiles through prescribed movement plans. J Strength Cond Res 32(6): 1619-1626, 2018-Developing practical, reliable, and valid methods for monitoring athlete wellness and injury risk is an important goal for trainers, athletes, and coaches. Previous studies have shown that the countermovement vertical jump (CMJ) test is both a reliable and valid metric for evaluating an athlete's condition. This study examines the effectiveness of prescribed workouts on improving the quality of movement during CMJ. The data set consists of 2,425 pairs of CMJ scans for high school, college, and professional athletes training at a privately owned facility. During each scan, a force plate recorded 3 ground reaction force (GRF) measurements known to impact CMJ performance: eccentric rate of force development (ERFD), average vertical concentric force (AVCF), and concentric vertical impulse (CVI). After an initial scan, coaches either assigned the athlete a specific 1- or 2-strength movement plan (treatment group) or instructed the athlete to choose their own workouts (control group) before returning for a follow-up scan. A multivariate analysis of covariance (MANCOVA) revealed significant differences in changes to GRF measurements between athletes in the 2 groups after adjusting for the covariates sex, sport, time between scans, and rounds of workout completed. A principal component analysis of GRF measurements further identified 4 primary groups of athlete needs and the results provide recommendations for effective workout plans targeting each group. In particular, split squats increase CVI and decrease ERFD/AVCF; deadlifts increase AVCF and decrease CVI; alternating squats/split squats increase ERFD/CVI and decrease AVCF; and alternating squats/deadlifts increase ERFD/AVCF and decrease CVI.

  1. Comparison of the GOSAT TANSO-FTS TIR CH volume mixing ratio vertical profiles with those measured by ACE-FTS, ESA MIPAS, IMK-IAA MIPAS, and 16 NDACC stations

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin S.; Strong, Kimberly; Walker, Kaley A.; Boone, Chris D.; Raspollini, Piera; Plieninger, Johannes; Bader, Whitney; Conway, Stephanie; Grutter, Michel; Hannigan, James W.; Hase, Frank; Jones, Nicholas; de Mazière, Martine; Notholt, Justus; Schneider, Matthias; Smale, Dan; Sussmann, Ralf; Saitoh, Naoko

    2017-10-01

    The primary instrument on the Greenhouse gases Observing SATellite (GOSAT) is the Thermal And Near infrared Sensor for carbon Observations (TANSO) Fourier transform spectrometer (FTS). TANSO-FTS uses three short-wave infrared (SWIR) bands to retrieve total columns of CO2 and CH4 along its optical line of sight and one thermal infrared (TIR) channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios (VMRs) in the troposphere. We examine version 1 of the TANSO-FTS TIR CH4 product by comparing co-located CH4 VMR vertical profiles from two other remote-sensing FTS systems: the Canadian Space Agency's Atmospheric Chemistry Experiment FTS (ACE-FTS) on SCISAT (version 3.5) and the European Space Agency's Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat (ESA ML2PP version 6 and IMK-IAA reduced-resolution version V5R_CH4_224/225), as well as 16 ground stations with the Network for the Detection of Atmospheric Composition Change (NDACC). This work follows an initial inter-comparison study over the Arctic, which incorporated a ground-based FTS at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, and focuses on tropospheric and lower-stratospheric measurements made at middle and tropical latitudes between 2009 and 2013 (mid-2012 for MIPAS). For comparison, vertical profiles from all instruments are interpolated onto a common pressure grid, and smoothing is applied to ACE-FTS, MIPAS, and NDACC vertical profiles. Smoothing is needed to account for differences between the vertical resolution of each instrument and differences in the dependence on a priori profiles. The smoothing operators use the TANSO-FTS a priori and averaging kernels in all cases. We present zonally averaged mean CH4 differences between each instrument and TANSO-FTS with and without smoothing, and we examine their information content, their sensitive altitude range, their correlation, their a priori dependence, and the variability within

  2. Experimental study of vertical stress profiles of a confined granular bed under static and dynamic conditions.

    PubMed

    Mandato, S; Cuq, B; Ruiz, T

    2012-07-01

    In a wet agglomeration process inside a low shear mixer, the blade function is to induce i) homogenization of the liquid sprayed on the powder surface and ii) a stress field able to transfer the mechanical energy at the particle scale. In this work we study the mechanical state of a confined powder bed through the analysis of stress distributions (by force measurements) in a rectangular cell in two cases: for a classical model powder (i.e. glass beads) and a complex powder (i.e. wheat semolina). Two types of vertical stress profiles are obtained according to the type of measurements carried out in the powder bed, either locally (at different positions in the cell) or globally (at the entire base). The global vertical stress profile follows Janssen's model and the local vertical stress profile highlights a critical length, identified as the percolation threshold of the force network, and a shielding length near the bottom, which is similar to an influence length of the side walls. In the context of wet agglomeration, the results allow to consider the role of the characteristic lengths in the mixing bowl under vertical mechanical solicitation.

  3. The Design of Ocean Turbulence Measurement with a Free Fall Vertical Profiler

    NASA Astrophysics Data System (ADS)

    Luan, Xin; Xin, Jia; Zhu, Tieyi; Yang, Hua; Teng, Yuru; Song, Dalei

    2018-03-01

    The newly designed instrument Free Fall Vertical Profiler (FFVP) developed by Ocean University of China (OUC) had been deployed in the Western Pacific in March 08, 2017 and succeed to collect turbulence signals about 350-m-deep water. According to the requirements of turbulence measurement, the mechanical design was developed for turbulence platform to achieve stability and good flow tracking. By analysing the Heading, Pitch and Roll, the results suggested that the platform satisfies the requirements of stability. The power spectrum of the cleaned shear signals using the noise correction algorithm match well with the theoretical Nasmyth spectrum and the rate of turbulence dissipation are approximately 10-8 W/kg. In general, the FFVP was rationally designed and provided a good measurement platform for turbulence observation.

  4. Quantitative precipitation estimation in complex orography using quasi-vertical profiles of dual polarization radar variables

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Roberto, Nicoletta; Adirosi, Elisa; Gorgucci, Eugenio; Baldini, Luca

    2017-04-01

    . To avoid facing such a complexity, especially with a view to operational implementation, we propose to look at the features of the vertical profile of rain (VPR), i.e. after performing the rain estimation. This procedure allows characterizing a single variable (i.e. rain) when dealing with vertical extrapolations. Some case studies of severe thunderstorms that hit the mountainous area surrounding Rome in Italy causing floodings and damages and observed by the research C-band polarization agility Doppler radar named Polar 55C, managed by the Institute of Atmospheric Sciences and Climate (ISAC) at the National Research Council of Italy (CNR), are used to support the concept of VPR. Our results indicate that the combined algorithm, which merges together the differential phase shift (Kdp), the reflectivity factor at horizontal polarization (Zhh), and differential reflectivity (Zdr), once accurately processed, performs best among those tested that make use of Zhh alone, Kdp alone, and Zhh and Zdr pair. Improvements from 25% to 80% are found for the total rain accumulations in terms of normalized bias when the VPR extrapolation is applied.

  5. Vertical and horizontal seismometric observations of tides

    NASA Astrophysics Data System (ADS)

    Lambotte, S.; Rivera, L.; Hinderer, J.

    2006-01-01

    Tidal signals have been largely studied with gravimeters, strainmeters and tiltmeters, but can also be retrieved from digital records of the output of long-period seismometers, such as STS-1, particularly if they are properly isolated. Horizontal components are often noisier than the vertical ones, due to sensitivity to tilt at long periods. Hence, horizontal components are often disturbed by local effects such as topography, geology and cavity effects, which imply a strain-tilt coupling. We use series of data (duration larger than 1 month) from several permanent broadband seismological stations to examine these disturbances. We search a minimal set of observable signals (tilts, horizontal and vertical displacements, strains, gravity) necessary to reconstruct the seismological record. Such analysis gives a set of coefficients (per component for each studied station), which are stable over years and then can be used systematically to correct data from these disturbances without needing heavy numerical computation. A special attention is devoted to ocean loading for stations close to oceans (e.g. Matsushiro station in Japon (MAJO)), and to pressure correction when barometric data are available. Interesting observations are made for vertical seismometric components; in particular, we found a pressure admittance between pressure and data 10 times larger than for gravimeters for periods larger than 1 day, while this admittance reaches the usual value of -3.5 nm/s 2/mbar for periods below 3 h. This observation may be due to instrumental noise, but the exact mechanism is not yet understood.

  6. Observing the Vertical Dimensions of Singapore's Urban Heat Island

    NASA Astrophysics Data System (ADS)

    Chow, W. T. L.; Ho, D. X. Q.

    2015-12-01

    In numerous cities, measurements of urban warmth in most urban heat island (UHI) studies are generally constrained towards surface or near-surface (<2 m above ground) levels across horizontal variations in land use and land cover. However, there has been hitherto limited attention towards the measurement of vertical temperature profiles extending from the urban surface through to the urban boundary layer. Knowledge of these profiles, through how they vary over different local urban morphologies, and develop with respect to synoptic meteorological conditions, are important towards several aspects of UHI research; these include validating modelling urban canopy lapse rate profiles or estimating the growth of urban plumes. In this study, we utilised temperature sensors attached onto remote controlled aerial quadcopter platforms to measure urban temperature and humidity profiles in Singapore, which is a rapidly urbanizing major tropical metropolis. These profiles were measured from the surface to ~100 m above ground level, a height which includes all of the urban canopy and parts of the urban boundary layer. Initial results indicate significant variations in stability measured over different land uses (e.g. urban park, high-rise residential, commercial); these profiles are also temporally dynamic, depending on the time of day and larger-scale weather conditions.

  7. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E., Jr.

    2015-01-01

    This paper describes in detail the QC and splicing methodology for KSC's 50- and 915-MHz DRWP measurements that generates an extensive archive of vertically complete profiles from 0.20-18.45 km. The concurrent POR from each archive extends from April 2000 to December 2009. MSFC NE applies separate but similar QC processes to each of the 50- and 915-MHz DRWP archives. DRWP literature and data examination provide the basis for developing and applying the automated and manual QC processes on both archives. Depending on the month, the QC'ed 50- and 915-MHz DRWP archives retain 52-65% and 16-30% of the possible data, respectively. The 50- and 915-MHz DRWP QC archives retain 84-91% and 85-95%, respectively, of all the available data provided that data exist in the non- QC'ed archives. Next, MSFC NE applies an algorithm to splice concurrent measurements from both DRWP sources. Last, MSFC NE generates a composite profile from the (up to) five available spliced profiles to effectively characterize boundary layer winds and to utilize all possible 915-MHz DRWP measurements at each timestamp. During a given month, roughly 23,000-32,000 complete profiles exist from 0.25-18.45 km from the composite profiles' archive, and approximately 5,000- 27,000 complete profiles exist from an archive utilizing an individual 915-MHz DRWP. One can extract a variety of profile combinations (pairs, triplets, etc.) from this sample for a given application. The sample of vertically complete DRWP wind measurements not only gives launch vehicle customers greater confidence in loads and trajectory assessments versus using balloon output, but also provides flexibility to simulate different DOL situations across applicable altitudes. In addition to increasing sample size and providing more flexibility for DOL simulations in the vehicle design phase, the spliced DRWP database provides any upcoming launch vehicle program with the capability to utilize DRWP profiles on DOL to compute vehicle steering

  8. The vertical structure of tangential winds in tropical cyclones: Observations, theory, and numerical simulations

    NASA Astrophysics Data System (ADS)

    Stern, Daniel P.

    The vertical structure of the tangential wind field in tropical cyclones is investigated through observations, theory, and numerical simulations. First, a dataset of Doppler radar wind swaths obtained from NOAA/AOML/HRD is used to create azimuthal mean tangential wind fields for 7 storms on 17 different days. Three conventional wisdoms of vertical structure are reexamined: the outward slope of the Radius of Maximum Winds (RMW) decreases with increasing intensity, the slope increases with the size of the RMW, and the RMW is a surface of constant absolute angular momentum (M). The slopes of the RMW and of M surfaces are objectively determined. The slopes are found to increase linearly with the size of the low-level RMW, and to be independent of the intensity of the storm. While the RMW is approximately an M surface, M systematically decreases with height along the RMW. The steady-state analytical theory of Emanuel (1986) is shown to make specific predictions regarding the vertical structure of tropical cyclones. It is found that in this model, the slope of the RMW is a linear function of its size and is independent of intensity, and that the RMW is almost exactly an M surface. A simple time-dependent model which is governed by the same assumptions as the analytical theory yields the same results. Idealized hurricane simulations are conducted using the Weather Research and Forecasting (WRF) model. The assumptions of Emanuel's theory, slantwise moist neutrality and thermal wind balance, are both found to be violated. Nevertheless, the vertical structure of the wind field itself is generally well predicted by the theory. The percentage rate at which the winds decay with height is found to be nearly independent of both size and intensity, in agreement with observations and theory. Deviations from this decay profile are shown to be due to gradient wind imbalance. The slope of the RMW increases linearly with its size, but is systematically too large compared to

  9. Parameterization of Cirrus Cloud Vertical Profiles and Geometrical Thickness Using CALIPSO and CloudSat Data

    NASA Astrophysics Data System (ADS)

    Khatri, P.; Iwabuchi, H.; Saito, M.

    2017-12-01

    High-level cirrus clouds, which normally occur over more than 20% of the globe, are known to have profound impacts on energy budget and climate change. The scientific knowledge regarding the vertical structure of such high-level cirrus clouds and their geometrical thickness are relatively poorer compared to low-level water clouds. Knowledge regarding cloud vertical structure is especially important in passive remote sensing of cloud properties using infrared channels or channels strongly influenced by gaseous absorption when clouds are geometrically thick and optically thin. Such information is also very useful for validating cloud resolving numerical models. This study analyzes global scale data of ice clouds identified by Cloud profiling Radar (CPR) onboard CloudSat and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO to parameterize (i) vertical profiles of ice water content (IWC), cloud-particle effective radius (CER), and ice-particle number concentration for varying ice water path (IWP) values and (ii) the relation of cloud geometrical thickness (CGT) with IWP and CER for varying cloud top temperature (CTT) values. It is found that the maxima in IWC and CER profile shifts towards cloud base with the increase of IWP. Similarly, if the cloud properties remain same, CGT shows an increasing trend with the decrease of CTT. The implementation of such cloud vertical inhomogeneity parameterization in the forward model used in the Integrated Cloud Analysis System ICAS (Iwabuchi et al., 2016) generally shows increase of brightness temperatures in infrared channels compared to vertically homogeneous cloud assumption. The cloud vertical inhomogeneity is found to bring noticeable changes in retrieved cloud properties. Retrieved CER and cloud top height become larger for optically thick cloud. We will show results of comparison of cloud properties retrieved from infrared measurements and active remote sensing.

  10. Coastal water monitoring using a vertical profiler

    NASA Astrophysics Data System (ADS)

    Kim, Dong Guk; Seo, Seongbong; Park, Young-Gyu; Min, Hong Sik

    2017-04-01

    Using a profiler system, the Aqualog, composed of a moored wire and a carrier in which a CTD was installed, we have been monitoring coastal water in Korea since August 2016. With this monitoring system, we were able to observe rapid warming of surface water that resulted in large damage to fish farms. The profiles showed that the warming was associated with low salinity water due to the fresh water discharge from the Yangtze River. We also observed change in water properties due to a typhoon. Along the Korean coast there are many aquafarms, which are becoming more vulnerable to environmental change. With the data from the profiler we would be able to help the aquafarms to sustain.

  11. Vertical radar profiles for the calibration of unsaturated flow models under dynamic water table conditions

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Gallotti, L.; Ventura, V.; Andreotti, G.

    2003-04-01

    The identification of flow and transport characteristics in the vadose zone is a fundamental step towards understanding the dynamics of contaminated sites and the resulting risk of groundwater pollution. Borehole radar has gained popularity for the monitoring of moisture content changes, thanks to its apparent simplicity and its high resolution characteristics. However, cross-hole radar requires closely spaced (a few meters), plastic-cased boreholes, that are rarely available as a standard feature in sites of practical interest. Unlike cross-hole applications, Vertical Radar Profiles (VRP) require only one borehole, with practical and financial benefits. High-resolution, time-lapse VRPs have been acquired at a crude oil contaminated site in Trecate, Northern Italy, on a few existing boreholes originally developed for remediation via bioventing. The dynamic water table conditions, with yearly oscillations of roughly 5 m from 6 to 11 m bgl, offers a good opportunity to observe via VRP a field scale drainage-imbibition process. Arrival time inversion has been carried out using a regularized tomographic algorithm, in order to overcome the noise introduced by first arrival picking. Interpretation of the vertical profiles in terms of moisture content has been based on standard models (Topp et al., 1980; Roth et al., 1990). The sedimentary sequence manifests itself as a cyclic pattern in moisture content over most of the profiles. We performed preliminary Richards' equation simulations with time varying later table boundary conditions, in order to estimate the unsaturated flow parameters, and the results have been compared with laboratory evidence from cores.

  12. Sensitive monitoring of iodine species in sea water using capillary electrophoresis: vertical profiles of dissolved iodine in the Pacific Ocean.

    PubMed

    Huang, Zhuo; Ito, Kazuaki; Morita, Isamu; Yokota, Kuriko; Fukushi, Keiichi; Timerbaev, Andrei R; Watanabe, Shuichi; Hirokawa, Takeshi

    2005-08-01

    Using a novel high-sensitivity capillary electrophoretic method, vertical distributions of iodate, iodide, total inorganic iodine, dissolved organic iodine and total iodine in the North Pacific Ocean (0-5500 m) were determined without any sample pre-treatment other than UV irradiation before total iodine analysis. An extensive set of data demonstrated that the iodine behaviour in the ocean water collected during a cruise in the North Pacific Ocean in February-March 2003 was not conservative but correlated with variations in concentrations of dissolved oxygen and nutrient elements such as silicon, nitrogen and phosphorus. This suggests that the vertical distribution of iodine is associated with biological activities. The dissolved organic iodine was found in the euphotic zone in accord with observations elsewhere in the oceans. The vertical profile of dissolved organic iodine also appears to be related to biogeochemical activity. The concentrations of all measured iodine species vary noticeably above 1000 m but only minor latitudinal changes occur below 1000 m and slight vertical alterations can be observed below 2400 m. These findings are thought to reflect the stratification of nutrients and iodine species with different biological activities in the water column.

  13. Observing the Great Plains Low-Level Jet Using the Aircraft Communications Addressing and Reporting System (ACARS): A Comparison with Boundary Layer Profiler Observations

    NASA Astrophysics Data System (ADS)

    Skinner, P. S.; Basu, S.

    2009-12-01

    Wind resources derived from the nocturnal low-level jet of the Great Plains of the United States are a driving factor in the proliferation of wind energy facilities across the region. Accurate diagnosis and forecasting of the low-level jet is important to not only assess the wind resource but to estimate the potential for shear-induced stress generation on turbine rotors. This study will examine the utility of Aircraft Communications Addressing and Reporting System (ACARS) observations in diagnosing low-level jet events across the Texas Panhandle. ACARS observations from Lubbock International Airport (KLBB) will be compared to observations from a 915 MHZ Doppler radar vertical boundary-layer profiler with 60m vertical resolution located at the field experiment site of Texas Tech University. The ability of ACARS data to adequately observe low-level jet events during the spring and summer of 2009 will be assessed and presented.

  14. Seasonal changes in the tropospheric carbon monoxide profile over the remote Southern Hemisphere evaluated using multi-model simulations and aircraft observations

    NASA Astrophysics Data System (ADS)

    Fisher, J. A.; Wilson, S. R.; Zeng, G.; Williams, J. E.; Emmons, L. K.; Langenfelds, R. L.; Krummel, P. B.; Steele, L. P.

    2015-03-01

    The combination of low anthropogenic emissions and large biogenic sources that characterizes the Southern Hemisphere (SH) leads to significant differences in atmospheric composition relative to the better studied Northern Hemisphere. This unique balance of sources poses significant challenges for global models. Carbon monoxide (CO) in particular is difficult to simulate in the SH due to the increased importance of secondary chemical production associated with the much more limited primary emissions. Here, we use aircraft observations from the 1991-2000 Cape Grim Overflight Program (CGOP) and the 2009-2011 HIAPER (High-performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO), together with model output from the SH Model Intercomparison Project, to elucidate the drivers of CO vertical structure in the remote SH. Observed CO vertical profiles from Cape Grim are remarkably consistent with those observed over the southern mid-latitudes Pacific 10-20 years later, despite major differences in time periods, flight locations, and sampling strategies between the two data sets. These similarities suggest the processes driving observed vertical gradients are coherent across much of the remote SH and have not changed significantly over the past 2 decades. Model ability to simulate CO profiles reflects the interplay between biogenic emission sources, the chemical mechanisms that drive CO production from these sources, and the transport that redistributes this CO throughout the SH. The four chemistry-climate and chemical transport models included in the intercomparison show large variability in their abilities to reproduce the observed CO profiles. In particular, two of the four models significantly underestimate vertical gradients in austral summer and autumn, which we find are driven by long-range transport of CO produced from oxidation of biogenic compounds. Comparisons between the models show that more complex chemical

  15. A Direct Detection 1.6μm DIAL with Three Wavelengths for Measurements of Vertical CO2 Concentration and Temperature Profiles in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Abo, M.; Shibata, Y.; Nagai, T.; Tsukamoto, M.

    2012-12-01

    We report the new 1.6 μm DIAL system that can measure the temperature profiles with the CO2 concentration profiles in the atmosphere because of improvement of measurement accuracy of the CO2 density and mixing ratio (ppm). We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of vertical CO2 concentration profiles in the atmosphere [Sakaizawa et al. 2009]. Our 1.6 μm DIAL system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz) and the receiving optics that included the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode and the telescope with larger aperture than that of the coherent detection method. Laser beams of three wavelengths around a CO2 absorption line is transmitted alternately to the atmosphere for measurements of CO2 concentration and temperature profiles. Moreover, a few retrieval algorithms of CO2-DIAL are also performed for improvement of measurement accuracy. The accurate vertical CO2 profiles in the troposphere are highly desirable in the inverse techniques to improve quantification and understanding of the global budget of CO2 and also global climate changes [Stephens et al. 2007]. In comparison with the ground-based monitoring network, CO2 measurements for vertical profiles in the troposphere have been limited to campaign-style aircraft and commercial airline observations with the limited spatial and temporal coverage. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References Sakaizawa, D., C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical

  16. Analysis and characterization of the vertical wind profile in UAE

    NASA Astrophysics Data System (ADS)

    Lee, W.; Ghedira, H.; Ouarda, T.; Gherboudj, I.

    2011-12-01

    In this study, temporal and spatial analysis of the vertical wind profiles in the UAE has been performed to estimate wind resource potential. Due to the very limited number of wind masts (only two wind masts in the UAE, operational for less than three years), the wind potential analysis will be mainly derived from numerical-based models. Additional wind data will be derived from the UAE met stations network (at 10 m elevation) managed by the UAE National Center of Meteorology and Seismology. However, since wind turbines are generally installed at elevations higher than 80 m, it is vital to extrapolate wind speed correctly from low heights to wind turbine hub heights to predict potential wind energy properly. To do so, firstly two boundary layer based models, power law and logarithmic law, were tested to find the best fitting model. Power law is expressed as v/v0 =(H/H0)^α and logarithmic law is represented as v/v0 =[ln(H/Z0))/(ln(H0/Z0)], where V is the wind speed [m/s] at height H [m] and V0 is the known wind speed at a reference height H0. The exponent (α) coefficient is an empirically derived value depending on the atmospheric stability and z0 is the roughness coefficient length [m] that depends on topography, land roughness and spacing. After testing the two models, spatial and temporal analysis for wind profile was performed. Many studies about wind in different regions have shown that wind profile parameters have hourly, monthly and seasonal variations. Therefore, it can be examined whether UAE wind characteristics follow general wind characteristics observed in other regions or have specific wind features due to its regional condition. About 3 years data from August 2008 to February 2011 with 10-minutes resolution were used to derive monthly variation. The preliminary results(Fig.1) show that during that period, wind profile parameters like alpha from power law and roughness length from logarithmic law have monthly variation. Both alpha and roughness have

  17. The use of vertical seismic profiles in seismic investigations of the earth

    USGS Publications Warehouse

    Balch, Alfred H.; Lee, M.W.; Miller, J.J.; Ryder, Robert T.

    1982-01-01

    During the past 8 years, the U.S. Geological Survey has conducted an extensive investigation on the use of vertical seismic profiles (VSP) in a variety of seismic exploration applications. Seismic sources used were surface air guns, vibrators, explosives, marine air guns, and downhole air guns. Source offsets have ranged from 100 to 7800 ft. Well depths have been from 1200 to over 10,000 ft. We have found three specific ways in which VSPs can be applied to seismic exploration. First, seismic events observed at the surface of the ground can be traced, level by level, to their point of origin within the earth. Thus, one can tie a surface profile to a well log with an extraordinarily high degree of confidence. Second, one can establish the detectability of a target horizon, such as a porous zone. One can determine (either before or after surface profiling) whether or not a given horizon or layered sequence returns a detectable reflection to the surface. The amplitude and character of the reflection can also be observed. Third, acoustic properties of a stratigraphic sequence can be measured and sometimes correlated to important exploration parameters. For example, sometimes a relationship between apparent attenuation and sand percentage can be established. The technique shows additional promise of aiding surface exploration indirectly through studies of the evolution of the seismic pulse, studies of ghosts and multiples, and studies of seismic trace inversion techniques. Nearly all current seismic data‐processing techniques are adaptable to the processing of VSP data, such as normal moveout (NMO) corrections, stacking, single‐and multiple‐channel filtering, deconvolution, and wavelet shaping.

  18. Analysis of photonic spot profile converter and bridge structure on SOI platform for horizontal and vertical integration

    NASA Astrophysics Data System (ADS)

    Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib

    2017-08-01

    Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.

  19. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?

    NASA Technical Reports Server (NTRS)

    Zipser, Edward J.; Lutz, Kurt R.

    1994-01-01

    Reflectivity data from Doppler radars are used to construct vertical profiles of radar reflectivity (VPRR) of convective cells in mesoscale convective systems (MCSs) in three different environmental regimes. The National Center for Atmospheric Research CP-3 and CP-4 radars are used to calculate median VPRR for MCSs in the Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central in 1985. The National Oceanic and Atmospheric Administration-Tropical Ocean Global Atmosphere radar in Darwin, Australia, is used to calculate VPRR for MCSs observed both in oceanic, monsoon regimes and in continental, break period regimes during the wet seasons of 1987/88 and 1988/89. The midlatitude and tropical continental VPRRs both exhibit maximum reflectivity somewhat above the surface and have a gradual decrease in reflectivity with height above the freezing level. In sharp contrast, the tropical oceanic profile has a maximum reflectivity at the lowest level and a very rapid decrease in reflectivity with height beginning just above the freezing level. The tropical oceanic profile in the Darwin area is almost the same shape as that for two other tropical oceanic regimes, leading to the conclustion that it is characteristic. The absolute values of reflectivity in the 0 to 20 C range are compared with values in the literature thought to represent a threshold for rapid storm electrification leading to lightning, about 40 dBZ at -10 C. The large negative vertical gradient of reflectivity in this temperature range for oceanic storms is hypothesized to be a direct result of the characteristically weaker vertical velocities observed in MCSs over tropical oceans. It is proposed, as a necessary condition for rapid electrification, that a convective cell must have its updraft speed exceed some threshold value. Based upon field program data, a tentative estimate for the magnitude of this threshold is 6-7 m/s for mean speed and 10-12 m/s for peak speed.

  20. Decoding the origins of vertical land motions observed today at coasts

    NASA Astrophysics Data System (ADS)

    Pfeffer, J.; Spada, G.; Mémin, A.; Boy, J.-P.; Allemand, P.

    2017-07-01

    In recent decades, geodetic techniques have allowed detecting vertical land motions and sea-level changes of a few millimetres per year, based on measurements taken at the coast (tide gauges), on board of satellite platforms (satellite altimetry) or both (Global Navigation Satellite System). Here, contemporary vertical land motions are analysed from January 1993 to July 2013 at 849 globally distributed coastal sites. The vertical displacement of the coastal platform due to surface mass changes is modelled using elastic and viscoelastic Green's functions. Special attention is paid to the effects of glacial isostatic adjustment induced by past and present-day ice melting. Various rheological and loading parameters are explored to provide a set of scenarios that could explain the coastal observations of vertical land motions globally. In well-instrumented regions, predicted vertical land motions explain more than 80 per cent of the variance observed at scales larger than a few hundred kilometres. Residual vertical land motions show a strong local variability, especially in the vicinity of plate boundaries due to the earthquake cycle. Significant residual signals are also observed at scales of a few hundred kilometres over nine well-instrumented regions forming observation windows on unmodelled geophysical processes. This study highlights the potential of our multitechnique database to detect geodynamical processes, driven by anthropogenic influence, surface mass changes (surface loading and glacial isostatic adjustment) and tectonic activity (including the earthquake cycle, sediment and volcanic loading, as well as regional tectonic constraints). Future improvements should be aimed at densifying the instrumental network and at investigating more thoroughly the uncertainties associated with glacial isostatic adjustment models.

  1. Comparing the cloud vertical structure derived from several methods based on measured atmospheric profiles and active surface measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2013-06-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  2. Retrieval of vertical aerosol- and trace gas profiles in the Antarctic troposphere using helicopter-borne MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Nasse, Jan-Marcus; Zielcke, Johannes; Buxmann, Joelle; Frieß, Udo; Platt, Ulrich

    2014-05-01

    BrO and aerosol vertical profiles obtained from the helicopter-borne observations, discuss the vertical resolution, error budget and information content of the measurements, and compare the data with profiles from our co-located ship-borne MAX-DOAS instrument.

  3. Vertical tilts of tropospheric waves - Observations and theory

    NASA Technical Reports Server (NTRS)

    Ebisuzaki, Wesley

    1991-01-01

    Two methods are used to investigate the vertical tilts of planetary waves as functions of zonal wavenumber and frequency. The vertical tilts are computed by cross-spectral analysis of the geopotential heights at different pressures. In the midlatitude troposphere, the eastward-moving waves had a westward tilt with height, as expected, but the westward-moving waves with frequencies higher than 0.2/d showed statistically significant eastward vertical tilts. For a free Rossby wave, this implies that the Eliassen-Palm flux is downward along with its energy propagation. A downward energy propagation suggests an upper-level source of these waves. It is proposed that the eastward-tilting waves were forced by the nonlinear interaction of stationary waves and baroclinically unstable cyclone-scale waves. The predicted vertical tilt and phase speed were consistent with the observations. In addition, simulations of a general circulation model were analyzed. In the control run, eastward-tilting waves disappeared when the sources of stationary waves were removed. This is consistent with the present theory.

  4. Double Bright Band Observations with High-Resolution Vertically Pointing Radar, Lidar, and Profiles

    NASA Technical Reports Server (NTRS)

    Emory, Amber E.; Demoz, Belay; Vermeesch, Kevin; Hicks, Michael

    2014-01-01

    On 11 May 2010, an elevated temperature inversion associated with an approaching warm front produced two melting layers simultaneously, which resulted in two distinct bright bands as viewed from the ER-2 Doppler radar system, a vertically pointing, coherent X band radar located in Greenbelt, MD. Due to the high temporal resolution of this radar system, an increase in altitude of the melting layer of approximately 1.2 km in the time span of 4 min was captured. The double bright band feature remained evident for approximately 17 min, until the lower atmosphere warmed enough to dissipate the lower melting layer. This case shows the relatively rapid evolution of freezing levels in response to an advancing warm front over a 2 h time period and the descent of an elevated warm air mass with time. Although observations of double bright bands are somewhat rare, the ability to identify this phenomenon is important for rainfall estimation from spaceborne sensors because algorithms employing the restriction of a radar bright band to a constant height, especially when sampling across frontal systems, will limit the ability to accurately estimate rainfall.

  5. Double bright band observations with high-resolution vertically pointing radar, lidar, and profilers

    NASA Astrophysics Data System (ADS)

    Emory, Amber E.; Demoz, Belay; Vermeesch, Kevin; Hicks, Micheal

    2014-07-01

    On 11 May 2010, an elevated temperature inversion associated with an approaching warm front produced two melting layers simultaneously, which resulted in two distinct bright bands as viewed from the ER-2 Doppler radar system, a vertically pointing, coherent X band radar located in Greenbelt, MD. Due to the high temporal resolution of this radar system, an increase in altitude of the melting layer of approximately 1.2 km in the time span of 4 min was captured. The double bright band feature remained evident for approximately 17 min, until the lower atmosphere warmed enough to dissipate the lower melting layer. This case shows the relatively rapid evolution of freezing levels in response to an advancing warm front over a 2 h time period and the descent of an elevated warm air mass with time. Although observations of double bright bands are somewhat rare, the ability to identify this phenomenon is important for rainfall estimation from spaceborne sensors because algorithms employing the restriction of a radar bright band to a constant height, especially when sampling across frontal systems, will limit the ability to accurately estimate rainfall.

  6. The vertical structure of convectively-driven cloud microphysics and its dependency on atmospheric conditions: An investigation through observations and modeling

    NASA Astrophysics Data System (ADS)

    van Diedenhoven, B.; Fridlind, A. M.; Sinclair, K.; Ackerman, A. S.

    2016-12-01

    It is generally observed that ice crystal sizes decrease as a function of altitude within clouds. This dependency is often explained as resulting from size sorting owing to the greater fall speeds of larger particles, but may also be related to dependence of ice diffusional growth on available water vapor and temperature, or other factors. Furthermore, the vertical variation of ice sizes is expected to be affected by the glaciation temperature of convectively-driven clouds. Realistic modeling of ice formation, growth and sedimentation is crucial to reliably represent vertical structures of ice clouds and cloud evolution in general. In this presentation we use remote sensing observations of glaciation temperature and ice effective radius obtained with airborne instruments to explore how their vertical dependencies vary with atmospheric conditions, such as humidity and wind profiles. Our focus will be on convectively-driven clouds. Subsequently, we test the ability of a quasi-idealized cloud permitting model to reproduce these dependencies of ice formation and size to atmospheric conditions, applying various ice growth and multiplication assumptions. The goal of this study is to identify variables that determine the vertical structure of cold clouds that can be used to evaluate model simulations.

  7. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    PubMed

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  8. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  9. Effects of pressing schedule on formation of vertical density profile for MDF panels

    Treesearch

    Zhiyong Cai; James H. Muehl; Jerrold E. Winandy

    2006-01-01

    A fundamental understanding of mat consolidation during hot pressing will help to optimize the medium-density fiberboard (MDF) manufacturing process by increasing productivity, improving product quality, and enhancing durability. Effects of panel density, fiber moisture content (MC), and pressing schedule on formation of vertical density profile (VDP) during hot...

  10. Vertical Coupling and Observable Effects of Evanescent Acoustic-Gravity Waves in the Mesosphere and Thermosphere

    NASA Astrophysics Data System (ADS)

    Snively, J. B.

    2017-12-01

    Our understanding of acoustic-gravity wave (AGW) dynamics at short periods ( minutes to hour) and small scales ( 10s to 100s km) in the mesosphere, thermosphere, and ionosphere (MTI) has benefited considerably from horizontally- and vertically-resolved measurements of layered species. These include, for example, imagery of the mesopause ( 80-100 km) airglow layers and vertical profiles of the sodium layer via lidar [e.g., Taylor and Hapgood, PSS, 36(10), 1988; Miller et al., PNAS, 112(49), 2015; Cao et al., JGR, 121, 2016]. In the thermosphere-ionosphere, AGW perturbations are also revealed in electron density profiles [Livneh et al., JGR, 112, 2007] and maps of total electron content (TEC) from global positioning system (GPS) receivers [Nishioka et al., GRL, 40(21), 2013]. To the extent that AGW signatures in layered species can be quantified, and the ambient atmospheric state measured or estimated, numerical models enable investigations of dynamics at intermediate altitudes that cannot readily be measured (e.g., above and below the 80-100 km mesopause region). Here, new 2D and 3D versions of the Model for Acoustic-Gravity Wave Interactions and Coupling (MAGIC) [e.g., Snively and Pasko, JGR, 113(A6), 2008, and references therein] are introduced and applied to investigate spectra of short-period AGW that can pass through the mesopause region to reach and impact the thermosphere. Simulation case studies are constructed to investigate both their signatures through the hydroxyl airglow layer [e.g., Snively et al., JGR 115(A11), 2010] and their effects above. These waves, with large vertical wavelengths and fast horizontal phase speeds, also include those that may be subject to evanescence at mesopause or in the middle-thermosphere, with potential for ducting or dissipation between where static stability is higher. Despite complicating interpretations of momentum fluxes, evanescence plays an under-appreciated role in vertical coupling by AGW [Walterscheid and Hecht

  11. Seismic anisotropy in gas-hydrate- and gas-bearing sediments on the Blake Ridge, from a walkaway vertical seismic profile

    USGS Publications Warehouse

    Pecher, I.A.; Holbrook, W.S.; Sen, M.K.; Lizarralde, D.; Wood, W.T.; Hutchinson, D.R.; Dillon, William P.; Hoskins, H.; Stephen, R.A.

    2003-01-01

    We present results from an analysis of anisotropy in marine sediments using walkaway vertical seismic profiles from the Blake Ridge, offshore South Carolina. We encountered transverse isotropy (TI) with a vertical symmetry axis in a gas-hydrate-bearing unit of clay and claystone with Thomsen parameters ?? = 0.05 ?? 0.02 and ?? = 0.04 ?? 0.06. TI increased to ?? = 0.16 ?? 0.04 and ?? = 0.19 ?? 0.12 in the underlying gas zone. Rock physics modeling suggests that the observed TI is caused by a partial alignment of clay particles rather than high-velocity gas-hydrate veins. Similarly, the increase of TI in the gas zone is not caused by thin low-velocity gas layers but rather, we speculate, by the sharp contrast between seismic properties of an anisotropic sediment frame and elongated gas-bearing pore voids. Our results underscore the significance of anisotropy for integrating near-vertical and wide-angle seismic data.

  12. Observations of Dust Using the NASA Geoscience Laser Altimeter System (GLAS): New New Measurements of Aerosol Vertical Distribution From Space

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William

    2003-01-01

    On January 12, 2003 NASA launched the first satellite-based lidar, the Geoscience Laser -Altimeter System (GLAS), onboard the ICESat spacecraft. The GLAS atmospheric measurements introduce a fundamentally new and important tool for understanding the atmosphere and climate. In the past, aerosols have only been studied from space using images gathered by passive sensors. Analysis of this passive data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth's climate. However, these images do not show the aerosol's vertical distribution. As a result, a key piece of information has been missing. The measurements now obtained by GLAS will provide information on the vertical distribution of aerosols and clouds, and improve our ability to study their transport processes and aerosol-cloud interactions. Here we show an overview of GLAS, provide an update of its current status, and present initial observations of dust profiles. In particular, a strategy of characterizing the height profile of dust plumes over source regions will be presented.

  13. Experimental observation of the influence of furnace temperature profile on convection and segregation in the vertical Bridgman crystal growth technique

    NASA Technical Reports Server (NTRS)

    Neugebauer, G. T.; Wilcox, W. R.

    1990-01-01

    Azulene-doped naphtalene was directionally solidified using the vertical Bridgman-Stockbarger technique. Doping homogeneity and convection are determined as a function of the temperature profile in the furnace and the freezing rate. Convective velocities are two orders of magnitude lower when the temperature increases with height. The cross sectional variation in azulene concentration tends to be asymmetric. Neither rotation of the ampoule nor deliberate introduction of thermal asymmetries during solidification had a significant influence on cross sectional variations in doping. It is predicted that slow directional solidification under microgravity conditions can produce greater inhomogeneities than on earth. Thus when low freezing rates are necessary in order to avoid constitutional supercooling, it may be necessary to combine microgravity and magnetic fields in order to achieve homogeneous crystals.

  14. Global-mean BC lifetime as an indicator of model skill? Constraining the vertical aerosol distribution using aircraft observations

    NASA Astrophysics Data System (ADS)

    Lund, M. T.; Samset, B. H.; Skeie, R. B.; Berntsen, T.

    2017-12-01

    Several recent studies have used observations from the HIPPO flight campaigns to constrain the modeled vertical distribution of black carbon (BC) over the Pacific. Results indicate a relatively linear relationship between global-mean atmospheric BC residence time, or lifetime, and bias in current models. A lifetime of less than 5 days is necessary for models to reasonably reproduce these observations. This is shorter than what many global models predict, which will in turn affect their estimates of BC climate impacts. Here we use the chemistry-transport model OsloCTM to examine whether this relationship between global BC lifetime and model skill also holds for a broader a set of flight campaigns from 2009-2013 covering both remote marine and continental regions at a range of latitudes. We perform four sets of simulations with varying scavenging efficiency to obtain a spread in the modeled global BC lifetime and calculate the model error and bias for each campaign and region. Vertical BC profiles are constructed using an online flight simulator, as well by averaging and interpolating monthly mean model output, allowing us to quantify sampling errors arising when measurements are compared with model output at different spatial and temporal resolutions. Using the OsloCTM coupled with a microphysical aerosol parameterization, we investigate the sensitivity of modeled BC vertical distribution to uncertainties in the aerosol aging and scavenging processes in more detail. From this, we can quantify how model uncertainties in the BC life cycle propagate into uncertainties in its climate impacts. For most campaigns and regions, a short global-mean BC lifetime corresponds with the lowest model error and bias. On an aggregated level, sampling errors appear to be small, but larger differences are seen in individual regions. However, we also find that model-measurement discrepancies in BC vertical profiles cannot be uniquely attributed to uncertainties in a single process or

  15. Vertical temperature profile and mesospheric winds retrieval on Mars from CO ;millimeter observations. Comparison with general circulation model predictions

    NASA Astrophysics Data System (ADS)

    Cavalié, T.; Billebaud, F.; Encrenaz, T.; Dobrijevic, M.; Brillet, J.; Forget, F.; Lellouch, E.

    2008-10-01

    Aims: We have recorded high spectral resolution spectra and derived precise atmospheric temperature profiles and wind velocities in the atmosphere of Mars. We have compared observations of the planetary mean thermal profile and mesospheric wind velocities on the disk, obtained with our millimetric observations of CO rotational lines, to predictions from the Laboratoire de Météorologie Dynamique (LMD) Mars General Circulation Model, as provided through the Mars Climate Database (MCD) numerical tool. Methods: We observed the atmosphere of Mars at CO(1-0) and CO(2-1) wavelengths with the IRAM 30-m antenna in June 2001 and November 2005. We retrieved the mean thermal profile of the planet from high and low spectral resolution data with an inversion method detailed here. High spectral resolution spectra were used to derive mesospheric wind velocities on the planetary disk. We also report here the use of 13CO(2-1) line core shifts to measure wind velocities at 40 km. Results: Neither the Mars Year 24 (MY24) nor the Dust Storm scenario from the Mars Climate Database (MCD) provides satisfactory fits to the 2001 and 2005 data when retrieving the thermal profiles. The Warm scenario only provides good fits for altitudes lower than 30 km. The atmosphere is warmer than predicted up to 60 km and then becomes colder. Dust loading could be the reason for this mismatch. The MCD MY24 scenario predicts a thermal inversion layer between 40 and 60 km, which is not retrieved from the high spectral resolution data. Our results are generally in agreement with other observations from 10 to 40 km in altitude, but our results obtained from the high spectral resolution spectra differ in the 40-70 km layer, where the instruments are the most sensitive. The wind velocities we retrieve from our 12CO observations confirm MCD predictions for 2001 and 2005. Velocities obtained from 13CO observations are consistent with MCD predictions in 2001, but are lower than predicted in 2005.

  16. Retrieving Vertical Air Motion and Raindrop Size Distributions from Vertically Pointing Doppler Radars

    NASA Astrophysics Data System (ADS)

    Williams, C. R.; Chandra, C. V.

    2017-12-01

    The vertical evolution of falling raindrops is a result of evaporation, breakup, and coalescence acting upon those raindrops. Computing these processes using vertically pointing radar observations is a two-step process. First, the raindrop size distribution (DSD) and vertical air motion need to be estimated throughout the rain shaft. Then, the changes in DSD properties need to be quantified as a function of height. The change in liquid water content is a measure of evaporation, and the change in raindrop number concentration and size are indicators of net breakup or coalescence in the vertical column. The DSD and air motion can be retrieved using observations from two vertically pointing radars operating side-by-side and at two different wavelengths. While both radars are observing the same raindrop distribution, they measure different reflectivity and radial velocities due to Rayleigh and Mie scattering properties. As long as raindrops with diameters greater than approximately 2 mm are in the radar pulse volumes, the Rayleigh and Mie scattering signatures are unique enough to estimate DSD parameters using radars operating at 3- and 35-GHz (Williams et al. 2016). Vertical decomposition diagrams (Williams 2016) are used to explore the processes acting on the raindrops. Specifically, changes in liquid water content with height quantify evaporation or accretion. When the raindrops are not evaporating, net raindrop breakup and coalescence are identified by changes in the total number of raindrops and changes in the DSD effective shape as the raindrops. This presentation will focus on describing the DSD and air motion retrieval method using vertical profiling radar observations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in Northern Oklahoma.

  17. Local ensemble transform Kalman filter for ionospheric data assimilation: Observation influence analysis during a geomagnetic storm event

    NASA Astrophysics Data System (ADS)

    Durazo, Juan A.; Kostelich, Eric J.; Mahalov, Alex

    2017-09-01

    We propose a targeted observation strategy, based on the influence matrix diagnostic, that optimally selects where additional observations may be placed to improve ionospheric forecasts. This strategy is applied in data assimilation observing system experiments, where synthetic electron density vertical profiles, which represent those of Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa satellite 3, are assimilated into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model using the local ensemble transform Kalman filter during the 26 September 2011 geomagnetic storm. During each analysis step, the observation vector is augmented with five synthetic vertical profiles optimally placed to target electron density errors, using our targeted observation strategy. Forecast improvement due to assimilation of augmented vertical profiles is measured with the root-mean-square error (RMSE) of analyzed electron density, averaged over 600 km regions centered around the augmented vertical profile locations. Assimilating vertical profiles with targeted locations yields about 60%-80% reduction in electron density RMSE, compared to a 15% average reduction when assimilating randomly placed vertical profiles. Assimilating vertical profiles whose locations target the zonal component of neutral winds (Un) yields on average a 25% RMSE reduction in Un estimates, compared to a 2% average improvement obtained with randomly placed vertical profiles. These results demonstrate that our targeted strategy can improve data assimilation efforts during extreme events by detecting regions where additional observations would provide the largest benefit to the forecast.

  18. Comparing the cloud vertical structure derived from several methods based on measured atmospheric profiles and active surface measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2014-04-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds on climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 193 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e. when the whole CVS is correctly estimated) for the methods ranges between 26-64%; the methods show additional approximate agreement (i.e. when at least one cloud layer is correctly assessed) from 15-41%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, like those from the outputs of reanalysis methods or from the WMO's Global Telecommunication System. The perfect agreement, even when using low resolution profiles, can be improved up to 67% (plus 25% of approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  19. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    NASA Astrophysics Data System (ADS)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant

  20. Vertical suspsended sediment fluxes observed from ocean gliders

    NASA Astrophysics Data System (ADS)

    Merckelbach, Lucas; Carpenter, Jeffrey

    2016-04-01

    Many studies trying to understand a coastal system in terms of sediment transport paths resort to numerical modelling - combining circulation models with sediment transport models. Two aspects herein are crucial: sediment fluxes across the sea bed-water column interface, and the subsequent vertical mixing by turbulence. Both aspects are highly complex and have relatively short time scales, so that the processes involved are implemented in numerical models as parameterisations. Due to the effort required to obtain field observations of suspended sediment concentrations (and other parameters), measurements are scarce, which makes the development and tuning of parameterisations a difficult task. Ocean gliders (autonomous underwater vehicles propelled by a buoyancy engine) provide a platform complementing more traditional methods of sampling. In this work we present observations of suspended sediment concentration (SSC) and dissipation rate taken by two gliders, each equipped with optical sensors and a microstructure sensor, along with current observations from a bottom mounted ADCP, all operated in the German Bight sector of the North Sea in Summer 2014. For about two weeks of a four-week experiment, the gliders were programmed to fly in a novel way as Lagrangian profilers to water depths of about 40 m. The benefit of this approach is that the rate of change of SSC - and other parameters - is local to the water column, as opposed to an unknown composition of temporal and spatial variability when gliders are operated in the usual way. Therefore, vertical sediment fluxes can be calculated without the need of the - often dubious - assumption that spatial variability can be neglected. During the experiment the water column was initially thermally stratified, with a cross-pycnocline diffusion coefficient estimated at 7\\cdot10-5 m2 s-1. Halfway through the experiment the remnants of tropical storm Bertha arrived at the study site and caused a complete mixing of the water

  1. Relative humidity vertical profiling using lidar-based synergistic methods in the framework of the Hygra-CD campaign

    NASA Astrophysics Data System (ADS)

    Labzovskii, Lev D.; Papayannis, Alexandros; Binietoglou, Ioannis; Banks, Robert F.; Baldasano, Jose M.; Toanca, Florica; Tzanis, Chris G.; Christodoulakis, John

    2018-02-01

    Accurate continuous measurements of relative humidity (RH) vertical profiles in the lower troposphere have become a significant scientific challenge. In recent years a synergy of various ground-based remote sensing instruments have been successfully used for RH vertical profiling, which has resulted in the improvement of spatial resolution and, in some cases, of the accuracy of the measurement. Some studies have also suggested the use of high-resolution model simulations as input datasets into RH vertical profiling techniques. In this paper we apply two synergetic methods for RH profiling, including the synergy of lidar with a microwave radiometer and high-resolution atmospheric modeling. The two methods are employed for RH retrieval between 100 and 6000 m with increased spatial resolution, based on datasets from the HygrA-CD (Hygroscopic Aerosols to Cloud Droplets) campaign conducted in Athens, Greece from May to June 2014. RH profiles from synergetic methods are then compared with those retrieved using single instruments or as simulated by high-resolution models. Our proposed technique for RH profiling provides improved statistical agreement with reference to radiosoundings by 27 % when the lidar-radiometer (in comparison with radiometer measurements) approach is used and by 15 % when a lidar model is used (in comparison with WRF-model simulations). Mean uncertainty of RH due to temperature bias in RH profiling was ˜ 4.34 % for the lidar-radiometer and ˜ 1.22 % for the lidar-model methods. However, maximum uncertainty in RH retrievals due to temperature bias showed that lidar-model method is more reliable at heights greater than 2000 m. Overall, our results have demonstrated the capability of both combined methods for daytime measurements in heights between 100 and 6000 m when lidar-radiometer or lidar-WRF combined datasets are available.

  2. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds.

    PubMed

    Miller, Daniel J; Zhang, Zhibo; Ackerman, Andrew S; Platnick, Steven; Baum, Bryan A

    2016-04-27

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness ( τ ) and effective radius ( r e ) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m 2 . In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic r e profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.

  3. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds

    PubMed Central

    Miller, Daniel J.; Zhang, Zhibo; Ackerman, Andrew S.; Platnick, Steven; Baum, Bryan A.

    2018-01-01

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5–10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques. PMID:29637042

  4. The vertical profile of winds on Titan.

    PubMed

    Bird, M K; Allison, M; Asmar, S W; Atkinson, D H; Avruch, I M; Dutta-Roy, R; Dzierma, Y; Edenhofer, P; Folkner, W M; Gurvits, L I; Johnston, D V; Plettemeier, D; Pogrebenko, S V; Preston, R A; Tyler, G L

    2005-12-08

    One of Titan's most intriguing attributes is its copious but featureless atmosphere. The Voyager 1 fly-by and occultation in 1980 provided the first radial survey of Titan's atmospheric pressure and temperature and evidence for the presence of strong zonal winds. It was realized that the motion of an atmospheric probe could be used to study the winds, which led to the inclusion of the Doppler Wind Experiment on the Huygens probe. Here we report a high resolution vertical profile of Titan's winds, with an estimated accuracy of better than 1 m s(-1). The zonal winds were prograde during most of the atmospheric descent, providing in situ confirmation of superrotation on Titan. A layer with surprisingly slow wind, where the velocity decreased to near zero, was detected at altitudes between 60 and 100 km. Generally weak winds (approximately 1 m s(-1)) were seen in the lowest 5 km of descent.

  5. Ozone profile intercomparison based on simultaneous observations between 20 and 40 km

    NASA Technical Reports Server (NTRS)

    Aimedieu, P.; Krueger, A. J.; Robbins, D. E.; Simon, P. C.

    1983-01-01

    The vertical distribution of stratospheric ozone has been simultaneously measured by means of five different instruments carried on the same balloon payload. The launches were performed from Gap during the intercomparison campaign conducted in June 1981 in southern France. Data obtained between altitudes of 20 and 40 km are compared and discussed. Vertical profiles deduced from Electrochemical Concentration Cell sondes launched from the same location by small balloons and from short Umkehr measurements made at Mt Chiran (France) are also included in this comparison. Systematic differences of the order of 20 percent between ozone profiles deduced from solar u.v. absorption and in situ techniques are found.

  6. Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2 years (2011-2012) of field campaigns

    NASA Astrophysics Data System (ADS)

    Ferrero, Luca; Cappelletti, David; Busetto, Maurizio; Mazzola, Mauro; Lupi, Angelo; Lanconelli, Christian; Becagli, Silvia; Traversi, Rita; Caiazzo, Laura; Giardi, Fabio; Moroni, Beatrice; Crocchianti, Stefano; Fierz, Martin; Močnik, Griša; Sangiorgi, Giorgia; Perrone, Maria G.; Maturilli, Marion; Vitale, Vito; Udisti, Roberto; Bolzacchini, Ezio

    2016-10-01

    We present results from a systematic study of vertical profiles of aerosol number size distribution and black carbon (BC) concentrations conducted in the Arctic, over Ny-Ålesund (Svalbard). The campaign lasted 2 years (2011-2012) and resulted in 200 vertical profiles measured by means of a tethered balloon (up to 1200 m a.g.l.) during the spring and summer seasons. In addition, chemical analysis of filter samples, aerosol size distribution and a full set of meteorological parameters were determined at ground. The collected experimental data allowed a classification of the vertical profiles into different typologies, which allowed us to describe the seasonal phenomenology of vertical aerosol properties in the Arctic. During spring, four main types of profiles were found and their behavior was related to the main aerosol and atmospheric dynamics occurring at the measuring site. Background conditions generated homogenous profiles. Transport events caused an increase of aerosol concentration with altitude. High Arctic haze pollution trapped below thermal inversions promoted a decrease of aerosol concentration with altitude. Finally, ground-based plumes of locally formed secondary aerosol determined profiles with decreasing aerosol concentration located at different altitude as a function of size. During the summer season, the impact from shipping caused aerosol and BC pollution plumes to be constrained close to the ground, indicating that increasing shipping emissions in the Arctic could bring anthropogenic aerosol and BC in the Arctic summer, affecting the climate.

  7. Improved observations of turbulence dissipation rates from wind profiling radars

    DOE PAGES

    McCaffrey, Katherine; Bianco, Laura; Wilczak, James M.

    2017-07-20

    Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs) to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiplemore » post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. Furthermore, the optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well ( R 2 = 0.54 and 0.41) with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.« less

  8. Improved observations of turbulence dissipation rates from wind profiling radars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine; Bianco, Laura; Wilczak, James M.

    Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs) to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiplemore » post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. Furthermore, the optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well ( R 2 = 0.54 and 0.41) with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.« less

  9. Estimating vertical velocity and radial flow from Doppler radar observations of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Lee, J. L.; Lee, W. C.; MacDonald, A. E.

    2006-01-01

    The mesoscale vorticity method (MVM) is used in conjunction with the ground-based velocity track display (GBVTD) to derive the inner-core vertical velocity from Doppler radar observations of tropical cyclone (TC) Danny (1997). MVM derives the vertical velocity from vorticity variations in space and in time based on the mesoscale vorticity equation. The use of MVM and GBVTD allows us to derive good correlations among the eye-wall maximum wind, bow-shaped updraught and echo east of the eye-wall in Danny. Furthermore, we demonstrate the dynamically consistent radial flow can be derived from the vertical velocity obtained from MVM using the wind decomposition technique that solves the Poisson equations over a limited-area domain. With the wind decomposition, we combine the rotational wind which is obtained from Doppler radar wind observations and the divergent wind which is inferred dynamically from the rotational wind to form the balanced horizontal wind in TC inner cores, where rotational wind dominates the divergent wind. In this study, we show a realistic horizontal and vertical structure of the vertical velocity and the induced radial flow in Danny's inner core. In the horizontal, the main eye-wall updraught draws in significant surrounding air, converging at the strongest echo where the maximum updraught is located. In the vertical, the main updraught tilts vertically outwards, corresponding very well with the outward-tilting eye-wall. The maximum updraught is located at the inner edge of the eye-wall clouds, while downward motions are found at the outer edge. This study demonstrates that the mesoscale vorticity method can use high-temporal-resolution data observed by Doppler radars to derive realistic vertical velocity and the radial flow of TCs. The vorticity temporal variations crucial to the accuracy of the vorticity method have to be derived from a high-temporal-frequency observing system such as state-of-the-art Doppler radars.

  10. New Insights on "Next Day" Ozone Increases in the Northeastern U.S. using Continuous Vertical Profiles of Ozone

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Rabenhorst, S. D.; Delgado, R.; Dreessen, J.; Sumnicht, G. K.; Twigg, L.

    2016-12-01

    A unique multi-day air quality event occurred throughout the Mid-Atlantic region from June 9-12, 2015. The June event was coupled to the advection of widespread smoke and debris from western Canada throughout the region. Observations indicated that the aged smoke impacted the Planetary Boundary Layer (PBL) and greatly enhanced ozone concentrations at the surface. Many ground sites in the region, particularly in Maryland, recorded 8-hr ozone concentrations that were in exceedance of the 75 ppb EPA National Ambient Air Quality Standard (NAAQS). After the high O3 episode occurred, a nocturnal low-level jet developed throughout the Mid-Atlantic region, which was spatially correlated with next day high O3 at several sites within the New England region. During this event, nearly continuous vertical profiles of ozone are presented at Beltsville, MD from the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL), which has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Lidar observations reveal a well-mixed polluted PBL, nocturnal residual layer, and subsequent mixing down of the residual layer in the morning. Additional measurements of surface ozone, aerosol lidar profiles, wind profiles, and balloon borne profiles are also presented. Model output and trajectory analyses are also presented to illustrate the complex flow regimes that occurred during the daytime and nighttime to help redistribute the polluted air mass.

  11. Vertical Structure of Ice Cloud Layers From CloudSat and CALIPSO Measurements and Comparison to NICAM Simulations

    NASA Technical Reports Server (NTRS)

    Ham, Seung-Hee; Sohn, Byung-Ju; Kato, Seiji; Satoh, Masaki

    2013-01-01

    The shape of the vertical profile of ice cloud layers is examined using 4 months of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) global measurements taken on January, April, July, and October 2007. Ice clouds are selected using temperature profiles when the cloud base is located above the 253K temperature level. The obtained ice water content (IWC), effective radius, or extinction coefficient profiles are normalized by their layer mean values and are expressed in the normalized vertical coordinate, which is defined as 0 and 1 at the cloud base and top heights, respectively. Both CloudSat and CALIPSO observations show that the maximum in the IWC and extinction profiles shifts toward the cloud bottom, as the cloud depth increases. In addition, clouds with a base reaching the surface in a high-latitude region show that the maximum peak of the IWC and extinction profiles occurs near the surface, which is presumably due to snow precipitation. CloudSat measurements show that the seasonal difference in normalized cloud vertical profiles is not significant, whereas the normalized cloud vertical profile significantly varies depending on the cloud type and the presence of precipitation. It is further examined if the 7 day Nonhydrostatic Icosahedral Atmospheric Model (NICAM) simulation results from 25 December 2006 to 1 January 2007 generate similar cloud profile shapes. NICAM IWC profiles also show maximum peaks near the cloud bottom for thick cloud layers and maximum peaks at the cloud bottom for low-level clouds near the surface. It is inferred that oversized snow particles in the NICAM cloud scheme produce a more vertically inhomogeneous IWC profile than observations due to quick sedimentation.

  12. Vertical distribution of Martian aerosols from SPICAM/Mars-Express limb observations

    NASA Astrophysics Data System (ADS)

    Fedorova, A.; Korablev, O.; Bertaux, J.-L.; Rodin, A.; Perrier, S.; Moroz, V. I.

    Limb spectroscopic observations provide invaluable information about vertical distribution of main atmospheric components in the Martian atmosphere, in particular vertical distribution and structure of aerosols, which play an important role in the heat balance of the planet. Only limited set of successful limb spectroscopic observations have been carried out on Mars so far, including those by MGS/TES spectrometer and Thermoscan and Auguste experiments of Phobos mission. Currently SPICAM instrument onboard Mars-Express spacecraft has accomplished several sequences of limb observations. First analysis of limb sounding data received by SPICAM IR and UV channels, which imply the presence of fine, deep, optically thin aerosol fraction extended over broad range of altitudes, is presented.

  13. Wintertime characteristics of aerosols over middle Indo-Gangetic Plain: Vertical profile, transport and radiative forcing

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Raju, M. P.; Singh, R. K.; Singh, A. K.; Singh, R. S.; Banerjee, T.

    2017-01-01

    Winter-specific characteristics of airborne particulates over middle Indo-Gangetic Plain (IGP) were evaluated in terms of aerosol chemical and micro-physical properties under three-dimensional domain. Emphases were made for the first time to identify intra-seasonal variations of aerosols sources, horizontal and vertical transport, effects of regional meteorology and estimating composite aerosol short-wave radiative forcing over an urban region (25°10‧-25°19‧N; 82°54‧-83°4‧E) at middle-IGP. Space-borne passive (Aqua and Terra MODIS, Aura OMI) and active sensor (CALIPSO-CALIOP) based observations were concurrently used with ground based aerosol mass measurement for entire winter and pre-summer months (December, 1, 2014 to March, 31, 2015). Exceptionally high aerosol mass loading was recorded for both PM10 (267.6 ± 107.0 μg m- 3) and PM2.5 (150.2 ± 89.4 μg m- 3) typically exceeding national standard. Aerosol type was mostly dominated by fine particulates (particulate ratio: 0.61) during pre to mid-winter episodes before being converted to mixed aerosol types (ratio: 0.41-0.53). Time series analysis of aerosols mass typically identified three dissimilar aerosol loading episodes with varying attributes, well resemble to that of previous year's observation representing its persisting nature. Black carbon (9.4 ± 3.7 μg m- 3) was found to constitute significant proportion of fine particulates (2-27%) with a strong diurnal profile. Secondary inorganic ions also accounted a fraction of particulates (PM2.5: 22.5%; PM10: 26.9%) having SO4- 2, NO3- and NH4+ constituting major proportion. Satellite retrieved MODIS-AOD (0.01-2.30) and fine mode fractions (FMF: 0.01-1.00) identified intra-seasonal variation with transport of aerosols from upper to middle-IGP through continental westerly. Varying statistical association of columnar and surface aerosol loading both in terms of fine (r; PM2.5: MODIS-AOD: 0.51) and coarse particulates (PM10: MODIS-AOD: 0.53) was

  14. Dissipation Rate of Turbulent Kinetic Energy in Diel Vertical Migrations: Comparison of ANSYS Fluent Model to Measurements

    NASA Astrophysics Data System (ADS)

    Dean, Cayla; Soloviev, Alexander; Hirons, Amy; Frank, Tamara; Wood, Jon

    2015-04-01

    Recent studies suggest that diel vertical migrations of zooplankton may have an impact on ocean mixing, though details are not completely clear. A strong sound scattering layer of zooplankton undergoing diel vertical migrations was observed in Saanich Inlet, British Colombia, Canada by Kunze et al. (2006). In this study, a shipboard 200-kHz echosounder was used to track vertical motion of the sound scattering layer, and microstructure profiles were collected to observe turbulence. An increase of dissipation rate of turbulent kinetic energy by four to five orders of magnitude was measured during diel vertical migrations of zooplankton in one case (but not observed during other cases). A strong sound scattering layer undergoing diel vertical migration was also observed in the Straits of Florida via a bottom mounted acoustic Doppler current profiler at 244 m isobath. A 3-D non-hydrostatic computational fluid dynamics model with Lagrangian particle injections (a proxy for migrating zooplankton) via a discrete phase model was used to simulate the effect of diel vertical migrations on the turbulence for both Saanich Inlet and the Straits of Florida. The model was initialized with idealized (but based on observation) density and velocity profiles. Particles, with buoyancy adjusted to serve as a proxy for vertically swimming zooplankton, were injected to simulate diel vertical migration cycles. Results of models run with extreme concentrations of particles showed an increase in dissipation rate of turbulent kinetic energy of approximately five orders of magnitude over background turbulence during migration of particles in both Saanich Inlet and the Straits of Florida cases (though direct relation of the turbulence produced by buoyant particles and swimming organisms isn't straightforward). This increase was quantitatively consistent, with turbulence measurements by Kunze et al. (2006). When 10 times fewer particles were injected into the model, the effect on dissipation

  15. Relation of Cloud Occurrence Frequency, Overlap, and Effective Thickness Derived from CALIPSO and CloudSat Merged Cloud Vertical Profiles

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2009-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.

  16. Lightning Nitrogen Oxides (LNOx) Vertical Profile Quantification and 10 Year Trend Analysis using Ozone Monitoring Instrument (OMI) Satellite Measurements, Air Quality Station (AQS) Surface Measurements, The National Lightning Detection Network (NLDN), and Simulated by Cloud Resolving Chemical Transport Model (REAM Cloud)

    NASA Astrophysics Data System (ADS)

    Smeltzer, C. D.; Wang, Y.; Koshak, W. J.

    2014-12-01

    Vertical profiles and emission lifetimes of lightning nitrogen oxides (LNOx) are derived using the Ozone Monitoring Instrument (OMI). Approximately 200 million flashes, over a 10 year climate period, from the United States National Lighting Detection Network (NLDN), are aggregated with OMI cloud top height to determine the vertical LNOx structure. LNOx lifetime is determined as function of LNOx signal in a 36 kilometer vertical column from the time of the last known flash to depletion of the LNOx signal. Environmental Protection Agency (EPA) Air Quality Station (AQS) surface data further support these results by demonstrating as much as a 200% increase in surface level NO2 during strong thunderstorm events and a lag as long as 5 to 8 hours from the lightning event to the peak surface event, indicating a evolutional process. Analysis of cloud resolving chemical transport model (REAM Cloud) demonstrates that C-shaped LNOx profiles, which agree with OMI vertical profile observations, evolve due to micro-scale convective meteorology given inverted C-shaped LNOx emission profiles as determined from lightning radio telemetry. It is shown, both in simulations and in observations, that the extent to which the LNOx vertical distribution is C-shaped and the lifetime of LNOx is proportional to the shear-strength of the thunderstorm. Micro-scale convective meteorology is not adequately parameterized in global scale and regional scale chemical transport models (CTM). Therefore, these larger scale CTMs ought to use a C-shape emissions profile to best reproduce observations until convective parameterizations are updated. These findings are used to simulate decadal LNOx and lightning ozone climatology over the Continental United States (CONUS) from 2004-2014.

  17. Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2014-08-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  18. High-resolution vertical velocities and their power spectrum observed with the MAARSY radar - Part 1: frequency spectrum

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph

    2018-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity < 10 m s-1). The distribution of spectral slopes is roughly symmetric with a maximum at -5/3 during active periods, whereas a very asymmetric distribution with a maximum at around -1 is observed during quiet periods. The slope profiles along altitudes reveal a significant height dependence for both conditions, i.e., the spectra become shallower with increasing altitudes in the upper troposphere and maintain roughly a constant slope in the lower stratosphere. With both wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.

  19. The thermal structure of Titan’s upper atmosphere, I: Temperature profiles from Cassini INMS observations

    NASA Astrophysics Data System (ADS)

    Snowden, D.; Yelle, R. V.; Cui, J.; Wahlund, J.-E.; Edberg, N. J. T.; Ågren, K.

    2013-09-01

    We derive vertical temperature profiles from Ion Neutral Mass Spectrometer (INMS) N2 density measurements from 32 Cassini passes. We find that the average temperature of Titan’s thermosphere varies significantly from pass-to-pass between 112 and 175 K. The temperatures from individual temperature profiles also varies considerably, with many passes exhibiting wave-like temperature perturbations and large temperature gradients. Wave-like temperature perturbations have wavelengths between 150 and 420 km and amplitudes between 3% and 22% and vertical wave power spectra of the INMS data and HASI data have a slope between -2 and -3, which is consistent with vertically propagating atmospheric waves. The lack of a strong correlation between temperature and latitude, longitude, solar zenith angle, or local solar time indicates that the thermal structure of Titan’s thermosphere is not primarily determined by the absorption of solar EUV flux. At N2 densities greater than 108 cm-3, Titan’s thermosphere is colder when Titan is observed in Saturn’s magnetospheric lobes compared to Saturn’s plasma sheet as proposed by Westlake et al. (Westlake, J.H. et al. [2011]. J. Geophys. Res. 116, A03318. http://dx.doi.org/10.1029/2010JA016251). This apparent correlation suggests that magnetospheric particle precipitation causes the temperature variability in Titan’s thermosphere; however, at densities smaller than 108 cm-3 the lobe passes are hotter than the plasma sheet passes and we find no correlation between the temperature of Titan’s thermosphere and ionospheric signatures of enhanced particle precipitation, which suggests that the correlation is not indicative of a physical connection. The temperature of Titan’s thermosphere also may have decreased by ∼10 K around mid-2007. Finally, we classify the vertical temperature profiles to show which passes are hot and cold and which passes have the largest temperature variations. In a companion paper (Part II), we estimate

  20. The effect of sediment thermal conductivity on vertical groundwater flux estimates

    NASA Astrophysics Data System (ADS)

    Sebok, Eva; Müller, Sascha; Engesgaard, Peter; Duque, Carlos

    2015-04-01

    present. Using the measured sediment thermal conductivity for the different model layers instead of a homogeneous distribution did not result in a better fit between observed and simulated sediment temperature profiles. The estimated groundwater fluxes however were greatly affected by using the measured thermal conductivities resulting in changes of ± 45% in estimated vertical fluxes.

  1. Constraints on vertical transport near the polar summer mesopause from PMC observations and modelling

    NASA Astrophysics Data System (ADS)

    Wilms, H.; Rapp, M.; Kirsch, A.

    2016-12-01

    The comparison of microphysical simulations of polar mesospheric cloud properties with ground based and satellite borne observations suggests that vertical wind variance imposed by gravity waves is an important prerequisite to realistically model PMC properties. This paper reviews the available observational evidence of vertical wind measurements at the polar summer mesopause (including their frequency content). Corresponding results are compared to vertical wind variance from several global models and implications for the transport of trace constituents in this altitude region are discussed.

  2. Using Distributed Temperature Sensing for measuring vertical temperature profiles and air temperature variance in the roughness sublayer above a forest canopy

    NASA Astrophysics Data System (ADS)

    Schilperoort, B.; Coenders, M.; Savenije, H. H. G.

    2017-12-01

    In recent years, the accuracy and resolution of Distributed Temperature Sensing (DTS) machines has increased enough to expand its use in atmospheric sciences. With DTS the temperature of a fiber optic (FO) cable can be measured with a high frequency (1 Hz) and high resolution (0.30 m), for cable lengths up to kilometers. At our measurement site, a patch of 26 to 30 m tall Douglas Fir in mixed forest, we placed FO cables vertically along a 48 m tall flux tower. This gives a high resolution vertical temperature profile above, through, and below the canopy. By using a `bare' FO cable, with a diameter of 0.25 mm, we are able to measure variations in air temperature at a very small timescale, and are able to measure a vertical profile of the air temperature variance. The vertical temperature profiles can be used to study the formation of the stable boundary layer above and in the canopy at a high resolution. It also shows that a stable layer can develop below the canopy, which is not limited to night time conditions but also occurs during daytime. The high frequency measurements can be used to study the gradient of the variance of air temperature over the height. To study how the flux tower itself affects temperature variance measurements, the `bare' FO cable can be placed horizontally under a support structure away from the flux tower. Lastly, by using the hot-wire anemometer principle with DTS, the measurements can be expanded to also include vertical wind profile.

  3. GPM and TRMM Radar Vertical Profiles and Impact on Large-scale Variations of Surface Rain

    NASA Astrophysics Data System (ADS)

    Wang, J. J.; Adler, R. F.

    2017-12-01

    Previous studies by the authors using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) data have shown that TRMM Precipitation Radar (PR) and GPM Dual-Frequency Precipitation Radar (DPR) surface rain estimates do not have corresponding amplitudes of inter-annual variations over the tropical oceans as do passive microwave observations by TRMM Microwave Imager (TMI) and GPM Microwave Imager (GMI). This includes differences in surface temperature-rainfall variations. We re-investigate these relations with the new GPM Version 5 data with an emphasis on understanding these differences with respect to the DPR vertical profiles of reflectivity and rainfall and the associated convective and stratiform proportions. For the inter-annual variation of ocean rainfall from both passive microwave (TMI and GMI) and active microwave (PR and DPR) estimates, it is found that for stratiform rainfall both TMI-PR and GMI-DPR show very good correlation. However, the correlation of GMI-DPR is much higher than TMI-PR in convective rainfall. The analysis of vertical profile of PR and DPR rainfall during the TRMM and GPM overlap period (March-August, 2014) reveals that PR and DPR have about the same rainrate at 4km and above, but PR rainrate is more than 10% lower that of DPR at the surface. In other words, it seems that convective rainfall is better defined with DPR near surface. However, even though the DPR results agree better with the passive microwave results, there still is a significant difference, which may be a result of DPR retrieval error, or inherent passive/active retrieval differences. Monthly and instantaneous GMI and DPR data need to be analyzed in details to better understand the differences.

  4. Vertical Profile of Aerosol Properties at Pico Mountain, Azores

    NASA Astrophysics Data System (ADS)

    Wright, K.; Mazzoleni, C.; Mazzoleni, L. R.; Dzepina, K.; Hueber, J.; China, S.; Sharma, N.

    2013-12-01

    Pico Mountain (2325m asl) is a dormant volcano in the archipelago of the Azores1500 km west of Lisbon, Portugal in the North Atlantic. It differs from typical mountain ranges such as the Alps or the Rockies, which are large and present a complex orography. Pico Mountain has a simple cone-like structure with only one main peak and is thousands of kilometers away from any other significant mountain range. In summer months, it is typical for air masses to move around the mountain rather than traveling up its face. This implies that often the peak of the mountain lies above the marine boundary layer in the free troposphere, while the lower part of the mountain is affected by marine clouds and marine air-masses. An atmospheric monitoring station, the Pico Mountain Observatory was established in 2001 in the summit caldera of the volcano at 2225m above sea level. The observatory is far from large populations or pollution sources, which makes the station ideal to study atmospheric gases and aerosols transported over long-ranges in the free troposphere. The station is reachable only by foot following a steep and strenuous hiking trail. In the summer of 2013 we began to collect vertical profiles of aerosol by carrying an instrumented backpack up to the summit of the mountain, with the goal of studying the vertical structure of atmospheric aerosols from the marine boundary layer to the free troposphere. The backpack was carried from the base of trail at 1200m asl. The backpack was equipped with the following instruments: 1. Nephelometer to measure light scattering from aerosol 2. 2-size optical particle counter (300-500 nm) 3. Portable micro-aethalometer to measure absorbing aerosols 4. SEM/TEM sampler to collect particles for off-line electron microscopy analysis 5. Battery powered data logger to measure relative humidity, temperature and pressure 6. GPS tracking device We provide a preliminary analysis of data collected in 2013 to gain insight on the vertical distribution

  5. A New Airborne Lidar for Remote Sensing of Canopy Fluorescence and Vertical Profile

    NASA Astrophysics Data System (ADS)

    Ounis, A.; Bach, J.; Mahjoub, A.; Daumard, F.; Moya, I.; Goulas, Y.

    2016-06-01

    We report the development of a new lidar system for airborne remote sensing of chlorophyll fluorescence (ChlF) and vertical profile of canopies. By combining laserinduced fluorescence (LIF), sun-induced fluorescence (SIF) and canopy height distribution, the new instrument will low the simultaneous assessment of gross primary production (GPP), photosynthesis efficiency and above ground carbon stocks. Technical issues of the lidar development are discussed and expected performances are presented.

  6. Constraining the 0-20 km Vertical Profile of Water Vapor in the Martian Atmosphere with MGS-TES Limb Sounding

    NASA Astrophysics Data System (ADS)

    McConnochie, T. H.; Smith, M. D.; McDonald, G. D.

    2016-12-01

    The vertical profile of water vapor in the lower atmosphere of Mars is a crucial but poorly-measured detail of the water cycle. Most of our existing water vapor data sets (e.g. Smith, 2002, JGR 107; Smith et al., 2009, JGR 114; Maltagliati et al., 2011, Icarus 213) rely on the traditional assumption of uniform mass mixing from the surface up to a saturation level, but GCM models (Richardson et al., 2002, JGR 107; Navarro et al., 2014, JGR 119) imply that this is not the case in at least some important seasons and locations. For example at the equator during northern summer the water vapor mixing ratio in aforementioned GCMs increases upwards by a factor of two to three in the bottom scale height. This might influence the accuracy of existing precipitable water column (PWC) data sets. Even if not, the correct vertical distribution is critical for determining the extent to which high-altitude cold trapping interferes with inter-hemispheric transport, and its details in the lowest scale heights will be a critical test of the accuracy of modeled water vapor transport. Meanwhile attempts to understand apparent interactions of water vapor with surface soils (e.g. Ojha et al. 2015, Nature Geoscience 8; Savijärvi et al., 2016, Icarus 265) need an estimate for the amount of water vapor in the boundary layer, and existing PWC data sets can't provide this unless the lower atmospheric vertical distribution is known or constrained. Maltagliati et al. (2013, Icarus 223) have obtained vertical profiles of water vapor at higher altitudes with SPICAM on Mars Express, but these are commonly limited to altitudes greater 20 km and they never extend below 10 km. We have previously used Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) limb-sounding to measure the vertical profile of water vapor (e.g. McConnochie and Smith, 2009, Fall AGU #P54B-06), but these preliminary results were clearly not quantitatively accurate in the lower atmosphere. We will present improved TES

  7. Seasonal changes in the tropospheric carbon monoxide profile over the remote Southern Hemisphere evaluated using multi-model simulations and aircraft observations

    NASA Astrophysics Data System (ADS)

    Fisher, J. A.; Wilson, S. R.; Zeng, G.; Williams, J. E.; Emmons, L. K.; Langenfelds, R. L.; Krummel, P. B.; Steele, L. P.

    2014-11-01

    We use aircraft observations from the 1991-2000 Cape Grim Overflight Program and the 2009-2011 HIAPER Pole-to-Pole Observations (HIPPO), together with output from four chemical transport and chemistry-climate models, to better understand the vertical distribution of carbon monoxide (CO) in the remote Southern Hemisphere. Observed CO vertical gradients at Cape Grim vary from 1.6 ppbv km-1 in austral autumn to 2.2 ppbv km-1 in austral spring. CO vertical profiles from Cape Grim are remarkably consistent with those observed over the southern mid-latitudes Pacific during HIPPO, despite major differences in time periods, flight locations, and sampling strategies between the two datasets. Using multi-model simulations from the Southern Hemisphere Model Intercomparison Project (SHMIP), we find that observed CO vertical gradients in austral winter-spring are well-represented in models and can be attributed to primary CO emissions from biomass burning. In austral summer-autumn, inter-model variability in simulated gradients is much larger, and two of the four SHMIP models significantly underestimate the Cape Grim observations. Sensitivity simulations show that CO vertical gradients at this time of year are driven by long-range transport of secondary CO of biogenic origin, implying a large sensitivity of the remote Southern Hemisphere troposphere to biogenic emissions and chemistry. Inter-model variability in summer-autumn gradients can be explained by differences in both the chemical mechanisms that drive secondary production of CO from biogenic sources and the vertical transport that redistributes this CO throughout the Southern Hemisphere. This suggests that the CO vertical gradient in the remote Southern Hemisphere provides a sensitive test of the chemistry and transport processes that define the chemical state of the background atmosphere.

  8. Validation of ionospheric electron density profiles inferred from GPS occultation observations of the GPS/MET experiment

    NASA Astrophysics Data System (ADS)

    Kawakami, Todd Mori

    In April of 1995, the launch of the GPS Meteorology Experiment (GPS/MET) onboard the Orbview-1 satellite, formerly known as Microlab-1, provided the first technology demonstration of active limb sounding of the Earth's atmosphere with a low Earth orbiting spacecraft utilizing the signals transmitted by the satellites of the Global Positioning System (GPS). Though the experiment's primary mission was to probe the troposphere and stratosphere, GPS/MET was also capable of making radio occultation observations of the ionosphere. The application of the GPS occultation technique to the upper atmosphere created a unique opportunity to conduct ionospheric research with an unprecedented global distribution of observations. For operational support requirements, the Abel transform could be employed to invert the horizontal TEC profiles computed from the L1 and L2 phase measurements observed by GPS/MET into electron density profiles versus altitude in near real time. The usefulness of the method depends on how effectively the TEC limb profiles can be transformed into vertical electron density profiles. An assessment of GPS/MET's ability to determine electron density profiles needs to be examined to validate the significance of the GPS occultation method as a new and complementary ionospheric research tool to enhance the observational databases and improve space weather modeling and forecasting. To that end, simulations of the occultation observations and their inversions have been conducted to test the Abel transform algorithm and to provide qualitative information about the type and range of errors that might be experienced during the processing of real data. Comparisons of the electron density profiles inferred from real GPS/MET observations are then compared with coincident in situ measurements from the satellites of Defense Meteorological Satellite Program (DMSP) and ground-based remote sensing from digisonde and incoherent scatter radar facilities. The principal focus of

  9. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  10. Observed and Modeled HOCl Profiles in the Midlatitude Stratosphere: Implication for Ozone Loss

    NASA Technical Reports Server (NTRS)

    Kovalenko, L. J.; Jucks, K. W.; Salawitch, R. J.; Toon, G. C.; Blavier, J. F.; Johnson, D. G.; Kleinbohl, A.; Livesey, N. J .; Margitan, J. J.; Pickett, H. M.; hide

    2007-01-01

    Vertical profiles of stratospheric HOCl calculated with a diurnal steady-state photochemical model that uses currently recommended reaction rates and photolysis cross sections underestimate observed profiles of HOCl obtained by two balloon-borne instruments, FIRS-2 (a far-infrared emission spectrometer) and MkIV (a mid-infrared, solar absorption spectrometer). Considerable uncertainty (a factor of two) persists in laboratory measurements of the rate constant (k(sub 1)) for the reaction ClO + HO2 yields HOCl + O2. Agreement between modeled and measured HOCl can be attained using a value of k(sub 1) from Stimpfle et al. (1979) that is about a factor-of-two faster than the currently recommended rate constant. Comparison of modeled and measured HOCl suggests that models using the currently recommended value for k(sub 1) may underestimate the role of the HOCl catalytic cycle for ozone depletion, important in the midlatitude lower stratosphere.

  11. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.

  12. Vertical density profile and internal bond strength of wet-formed particleboard bonded with cellulose nanofibrils

    Treesearch

    John F. Hunt; Weiqi Leng; Mehdi Tajvidi

    2017-01-01

    In this study, the effects of cellulose nanofibrils (CNFs) ratio, press program, particle size, and density on the vertical density profile (VDP) and internal bond (IB) strength of the wet-formed particleboard were investigated. Results revealed that the VDP was significantly influenced by the press program. Pressing using a constant pressure (CP) press program...

  13. Vertical profile of tropospheric ozone derived from synergetic retrieval using three different wavelength ranges, UV, IR, and microwave: sensitivity study for satellite observation

    NASA Astrophysics Data System (ADS)

    Sato, Tomohiro O.; Sato, Takao M.; Sagawa, Hideo; Noguchi, Katsuyuki; Saitoh, Naoko; Irie, Hitoshi; Kita, Kazuyuki; Mahani, Mona E.; Zettsu, Koji; Imasu, Ryoichi; Hayashida, Sachiko; Kasai, Yasuko

    2018-03-01

    We performed a feasibility study of constraining the vertical profile of the tropospheric ozone by using a synergetic retrieval method on multiple spectra, i.e., ultraviolet (UV), thermal infrared (TIR), and microwave (MW) ranges, measured from space. This work provides, for the first time, a quantitative evaluation of the retrieval sensitivity of the tropospheric ozone by adding the MW measurement to the UV and TIR measurements. Two observation points in East Asia (one in an urban area and one in an ocean area) and two observation times (one during summer and one during winter) were assumed. Geometry of line of sight was nadir down-looking for the UV and TIR measurements, and limb sounding for the MW measurement. The retrieval sensitivities of the ozone profiles in the upper troposphere (UT), middle troposphere (MT), and lowermost troposphere (LMT) were estimated using the degree of freedom for signal (DFS), the pressure of maximum sensitivity, reduction rate of error from the a priori error, and the averaging kernel matrix, derived based on the optimal estimation method. The measurement noise levels were assumed to be the same as those for currently available instruments. The weighting functions for the UV, TIR, and MW ranges were calculated using the SCIATRAN radiative transfer model, the Line-By-Line Radiative Transfer Model (LBLRTM), and the Advanced Model for Atmospheric Terahertz Radiation Analysis and Simulation (AMATERASU), respectively. The DFS value was increased by approximately 96, 23, and 30 % by adding the MW measurements to the combination of UV and TIR measurements in the UT, MT, and LMT regions, respectively. The MW measurement increased the DFS value of the LMT ozone; nevertheless, the MW measurement alone has no sensitivity to the LMT ozone. The pressure of maximum sensitivity value for the LMT ozone was also increased by adding the MW measurement. These findings indicate that better information on LMT ozone can be obtained by adding constraints

  14. Study of seasonal and long-term vertical deformation in Nepal based on GPS and GRACE observations

    NASA Astrophysics Data System (ADS)

    Zhang, Tengxu; Shen, WenBin; Pan, Yuanjin; Luan, Wei

    2018-02-01

    Lithospheric deformation signal can be detected by combining data from continuous global positioning system (CGPS) and satellite observations from the Gravity Recovery and Climate Experiment (GRACE). In this paper, we use 2.5- to 19-year-long time series from 35 CGPS stations to estimate vertical deformation rates in Nepal, which is located in the southern side of the Himalaya. GPS results were compared with GRACE observations. Principal component analysis was conducted to decompose the time series into three-dimensional principal components (PCs) and spatial eigenvectors. The top three high-order PCs were calculated to correct common mode errors. Both GPS and GRACE observations showed significant seasonal variations. The observed seasonal GPS vertical variations are in good agreement with those from the GRACE-derived results, particularly for changes in surface pressure, non-tidal oceanic mass loading, and hydrologic loading. The GPS-observed rates of vertical deformation obtained for the region suggest both tectonic impact and mass decrease. The rates of vertical crustal deformation were estimated by removing the GRACE-derived hydrological vertical rates from the GPS measurements. Most of the sites located in the southern part of the Main Himalayan Thrust subsided, whereas the northern part mostly showed an uplift. These results may contribute to the understanding of secular vertical crustal deformation in Nepal.

  15. Vertical structure of precipitating shallow echoes observed from TRMM during Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Kumar, Shailendra

    2017-08-01

    The present study explores the properties of precipitating shallow echoes (PSEs) over the tropical areas (30°S-30°N) during Indian summer monsoon season using attenuated corrected radar reflectivity factor (Ze) measured by the Tropical Rainfall Measuring Mission satellite. Radar echoes observed in study are less than the freezing height, so they belong to warm precipitation. Radar echoes with at least 0.75 km wide are considered for finding the shallow echoes climatology. Western Ghats and adjoining ocean (Arabian sea) have the highest PSEs followed by Myanmar and Burma coast, whereas the overall west coast of Latin America consists of the lowest PSEs. Tropical oceanic areas contain fewer PSEs compared to coastal areas. Average vertical profiles show nearly similar Ze characteristics which peaks between 1.5 and 2 km altitude with model value 32-34 dBZ. Slope of Ze is higher for intense PSEs as radar reflectivity decreases more rapidly in intense PSEs.

  16. Variation of Equatorial F-region Vertical Neutral Wind and Neutral Temperature during Geomagnetic Storms: Brazil FPI Observations

    NASA Astrophysics Data System (ADS)

    Sheng, C.; De La Garza, J. L.; Deng, Y.; Makela, J. J.; Fisher, D. J.; Meriwether, J. W.; Mesquita, R.

    2015-12-01

    An accurate description of vertical neutral winds in the thermosphere is essential to understand how the upper atmosphere responds to the geomagnetic storms. However, vertical wind measurements are difficult to obtain and there are still limited data. Recent observation deployments now permit substantial progress on this issue. In this paper, neutral vertical wind data from Brazil FPI observations at around 240 km altitude during 2009 to 2015 are used for the study of the equatorial vertical wind and neutral temperature variation during geomagnetic activity times. First, the observations during several particular storm periods will be analyzed. Secondly, Epoch analysis will be used to bin all the observed events together to investigate the climatological features of vertical wind and temperature during storms. The results will give us an unprecedented view of the nighttime vertical wind and neutral temperature variations at low latitudes, which is critical to specify the dynamics of the upper atmosphere.

  17. Modification of Turbulent Pipe Flow Equations to Estimate the Vertical Velocity Profiles Under Woody Debris Jams

    NASA Astrophysics Data System (ADS)

    Cervania, A.; Knack, I. M. W.

    2017-12-01

    The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.

  18. The Tropical Convective Spectrum. Part 1; Archetypal Vertical Structures

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Petersen, Walter A.; Cecil, Daniel J.

    2005-01-01

    A taxonomy of tropical convective and stratiform vertical structures is constructed through cluster analysis of 3 yr of Tropical Rainfall Measuring Mission (TRMM) "warm-season" (surface temperature greater than 10 C) precipitation radar (PR) vertical profiles, their surface rainfall, and associated radar-based classifiers (convective/ stratiform and brightband existence). Twenty-five archetypal profile types are identified, including nine convective types, eight stratiform types, two mixed types, and six anvil/fragment types (nonprecipitating anvils and sheared deep convective profiles). These profile types are then hierarchically clustered into 10 similar families, which can be further combined, providing an objective and physical reduction of the highly multivariate PR data space that retains vertical structure information. The taxonomy allows for description of any storm or local convective spectrum by the profile types or families. The analysis provides a quasi-independent corroboration of the TRMM 2A23 convective/ stratiform classification. The global frequency of occurrence and contribution to rainfall for the profile types are presented, demonstrating primary rainfall contribution by midlevel glaciated convection (27%) and similar depth decaying/stratiform stages (28%-31%). Profiles of these types exhibit similar 37- and 85-GHz passive microwave brightness temperatures but differ greatly in their frequency of occurrence and mean rain rates, underscoring the importance to passive microwave rain retrieval of convective/stratiform discrimination by other means, such as polarization or texture techniques, or incorporation of lightning observations. Close correspondence is found between deep convective profile frequency and annualized lightning production, and pixel-level lightning occurrence likelihood directly tracks the estimated mean ice water path within profile types.

  19. Observations and a model of undertow over the inner continental shelf

    USGS Publications Warehouse

    Lentz, Steven J.; Fewings, Melanie; Howd, Peter; Fredericks, Janet; Hathaway, Kent

    2008-01-01

    Onshore volume transport (Stokes drift) due to surface gravity waves propagating toward the beach can result in a compensating Eulerian offshore flow in the surf zone referred to as undertow. Observed offshore flows indicate that wave-driven undertow extends well offshore of the surf zone, over the inner shelves of Martha’s Vineyard, Massachusetts, and North Carolina. Theoretical estimates of the wave-driven offshore transport from linear wave theory and observed wave characteristics account for 50% or more of the observed offshore transport variance in water depths between 5 and 12 m, and reproduce the observed dependence on wave height and water depth.During weak winds, wave-driven cross-shelf velocity profiles over the inner shelf have maximum offshore flow (1–6 cm s−1) and vertical shear near the surface and weak flow and shear in the lower half of the water column. The observed offshore flow profiles do not resemble the parabolic profiles with maximum flow at middepth observed within the surf zone. Instead, the vertical structure is similar to the Stokes drift velocity profile but with the opposite direction. This vertical structure is consistent with a dynamical balance between the Coriolis force associated with the offshore flow and an along-shelf “Hasselmann wave stress” due to the influence of the earth’s rotation on surface gravity waves. The close agreement between the observed and modeled profiles provides compelling evidence for the importance of the Hasselmann wave stress in forcing oceanic flows. Summer profiles are more vertically sheared than either winter profiles or model profiles, for reasons that remain unclear.

  20. A large-scale intercomparison of stratospheric vertical distributions of NO2 and BrO retrieved from the SCIAMACHY limb measurements and ground-based twilight observations

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Hendrick, Francois; Lotz, Wolfhardt; van Roozendael, Michel; Bovensmann, Heinrich; Burrows, John P.

    This study is devoted to the intercomparison of NO2 and BrO vertical profiles obtained from the satellite and ground-based measurements. Although, the ground-based observations are performed only at selected locations, they have a great potential to be used for the validation of satellite measurements since continuous long-term measurement series performed with the same instruments are available. Thus, long-term trends in the observed species can be analyzed and intercompared. Previous intercomparisons of the vertical distributions of NO2 and BrO retrieved from SCIAMACHY limb measurements at the University of Bremen and obtained at IASB-BIRA by applying a profiling technique to ground-based zenith-sky DOAS observations have shown a good agreement between the results of completely different measurement techniques. However, only a relatively short time period of one year was analyzed so far which do not allow investigating seasonal variations and trends. Furthermore, some minor discrepancies are still to be analyzed. In the current study, several years datasets obtained at Observatoire de Haute-Provence (OHP) in France and in Harestua in Norway will be compared to the retrievals of SCIAMACHY limb measurements. Seasonal and annual variations will be analyzed and possible reasons for the remaining discrepancies will be discussed.

  1. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  2. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling

    NASA Astrophysics Data System (ADS)

    Eckhardt, S.; Prata, A. J.; Seibert, P.; Stebel, K.; Stohl, A.

    2008-07-01

    An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair, Yemen, on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (a.s.l.), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude agrees with CALIPSO aerosol observations to within 1 2 km. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.

  3. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling

    NASA Astrophysics Data System (ADS)

    Eckhardt, S.; Prata, A. J.; Seibert, P.; Stebel, K.; Stohl, A.

    2008-02-01

    An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude - thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (asl), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude and width agree mostly within 1-2 km with CALIPSO observations of stratospheric aerosol produced from the SO2. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.

  4. How Well do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare?

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.; hide

    2006-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated

  5. The vertical variability of hyporheic fluxes inferred from riverbed temperature data

    NASA Astrophysics Data System (ADS)

    Cranswick, Roger H.; Cook, Peter G.; Shanafield, Margaret; Lamontagne, Sebastien

    2014-05-01

    We present detailed profiles of vertical water flux from the surface to 1.2 m beneath the Haughton River in the tropical northeast of Australia. A 1-D numerical model is used to estimate vertical flux based on raw temperature time series observations from within downwelling, upwelling, neutral, and convergent sections of the hyporheic zone. A Monte Carlo analysis is used to derive error bounds for the fluxes based on temperature measurement error and uncertainty in effective thermal diffusivity. Vertical fluxes ranged from 5.7 m d-1 (downward) to -0.2 m d-1 (upward) with the lowest relative errors for values between 0.3 and 6 m d-1. Our 1-D approach provides a useful alternative to 1-D analytical and other solutions because it does not incorporate errors associated with simplified boundary conditions or assumptions of purely vertical flow, hydraulic parameter values, or hydraulic conditions. To validate the ability of this 1-D approach to represent the vertical fluxes of 2-D flow fields, we compare our model with two simple 2-D flow fields using a commercial numerical model. These comparisons showed that: (1) the 1-D vertical flux was equivalent to the mean vertical component of flux irrespective of a changing horizontal flux; and (2) the subsurface temperature data inherently has a "spatial footprint" when the vertical flux profiles vary spatially. Thus, the mean vertical flux within a 2-D flow field can be estimated accurately without requiring the flow to be purely vertical. The temperature-derived 1-D vertical flux represents the integrated vertical component of flux along the flow path intersecting the observation point. This article was corrected on 6 JUN 2014. See the end of the full text for details.

  6. Retrieval of carbon dioxide vertical profiles from solar occultation observations and associated error budgets for ACE-FTS and CASS-FTS

    NASA Astrophysics Data System (ADS)

    Sioris, C. E.; Boone, C. D.; Nassar, R.; Sutton, K. J.; Gordon, I. E.; Walker, K. A.; Bernath, P. F.

    2014-02-01

    An algorithm is developed to retrieve the vertical profile of carbon dioxide in the 5 to 25 km altitude range using mid-infrared solar occultation spectra from the main instrument of the ACE (Atmospheric Chemistry Experiment) mission, namely the Fourier Transform Spectrometer (FTS). The main challenge is to find an atmospheric phenomenon which can be used for accurate tangent height determination in the lower atmosphere, where the tangent heights (THs) calculated from geometric and timing information is not of sufficient accuracy. Error budgets for the retrieval of CO2 from ACE-FTS and the FTS on a potential follow-on mission named CASS (Chemical and Aerosol Sounding Satellite) are calculated and contrasted. Retrieved THs are typically within 60 m of those retrieved using the ACE version 3.x software after revisiting the temperature dependence of the N2 CIA (Collision-Induced Absorption) laboratory measurements and accounting for sulfate aerosol extinction. After correcting for the known residual high bias of ACE version 3.x THs expected from CO2 spectroscopic/isotopic inconsistencies, the remaining bias for tangent heights determined with the N2 CIA is -20m. CO2 in the 5-13 km range in the 2009-2011 time frame is validated against aircraft measurements from CARIBIC, CONTRAIL and HIPPO, yielding typical biases of -1.7 ppm in the 5-13 km range. The standard error of these biases in this vertical range is 0.4 ppm. The multi-year ACE-FTS dataset is valuable in determining the seasonal variation of the latitudinal gradient which arises from the strong seasonal cycle in the Northern Hemisphere troposphere. The annual growth of CO2 in this time frame is determined to be 2.5 ± 0.7 ppm yr-1, in agreement with the currently accepted global growth rate based on ground-based measurements.

  7. New insights about cloud vertical structure from CloudSat and CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-09-01

    Active cloud observations from A-Train's CloudSat and CALIPSO satellites offer new opportunities to examine the vertical structure of hydrometeor layers. We use the 2B-CLDCLASS-LIDAR merged CloudSat-CALIPSO product to examine global aspects of hydrometeor vertical stratification. We group the data into major cloud vertical structure (CVS) classes based on our interpretation of how clouds in three standard atmospheric layers overlap and provide their global frequency of occurrence. The two most frequent CVS classes are single-layer (per our definition) low and high clouds that represent 53% of cloudy skies, followed by high clouds overlying low clouds, and vertically extensive clouds that occupy near-contiguously a large portion of the troposphere. The prevalence of these configurations changes seasonally and geographically, between daytime and nighttime, and between continents and oceans. The radiative effects of the CVS classes reveal the major radiative warmers and coolers from the perspective of the planet as a whole, the surface, and the atmosphere. Single-layer low clouds dominate planetary and atmospheric cooling and thermal infrared surface warming. We also investigate the consistency between passive and active views of clouds by providing the CVS breakdowns of Moderate Resolution Imaging Spectroradiometer cloud regimes for spatiotemporally coincident MODIS-Aqua (also on the A-Train) and CloudSat-CALIPSO daytime observations. When the analysis is expanded for a more in-depth look at the most heterogeneous of the MODIS cloud regimes, it ultimately confirms previous interpretations of their makeup that did not have the benefit of collocated active observations.

  8. Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL) from high-resolution balloon observations

    NASA Astrophysics Data System (ADS)

    Khaykin, Sergey M.; Pommereau, Jean-Pierre; Riviere, Emmanuel D.; Held, Gerhard; Ploeger, Felix; Ghysels, Melanie; Amarouche, Nadir; Vernier, Jean-Paul; Wienhold, Frank G.; Ionov, Dmitry

    2016-09-01

    High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL) and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing) and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere) and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3° S) in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon) and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector) sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv) and aerosol at the 425 K (18.5 km) level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20° S. A signature of local cross-tropopause transport of water is observed in a particular

  9. a Comparitive Study Using Geometric and Vertical Profile Features Derived from Airborne LIDAR for Classifying Tree Genera

    NASA Astrophysics Data System (ADS)

    Ko, C.; Sohn, G.; Remmel, T. K.

    2012-07-01

    We present a comparative study between two different approaches for tree genera classification using descriptors derived from tree geometry and those derived from the vertical profile analysis of LiDAR point data. The different methods provide two perspectives for processing LiDAR point clouds for tree genera identification. The geometric perspective analyzes individual tree crowns in relation to valuable information related to characteristics of clusters and line segments derived within crowns and overall tree shapes to highlight the spatial distribution of LiDAR points within the crown. Conversely, analyzing vertical profiles retrieves information about the point distributions with respect to height percentiles; this perspective emphasizes of the importance that point distributions at specific heights express, accommodating for the decreased point density with respect to depth of canopy penetration by LiDAR pulses. The targeted species include white birch, maple, oak, poplar, white pine and jack pine at a study site northeast of Sault Ste. Marie, Ontario, Canada.

  10. Retrieval of Vertical LAI Profiles Over Tropical Rain Forests using Waveform Lidar at La Selva, Costa Rica

    NASA Technical Reports Server (NTRS)

    Tang, Hao; Dubayah, Ralph; Swatantra, Anu; Hofton, Michelle; Sheldon, Sage; Clark, David B.; Blair, Bryan

    2012-01-01

    This study explores the potential of waveform lidar in mapping the vertical and spatial distributions of leaf area index (LAI) over the tropical rain forest of La Selva Biological Station in Costa Rica. Vertical profiles of LAI were derived at 0.3 m height intervals from the Laser Vegetation Imaging Sensor (LVIS) data using the Geometric Optical and Radiative Transfer (GORT) model. Cumulative LAI profiles obtained from LVIS were validated with data from 55 ground to canopy vertical transects using a modular field tower to destructively sample all vegetation. Our results showed moderate agreement between lidar and field derived LAI (r2=0.42, RMSE=1.91, bias=-0.32), which further improved when differences between lidar and tower footprint scales (r2=0.50, RMSE=1.79, bias=0.27) and distance of field tower from lidar footprint center (r2=0.63, RMSE=1.36, bias=0.0) were accounted for. Next, we mapped the spatial distribution of total LAI across the landscape and analyzed LAI variations over different land cover types. Mean values of total LAI were 1.74, 5.20, 5.41 and 5.62 over open pasture, secondary forests, regeneration forests after selective-logging and old-growth forests respectively. Lastly, we evaluated the sensitivities of our LAI retrieval model to variations in canopy/ground reflectance ratio and to waveform noise such as induced by topographic slopes. We found for both, that the effects were not significant for moderate LAI values (about 4). However model derivations of LAI might be inaccurate in areas of high-slope and high LAI (about 8) if ground return energies are low. This research suggests that large footprint waveform lidar can provide accurate vertical LAI profile estimates that do not saturate even at the high LAI levels in tropical rain forests and may be a useful tool for understanding the light transmittance within these canopies.

  11. Vertical profiles of ozone, carbon monoxide, and dew-point temperature obtained during GTE/CITE 1, October-November 1983. [Chemical Instrumentation Test and Evaluation

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Gregory, Gerald L.; Sachse, Glen W.; Beck, Sherwin M.; Hill, Gerald F.

    1987-01-01

    A set of 14 pairs of vertical profiles of ozone and carbon monoxide, obtained with fast-response instrumentation, is presented. Most of these profiles, which were measured in the remote troposphere, also have supporting fast-response dew-point temperature profiles. The data suggest that the continental boundary layer is a source of tropospheric ozone, even in October and November, when photochemical activity should be rather small. In general, the small-scale vertical variability between CO and O3 is in phase. At low latitudes this relationship defines levels in the atmosphere where midlatitude air is being transported to lower latitudes, since lower dew-point temperatures accompany these higher CO and O3 concentrations. A set of profiles which is suggestive of interhemispheric transport is also presented. Independent meteorological analyses support these interpretations.

  12. Development of the Vertical Electro Magnetic Profiling (VEMP) method

    NASA Astrophysics Data System (ADS)

    Miura, Yasuo; Osato, Kazumi; Takasugi, Shinji; Muraoka, Hirofumi; Yasukawa, Kasumi

    1996-09-01

    As a part of the "Deep-Seated Geothermal Resources Survey (DSGR)" project being undertaken by the New Energy and Industrial Technology Development Organization (NEDO), the "Vertical Electro Magnetic Profiling (VEMP)" method is being developed to accurately obtain deep resistivity structures. The VEMP method takes multi-frequency three-component magnetic field data in an open hole well using controlled source transmitters emitted at the surface (either loop or grounded-wire sources). Numerical simulations using EM3D have demonstrated that phase data of the VEMP method is not only very sensitive to the general resistivity structure, but will also indicate the presence of deeper anomalies. Forward modelling was used to determine the required transmitter moments for various grounded-wire and loop sources for a field test using the WD-1 well in the Kakkonda geothermal area. VEMP logging of the WD-1 well was carried out in May 1994 and the processed field data matches the computer simulations quite well.

  13. Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon.

    PubMed

    Kuuluvainen, Heino; Poikkimäki, Mikko; Järvinen, Anssi; Kuula, Joel; Irjala, Matti; Dal Maso, Miikka; Keskinen, Jorma; Timonen, Hilkka; Niemi, Jarkko V; Rönkkö, Topi

    2018-05-23

    The vertical profiles of lung deposited surface area (LDSA) concentration were measured in an urban street canyon in Helsinki, Finland, by using an unmanned aerial system (UAS) as a moving measurement platform. The street canyon can be classified as an avenue canyon with an aspect ratio of 0.45 and the UAS was a multirotor drone especially modified for emission measurements. In the experiments of this study, the drone was equipped with a small diffusion charge sensor capable of measuring the alveolar LDSA concentration of particles. The drone measurements were conducted during two days on the same spatial location at the kerbside of the street canyon by flying vertically from the ground level up to an altitude of 50 m clearly above the rooftop level (19 m) of the nearest buildings. The drone data were supported by simultaneous measurements and by a two-week period of measurements at nearby locations with various instruments. The results showed that the averaged LDSA concentrations decreased approximately from 60 μm 2 /cm 3 measured close to the ground level to 36-40 μm 2 /cm 3 measured close to the rooftop level of the street canyon, and further to 16-26 μm 2 /cm 3 measured at 50 m. The high-resolution measurement data enabled an accurate analysis of the functional form of vertical profiles both in the street canyon and above the rooftop level. In both of these regions, exponential fits were used and the parameters obtained from the fits were thoroughly compared to the values found in literature. The results of this study indicated that the role of turbulent mixing caused by traffic was emphasized compared to the street canyon vortex as a driving force of the dispersion. In addition, the vertical profiles above the rooftop level showed a similar exponential decay compared to the profiles measured inside the street canyon. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Vertical Distribution Characteristics of PM2.5 Observed by a Mobile Vehicle Lidar in Tianjin, China in 2016

    NASA Astrophysics Data System (ADS)

    Lyu, Lihui; Dong, Yunsheng; Zhang, Tianshu; Liu, Cheng; Liu, Wenqing; Xie, Zhouqing; Xiang, Yan; Zhang, Yi; Chen, Zhenyi; Fan, Guangqiang; Zhang, Leibo; Liu, Yang; Shi, Yuchen; Shu, Xiaowen

    2018-02-01

    We present mobile vehicle lidar observations in Tianjin, China during the spring, summer, and winter of 2016. Mobile observations were carried out along the city border road of Tianjin to obtain the vertical distribution characteristics of PM2.5. Hygroscopic growth was not considered since relative humidity was less than 60% during the observation experiments. PM2.5 profile was obtained with the linear regression equation between the particle extinction coefficient and PM2.5 mass concentration. In spring, the vertical distribution of PM2.5 exhibited a hierarchical structure. In addition to a layer of particles that gathered near the ground, a portion of particles floated at 0.6-2.5-km height. In summer and winter, the fine particles basically gathered below 1 km near the ground. In spring and summer, the concentration of fine particles in the south was higher than that in the north because of the influence of south wind. In winter, the distribution of fine particles was opposite to that measured during spring and summer. High concentrations of PM2.5 were observed in the rural areas of North Tianjin with a maximum of 350 μg m-3 on 13 December 2016. It is shown that industrial and ship emissions in spring and summer and coal combustion in winter were the major sources of fine particles that polluted Tianjin. The results provide insights into the mechanisms of haze formation and the effects of meteorological conditions during haze-fog pollution episodes in the Tianjin area.

  15. Visual observations of the vertical distribution of plankton throughout the water column above Broken Spur vent field, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Vereshchaka, A. L.; Vinogradov, G. M.

    1999-09-01

    Visual observations were made in September 1997 during the 39 cruise of R/V "Akademik Mstislav Keldysh" with 2 deep-sea manned submersibles "Mir" aboard. During 4 dives the following plankton countings were made: 3 vertical throughout the water column during the day, 2 vertical in the upper 1000 m at night, and 1 oblique in the plume area during the day. Biomass profiles are represented for each dive for all abundant animal groups: copepods, euphausiids+decapods+mysids, chaetognaths, medusae, ctenophores, siphonophores, cyclothones, myctophides, radiolarians, and the total zooplankton. Plankton distribution shows 2 aggregations, one within the main pycnocline and the other near the plume; Gelatinous animals and radiolarians dominate in both aggregations by biomass and make a significant contribution to the plankton biomass throughout the water column. Oblique counting indicates the presence of aggregations of animals near the upper and lower borders of the plume and biomass depletion within the plume core.

  16. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  17. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)

    DOE Data Explorer

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  18. Influence of Saharan dust outbreaks and atmospheric stability upon vertical profiles of size-segregated aerosols and water vapor

    NASA Astrophysics Data System (ADS)

    Giménez, Joaquín; Pastor, Carlos; Castañer, Ramón; Nicolás, José; Crespo, Javier; Carratalá, Adoración

    2010-01-01

    Vertical profiles of aerosols and meteorological parameters were obtained using a hot air balloon and motorized paraglider. They were studied under anticyclonic conditions in four different contexts. Three flights occurred near sunrise, and one took place in the central hours of the day. The effects of North African dust intrusions were analyzed, whose entrance to the study area took place above the Stable Boundary Layer (SBL) in flight 1 and below it in flight 2. These flights have been compared with a non-intrusion situation (flight 3). A fourth flight characterized the profiles in the central hours of the day with a well-formed Convective Boundary Layer (CBL). With respect to the particle number distribution, the results show that not all sizes increase within the presence of an intrusion; during the first flight the smallest particles were not affected. The particle sizes affected in the second flight fell within the 0.35-2.5 μm interval. Under situations of convective dynamics, the reduction percentage of the particle number concentration reduces with increasing altitude, independently of their size, with respect to stability conditions. The negative vertical gradient for aerosols and water vapor, characteristic of a highly stable SBL (flight 3) becomes a constant profile within a CBL (flight 4). There are two situations that seem to alter the negative vertical gradient of the water vapor mixing ratio within the SBL: the presence of an intrusion and the possible stratification of the SBL based on different degrees of stability.

  19. First Comparison of Remote Vertical Profiles of Refractory Black Carbon between the Atlantic and Pacific Basins on Global Scales

    NASA Astrophysics Data System (ADS)

    Katich, J. M.; Schwarz, J. P.

    2016-12-01

    The NASA Atmospheric Tomography Mission (ATom) provides a first opportunity to obtain vertical profiles of refractory black carbon (rBC) mass mixing ratios over global scale ( 65S - 85 N latitude) in the remote atmosphere over both the Pacific and Atlantic basins. A NOAA single-particle soot photometer (SP2) will fly on the NASA DC-8 research aircraft over July/August of 2016, obtaining near- continuous vertical profiling ( 0.3 to 12 km) over most of the Earth's latitude range, akin to the NSF HIPPO campaign that occurred only over the Pacific basin during 2009-2011. HIPPO analysis suggested both that high altitude rBC mass mixing ratios (MMRs) were likely zonally well mixed, and that global model estimates of remote rBC MMR throughout the upper troposphere globally, and not just over the Pacific, were likely biased high. Here we will present an initial analysis of the new, more complete data set in which Atlantic rBC profiles will be used to assess these prior suppositions.

  20. An Orbital "Virtual Radar" from TRMM Passive Microwave and Lightning Observations

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.

    2004-01-01

    The retrieval of vertical structure from joint passive microwave and lightning observations is demonstrated. Three years of data from the TRMM (Tropical Rainfall Measuring Mission) are used as a training dataset for regression and classification neural networks; the TMI (TRMM Microwave Imager) and LIS (Lightning Imaging Sensor) provide the inputs, the PR (Precipitation Radar) provides the training targets. Both vertical reflectivity profile categorization (into 9 convective, 7 stratiform, 2 mixed and 6 anvil types) and geophysical parameters (surface rainfall, vertically integrated liquid (VIL), ice water content (IWC) and echo tops) are retrieved. Retrievals are successful over both land and ocean surfaces. The benefit of using lightning observations as inputs to these retrievals is quantitatively demonstrated; lightning essentially provides an additional convective/stratiform discriminator, and is most important for isolation of midlevel (tops in the mixed phase region) convective profile types (this is because high frequency passive microwave observations already provide good convective/stratiform discrimination for deep convective profiles). This is highly relevant as midlevel convective profiles account for an extremely large fraction of tropical rainfall, and yet are most difficult to discriminate from comparable-depth stratiform profile types using passive microwave observations alone.

  1. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  2. Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation

    NASA Astrophysics Data System (ADS)

    MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.; Crosbie, Ewan; Wang, Hailong; Wang, Zhen; Jonsson, Haflidi H.; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin

    2018-04-01

    This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl- and Na+), (ii) an increase of concentration with in-cloud altitude (e.g., NO2- and formate), and (iii) species exhibiting a peak in concentration in the middle of cloud (e.g., non-sea-salt SO42-, NO3-, and organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.

  3. Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.

    This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl-, Na+); (ii) an increase of concentration with in-cloud altitude (e.g., NO2-, formate); and (iii) species exhibiting a peakmore » in concentration in the middle of cloud (e.g., non-sea salt SO42-, NO3-, organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.« less

  4. Vertical profiles in NO3 and N2O5 measured from an aircraft: Results from the NOAA P-3 and surface platforms during the New England Air Quality Study 2004

    NASA Astrophysics Data System (ADS)

    Brown, Steven S.; Dubé, William P.; Osthoff, Hans D.; Stutz, Jochen; Ryerson, Thomas B.; Wollny, Adam G.; Brock, Charles A.; Warneke, Carsten; de Gouw, Joost A.; Atlas, Eliot; Neuman, J. Andrew; Holloway, John S.; Lerner, Brian M.; Williams, Eric J.; Kuster, William C.; Goldan, Paul D.; Angevine, Wayne M.; Trainer, Michael; Fehsenfeld, Frederick C.; Ravishankara, A. R.

    2007-11-01

    The nocturnal nitrogen oxides, NO3 and N2O5, are important to the chemical transformation and transport of NOx, O3 and VOC. Their concentrations, sources and sinks are known to be vertically stratified in the nighttime atmosphere. In this paper, we report vertical profiles for NO3 and N2O5 measured from an aircraft (the NOAA P-3) as part of the New England Air Quality Study in July and August 2004. The aircraft data are compared to surface measurements made in situ from a ship and by long-path DOAS. Consistent with previous, vertically resolved studies of NO3 and N2O5, the aircraft measurements show that these species occur at larger concentrations and are longer lived aloft than they are at the surface. The array of in situ measurements available on the P-3 allows for investigation of the mechanisms that give rise to the observed vertical gradients. Selected vertical profiles from this campaign illustrate the role of biogenic VOC, particularly isoprene and dimethyl sulfide, both within and above the nocturnal and/or marine boundary layer. Gradients in relative humidity and aerosol surface may also create a vertical gradient in the rate of N2O5 hydrolysis. Low-altitude intercepts of power plant plumes showed strong vertical stratification, with plume depths of 80 m. The efficiency of N2O5 hydrolysis within these plumes was an important factor determining the low-level NOx and O3 transport or loss at night. Averages of nocturnal O3, NO2, NO3 and N2O5 binned according to altitude were consistent with the trends from individual profiles. While production rates of NO3 peaked near the surface, lifetimes of NO3 and N2O5 were maximum aloft, particularly in the free troposphere. Variability in NO3 and N2O5 was large and exceeded that of NO2 or O3 because of inhomogeneous distribution of NOx emissions and NO3 and N2O5 sinks.

  5. Convection Fingerprints on the Vertical Profiles of Q1 and Q2

    NASA Astrophysics Data System (ADS)

    Chang, C.; Lin, H.; Chou, C.

    2013-12-01

    Different types of tropical convection left their fingerprints on vertical structures of apparent heat source (Q1) and apparent moisture sink (Q2). Profile of deep convection on condensation heating and drying has been well-documented, yet direct assessment of shallow convection remains to be explored. Shallow convection prevails over subtropical ocean, where large-scale subsidence is primarily balanced by radiative cooling and moistening due to surface evaporation instead of moist convection. In this study a united framework is designed to investigate the vertical structures of tropical marine convections in three reanalysis data, including ERA-Interim, MERRA, and CFSR. It starts by sorting and binning data from the lightest to the heaviest rain. Then the differences between two neighboring bins are used to examine the direct effects for precipitation change, in light of the fact that non-convective processes would change slowly from bin to bin. It is shown that all three reanalyses reveal the shallow convective processes in light rain bins, featured by re-evaporating and detraining at the top of boundary layer and lower free troposphere. For heavy rain bins, three reanalyses mainly differ in their numbers and altitudes of heating and drying peaks, implying no universal agreement has been reached on partitioning of cloud populations. Coherent variations in temperature, moisture, and vertical motion are also discussed. This approach permits a systematical survey and comparison of tropical convection in GCM-type models, and preliminary studies of three reanalyses suggest certain degree of inconsistency in simulated convective feedback to large-scale heat and moisture budgets.

  6. Variability of O3 and NO2 profile shapes during DISCOVER-AQ: Implications for satellite observations and comparisons to model-simulated profiles

    NASA Astrophysics Data System (ADS)

    Flynn, Clare Marie; Pickering, Kenneth E.; Crawford, James H.; Weinheimer, Andrew J.; Diskin, Glenn; Thornhill, K. Lee; Loughner, Christopher; Lee, Pius; Strode, Sarah A.

    2016-12-01

    To investigate the variability of in situ profile shapes under a variety of meteorological and pollution conditions, results are presented of an agglomerative hierarchical cluster analysis of the in situ O3 and NO2 profiles for each of the four campaigns of the NASA DISCOVER-AQ mission. Understanding the observed profile variability for these trace gases is useful for understanding the accuracy of the assumed profile shapes used in satellite retrieval algorithms as well as for understanding the correlation between satellite column observations and surface concentrations. The four campaigns of the DISCOVER-AQ mission took place in Maryland during July 2011, the San Joaquin Valley of California during January-February 2013, the Houston, Texas, metropolitan region during September 2013, and the Denver-Front Range region of Colorado during July-August 2014. Several distinct profile clusters emerged for the California, Texas, and Colorado campaigns for O3, indicating significant variability of O3 profile shapes, while the Maryland campaign presented only one distinct O3 cluster. In contrast, very few distinct profile clusters emerged for NO2 during any campaign for this particular clustering technique, indicating the NO2 profile behavior was relatively uniform throughout each campaign. However, changes in NO2 profile shape were evident as the boundary layer evolved through the day, but they were apparently not significant enough to yield more clusters. The degree of vertical mixing (as indicated by temperature lapse rate) associated with each cluster exerted an important influence on the shapes of the median cluster profiles for O3, as well as impacted the correlations between the associated column and surface data for each cluster for O3. The correlation analyses suggest satellites may have the best chance to relate to surface O3 under the conditions encountered during the Maryland campaign Clusters 1 and 2, which include deep, convective boundary layers and few

  7. Combining Satellite Microwave Radiometer and Radar Observations to Estimate Atmospheric Latent Heating Profiles

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.; Shie, Chung-Lin; L'Ecuyer, Tristan S.; Tao, Wei-Kuo

    2009-01-01

    In this study, satellite passive microwave sensor observations from the TRMM Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is calibrated, or "trained" using relatively accurate estimates of heating based upon spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based upon a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically-integrated condensation and surface precipitation. Estimates of Q1-QR from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q1 produced by combining TMI Q1-QR with independently derived estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating profile structure with sharper and more intense heating peaks than the rawinsonde estimates. 2

  8. Infiltration pattern in a regolith-fractured bedrock profile: field observation of a dye stain pattern

    NASA Astrophysics Data System (ADS)

    Kim, Jae Gon; Lee, Gyoo Ho; Lee, Jin-Soo; Chon, Chul-Min; Kim, Tack Hyun; Ha, Kyoochul

    2006-02-01

    We examined the infiltration pattern of water in a regolith-bedrock profile consisting of two overburdens (OB1 and OB2), a buried rice paddy soil (PS), two texturally distinctive weathered materials (WM1 and WM2) and a fractured sedimentary rock (BR), using a Brilliant Blue FCF dye tracer. A black-coloured coating in conducting fractures in WM1, WM2 and BR was analysed by X-ray diffraction and scanning electron microscopy. The dye tracer penetrated to greater than 2 m depth in the profile. The macropore flow and saturated interflow were the major infiltration patterns in the profile. Macropore flow and saturated interflow were observed along fractures in WM1, WM2 and BR and at the dipping interfaces of PS-WM1, PS-WM2 and PS-BR respectively. Heterogeneous matrix flow occurred in upper overburden (OB1) and PS. Compared with OB1, the coarser textured OB2 acted as a physical barrier for vertical flow of water. The PS with low bulk density and many fine roots was another major conducting route of water in the profile. Manganese oxide and iron oxide were positively identified in the black coating material and had low crystallinity and high surface area, indicating their high reactivity with conducting contaminants.

  9. Eddy Vertical Structure Observed by Deepgliders: Evidence for the Enstrophy Inertial Range Cascade in Geostrophic Turbulence

    NASA Astrophysics Data System (ADS)

    Eriksen, C. C.

    2016-12-01

    Full water column temperature and salinity profiles and estimates of average current collected with Deepgliders were used to analyze vertical structure of mesoscale features in the western North Atlantic Ocean. Fortnightly repeat surveys over a 58 km by 58 km region centered at the Bermuda Atlantic Time Series (BATS) site southeast of Bermuda were carried out for 3 and 9 months in successive years. In addition, a section from Bermuda along Line W across the Gulf Stream to the New England Continental Slope and a pair of sections from Bermuda to the Bahamas were carried out. Absolute geostrophic current estimates constructed from these measurements and projected upon flat bottom resting ocean dynamic modes for the regions indicate nearly equal kinetic energy in the barotropic mode and first baroclinic mode. An empirical orthogonal mode decomposition of dynamic mode amplitudes demonstrates strong coupling of the barotropic and first baroclinic modes, a result resembling those reported for the Polymode experiment 3 decades ago. Higher baroclinic modes are largely independent of one another. Energy in baroclinic modes varies in inverse proportion to mode number cubed, a result predicted for an enstrophy inertial range cascade of geostrophic turbulence, believed newly detected by these observations. This (mode number)-3 dependence is found at BATS and across the Gulf Stream and Sargasso Sea. On two occasions, submesoscale anticyclones were detected at BATS whose vertical structure closely resembled the second baroclinic mode. Anomalously cold and fresh water within their cores (by as much as 3.5°C and 0.5 in salinity) suggests they were of subpolar (likely Labrador Sea) origin. These provided temporary perturbations to the vertical mode number energy spectrum.

  10. Impact of fugitive sources and meteorological parameters on vertical distribution of particulate matter over the industrial agglomeration.

    PubMed

    Štrbová, Kristína; Raclavská, Helena; Bílek, Jiří

    2017-12-01

    The aim of the study was to characterize vertical distribution of particulate matter, in an area well known by highest air pollution levels in Europe. A balloon filled with helium with measuring instrumentation was used for vertical observation of air pollution over the fugitive sources in Moravian-Silesian metropolitan area during spring and summer. Synchronously, selected meteorological parameters were recorded together with particulate matter for exploration its relationship with particulate matter. Concentrations of particulate matter in the vertical profile were significantly higher in the spring than in the summer. Significant effect of fugitive sources was observed up to the altitude ∼255 m (∼45 m above ground) in both seasons. The presence of inversion layer was observed at the altitude ∼350 m (120-135 m above ground) at locations with major source traffic load. Both particulate matter concentrations and number of particles for the selected particle sizes decreased with increasing height. Strong correlation of particulate matter with meteorological parameters was not observed. The study represents the first attempt to assess the vertical profile over the fugitive emission sources - old environmental burdens in industrial region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Observations of tropospheric phase scintillations at 5 GHz on vertical paths

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Sramek, R. A.

    1982-01-01

    The article presents observations of turbulence-induced tropospheric phase fluctuations measured at 5 GHz on the near-vertical paths relevant to many astronomical and geophysical measurements. The data are summarized as phase power spectra, structure functions, and Allan variances. Comparisons to other microwave observations indicate relatively good agreement in both the level and shape of the power spectrum of these tropospheric phase fluctuations. Implications for precision Doppler tracking of spacecraft and geodesy/radio interferometry are discussed.

  12. Vertical distribution of ozone at the terminator on Mars

    NASA Astrophysics Data System (ADS)

    Maattanen, Anni; Lefevre, Franck; Guilbon, Sabrina; Listowski, Constantino; Montmessin, Franck

    2016-10-01

    The SPICAM/Mars Express UV solar occultation dataset gives access to the ozone vertical distribution via the ozone absorption in the Hartley band (220-280 nm). We present the retrieved ozone profiles and compare them to the LMD Mars Global Climate Model (LMD-MGCM) results.Due to the photochemical reactivity of ozone, a classical comparison of local density profiles is not appropriate for solar occultations that are acquired at the terminator, and we present here a method often used in the Earth community. The principal comparison is made via the slant profiles (integrated ozone concentration on the line-of-sight), since the spherical symmetry hypothesis made in the onion-peeling vertical inversion method is not valid for photochemically active species (e.g., ozone) around terminator. For each occultation, we model the ozone vertical and horizontal distribution with high solar zenith angle (or local time) resolution around the terminator and then integrate the model results following the lines-of-sight of the occultation to construct the modeled slant profile. We will also discuss the difference of results between the above comparison method and a comparison using the local density profiles, i.e., the observed ones inverted by using the spherical symmetry hypothesis and the modeled ones extracted from the LMD-MGCM exactly at the terminator. The method and the results will be presented together with the full dataset.SPICAM is funded by the French Space Agency CNES and this work has received funding from the European Union's Horizon 2020 Programme (H2020-Compet-08-2014) under grant agreement UPWARDS-633127.

  13. Lidar Observations of the Vertical Structure of Ozone and Aerosol during Wintertime High-Ozone Episodes Associated with Oil and Gas Exploration in the Uintah Basin

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Langford, A. O.; Banta, R. M.; Alvarez, R. J.; Weickmann, A.; Sandberg, S.; Marchbanks, R. D.; Brewer, A.; Hardesty, R. M.

    2013-12-01

    The Uintah Basin in northeast Utah has been experiencing extended periods of poor air quality in the winter months including very high levels of surface ozone. To investigate the causes of these wintertime ozone pollution episodes, two comprehensive studies were undertaken in January/February of 2012 and 2013. As part of these Uintah Basin Ozone Studies (UBOS), NOAA deployed its ground-based, scanning Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar to document the vertical structure of ozone and aerosol backscatter from near the surface up to about 3 km above ground level (AGL). TOPAZ, along with a comprehensive set of chemistry and meteorological measurements, was situated in both years at the Horse Pool site at the northern edge of a large concentration of gas producing wells in the eastern part of the Uintah Basin. The 2012 study was characterized by unusually warm and snow-free condition and the TOPAZ lidar observed deep boundary layers (BL) and mostly well-mixed vertical ozone profiles at or slightly above tropospheric background levels. During UBOS 2013, winter weather conditions in the Uintah Basin were more typical with snow-covered ground and a persistent, shallow cold-pool layer. The TOPAZ lidar characterized with great temporal and spatial detail the evolution of multiple high-ozone episodes as well as cleanout events caused by the passage of synoptic-scale storm systems. Despite the snow cover, the TOPAZ observations show well-mixed afternoon ozone and aerosol profiles up to about 100 m AGL. After several days of pollutant buildup, BL ozone values reached 120-150 ppbv. Above the mixed layer, ozone values gradually decreased to tropospheric background values of around 50 ppbv throughout the several-hundred-meter-deep cold-pool layer and then stayed constant above that up to about 3 km AGL. During the ozone episodes, the lidar observations show no indication of either vertical or horizontal transport of high ozone levels to the surface, thus

  14. One year of vertical wind profiles measurements at a Mediterranean coastal site of South Italy

    NASA Astrophysics Data System (ADS)

    Calidonna, Claudia Roberta; Avolio, Elenio; Federico, Stefano; Gullì, Daniel; Lo Feudo, Teresa; Sempreviva, Anna Maria

    2015-04-01

    In order to develop wind farms projects is challenging to site them on coastal areas both onshore and offshore as suitable sites. Developing projects need high quality databases under a wide range of atmospheric conditions or high resolution models that could resolve the effect of the coastal discontinuity in the surface properties. New parametrizations are important and high quality databases are also needed for formulating them. Ground-based remote sensing devices such as lidars have been shown to be functional for studying the evolution of the vertical wind structure coastal atmospheric boundary layer both on- and offshore. Here, we present results from a year of vertical wind profiles, wind speed and direction, monitoring programme at a site located in the Italian Calabria Region, Central Mediterranean, 600m from the Thyrrenian coastline, where a Lidar Doppler, ZephIr (ZephIr ltd) has been operative since July 2013. The lidar monitors wind speed and direction from 10m up to 300m at 10 vertical levels with an average of 10 minutes and it is supported by a metmast providing: Atmospheric Pressure, Solar Radiation, Precipitation, Relative Humidity, Temperature,Wind Speed and Direction at 10m. We present the characterization of wind profiles during one year period according to the time of the day to transition periods night/day/night classified relating the local scale, breeze scale, to the large scale conditions. The dataset is also functional for techniques for short-term prediction of wind for the renewable energy integration in the distribution grids. The site infrastructure is funded within the Project "Infrastructure of High Technology for Environmental and Climate Monitoring" (I-AMICA) (PONa3_00363) by the Italian National Operative Program (PON 2007-2013) and European Regional Development Fund. Real-time data are show on http://www.i-amica.it/i-amica/?page_id=1122.

  15. Inversely Estimating the Vertical Profile of the Soil CO2 Production Rate in a Deciduous Broadleaf Forest Using a Particle Filtering Method

    PubMed Central

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W.; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the “actual” values by decreasing the variance of the posterior distribution of the values. PMID:25793387

  16. Longitudinal Differences of Ionospheric Vertical Density Distribution and Equatorial Electrodynamics

    NASA Technical Reports Server (NTRS)

    Yizengaw, E.; Zesta, E.; Moldwin, M. B.; Damtie, B.; Mebrahtu, A.; Valledares, C.E.; Pfaff, R. F.

    2012-01-01

    Accurate estimation of global vertical distribution of ionospheric and plasmaspheric density as a function of local time, season, and magnetic activity is required to improve the operation of space-based navigation and communication systems. The vertical density distribution, especially at low and equatorial latitudes, is governed by the equatorial electrodynamics that produces a vertical driving force. The vertical structure of the equatorial density distribution can be observed by using tomographic reconstruction techniques on ground-based global positioning system (GPS) total electron content (TEC). Similarly, the vertical drift, which is one of the driving mechanisms that govern equatorial electrodynamics and strongly affect the structure and dynamics of the ionosphere in the low/midlatitude region, can be estimated using ground magnetometer observations. We present tomographically reconstructed density distribution and the corresponding vertical drifts at two different longitudes: the East African and west South American sectors. Chains of GPS stations in the east African and west South American longitudinal sectors, covering the equatorial anomaly region of meridian approx. 37 deg and 290 deg E, respectively, are used to reconstruct the vertical density distribution. Similarly, magnetometer sites of African Meridian B-field Education and Research (AMBER) and INTERMAGNET for the east African sector and South American Meridional B-field Array (SAMBA) and Low Latitude Ionospheric Sensor Network (LISN) are used to estimate the vertical drift velocity at two distinct longitudes. The comparison between the reconstructed and Jicamarca Incoherent Scatter Radar (ISR) measured density profiles shows excellent agreement, demonstrating the usefulness of tomographic reconstruction technique in providing the vertical density distribution at different longitudes. Similarly, the comparison between magnetometer estimated vertical drift and other independent drift observation

  17. Characteristics of aerosol vertical profiles in Tsukuba, Japan, and their impacts on the evolution of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Aoyagi, Toshinori; Nishizawa, Tomoaki

    2018-05-01

    Vertical profiles of the aerosol physical and optical properties, with a focus on seasonal means and on transport events, were investigated in Tsukuba, Japan, by a synergistic remote sensing method that uses lidar and sky radiometer data. The retrieved aerosol vertical profiles of the springtime mean and five transport events were input to our developed one-dimensional atmospheric model, and the impacts of the aerosol vertical profiles on the evolution of the atmospheric boundary layer (ABL) were studied by numerical sensitivity experiments. The characteristics of the aerosol vertical profiles in Tsukuba are as follows: (1) the retrieval results in the spring showed that aerosol optical thickness at 532 nm in the free atmosphere (FA) was 0.13, greater than 0.08 in the ABL owing to the frequent occurrence of transported aerosols in the FA. In other seasons, optical thickness in the FA was almost the same as that in the ABL. (2) The aerosol optical and physical properties in the ABL showed a dependency on the extinction coefficient. With an increase in the extinction coefficient from 0.00 to 0.24 km-1, the Ångström exponent increased from 0.0 to 2.0, the single-scattering albedo increased from 0.87 to 0.99, and the asymmetry factor decreased from 0.75 to 0.50. (3) The large variability in the physical and optical properties of aerosols in the FA were attributed to transport events, during which the transported aerosols consisted of varying amounts of dust and smoke particles depending on where they originated (China, Mongolia, or Russia). The results of the numerical sensitivity experiments using the aerosol vertical profiles of the springtime mean and five transport events in the FA are as follows: (1) numerical sensitivity experiments based on simulations conducted with and without aerosols showed that aerosols caused the net downward radiation and the sensible and latent heat fluxes at the surface to decrease. The decrease in temperature in the ABL (-0.2 to -0

  18. Vertical structure of tropospheric winds on gas giants

    NASA Astrophysics Data System (ADS)

    Scott, R. K.; Dunkerton, T. J.

    2017-04-01

    Zonal mean zonal velocity profiles from cloud-tracking observations on Jupiter and Saturn are used to infer latitudinal variations of potential temperature consistent with a shear stable potential vorticity distribution. Immediately below the cloud tops, density stratification is weaker on the poleward and stronger on the equatorward flanks of midlatitude jets, while at greater depth the opposite relation holds. Thermal wind balance then yields the associated vertical shears of midlatitude jets in an altitude range bounded above by the cloud tops and bounded below by the level where the latitudinal gradient of static stability changes sign. The inferred vertical shear below the cloud tops is consistent with existing thermal profiling of the upper troposphere. The sense of the associated mean meridional circulation in the upper troposphere is discussed, and expected magnitudes are given based on existing estimates of the radiative timescale on each planet.

  19. Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Newman, Jennifer

    Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in windmore » profiling aimed at reducing uncertainty and increasing data availability are introduced.« less

  20. Correction of Electron Density Profiles in the Low Ionosphere Based on the Data of Vertical Sounding with the IRI Model

    NASA Astrophysics Data System (ADS)

    Denisenko, P. F.; Maltseva, O. A.; Sotsky, V. V.

    2018-03-01

    The method of correcting the daytime vertical profiles of electron plasma frequency in the low ionosphere from International Refererence Ionosphere (IRI) model in accordance with the measured data of the virtual heights and absorption of signal radiowaves (method A1) reflected from the bottom of E-region at vertical sounding (VS) is presented. The method is based on the replacement of the IRI model profile by an approximation of analytical dependence with parameters determined according to VS data and partially by the IRI model. The method is tested by the results of four joint ground-based and rocket experiments carried out in the 1970s at midlatitudes of the European part of Russia upon the launches of high-altitude geophysical rockets of the Vertical series. It is shown that the consideration of both virtual reflection heigths and absorption makes it possible to obtain electron density distributions that show the best agreement with the rocket measurements made at most height ranges in the D- and E-regions. In additional, the obtained distributions account more adequately than the IRI model for the contributions of D- and E-regions to absorption of signals reflected above these regions.

  1. A Method for Evaluation of Model-Generated Vertical Profiles of Meteorological Variables

    DTIC Science & Technology

    2016-03-01

    3 2.1 RAOB Soundings and WRF Output for Profile Generation 3 2.2 Height-Based Profiles 5 2.3 Pressure-Based Profiles 5 3. Comparisons 8 4...downward arrow. The blue lines represent sublayers with sublayer means indicated by red triangles. Circles indicate the observations or WRF output...9 Table 3 Sample of differences in listed variables derived from WRF and RAOB data

  2. Vertical Gravimeter Array Observations and Their Performance in Groundwater-Level Monitoring

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Honda, R.

    2018-03-01

    The gravitational effects of the atmosphere and subsurface water are significant obstacles to observing gravity variations on the sub-μGal (1 μGal = 10 nm/s2) scale. The goal of this study is to detect changes in gravity that are caused by mass redistributions deep underground related to seismological phenomena by reducing environmental gravity effects using multiple gravimeters belowground and aboveground, which we term a "vertical gravimeter array." Based on an evaluation of the responses to atmospheric effects and rainfall events identified in observations made with individual relative gravimeters, the vertical gravimeter array succeeds in stacking the target signals from deep underground and in reducing errors due to rainfall or free groundwater and atmospheric effects. To enable accurate interpretation, we introduce a physical approach that is based on attraction and loading deformation effects for atmospheric reduction using state-of-the-art gridded weather data products. Changes in the water levels of confined groundwater can be regarded as a signal from deep underground, and a response coefficient of approximately -15 μGal/m was obtained. In addition, the response coefficient of the free groundwater level was determined to be approximately 5 μGal/m. Such array observations are expected to contribute to monitoring crustal activity and hydrological studies.

  3. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    DOE PAGES

    Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; ...

    2017-02-06

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved withmore » good accuracy. Furthermore, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.« less

  4. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed

    PubMed Central

    Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K.; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50–150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi’s pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely. PMID:29561851

  5. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed.

    PubMed

    Wellig, Sascha D; Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.

  6. Vertical Distribution of Black and Brown Carbon over Shanghai during Winter

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Yan, C.; Wang, D.; Fu, Q.

    2016-12-01

    Carbonaceous aerosols (i.e., black carbon, BC, and organic aerosol, OA) have significant impact on Earth's energy budget by scattering and absorbing solar radiation. Extensive carbonaceous aerosols have been emitted in mainland China. It is essential to study the column burden of carbonaceous aerosol and associated light absorption to better understand its radiative forcing. In this study, a tethered balloon-based field campaign was conducted over a Chinese megacity, Shanghai, in December of 2015, with the primary goal to investigate the vertical profile of air pollutants within the lower troposphere, especially during the polluted days. A 7-wavelength Aethalometer (AE-31) were adopted in the observation to obtain vertical profiles of atmospheric carbonaceous aerosols within the lower troposphere. Light absorption by black and brown carbon, the light absorbing organic components, were distinguished and separated based on difference between light absorption at 450 nm versus 880 nm. Light absorption of brown carbon relative to black carbon were also estimated to pose the importance of brown carbon. Besides, diurnal variation of black and brown carbon vertical profiles would also be discussed, with consideration of variation of height of planetary boundary layer.

  7. Vertical Moist Thermodynamic Structure and Spatial-Temporal Evolution of the MJO in AIRS Observations

    NASA Technical Reports Server (NTRS)

    Tian, Baijun; Waliser, Duane E.; Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Yung, Yuk L.; Wang, Bin

    2006-01-01

    The atmospheric moisture and temperature profiles from the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit on the NASA Aqua mission, in combination with the precipitation from the Tropical Rainfall Measuring Mission (TRMM), are employed to study the vertical moist thermodynamic structure and spatial-temporal evolution of the Madden-Julian oscillation (MJO). The AIRS data indicate that, in the Indian Ocean and western Pacific, the temperature anomaly exhibits a trimodal vertical structure: a warm (cold) anomaly in the free troposphere (800-250 hPa) and a cold (warm) anomaly near the tropopause (above 250 hPa) and in the lower troposphere (below 800 hPa) associated with enhanced (suppressed) convection. The AIRS moisture anomaly also shows markedly different vertical structures as a function of longitude and the strength of convection anomaly. Most significantly, the AIRS data demonstrate that, over the Indian Ocean and western Pacific, the enhanced (suppressed) convection is generally preceded in both time and space by a low-level warm and moist (cold and dry) anomaly and followed by a low-level cold and dry (warm and moist) anomaly. The MJO vertical moist thermodynamic structure from the AIRS data is in general agreement, particularly in the free troposphere, with previous studies based on global reanalysis and limited radiosonde data. However, major differences in the lower-troposphere moisture and temperature structure between the AIRS observations and the NCEP reanalysis are found over the Indian and Pacific Oceans, where there are very few conventional data to constrain the reanalysis. Specifically, the anomalous lower-troposphere temperature structure is much less well defined in NCEP than in AIRS for the western Pacific, and even has the opposite sign anomalies compared to AIRS relative to the wet/dry phase of the MJO in the Indian Ocean. Moreover, there are well-defined eastward-tilting variations of moisture with height in AIRS over the

  8. Measuring large-scale vertical motion in the atmosphere with dropsondes

    NASA Astrophysics Data System (ADS)

    Bony, Sandrine; Stevens, Bjorn

    2017-04-01

    Large-scale vertical velocity modulates important processes in the atmosphere, including the formation of clouds, and constitutes a key component of the large-scale forcing of Single-Column Model simulations and Large-Eddy Simulations. Its measurement has also been a long-standing challenge for observationalists. We will show that it is possible to measure the vertical profile of large-scale wind divergence and vertical velocity from aircraft by using dropsondes. This methodology was tested in August 2016 during the NARVAL2 campaign in the lower Atlantic trades. Results will be shown for several research flights, the robustness and the uncertainty of measurements will be assessed, ands observational estimates will be compared with data from high-resolution numerical forecasts.

  9. Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability

    NASA Astrophysics Data System (ADS)

    Vandaele, A. C.; Korablev, O.; Belyaev, D.; Chamberlain, S.; Evdokimova, D.; Encrenaz, Th.; Esposito, L.; Jessup, K. L.; Lefèvre, F.; Limaye, S.; Mahieux, A.; Marcq, E.; Mills, F. P.; Montmessin, F.; Parkinson, C. D.; Robert, S.; Roman, T.; Sandor, B.; Stolzenbach, A.; Wilson, C.; Wilquet, V.

    2017-10-01

    Recent observations of sulfur containing species (SO2, SO, OCS, and H2SO4) in Venus' mesosphere have generated controversy and great interest in the scientific community. These observations revealed unexpected spatial patterns and spatial/temporal variability that have not been satisfactorily explained by models. Sulfur oxide chemistry on Venus is closely linked to the global-scale cloud and haze layers, which are composed primarily of concentrated sulfuric acid. Sulfur oxide observations provide therefore important insight into the on-going chemical evolution of Venus' atmosphere, atmospheric dynamics, and possible volcanism. This paper is the first of a series of two investigating the SO2 and SO variability in the Venus atmosphere. This first part of the study will focus on the vertical distribution of SO2, considering mostly observations performed by instruments and techniques providing accurate vertical information. This comprises instruments in space (SPICAV/SOIR suite on board Venus Express) and Earth-based instruments (JCMT). The most noticeable feature of the vertical profile of the SO2 abundance in the Venus atmosphere is the presence of an inversion layer located at about 70-75 km, with VMRs increasing above. The observations presented in this compilation indicate that at least one other significant sulfur reservoir (in addition to SO2 and SO) must be present throughout the 70-100 km altitude region to explain the inversion in the SO2 vertical profile. No photochemical model has an explanation for this behaviour. GCM modelling indicates that dynamics may play an important role in generating an inflection point at 75 km altitude but does not provide a definitive explanation of the source of the inflection at all local times or latitudes The current study has been carried out within the frame of the International Space Science Institute (ISSI) International Team entitled 'SO2 variability in the Venus atmosphere'.

  10. Modeling the MJO rain rates using parameterized large scale dynamics: vertical structure, radiation, and horizontal advection of dry air

    NASA Astrophysics Data System (ADS)

    Wang, S.; Sobel, A. H.; Nie, J.

    2015-12-01

    Two Madden Julian Oscillation (MJO) events were observed during October and November 2011 in the equatorial Indian Ocean during the DYNAMO field campaign. Precipitation rates and large-scale vertical motion profiles derived from the DYNAMO northern sounding array are simulated in a small-domain cloud-resolving model using parameterized large-scale dynamics. Three parameterizations of large-scale dynamics --- the conventional weak temperature gradient (WTG) approximation, vertical mode based spectral WTG (SWTG), and damped gravity wave coupling (DGW) --- are employed. The target temperature profiles and radiative heating rates are taken from a control simulation in which the large-scale vertical motion is imposed (rather than directly from observations), and the model itself is significantly modified from that used in previous work. These methodological changes lead to significant improvement in the results.Simulations using all three methods, with imposed time -dependent radiation and horizontal moisture advection, capture the time variations in precipitation associated with the two MJO events well. The three methods produce significant differences in the large-scale vertical motion profile, however. WTG produces the most top-heavy and noisy profiles, while DGW's is smoother with a peak in midlevels. SWTG produces a smooth profile, somewhere between WTG and DGW, and in better agreement with observations than either of the others. Numerical experiments without horizontal advection of moisture suggest that that process significantly reduces the precipitation and suppresses the top-heaviness of large-scale vertical motion during the MJO active phases, while experiments in which the effect of cloud on radiation are disabled indicate that cloud-radiative interaction significantly amplifies the MJO. Experiments in which interactive radiation is used produce poorer agreement with observation than those with imposed time-varying radiative heating. Our results highlight the

  11. A model for the vertical sound speed and absorption profiles in Titan's atmosphere based on Cassini-Huygens data.

    PubMed

    Petculescu, Andi; Achi, Peter

    2012-05-01

    Measurements of thermodynamic quantities in Titan's atmosphere during the descent of Huygens in 2005 are used to predict the vertical profiles for the speed and intrinsic attenuation (or absorption) of sound. The calculations are done using one author's previous model modified to accommodate non-ideal equations of state. The vertical temperature profile places the tropopause about 40 km above the surface. In the model, a binary nitrogen-methane composition is assumed for Titan's atmosphere, quantified by the methane fraction measured by the gas chromatograph/mass spectrometer (GCMS) onboard Huygens. To more accurately constrain the acoustic wave number, the variation of thermophysical properties (specific heats, viscosity, and thermal conductivity) with altitude is included via data extracted from the NIST Chemistry WebBook [URL webbook.nist.gov, National Institute of Standards and Technology Chemistry WebBook (Last accessed 10/20/2011)]. The predicted speed of sound profile fits well inside the spread of the data recorded by Huygens' active acoustic sensor. In the N(2)-dominated atmosphere, the sound waves have negligible relaxational dispersion and mostly classical (thermo-viscous) absorption. The cold and dense environment of Titan can sustain acoustic waves over large distances with relatively small transmission losses, as evidenced by the small absorption. A ray-tracing program is used to assess the bounds imposed by the zonal wind-measured by the Doppler Wind Experiment on Huygens-on long-range propagation.

  12. Profiler Support for Operations at Space Launch Ranges

    NASA Technical Reports Server (NTRS)

    Merceret, Francis; Wilfong, Timothy; Lambert, Winifred; Short, David; Decker, Ryan; Ward, Jennifer

    2006-01-01

    Accurate vertical wind profiles are essential to successful launch or landing. Wind changes can make it impossible to fly a desired trajectory or avoid dangerous vehicle loads, possibly resulting in loss of mission. Balloons take an hour to generate a profile up to 20 km, but major wind changes can occur in 20 minutes. Wind profilers have the temporal response to detect such last minute hazards. They also measure the winds directly overhead while balloons blow downwind. At the Eastern Range (ER), altitudes from 2 to 20 km are sampled by a 50-MHz profiler every 4 minutes. The surface to 3 km is sampled by five 915-MHz profilers every 15 minutes. The Range Safety office assesses the risk of potential toxic chemical dispersion. They use observational data and model output to estimate the spatial extent and concentration of substances dispersed within the boundary layer. The ER uses 915-MHz profilers as both a real time observation system and as input to dispersion models. The WR has similar plans. Wind profilers support engineering analyses for the Space Shuttle. The 50-IVl11z profiler was used recently to analyze changes in the low frequency wind and low vertical wavenumber content of wind profiles in the 3 to 15 km region of the atmosphere. The 915-MHz profiler network was used to study temporal wind change within the boundary layer.

  13. Airborne in situ vertical profiling of HDO / H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; Gonzalez-Ramos, Y.; Schneider, M.

    2015-05-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δD(H2O) were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δD) ≈10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote sensing measurements of δD(H2O) as a means to validate the remote sensing humidity and δD(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δD(H2O) correlations we were able to identify different layers of air masses with specific isotopic signatures. The results are discussed.

  14. Airborne in situ vertical profiling of HDO/H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; González-Ramos, Y.; Schneider, M.

    2015-01-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δ D(H2O were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δ D) ≈ 10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote-sensing measurements of δ D(H2O) as a means to validate the remote sensing humidity and δ D(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δ D(H2O) correlations we were able to identify different layers of airmasses with specific isotopic signatures. The results are discussed.

  15. Vertical profile of H 2SO 4 vapor at 70-110 km on Venus and some related problems

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2011-09-01

    The vertical profile of H 2SO 4 vapor is calculated using current atmospheric and thermodynamic data. The atmospheric data include the H 2O profiles observed at 70-112 km by the SOIR solar occultations, the SPICAV-UV profiles of the haze extinction at 220 nm, the VeRa temperature profiles, and a typical profile of eddy diffusion. The thermodynamic data are the saturated vapor pressures of H 2O and H 2SO 4 and chemical potentials of these species in sulfuric acid solutions. The calculated concentration of sulfuric acid in the cloud droplets varies from 85% at 70 km to a minimum of 70% at 90 km and then gradually increasing to 90-100% at 110 km. The H 2SO 4 vapor mixing ratio is ˜10 -12 at 70 and 110 km with a deep minimum of 3 × 10 -18 at 88 km. The H 2O-H 2SO 4 system matches the local thermodynamic equilibrium conditions up to 87 km. The column photolysis rate of H 2SO 4 is 1.6 × 10 5 cm -2 s -1 at 70 km and 23 cm -2 s -1 at 90 km. The calculated abundance of H 2SO 4 vapor at 90-110 km and its photolysis rate are smaller than those presented in the recent model by Zhang et al. (Zhang, X., Liang, M.C., Montmessin, F., Bertaux, J.L., Parkinson, C., Yung, Y.L. [2010]. Nat. Geosci. 3, 834-837) by factors of 10 6 and 10 9, respectively. Assumptions of 100% sulfuric acid, local thermodynamic equilibrium, too warm atmosphere, supersaturation of H 2SO 4 (impossible for a source of SO X), and cross sections for H 2SO 4·H 2O (impossible above the pure H 2SO 4) are the main reasons of this huge difference. Significant differences and contradictions between the SPICAV-UV, SOIR, and ground-based submillimeter observations of SO X at 70-110 km are briefly discussed and some weaknesses are outlined. The possible source of high altitude SO X on Venus remains unclear and probably does not exist.

  16. OPTIM: Computer program to generate a vertical profile which minimizes aircraft fuel burn or direct operating cost. User's guide

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A profile of altitude, airspeed, and flight path angle as a function of range between a given set of origin and destination points for particular models of transport aircraft provided by NASA is generated. Inputs to the program include the vertical wind profile, the aircraft takeoff weight, the costs of time and fuel, certain constraint parameters and control flags. The profile can be near optimum in the sense of minimizing: (1) fuel, (2) time, or (3) a combination of fuel and time (direct operating cost (DOC)). The user can also, as an option, specify the length of time the flight is to span. The theory behind the technical details of this program is also presented.

  17. Light hydrocarbons vertical profiles and fluxes in a french rural area

    NASA Astrophysics Data System (ADS)

    Kanakidou, M.; Bonsang, B.; Lambert, G.

    By means of manned hot air balloon flights, in July 1986, an experiment was conducted in a rural area of southwest France in order to determine the production at ground level of non-methane hydrocarbons in the C 2-C 6 range. Flux determinations were based on vertical profiles before and after the development of a temperature inversion layer which allowed the measurement of the NMHC accumulation close to ground level. The main species produced in the late afternoon were acetylene, propane, ethene, propene and ethane with production rates of the order of 0.5 to 2 × 10 -4g of C m -2 h -1. Isoprene was found to be the main other unsaturated species also produced. The fluxes and the atmospheric content of the air column before the inversion are consistent with an average OH radical concentration of 2 × 10 6 cm -3.

  18. Tethered balloon-based particle number concentration, and size distribution vertical profiles within the lower troposphere of Shanghai

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Wang, Dongfang; Bian, Qinggen; Duan, Yusen; Zhao, Mengfei; Fei, Dongnian; Xiu, Guangli; Fu, Qingyan

    2017-04-01

    A tethered balloon-based measurement campaign of particle number concentration (PNC) and particle number size distribution (PNSD) in the size range of 15.7-661.2 nm was conducted within the lower troposphere of 1000 m in Shanghai, a Chinese megacity, during December of 2015. The meteorological conditions, PNC, and PNSD were synchronously measured at the ground-based station as well as by the tethered balloon. On ground level, the 88.2 nm particles were found to have the highest PNC. The Pearson correlation analysis based on the ground level data showed NO2 had a strong correlation with PNC. The synchronous measurement of PNC and PNSD at the ground station and on the tethered balloon showed that the 15.7-200 nm particles had higher PNC on ground level, but the PNC of 200-661.2 nm particles was higher at 400 m. One haze event (Dec 22nd-Dec 23rd) was selected for detailed discussion on the variation of vertical profiles of PNSD and PNC. The vertical distribution of characteristics of PNC and PNSD were observed and compared. Results indicated that the highest MaxDm (the diameter with the highest PNC) during those three launches all appeared at a high altitude, usually above 300 m. Compared to the clean days, the relatively bigger MaxDm at each height in the haze days also indicated regional transport of pollutants might contribute to more to that haze event.

  19. Surface influence upon vertical profiles in the nocturnal boundary layer

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1983-05-01

    Near-surface wind profiles in the nocturnal boundary layer, depth h, above relatively flat, tree-covered terrain are described in the context of the analysis of Garratt (1980) for the unstable atmospheric boundary layer. The observations at two sites imply a surface-based transition layer, of depth z *, within which the observed non-dimensional profiles Φ M 0 are a modified form of the inertial sub-layer relation Φ _M ( {{z L}} = ( {{{1 + 5_Z } L}} ) according to Φ _M^{{0}} ˜eq ( {{{1 + 5z} L}} )exp [ { - 0.7( {{{1 - z} z}_ * } )] , where z is height above the zero-plane displacement and L is the Monin-Obukhov length. At both sites the depth z * is significantly smaller than the appropriate neutral value ( z * N ) found from the previous analysis, as might be expected in the presence of a buoyant sink for turbulent kinetic energy.

  20. The vertical structure of the F ring of Saturn from ring-plane crossings

    NASA Astrophysics Data System (ADS)

    Scharringhausen, Britt R.; Nicholson, Philip D.

    2013-11-01

    We present a photometric model of the rings of Saturn which includes the main rings and an F ring, inclined to the main rings, with a Gaussian vertical profile of optical depth. This model reproduces the asymmetry in brightness between the east and west ansae of the rings of Saturn that was observed by the Hubble Space Telescope (HST) within a few hours after the Earth ring-plane crossing (RPX) of 10 August 1995. The model shows that during this observation the inclined F ring unevenly blocked the east and west ansae of the main rings. The brightness asymmetry produced by the model is highly sensitive to the vertical thickness and radial optical depth of the F ring. The F-ring model that best matches the observations has a vertical full width at half maximum of 13 ± 7 km and an equivalent depth of 10 ± 4 km. The model also reproduces the shape of the HST profiles of ring brightness vs. distance from Saturn, both before and after the time of ring-plane crossing. Smaller asymmetries observed before the RPX, when the Earth was on the dark side of the rings, cannot be explained by blocking of the main rings by the F ring or vice versa and are probably instead due to the intrinsic longitudinal variation exhibited by the F ring.

  1. Vertical Profiles of Phosphine and Ammonia on Saturn Derived from the First Cassini RSS Occultation Observation Using Forward Modeling

    NASA Astrophysics Data System (ADS)

    Mohammed, P. N.; Steffes, P. G.; Kliore, A. J.; Anabtawi, A.; Asmar, S. W.; Barbinis, E.; Goltz, G.; Johnston, D.; Marouf, E. A.

    2005-08-01

    The results from the first Cassini Radio Science Subsystem(RSS) occultation, which occurred at the Rev 7 periapse, are being used to derive profiles of the atmospheric constituents encountered by the three frequency (S-, X-, and Ka-band) radio link. A computer model has been developed to simulate ray paths and the ray path parameters in the atmosphere of Saturn encountered during occultation (see Mohammed and Steffes, Bull. Amer. Astron. Soc., 36, no. 4, 1107, 2004). This forward model, which can be used on any oblate planet, will be used to determine the refractive defocusing and derive the profiles of phosphine and ammonia using data observed at Ka-band (32 GHz or 9.3 mm), X-band (8.4 GHz or 3.6 cm) and S-band (2.3 GHz or 13 cm). The results of laboratory measurements of the 9 mm opacity of phosphine and ammonia (Mohammed and Steffes, ICARUS 166, 425-435, 2003) and the centimeter wavelength opacity of these constituents measured under simulated conditions for Saturn (see, e.g., Hoffman et. al. ICARUS 152, 172-184, 2001) were incorporated into the forward radio occultation model used in these derivations.

  2. Evaluating vertical concentration profile of carbon source released from slow-releasing carbon source tablets and in situ biological nitrate denitrification activity

    NASA Astrophysics Data System (ADS)

    Yeum, Y.; HAN, K.; Yoon, J.; Lee, J. H.; Song, K.; Kang, J. H.; Park, C. W.; Kwon, S.; Kim, Y.

    2017-12-01

    Slow-releasing carbon source tablets were manufactured during the design of a small-scale in situ biological denitrification system to reduce high-strength nitrate (> 30 mg N/L) from a point source such as livestock complexes. Two types of slow-releasing tablets, precipitating tablet (PT, apparent density of 2.0 g/mL) and floating tablet (FT), were prepared to achieve a vertically even distribution of carbon source (CS) in a well and an aquifer. Hydroxypropyl methylcellulose (HPMC) was used to control the release rate, and microcrystalline cellulose pH 101 (MCC 101) was added as a binder. The #8 sand was used as a precipitation agent for the PTs, and the floating agents for the FTs were calcium carbonate and citric acid. FTs floated within 30 min. and remained in water because of the buoyance from carbon dioxide, which formed during the acid-base reaction between citric acid and calcium carbonate. The longevities of PTs with 300 mg of HPMC and FTs with 400 mg of HPMC were 25.4 days and 37.3 days, respectively. We assessed vertical CS profile in a continuous flowing physical aquifer model (release test, RT) and its efficiency on biological nitrate denitrification (denitrification test, DT). During the RT, PTs, FTs and a tracer (as 1 mg rhodamine B/L) were initially injected into a well of physical aquifer model (PAM). Concentrations of CS and the tracer were monitored along the streamline in the PAM to evaluate vertical profile of CS. During the DT, the same experiment was performed as RT, except continuous injection of solution containing 30 mg N/L into the PAM to evaluate biological denitrification activity. As a result of RT, temporal profiles of CS were similar at 3 different depths of monitoring wells. These results suggest that simultaneous addition of PT and FT be suitable for achieving a vertically even distribution of the CS in the injection well and an aquifer. In DT, similar profile of CS was detected in the injection well, and nitrate was biologically

  3. Cloud vertical distribution from combined surface and space radar-lidar observations at two Arctic atmospheric observatories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yinghui; Shupe, Matthew D.; Wang, Zhien

    Detailed and accurate vertical distributions of cloud properties (such as cloud fraction, cloud phase, and cloud water content) and their changes are essential to accurately calculate the surface radiative flux and to depict the mean climate state. Surface and space-based active sensors including radar and lidar are ideal to provide this information because of their superior capability to detect clouds and retrieve cloud microphysical properties. In this study, we compare the annual cycles of cloud property vertical distributions from space-based active sensors and surface-based active sensors at two Arctic atmospheric observatories, Barrow and Eureka. Based on the comparisons, we identifymore » the sensors' respective strengths and limitations, and develop a blended cloud property vertical distribution by combining both sets of observations. Results show that surface-based observations offer a more complete cloud property vertical distribution from the surface up to 11 km above mean sea level (a.m.s.l.) with limitations in the middle and high altitudes; the annual mean total cloud fraction from space-based observations shows 25-40 % fewer clouds below 0.5 km than from surface-based observations, and space-based observations also show much fewer ice clouds and mixed-phase clouds, and slightly more liquid clouds, from the surface to 1 km. In general, space-based observations show comparable cloud fractions between 1 and 2 km a.m.s.l., and larger cloud fractions above 2 km a.m.s.l. than from surface-based observations. A blended product combines the strengths of both products to provide a more reliable annual cycle of cloud property vertical distributions from the surface to 11 km a.m.s.l. This information can be valuable for deriving an accurate surface radiative budget in the Arctic and for cloud parameterization evaluation in weather and climate models. Cloud annual cycles show similar evolutions in total cloud fraction and ice cloud fraction, and lower liquid

  4. Cloud vertical distribution from combined surface and space radar-lidar observations at two Arctic atmospheric observatories

    DOE PAGES

    Liu, Yinghui; Shupe, Matthew D.; Wang, Zhien; ...

    2017-05-16

    Detailed and accurate vertical distributions of cloud properties (such as cloud fraction, cloud phase, and cloud water content) and their changes are essential to accurately calculate the surface radiative flux and to depict the mean climate state. Surface and space-based active sensors including radar and lidar are ideal to provide this information because of their superior capability to detect clouds and retrieve cloud microphysical properties. In this study, we compare the annual cycles of cloud property vertical distributions from space-based active sensors and surface-based active sensors at two Arctic atmospheric observatories, Barrow and Eureka. Based on the comparisons, we identifymore » the sensors' respective strengths and limitations, and develop a blended cloud property vertical distribution by combining both sets of observations. Results show that surface-based observations offer a more complete cloud property vertical distribution from the surface up to 11 km above mean sea level (a.m.s.l.) with limitations in the middle and high altitudes; the annual mean total cloud fraction from space-based observations shows 25-40 % fewer clouds below 0.5 km than from surface-based observations, and space-based observations also show much fewer ice clouds and mixed-phase clouds, and slightly more liquid clouds, from the surface to 1 km. In general, space-based observations show comparable cloud fractions between 1 and 2 km a.m.s.l., and larger cloud fractions above 2 km a.m.s.l. than from surface-based observations. A blended product combines the strengths of both products to provide a more reliable annual cycle of cloud property vertical distributions from the surface to 11 km a.m.s.l. This information can be valuable for deriving an accurate surface radiative budget in the Arctic and for cloud parameterization evaluation in weather and climate models. Cloud annual cycles show similar evolutions in total cloud fraction and ice cloud fraction, and lower liquid

  5. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    NASA Astrophysics Data System (ADS)

    Cherkasheva, A.; Nöthig, E.-M.; Bauerfeind, E.; Melsheimer, C.; Bracher, A.

    2013-04-01

    Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database) for the years 1957-2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL) exceeding 0.7 mg C m-3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll maximum with its median

  6. Seasonal ozone vertical profiles over North America using the AQMEII group of air quality models: model inter-comparison and stratospheric intrusion

    EPA Science Inventory

    This study utilizes simulations for the North American domain from four modeling groups that participated in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) to evaluate seasonal ozone vertical profiles simulated for the year 2010 against ozo...

  7. Measurements of Vertical Profiles of Turbulence, Temperature, Ozone, Aerosols, and BrO over Sea Ice and Tundra Snowpack during BROMEX

    NASA Astrophysics Data System (ADS)

    Shepson, P.; Caulton, D.; Cambaliza, M. L.; Dhaniyala, S.; Fuentes, J. D.; General, S.; Halfacre, J. W.; Nghiem, S. V.; Perez Perez, L.; Peterson, P. K.; Platt, U.; Pohler, D.; Pratt, K. A.; Simpson, W. R.; Stirm, B.; Walsh, S. J.; Zielcke, J.

    2012-12-01

    During the BROMEX field campaign of March 2012, we conducted measurements of boundary layer structure, ozone, BrO and aerosol, from a light, twin-engine aircraft during eleven flights originating from Barrow, AK. Flights were conducted over the sea ice in the Beaufort and Chukchi Seas, and over the tundra from Barrow to the Brooks Range, with vertical profiles covering altitudes from the surface to 3.5km in the free troposphere. Flights over the course of one month allowed a variety of sea ice conditions, including open water, nilas, first year sea ice, and frost flowers, to be examined over the Chukchi Sea. Atmospheric turbulence was measured using a calibrated turbulence probe, which will enable characterization of both the structure and turbulence of the Arctic boundary layer. Ozone was measured using a 2B UV absorption instrument. A GRIMM optical particle counter was used to measure 0.25-4 μm sized aerosol particles. The MAX-DOAS instrument enabled measurements of BrO vertical profiles. The aircraft measurements can be used to connect the surface measurements of ozone and BrO from the "Icelander" buoys, and the surface sites at Barrow, with those measured on the aircraft. Here we will discuss the spatial variability/coherence in these data. A major question that will be addressed using these data is the extent to which bromine is activated through reactions at the snowpack/ice surface versus the surface of aerosols. Here we will present a preliminary analysis of the relationships between snow/ice surface types, aerosol size-resolved number concentrations, and the vertical profiles of ozone and BrO.

  8. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles

    NASA Astrophysics Data System (ADS)

    Smith, Craig M.; Barthelmie, R. J.; Pryor, S. C.

    2013-09-01

    Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m.

  9. Constraints on Southern Ocean CO2 Fluxes and Seasonality from Atmospheric Vertical Gradients Observed on Multiple Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    McKain, K.; Sweeney, C.; Stephens, B. B.; Long, M. C.; Jacobson, A. R.; Basu, S.; Chatterjee, A.; Weir, B.; Wofsy, S. C.; Atlas, E. L.; Blake, D. R.; Montzka, S. A.; Stern, R.

    2017-12-01

    The Southern Ocean plays an important role in the global carbon cycle and climate system, but net CO2 flux into the Southern Ocean is difficult to measure and model because it results from large opposing and seasonally-varying fluxes due to thermal forcing, biological uptake, and deep-water mixing. We present an analysis to constrain the seasonal cycle of net CO2 exchange with the Southern Ocean, and the magnitude of summer uptake, using the vertical gradients in atmospheric CO2 observed during three aircraft campaigns in the southern polar region. The O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS) was an airborne campaign that intensively sampled the atmosphere at 0-13 km altitude and 45-75 degrees south latitude in the austral summer (January-February) of 2016. The global airborne campaigns, the HIAPER Pole-to-Pole Observations (HIPPO) study and the Atmospheric Tomography Mission (ATom), provide additional measurements over the Southern Ocean from other seasons and multiple years (2009-2011, 2016-2017). Derivation of fluxes from measured vertical gradients requires robust estimates of the residence time of air in the polar tropospheric domain, and of the contribution of long-range transport from northern latitudes outside the domain to the CO2 gradient. We use diverse independent approaches to estimate both terms, including simulations using multiple transport and flux models, and observed gradients of shorter-lived tracers with specific sources regions and well-known loss processes. This study demonstrates the utility of aircraft profile measurements for constraining large-scale air-sea fluxes for the Southern Ocean, in contrast to those derived from the extrapolation of sparse ocean and atmospheric measurements and uncertain flux parameterizations.

  10. A new MesosphEO dataset of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/ENVISAT daytime observations

    NASA Astrophysics Data System (ADS)

    Hauchecorne, A.; Blanot, L.; Wing, R., Jr.; Keckhut, P.; Khaykin, S. M.

    2017-12-01

    The scattering of sunlight by the Earth atmosphere above the top of the stratospheric layer, about 30-35 km altitude, is only due to Rayleigh scattering by atmospheric molecules. Its intensity is then directly proportional to the atmospheric density. It is then possible to retrieve a temperature profile in absolute value using the hydrostatic equation and the perfect gas law, assuming that the temperature is known from a climatological model at the top of the density profile. This technique is applied to Rayleigh lidar observations since more than 35 years (Hauchecorne and Chanin, 1980). The GOMOS star occultation spectrometer observed the sunlight scattering at limb during daytime to remove it from the star spectrum. In the frame of the ESA funded MesosphEO project, GOMOS Rayleigh scattering profiles in the spectral range 400-460 nm have been used to retrieve temperature profiles from 35 to 85 km with a 2-km vertical resolution. A dataset of more than 310 thousands profiles from 2002 to 2012 is available for climatology and atmospheric dynamics studies. The validation of this dataset using NDACC Rayleigh lidars and MLS-AURA and SABER-TIMED will be presented. Preliminary results on the variability of the upper stratosphere and the mesosphere will be shown. We propose to apply this technique in the future to ALTIUS observations. The Rayleigh scattering technique can be applied to any sounder observing the day-time limb on the near-UV and visible spectrum.

  11. Observing relationships between lightning and cloud profiles by means of a satellite-borne cloud radar

    NASA Astrophysics Data System (ADS)

    Buiat, Martina; Porcù, Federico; Dietrich, Stefano

    2017-01-01

    Cloud electrification and related lightning activity in thunderstorms have their origin in the charge separation and resulting distribution of charged iced particles within the cloud. So far, the ice distribution within convective clouds has been investigated mainly by means of ground-based meteorological radars. In this paper we show how the products from Cloud Profiling Radar (CPR) on board CloudSat, a polar satellite of NASA's Earth System Science Pathfinder (ESSP), can be used to obtain information from space on the vertical distribution of ice particles and ice content and relate them to the lightning activity. The analysis has been carried out, focusing on 12 convective events over Italy that crossed CloudSat overpasses during significant lightning activity. The CPR products considered here are the vertical profiles of cloud ice water content (IWC) and the effective radius (ER) of ice particles, which are compared with the number of strokes as measured by a ground lightning network (LINET). Results show a strong correlation between the number of strokes and the vertical distribution of ice particles as depicted by the 94 GHz CPR products: in particular, cloud upper and middle levels, high IWC content and relatively high ER seem to be favourable contributory causes for CG (cloud to ground) stroke occurrence.

  12. Vertical distributions of fluorescent aerosol over the Eastern U.S.

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Robinson, E. S.; Schwarz, J. P.; Gao, R. S.

    2016-12-01

    The prevalence of bioaerosol in the atmosphere is relevant to atmospheric chemistry, microbial ecology and climate. These particles can act as effective cloud condensation nuclei (CCN) and ice nuclei (IN), representing a potential feedback between vegetation and precipitation. As bioaerosol frequently account for a substantial fraction of coarse mode aerosol in the boundary layer, they may have significant impacts on mixed-phase and/or cirrus cloud formation and climate. Very few measurements are available, however, to constrain loadings of bioaerosol in the free troposphere. Here we present vertical profiles of fluorescent aerosol concentration as a proxy for bioaerosol. The data were obtained over the eastern U.S. during the summer of 2016 using a Wide Band Integrated Bioaerosol Sensor (WIBS) installed aboard a NOAA Twin Otter research aircraft. The airspeed and inlet configuration were chosen to permit efficient sampling of aerosol with diameters of up to 10 μm. Vertical profiles extend from 1000 to 17,500 feet AGL, spanning a temperature range relevant to ice formation. 100 hours of data cover a latitude range from 30N to 46N and target a variety of potential bioaerosol source regions including forests, croplands, the Gulf of Mexico, and Lake Michigan. Observed vertical profiles are compared to expected loadings based on current model parameterizations and implications are discussed.

  13. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    NASA Astrophysics Data System (ADS)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  14. Sampling the Vertical Moisture Structure of an Atmospheric River Event Using Airborne GPS Radio Occultation Profiling

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Malloy, K.; Murphy, B.; Sussman, J.; Zhang, W.

    2015-12-01

    Atmospheric rivers (ARs) are of high concern in California, bringing significant rain to the region over extended time periods of up to 5 days, potentially causing floods, and more importantly, contributing to the Sierra snowpack that provides much of the regional water resources. The CalWater project focuses on predicting the variability of the West Coast water supply, including improving AR forecasting. Unfortunately, data collection over the ocean remains a challenge and impacts forecasting accuracy. One novel technique to address this issue includes airborne GPS radio occultation (ARO), using broadcast GPS signals from space to measure the signal ray path bending angle and refractivity to retrieve vertical water vapor profiles. The Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS) system was developed for this purpose for recording and processing high-sample rate (10MHz) signals in the lower troposphere. Previous studies (Murphy et al, 2014) have shown promising results in acquiring airborne GPS RO data, comparing it to dropsondes and numerical weather models. CalWater launched a field campaign in the beginning of 2015 which included testing GISMOS ARO on the NOAA GIV aircraft for AR data acquisition, flying into the February 6th AR event that brought up to 35 cm of rain to central California. This case study will compare airborne GPS RO refractivity profiles to the NCEP-NCAR final reanalysis model and dropsonde profiles. We will show the data distribution and explain the sampling characteristics, providing high resolution vertical information to the sides of the aircraft in a manner complementary to dropsondes beneath the flight track. We will show how this method can provide additional reliable data during the development of AR storms.

  15. Experimental observation of the influence of furnace temperature profile on convection and segregation in the vertical Bridgman crystal growth technique

    NASA Technical Reports Server (NTRS)

    Neugebauer, G. T.; Wilcox, William R.

    1992-01-01

    Azulene-doped naphthalene was directionally solidified during the vertical Bridgman-Stockbarger technique. Doping homogeneity and convection were determined as a function of the temperature profile in the furnace and the freezing rate. Convection velocities were two orders of magnitude lower when the temperature increased with height. Rarely was the convection pattern axisymmetric, even though the temperature varied less than 0.1 K around the circumference of the growth ampoule. Correspondingly the cross sectional variation in azulene concentration tended to be asymmetric, especially when the temperature increased with height. This cross sectional variation changed dramatically along the ingot, reflecting changes in convection presumably due to the decreasing height of the melt. Although there was large scatter and irreproducibility in the cross sectional variation in doping, this variation tended to be least when the growth rate was low and the convection was vigorous. It is expected that compositional variations would also be small at high growth rates with weak convection and flat interfaces, although this was not investigated in the present experiments. Neither rotation of the ampoule nor deliberate introduction of thermal asymmetries during solidification had a significant influence on cross sectional variations in doping. It is predicted that slow directional solidification under microgravity conditions could produce greater inhomogeneities than on Earth. Combined use of microgravity and magnetic fields would be required to achieve homogeneity when it is necessary to freeze slowly in order to avoid constitutional supercooling.

  16. A comparison of selected vertical wind measurement techniques on basis of the EUCAARI IMPACT observations

    NASA Astrophysics Data System (ADS)

    Arabas, S.; Baehr, C.; Boquet, M.; Dufournet, Y.; Pawlowska, H.; Siebert, H.; Unal, C.

    2009-04-01

    The poster presents a comparison of selected methods for determination of the vertical wind in the boundary layer used during the EUCAARI IMPACT campaign that took place in May 2008 in The Netherlands. The campaign covered a monthlong intensified ground-based and airborne measurements in the vicinity of the CESAR observatory in Cabauw. Ground-based vertical wind remote sensing was carried out using the Leosphere WindCube WLS70 IR Doppler lidar, Vaisala LAP3000 radar wind-profiler and the TUDelft TARA S-band radar. In-situ airborne measurements were performed using an ultrasonic anemometer (on the ACTOS helicopter underhung platform) and a 5-hole pressure probe (on the SAFIRE ATR-42 airplane radome). Several in-situ anemometers were deployed on the 200-meter high tower of the CESAR observatory. A summary of the characteristics and principles of the considered techniques is presented. A comparison of the results obtained from different platforms depicts the capabilities of each technique and highlights the time, space and velocity resolutions.

  17. Temperature-profile methods for estimating percolation rates in arid environments

    USGS Publications Warehouse

    Constantz, Jim; Tyler, Scott W.; Kwicklis, Edward

    2003-01-01

    Percolation rates are estimated using vertical temperature profiles from sequentially deeper vadose environments, progressing from sediments beneath stream channels, to expansive basin-fill materials, and finally to deep fractured bedrock underlying mountainous terrain. Beneath stream channels, vertical temperature profiles vary over time in response to downward heat transport, which is generally controlled by conductive heat transport during dry periods, or by advective transport during channel infiltration. During periods of stream-channel infiltration, two relatively simple approaches are possible: a heat-pulse technique, or a heat and liquid-water transport simulation code. Focused percolation rates beneath stream channels are examined for perennial, seasonal, and ephemeral channels in central New Mexico, with estimated percolation rates ranging from 100 to 2100 mm d−1 Deep within basin-fill and underlying mountainous terrain, vertical temperature gradients are dominated by the local geothermal gradient, which creates a profile with decreasing temperatures toward the surface. If simplifying assumptions are employed regarding stratigraphy and vapor fluxes, an analytical solution to the heat transport problem can be used to generate temperature profiles at specified percolation rates for comparison to the observed geothermal gradient. Comparisons to an observed temperature profile in the basin-fill sediments beneath Frenchman Flat, Nevada, yielded water fluxes near zero, with absolute values <10 mm yr−1 For the deep vadose environment beneath Yucca Mountain, Nevada, the complexities of stratigraphy and vapor movement are incorporated into a more elaborate heat and water transport model to compare simulated and observed temperature profiles for a pair of deep boreholes. Best matches resulted in a percolation rate near zero for one borehole and 11 mm yr−1 for the second borehole.

  18. Profile of capillary bridges between two vertically stacked cylindrical fibers under gravitational effect

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohang; Lee, Hoon Joo; Michielsen, Stephen; Wilusz, Eugene

    2018-05-01

    Although profiles of axisymmetric capillary bridges between two cylindrical fibers have been extensively studied, little research has been reported on capillary bridges under external forces such as the gravitational force. This is because external forces add significant complications to the Laplace-Young equation, making it difficult to predict drop profiles based on analytical approaches. In this paper, simulations of capillary bridges between two vertically stacked cylindrical fibers with gravitational effect taken into consideration are studied. The asymmetrical structure of capillary bridges that are hard to predict based on analytical approaches was studied via a numerical approach based on Surface Evolver (SE). The axial and the circumferential spreading of liquids on two identical fibers in the presence of gravitational effects are predicted to determine when the gravitational effects are significant or can be neglected. The effect of liquid volume, equilibrium contact angle, the distance between two fibers and fiber radii. The simulation results were verified by comparing them with experimental measurements. Based on SE simulations, curves representing the spreading of capillary bridges along the two cylindrical fibers were obtained. The gravitational effect was scaled based on the difference of the spreading on upper and lower fibers.

  19. Estimating snow water equivalent from GPS vertical site-position observations in the western United States

    PubMed Central

    Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S

    2013-01-01

    [1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508–2518, doi:10.1002/wrcr.20173. PMID:24223442

  20. Ozone Profiles in the Baltimore-Washington Region (2006-2011): Satellite Comparisons and DISCOVER-AQ Observations

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Stauffer, Ryan M.; Miller, Sonya K.; Martins, Douglas K.; Joseph, Everette; Weinheimer, Andrew J.; Diskin, Glenn S.

    2014-01-01

    Much progress has been made in creating satellite products for tracking the pollutants ozone and NO2 in the troposphere. Yet, in mid-latitude regions where meteorological interactions with pollutants are complex, accuracy can be difficult to achieve, largely due to persistent layering of some constituents. We characterize the layering of ozone soundings and related species measured from aircraft over two ground sites in suburban Washington, DC (Beltsville, MD, 39.05N; 76.9W) and Baltimore (Edgewood, MD, 39.4N; 76.3W) during the July 2011 DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) experiment. First, we compare column-ozone amounts from the Beltsville and Edgewood sondes with data from overpassing satellites. Second, processes influencing ozone profile structure are analyzed using Laminar Identification and tracers: sonde water vapor, aircraft CO and NOy. Third, Beltsville ozone profiles and meteorological influences in July 2011 are compared to those from the summers of 2006-2010. Sonde-satellite offsets in total ozone during July 2011 at Edgewood and Beltsville, compared to the Ozone Monitoring Instrument (OMI), were 3 percent mean absolute error, not statistically significant. The disagreement between an OMIMicrowave Limb Sounder-based tropospheric ozone column and the sonde averaged 10 percent at both sites, with the sonde usually greater than the satellite. Laminar Identification (LID), that distinguishes ozone segments influenced by convective and advective transport, reveals that on days when both stations launched ozonesondes, vertical mixing was stronger at Edgewood. Approximately half the lower free troposphere sonde profiles have very dry laminae, with coincident aircraft spirals displaying low CO (80-110 ppbv), suggesting stratospheric influence. Ozone budgets at Beltsville in July 2011, determined with LID, as well as standard meteorological indicators, resemble those

  1. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    NASA Astrophysics Data System (ADS)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  2. The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Rhodes, Michael E.; Lundquist, Julie K.

    2013-07-01

    We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind

  3. Long-Term Observations of Ocean Biogeochemistry with Nitrate and Oxygen Sensors in Apex Profiling Floats

    NASA Astrophysics Data System (ADS)

    Johnson, K. S.; Coletti, L.; Jannasch, H.; Martz, T.; Swift, D.; Riser, S.

    2008-12-01

    Long-term, autonomous observations of ocean biogeochemical cycles are now feasible with chemical sensors in profiling floats. These sensors will enable decadal-scale observations of trends in global ocean biogeochemical cycles. Here, we focus on measurements on nitrate and dissolved oxygen. The ISUS (In Situ Ultraviolet Spectrophotometer) optical nitrate sensor has been adapted to operate in a Webb Research, Apex profiling float. The Apex float is of the type used in the Argo array and is designed for multi-year, expendable deployments in the ocean. Floats park at 1000 m depth and make 60 nitrate and oxygen measurements at depth intervals ranging from 50 m below 400 m to 5 m in the upper 100 m as they profile to the surface. All data are transmitted to shore using the Iridium telemetry system and they are available on the Internet in near-real time. Floats equipped with ISUS and an Aanderaa oxygen sensor are capable of making 280 vertical profiles from 1000 m. At a 5 day cycle time, the floats should have nearly a four year endurance. Three floats have now been deployed at the Hawaii Ocean Time series station (HOT), Ocean Station Papa (OSP) in the Gulf of Alaska and at 50 South, 30 East in the Southern Ocean. Two additional floats are designated for deployment at the Bermuda Atlantic Time Series station (BATS) and in the Drake Passage. The HOT float has made 56 profiles over 260 days and should continue operating for 3 more years. Nitrate concentrations are in excellent agreement with the long-term mean observed at HOT. No significant long-term drift in sensor response has occurred. A variety of features have been observed in the HOT nitrate data that are linked to contemporaneous changes in oxygen production and mesoscale dynamics. The impacts of these features will be briefly described. The Southern Ocean float has operated for 200 days and is now observing reinjection of nitrate into surface waters as winter mixing occurs(surface nitrate > 24 micromolar). We

  4. Vertical Distribution of PH(sub 3) in Saturn from Observations of the 1-0 and 3-2 Rotational Lines

    NASA Technical Reports Server (NTRS)

    Orton, G.; Serabyn, E.; Lee, Y.

    1999-01-01

    Far-infrared Fourier-transform spectrometer measurements of the 1-0 and 3-2 PH(sub 3) transitions in Saturn's disk near 267 and 800 GHz (8.9 and 26.7 cm(sup -1)), respectively, were analyzed simultaneously to derive a global mean profile for the PH(sub 3) vertical mixing ratio between 100 and 800 mbar total pressure.

  5. Vertical rise velocity of equatorial plasma bubbles estimated from Equatorial Atmosphere Radar (EAR) observations and HIRB model simulations

    NASA Astrophysics Data System (ADS)

    Tulasi Ram, S.; Ajith, K. K.; Yokoyama, T.; Yamamoto, M.; Niranjan, K.

    2017-06-01

    The vertical rise velocity (Vr) and maximum altitude (Hm) of equatorial plasma bubbles (EPBs) were estimated using the two-dimensional fan sector maps of 47 MHz Equatorial Atmosphere Radar (EAR), Kototabang, during May 2010 to April 2013. A total of 86 EPBs were observed out of which 68 were postsunset EPBs and remaining 18 EPBs were observed around midnight hours. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller ( 26-128 m/s) compared to those observed in postsunset hours ( 45-265 m/s). Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The three-dimensional numerical high-resolution bubble (HIRB) model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model. The smaller vertical rise velocities (Vr) and lower maximum altitudes (Hm) of EPBs during midnight hours are discussed in terms of weak polarization electric fields within the bubble due to weaker background electric fields and reduced background ion density levels.Plain Language SummaryEquatorial plasma bubbles are plasma density irregularities in the ionosphere. The radio waves passing through these irregular density structures undergo severe degradation/scintillation that could cause severe disruption of satellite-based communication and augmentation systems such as GPS navigation. These bubbles develop at geomagnetic equator, grow <span class="hlt">vertically</span>, and elongate along the field lines to latitudes away from the equator. The knowledge on bubble rise velocities and their</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSMSA51B..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSMSA51B..01T"><span>Characterization of Convective Systems in Africa in Terms of their <span class="hlt">Vertical</span> Structure, Electrification and Dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tadesse, A.; Anagnostou, E. N.</p> <p>2007-05-01</p> <p>Mesoscale Convective Systems (MCS) are cloud systems that occur from an ensemble of thunder storms and result in a precipitation that covers a huge contiguous area. They are long-lived storm system having dimensions much larger than an individual storm. Storm systems associated with MCSs over the Africa are tracked for the period July to December 2004 and their properties at different stages of their life are investigated in terms of the <span class="hlt">vertical</span> reflectivity <span class="hlt">profile</span>, electrification and dynamics of clouds. The research is facilitated by remote sensing data, which include instantaneous <span class="hlt">vertical</span> reflectivity fields derived from the TRMM precipitation radar (PR), coincident 1/2-hourly <span class="hlt">observations</span> of long-range lightning accumulation and Global IR fields. Results show a strong indication of the magnitude and intensity of electrification of a thunderstorm with the stage of its life. More vigorous dynamic conditions with intense electrification are <span class="hlt">observed</span> during the growing stage of the storm and more or less stable situation uniform distribution of electrification has been distributed to most of the pixels in the storm during its maturity stage and less rainfall and electrification during its decaying stage was a general <span class="hlt">observation</span> during the period. The <span class="hlt">vertical</span> reflectivity has been found to be strongly related to the electrification and the stage of the convective life cycle in such away that the reflectivity decrease as the storm matures and decays. A good correlation is <span class="hlt">observed</span> between the strength of <span class="hlt">vertical</span> <span class="hlt">profile</span> of reflectivity, which is a proxy for the ice concentration, and lightning activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S21A0696G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S21A0696G"><span>Deformations and Rotational Ground Motions Inferred from Downhole <span class="hlt">Vertical</span> Array <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graizer, V.</p> <p>2017-12-01</p> <p>Only few direct reliable measurements of rotational component of strong earthquake ground motions are obtained so far. In the meantime, high quality data recorded at downhole <span class="hlt">vertical</span> arrays during a number of earthquakes provide an opportunity to calculate deformations based on the differences in ground motions recorded simultaneously at different depths. More than twenty high resolution strong motion downhole <span class="hlt">vertical</span> arrays were installed in California with primary goal to study site response of different geologic structures to strong motion. Deformation or simple shear strain with the rate γ is the combination of pure shear strain with the rate γ/2 and rotation with the rate of α=γ/2. Deformations and rotations were inferred from downhole array records of the Mw 6.0 Parkfield 2004, the Mw 7.2 Sierra El Mayor (Mexico) 2010, the Mw 6.5 Ferndale area in N. California 2010 and the two smaller earthquakes in California. Highest amplitude of rotation of 0.60E-03 rad was <span class="hlt">observed</span> at the Eureka array corresponding to ground velocity of 35 cm/s, and highest rotation rate of 0.55E-02 rad/s associated with the S-wave was <span class="hlt">observed</span> at a close epicentral distance of 4.3 km from the ML 4.2 event in Southern California at the La Cienega array. Large magnitude Sierra El Mayor earthquake produced long duration rotational motions of up to 1.5E-04 rad and 2.05E-03 rad/s associated with shear and surface waves at the El Centro array at closest fault distance of 33.4km. Rotational motions of such levels, especially tilting can have significant effect on structures. High dynamic range well synchronized and properly oriented instrumentation is necessary for reliable calculation of rotations from <span class="hlt">vertical</span> array data. Data from the dense Treasure Island array near San Francisco demonstrate consistent change of shape of rotational motion with depth and material. In the frequency range of 1-15 Hz Fourier amplitude spectrum of <span class="hlt">vertical</span> ground velocity is similar to the scaled tilt</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRD..120.4585R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRD..120.4585R"><span>Microwave radiometer <span class="hlt">observations</span> of interannual water vapor variability and <span class="hlt">vertical</span> structure over a tropical station</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Renju, R.; Suresh Raju, C.; Mathew, Nizy; Antony, Tinu; Krishna Moorthy, K.</p> <p>2015-05-01</p> <p>The intraseasonal and interannual characteristics and the <span class="hlt">vertical</span> distribution of atmospheric water vapor from the tropical coastal station Thiruvananthapuram (TVM) located in the southwestern region of the Indian Peninsula are examined from continuous multiyear, multifrequency microwave radiometer <span class="hlt">profiler</span> (MRP) measurements. The accuracy of MRP for precipitable water vapor (PWV) estimation, particularly during a prolonged monsoon period, has been demonstrated by comparing with the PWV derived from collocated GPS measurements based on regression model between PWV and GPS wet delay component which has been developed for TVM station. Large diurnal and intraseasonal variations of PWV are <span class="hlt">observed</span> during winter and premonsoon seasons. There is large interannual PWV variability during premonsoon, owing to frequent local convection and summer thunderstorms. During monsoon period, low interannual PWV variability is attributed to the persistent wind from the ocean which brings moisture to this coastal station. However, significant interannual humidity variability is seen at 2 to 6 km altitude, which is linked to the monsoon strength over the station. Prior to monsoon onset over the station, the specific humidity increases up to 5-10 g/kg in the altitude region above 5 km and remains consistently so throughout the active spells.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7463E..09E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7463E..09E"><span>Preliminary VHF radar and high-data-rate optical turbulence <span class="hlt">profile</span> <span class="hlt">observations</span> using a balloon-ring platform</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eaton, Frank D.; Nastrom, Gregory D.; Kyrazis, Demos T.; Black, Don G.; Black, Wiley T.; Black, R. Alastair</p> <p>2009-08-01</p> <p>A recent measurement campaign at Vandenberg Air Force Base, Calif. involved taking simultaneous <span class="hlt">observations</span> with a VHF radar and high-data-rate (1-micron diameter) platinum wires to sense optical turbulence (from temperature fluctuations). The radar <span class="hlt">observations</span> produce <span class="hlt">profiles</span> of the refractive index structure parameter (C2n ), the turbulent kinetic energy (σ2t ), the eddy dissipation rate (ɛ), the inner scale (lo ), the outer scale (Lo ) of turbulence, and wind speed and direction to an altitude of 20 km AGL. The fine wire measurements were taken from the surface with several sensors mounted on a balloon-ring platform sampling in excess of 3 kHz to balloon burst altitudes (typically above 25 km AGL). The main objectives of this effort are to compare the two measurement techniques and to obtain <span class="hlt">observations</span> that can address several fundamental turbulence issues of the real turbulent atmosphere related to laser beam propagation. To date, modeling and simulation of laser beam propagation through atmospheric turbulence have relied upon a traditional theoretical basis that assumes the existence of homogeneous, isotropic, stationary, and Kolmogorov turbulence. Results presented from the radar <span class="hlt">observations</span> include C2n, σ2t, ɛ, lo, and the standard deviation of <span class="hlt">vertical</span> velocity (σw). A comparison of the <span class="hlt">profiles</span> of C2n obtained from the two measurement techniques is shown and discussed. A time series of temperature data obtained from a fine wire probe traversing one radar range gate is presented and discussed. Future measurement and analysis efforts are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1290300-characteristics-vertical-air-motion-isolated-convective-clouds','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1290300-characteristics-vertical-air-motion-isolated-convective-clouds"><span>Characteristics of <span class="hlt">vertical</span> air motion in isolated convective clouds</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Yang, Jing; Wang, Zhien; Heymsfield, Andrew J.; ...</p> <p>2016-08-11</p> <p>The <span class="hlt">vertical</span> velocity and air mass flux in isolated convective clouds are statistically analyzed using aircraft in situ data collected from three field campaigns: High-Plains Cumulus (HiCu) conducted over the midlatitude High Plains, COnvective Precipitation Experiment (COPE) conducted in a midlatitude coastal area, and Ice in Clouds Experiment-Tropical (ICE-T) conducted over a tropical ocean. The results show that small-scale updrafts and downdrafts (<  500 m in diameter) are frequently <span class="hlt">observed</span> in the three field campaigns, and they make important contributions to the total air mass flux. The probability density functions (PDFs) and <span class="hlt">profiles</span> of the <span class="hlt">observed</span> <span class="hlt">vertical</span> velocity are provided. The PDFsmore » are exponentially distributed. The updrafts generally strengthen with height. Relatively strong updrafts (>  20 m s −1) were sampled in COPE and ICE-T. The <span class="hlt">observed</span> downdrafts are stronger in HiCu and COPE than in ICE-T. The PDFs of the air mass flux are exponentially distributed as well. The <span class="hlt">observed</span> maximum air mass flux in updrafts is of the order 10 4 kg m −1 s −1. The <span class="hlt">observed</span> air mass flux in the downdrafts is typically a few times smaller in magnitude than that in the updrafts. Since this study only deals with isolated convective clouds, and there are many limitations and sampling issues in aircraft in situ measurements, more <span class="hlt">observations</span> are needed to better explore the <span class="hlt">vertical</span> air motion in convective clouds.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/870471','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/870471"><span>Low <span class="hlt">profile</span>, high load <span class="hlt">vertical</span> rolling positioning stage</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Shu, Deming; Barraza, Juan</p> <p>1996-01-01</p> <p>A stage or support platform assembly for use in a synchrotron accurately positions equipment to be used in the beam line of the synchrotron. The support platform assembly includes an outer housing in which is disposed a lifting mechanism having a lifting platform or stage at its upper extremity on which the equipment is mounted. A worm gear assembly is located in the housing and is adapted to raise and lower a lifting shaft that is fixed to the lifting platform by an anti-binding connection. The lifting platform is moved <span class="hlt">vertically</span> as the lifting shaft is moved <span class="hlt">vertically</span>. The anti-binding connection prevents the shaft from rotating with respect to the platform, but does permit slight canting of the shaft with respect to the lifting platform so as to eliminate binding and wear due to possible tolerance mismatches. In order to ensure that the lifting mechanism does not move in a horizontal direction as it is moved <span class="hlt">vertically</span>, at least three linear roller bearing assemblies are arranged around the outer-periphery of the lifting mechanism. One of the linear roller bearing assemblies can be adjusted so that the roller bearings apply a loading force against the lifting mechanism. Alternatively, a cam mechanism can be used to provide such a loading force.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ESASP.739E...5V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ESASP.739E...5V"><span>Variability in Tropospheric Ozone over China Derived from Assimilated GOME-2 Ozone <span class="hlt">Profiles</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Peet, J. C. A.; van der A, R. J.; Kelder, H. M.</p> <p>2016-08-01</p> <p>A tropospheric ozone dataset is derived from assimilated GOME-2 ozone <span class="hlt">profiles</span> for 2008. Ozone <span class="hlt">profiles</span> are retrieved with the OPERA algorithm, using the optimal estimation method. The retrievals are done on a spatial resolution of 160×160 km on 16 layers ranging from the surface up to 0.01 hPa. By using the averaging kernels in the data assimilation, the algorithm maintains the high resolution <span class="hlt">vertical</span> structures of the model, while being constrained by <span class="hlt">observations</span> with a lower <span class="hlt">vertical</span> resolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012OcScD...9.3567C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012OcScD...9.3567C"><span>From the chlorophyll a in the surface layer to its <span class="hlt">vertical</span> <span class="hlt">profile</span>: a Greenland Sea relationship for satellite applications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cherkasheva, A.; Bracher, A.; Nöthig, E.-M.; Bauerfeind, E.; Melsheimer, C.</p> <p>2012-11-01</p> <p>Current estimates of global marine primary production range over a factor of two. At high latitudes, the uncertainty is even larger than globally because here in-situ data and ocean color <span class="hlt">observations</span> are scarce, and the phytoplankton absorption shows specific characteristics due to the low-light adaptation. The improvement of the primary production estimates requires an accurate knowledge on the chlorophyll <span class="hlt">vertical</span> <span class="hlt">profile</span>, which is the basis for most primary production models. To date, studies describing the typical chlorophyll <span class="hlt">profile</span> based on the chlorophyll in the surface layer did not include the Arctic region or, if it was included, the dependence of the <span class="hlt">profile</span> shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll <span class="hlt">profiles</span>, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the Arctic regions where most chlorophyll field data are available. Our database contained 1199 chlorophyll <span class="hlt">profiles</span> from R/Vs Polarstern and Maria S Merian cruises combined with data of the ARCSS-PP database (Arctic primary production in-situ database) for the years 1957-2010. The <span class="hlt">profiles</span> were categorized according to their mean concentration in the surface layer and then monthly median <span class="hlt">profiles</span> within each category were calculated. The category with the surface layer chlorophyll exceeding 0.7 mg C m-3 showed a clear seasonal cycle with values gradually decreasing from April to August. Chlorophyll <span class="hlt">profiles</span> maxima moved from lower depths in spring towards the surface in late summer. <span class="hlt">Profiles</span> with smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability in April, May and June of the Greenland Sea season is following the global</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AMT....11.1669S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AMT....11.1669S"><span>High-resolution humidity <span class="hlt">profiles</span> retrieved from wind <span class="hlt">profiler</span> radar measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saïd, Frédérique; Campistron, Bernard; Di Girolamo, Paolo</p> <p>2018-03-01</p> <p>The retrieval of humidity <span class="hlt">profiles</span> from wind <span class="hlt">profiler</span> radars has already been documented in the past 30 years and is known to be neither as straightforward and nor as robust as the retrieval of the wind velocity. The main constraint to retrieve the humidity <span class="hlt">profile</span> is the necessity to combine measurements from the wind <span class="hlt">profiler</span> and additional measurements (such as <span class="hlt">observations</span> from radiosoundings at a coarser time resolution). Furthermore, the method relies on some assumptions and simplifications that restrict the scope of its application. The first objective of this paper is to identify the obstacles and limitations and solve them, or at least define the field of applicability. To improve the method, we propose using the radar capacity to detect transition levels, such as the top level of the boundary layer, marked by a maximum in the radar reflectivity. This forces the humidity <span class="hlt">profile</span> from the free troposphere and from the boundary layer to coincide at this level, after an optimization of the calibration coefficients, and reduces the error. The resulting mean bias affecting the specific humidity <span class="hlt">profile</span> never exceeds 0.25 g kg-1. The second objective is to explore the capability of the algorithm to retrieve the humidity <span class="hlt">vertical</span> <span class="hlt">profiles</span> for an operational purpose by comparing the results with <span class="hlt">observations</span> from a Raman lidar.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160003693&hterms=coagulation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcoagulation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160003693&hterms=coagulation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcoagulation"><span>What Controls the <span class="hlt">Vertical</span> Distribution of Aerosol? Relationships Between Process Sensitivity in HadGEM3-UKCA and Inter-Model Variation from AeroCom Phase II</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kipling, Zak; Stier, Philip; Johnson, Colin E.; Mann, Graham W.; Bellouin, Nicolas; Bauer, Susanne E.; Bergman, Tommi; Chin, Mian; Diehl, Thomas; Ghan, Steven J.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160003693'); toggleEditAbsImage('author_20160003693_show'); toggleEditAbsImage('author_20160003693_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160003693_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160003693_hide"></p> <p>2016-01-01</p> <p>The <span class="hlt">vertical</span> <span class="hlt">profile</span> of aerosol is important for its radiative effects, but weakly constrained by <span class="hlt">observations</span> on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol <span class="hlt">vertical</span> <span class="hlt">profiles</span> with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the <span class="hlt">vertical</span> <span class="hlt">profile</span> is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean <span class="hlt">profile</span> and, to a lesser extent, the zonal-mean <span class="hlt">vertical</span> position. However, there are features of certain models' <span class="hlt">profiles</span> that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3-UKCA, convective transport is found to be very important in controlling the <span class="hlt">vertical</span> <span class="hlt">profile</span> of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The <span class="hlt">vertical</span> extent of biomass-burning emissions into the free troposphere is also important for the <span class="hlt">profile</span> of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the <span class="hlt">profile</span> of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the <span class="hlt">vertical</span> <span class="hlt">profile</span> of the smallest particles by number (e.g. total CN >3 nm), while the <span class="hlt">profiles</span> of larger particles (e.g. CN>100 nm) are controlled by the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1215470','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1215470"><span>Direct <span class="hlt">Observation</span> of Ultralow <span class="hlt">Vertical</span> Emittance using a <span class="hlt">Vertical</span> Undulator - presentation slides</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wootton, Kent</p> <p>2015-09-17</p> <p>Direct emittance measurement based on <span class="hlt">vertical</span> undulator is discussed. Emittance was evaluated from peak ratios, the smallest measured being =0.9 ±0.3 pm rad. The angular distribution of undulator radiation departs from Gaussian approximations, a fact of which diffraction-limited light sources should be aware.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS11B..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS11B..02B"><span><span class="hlt">Observing</span> Physical and Biological Drivers of pH and O2 in a Seasonal Ice Zone in the Ross Sea Using <span class="hlt">Profiling</span> Float Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Briggs, E.; Martz, T. R.; Talley, L. D.; Mazloff, M. R.</p> <p>2015-12-01</p> <p>Ice cover has strong influence over gas exchange, <span class="hlt">vertical</span> stability, and biological production which are critical to understanding the Southern Ocean's central role in oceanic biogeochemical cycling and heat and carbon uptake under a changing climate. However the relative influence of physical versus biological processes in this hard-to-study region is poorly understood due to limited <span class="hlt">observations</span>. Here we present new findings from a <span class="hlt">profiling</span> float equipped with biogeochemical sensors in the seasonal ice zone of the Ross Sea capturing, for the first time, under-ice pH <span class="hlt">profile</span> data over a two year timespan from 2014 to the present. The relative influence of physical (e.g. <span class="hlt">vertical</span> mixing and air-sea gas exchange) and biological (e.g. production and respiration) drivers of pH and O2 within the mixed layer are explored during the phases of ice formation, ice cover, and ice melt over the two seasonal cycles. During the austral fall just prior to and during ice formation, O2 increases as expected due to surface-layer undersaturation and enhanced gas exchange. A small increase in pH is also <span class="hlt">observed</span> during this phase, but without a biological signal in accompanying <span class="hlt">profiling</span> float chlorophyll data, which goes against common reasoning from both a biological and physical standpoint. During the phase of ice cover, gas exchange is inhibited and a clear respiration signal is <span class="hlt">observed</span> in pH and O2 data from which respiration rates are calculated. In the austral spring, ice melt gives rise to substantial ice edge phytoplankton blooms indicated by O2 supersaturation and corresponding increase in pH and large chlorophyll signal. The influence of the duration of ice cover and mixed layer depth on the magnitude of the ice edge blooms is explored between the two seasonal cycles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.6668J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.6668J"><span>Annual nitrate drawdown <span class="hlt">observed</span> by SOCCOM <span class="hlt">profiling</span> floats and the relationship to annual net community production</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Kenneth S.; Plant, Joshua N.; Dunne, John P.; Talley, Lynne D.; Sarmiento, Jorge L.</p> <p>2017-08-01</p> <p>Annual nitrate cycles have been measured throughout the pelagic waters of the Southern Ocean, including regions with seasonal ice cover and southern hemisphere subtropical zones. <span class="hlt">Vertically</span> resolved nitrate measurements were made using in situ ultraviolet spectrophotometer (ISUS) and submersible ultraviolet nitrate analyzer (SUNA) optical nitrate sensors deployed on <span class="hlt">profiling</span> floats. Thirty-one floats returned 40 complete annual cycles. The mean nitrate <span class="hlt">profile</span> from the month with the highest winter nitrate minus the mean <span class="hlt">profile</span> from the month with the lowest nitrate yields the annual nitrate drawdown. This quantity was integrated to 200 m depth and converted to carbon using the Redfield ratio to estimate annual net community production (ANCP) throughout the Southern Ocean south of 30°S. A well-defined, zonal mean distribution is found with highest values (3-4 mol C m-2 yr-1) from 40 to 50°S. Lowest values are found in the subtropics and in the seasonal ice zone. The area weighted mean was 2.9 mol C m-2 yr-1 for all regions south of 40°S. Cumulative ANCP south of 50°S is 1.3 Pg C yr-1. This represents about 13% of global ANCP in about 14% of the global ocean area.<abstract type="synopsis"><title type="main">Plain Language SummaryThis manuscript reports on 40 annual cycles of nitrate <span class="hlt">observed</span> by chemical sensors on SOCCOM <span class="hlt">profiling</span> floats. The annual drawdown in nitrate concentration by phytoplankton is used to assess the spatial variability of annual net community production in the Southern Ocean. This ANCP is a key component of the global carbon cycle and it exerts an important control on atmospheric carbon dioxide. We show that the results are consistent with our prior understanding of Southern Ocean ANCP, which has required decades of <span class="hlt">observations</span> to accumulate. The <span class="hlt">profiling</span> floats now enable annual resolution of this key process. The results also highlight spatial variability in ANCP in the Southern Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032626','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032626"><span>Diagnosis of an intense atmospheric river impacting the pacific northwest: Storm summary and offshore <span class="hlt">vertical</span> structure <span class="hlt">observed</span> with COSMIC satellite retrievals</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Neiman, P.J.; Ralph, F.M.; Wick, G.A.; Kuo, Y.-H.; Wee, T.-K.; Ma, Z.; Taylor, G.H.; Dettinger, M.D.</p> <p>2008-01-01</p> <p>This study uses the new satellite-based Constellation <span class="hlt">Observing</span> System for Meteorology, Ionosphere, and Climate (COSMIC) mission to retrieve tropospheric <span class="hlt">profiles</span> of temperature and moisture over the data-sparse eastern Pacific Ocean. The COSMIC retrievals, which employ a global positioning system radio occultation technique combined with "first-guess" information from numerical weather prediction model analyses, are evaluated through the diagnosis of an intense atmospheric river (AR; i.e., a narrow plume of strong water vapor flux) that devastated the Pacific Northwest with flooding rains in early November 2006. A detailed analysis of this AR is presented first using conventional datasets and highlights the fact that ARs are critical contributors to West Coast extreme precipitation and flooding events. Then, the COSMIC evaluation is provided. Offshore composite COSMIC soundings north of, within, and south of this AR exhibited <span class="hlt">vertical</span> structures that are meteorologically consistent with satellite imagery and global reanalysis fields of this case and with earlier composite dropsonde results from other landfalling ARs. Also, a curtain of 12 offshore COSMIC soundings through the AR yielded cross-sectional thermodynamic and moisture structures that were similarly consistent, including details comparable to earlier aircraft-based dropsonde analyses. The results show that the new COSMIC retrievals, which are global (currently yielding ???2000 soundings per day), provide high-resolution <span class="hlt">vertical-profile</span> information beyond that found in the numerical model first-guess fields and can help monitor key lower-tropospheric mesoscale phenomena in data-sparse regions. Hence, COSMIC will likely support a wide array of applications, from physical process studies to data assimilation, numerical weather prediction, and climate research. ?? 2008 American Meteorological Society.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.4232H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.4232H"><span>Retrievability of atmospheric water vapour, temperature and <span class="hlt">vertical</span> windspeed <span class="hlt">profiles</span> from proposed sub-millimetre instrument ORTIS.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hurley, Jane; Irwin, Patrick; Teanby, Nicholas; de Kok, Remco; Calcutt, Simon; Irshad, Ranah; Ellison, Brian</p> <p>2010-05-01</p> <p>The sub-millimetre range of the spectrum has been exploited in the field of Earth <span class="hlt">observation</span> by many instruments over the years and has provided a plethora of information on atmospheric chemistry and dynamics - however, this spectral range has not been fully explored in planetary science. To this end, a sub-millimetre instrument, the Orbiter Terahertz Infrared Spectrometer (ORTIS), is jointly proposed by the University of Oxford and the Rutherford Appleton Laboratory, to meet the requirements of the European Space Agency's Cosmic Visions Europa Jupiter System Mission (EJSM). ORTIS will consist of an infrared and a sub-millimetre component; however in this study only the sub-millimetre component will be explored. The sub-millimetre component of ORTIS is projected to measure a narrow band of frequencies centred at approximately 2.2 THz, with a spectral resolution varying between approximately 1 kHz and 1 MHz, and having an expected noise magnitude of 2 nW/cm2 sr cm-1. In this spectral region, there are strong water and methane emission lines at most altitudes on Jupiter. The sub-millimetre component of ORTIS is designed to measure the abundance of atmospheric water vapour and atmospheric temperature, as well as <span class="hlt">vertical</span> windspeed <span class="hlt">profiles</span> from Doppler-shifted emission lines, measured at high spectral resolution. This study will test to see if, in practice, these science objectives may be met from the planned design, as applied to Jupiter. In order to test the retrievability of atmospheric water vapour, temperature and windspeed with the proposed ORTIS design, it is necessary to have a set of "measurements' for which the input parameters (such as species' concentrations, atmospheric temperature, pressure - and windspeed) are known. This is accomplished by generating a set of radiative transfer simulations using radiative transfer model RadTrans in the spectral range sampled by ORTIS, whereby the atmospheric data pertaining to Jupiter have provided by Cassini</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6561739-upper-ocean-moored-current-density-profiler-applied-winter-conditions-near-bermuda','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6561739-upper-ocean-moored-current-density-profiler-applied-winter-conditions-near-bermuda"><span>Upper ocean moored current and density <span class="hlt">profiler</span> applied to winter conditions near Bermuda</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.</p> <p>1982-09-20</p> <p>A new moored instrument which makes repeated high <span class="hlt">vertical</span> resolution <span class="hlt">profiles</span> of current, temperature, and salinity in the upper ocean over extended periods was used to <span class="hlt">observe</span> midwinter conditions near Bermuda. The operation and performance of the instrument, called the <span class="hlt">profiling</span> current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM <span class="hlt">profiles</span> along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from <span class="hlt">vertical</span> motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible <span class="hlt">profile</span> range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 <span class="hlt">profiles</span> in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda <span class="hlt">observations</span>. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. <span class="hlt">Vertical</span> coherence of onshore current and temperature suggest that internal wave <span class="hlt">vertical</span> wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range <span class="hlt">profiles</span>) to unity, where it remains while shear and stratification disappear together.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.2495W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.2495W"><span><span class="hlt">Vertically</span> resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Qingqing; Sun, Yele; Xu, Weiqi; Du, Wei; Zhou, Libo; Tang, Guiqian; Chen, Chen; Cheng, Xueling; Zhao, Xiujuan; Ji, Dongsheng; Han, Tingting; Wang, Zhe; Li, Jie; Wang, Zifa</p> <p>2018-02-01</p> <p>We conducted the first real-time continuous <span class="hlt">vertical</span> measurements of particle extinction (bext), gaseous NO2, and black carbon (BC) from ground level to 260 m during two severe winter haze episodes at an urban site in Beijing, China. Our results illustrated four distinct types of <span class="hlt">vertical</span> <span class="hlt">profiles</span>: (1) uniform <span class="hlt">vertical</span> distributions (37 % of the time) with <span class="hlt">vertical</span> differences less than 5 %, (2) higher values at lower altitudes (29 %), (3) higher values at higher altitudes (16 %), and (4) significant decreases at the heights of ˜ 100-150 m (14 %). Further analysis demonstrated that <span class="hlt">vertical</span> convection as indicated by mixing layer height, temperature inversion, and local emissions are three major factors affecting the changes in <span class="hlt">vertical</span> <span class="hlt">profiles</span>. Particularly, the formation of type 4 was strongly associated with the stratified layer that was formed due to the interactions of different air masses and temperature inversions. Aerosol composition was substantially different below and above the transition heights with ˜ 20-30 % higher contributions of local sources (e.g., biomass burning and cooking) at lower altitudes. A more detailed evolution of <span class="hlt">vertical</span> <span class="hlt">profiles</span> and their relationship with the changes in source emissions, mixing layer height, and aerosol chemistry was illustrated by a case study. BC showed overall similar <span class="hlt">vertical</span> <span class="hlt">profiles</span> as those of bext (R2 = 0.92 and 0.69 in November and January, respectively). While NO2 was correlated with bext for most of the time, the <span class="hlt">vertical</span> <span class="hlt">profiles</span> of bext / NO2 varied differently for different <span class="hlt">profiles</span>, indicating the impact of chemical transformation on <span class="hlt">vertical</span> <span class="hlt">profiles</span>. Our results also showed that more comprehensive <span class="hlt">vertical</span> measurements (e.g., more aerosol and gaseous species) at higher altitudes in the megacities are needed for a better understanding of the formation mechanisms and evolution of severe haze episodes in China.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8368F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8368F"><span>Comparison of MAX-DOAS <span class="hlt">profiling</span> algorithms during CINDI-2 - Part 1: aerosols</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Friess, Udo; Hendrick, Francois; Tirpitz, Jan-Lukas; Apituley, Arnoud; van Roozendael, Michel; Kreher, Karin; Richter, Andreas; Wagner, Thomas</p> <p>2017-04-01</p> <p>The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. CINDI-2 was aiming at assessing the consistency of MAX-DOAS slant column density measurements of tropospheric species (NO2, HCHO, O3, and O4) relevant for the validation of future ESA atmospheric Sentinel missions, through coordinated operation of a large number of DOAS and MAXDOAS instruments from all over the world. An important objective of the campaign was to study the relationship between remote-sensing column and <span class="hlt">profile</span> measurements of the above species and collocated reference ancillary <span class="hlt">observations</span>. For this purpose, the CINDI-2 <span class="hlt">Profiling</span> Task Team (CPTT) was created, involving 22 groups performing aerosol and trace gas <span class="hlt">vertical</span> <span class="hlt">profile</span> inversion using dedicated MAX-DOAS <span class="hlt">profiling</span> algorithms, as well as the teams responsible for ancillary <span class="hlt">profile</span> and surface concentration measurements (NO2 analysers, NO2 sondes, NO2 and Raman LIDARs, CAPS, Long-Path DOAS, sun photometer, nephelometer, etc). The main purpose of the CPTT is to assess the consistency of the different <span class="hlt">profiling</span> tools for retrieving aerosol extinction and trace gas <span class="hlt">vertical</span> <span class="hlt">profiles</span> through comparison exercises using commonly defined settings and to validate the retrievals with correlative <span class="hlt">observations</span>. In this presentation, we give an overview of the MAX-DOAS <span class="hlt">vertical</span> <span class="hlt">profile</span> comparison results, focusing on the retrieval of aerosol extinction <span class="hlt">profiles</span>, with the trace gas retrievals being presented in a companion abstract led by F. Hendrick. The performance of the different algorithms is investigated with respect to the variable visibility and cloud conditions encountered during the campaign. The consistency between optimal-estimation-based and parameterized <span class="hlt">profiling</span> tools is also evaluated for these different conditions, together with the level of agreement</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014HESS...18.2021E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014HESS...18.2021E"><span>A new method to measure Bowen ratios using high-resolution <span class="hlt">vertical</span> dry and wet bulb temperature <span class="hlt">profiles</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Euser, T.; Luxemburg, W. M. J.; Everson, C. S.; Mengistu, M. G.; Clulow, A. D.; Bastiaanssen, W. G. M.</p> <p>2014-06-01</p> <p>The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. The Bowen ratio method is based on the measurement of air temperature and vapour pressure gradients. If these measurements are performed at only two heights, correctness of data becomes critical. In this paper we present the concept of a new measurement method to estimate the Bowen ratio based on <span class="hlt">vertical</span> dry and wet bulb temperature <span class="hlt">profiles</span> with high spatial resolution. A short field experiment with distributed temperature sensing (DTS) in a fibre optic cable with 13 measurement points in the <span class="hlt">vertical</span> was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial plot near Pietermaritzburg (South Africa). Using the DTS cable as a psychrometer, a near continuous <span class="hlt">observation</span> of vapour pressure and air temperature at 0.20 m intervals was established. These data allowed the computation of the Bowen ratio with a high spatial and temporal precision. The daytime latent and sensible heat fluxes were estimated by combining the Bowen ratio values from the DTS-based system with independent measurements of net radiation and soil heat flux. The sensible heat flux, which is the relevant term to evaluate, derived from the DTS-based Bowen ratio (BR-DTS) was compared with that derived from co-located eddy covariance (R2 = 0.91), surface layer scintillometer (R2 = 0.81) and surface renewal (R2 = 0.86) systems. By using multiple measurement points instead of two, more confidence in the derived Bowen ratio values is obtained.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38...37K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38...37K"><span>Capability of the CALIPSO lidar <span class="hlt">observations</span> to detect the dust source regions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaskaoutis, D. G.; Kharol, Shailesh Kumar; Kambezidis, H. D.; Nastos, P. T.; Rani Sharma, Anu; Kvs, Badarinath</p> <p></p> <p>Two dust events with high aerosol optical depth (AOD) values have been <span class="hlt">observed</span> over Athens on 4 and 6-7 February 2009. These dust events were well captured by the satellite <span class="hlt">obser-vations</span> and are investigated in the present study by means of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite <span class="hlt">Observation</span> (CALIPSO) <span class="hlt">observations</span>, ceilometer <span class="hlt">vertical</span> <span class="hlt">profiles</span> and DREAM model predictions. The CALIPSO provides new insight to study the role of clouds and atmospheric aerosols in regulating Earth's weather, climate, and air quality. CALIPSO has a 98o-inclination orbit and flies at an altitude of 705 km providing daily global maps of the <span class="hlt">ver-tical</span> distribution of aerosols and clouds. The CALIPSO satellite carries a polarization-sensitive lidar, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which provides <span class="hlt">profiles</span> of backscatter coefficient at 532 and 1064 nm. The ceilometer used in the present study is a Vaisala CL31 model. It is equipped with an InGaAs MOCVD pulsed laser, emitting at 930 nm and having an energy per pulse of 1.2 J. The emission frequency is 10 kHz while the pulse duration is 100 ns. The <span class="hlt">vertical</span> <span class="hlt">profiles</span> of the aerosol backscatter coefficient were obtained from 5 m up to 7.5 km at 930 nm. The CL31 is installed at the Actinometric station of the National Observatory of Athens. The CALIPSO-derived total attenuated backscatter at 532 and 1064 nm is used to identify the position of dust along the overpass trajectory. A typical example of the <span class="hlt">vertical</span> distribution of the dust plume over the study region during nighttime on 5 Febru-ary 2009 is provided. Limiting the analysis over Libya, eastern Mediterranean and Greece (24o -37o N, 15o-19o E), the dust aerosol layer exhibits a high total attenuated backscatter at 532 nm, reaching to 0.05-0.06 km-1sr-1. CALIPSO <span class="hlt">observations</span> clearly show that the dust plume was generated over the Sahara desert at about 24oN, 15oE near the borders of Libya, Chad and Niger. After its exposure it was uplifted to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4412244B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4412244B"><span>Tracking the Subsurface Signal of Decadal Climate Warming to Quantify <span class="hlt">Vertical</span> Groundwater Flow Rates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bense, V. F.; Kurylyk, B. L.</p> <p>2017-12-01</p> <p>Sustained ground surface warming on a decadal time scale leads to an inversion of thermal gradients in the upper tens of meters. The magnitude and direction of <span class="hlt">vertical</span> groundwater flow should influence the propagation of this warming signal, but direct field <span class="hlt">observations</span> of this phenomenon are rare. Comparison of temperature-depth <span class="hlt">profiles</span> in boreholes in the Veluwe area, Netherlands, collected in 1978-1982 and 2016 provided such direct measurement. We used these repeated <span class="hlt">profiles</span> to track the downward propagation rate of the depth at which the thermal gradient is zero. Numerical modeling of the migration of this thermal gradient "inflection point" yielded estimates of downward groundwater flow rates (0-0.24 m a-1) that generally concurred with known hydrogeological conditions in the area. We conclude that analysis of inflection point depths in temperature-depth <span class="hlt">profiles</span> impacted by surface warming provides a largely untapped opportunity to inform sustainable groundwater management plans that rely on accurate estimates of long-term <span class="hlt">vertical</span> groundwater fluxes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5317L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5317L"><span>Minimalistic models of the <span class="hlt">vertical</span> distribution of roots under stochastic hydrological forcing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laio, Francesco</p> <p>2014-05-01</p> <p>The assessment of the <span class="hlt">vertical</span> root <span class="hlt">profile</span> can be useful for multiple purposes: the partition of water fluxes between evaporation and transpiration, the evaluation of root soil reinforcement for bioengineering applications, the influence of roots on biogeochemical and microbial processes in the soil, etc. In water-controlled ecosystems the shape of the root <span class="hlt">profile</span> is mainly determined by the soil moisture availability at different depths. The long term soil water balance in the root zone can be assessed by modeling the stochastic incoming and outgoing water fluxes, influenced by the stochastic rainfall pulses and/or by the water table fluctuations. Through an ecohydrological analysis one obtains that in water-controlled ecosystems the <span class="hlt">vertical</span> root distribution is a decreasing function with depth, whose parameters depend on pedologic and climatic factors. The model can be extended to suitably account for the influence of the water table fluctuations, when the water table is shallow enough to exert an influence on root development, in which case the <span class="hlt">vertical</span> root distribution tends to assume a non-monotonic form. In order to evaluate the validity of the ecohydrological estimation of the root <span class="hlt">profile</span> we have tested it on a case study in the north of Tuscany (Italy). We have analyzed data from 17 landslide-prone sites: in each of these sites we have assessed the pedologic and climatic descriptors necessary to apply the model, and we have measured the mean rooting depth. The results show a quite good matching between <span class="hlt">observed</span> and modeled mean root depths. The merit of this minimalistic approach to the modeling of the <span class="hlt">vertical</span> root distribution relies on the fact that it allows a quantitative estimation of the main features of the <span class="hlt">vertical</span> root distribution without resorting to time- and money-demanding measuring surveys.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AnGeo..36..425T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AnGeo..36..425T"><span>Satellite <span class="hlt">observations</span> of middle atmosphere-thermosphere <span class="hlt">vertical</span> coupling by gravity waves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trinh, Quang Thai; Ern, Manfred; Doornbos, Eelco; Preusse, Peter; Riese, Martin</p> <p>2018-03-01</p> <p>Atmospheric gravity waves (GWs) are essential for the dynamics of the middle atmosphere. Recent studies have shown that these waves are also important for the thermosphere/ionosphere (T/I) system. Via <span class="hlt">vertical</span> coupling, GWs can significantly influence the mean state of the T/I system. However, the penetration of GWs into the T/I system is not fully understood in modeling as well as <span class="hlt">observations</span>. In the current study, we analyze the correlation between GW momentum fluxes <span class="hlt">observed</span> in the middle atmosphere (30-90 km) and GW-induced perturbations in the T/I. In the middle atmosphere, GW momentum fluxes are derived from temperature <span class="hlt">observations</span> of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument. In the T/I, GW-induced perturbations are derived from neutral density measured by instruments on the Gravity field and Ocean Circulation Explorer (GOCE) and CHAllenging Minisatellite Payload (CHAMP) satellites. We find generally positive correlations between horizontal distributions at low altitudes (i.e., below 90 km) and horizontal distributions of GW-induced density fluctuations in the T/I (at 200 km and above). Two coupling mechanisms are likely responsible for these positive correlations: (1) fast GWs generated in the troposphere and lower stratosphere can propagate directly to the T/I and (2) primary GWs with their origins in the lower atmosphere dissipate while propagating upwards and generate secondary GWs, which then penetrate up to the T/I and maintain the spatial patterns of GW distributions in the lower atmosphere. The mountain-wave related hotspot over the Andes and Antarctic Peninsula is found clearly in <span class="hlt">observations</span> of all instruments used in our analysis. Latitude-longitude variations in the summer midlatitudes are also found in <span class="hlt">observations</span> of all instruments. These variations and strong positive correlations in the summer midlatitudes suggest that GWs with origins related to convection also propagate up to the T</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...612A.114P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...612A.114P"><span>Building CX peanut-shaped disk galaxy <span class="hlt">profiles</span>. The relative importance of the 3D families of periodic orbits bifurcating at the <span class="hlt">vertical</span> 2:1 resonance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patsis, P. A.; Harsoula, M.</p> <p>2018-05-01</p> <p>Context. We present and discuss the orbital content of a rather unusual rotating barred galaxy model, in which the three-dimensional (3D) family, bifurcating from x1 at the 2:1 <span class="hlt">vertical</span> resonance with the known "frown-smile" side-on morphology, is unstable. Aims: Our goal is to study the differences that occur in the phase space structure at the <span class="hlt">vertical</span> 2:1 resonance region in this case, with respect to the known, well studied, standard case, in which the families with the frown-smile <span class="hlt">profiles</span> are stable and support an X-shaped morphology. Methods: The potential used in the study originates in a frozen snapshot of an N-body simulation in which a fast bar has evolved. We follow the evolution of the <span class="hlt">vertical</span> stability of the central family of periodic orbits as a function of the energy (Jacobi constant) and we investigate the phase space content by means of spaces of section. Results: The two bifurcating families at the <span class="hlt">vertical</span> 2:1 resonance region of the new model change their stability with respect to that of most studied analytic potentials. The structure in the side-on view that is directly supported by the trapping of quasi-periodic orbits around 3D stable periodic orbits has now an infinity symbol (i.e. ∞-type) <span class="hlt">profile</span>. However, the available sticky orbits can reinforce other types of side-on morphologies as well. Conclusions: In the new model, the dynamical mechanism of trapping quasi-periodic orbits around the 3D stable periodic orbits that build the peanut, supports the ∞-type <span class="hlt">profile</span>. The same mechanism in the standard case supports the X shape with the frown-smile orbits. Nevertheless, in both cases (i.e. in the new and in the standard model) a combination of 3D quasi-periodic orbits around the stable x1 family with sticky orbits can support a <span class="hlt">profile</span> reminiscent of the shape of the orbits of the 3D unstable family existing in each model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020034155','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020034155"><span>TRMM Precipitation Radar and Microwave Imager <span class="hlt">Observations</span> of Convective and Stratiform Rain Over Land and Their Theoretical Implications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Weinman, J. A.; Lau, William K. M. (Technical Monitor)</p> <p>2001-01-01</p> <p><span class="hlt">Observations</span> of brightness temperature, Tb made over land regions by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer have been analyzed along with the nearly simultaneous measurements of the <span class="hlt">vertical</span> <span class="hlt">profiles</span> of reflectivity factor, Z, made by the Precipitation Radar (PR) onboard the TRMM satellite. This analysis is performed to explore the interrelationship between the TMI and PR data in areas that are covered predominantly by convective or stratiform rain. In particular, we have compared on a scale of 20 km, average <span class="hlt">vertical</span> <span class="hlt">profiles</span> of Z with the averages of Tbs in the 19, 37 and 85 GHz channels. Generally, we find from these data that as Z increases, Tbs in the three channels decrease due to extinction. In order to explain physically the relationship between the Tb and Z <span class="hlt">observations</span>, we have performed radiative transfer simulations utilizing <span class="hlt">vertical</span> <span class="hlt">profiles</span> of hydrometeors applicable to convective and stratiform rain regions. These <span class="hlt">profiles</span> are constructed taking guidance from the Z <span class="hlt">observations</span> of PR and recent LDR and ZDR measurements made by land-based polarimetric radars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JHyd..284...92T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JHyd..284...92T"><span><span class="hlt">Vertical</span> groundwater flow in Permo-Triassic sediments underlying two cities in the Trent River Basin (UK)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.</p> <p>2003-12-01</p> <p>The <span class="hlt">vertical</span> component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. <span class="hlt">Vertical</span> hydraulic gradients that control <span class="hlt">vertical</span> groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over <span class="hlt">observed</span> <span class="hlt">vertical</span> hydraulic gradients and, hence, <span class="hlt">vertical</span> groundwater flow. The direction and magnitude of <span class="hlt">vertical</span> hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow <span class="hlt">vertically</span> toward transmissive zones within the hydrostratigraphical <span class="hlt">profile</span> though urban abstraction from the Sherwood Sandstone aquifer also influences <span class="hlt">observed</span> <span class="hlt">vertical</span> hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is <span class="hlt">observed</span> over a one-year period and adds support the deduction of hydrostratigraphic control over <span class="hlt">vertical</span> groundwater flow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMGC13C0715N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMGC13C0715N"><span>A New Type of Captive Balloon for <span class="hlt">Vertical</span> Meteorological <span class="hlt">Observation</span> in Urban Area</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakamura, M.; Sakai, S.; Ono, K.</p> <p>2010-12-01</p> <p>Many meteorological <span class="hlt">observations</span> in urban area have been made in recent years in order to investigate the mechanism of heat island. However, there are few data of cooling process in urban area. For this purpose, high density <span class="hlt">observations</span> in both space and time are required. Generally <span class="hlt">vertical</span> meteorological <span class="hlt">observations</span> can be made by towers, radars, balloons. These methods are limited by urban area conditions. Among these methods, a captive balloon is mainly used to about a hundred meter from ground in a <span class="hlt">vertical</span> meteorological <span class="hlt">observation</span>. Small airships called kytoons or advertising balloons, for example. Conventional balloons are, however, influenced by the wind and difficult to keep the specified position. Moreover, it can be dangerous to conduct such <span class="hlt">observations</span> in the highly build-up area. To overcome these difficulties, we are developing a new type of captive balloon. It has a wing form to gain lift and keep its position. It is also designed small to be kept in a carport. It is made of aluminum film and polyester cloth in order to attain lightweight solution. We have tried floating a balloon like NACA4424 for several years. It was difficult to keep a wing form floating up over 100 meters from ground because internal pressure was decreased by different temperature. The design is changed in this year. The balloon that has wing form NACA4415 is similar in composition to an airplane. It has a big gasbag with airship form and two wing form. It is able to keep form of a wing by high internal pressure. We will report a plan for the balloon and instances of some <span class="hlt">observations</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860019853','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860019853"><span><span class="hlt">Observations</span> of <span class="hlt">vertical</span> winds and the origin of thermospheric gravity waves launched by auroral substorms and westward travelling surges</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rees, D.</p> <p>1986-01-01</p> <p>Several sequences of <span class="hlt">observations</span> of strong <span class="hlt">vertical</span> winds in the upper thermosphere are discussed, in conjunction with models of the generation of such winds. In the auroral oval, the strongest upward winds are <span class="hlt">observed</span> in or close to regions of intense auroral precipitation and strong ionospheric currents. The strongest winds, of the order of 100 to 200 m/sec are usually upward, and are both localized and of relatively short duration (10 to 20 min). In regions adjacent to those displaying strong upward winds, and following periods of upward winds, downward winds of rather lower magnitude (40 to about 80 m/sec) may be <span class="hlt">observed</span>. Strong and rapid changes of horizontal winds are correlated with these rapid <span class="hlt">vertical</span> wind variations. Considered from a large scale viewpoint, this class of strongly time dependent winds propagate globally, and may be considered to be gravity waves launched from an auroral source. During periods of very disturbed geomagnetic activity, there may be regions within and close to the auroral oval where systematic <span class="hlt">vertical</span> winds of the order of 50 m/sec will occur for periods of several hours. Such persistent winds are part of a very strong large scale horizontal wind circulation set up in the polar regions during a major geomagnetic disturbance. This second class of strong horizontal and <span class="hlt">vertical</span> winds corresponds more to a standing wave than to a gravity wave, and it is not as effective as the first class in generating large scale propagating gravity waves and correlated horizontal and <span class="hlt">vertical</span> oscillations. A third class of significant (10 to 30 m/sec) <span class="hlt">vertical</span> winds can be associated with systematic features of the average geomagnetic energy and momentum input to the polar thermosphere, and appear in statistical studies of the average <span class="hlt">vertical</span> wind as a function of Universal Time at a given location.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS51C0990T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS51C0990T"><span><span class="hlt">Vertical</span> Structure and Dynamics of the Beaufort Gyre Subsurface Layer from ADCP Obervations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres, D. J.; Krishfield, R. A.; Proshutinsky, A. Y.; Timmermans, M. L. E.</p> <p>2014-12-01</p> <p>As part of the Beaufort Gyre <span class="hlt">Observing</span> System (BGOS), several Acoustic Doppler Current <span class="hlt">Profilers</span> (ADCPs) have been maintained at moorings in different locations in the Canada Basin since 2005 to measure upper ocean velocities and sea ice motion. The ADCP data have been analyzed to better understand relationships among different components of forcing driving the sea ice and upper ocean layer including: winds, tides, and horizontal and <span class="hlt">vertical</span> density gradients in the ocean. Specific attention is paid to data processing and analysis to separate inertial and tidal motions in these regions in the vicinity of the critical latitudes. In addition, we describe the dynamic characteristics of halocline eddies and estimate their kinetic energy and their role in the total energy balance in this region. Ice-Tethered <span class="hlt">Profiler</span> (ITP) data are used in conjunction with the ADCP measurements to identify relationships between T-S and <span class="hlt">vertical</span> velocity structures in the mixed layer and deeper. Seasonal and interannual variability in all parameters are also discussed and causes of <span class="hlt">observed</span> changes are suggested.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H33F1459S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H33F1459S"><span>Temporal Variability in <span class="hlt">Vertical</span> Groundwater Fluxes and the Effect of Solar Radiation on Streambed Temperatures Based on <span class="hlt">Vertical</span> High Resolution Distributed Temperature Sensing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.</p> <p>2013-12-01</p> <p> and heat transport model (HydroGeoSphere). Subsequently, time series of <span class="hlt">vertical</span> groundwater fluxes were computed based on the high-resolution <span class="hlt">vertical</span> streambed sediment temperature <span class="hlt">profiles</span> by coupling the model with PEST. The calculated <span class="hlt">vertical</span> flux time series show spatial differences in discharge between the two HR-DTS sites. A similar temporal variability in <span class="hlt">vertical</span> fluxes at the two test sites can also be <span class="hlt">observed</span>, most likely linked to rainfall-runoff processes. The effect of solar radiation as streambed conduction is visible both at the exposed and shaded test site in form of increased diel temperature oscillations up to 14 cm depth from the streambed surface, with the test site exposed to solar radiation showing larger diel temperature oscillations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=87127&keyword=multi+AND+location&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=87127&keyword=multi+AND+location&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>GROUND WATER SAMPLING FOR <span class="hlt">VERTICAL</span> <span class="hlt">PROFILING</span> OF CONTAMINANTS</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Accurate delineation of plume boundaries and <span class="hlt">vertical</span> contaminant distribution are necessary in order to adequately characterize waste sites and determine remedial strategies to be employed. However, it is important to consider the sampling objectives, sampling methods, and sampl...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.A21H..07T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.A21H..07T"><span>Nocturnal <span class="hlt">Vertical</span> Gradients of O3, NO2, NO3, HONO, HCHO, and SO2 in Los Angeles, CA, during CalNex 2010</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsai, J.; Pikelnaya, O.; Hurlock, S. C.; Wong, K.; Cheung, R.; Haman, C. L.; Lefer, B. L.; Stutz, J.</p> <p>2010-12-01</p> <p>Nocturnal chemistry, through the conversion and removal of air pollutants, plays an important role in determining the initial condition for photochemistry during the following day. In the stable nocturnal boundary layer (NBL) the interplay between suppressed <span class="hlt">vertical</span> mixing and surface emissions of NOx and VOCs can result in pronounced <span class="hlt">vertical</span> trace gas <span class="hlt">profiles</span>. The resulting altitude dependence of nocturnal chemistry makes the interpretation of ground <span class="hlt">observations</span> challenging. In particular, the quantification of the nocturnal loss of NOx, due to NO3 and N2O5 chemistry, requires <span class="hlt">observations</span> throughout the entire <span class="hlt">vertical</span> extent of the NBL. The formation of daytime radical precursors, such as HONO, is also altitude dependent. An accurate assessment of their impact on daytime chemistry requires measurements of their <span class="hlt">profiles</span> during the night and morning. Here we present <span class="hlt">observations</span> from the CalNex-LA experiment, which took place from May 15 to June 15, 2010 on the east side of the Los Angeles Basin, CA. A Long-Path Differential Optical Absorption Spectrometer (LP-DOAS) was set up on the roof of the Millikan library (265 m asl, 35m agl) on the campus of the California Institute of Technology. Four retroreflector arrays were mounted about 5 -7 km North-East of the instrument at 310m, 353m, 487m and 788 m asl. The <span class="hlt">vertical</span> <span class="hlt">profiles</span> of NO3, HONO, NO2, O3, HCHO, and SO2 were retrieved at altitude intervals of 35-78m, 78-121m, 121-255m and 255-556m above the ground. During many nights <span class="hlt">vertical</span> gradients were <span class="hlt">observed</span>, with elevated NO2 and HONO concentrations near the surface and larger ozone and NO3 concentrations aloft. Simultaneous ceilometer <span class="hlt">observations</span> of the NBL structure show the impact of meteorology on the <span class="hlt">vertical</span> trace gas distributions. We will discuss the consequences of trace gases gradients on the nocturnal NOx budget.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO13C..05B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO13C..05B"><span>Retrieving Mesoscale <span class="hlt">Vertical</span> Velocities along the Antarctic Circumpolar Current from a Combination of Satellite and In Situ <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buongiorno Nardelli, B.; Iudicone, D.; Cotroneo, Y.; Zambianchi, E.; Rio, M. H.</p> <p>2016-02-01</p> <p>In the framework of the Italian National Program on Antarctic Research (PNRA), an analysis of the mesoscale dynamics along the Antarctic Circumpolar Current has been carried out starting from a combination of satellite and in situ <span class="hlt">observations</span>. More specifically, state-of-the-art statistical techniques have been used to combine remotely-sensed sea surface temperature, salinity and absolute dynamical topography with in situ Argo data, providing mesoscale-resolving 3D tracers and geostrophic velocity fields. The 3D reconstruction has been validated with independent data collected during PNRA surveys. These data are then used to diagnose the <span class="hlt">vertical</span> exchanges in the Southern Ocean through a generalized version of the Omega equation. Intense <span class="hlt">vertical</span> motion (O(100 m/day)) is found along the ACC, upstream/downstream of its meanders, and within mesoscale eddies, where multipolar <span class="hlt">vertical</span> velocity patterns are generally <span class="hlt">observed</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/40995','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/40995"><span>The temperature <span class="hlt">profile</span> in a forest</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>H.A. Fowells</p> <p>1948-01-01</p> <p>The temperature <span class="hlt">profile</span> of a mature forest seldom has been <span class="hlt">observed</span>. Temperatures at specific locations are of interest to the forester because they may help explain many phenomena, such as growth or death of seedlings and freezing of terminals and floral parts of trees. The opportunity to combine a <span class="hlt">vertical</span> succession of such temperature measurements into a...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21864958','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21864958"><span><span class="hlt">Vertical</span> distribution of hydrocarbons in the low troposphere below and above the mixing height: tethered balloon measurements in Milan, Italy.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sangiorgi, G; Ferrero, L; Perrone, M G; Bolzacchini, E; Duane, M; Larsen, B R</p> <p>2011-12-01</p> <p>A novel approach for measuring <span class="hlt">vertical</span> <span class="hlt">profiles</span> of HCs and particle number concentrations was described and applied in the low troposphere over Milan (Italy) during typical spring and summer days. Particle <span class="hlt">profiles</span> yielded nearly homogeneous concentrations below the mixing height, with level-to-ground concentration ratios of 92-97%, while HCs showed a more pronounced decrease (74-95%). <span class="hlt">Vertical</span> mixing and photochemical loss of HCs were demonstrated to cause these gradients. Much lower concentrations were <span class="hlt">observed</span> for the <span class="hlt">profiles</span> above the mixing height, where the HC mixtures showed also a different composition, which was partially explained by the horizontal advection of air with HC sources different to those prevailing at the site. The application of pseudo-first order kinetics for reactions between HCs and the hydroxyl radical allowed for the estimation of the <span class="hlt">vertical</span> mixing time scale in the order of 100 ± 20 min. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AcAau.146..289M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AcAau.146..289M"><span>Trajectory optimization for lunar rover performing <span class="hlt">vertical</span> takeoff <span class="hlt">vertical</span> landing maneuvers in the presence of terrain</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Lin; Wang, Kexin; Xu, Zuhua; Shao, Zhijiang; Song, Zhengyu; Biegler, Lorenz T.</p> <p>2018-05-01</p> <p>This study presents a trajectory optimization framework for lunar rover performing <span class="hlt">vertical</span> takeoff <span class="hlt">vertical</span> landing (VTVL) maneuvers in the presence of terrain using variable-thrust propulsion. First, a VTVL trajectory optimization problem with three-dimensional kinematics and dynamics model, boundary conditions, and path constraints is formulated. Then, a finite-element approach transcribes the formulated trajectory optimization problem into a nonlinear programming (NLP) problem solved by a highly efficient NLP solver. A homotopy-based backtracking strategy is applied to enhance the convergence in solving the formulated VTVL trajectory optimization problem. The optimal thrust solution typically has a "bang-bang" <span class="hlt">profile</span> considering that bounds are imposed on the magnitude of engine thrust. An adaptive mesh refinement strategy based on a constant Hamiltonian <span class="hlt">profile</span> is designed to address the difficulty in locating the breakpoints in the thrust <span class="hlt">profile</span>. Four scenarios are simulated. Simulation results indicate that the proposed trajectory optimization framework has sufficient adaptability to handle VTVL missions efficiently.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS31F1780V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS31F1780V"><span>A Self-Powered Fast-Sampling <span class="hlt">Profiling</span> Float in support of a Mesoscale Ocean <span class="hlt">Observing</span> System in the Western North Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valdez, T.; Chao, Y.; Davis, R. E.; Jones, J.</p> <p>2012-12-01</p> <p>This talk will describe a new self-powered <span class="hlt">profiling</span> float that can perform fast sampling over the upper ocean for long durations in support of a mesoscale ocean <span class="hlt">observing</span> system in the Western North Pacific. The current state-of-the-art <span class="hlt">profiling</span> floats can provide several hundreds <span class="hlt">profiles</span> for the upper ocean every ten days. To quantify the role of the upper ocean in modulating the development of Typhoons requires at least an order of magnitude reduction for the sampling interval. With today's <span class="hlt">profiling</span> float and battery technology, a fast sampling of one day or even a few hours will reduce the typical lifetime of <span class="hlt">profiling</span> floats from years to months. Interactions between the ocean and typhoons often involves mesoscale eddies and fronts, which require a dense array of floats to reveal the 3-dimensional structure. To measure the mesoscale ocean over a large area like the Western North Pacific therefore requires a new technology that enables fast sampling and long duration at the same time. Harvesting the ocean renewable energy associated with the <span class="hlt">vertical</span> temperature differentials has the potential to power <span class="hlt">profiling</span> floats with fast sampling over long durations. Results from the development and deployment of a prototype self-powered <span class="hlt">profiling</span> float (known as SOLO-TREC) will be presented. With eight hours sampling in the upper 500 meters, the upper ocean temperature and salinity reveal pronounced high frequency variations. Plans to use the SOLO-TREC technology in support of a dense array of fast sampling <span class="hlt">profiling</span> floats in the Western North Pacific will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H21E1513W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H21E1513W"><span>A <span class="hlt">Vertical</span> Census of Precipitation Characteristics using Ground-based Dual-polarimetric Radar Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolff, D. B.; Petersen, W. A.; Marks, D. A.; Pippitt, J. L.; Tokay, A.; Gatlin, P. N.</p> <p>2017-12-01</p> <p>Characterization of the <span class="hlt">vertical</span> structure/variability of precipitation and resultant microphysics is critical in providing physical validation of space-based precipitation retrievals. In support of NASAs Global Precipitation Measurement (GPM) mission Ground Validation (GV) program, NASA has invested in a state-of-art dual-polarimetric radar known as NPOL. NPOL is routinely deployed on the Delmarva Peninsula in support of NASAs GPM Precipitation Research Facility (PRF). NPOL has also served as the backbone of several GPM field campaigns in Oklahoma, Iowa, South Carolina and most recently in the Olympic Mountains in Washington state. When precipitation is present, NPOL obtains very high-resolution <span class="hlt">vertical</span> <span class="hlt">profiles</span> of radar <span class="hlt">observations</span> (e.g. reflectivity (ZH) and differential reflectivity (ZDR)), from which important particle size distribution parameters are retrieved such as the mass-weight mean diameter (Dm) and the intercept parameter (Nw). These data are then averaged horizontally to match the nadir resolution of the dual-frequency radar (DPR; 5 km) on board the GPM satellite. The GPM DPR, Combined, and radiometer algorithms (such as GPROF) rely on functional relationships built from assumed parametric relationships and/or retrieved parameter <span class="hlt">profiles</span> and spatial distributions of particle size (PSD), water content, and hydrometeor phase within a given sample volume. Thus, the NPOL-retrieved <span class="hlt">profiles</span> provide an excellent tool for characterization of the <span class="hlt">vertical</span> <span class="hlt">profile</span> structure and variability during GPM overpasses. In this study, we will use many such overpass comparisons to quantify an estimate of the true sub-IFOV variability as a function of hydrometeor and rain type (convective or stratiform). This presentation will discuss the development of a relational database to help provide a census of the <span class="hlt">vertical</span> structure of precipitation via analysis and correlation of reflectivity, differential reflectivity, mean-weight drop diameter and the normalized</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150019778','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150019778"><span>TOLNet - A Tropospheric Ozone Lidar <span class="hlt">Profiling</span> Network for Satellite Continuity and Process Studies</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newchurch, Michael J.; Kuang, Shi; Wang, Lihua; LeBlanc, Thierry; Alvarez II, Raul J.; Langford, Andrew O.; Senff, Christoph J.; Brown, Steve; Johnson, Bryan; Burris, John F.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150019778'); toggleEditAbsImage('author_20150019778_show'); toggleEditAbsImage('author_20150019778_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150019778_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150019778_hide"></p> <p>2015-01-01</p> <p>NASA initiated an interagency ozone lidar <span class="hlt">observation</span> network under the name TOLNet to promote cooperative multiple-station ozone-lidar <span class="hlt">observations</span> to provide highly time-resolved (few minutes) tropospheric-ozone <span class="hlt">vertical</span> <span class="hlt">profiles</span> useful for air-quality studies, model evaluation, and satellite validation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25b2516P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25b2516P"><span>Algebraic motion of <span class="hlt">vertically</span> displacing plasmas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pfefferlé, D.; Bhattacharjee, A.</p> <p>2018-02-01</p> <p>The <span class="hlt">vertical</span> motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and <span class="hlt">profiles</span> are assumed not to vary during the <span class="hlt">vertical</span> drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to come in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive <span class="hlt">vertical</span> instability, is succeeded by a non-linear "sinking" behaviour shown to be algebraic and decelerating. The acceleration of the plasma column often <span class="hlt">observed</span> in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3590876','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3590876"><span>How Informative are the <span class="hlt">Vertical</span> Buoyancy and the Prone Gliding Tests to Assess Young Swimmers’ Hydrostatic and Hydrodynamic <span class="hlt">Profiles</span>?</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Barbosa, Tiago M.; Costa, Mário J.; Morais, Jorge E; Moreira, Marc; Silva, António J.; Marinho, Daniel A.</p> <p>2012-01-01</p> <p>The aim of this research was to develop a path-flow analysis model to highlight the relationships between buoyancy and prone gliding tests and some selected anthropometrical and biomechanical variables. Thirty-eight young male swimmers (12.97 ± 1.05 years old) with several competitive levels were evaluated. It were assessed the body mass, height, fat mass, body surface area, <span class="hlt">vertical</span> buoyancy, prone gliding after wall push-off, stroke length, stroke frequency and velocity after a maximal 25 [m] swim. The confirmatory model included the body mass, height, fat mass, prone gliding test, stroke length, stroke frequency and velocity. All theoretical paths were verified except for the <span class="hlt">vertical</span> buoyancy test that did not present any relationship with anthropometrical and biomechanical variables nor with the prone gliding test. The good-of-fit from the confirmatory path-flow model, assessed with the standardized root mean square residuals (SRMR), is considered as being close to the cut-off value, but even so not suitable of the theory (SRMR = 0.11). As a conclusion, <span class="hlt">vertical</span> buoyancy and prone gliding tests are not the best techniques to assess the swimmer’s hydrostatic and hydrodynamic <span class="hlt">profile</span>, respectively. PMID:23486528</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7624E..3CH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7624E..3CH"><span><span class="hlt">Vertical</span> cup-to-disc ratio measurement for diagnosis of glaucoma on fundus images</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hatanaka, Yuji; Noudo, Atsushi; Muramatsu, Chisako; Sawada, Akira; Hara, Takeshi; Yamamoto, Tetsuya; Fujita, Hiroshi</p> <p>2010-03-01</p> <p>Glaucoma is a leading cause of permanent blindness. Retinal fundus image examination is useful for early detection of glaucoma. In order to evaluate the presence of glaucoma, the ophthalmologists determine the cup and disc areas and they diagnose glaucoma using a <span class="hlt">vertical</span> cup-to-disc ratio. However, determination of the cup area is very difficult, thus we propose a method to measure the cup-to-disc ratio using a <span class="hlt">vertical</span> <span class="hlt">profile</span> on the optic disc. First, the blood vessels were erased from the image and then the edge of optic disc was then detected by use of a canny edge detection filter. Twenty <span class="hlt">profiles</span> were then obtained around the center of the optic disc in the <span class="hlt">vertical</span> direction on blue channel of the color image, and the <span class="hlt">profile</span> was smoothed by averaging these <span class="hlt">profiles</span>. After that, the edge of the cup area on the <span class="hlt">vertical</span> <span class="hlt">profile</span> was determined by thresholding technique. Lastly, the <span class="hlt">vertical</span> cup-to-disc ratio was calculated. Using seventy nine images, including twenty five glaucoma images, the sensitivity of 80% and a specificity of 85% were achieved with this method. These results indicated that this method can be useful for the analysis of the optic disc in glaucoma examinations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26301371','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26301371"><span>Estimating Oceanic Primary Production Using <span class="hlt">Vertical</span> Irradiance and Chlorophyll <span class="hlt">Profiles</span> from Ocean Gliders in the North Atlantic.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hemsley, Victoria S; Smyth, Timothy J; Martin, Adrian P; Frajka-Williams, Eleanor; Thompson, Andrew F; Damerell, Gillian; Painter, Stuart C</p> <p>2015-10-06</p> <p>An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence <span class="hlt">vertical</span> <span class="hlt">profiles</span>. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope ((13)C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110011688','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110011688"><span>A New Inversion Routine to Produce <span class="hlt">Vertical</span> Electron-Density <span class="hlt">Profiles</span> from Ionospheric Topside-Sounder Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Yongli; Benson, Robert F.</p> <p>2011-01-01</p> <p>Two software applications have been produced specifically for the analysis of some million digital topside ionograms produced by a recent analog-to-digital conversion effort of selected analog telemetry tapes from the Alouette-2, ISIS-1 and ISIS-2 satellites. One, TOPIST (TOPside Ionogram Scalar with True-height algorithm) from the University of Massachusetts Lowell, is designed for the automatic identification of the topside-ionogram ionospheric-reflection traces and their inversion into <span class="hlt">vertical</span> electron-density <span class="hlt">profiles</span> Ne(h). TOPIST also has the capability of manual intervention. The other application, from the Goddard Space Flight Center based on the FORTRAN code of John E. Jackson from the 1960s, is designed as an IDL-based interactive program for the scaling of selected digital topside-sounder ionograms. The Jackson code has also been modified, with some effort, so as to run on modern computers. This modification was motivated by the need to scale selected ionograms from the millions of Alouette/ISIS topside-sounder ionograms that only exist on 35-mm film. During this modification, it became evident that it would be more efficient to design a new code, based on the capabilities of present-day computers, than to continue to modify the old code. Such a new code has been produced and here we will describe its capabilities and compare Ne(h) <span class="hlt">profiles</span> produced from it with those produced by the Jackson code. The concept of the new code is to assume an initial Ne(h) and derive a final Ne(h) through an iteration process that makes the resulting apparent-height <span class="hlt">profile</span> fir the scaled values within a certain error range. The new code can be used on the X-, O-, and Z-mode traces. It does not assume any predefined <span class="hlt">profile</span> shape between two contiguous points, like the exponential rule used in Jackson s program. Instead, Monotone Piecewise Cubic Interpolation is applied in the global <span class="hlt">profile</span> to keep the monotone nature of the <span class="hlt">profile</span>, which also ensures better smoothness</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ACP.....9.8785D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ACP.....9.8785D"><span>Regional N2O fluxes in Amazonia derived from aircraft <span class="hlt">vertical</span> <span class="hlt">profiles</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>D'Amelio, M. T. S.; Gatti, L. V.; Miller, J. B.; Tans, P.</p> <p>2009-11-01</p> <p>Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rainforest ecosystems, like the Amazon forest. The work presented here involves aircraft <span class="hlt">vertical</span> <span class="hlt">profiles</span> of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajós National Forest (SAN) and Cuieiras Biologic Reserve (MAN), and the estimation of N2O fluxes for regions upwind of these sites. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. The fluxes upwind of MAN exhibited little seasonality, and the annual mean was 2.1±1.0 mg N2O m-2 day-1, higher than that for fluxes upwind of SAN, which averaged 1.5±1.6 mg N2O m-2 day-1. The higher rainfall around the MAN site could explain the higher N2O emissions, as a result of increased soil moisture accelerating microbial nitrification and denitrification processes. For fluxes from the coast to SAN seasonality is present for all years, with high fluxes in the months of March through May, and in November through December. The first peak of N2O flux is strongly associated with the wet season. The second peak of high N2O flux recorded at SAN occurs during the dry season and can not be easily explained. However, about half of the dry season <span class="hlt">profiles</span> exhibit significant correlations with CO, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all <span class="hlt">profiles</span> sampled during the dry season is 94±77 mol CO:mol N2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ACPD....917429D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ACPD....917429D"><span>Regional N2O fluxes in Amazonia derived from aircraft <span class="hlt">vertical</span> <span class="hlt">profiles</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>D'Amelio, M. T. S.; Gatti, L. V.; Miller, J. B.; Tans, P.</p> <p>2009-08-01</p> <p>Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rainforest ecosystems, like the Amazon forest. The work presented here involves aircraft <span class="hlt">vertical</span> <span class="hlt">profiles</span> of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajós National Forest (SAN) and Cuieiras Biologic Reserve (MAN), and the estimation of N2O fluxes for regions upwind of these sites. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. The fluxes upwind of MAN exhibited little seasonality, and the annual mean was 2.1±1.0 mg N2O m-2 day-1, higher than that for fluxes upwind of SAN, which averaged 1.5±1.6 mg N2O m-2 day-1. The higher rainfall around the MAN site could explain the higher N2O emissions. For fluxes from the coast to SAN seasonality is present for all years, with high fluxes in the months of March through May, and in November through December. The first peak of N2O flux is strongly associated with the wet season. The second peak of high N2O flux recorded at SAN occurs during the dry season and can not be easily explained. However, about half of the dry season <span class="hlt">profiles</span> exhibit significant correlations with CO, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all <span class="hlt">profiles</span> sampled during the dry season is 94±77 mol CO:mol N2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20652426','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20652426"><span><span class="hlt">Vertical</span> transport of ozone and CO during super cyclones in the Bay of Bengal as detected by Tropospheric Emission Spectrometer.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fadnavis, S; Beig, G; Buchunde, P; Ghude, Sachin D; Krishnamurti, T N</p> <p>2011-02-01</p> <p><span class="hlt">Vertical</span> <span class="hlt">profiles</span> of carbon monoxide (CO) and ozone retrieved from Tropospheric Emission Spectrometer have been analyzed during two super cyclone systems Mala and Sidr. Super cyclones Mala and Sidr traversed the Bay of Bengal (BOB) region on April 24-29, 2006 and November 12-16, 2007 respectively. The CO and ozone plume is <span class="hlt">observed</span> as a strong enhancement of these pollutants in the upper troposphere over the BOB, indicating deep convective transport. Longitude-height cross-section of these pollutants shows <span class="hlt">vertical</span> transport to the upper troposphere. CO mixing ratio ~90 ppb is <span class="hlt">observed</span> near the 146-mb level during the cyclone Mala and near 316 mb during the cyclone Sidr. Ozone mixing ratio ~60-100 ppb is <span class="hlt">observed</span> near the 316-mb level during both the cyclones. Analysis of National Centers for Environmental Prediction (NCEP) reanalysis <span class="hlt">vertical</span> winds (omega) confirms <span class="hlt">vertical</span> transport in the BOB.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1337240-what-controls-vertical-distribution-aerosol-relationships-between-process-sensitivity-hadgem3ukca-inter-model-variation-from-aerocom-phase-ii','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1337240-what-controls-vertical-distribution-aerosol-relationships-between-process-sensitivity-hadgem3ukca-inter-model-variation-from-aerocom-phase-ii"><span>What controls the <span class="hlt">vertical</span> distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kipling, Zak; Stier, Philip; Johnson, Colin E.; ...</p> <p>2016-02-26</p> <p>The <span class="hlt">vertical</span> <span class="hlt">profile</span> of aerosol is important for its radiative effects, but weakly constrained by <span class="hlt">observations</span> on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3–UKCA and compare the resulting diversity of aerosol <span class="hlt">vertical</span> <span class="hlt">profiles</span> with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the <span class="hlt">vertical</span> <span class="hlt">profile</span> is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficientlymore » coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean <span class="hlt">profile</span> and, to a lesser extent, the zonal-mean <span class="hlt">vertical</span> position. However, there are features of certain models' <span class="hlt">profiles</span> that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3–UKCA, convective transport is found to be very important in controlling the <span class="hlt">vertical</span> <span class="hlt">profile</span> of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The <span class="hlt">vertical</span> extent of biomass-burning emissions into the free troposphere is also important for the <span class="hlt">profile</span> of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the <span class="hlt">profile</span> of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the <span class="hlt">vertical</span> <span class="hlt">profile</span> of the smallest particles by number (e.g. total CN > 3 nm), while the <span class="hlt">profiles</span> of larger particles (e.g. CN > 100 nm) are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.8801W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.8801W"><span>The impact of aerosol <span class="hlt">vertical</span> distribution on aerosol optical depth retrieval using CALIPSO and MODIS data: Case study over dust and smoke regions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Yerong; de Graaf, Martin; Menenti, Massimo</p> <p>2017-08-01</p> <p>Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) <span class="hlt">observations</span> for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection 6 (C6) can still be biased, because of uncertainty in assumed aerosol optical properties and aerosol <span class="hlt">vertical</span> distribution. This study investigates the impact of aerosol <span class="hlt">vertical</span> distribution on the AOD retrieval. We developed a new algorithm by considering dynamic <span class="hlt">vertical</span> <span class="hlt">profiles</span>, which is an adaptation of MODIS C6 Dark Target (C6_DT) algorithm over land. The new algorithm makes use of the aerosol <span class="hlt">vertical</span> <span class="hlt">profile</span> extracted from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite <span class="hlt">Observation</span> (CALIPSO) measurements to generate an accurate top of the atmosphere (TOA) reflectance for the AOD retrieval, where the <span class="hlt">profile</span> is assumed to be a single layer and represented as a Gaussian function with the mean height as single variable. To test the impact, a comparison was made between MODIS DT and Aerosol Robotic Network (AERONET) AOD, over dust and smoke regions. The results show that the aerosol <span class="hlt">vertical</span> distribution has a strong impact on the AOD retrieval. The assumed aerosol layers close to the ground can negatively bias the retrievals in C6_DT. Regarding the evaluated smoke and dust layers, the new algorithm can improve the retrieval by reducing the negative biases by 3-5%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8484H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8484H"><span>Comparison of MAX-DOAS <span class="hlt">profiling</span> algorithms during CINDI-2 - Part 2: trace gases</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hendrick, Francois; Friess, Udo; Tirpitz, Lukas; Apituley, Arnoud; Van Roozendael, Michel; Kreher, Karin; Richter, Andreas; Wagner, Thomas</p> <p>2017-04-01</p> <p>The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. CINDI-2 was aiming at assessing the consistency of MAX-DOAS slant column density measurements of tropospheric species (NO2, HCHO, O3, and O4) relevant for the validation of future ESA atmospheric Sentinel missions, through coordinated operation of a large number of DOAS and MAXDOAS instruments from all over the world. An important objective of the campaign was to study the relationship between remote-sensing column and <span class="hlt">profile</span> measurements of the above species and collocated reference ancillary <span class="hlt">observations</span>. For this purpose, the CINDI-2 <span class="hlt">Profiling</span> Task Team (CPTT) was created, involving 22 groups performing aerosol and trace gas <span class="hlt">vertical</span> <span class="hlt">profile</span> inversion using dedicated MAX-DOAS <span class="hlt">profiling</span> algorithms, as well as the teams responsible for ancillary <span class="hlt">profile</span> and surface concentration measurements (NO2 analysers, NO2 sondes, NO2 and Raman LIDARs, CAPS, Long-Path DOAS, sunphotometer, nephelometer, etc). The main purpose of the CPTT is to assess the consistency of the different <span class="hlt">profiling</span> tools for retrieving aerosol extinction and trace gas <span class="hlt">vertical</span> <span class="hlt">profiles</span> through comparison exercises using commonly defined settings and to validate the retrievals with correlative <span class="hlt">observations</span>. In this presentation, we give an overview of the MAX-DOAS <span class="hlt">vertical</span> <span class="hlt">profile</span> comparison results, focusing on NO2 and HCHO, the aerosol retrievals being presented in a companion abstract led by U. Frieß. The performance of the different algorithms is investigated with respect to the various sky and weather conditions and aerosol loadings encountered during the campaign. The consistency between optimal-estimation-based and parameterized <span class="hlt">profiling</span> tools is also evaluated for these different conditions, together with the level of agreement with available NO2 and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EPJWC.11923025S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EPJWC.11923025S"><span>The Potential of The Synergy of Sunphotometer and Lidar Data to Validate <span class="hlt">Vertical</span> <span class="hlt">Profiles</span> of The Aerosol Mass Concentration Estimated by An Air Quality Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.</p> <p>2016-06-01</p> <p><span class="hlt">Vertical</span> <span class="hlt">profiles</span> of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration <span class="hlt">profiles</span> estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060026407&hterms=kaufman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dkaufman','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060026407&hterms=kaufman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dkaufman"><span>What does reflection from cloud sides tell us about <span class="hlt">vertical</span> distribution of cloud droplets?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marshak, A.; Kaufman, Yoram; Martins, V.; Zubko, Victor</p> <p>2006-01-01</p> <p>In order to accurately measure the interaction of clouds with aerosols, we have to resolve the <span class="hlt">vertical</span> distribution of cloud droplet sizes and determine the temperature of glaciation for clean and polluted clouds. Knowledge of the droplet <span class="hlt">vertical</span> <span class="hlt">profile</span> is also essential for understanding precipitation. So far, all existing satellites either measure cloud microphysics only at cloud top (e.g., MODIS) or give a <span class="hlt">vertical</span> <span class="hlt">profile</span> of precipitation sized droplets (e.g., Cloudsat). What if one measures cloud microphysical properties in the <span class="hlt">vertical</span> by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides? This was the idea behind CLAIM-3D (A 3D - cloud aerosol interaction mission) recently proposed by NASA GSFC. This presentation will focus on the interpretation of the radiation reflected from cloud sides. In contrast to plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer will be used for interpreting the <span class="hlt">observed</span> reflectances. As a proof of concept, we will show a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with prescribed microphysics. Instead of fixed values of the retrieved effective radii, the probability density functions of droplet size distributions will serve as possible retrievals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720017736','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720017736"><span><span class="hlt">Vertical</span> <span class="hlt">profiles</span> of wind and temperature by remote acoustical sounding</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fox, H. L.</p> <p>1969-01-01</p> <p>An acoustical method was investigated for obtaining meteorological soundings based on the refraction due to the <span class="hlt">vertical</span> variation of wind and temperature. The method has the potential of yielding horizontally averaged measurements of the <span class="hlt">vertical</span> variation of wind and temperature up to heights of a few kilometers; the averaging takes place over a radius of 10 to 15 km. An outline of the basic concepts and some of the results obtained with the method are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/175644-development-em-tomography-system-vertical-electromagnetic-profiling-vemp-method','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/175644-development-em-tomography-system-vertical-electromagnetic-profiling-vemp-method"><span>Development of the EM tomography system by the <span class="hlt">vertical</span> electromagnetic <span class="hlt">profiling</span> (VEMP) method</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Miura, Y.; Osato, K.; Takasugi, S.</p> <p>1995-12-31</p> <p>As a part of the {open_quotes}Deep-Seated Geothermal Resources Survey{close_quotes} project being undertaken by the NEDO, the <span class="hlt">Vertical</span> ElectroMagnetic <span class="hlt">Profiling</span> (VEMP) method is being developed to accurately obtain deep resistivity structure. The VEMP method acquires multi-frequency three-component magnetic field data in an open hole well using controlled sources (loop sources or grounded-wire sources) emitted at the surface. Numerical simulation using EM3D demonstrated that phase data of the VEMP method is very sensitive to resistivity structure and the phase data will also indicate presence of deep anomalies. Forward modelling was also used to determine required transmitter moments for various grounded-wire and loopmore » sources for a field test using the WD-1 well in the Kakkonda geothermal area. Field logging of the well was carried out in May 1994 and the processed field data matches well the simulated data.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150006978&hterms=water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26Nf%3DPublication-Date%257CBTWN%2B20110101%2B20111231%26N%3D0%26No%3D20%26Ntt%3Dwater','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150006978&hterms=water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26Nf%3DPublication-Date%257CBTWN%2B20110101%2B20111231%26N%3D0%26No%3D20%26Ntt%3Dwater"><span><span class="hlt">Vertical</span> Distribution of Water at Phoenix</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tamppari, L. K.; Lemmon, M. T.</p> <p>2011-01-01</p> <p>Phoenix results, combined with coordinated <span class="hlt">observations</span> from the Mars Reconnaissance Orbiter of the Phoenix lander site, indicate that the water vapor is nonuniform (i.e., not well mixed) up to a calculated cloud condensation level. It is important to understand the mixing <span class="hlt">profile</span> of water vapor because (a) the assumption of a well-mixed atmosphere up to a cloud condensation level is common in retrievals of column water abundances which are in turn used to understand the seasonal and interannual behavior of water, (b) there is a long history of <span class="hlt">observations</span> and modeling that conclude both that water vapor is and is not well-mixed, and some studies indicate that the water vapor <span class="hlt">vertical</span> mixing <span class="hlt">profile</span> may, in fact, change with season and location, (c) the water vapor in the lowest part of the atmosphere is the reservoir that can exchange with the regolith and higher amounts may have an impact on the surface chemistry, and (d) greater water vapor abundances close to the surface may enhance surface exchange thereby reducing regional transport, which in turn has implications to the net transport of water vapor over seasonal and annual timescales.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790065602&hterms=ethane&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dethane','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790065602&hterms=ethane&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dethane"><span>Tropospheric and lower stratospheric <span class="hlt">vertical</span> <span class="hlt">profiles</span> of ethane and acetylene</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cronn, D.; Robinson, E.</p> <p>1979-01-01</p> <p>The first known <span class="hlt">vertical</span> distributions of ethane and acetylene which extend into the lower stratosphere are reported. The average upper tropospheric concentrations, between 20,000 ft and 35,000 ft, near 37 deg N-123 deg W were 1.2 micrograms/cu m (1.0 ppb) for ethane and 0.24 micrograms /cu m (0.23 ppb) for acetylene while the values near 9 N-80 W were 0.95 micrograms/cu m (0.77 ppb) and 0.09 micrograms/cu m (0.09 ppb), respectively. Detectable quantities of both ethane and acetylene are present in the lower stratosphere. There is a sharp decrease in the levels of these two compounds as one crosses the tropopause and ascends into the lower stratosphere. The <span class="hlt">observed</span> levels of ethane and acetylene may allow some impact on the background chemistry of the troposphere and stratosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT..........4R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT..........4R"><span>Slug Flow Analysis in <span class="hlt">Vertical</span> Large Diameter Pipes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roullier, David</p> <p></p> <p>The existence of slug flow in <span class="hlt">vertical</span> co-current two-phase flow is studied experimentally and theoretically. The existence of slug flow in <span class="hlt">vertical</span> direction implies the presence of Taylor bubbles separated by hydraulically sealed liquid slugs. Previous experimental studies such as Ombere-Ayari and Azzopardi (2007) showed the evidence of the non-existence of Taylor bubbles for extensive experimental conditions. Models developed to predict experimental behavior [Kocamustafaogullari et al. (1984), Jayanti and Hewitt. (1990) and Kjoolas et al. (2017)] suggest that Taylor bubbles may disappear at large diameters and high velocities. A 73-ft tall and 101.6-mm internal diameter test facility was used to conduct the experiments allowing holdup and pressure drop measurements at large L/D. Superficial liquid and gas velocities varied from 0.05-m/s to 0.2 m/s and 0.07 m/s to 7.5 m/s, respectively. Test section pressure varied from 38 psia to 84 psia. Gas compressibility effect was greatly reduced at 84 psia. The experimental program allowed to <span class="hlt">observe</span> the flow patterns for flowing conditions near critical conditions predicted by previous models (air-water, 1016 mm ID, low mixture velocities). Flow patterns were <span class="hlt">observed</span> in detail using wire-mesh sensor measurements. Slug-flow was <span class="hlt">observed</span> for a narrow range of experimental conditions at low velocities. Churn-slug and churn-annular flows were <span class="hlt">observed</span> for most of the experimental data-points. Cap-bubble flow was <span class="hlt">observed</span> instead of bubbly flow at low vSg. Wire-mesh measurements showed that the liquid has a tendency to remain near to the walls. The standard deviation of radial holdup <span class="hlt">profile</span> correlates to the flow pattern <span class="hlt">observed</span>. For churn-slug flow, the <span class="hlt">profile</span> is convex with a single maximum near the pipe center while it exhibits a concave shape with two symmetric maxima close to the wall for churn-annular flow. The translational velocity was measured by two consecutive wire-mesh sensor crosscorrelation. The results show</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005IJEaS..94..507S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005IJEaS..94..507S"><span>Recent <span class="hlt">vertical</span> movements from precise levelling in the vicinity of the city of Basel, Switzerland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schlatter, Andreas; Schneider, Dieter; Geiger, Alain; Kahle, Hans-Gert</p> <p>2005-09-01</p> <p>The southern end of the Upper Rhine Graben is one of the zones in Switzerland where recent crustal movements can be expected because of ongoing seismotectonic processes as witnessed by seismicity clusters occurring in this region. Therefore, in 1973 a control network with levelling <span class="hlt">profiles</span> across the eastern Rhine Graben fault was installed and measured in the vicinity of the city of Basel in order to measure relative <span class="hlt">vertical</span> movements and investigate their relationship with seismic events. As a contribution to EUCOR-URGENT, the <span class="hlt">profiles</span> were <span class="hlt">observed</span> a third time in the years 2002 and 2003 and connected to the Swiss national levelling network. The results of these local measurements are discussed in terms of accuracy and significance. Furthermore, they are combined and interpreted together with the extensive data set of recent <span class="hlt">vertical</span> movements in Switzerland (Jura Mountains, Central Plateau and the Alps). In order to be able to prove height changes with precise levelling, their values should amount to at least 3 4 mm (1σ). The present investigations, however, have not shown any significant <span class="hlt">vertical</span> movements over the past 30 years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990064210&hterms=physical+activity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dphysical%2Bactivity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990064210&hterms=physical+activity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dphysical%2Bactivity"><span>Comparisons of the <span class="hlt">Vertical</span> Development of Deep Tropical Convection and Associated Lightning Activity on a Global Basis</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Williams, E.; Lin, S.; Labrada, C.; Christian, H.; Goodman, S.; Boccippio, D.; Driscoll, K.</p> <p>1999-01-01</p> <p>Simultaneous radar (13.8 Ghz) and lightning (Lightning Imaging Sensor) <span class="hlt">observations</span> from the NASA TRMM (Tropical Rainfall Measuring Mission) spacecraft afford a new opportunity to examine differences in tropical continental and oceanic convection on a global basis, The 250 meter <span class="hlt">vertical</span> resolution of the radar data and the approximately 17 dBZ sensitivity are well suited to providing <span class="hlt">vertical</span> <span class="hlt">profiles</span> of radar reflectivity over the entire tropical belt. The reflectivity <span class="hlt">profile</span> has been shown in numerous local ground-based studies to be a good indicator of both updraft velocity and electrical activity. The radar and lightning <span class="hlt">observations</span> for multiple satellite orbits have been integrated to produce global CAPPI's for various altitudes. At 7 km altitude, where mixed phase microphysics is known to be active, the mean reflectivity in continental convection is 10-15 dB greater than the value in oceanic convection. These results provide a sound physical basis for the order-of-magnitude contrast in lightning counts between continental and oceanic convection. These <span class="hlt">observations</span> still beg the question, however, about the contrast in updraft velocity in these distinct convective regimes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A13C0217N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A13C0217N"><span>1.6μm DIAL System for Measurements of CO2 Concentration <span class="hlt">Profiles</span> in the Atmosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nagasawa, C.; Abo, M.; Shibata, Y.</p> <p>2013-12-01</p> <p>We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of <span class="hlt">vertical</span> CO2 concentration <span class="hlt">profiles</span> in the atmosphere. Our 1.6 μm DIAL system has a 60 cm telescope for <span class="hlt">vertical</span> measurement and a 25 cm scanning telescope for horizontal measurement. This 1.6 μm DIAL system is also available to measure CO2 concentration <span class="hlt">profiles</span> for daytime by using narrow-band interference filters. The 1.6 μm DIAL measurement was achieved successfully the <span class="hlt">vertical</span> CO2 <span class="hlt">profile</span> up to 7 km altitude with an error less than 1.0 % by integration time of 30 minutes and <span class="hlt">vertical</span> resolution of 300 - 600 m. The CO2 DIAL was also operated with the range-height indicator (RHI) mode, and the 2-D measurement provided inhomogeneity in the boundary layer. The <span class="hlt">vertical</span> distribution of CO2 concentration from 2 km to 7 km altitude has been <span class="hlt">observed</span> using two telescopes with different apertures. We hope to get the data of the CO2 concentration from lower altitude to 7 km at the same time. Since the change of signal intensity is larger near the ground, it is also important to the install the photon counter with the faster count rate to expand the dynamic range. The high speed counter and the telescope system make the dynamic range expand more than 10 times and the <span class="hlt">vertical</span> distribution <span class="hlt">observation</span> of CO2 concentration from 0.5 km to 7 km altitude is performed. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References Sakaizawa, D., C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the <span class="hlt">vertical</span> CO2 <span class="hlt">profile</span>, Applied Optics, Vol.48, No.4, pp. 748-757, 2009. Stephens, B. B. et al., Weak Northern and Strong Tropical Land Carbon Uptake from <span class="hlt">Vertical</span> <span class="hlt">Profiles</span> of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9876E..1DK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9876E..1DK"><span>Impact of horizontal and <span class="hlt">vertical</span> localization scales on microwave sounder SAPHIR radiance assimilation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krishnamoorthy, C.; Balaji, C.</p> <p>2016-05-01</p> <p>In the present study, the effect of horizontal and <span class="hlt">vertical</span> localization scales on the assimilation of direct SAPHIR radiances is studied. An Artificial Neural Network (ANN) has been used as a surrogate for the forward radiative calculations. The training input dataset for ANN consists of <span class="hlt">vertical</span> layers of atmospheric pressure, temperature, relative humidity and other hydrometeor <span class="hlt">profiles</span> with 6 channel Brightness Temperatures (BTs) as output. The best neural network architecture has been arrived at, by a neuron independence study. Since <span class="hlt">vertical</span> localization of radiance data requires weighting functions, a ANN has been trained for this purpose. The radiances were ingested into the NWP using the Ensemble Kalman Filter (EnKF) technique. The horizontal localization has been taken care of, by using a Gaussian localization function centered around the <span class="hlt">observed</span> coordinates. Similarly, the <span class="hlt">vertical</span> localization is accomplished by assuming a function which depends on the weighting function of the channel to be assimilated. The effect of both horizontal and <span class="hlt">vertical</span> localizations has been studied in terms of ensemble spread in the precipitation. Aditionally, improvements in 24 hr forecast from assimilation are also reported.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27639462','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27639462"><span><span class="hlt">Vertical</span> <span class="hlt">profile</span>, contamination assessment, and source apportionment of heavy metals in sediment cores of Kaohsiung Harbor, Taiwan.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Chih-Feng; Ju, Yun-Ru; Chen, Chiu-Wen; Dong, Cheng-Di</p> <p>2016-12-01</p> <p>Six sediment cores collected at the Kaohsiung Harbor of Taiwan were analyzed to evaluate their <span class="hlt">vertical</span> <span class="hlt">profiles</span>, enrichments, accumulations, and source apportionments of heavy metals. This was performed to investigate any potential ecological risks posed by heavy metals. Results indicated that the mean heavy metal content (mg kg -1 ) in the six sediment cores was as follows: Hg (0.4-6.4), Cd (<0.05-2.4), Cr (18-820), Cu (16-760), Pb (31-140), and Zn (76-1900). The patterns of heavy metal content in the sediment cores differed substantially among the four river mouths. However, the <span class="hlt">vertical</span> <span class="hlt">profiles</span> of metals were relatively stable, indicating that wastewater has the constant characteristics and has been discharged into the rivers for a long period of time. Results of pollution assessment of enrichment factor, geo-accumulation index, and pollution load index revealed that river mouths experience severe enrichment, strong accumulation, and high contamination from the primary heavy metals. It was not consistent in the assessment results of mean effect range median quotient, potential ecological risk index, and total toxic unit method. Potential ecological risks caused by Hg in the sediments at Canon River and Love River mouths on aquatic organisms were extremely high. The estimates derived from the receptor modeling of multiple linear regression of the absolute principal component scores indicated that the contributions of the composite heavy metals derived from the Canon River and the Love River on the potential toxicity and risks to the water environment of Kaohsiung Harbor were highest, followed by those derived from Salt River and Jen-Gen River. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611386C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611386C"><span><span class="hlt">Observations</span> and modelling of the boundary layer using remotely piloted aircraft</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cayez, Gregoire; Dralet, Jean-Philippe; Seity, Yann; Momboisse, Geraud; Hattenberger, Gautier; Bronz, Murat; Roberts, Greg</p> <p>2014-05-01</p> <p>Over the past decade, the scientific community considers the RPAS (remotely piloted aircraft system) as a tool which can help to improve their knowledge of climate and atmospheric phenomena. RPAS equipped with instruments can now conduct measurements in areas that are too hazardous or remote for a manned plane. RPAS are especially adapted system for <span class="hlt">observing</span> the atmospheric boundary layer processes at high <span class="hlt">vertical</span> and temporal resolution. The main objectives of VOLTIGE (Vecteur d'<span class="hlt">Observation</span> de La Troposphère pour l'Investigation et la Gestion de l'Environnement) are to study the life cycle of fog with micro-RPAS, encourage direct participation of the students on the advancement and development of novel <span class="hlt">observing</span> systems, and assess the feasibility of deploying RPAS in Météo-France's operational network. The instrumented RPAS flights successfully <span class="hlt">observed</span> the evolution of small-scale meteorological events. Before the arrival of the warm pseudo-front, <span class="hlt">profiles</span> show a temperature inversion of a hundred meters, which overlaps a cold and wet atmospheric layer. Subsequent <span class="hlt">profiles</span> show the combination of the arrival of a marine air mass as well as the arrival of a higher level warm pseudo-front. A third case study characterizes the warm sector of the disturbance. Two distinct air masses are visible on the <span class="hlt">vertical</span> <span class="hlt">profiles</span>, and show a dry air above an air almost saturated and slightly colder. The temperature and the relative humidity <span class="hlt">profiles</span> show < 1 meter <span class="hlt">vertical</span> resolution with a difference between ascent and descent <span class="hlt">profiles</span> within ± 0.5°C and ± 6 % RH. These results comply with the Météo-France standard limits of quality control. The RPAS <span class="hlt">profiles</span> were compared with those of the Arome forecast model (an operational model at Météo France). The temperature and wind in the Arome model <span class="hlt">profiles</span> generally agree with those of the RPAS (less for relative humidity <span class="hlt">profiles</span>). The Arome model also suggests transitions between air masses occurred at a higher</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A12E..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A12E..02F"><span>The <span class="hlt">Vertical</span> <span class="hlt">Profile</span> of Ocean Mixing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferrari, R. M.; Nikurashin, M.; McDougall, T. J.; Mashayek, A.</p> <p>2014-12-01</p> <p>The upwelling of bottom waters through density surfaces in the deep ocean is not possible unless the sloping nature of the sea floor is taken into account. The bottom--intensified mixing arising from interaction of internal tides and geostrophic motions with bottom topography implies that mixing is a decreasing function of height in the deep ocean. This would further imply that the diapycnal motion in the deep ocean is downward, not upwards as is required by continuity. This conundrum regarding ocean mixing and upwelling in the deep ocean will be resolved by appealing to the fact that the ocean does not have <span class="hlt">vertical</span> side walls. Implications of the conundrum for the representation of ocean mixing in climate models will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2262L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2262L"><span>Orographic precipitation and <span class="hlt">vertical</span> velocity characteristics from drop size and fall velocity spectra <span class="hlt">observed</span> by disdrometers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Dong-In; Kim, Dong-Kyun; Kim, Ji-Hyeon; Kang, Yunhee; Kim, Hyeonjoon</p> <p>2017-04-01</p> <p>During a summer monsoon season each year, severe weather phenomena caused by front, mesoscale convective systems, or typhoons often occur in the southern Korean Peninsula where is mostly comprised of complex high mountains. These areas play an important role in controlling formation, amount, and distribution of rainfall. As precipitation systems move over the mountains, they can develop rapidly and produce localized heavy rainfall. Thus <span class="hlt">observational</span> analysis in the mountainous areas is required for studying terrain effects on the rapid rainfall development and its microphysics. We performed intensive field <span class="hlt">observations</span> using two s-band operational weather radars around Mt. Jiri (1950 m ASL) during summertime on June and July in 2015-2016. <span class="hlt">Observation</span> data of DSD (Drop Size Distribution) from Parsivel disdrometer and (w component) <span class="hlt">vertical</span> velocity data from ultrasonic anemometers were analyzed for Typhoon Chanhom on 12 July 2015 and the heavy rain event on 1 July 2016. During the heavy rain event, a dual-Doppler radar analysis using Jindo radar and Gunsan radar was also conducted to examine 3-D wind fields and <span class="hlt">vertical</span> structure of reflectivity in these areas. For examining up-/downdrafts in the windward or leeward side of Mt. Jiri, we developed a new scheme technique to estimate <span class="hlt">vertical</span> velocities (w) from drop size and fall velocity spectra of Parsivel disdrometers at different stations. Their comparison with the w values <span class="hlt">observed</span> by the 3D anemometer showed quite good agreement each other. The Z histogram with regard to the estimated w was similar to that with regard to R, indicating that Parsivel-estimated w is quite reasonable for classifying strong and weak rain, corresponding to updraft and downdraft, respectively. Mostly, positive w values (upward) were estimated in heavy rainfall at the windward side (D1 and D2). Negative w values (downward) were dominant even during large rainfall at the leeward side (D4). For D1 and D2, the upward w percentages were</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120001992','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120001992"><span>Remote Sensing the <span class="hlt">Vertical</span> <span class="hlt">Profile</span> of Cloud Droplet Effective Radius, Thermodynamic Phase, and Temperature</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.</p> <p>2011-01-01</p> <p>Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the <span class="hlt">vertical</span> distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the <span class="hlt">observational</span> tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature <span class="hlt">profile</span> of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015018','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015018"><span>Expected Performance of Ozone Climate Data Records from Ozone Mapping and <span class="hlt">Profiler</span> Suite Limb <span class="hlt">Profiler</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Xu, P. Q.; Rault, D. F.; Pawson, S.; Wargan, K.; Bhartia, P. K.</p> <p>2012-01-01</p> <p>The Ozone Mapping and <span class="hlt">Profiler</span> Suite Limb <span class="hlt">Profiler</span> (OMPS/LP) was launched on board of the Soumi NPP space platform in late October 2011. It provides ozone-<span class="hlt">profiling</span> capability with high-<span class="hlt">vertical</span> resolution from 60 Ian to cloud top. In this study, an end-to-end <span class="hlt">Observing</span> System Simulation Experiment (OSSE) of OMPS/LP ozone is discussed. The OSSE was developed at NASA's Global Modeling and Assimilation Office (GMAO) using the Goddard Earth <span class="hlt">Observing</span> System (GEOS-5) data assimilation system. The "truth" for this OSSE is built by assimilating MLS <span class="hlt">profiles</span> and OMI ozone columns, which is known to produce realistic three-dimensional ozone fields in the stratosphere and upper troposphere. OMPS/LP radiances were computed at tangent points computed by an appropriate orbital model. The OMPS/LP forward RT model, Instrument Models (IMs) and EDR retrieval model were introduced and pseudo-<span class="hlt">observations</span> derived. The resultant synthetic OMPS/LP <span class="hlt">observations</span> were evaluated against the "truth" and subsequently these <span class="hlt">observations</span> were assimilated into GEOS-5. Comparison of this assimilated dataset with the "truth" enables comparisons of the likely uncertainties in 3-D analyses of OMPS/LP data. This study demonstrated the assimilation capabilities of OMPS/LP ozone in GEOS-5, with the monthly, zonal mean (O-A) smaller than 0.02ppmv at all levels, the nns(O-A) close to O.lppmv from 100hPa to 0.2hPa; and the mean(O-B) around the 0.02ppmv for all levels. The monthly zonal mean analysis generally agrees to within 2% of the truth, with larger differences of 2-4% (0.1-0.2ppmv) around 10hPa close to North Pole and in the tropical tropopause region, where the difference is above 20% due to the very low ozone concentrations. These OSSEs demonstrated that, within a single data assimilation system and the assumption that assimilated MLS <span class="hlt">observations</span> provide a true rendition of the stratosphere, the OMPS/LP ozone data are likely to produce accurate analyses through much of the stratosphere</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1073046','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1073046"><span>ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency <span class="hlt">Profilers</span>, Surface Meteorology (williams-surfmet)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Williams, Christopher; Jensen, Mike</p> <p>2012-11-06</p> <p>This data was collected by the NOAA 449-MHz and 2.8-GHz <span class="hlt">profilers</span> in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The <span class="hlt">profiling</span> radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz <span class="hlt">profiler</span>, and a 449-MHz <span class="hlt">profiler</span>. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz <span class="hlt">profiler</span>. The 2.8-GHz <span class="hlt">profiler</span> provided unattenuated reflectivity <span class="hlt">profiles</span> of the precipitation. The 449-MHz <span class="hlt">profiler</span> provided estimates of the <span class="hlt">vertical</span> air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz <span class="hlt">profiler</span> <span class="hlt">observations</span>, <span class="hlt">vertical</span> <span class="hlt">profiles</span> of raindrop size distributions can be retrieved. The <span class="hlt">profilers</span> are often reference by their frequency band: the 2.8-GHz <span class="hlt">profiler</span> operates in the S-band and the 449-MHz <span class="hlt">profiler</span> operates in the UHF band. The raw <span class="hlt">observations</span> are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1073044','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1073044"><span>ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency <span class="hlt">Profilers</span>, Parcivel Disdrometer (williams-disdro)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Williams, Christopher; Jensen, Mike</p> <p>2012-11-06</p> <p>This data was collected by the NOAA 449-MHz and 2.8-GHz <span class="hlt">profilers</span> in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The <span class="hlt">profiling</span> radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz <span class="hlt">profiler</span>, and a 449-MHz <span class="hlt">profiler</span>. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz <span class="hlt">profiler</span>. The 2.8-GHz <span class="hlt">profiler</span> provided unattenuated reflectivity <span class="hlt">profiles</span> of the precipitation. The 449-MHz <span class="hlt">profiler</span> provided estimates of the <span class="hlt">vertical</span> air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz <span class="hlt">profiler</span> <span class="hlt">observations</span>, <span class="hlt">vertical</span> <span class="hlt">profiles</span> of raindrop size distributions can be retrieved. The <span class="hlt">profilers</span> are often reference by their frequency band: the 2.8-GHz <span class="hlt">profiler</span> operates in the S-band and the 449-MHz <span class="hlt">profiler</span> operates in the UHF band. The raw <span class="hlt">observations</span> are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....1841M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....1841M"><span><span class="hlt">Vertically</span> inhomogeneous models of the upper crust for the seismoactive region of western Bohemia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malek, J.; Jansky, J.; Novotny, O.; Rossler, D.</p> <p>2003-04-01</p> <p>In the framework of the CELEBRATION 2000 seismic refraction experiment, one international <span class="hlt">profile</span> crossed the region of earthquake swarms in West-Bohemia/Vogtland. In addition to this main <span class="hlt">profile</span>, two shorter supplementary <span class="hlt">profiles</span> and a semicircle were proposed to study the epicentral area in greater detail. Moreover, the shots were also recorded at permanent stations in the region. The <span class="hlt">observed</span> travel times of the first arrivals are used here to derive <span class="hlt">vertically</span> inhomogeneous velocity models of the upper crust. After a polynomial or rational smoothing of the <span class="hlt">observed</span> data, the Wiechert-Herglotz method is used to compute the velocity models. Typical features of the derived models, as opposed to many previous models, are low surface velocities and a prominent velocity increase within the uppermost crust to a depth of about one kilometre. The scatter of <span class="hlt">observed</span> travel times is discussed in terms of lateral inhomogeneities and anisotropy. In particular, significant differences have been revealed between the Saxothuringian (northern) and adjacent southern parts of the studied area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.U43A..06N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.U43A..06N"><span>Investigating the Role of Gravity Wave on Equatorial Ionospheric Irregularities using SABER and C/NOFS Satellites <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nigussie, M.; Damtie, B.; Moldwin, M.; Yizengaw, E.; Tesema, F.; Tebabal, A.</p> <p>2017-12-01</p> <p>Theoretical simulations have shown that gravity wave (GW) seeded perturbations amplified by Rayleigh-Taylor Instability (RTI) results in ESF (equatorial spread F); however, there have been limited <span class="hlt">observational</span> studies using simultaneous <span class="hlt">observations</span> of GW and ionospheric parameters. In this paper, for the fist time, simultaneous atmospheric temperature perturbation <span class="hlt">profiles</span> that are due to GWs obtained from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on-board the TIMED satellite and equatorial in -situ ion density and <span class="hlt">vertical</span> plasma drift velocity <span class="hlt">observations</span> with and without ESF activity obtained from C/NOFS satellites are used to investigate the effect of GW on the generation of ESF. The horizontal and <span class="hlt">vertical</span> wavelengths of ionospheric oscillations and GWs respectively have been estimated applying wavelet transforms. Cross wavelet analysis has also been applied between two closely <span class="hlt">observed</span> <span class="hlt">profiles</span> of temperature perturbations to estimate the horizontal wavelength of the GWs. Moreover, <span class="hlt">vertically</span> propagating GWs that dissipate energy at the upper atmosphere have been investigated using spectral analysis compared with theoretical results. The analysis show that when the ion density shows strong post sunset irregularity between 20 and 24 LT, <span class="hlt">vertically</span> upward drift velocities increase between 17 and 19 LT, but it becomes <span class="hlt">vertically</span> downward when the ion density shows smooth variation. The horizontal wavelengths estimated from C/NOFS and SABER <span class="hlt">observations</span> show excellent agreement when ion density <span class="hlt">observations</span> show strong fluctuations; otherwise, they have poor agreement. It is also found that altitude <span class="hlt">profiles</span> of potential energy of GW increases up to 90 km and then decreases significantly. It is found that the <span class="hlt">vertical</span> wavelength of GW, corresponding to the dominant spectral power, ranges from about 7 km to 20 km regardless of the situation of the ionosphere; however, GWs with <span class="hlt">vertical</span> wavelengths between 100 m to 1 km are found to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1429048-algebraic-motion-vertically-displacing-plasmas','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1429048-algebraic-motion-vertically-displacing-plasmas"><span>Algebraic motion of <span class="hlt">vertically</span> displacing plasmas</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Pfefferle, D.; Bhattacharjee, A.</p> <p>2018-02-27</p> <p>In this paper, the <span class="hlt">vertical</span> motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and <span class="hlt">profiles</span> are assumed not to vary during the <span class="hlt">vertical</span> drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive <span class="hlt">vertical</span> instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often <span class="hlt">observed</span> in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1429048-algebraic-motion-vertically-displacing-plasmas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1429048-algebraic-motion-vertically-displacing-plasmas"><span>Algebraic motion of <span class="hlt">vertically</span> displacing plasmas</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pfefferle, D.; Bhattacharjee, A.</p> <p></p> <p>In this paper, the <span class="hlt">vertical</span> motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and <span class="hlt">profiles</span> are assumed not to vary during the <span class="hlt">vertical</span> drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive <span class="hlt">vertical</span> instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often <span class="hlt">observed</span> in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15388151','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15388151"><span><span class="hlt">Vertical</span> <span class="hlt">profile</span> of 137Cs in soil.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krstić, D; Nikezić, D; Stevanović, N; Jelić, M</p> <p>2004-12-01</p> <p>In this paper, a <span class="hlt">vertical</span> distribution of 137Cs in undisturbed soil was investigated experimentally and theoretically. Soil samples were taken from the surroundings of the city of Kragujevac in central Serbia during spring-summer of 2001. The sampling locations were chosen in such a way that the influence of soil characteristics on depth distribution of 137Cs in soil could be investigated. Activity of 137Cs in soil samples was measured using a HpGe detector and multi-channel analyzer. Based on <span class="hlt">vertical</span> distribution of 137Cs in soil which was measured for each of 10 locations, the diffusion coefficient of 137Cs in soil was determined. In the next half-century, 137Cs will remain as the source of the exposure. Fifteen years after the Chernobyl accident, and more than 30 years after nuclear probes, the largest activity of 137Cs is still within 10 cm of the upper layer of the soil. This result confirms that the penetration of 137Cs in soil is a very slow process. Experimental results were compared with two different Green functions and no major differences were found between them. While both functions fit experimental data well in the upper layer of soil, the fitting is not so good in deeper layers. Although the curves obtained by these two functions are very close to each other, there are some differences in the values of parameters acquired by them.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060043303&hterms=Gabriele&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DGabriele','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060043303&hterms=Gabriele&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DGabriele"><span>Comparison of GPS/SAC-C and MIPAS/ENVISAT temperature <span class="hlt">profiles</span> and its implementation for EOS AURA-MLS <span class="hlt">observations</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jiang, Jonathan H.; Wang, Ding-Yi; Romans, Larry J.; Ao, Chi O.; Schwartz, Michael J.; Stiller, Gabriele P.; von Clarmann, Thomas; Lopez-Puertas, Manuel; Funke, Bernd; Gil-Lopez, Sergio; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20060043303'); toggleEditAbsImage('author_20060043303_show'); toggleEditAbsImage('author_20060043303_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20060043303_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20060043303_hide"></p> <p>2003-01-01</p> <p>A new generation GPS flight receiver was launched on the Argentinian satellite SAC-C in 2001. It has demonstrated the potential applicability for the continuous monitoring of the earth's atmosphere with radio occultation technology, and providing high <span class="hlt">vertical</span> resolution <span class="hlt">profiles</span> of temperature and water vapour data complementary to other sounding techniques.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/984358','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/984358"><span>Calibration of the Total Carbon Column <span class="hlt">Observing</span> Network using Aircraft <span class="hlt">Profile</span> Data</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.</p> <p>2010-03-26</p> <p>The Total Carbon Column <span class="hlt">Observing</span> Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO{sub 2}, CO, CH{sub 4}, N{sub 2}O and H{sub 2}O at a variety of sites worldwide. These <span class="hlt">observations</span> rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measure ments. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured <span class="hlt">profiles</span> over four TCCON stations during 2008more » and 2009. The aircraft campaigns are the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08), which included a <span class="hlt">profile</span> over the Park Falls site, the HIAPER Pole-to-Pole <span class="hlt">Observations</span> (HIPPO-1) campaign, which included <span class="hlt">profiles</span> over the Lamont and Lauder sites, a series of Learjet <span class="hlt">profiles</span> over the Lamont site, and a Beechcraft King Air <span class="hlt">profile</span> over the Tsukuba site. These calibrations are compared with similar <span class="hlt">observations</span> made during the INTEX-NA (2004), COBRA-ME (2004) and TWP-ICE (2006) campaigns. A single, global calibration factor for each gas accurately captures the TCCON total column data within error.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1169516','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1169516"><span>SGP and TWP (Manus) Ice Cloud <span class="hlt">Vertical</span> Velocities</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Kalesse, Heike</p> <p>2013-06-27</p> <p>Daily netcdf-files of ice-cloud dynamics <span class="hlt">observed</span> at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). <span class="hlt">Profiles</span> of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved <span class="hlt">vertical</span> air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21039647','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21039647"><span>Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil <span class="hlt">vertical</span> <span class="hlt">profile</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines</p> <p>2010-11-01</p> <p>Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil <span class="hlt">vertical</span> <span class="hlt">profiles</span> at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil <span class="hlt">profile</span> at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACPD...1310395K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACPD...1310395K"><span><span class="hlt">Vertical</span> <span class="hlt">profiling</span> of aerosol particles and trace gases over the central Arctic Ocean during summer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.</p> <p>2013-04-01</p> <p>Unique measurements of <span class="hlt">vertical</span> size resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, <a href="http://www.ascos.se"target="_blank">http://www.ascos.se</a>), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from onboard the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the <span class="hlt">vertical</span> helicopter <span class="hlt">profiles</span> and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Near the surface (lowermost couple hundred meters), transport from the marginal ice zone (MIZ), if sufficiently short (less than ca. 2 days), condensational growth and cloud-processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore they are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, long-range transport plumes can influence the radiative balance of the PBL by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally <span class="hlt">observed</span>, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles can be from biological processes, both primary and secondary</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACP....1312405K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACP....1312405K"><span><span class="hlt">Vertical</span> <span class="hlt">profiling</span> of aerosol particles and trace gases over the central Arctic Ocean during summer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.</p> <p>2013-12-01</p> <p>Unique measurements of <span class="hlt">vertical</span> size-resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, <a href="http://www.ascos.se"target="_blank"> www.ascos.se</a>), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from on board the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the <span class="hlt">vertical</span> helicopter <span class="hlt">profiles</span> and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Within the lowermost couple hundred metres, transport from the marginal ice zone (MIZ), condensational growth and cloud processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore long-range transport plumes are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, such plumes can influence the radiative balance of the planetary boundary layer (PBL) by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally <span class="hlt">observed</span>, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles could be in biological processes, both primary and secondary, within the open leads between</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950023935','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950023935"><span>Extended field <span class="hlt">observations</span> of cirrus clouds using a ground-based cloud <span class="hlt">observing</span> system</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ackerman, Thomas P.</p> <p>1994-01-01</p> <p>The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field <span class="hlt">Observing</span> Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind <span class="hlt">profiler</span> demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic <span class="hlt">vertical</span> circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic <span class="hlt">vertical</span> circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect <span class="hlt">vertical</span> circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the <span class="hlt">vertical</span> circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale <span class="hlt">vertical</span> motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed <span class="hlt">vertical</span> motions and <span class="hlt">observed</span> water vapor contents is presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.A33G..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.A33G..08H"><span>The GAW Aerosol Lidar <span class="hlt">Observation</span> Network (GALION) as a source of near-real time aerosol <span class="hlt">profile</span> data for model evaluation and assimilation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoff, R. M.; Pappalardo, G.</p> <p>2010-12-01</p> <p>In 2007, the WMO Global Atmospheric Watch’s Science Advisory Group on Aerosols described a global network of lidar networks called GAW Aerosol Lidar <span class="hlt">Observation</span> Network (GALION). GALION has a purpose of providing expanded coverage of aerosol <span class="hlt">observations</span> for climate and air quality use. Comprised of networks in Asia (AD-NET), Europe (EARLINET and CIS-LINET), North America (CREST and CORALNET), South America (ALINE) and with contribution from global networks such as MPLNET and NDACC, the collaboration provides a unique capability to define aerosol <span class="hlt">profiles</span> in the <span class="hlt">vertical</span>. GALION is designed to supplement existing ground-based and column <span class="hlt">profiling</span> (AERONET, PHOTONS, SKYNET, GAWPFR) stations. In September 2010, GALION held its second workshop and one component of discussion focussed how the network would integrate into model needs. GALION partners have contributed to the Sand and Dust Storm Warning and Analysis System (SDS-WAS) and to assimilation in models such as DREAM. This paper will present the conclusions of those discussions and how these <span class="hlt">observations</span> can fit into a global model analysis framework. Questions of availability, latency, and aerosol parameters that might be ingested into models will be discussed. An example of where EARLINET and GALION have contributed in near-real time <span class="hlt">observations</span> was the suite of measurements during the Eyjafjallajokull eruption in Iceland and its impact on European air travel. Lessons learned from this experience will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P33D2909N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P33D2909N"><span>High Resolution <span class="hlt">Vertical</span> Seismic <span class="hlt">Profile</span> from the Chicxulub IODP/ICDP Expedition 364 Borehole: Wave Speeds and Seismic Reflectivity.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nixon, C.; Kofman, R.; Schmitt, D. R.; Lofi, J.; Gulick, S. P. S.; Christeson, G. L.; Saustrup, S., Sr.; Morgan, J. V.</p> <p>2017-12-01</p> <p>We acquired a closely-spaced <span class="hlt">vertical</span> seismic <span class="hlt">profile</span> (VSP) in the Chicxulub K-Pg Impact Crater drilling program borehole to calibrate the existing surface seismic <span class="hlt">profiles</span> and provide complementary measurements of in situ seismic wave speeds. Downhole seismic records were obtained at spacings ranging from 1.25 m to 5 m along the borehole from 47.5 m to 1325 mwsf (meters wireline below sea floor) (Fig 1a) using a Sercel SlimwaveTM geophone chain (University of Alberta). The seismic source was a 30/30ci Sercel Mini GI airgun (University of Texas), fired a minimum of 5 times per station. Seismic data processing used a combination of a commercial processing package (Schlumberger's VISTA) and MatlabTM codes. The VSP displays detailed reflectivity (Fig. 1a) with the strongest reflection seen at 600 mwsf (280 ms one-way time), geologically corresponding to the sharp contact between the post-impact sediments and the target peak ring rock, thus confirming the pre-drilling interpretations of the seismic <span class="hlt">profiles</span>. A two-way time trace extracted from the separated up-going wavefield matches the major reflection both in travel time and character. In the granitic rocks that form the peak ring of the Chicxulub impact crater, we <span class="hlt">observe</span> P-wave velocities of 4000-4500 m/s which are significantly less than the expected values of granitoids ( 6000 m/s) (Fig. 1b). The VSP measured wave speeds are confirmed against downhole sonic logging and in laboratory velocimetry measurements; these data provide additional evidence that the crustal material displaced by the impact experienced a significant amount of damage. Samples and data provided by IODP. Samples can be requested at http://web.iodp.tamu.edu/sdrm after 19 October 2017. Expedition 364 was jointly funded by ECORD, ICDP, and IODP with contributions and logistical support from the Yucatan State Government and UNAM. The downhole seismic chain and wireline system is funded by grants to DRS from the Canada Foundation for Innovation and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790012383','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790012383"><span>Results of the measurement of the <span class="hlt">vertical</span> <span class="hlt">profile</span> of ozone up to a height of 70 km by means of the MR-12 and M-100 sounding rockets</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brezgin, N. I.; Kuznetsov, G. I.; Chizhov, A. F.; Shtyrkov, O. V.</p> <p>1979-01-01</p> <p>The photometers used and methods of calculation of the <span class="hlt">vertical</span> ozone concentration <span class="hlt">profile</span> are described. The results obtained in several series of MR-12 and M-100 sounding rocket launchings are presented and discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA12A..06Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA12A..06Y"><span><span class="hlt">Vertical</span> Rise Velocity of Equatorial Plasma Bubbles Estimated from Equatorial Atmosphere Radar <span class="hlt">Observations</span> and High-Resolution Bubble Model Simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.</p> <p>2017-12-01</p> <p>Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to <span class="hlt">observe</span> the apex altitude and <span class="hlt">vertical</span> rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The <span class="hlt">vertical</span> rise velocities of the EPBs <span class="hlt">observed</span> around the midnight hours are significantly smaller compared to those <span class="hlt">observed</span> in postsunset hours. Further, the <span class="hlt">vertical</span> growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the <span class="hlt">vertical</span> rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR <span class="hlt">observations</span> at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992JCrGr.121..394B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992JCrGr.121..394B"><span>Application of strong <span class="hlt">vertical</span> magnetic fields to growth of II-VI pseudo-binary alloys - HgMnTe</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Becla, Piotr; Han, Jian-Chiu; Motakef, Shahryar</p> <p>1992-07-01</p> <p>HgMnTe crystals are grown by the <span class="hlt">vertical</span> Bridgman method in the presence of an applied <span class="hlt">vertical</span> magnetic field of 30 kG. Reduction of convective intensity in the melt through application of the magnetic field is found to decrease radial macro-segregation and eliminate small-scale compositional undulations in the grown material; the axial compositional <span class="hlt">profile</span> is found not to be influenced by the magnetic field. These <span class="hlt">observations</span> are shown to be consistent with a previously proposed model for the residual convection present during growth of this and other similar materials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29678114','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29678114"><span><span class="hlt">Vertical</span> Stratification Engineering for Organic Bulk-Heterojunction Devices.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Liqiang; Wang, Gang; Zhou, Weihua; Fu, Boyi; Cheng, Xiaofang; Zhang, Lifu; Yuan, Zhibo; Xiong, Sixing; Zhang, Lin; Xie, Yuanpeng; Zhang, Andong; Zhang, Youdi; Ma, Wei; Li, Weiwei; Zhou, Yinhua; Reichmanis, Elsa; Chen, Yiwang</p> <p>2018-05-22</p> <p>High-efficiency organic solar cells (OSCs) can be produced through optimization of component molecular design, coupled with interfacial engineering and control of active layer morphology. However, <span class="hlt">vertical</span> stratification of the bulk-heterojunction (BHJ), a spontaneous activity that occurs during the drying process, remains an intricate problem yet to be solved. Routes toward regulating the <span class="hlt">vertical</span> separation <span class="hlt">profile</span> and evaluating the effects on the final device should be explored to further enhance the performance of OSCs. Herein, we establish a connection between the material surface energy, absorption, and <span class="hlt">vertical</span> stratification, which can then be linked to photovoltaic conversion characteristics. Through assessing the performance of temporary, artificial <span class="hlt">vertically</span> stratified layers created by the sequential casting of the individual components to form a multilayered structure, optimal <span class="hlt">vertical</span> stratification can be achieved. Adjusting the surface energy offset between the substrate results in donor and acceptor stabilization of that stratified layer. Further, a trade-off between the photocurrent generated in the visible region and the amount of donor or acceptor in close proximity to the electrode was <span class="hlt">observed</span>. Modification of the substrate surface energy was achieved using self-assembled small molecules (SASM), which, in turn, directly impacted the polymer donor to acceptor ratio at the interface. Using three different donor polymers in conjunction with two alternative acceptors in an inverted organic solar cell architecture, the concentration of polymer donor molecules at the ITO (indium tin oxide)/BHJ interface could be increased relative to the acceptor. Appropriate selection of SASM facilitated a synchronized enhancement in external quantum efficiency and power conversion efficiencies over 10.5%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OcScD..12.2073L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OcScD..12.2073L"><span>The role of <span class="hlt">vertical</span> shear on the horizontal oceanic dispersion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lanotte, A. S.; Corrado, R.; Lacorata, G.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.</p> <p>2015-09-01</p> <p>The effect of <span class="hlt">vertical</span> shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of South Mediterranean is investigated by means of <span class="hlt">observative</span> and model data. In-situ current measurements reveal that <span class="hlt">vertical</span> velocity gradients in the upper mixed layer decorrelate quite fast (∼ 1 day), whereas basin-scale ocean circulation models tend to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion simulated by an eddy-permitting ocean model, like, e.g., the Mediterranean Forecasting System, is mosty affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out; (2) poorly resolved time variability of <span class="hlt">vertical</span> velocity <span class="hlt">profiles</span> in the upper layer. For the case study we have analysed, we show that a suitable use of kinematic parameterisations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...585L...6P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...585L...6P"><span>Damping <span class="hlt">profile</span> of standing kink oscillations <span class="hlt">observed</span> by SDO/AIA</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pascoe, D. J.; Goddard, C. R.; Nisticò, G.; Anfinogentov, S.; Nakariakov, V. M.</p> <p>2016-01-01</p> <p>Aims: Strongly damped standing and propagating kink oscillations are <span class="hlt">observed</span> in the solar corona. This can be understood in terms of mode coupling, which causes the wave energy to be converted from the bulk transverse oscillation to localised, unresolved azimuthal motions. The damping rate can provide information about the loop structure, and theory predicts two possible damping <span class="hlt">profiles</span>. Methods: We used the recently compiled catalogue of decaying standing kink oscillations of coronal loops to search for examples with high spatial and temporal resolution and sufficient signal quality to allow the damping <span class="hlt">profile</span> to be examined. The location of the loop axis was tracked, detrended, and fitted with sinusoidal oscillations with Gaussian and exponential damping <span class="hlt">profiles</span>. Results: Using the highest quality data currently available, we find that for the majority of our cases a Gaussian <span class="hlt">profile</span> describes the damping behaviour at least as well as an exponential <span class="hlt">profile</span>, which is consistent with the recently developed theory for the damping <span class="hlt">profile</span> due to mode coupling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3815P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3815P"><span>Characteristics of Moderately Deep Tropical Convection <span class="hlt">Observed</span> by Dual-Polarimetric Radar</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Powell, Scott</p> <p>2017-04-01</p> <p>Moderately deep cumulonimbus clouds (often erroneously called congestus) over the tropical warm pool play an important role in large-scale dynamics by moistening the free troposphere, thus allowing for the upscale growth of convection into mesoscale convective systems. Direct <span class="hlt">observational</span> analysis of such convection has been limited despite a wealth of radar data collected during several field experiments in the tropics. In this study, the structure of isolated cumulonimbus clouds, particularly those in the moderately deep mode with heights of up to 8 km, as <span class="hlt">observed</span> by RHI scans obtained with the S-PolKa radar during DYNAMO is explored. Such elements are first identified following the algorithm of Powell et al (2016); small contiguous regions of echo are considered isolated convection. Within isolated echo objects, echoes are further subdivided into core echoes, which feature <span class="hlt">vertical</span> <span class="hlt">profiles</span> reflectivity and differential reflectivity that is similar to convection embedded in larger cloud complexes, and fringe echoes, which contain <span class="hlt">vertical</span> <span class="hlt">profiles</span> of differential reflectivity that are more similar to stratiform regions. Between the surface and 4 km, reflectivities of 30-40 (10-20) dBZ are most commonly <span class="hlt">observed</span> in isolated convective core (fringe) echoes. Convective cores in echo objects too wide to be considered isolated have a ZDR <span class="hlt">profile</span> that peaks near the surface (with values of 0.5-1 dB common), and decays linearly to about 0.3 dB at and above an altitude of 6 km. Stratiform echoes have a minimum ZDR below of 0-0.5 dB below the bright band and a constant distribution centered on 0.5 dB above the bright band. The isolated convective core and fringe respectively possess composite <span class="hlt">vertical</span> <span class="hlt">profiles</span> of ZDR that resemble convective and stratiform echoes. The mode of the distribution of aspect ratios of isolated convection is approximately 2.3, but the long axis of isolated echo objects demonstrates no preferred orientation. An early attempt at illustrating</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614952D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614952D"><span>CO2 <span class="hlt">profile</span> retrievals from TCCON spectra</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dohe, Susanne; Hase, Frank; Sepúlveda, Eliezer; García, Omaira; Wunch, Debra; Wennberg, Paul; Gómez-Peláez, Angel; Abshire, James B.; Wofsy, Steven C.; Schneider, Matthias; Blumenstock, Thomas</p> <p>2014-05-01</p> <p>The Total Carbon Column <span class="hlt">Observing</span> Network (TCCON) is a global network of ground-based Fourier Transform Spectrometers recording direct solar spectra in the near-infrared spectral region. With stringent requirements on the instrumentation, data processing and calibration, accurate and precise column-averaged abundances of CO2, CH4, N2O, HF, CO, H2O, and HDO are retrieved being an essential contribution for the validation of satellite data (e.g. GOSAT, OCO-2) and carbon cycle research (Olsen and Randerson, 2004). However, the determined column-averaged dry air mole fraction (DMF) contains no information about the <span class="hlt">vertical</span> CO2 <span class="hlt">profile</span>, due to the use of a simple scaling retrieval within the common TCCON analysis, where the fitting algorithm GFIT (e.g. Yang et al., 2005) is used. In this presentation we will apply a different procedure for calculating trace gas abundances from the measured spectra, the fitting algorithm PROFFIT (Hase et. al., 2004) which has been shown to be in very good accordance with GFIT. PROFFIT additionally offers the ability to perform <span class="hlt">profile</span> retrievals in which the pressure broadening effect of absorption lines is used to retrieve <span class="hlt">vertical</span> gas <span class="hlt">profiles</span>, being of great interest especially for the CO2 modelling community. A new analyzing procedure will be shown and retrieved <span class="hlt">vertical</span> CO2 <span class="hlt">profiles</span> of the TCCON sites Izaña (Tenerife, Canary Islands, Spain) and Lamont (Oklahoma, USA) will be presented and compared with simultaneously performed surface in-situ measurements and CO2 <span class="hlt">profiles</span> from different aircraft campaigns. References: - Hase, F. et al., J.Q.S.R.T. 87, 25-52, 2004. - Olsen, S.C. and Randerson, J.T., J.G.Res., 109, D023012, 2004. - Yang, Z. et al., J.Q.S.R.T., 90, 309-321, 2005.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA258189','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA258189"><span>Temporal Variability of the Trade Wind Inversion: Measured with a Boundary Layer <span class="hlt">Vertical</span> <span class="hlt">Profiler</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-05-01</p> <p>direction change . Consequently, the frequency of <span class="hlt">vertical</span> <span class="hlt">observations</span> is every 70 s and each measu t is a 30 s average. T. Riddle combined the raw data set... changes to superadiabatic. There is no change to the temperature at the inversion top. 25 Temperature ( and Dewpoint (-): 8 Aug. 1200 UTC 5000 4500 ! 4000...inversion base is the last level before the lapse rate changes to superadiaatc, (2) There is no change to temperature at the inversion top, and (3) A</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007DPS....39.4002T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007DPS....39.4002T"><span><span class="hlt">Vertical</span> <span class="hlt">Profiles</span> Of Temperature And Dust Derived From Mars Climate Sounder</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teanby, Nicholas; Irwin, P. G.; Howett, C.; Calcutt, S.; Lolachi, R.; Bowles, N.; Taylor, F.; Schofield, J. T.; Kleinboehl, A.; McCleese, D. J.</p> <p>2007-10-01</p> <p>Mars Climate Sounder (MCS) on board NASA's Mars Reconnaissance Orbiter (MRO) primarily operates as a limb sounding infrared radiometer. The small field of view and limb scanning mode allow retrieval of temperature and dust properties from the surface up to approximately 80km with 5km <span class="hlt">vertical</span> resolution. The polar orbit of MRO gives coverage of all latitudes at 3pm and 3am local time. The ability of MCS to sounds these altitudes at high spatial and temporal resolution gives a unique dataset with which to test our understanding of the Martian atmosphere. It also complements and extends upon previous climatalogical datasets (for example TES). Measured mid-infrared radiances from MCS were analysed using the correlated-k approximation with Oxford's NEMESIS retrieval software. The correlated-k approximation was compared with a line-by-line model to confirm its accuracy under Martian atmospheric conditions. Dust properties were taken from analysis of TES data by Wolff and Clancy (2003). We present <span class="hlt">profiles</span> of temperature and dust for data covering September to December 2006. During this period Mars' north pole was experiencing summer and the south pole was in winter. Preliminary results show that high altitude warming over the southern winter pole is greater than that predicted by models. Our results will be compared to numerical models of the Martian atmosphere and the implications discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..12212845L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..12212845L"><span><span class="hlt">Vertical</span> Structure of Aerosols and Mineral Dust Over the Bay of Bengal From Multisatellite <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lakshmi, N. B.; Nair, Vijayakumar S.; Suresh Babu, S.</p> <p>2017-12-01</p> <p>The <span class="hlt">vertical</span> distribution of aerosol and dust extinction coefficient over the Bay of Bengal is examined using the satellite <span class="hlt">observations</span> (Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and Moderate Resolution Imaging Spectroradiometer (MODIS)) for the period from 2006 to 2017. Distinct seasonal pattern is <span class="hlt">observed</span> in the <span class="hlt">vertical</span> structure of both aerosol and dust over the Bay of Bengal with an enhancement of 24% in the aerosol extinction above 1 km from winter (December, January and February) to premonsoon (March, April, and May). Significant contribution of dust is <span class="hlt">observed</span> over the northern Bay of Bengal during premonsoon season where 22% of the total aerosol extinction is contributed by dust aerosols transported from the nearby continental regions. During winter, dust transport is found to be less significant with fractional contribution of 10%-13% to the total aerosol optical depth over the Bay of Bengal. MODIS-derived dust fraction (fine mode based) shows an overestimation up to twofold compared to CALIOP dust fraction (depolarization based), whereas the Goddard Chemistry Aerosol Radiation and Transport-simulated dust fraction underestimates the satellite-derived dust fractions over the Bay of Bengal. Though the long-term variation in dust aerosol showed a decreasing trend over the Bay of Bengal, the confidence level is insufficient in establishing the robustness of the <span class="hlt">observed</span> trend. However, significant dust-induced heating is <span class="hlt">observed</span> above the boundary layer during premonsoon season. This dust-induced elevated heating can affect the convection over the Bay of Bengal which will have implication on the monsoon dynamics over the Indian region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970015065&hterms=vertical+height&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvertical%2Bheight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970015065&hterms=vertical+height&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvertical%2Bheight"><span>An Alternate Method for Estimating Dynamic Height from XBT <span class="hlt">Profiles</span> Using Empirical <span class="hlt">Vertical</span> Modes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lagerloef, Gary S. E.</p> <p>1994-01-01</p> <p>A technique is presented that applies modal decomposition to estimate dynamic height (0-450 db) from Expendable BathyThermograph (XBT) temperature <span class="hlt">profiles</span>. Salinity-Temperature-Depth (STD) data are used to establish empirical relationships between <span class="hlt">vertically</span> integrated temperature <span class="hlt">profiles</span> and empirical dynamic height modes. These are then applied to XBT data to estimate dynamic height. A standard error of 0.028 dynamic meters is obtained for the waters of the Gulf of Alaska- an ocean region subject to substantial freshwater buoyancy forcing and with a T-S relationship that has considerable scatter. The residual error is a substantial improvement relative to the conventional T-S correlation technique when applied to this region. Systematic errors between estimated and true dynamic height were evaluated. The 20-year-long time series at Ocean Station P (50 deg N, 145 deg W) indicated weak variations in the error interannually, but not seasonally. There were no evident systematic alongshore variations in the error in the ocean boundary current regime near the perimeter of the Alaska gyre. The results prove satisfactory for the purpose of this work, which is to generate dynamic height from XBT data for coanalysis with satellite altimeter data, given that the altimeter height precision is likewise on the order of 2-3 cm. While the technique has not been applied to other ocean regions where the T-S relation has less scatter, it is suggested that it could provide some improvement over previously applied methods, as well.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSM.S24A..04K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSM.S24A..04K"><span>Difference of Horizontal-to-<span class="hlt">Vertical</span> (H/V) Spectral Ratios of Microtremors and Earthquake Motions: Theory and <span class="hlt">Observation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawase, H.; Nagashima, F.; Matsushima, S.; Sanchez-Sesma, F. J.</p> <p>2013-05-01</p> <p>Horizontal-to-<span class="hlt">vertical</span> spectral ratios (HVRs) of microtremors have been traditionally interpreted theoretically as representing the Rayleigh wave ellipticity or just utilized a convenient tool to extract predominant periods of ground. However, based on the diffuse field theory (Sánchez-Sesma et al., 2011) the microtremor H/V spectral ratios (MHVRs) correspond to the square root of the ratio of the imaginary part of horizontal displacement for a horizontally applied unit harmonic load and the imaginary part of <span class="hlt">vertical</span> displacement for a <span class="hlt">vertically</span> applied unit load. The same diffuse field concept leads us to derive a simple formula for earthquake HVRs (EHVRs), that is, the ratio of the horizontal motion on the surface for a <span class="hlt">vertical</span> incidence of S wave divided by the <span class="hlt">vertical</span> motion on the surface for a <span class="hlt">vertical</span> incidence of P wave with a fixed coefficient (Kawase et al., 2011). The difference for EHVRs comes from the fact that primary contribution of earthquake motions would be of plane body waves. Traditionally EHVRs are interpreted as the responses of inclined SV wave incidence only for their S wave portions. Without these compact theoretical solutions, EHVRs and MHVRs are either considered to be very similar/equivalent, or totally different in the previous studies. With these theoretical solutions we need to re-focus our attention on the difference of HVRs. Thus we have compared here HVRs at several dozens of strong motion stations in Japan. When we compared <span class="hlt">observed</span> HVRs we found that EHVRs tend to be higher in general than the MHVRs, especially around their peaks. As previously reported, their general shapes share the common features. Especially their fundamental peak and trough frequencies show quite a good match to each other. However, peaks in EHVRs in the higher frequency range would not show up in MHVRs. When we calculated theoretical HVRs separately at these target sites, their basic characteristics correspond to these <span class="hlt">observed</span> differences. At this</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5653W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5653W"><span>MAX-DOAS measurements of tropospheric <span class="hlt">vertical</span> <span class="hlt">profiles</span> of aerosols, NO2, SO2 and HCHO in the suburban area of Xintai city, China: comparisons with aircraft and ground-based measurements, and investigation of transport</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yang; Dörner, Steffen; Wagner, Thomas; Wang, Yuying; He, Hao; Ren, Xinrong; Li, Zhanqing; Li, Donghui; Xu, Hua; Li, Zhengqiang; Xu, Jiwei; Liu, Dong; Wang, Zhenzhu; De Smedt, Isabelle; Theys, Nicolas</p> <p>2017-04-01</p> <p>Xingtai is one of the most polluted cities in China and is located on the western edge of the large industrial zone of the North China plain. The Taihang Mountains in the west of Xingtai block transport of polluted air mass towards western China and cause accumulation of pollutants along the mountains. Severely polluted air harms health of about seven million inhabitants in Xingtai. Air pollution also affects condensation nuclei for the formation of convective clouds, and thus potentially initiates heavy rainfall. In order to study the interaction of pollutants and clouds, the Atmosphere-Aerosol-Boundary Layer-Cloud (A2BC) Interaction Joint Experiment was held around Xingtai in the period from May to June 2016. Various instruments measuring gaseous pollutants, aerosols, clouds, precipitation, and radiance are operated at a monitoring station (37.18° N, 114.36° E) in the suburban area of Xintai city and aboard two aircrafts which fly up and down in spirals between 0.2 km and 4 km over the station. We operated a Multi Axis (MAX-) Differential Optical Absorption Spectroscopy (DOAS) instrument at the station in order to derive tropospheric <span class="hlt">vertical</span> <span class="hlt">profiles</span> of aerosols, NO2, SO2 and HCHO during daytime with a time resolution of about 10 minutes. We apply our <span class="hlt">profile</span> inversion algorithm PriAM based on the optimal estimation theory to retrieve trace gas and aerosol <span class="hlt">profiles</span>. The results are compared with other ground-based and aircraft measurements. In general reasonable consistency was found, but the comparison also revealed a considerable smoothing effect of the MAX-DOAS retrievals. The MAX-DOAS results are applied to characterize the <span class="hlt">vertical</span> <span class="hlt">profiles</span> and the diurnal cycles of the trace gas and aerosol pollutants. Lifted layers of pollutants, especially aerosols and SO2, were frequently <span class="hlt">observed</span> during the campaign indicating frequent transport events of pollutants over the station. Rapid cleaning events of pollutants were also <span class="hlt">observed</span>. We further investigate the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28073459','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28073459"><span><span class="hlt">Vertical</span> migration of Karenia brevis in the northeastern Gulf of Mexico <span class="hlt">observed</span> from glider measurements.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Chuanmin; Barnes, Brian B; Qi, Lin; Lembke, Chad; English, David</p> <p>2016-09-01</p> <p>The toxic marine dinoflagellate, Karenia brevis (the species responsible for most of red tides or harmful algal blooms in the Gulf of Mexico), is known to be able to swim <span class="hlt">vertically</span> to adapt to the light and nutrient environments, nearly all such <span class="hlt">observations</span> have been made through controlled experiments using cultures. Here, using continuous 3-dimensional measurements by an ocean glider across a K. brevis bloom in the northeastern Gulf of Mexico between 1 and 8 August 2014, we show the <span class="hlt">vertical</span> migration behavior of K. brevis. Within the bloom where K. brevis concentration is between 100,000 and 1,000,000cellsL -1 , the stratified water shows a two-layer system with the depth of pycnocline ranging between 14-20m and salinity and temperature in the surface layer being <34.8 and >28°C, respectively. The bottom layer shows the salinity of >36 and temperature of <26°C. The low salinity is apparently due to coastal runoff, as the top layer also shows high amount of colored dissolved organic matter (CDOM). Within the top layer, chlorophyll-a fluorescence shows clear diel changes in the <span class="hlt">vertical</span> structure, an indication of K. brevis <span class="hlt">vertical</span> migration at a mean speed of 0.5-1mh -1 . The upward migration appears to start at sunrise at a depth of 8-10m, while the downward migration appears to start at sunset (or when surface light approaches 0) at a depth of ∼2m. These <span class="hlt">vertical</span> migrations are believed to be a result of the need of K. brevis cells for light and nutrients in a stable, stratified, and CDOM-rich environment. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110020277&hterms=HISTOGRAM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DHISTOGRAM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110020277&hterms=HISTOGRAM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DHISTOGRAM"><span><span class="hlt">Vertical</span> Structures of Anvil Clouds of Tropical Mesoscale Convective Systems <span class="hlt">Observed</span> by CloudSat</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hence, Deanna A.; Houze, Robert A.</p> <p>2011-01-01</p> <p>A global study of the <span class="hlt">vertical</span> structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud <span class="hlt">Profiling</span> Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6 8 and 1 3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with <span class="hlt">observations</span> at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110023303&hterms=HISTOGRAM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DHISTOGRAM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110023303&hterms=HISTOGRAM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DHISTOGRAM"><span><span class="hlt">Vertical</span> Structures of Anvil Clouds of Tropical Mesoscale Convective Systems <span class="hlt">Observed</span> by CloudSat</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yuan, J.; Houze, R. A., Jr.; Heymsfield, A.</p> <p>2011-01-01</p> <p>A global study of the <span class="hlt">vertical</span> structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud <span class="hlt">Profiling</span> Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6--8 and 1--3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with <span class="hlt">observations</span> at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000091542','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000091542"><span>An Analysis of Water Line <span class="hlt">Profiles</span> in Star Formation Regions <span class="hlt">Observed</span> by SWAS</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ashby, Matthew L. N.; Bergin, Edwin A.; Plume, Rene; Carpenter, John M.; Neufeld, David A.; Chin, Gordon; Erickson, Neal R.; Goldsmith, Paul F.; Harwit, Martin; Howe, J. E.</p> <p>2000-01-01</p> <p>We present spectral line <span class="hlt">profiles</span> for the 557 GHz 1(sub 1,0) yields 1(sub 0,1) ground-state rotational transition of ortho-H2(16)O for 18 galactic star formation regions <span class="hlt">observed</span> by SWAS. 2 Water is unambiguously detected in every source. The line <span class="hlt">profiles</span> exhibit a wide variety of shapes, including single-peaked spectra and self-reversed <span class="hlt">profiles</span>. We interpret these <span class="hlt">profiles</span> using a Monte Carlo code to model the radiative transport. The <span class="hlt">observed</span> variations in the line <span class="hlt">profiles</span> can be explained by variations in the relative strengths of the bulk flow and small-scale turbulent motions within the clouds. Bulk flow (infall, outflow) must be present in some cloud cores, and in certain cases this bulk flow dominates the turbulent motions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1073042','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1073042"><span>ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency <span class="hlt">Profilers</span>, S-band Radar (williams-s_band)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Williams, Christopher</p> <p>2012-11-06</p> <p>This data was collected by the NOAA 449-MHz and 2.8-GHz <span class="hlt">profilers</span> in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The <span class="hlt">profiling</span> radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz <span class="hlt">profiler</span>, and a 449-MHz <span class="hlt">profiler</span>. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz <span class="hlt">profiler</span>. The 2.8-GHz <span class="hlt">profiler</span> provided unattenuated reflectivity <span class="hlt">profiles</span> of the precipitation. The 449-MHz <span class="hlt">profiler</span> provided estimates of the <span class="hlt">vertical</span> air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz <span class="hlt">profiler</span> <span class="hlt">observations</span>, <span class="hlt">vertical</span> <span class="hlt">profiles</span> of raindrop size distributions can be retrieved. The <span class="hlt">profilers</span> are often reference by their frequency band: the 2.8-GHz <span class="hlt">profiler</span> operates in the S-band and the 449-MHz <span class="hlt">profiler</span> operates in the UHF band. The raw <span class="hlt">observations</span> are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.5076L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.5076L"><span>Tsunami-driven gravity waves in the presence of <span class="hlt">vertically</span> varying background and tidal wind structures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laughman, B.; Fritts, D. C.; Lund, T. S.</p> <p>2017-05-01</p> <p>Many characteristics of tsunami-driven gravity waves (TDGWs) enable them to easily propagate into the thermosphere and ionosphere with appreciable amplitudes capable of producing detectable perturbations in electron densities and total electron content. The impact of <span class="hlt">vertically</span> varying background and tidal wind structures on TDGW propagation is investigated with a series of idealized background wind <span class="hlt">profiles</span> to assess the relative importance of wave reflection, critical-level approach, and dissipation. These numerical simulations employ a 2-D nonlinear anelastic finite-volume neutral atmosphere model which accounts for effects accompanying <span class="hlt">vertical</span> gravity wave (GW) propagation such as amplitude growth with altitude. The GWs are excited by an idealized tsunami forcing with a 50 cm sea surface displacement, a 400 km horizontal wavelength, and a phase speed of 200 ms-1 consistent with previous studies of the tsunami generated by the 26 December 2004 Sumatra earthquake. Results indicate that rather than partial reflection and trapping, the dominant process governing TDGW propagation to thermospheric altitudes is refraction to larger and smaller <span class="hlt">vertical</span> scales, resulting in respectively larger and smaller <span class="hlt">vertical</span> group velocities and respectively reduced and increased viscous dissipation. Under all considered background wind <span class="hlt">profiles</span>, TDGWs were able to attain ionospheric altitudes with appreciable amplitudes. Finally, evidence of nonlinear effects is <span class="hlt">observed</span> and the conditions leading to their formation is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DPS....4930404L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DPS....4930404L"><span>Abundance <span class="hlt">Profiles</span> for C3 Hydrocarbons in Titan's Atmosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lombardo, Nicholas; Nixon, Conor A.; Achterberg, Richard; Jolly, Antoine; Sung, Keeyoon; Irwin, Patrick; Flasar, F. Michael</p> <p>2017-10-01</p> <p>The atmosphere of Titan is of astrobiological importance. Its highly reducing composition and prebiotic chemistry make it analogous to that of the early Earth. Since the Voyager era, several complex hydrocarbons and nitriles have been detected, in some cases making Titan the only known planetary body where these gasses occur naturally. In this work, we report abundance <span class="hlt">profiles</span> of four major C3 gasses expected to occur in Titan’s atmosphere, derived from Cassini/Composite Infrared Spectrometer (CIRS) data.Using the NEMESIS iterative radiative transfer module, we retrieved <span class="hlt">vertical</span> abundance <span class="hlt">profiles</span> for propane (C3H8) and propyne (CHCCH3), both initially detected by the Voyager IRIS instrument. Using newly available line data, we were also able to determine the first <span class="hlt">vertical</span> abundance <span class="hlt">profiles</span> for propene (C3H6), initially detected in 2013. We present <span class="hlt">profiles</span> for several latitudes and times and compare to photochemical model predictions and previous <span class="hlt">observations</span>. We also discuss our efforts to further the search for allene (CH2CCH2), an isomer of propyne. The abundances we retrieved will help to further our understanding of the chemical pathways that occur in Titan's atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002878','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002878"><span>Development of a Climatology of <span class="hlt">Vertically</span> Complete Wind <span class="hlt">Profiles</span> from Doppler Radar Wind <span class="hlt">Profiler</span> Systems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barbre, Robert, Jr.</p> <p>2015-01-01</p> <p>Assessment of space vehicle loads and trajectories during design requires a large sample of wind <span class="hlt">profiles</span> at the altitudes where winds affect the vehicle. Traditionally, this altitude region extends from near 8-14 km to address maximum dynamic pressure upon ascent into space, but some applications require knowledge of measured wind <span class="hlt">profiles</span> at lower altitudes. Such applications include crew capsule pad abort and plume damage analyses. Two Doppler Radar Wind <span class="hlt">Profiler</span> (DRWP) systems exist at the United States Air Force (USAF) Eastern Range and at the National Aeronautics and Space Administration's Kennedy Space Center. The 50-MHz DRWP provides wind <span class="hlt">profiles</span> every 3-5 minutes from roughly 2.5-18.5 km, and five 915-MHz DRWPs provide wind <span class="hlt">profiles</span> every 15 minutes from approximately 0.2-3.0 km. Archived wind <span class="hlt">profiles</span> from all systems underwent rigorous quality control (QC) processes, and concurrent measurements from the QC'ed 50- and 915-MHz DRWP archives were spliced into individual <span class="hlt">profiles</span> that extend from about 0.2-18.5 km. The archive contains combined <span class="hlt">profiles</span> from April 2000 to December 2009, and thousands of <span class="hlt">profiles</span> during each month are available for use by the launch vehicle community. This paper presents the details of the QC and splice methodology, as well as some attributes of the archive.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012WRR....48.5513H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012WRR....48.5513H"><span>Interpreting seasonal convective mixing in Devils Hole, Death Valley National Park, from temperature <span class="hlt">profiles</span> <span class="hlt">observed</span> by fiber-optic distributed temperature sensing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hausner, Mark B.; Wilson, Kevin P.; Gaines, D. Bailey; Tyler, Scott W.</p> <p>2012-05-01</p> <p>Devils Hole, a groundwater-filled fracture in the carbonate aquifer of the southern Nevada Mojave Desert, represents a unique ecohydrological setting, as home to the only extant population of Cyprinodon diabolis, the endangered Devils Hole pupfish. Using water column temperatures collected with a fiber-optic distributed temperature sensor (DTS) during four field campaigns in 2009, evidence of deep circulation and nutrient export are, for the first time, documented. The DTS was deployed to measure <span class="hlt">vertical</span> temperature <span class="hlt">profiles</span> in the system, and the raw data returned were postprocessed to refine the calibration beyond the precision of the instrument's native calibration routines. Calibrated temperature data serve as a tracer for water movement and reveal a seasonal pattern of convective mixing that is supported by numerical simulations of the system. The periodic presence of divers in the water is considered, and their impacts on the temperature <span class="hlt">profiles</span> are examined and found to be minimal. The seasonal mixing cycle may deplete the pupfish's food supplies when nutrients are at their scarcest. The spatial and temporal scales of the DTS <span class="hlt">observations</span> make it possible to <span class="hlt">observe</span> temperature gradients on the order of 0.001°C m-1, revealing phenomena that would have been lost in instrument noise and uncertainty.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120007511','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120007511"><span>Improvement of OMI Ozone <span class="hlt">Profile</span> Retrievals in the Troposphere and Lower Troposphere by the Use of the Tropopause-Based Ozone <span class="hlt">Profile</span> Climatology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bak, Juseon; Liu, X.; Wei, J.; Kim, J. H.; Chance, K.; Barnet, C.</p> <p>2011-01-01</p> <p>An advance algorithm based on the optimal estimation technique has beeen developed to derive ozone <span class="hlt">profile</span> from GOME UV radiances and have adapted it to OMI UV radiances. OMI <span class="hlt">vertical</span> resolution : 7-11 km in the troposphere and 10-14 km in the stratosphere. Satellite ultraviolet measurements (GOME, OMI) contain little <span class="hlt">vertical</span> information for the small scale of ozone, especially in the upper troposphere (UT) and lower stratosphere (LS) where the sharp O3 gradient across the tropopause and large ozone variability are <span class="hlt">observed</span>. Therefore, retrievals depend greatly on the a-priori knowledge in the UTLS</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS23C2064Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS23C2064Y"><span>Regional difference of the <span class="hlt">vertical</span> structure of seasonal thermocline and its impact on sea surface temperature in the North Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamaguchi, R.; Suga, T.</p> <p>2016-12-01</p> <p>Recent <span class="hlt">observational</span> studies show that, during the warming season, a large amount of heat flux is penetrated through the base of thin mixed layer by <span class="hlt">vertical</span> eddy diffusion, in addition to penetration of solar radiation [1]. In order to understand this heat penetration process due to <span class="hlt">vertical</span> eddy diffusivity and its contribution to seasonal variation of sea surface temperature, we investigated the evolution of thermal stratification below the summertime thin mixed layer (i.e. evolution of seasonal thermocline) and its <span class="hlt">vertical</span> structure in the North Pacific using high <span class="hlt">vertical</span> resolution temperature <span class="hlt">profile</span> <span class="hlt">observed</span> by Argo floats. We quantified the <span class="hlt">vertical</span> structure of seasonal thermocline as deviations from the linear structure where the <span class="hlt">vertical</span> gradient of temperature is constant, that is, "shape anomaly". The shape anomaly is variable representing the extent of the bend of temperature <span class="hlt">profiles</span>. We found that there are larger values of shape anomaly in the region where the seasonal sea surface temperature warming is relatively faster. To understand the regional difference of shape anomalies, we investigated the relationship between time changes in shape anomalies and net surface heat flux and surface kinetic energy flux. From May to July, the analysis indicated that, in a large part of North Pacific, there's a tendency for shape anomalies to develop strongly (weakly) under the conditions of large (small) downward net surface heat flux and small (large) downward surface kinetic energy flux. Since weak (strong) development of shape anomalies means efficient (inefficient) downward heat transport from the surface, these results suggest that the regional difference of the downward heat penetration below mixed layer is explained reasonably well by differences in surface heat forcing and surface wind forcing in a <span class="hlt">vertical</span> one dimensional framework. [1] Hosoda et al. (2015), J. Oceanogr., 71, 541-556.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.476.5115R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.476.5115R"><span>Spiral density waves and <span class="hlt">vertical</span> circulation in protoplanetary discs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riols, A.; Latter, H.</p> <p>2018-06-01</p> <p>Spiral density waves dominate several facets of accretion disc dynamics - planet-disc interactions and gravitational instability (GI) most prominently. Though they have been examined thoroughly in two-dimensional simulations, their <span class="hlt">vertical</span> structures in the non-linear regime are somewhat unexplored. This neglect is unwarranted given that any strong <span class="hlt">vertical</span> motions associated with these waves could profoundly impact dust dynamics, dust sedimentation, planet formation, and the emissivity of the disc surface. In this paper, we combine linear calculations and shearing box simulations in order to investigate the <span class="hlt">vertical</span> structure of spiral waves for various polytropic stratifications and wave amplitudes. For sub-adiabatic <span class="hlt">profiles</span>, we find that spiral waves develop a pair of counter-rotating poloidal rolls. Particularly strong in the non-linear regime, these vortical structures issue from the baroclinicity supported by the background <span class="hlt">vertical</span> entropy gradient. They are also intimately connected to the disc's g modes which appear to interact non-linearly with the density waves. Furthermore, we demonstrate that the poloidal rolls are ubiquitous in gravitoturbulence, emerging in the vicinity of GI spiral wakes, and potentially transporting grains off the disc mid-plane. Other than hindering sedimentation and planet formation, this phenomena may bear on <span class="hlt">observations</span> of the disc's scattered infrared luminosity. The vortical features could also impact on the turbulent dynamo operating in young protoplanetary discs subject to GI, or possibly even galactic discs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMOS72C..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMOS72C..08H"><span>Sediment <span class="hlt">Vertical</span> Flux in Unsteady Sheet Flows</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsu, T.; Jenkins, J. T.; Liu, P. L.</p> <p>2002-12-01</p> <p>In models for sediment suspension, two different boundary conditions have been employed at the sediment bed. Either the sediment concentration is given or the <span class="hlt">vertical</span> flux of sediment is specified. The specification of the latter is usually called the pick-up function. Recently, several developments towards a better understanding of the sediment bed boundary condition have been reported. Nielson et al (Coastal Engineering 2002, 45, p61-68) have indicated a better performance using the sediment <span class="hlt">vertical</span> flux as the bed boundary condition in comparisons with experimental data. Also, Drake and Calantoni (Journal of Geophysical Research 2001, 106, C9, p19859-19868) have suggested that in the nearshore environment with its various unsteady flow conditions, the appropriate sediment boundary conditions of a large-scale morphology model must consider both the magnitude the free stream velocity and the acceleration of the flow. In this research, a small-scale sheet flow model based on the two-phase theory is implemented to further study these issues. Averaged two-phase continuum equations are presented for concentrated flows of sediment that are driven by strong, fully developed, unsteady turbulent shear flows over a mobile bed. The particle inter-granular stress is modeled using collisional granular flow theory and a two-equation closure for the fluid turbulence is adopted. In the context of the two-phase theory, sediment is transported through the sediment <span class="hlt">vertical</span> velocity. Using the fully developed sediment phase continuity equation, it can be shown that the <span class="hlt">vertical</span> velocity of the sediment must vanish when the flow reaches a steady state. In other words, in fully developed conditions, it is the unsteadiness of the flow that induces the <span class="hlt">vertical</span> motion of the sediment and that changes the sediment concentration <span class="hlt">profile</span>. Therefore, implementing a boundary condition based on sediment <span class="hlt">vertical</span> flux is consistent with both the two-phase theory and with the <span class="hlt">observation</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4410549K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4410549K"><span>Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol <span class="hlt">Vertical</span> Distributions in a Global Climate Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; Chang, Ping</p> <p>2017-10-01</p> <p>We alleviate the bias in the tropospheric <span class="hlt">vertical</span> distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite <span class="hlt">Observations</span> (CALIPSO)-derived <span class="hlt">vertical</span> <span class="hlt">profiles</span>. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC <span class="hlt">vertical</span> distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ˜8-50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the global average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the <span class="hlt">vertical</span> distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC <span class="hlt">vertical</span> distribution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A44E..04L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A44E..04L"><span>Classification and <span class="hlt">Vertical</span> Structure of Radar Precipitation Echoes at Naqu in Central Tibetan Plateau during the TIPEX-III Field Campaign</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luo, Y.; Wang, H.; Ma, R.; Zipser, E. J.; Liu, C.</p> <p>2017-12-01</p> <p>This study examines the <span class="hlt">vertical</span> structure of precipitation echoes in central Tibetan Plateau using <span class="hlt">observations</span> collected at Naqu during the Third Tibetan Plateau Atmospheric Scientific Experiment in July-August 2014. Precipitation reaching the surface is classified into stratiform, convective, and other by analyzing the <span class="hlt">vertical</span> <span class="hlt">profiles</span> of reflectivity (Ze) at 30-m spacing and 3-s temporal resolution made with the <span class="hlt">vertical</span> pointing C-band frequency-modulated continuous-wave (C-FMCW) radar. Radar echoes with non-zero surface rainfall rate are <span class="hlt">observed</span> during 17.96% of the entire <span class="hlt">observing</span> period. About 52.03% of the precipitation reaching the surface includes a bright band and lacks a thick layer (≥1 km) of large Ze (> 35 dBZ); these are classified as stratiform; non-stratiform echoes with Ze > 35 dBZ are classified as convective (4.99%); the remainder (42.98%) as other. Based on concurrent measurements made with a collocated disdrometer, the classified stratiform, convective, and other precipitation echoes contribute 53.84%, 23.08%, and 23.08%, respectively, to the surface rainfall amount. Distinct internal structural features of each echo type are revealed by collectively analyzing the <span class="hlt">vertical</span> <span class="hlt">profiles</span> of Ze, radial velocity (Vr), and spectral width (SW) <span class="hlt">observed</span> by the C-FMCW radar. The stratiform precipitation contains a melting-layer centered at 0.97 km above ground with an average depth of 415 m. The median Ze at 0°C -15°C levels in convective regions at Naqu is weaker than those in some midlatitude continental convection and stronger than those in some tropical continents, suggesting that convective intensity measured by mixed-phase microphysical processes at Naqu is intermediate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800036250&hterms=eastern+middle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Deastern%2Bmiddle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800036250&hterms=eastern+middle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Deastern%2Bmiddle"><span><span class="hlt">Vertical</span> <span class="hlt">profiles</span> of CO and CH4 in the lower and middle troposphere over the Eastern United States January 1978</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reichle, H. G., Jr.; Condon, E. P.</p> <p>1979-01-01</p> <p>Samples of tropospheric air were obtained over the Eastern United States during January of 1978. These samples were analyzed by gas chromatography using flame ionization detection to produce <span class="hlt">vertical</span> <span class="hlt">profiles</span> of carbon monoxide and methane from the surface to 8 km. The carbon monoxide mixing ratios at 35 deg N and 45 deg N agree with previously published values; however, the mixing ratio at 25 deg N was significantly lower than most published values. The methane mixing ratio was weakly dependent on latitude and has an average value of 1.64 ppm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSOD21A..03E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSOD21A..03E"><span>Spatiotemporal Variability in Particulate Organic Carbon Export <span class="hlt">Observed</span> Using Bio-Optical <span class="hlt">Profiling</span> Floats</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Estapa, M. L.</p> <p>2016-02-01</p> <p>Autonomous, bio-optical <span class="hlt">profiling</span> floats are poised to broaden the number and spatiotemporal resolution of <span class="hlt">observations</span> of the ocean's biological pump. Here, we used multiple optical sensors aboard two bio-optical <span class="hlt">profiling</span> floats (Navis BGCi, Sea-Bird) deployed in the Sargasso Sea to derive in situ proxies for particulate carbon (PC) flux, sub-mixed layer net community production (NCP) and to drive a model of net primary production (NPP). <span class="hlt">Profiles</span> were collected at approximately 2-day resolution, and drift-phase PC flux <span class="hlt">observations</span> were collected at subdaily resolution at a rotating cycle of <span class="hlt">observation</span> depths between 150 and 1000 m. The magnitudes of NPP, PC flux, and their annually-averaged ratio were generally consistent with <span class="hlt">observations</span> at the nearby Bermuda Atlantic Timeseries Study (BATS) site. PC flux and the export ratio were enhanced in the autumn as well as in the spring, and varied over short timescales possibly due to the influence of mesoscale eddies. The relatively shallow park depths and short <span class="hlt">profile</span> cycle lengths allow us to identify ephemeral, subsurface bio-optical features and compare them to measured fluxes and satellite-<span class="hlt">observed</span> surface properties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A41I0199M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A41I0199M"><span>Using High and Low Resolution <span class="hlt">Profiles</span> of CO2 and CH4 Measured with AirCores to Evaluate Transport Models and Atmospheric Columns Retrieved from Space</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Membrive, O.; Crevoisier, C. D.; Sweeney, C.; Hertzog, A.; Danis, F.; Picon, L.; Engel, A.; Boenisch, H.; Durry, G.; Amarouche, N.</p> <p>2015-12-01</p> <p>Over the past decades many methods have been developed to monitor the evolution of greenhouse gases (GHG): ground networks (NOAA, ICOS, TCCON), aircraft campaigns (HIPPO, CARIBIC, Contrail…), satellite <span class="hlt">observations</span> (GOSAT, IASI, AIRS…). Nevertheless, precise and regular <span class="hlt">vertical</span> <span class="hlt">profile</span> measurements are currently still missing from the <span class="hlt">observing</span> system. To address this need, an original and innovative atmospheric sampling system called AirCore has been developed at NOAA (Karion et al. 2010). This new system allows balloon measurements of GHG <span class="hlt">vertical</span> <span class="hlt">profiles</span> from the surface up to 30 km. New versions of this instrument have been developed at LMD: a high-resolution version "AirCore-HR" that differs from other AirCores by its high <span class="hlt">vertical</span> resolution and two "light" versions (lower resolution) aiming to be flown under meteorological balloon. LMD AirCores were flown on multi-instrument gondolas along with other independent instruments measuring CO2 and CH4 in-situ during the Strato Science balloon campaigns operated by the French space agency CNES in collaboration with the Canadian Space Agency in Timmins (Ontario, Canada) in August 2014 and 2015. First, we will present comparisons of the <span class="hlt">vertical</span> <span class="hlt">profiles</span> retrieved with various AirCores (LMD and Frankfurt University) to illustrate repeatability and impact of the <span class="hlt">vertical</span> resolution as well as comparisons with independent in-situ measurements from other instruments (laser diode based Pico-SDLA). Second, we will illustrate the usefulness of AirCore measurements in the upper troposphere and stratosphere for validating and interpreting <span class="hlt">vertical</span> <span class="hlt">profiles</span> from atmospheric transport models as well as <span class="hlt">observations</span> of total and partial column of methane and carbon dioxide from several current and future spaceborne missions such as: ACE-FTS, IASI and GOSAT.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029952','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029952"><span>Wave field features of shallow <span class="hlt">vertical</span> discontinuity and their application in non-destructive detection</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Liu, J.; Xia, J.; Luo, Y.; Chen, C.; Li, X.; Huang, Y.</p> <p>2007-01-01</p> <p>The geotechnical integrity of critical infrastructure can be seriously compromised by the presence of fractures or crevices. Non-destructive techniques to accurately detect fractures in critical infrastructure such as dams and highways could be of significant benefit to the geotechnical industry. This paper investigates the application of shallow seismic and georadar methods to the detection of a <span class="hlt">vertical</span> discontinuity using numerical simulations. The objective is to address the kinematical analysis of a <span class="hlt">vertical</span> discontinuity, determine the resulting wave field characteristics, and provide the basis for determining the existence of <span class="hlt">vertical</span> discontinuities based on the recorded signals. Simulation results demonstrate that: (1) A reflection from a <span class="hlt">vertical</span> discontinuity produces a hyperbolic feature on a seismic or georadar <span class="hlt">profile</span>; (2) In order for a reflection from a <span class="hlt">vertical</span> discontinuity to be produced, a reflecting horizon below the discontinuity must exist, the offset between source and receiver (x0) must be non-zero, on the same side of the <span class="hlt">vertical</span> discontinuity; (3) The range of distances from the <span class="hlt">vertical</span> discontinuity where a reflection event is <span class="hlt">observed</span> is proportional to its length and to x0; (4) Should the <span class="hlt">vertical</span> crevice (or fracture) pass through a reflecting horizon, dual hyperbolic features can be <span class="hlt">observed</span> on the records, and this can be used as a determining factor that the <span class="hlt">vertical</span> crevice passes through the interface; and (5) diffractions from the edges of the discontinuity can be recorded with relatively smaller amplitude than reflections and their ranges are not constrained by the length of discontinuity. If the length of discontinuity is short enough, diffractions are the dominant feature. Real-world examples show that the shallow seismic reflection method and the georadar method are capable of recording the hyperbolic feature, which can be interpreted as <span class="hlt">vertical</span> discontinuity. Thus, these methods show some promise as effective non</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AtmEn.123..327L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AtmEn.123..327L"><span>Tethered balloon-based black carbon <span class="hlt">profiles</span> within the lower troposphere of Shanghai in the 2013 East China smog</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Juan; Fu, Qingyan; Huo, Juntao; Wang, Dongfang; Yang, Wen; Bian, Qinggen; Duan, Yusen; Zhang, Yihua; Pan, Jun; Lin, Yanfen; Huang, Kan; Bai, Zhipeng; Wang, Sheng-Hsiang; Fu, Joshua S.; Louie, Peter K. K.</p> <p>2015-12-01</p> <p>A Tethered balloon-based field campaign was launched for the <span class="hlt">vertical</span> <span class="hlt">observation</span> of air pollutants within the lower troposphere of 1000 m for the first time over a Chinese megacity, Shanghai in December of 2013. A custom-designed instrumentation platform for tethered balloon <span class="hlt">observation</span> and ground-based <span class="hlt">observation</span> synchronously operated for the measurement of same meteorological parameters and typical air pollutants. One episodic event (December 13) was selected with specific focus on particulate black carbon, a short-lived climate forcer with strong warming effect. Diurnal variation of the mixing layer height showed very shallow boundary of less than 300 m in early morning and night due to nocturnal inversion while extended boundary of more than 1000 m from noon to afternoon. Wind <span class="hlt">profiles</span> showed relatively stagnant synoptic condition in the morning, frequent shifts between upward and downward motion at noon and in the afternoon, and dominant downward motion with sea breeze in the evening. Characteristics of black carbon <span class="hlt">vertical</span> <span class="hlt">profiles</span> during four different periods of a day were analyzed and compared. In the morning, surface BC concentration averaged as high as 20 μg/m3 due to intense traffic emissions from the morning rush hours and unfavorable meteorological conditions. A strong gradient of BC concentrations with altitude was <span class="hlt">observed</span> from the ground to the top of boundary layer at around 250-370 m. BC gradients turned much smaller above the boundary layer. BC <span class="hlt">profiles</span> measured during noon and afternoon were the least dependent on heights. The largely extended boundary layer with strong <span class="hlt">vertical</span> convection was responsible for a well mixing of BC particles in the whole measured column. BC <span class="hlt">profiles</span> were similar between the early-evening and late-evening phases. The lower troposphere was divided into two stratified air layers with contrasted BC <span class="hlt">vertical</span> distributions. <span class="hlt">Profiles</span> at night showed strong gradients from the relatively high surface concentrations to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950004671','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950004671"><span>Ozone height <span class="hlt">profiles</span> using laser heterodyne radiometer</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jain, S. L.</p> <p>1994-01-01</p> <p>The monitoring of <span class="hlt">vertical</span> <span class="hlt">profiles</span> of ozone and related minor constituents in the atmosphere are of great significance to understanding the complex interaction between atmospheric dynamics, chemistry and radiation budget. An ultra high spectral resolution tunable CO2 laser heterodyne radiometer has been designed, developed and set up at the National Physical Laboratory, New Delhi to obtain <span class="hlt">vertical</span> <span class="hlt">profiles</span> of various minor constituents the characteristic absorption lines in 9 to 11 micron spectral range. Due to its high spectral resolution the lines can be resolved completely and data obtained are inverted to get <span class="hlt">vertical</span> <span class="hlt">profiles</span> using an inversion technique developed by the author. In the present communication the salient features of the laser heterodyne system and the results obtained are discussed in detail.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..899T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..899T"><span>Improved Satellite Estimation of Near-Surface Humidity Using <span class="hlt">Vertical</span> Water Vapor <span class="hlt">Profile</span> Information</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tomita, H.; Hihara, T.; Kubota, M.</p> <p>2018-01-01</p> <p>Near-surface air-specific humidity is a key variable in the estimation of air-sea latent heat flux and evaporation from the ocean surface. An accurate estimation over the global ocean is required for studies on global climate, air-sea interactions, and water cycles. Current remote sensing techniques are problematic and a major source of errors for flux and evaporation. Here we propose a new method to estimate surface humidity using satellite microwave radiometer instruments, based on a new finding about the relationship between multichannel brightness temperatures measured by satellite sensors, surface humidity, and <span class="hlt">vertical</span> moisture structure. Satellite estimations using the new method were compared with in situ <span class="hlt">observations</span> to evaluate this method, confirming that it could significantly improve satellite estimations with high impact on satellite estimation of latent heat flux. We recommend the adoption of this method for any satellite microwave radiometer <span class="hlt">observations</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARK16013L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARK16013L"><span>Negative differential resistance <span class="hlt">observed</span> from <span class="hlt">vertical</span> p+-n+ junction device with two-dimensional black phosphorous</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Daeyeong; Jang, Young Dae; Kweon, Jaehwan; Ryu, Jungjin; Hwang, Euyheon; Yoo, Won Jong; Samsung-SKKU Graphene/2D Center (SSGC) Collaboration</p> <p></p> <p>A <span class="hlt">vertical</span> p+-n+ homojunction was fabricated by using black phosphorus (BP) as a van der Waals two-dimensional (2D) material. The top and bottom layers of the materials were doped by chemical dopants of gold chloride (AuCl3) for p-type doping and benzyl viologen (BV) for n-type doping. The negative differential resistance (NDR) effect was clearly <span class="hlt">observed</span> from the output curves of the fabricated BP <span class="hlt">vertical</span> devices. The thickness range of the 2D material showing NDR and the peak to valley current ratio of NDR are found to be strongly dependent on doping condition, gate voltage, and BP's degradation level. Furthermore, the carrier transport of the p+-n+ junction was simulated by using density functional theory (DFT) and non-equilibrium Green's function (NEGF). Both the experimental and simulation results confirmed that the NDR is attributed to the band-to-band tunneling (BTBT) across the 2D BP p+-n+ junction, and further quantitative details on the carrier transport in the <span class="hlt">vertical</span> p+-n+ junction devices were explored, according to the analyses of the measured transfer curves and the DFT simulation results. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2013R1A2A2A01015516).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IAUS..320...89G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IAUS..320...89G"><span>Model of flare lightcurve <span class="hlt">profile</span> <span class="hlt">observed</span> in soft X-rays</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gryciuk, Magdalena; Siarkowski, Marek; Gburek, Szymon; Podgorski, Piotr; Sylwester, Janusz; Kepa, Anna; Mrozek, Tomasz</p> <p></p> <p>We propose a new model for description of solar flare lightcurve <span class="hlt">profile</span> <span class="hlt">observed</span> in soft X-rays. The method assumes that single-peaked `regular' flares seen in lightcurves can be fitted with the elementary time <span class="hlt">profile</span> being a convolution of Gaussian and exponential functions. More complex, multi-peaked flares can be decomposed as a sum of elementary <span class="hlt">profiles</span>. During flare lightcurve fitting process a linear background is determined as well. In our study we allow the background shape over the event to change linearly with time. Presented approach originally was dedicated to the soft X-ray small flares recorded by Polish spectrophotometer SphinX during the phase of very deep solar minimum of activity, between 23 rd and 24 th Solar Cycles. However, the method can and will be used to interpret the lightcurves as obtained by the other soft X-ray broad-band spectrometers at the time of both low and higher solar activity level. In the paper we introduce the model and present examples of fits to SphinX and GOES 1-8 Å channel <span class="hlt">observations</span> as well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRD..118.1814C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRD..118.1814C"><span>Empirical conversion of the <span class="hlt">vertical</span> <span class="hlt">profile</span> of reflectivity from Ku-band to S-band frequency</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, Qing; Hong, Yang; Qi, Youcun; Wen, Yixin; Zhang, Jian; Gourley, Jonathan J.; Liao, Liang</p> <p>2013-02-01</p> <p>ABSTRACT This paper presents an empirical method for converting reflectivity from Ku-band (13.8 GHz) to S-band (2.8 GHz) for several hydrometeor species, which facilitates the incorporation of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measurements into quantitative precipitation estimation (QPE) products from the U.S. Next-Generation Radar (NEXRAD). The development of empirical dual-frequency relations is based on theoretical simulations, which have assumed appropriate scattering and microphysical models for liquid and solid hydrometeors (raindrops, snow, and ice/hail). Particle phase, shape, orientation, and density (especially for snow particles) have been considered in applying the T-matrix method to compute the scattering amplitudes. Gamma particle size distribution (PSD) is utilized to model the microphysical properties in the ice region, melting layer, and raining region of precipitating clouds. The variability of PSD parameters is considered to study the characteristics of dual-frequency reflectivity, especially the variations in radar dual-frequency ratio (DFR). The empirical relations between DFR and Ku-band reflectivity have been derived for particles in different regions within the <span class="hlt">vertical</span> structure of precipitating clouds. The reflectivity conversion using the proposed empirical relations has been tested using real data collected by TRMM-PR and a prototype polarimetric WSR-88D (Weather Surveillance Radar 88 Doppler) radar, KOUN. The processing and analysis of collocated data demonstrate the validity of the proposed empirical relations and substantiate their practical significance for reflectivity conversion, which is essential to the TRMM-based <span class="hlt">vertical</span> <span class="hlt">profile</span> of reflectivity correction approach in improving NEXRAD-based QPE.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AMT.....8..369R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AMT.....8..369R"><span>Adaptive neuro-fuzzy inference system for temperature and humidity <span class="hlt">profile</span> retrieval from microwave radiometer <span class="hlt">observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.</p> <p>2015-01-01</p> <p>The retrieval of accurate <span class="hlt">profiles</span> of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve <span class="hlt">profiles</span> of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using <span class="hlt">observations</span> of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures <span class="hlt">observed</span> by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these <span class="hlt">observations</span> during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) <span class="hlt">profiles</span> with independent radiosonde <span class="hlt">observations</span> and <span class="hlt">profiles</span> retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and <span class="hlt">observed</span> <span class="hlt">profiles</span> is more than 92% for temperature <span class="hlt">profiles</span> for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature <span class="hlt">profiles</span>. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) <span class="hlt">profiles</span> using ANN and ANFIS also indicated that <span class="hlt">profiles</span> retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of <span class="hlt">profiles</span> concludes that retrieved <span class="hlt">profiles</span> using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930067609&hterms=australian+copyright&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Daustralian%2Bcopyright','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930067609&hterms=australian+copyright&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Daustralian%2Bcopyright"><span>An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. II - <span class="hlt">Vertical</span> structure</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mapes, Brian; Houze, Robert A., Jr.</p> <p>1993-01-01</p> <p>The <span class="hlt">vertical</span> structure of monsoon thermal forcing by precipitating convection is diagnosed in terms of horizontal divergence. Airborne Doppler-radar divergence <span class="hlt">profiles</span> from nine diverse mesoscale convective systems (MCSs) are presented. The MCSs consisted of multicellular convective elements which in time gave rise to areas of stratiform precipitation. Each of the three basic building blocks of the MCSs - convective, intermediary, and stratiform precipitation areas - has a consistent, characteristic divergence <span class="hlt">profile</span>. Convective areas have low-level convergence, with its peak at 2-4 km altitude, and divergence above 6 km. Intermediary areas have convergence aloft, peaked near 10 km, feeding into mean ascent high in the upper troposphere. Stratiform areas have mid-level convergence, indicating a mesoscale downdraught below the melting level, and a mesoscale updraught aloft. Rawinsonde composite divergence <span class="hlt">profiles</span> agree with the Doppler data in at least one important respect: the lower-tropospheric convergence into the MCSs peaks 2-4-km above the surface. Rawinsonde vorticity <span class="hlt">profiles</span> show that monsoonal tropical cyclones spin-up at these elevated levels first, then later descend to the surface. Rawinsonde <span class="hlt">observations</span> on a larger, continental scale demonstrate that at large horizontal scales only the 'gravest <span class="hlt">vertical</span> mode' of MCS heating is felt, while the effects of shallower components of the heating (or divergence) <span class="hlt">profiles</span> are trapped near the heating, as predicted by geostrophic adjustment theory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EPSC...10..320M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EPSC...10..320M"><span>ALMA <span class="hlt">observations</span> of Titan : <span class="hlt">Vertical</span> and spatial distribution of nitriles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moreno, R.; Lellouch, E.; Vinatier, S.; Gurwell, M.; Moullet, A.; Lara, L. M.; Hidayat, T.</p> <p>2015-10-01</p> <p>We report submm <span class="hlt">observations</span> of Titan performed with the ALMA interferometer centered at the rotational frequencies of HCN(4-3) and HNC(4-3), i.e. 354 and 362 GHz. These measurements yielded disk-resolved emission spectra of Titan with an angular resolution of ~0.47''. Titan's angular surface diameter was 0.77''. Data were acquired in summer 2012 near the greatest eastern and western elongations of Titan at a spectral resolution of 122 kHz (λ/d λ = 3106). We have obtained maps of several nitriles present in Titan' stratosphere: HCN, HC3N, CH3CN, HNC, C2H5CNand other weak lines (isotopes, vibrationnally excited lines).We will present radiative transfer analysis of the spectra acquired. With the combination of all these detected rotational lines, we will constrain the atmospheric temperature, the spatial and <span class="hlt">vertical</span> distribution of these species, as well as isotopic ratios. Moreover, Doppler lineshift measurements will enable us to constrain the zonal wind flow in the upper atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JGRC..111.8005U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JGRC..111.8005U"><span><span class="hlt">Vertical</span> distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uitz, Julia; Claustre, Hervé; Morel, André; Hooker, Stanford B.</p> <p>2006-08-01</p> <p>The present study examines the potential of using the near-surface chlorophyll a concentration ([Chla]surf), as it can be derived from ocean color <span class="hlt">observation</span>, to infer the column-integrated phytoplankton biomass, its <span class="hlt">vertical</span> distribution, and ultimately the community composition. Within this context, a large High-Performance Liquid Chromatography (HPLC) pigment database was analyzed. It includes 2419 <span class="hlt">vertical</span> pigment <span class="hlt">profiles</span>, sampled in case 1 waters with various trophic states (0.03-6 mg Chla m-3). The relationships between [Chla]surf and the chlorophyll a <span class="hlt">vertical</span> distribution, as previously derived by Morel and Berthon (1989), are fully confirmed. This agreement makes it possible to go further and to examine if similar relationships between [Chla]surf and the phytoplankton assemblage composition along the <span class="hlt">vertical</span> can be derived. Thanks to the detailed pigment composition, and use of specific pigment biomarkers, the contribution to the local chlorophyll a concentration of three phytoplankton groups can be assessed. With some cautions, these groups coincide with three size classes, i.e., microplankton, nanoplankton and picoplankton. Corroborating previous regional findings (e.g., large species dominate in eutrophic environments, whereas tiny phytoplankton prevail in oligotrophic zones), the present results lead to an empirical parameterization applicable to most oceanic waters. The predictive skill of this parameterization is satisfactorily tested on a separate data set. With such a tool, the <span class="hlt">vertical</span> chlorophyll a <span class="hlt">profiles</span> of each group can be inferred solely from the knowledge of [Chla]surf. By combining this tool with satellite ocean color data, it becomes possible to quantify on a global scale the phytoplankton biomass associated with each of the three algal assemblages.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780031981&hterms=palestine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpalestine','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780031981&hterms=palestine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpalestine"><span>The <span class="hlt">vertical</span> distribution of HCl in the stratosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Raper, O. F.; Farmer, C. B.; Toth, R. A.; Robbins, B. D.</p> <p>1977-01-01</p> <p>The <span class="hlt">vertical</span> distribution of HCl in the stratosphere has been measured from infrared solar absorption spectra recorded with a balloon-borne interferometer. The flights were made in September, 1975, and May, 1976 at float altitudes of 40 km and 37 km, respectively, near Palestine, Texas. Concentration <span class="hlt">profiles</span> derived from the data show an increase from 0.6 ppbv at 20 km to 1.7 plus or minus .5 ppbv in the region of 37 km. Above 37 km, the data permit only the total abundance to be determined; this value is found to be equivalent to 1.6 plus or minus .6 ppbv if the gas were uniformly mixed. The results from the two flights are closely similar, and no significant seasonal variation in the HCl concentrations can be discerned. The balloon data are consistent with the <span class="hlt">profile</span> in the 14-21 km altitude region of the stratosphere reported earlier from U-2 <span class="hlt">observations</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24182407','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24182407"><span>Assessment of the <span class="hlt">vertical</span> distribution of natural radionuclides in a mineralized uranium area in south-west Spain.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blanco Rodríguez, P; Vera Tomé, F; Lozano, J C</p> <p>2014-01-01</p> <p>Low-level alpha spectrometry techniques using semiconductor detectors (PIPS) and liquid scintillation (LKB Quantulus 1220™) were used to determine the activity concentration of (238)U, (234)U, (230)Th, (226)Ra, (232)Th, and (210)Pb in soil samples. The soils were collected from an old disused uranium mine located in southwest Spain. The soils were sampled from areas with different levels of influence from the installation and hence had different levels of contamination. The <span class="hlt">vertical</span> <span class="hlt">profiles</span> of the soils (down to 40 cm depth) were studied in order to evaluate the <span class="hlt">vertical</span> distribution of the natural radionuclides. To determine the origin of these natural radionuclides the Enrichment Factor was used. Also, study of the activity ratios between radionuclides belonging to the same radioactive series allowed us to assess the different types of behaviors of the radionuclides involved. The <span class="hlt">vertical</span> <span class="hlt">profiles</span> for the radionuclide members of the (238)U series were different at each sampling point, depending on the level of influence of the installation. However, the <span class="hlt">profiles</span> of each point were similar for the long-lived radionuclides of the (238)U series ((238)U, (234)U, (230)Th, and (226)Ra). Moreover, a major imbalance was <span class="hlt">observed</span> between (210)Pb and (226)Ra in the surface layer, due to (222)Rn exhalation and the subsequent surface deposition of (210)Pb. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JGRD..110.6208K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JGRD..110.6208K"><span><span class="hlt">Vertical</span> distribution of Saharan dust over Rome (Italy): Comparison between 3-year model predictions and lidar soundings</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kishcha, P.; Barnaba, F.; Gobbi, G. P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.</p> <p>2005-03-01</p> <p>Mineral dust particles loaded into the atmosphere from the Sahara desert represent one major factor affecting the Earth's radiative budget. Regular model-based forecasts of 3-D dust fields can be used in order to determine the dust radiative effect in climate models, in spite of the large gaps in <span class="hlt">observations</span> of dust <span class="hlt">vertical</span> <span class="hlt">profiles</span>. In this study, dust forecasts by the Tel Aviv University (TAU) dust prediction system were compared to lidar <span class="hlt">observations</span> to better evaluate the model's capabilities. The TAU dust model was initially developed at the University of Athens and later modified at Tel Aviv University. Dust forecasts are initialized with the aid of the Total Ozone Mapping Spectrometer aerosol index (TOMS AI) measurements. The lidar soundings employed were collected at the outskirts of Rome, Italy (41.84°N, 12.64°E) during the high-dust activity season from March to June of the years 2001, 2002, and 2003. The lidar <span class="hlt">vertical</span> <span class="hlt">profiles</span> collected in the presence of dust were used for obtaining statistically significant reference parameters of dust layers over Rome and for model versus lidar comparison. The Barnaba and Gobbi (2001) approach was used in the current study to derive height-resolved dust volumes from lidar measurements of backscatter. Close inspection of the juxtaposed <span class="hlt">vertical</span> <span class="hlt">profiles</span>, obtained from lidar and model data near Rome, indicates that the majority (67%) of the cases under investigation can be classified as good or acceptable forecasts of the dust <span class="hlt">vertical</span> distribution. A more quantitative comparison shows that the model predictions are mainly accurate in the middle part of dust layers. This is supported by high correlation (0.85) between lidar and model data for forecast dust volumes greater than the threshold of 1 × 10-12 cm3/cm3. In general, however, the model tends to underestimate the lidar-derived dust volume <span class="hlt">profiles</span>. The effect of clouds in the TOMS detection of AI is supposed to be the main factor responsible for this effect</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27..824B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27..824B"><span><span class="hlt">Vertical</span> Mixing In Western Lake Constance Due To Long Internal Waves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boehrer, B.</p> <p></p> <p>Current <span class="hlt">profiles</span> in the pelagic waters of western Lake Constance have been broken up into modes of the internal wave equation [1,2]. All current <span class="hlt">profiles</span> can be well represented by a combination of the first and second mode wave. The temporal vari- ation of the modal composition with the interaction of the first and second mode im- plies current shear at varying depths. From current and density <span class="hlt">profiles</span>, the gradient Richardson number can be evaluated in its spatial and temporal pattern with occa- tional occurence of supercritical values at all depths, also in the deep hypolimnion. An empiric connection between gradient Richardson number and diapycnical mixing [3] is applied to yield a <span class="hlt">profile</span> of <span class="hlt">vertical</span> transport coefficients, which can be com- pared with transport coefficients from gradient flux calculations of temperature and electrical conductivity <span class="hlt">profiles</span> [4]. [1] B. Boehrer, J. Ilmberger and K.O. Münnich (2000): <span class="hlt">Vertical</span> Structure of Current in Western Lake Constance, JGR-Oceans, 105 (12), 28823-28835 [2] B. Boehrer (2000): Modal Response of a Deep Stratified Lake: Western Lake Con- stance, JGR-Oceans, 105 (12), 28837-28845 [3] H. Peeters, M.C. Gregg and J.M. Toole (1988): On the parameterization of equa- torial turbulence, JGR, 93, 1199-1218 [4] G. Heinz, J. Ilmberger and M. Schimmele (1990): <span class="hlt">Vertical</span> Mixing in Überlinger See, western part of Lake Constance, Aquat. Sci., 52(3), 256-268</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJWC.17610005A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJWC.17610005A"><span>Aerosol <span class="hlt">profiling</span> during the large scale field campaign CINDI-2</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Apituley, Arnoud; Roozendael, Michel Van; Richter, Andreas; Wagner, Thomas; Friess, Udo; Hendrick, Francois; Kreher, Karin; Tirpitz, Jan-Lukas</p> <p>2018-04-01</p> <p>For the validation of space borne <span class="hlt">observations</span> of NO2 and other trace gases from hyperspectral imagers, ground based instruments based on the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the <span class="hlt">observations</span> from orbit. To ensure proper traceability of the MAXDOAS <span class="hlt">observations</span>, a thorough validation and intercomparison is mandatory. Advanced MAXDOAS <span class="hlt">observation</span> and retrieval techniques enable inferring <span class="hlt">vertical</span> structure of trace gases and aerosols. These techniques and their results need validation by e.g. lidar techniques. For the proper understanding of the results from passive remote sensing techniques, independent <span class="hlt">observations</span> are needed that include parameters needed to understand the light paths, i.e. in-situ aerosol <span class="hlt">observations</span> of optical and microphysical properties, and essential are in particular the <span class="hlt">vertical</span> <span class="hlt">profiles</span> of aerosol optical properties by (Raman) lidar. The approach used in the CINDI-2 campaign held in Cabauw in 2016 is presented in this paper and the results will be discussed in the presentation at the conference.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21216057','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21216057"><span>A passive air sampler for characterizing the <span class="hlt">vertical</span> concentration <span class="hlt">profile</span> of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Yuzhong; Deng, Shuxing; Liu, Yanan; Shen, Guofeng; Li, Xiqing; Cao, Jun; Wang, Xilong; Reid, Brian; Tao, Shu</p> <p>2011-03-01</p> <p>Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the <span class="hlt">vertical</span> concentration <span class="hlt">profile</span> of 4 low molecular weight PAHs in gaseous phase (PAH(LMW4)) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. <span class="hlt">Vertical</span> concentration gradients were revealed for PAH(LMW4) within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070021435','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070021435"><span>What Does Reflection from Cloud Sides Tell Us About <span class="hlt">Vertical</span> Distribution of Cloud Droplet Sizes?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marshak, Alexander; Martins, J. Vanderlei; Zubko, Victor; Kaufman, Yoram, J.</p> <p>2005-01-01</p> <p>Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud <span class="hlt">profiles</span> of droplet size and phase. Aircraft measurements of cloud <span class="hlt">profiles</span> are limited in their temporal and spatial extent. Satellites were used to <span class="hlt">observe</span> cloud tops not cloud <span class="hlt">profiles</span> with <span class="hlt">vertical</span> <span class="hlt">profiles</span> of precipitation-sized droplets anticipated from Cloudsat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3D) suggests to measure <span class="hlt">profiles</span> of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimensional (3D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 micrometers) and one with liquid water efficient absorption of solar radiation (2.1 micrometers). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer is used for interpreting the <span class="hlt">observed</span> reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed <span class="hlt">vertically</span> resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070019372&hterms=kaufman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dkaufman','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070019372&hterms=kaufman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dkaufman"><span>What does Reflection from Cloud Sides tell us about <span class="hlt">Vertical</span> Distribution of Cloud Droplet Sizes?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marshak, A.; Martins, J. V.; Zubko, V.; Kaufman, Y. J.</p> <p>2006-01-01</p> <p>Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud <span class="hlt">profiles</span> of droplet size and phase. Aircraft measurements of cloud <span class="hlt">profiles</span> are limited in their temporal and spatial extent. Satellites were used to <span class="hlt">observe</span> cloud tops not cloud <span class="hlt">profiles</span> with <span class="hlt">vertical</span> <span class="hlt">profiles</span> of precipitation-sized droplets anticipated from CloudSat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3-D) suggests to measure <span class="hlt">profiles</span> of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimentional(3-D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 microns) and one with liquid water efficient absorption of solar radiation (2.1 microns). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3-D radiative transfer is used for interpreting the <span class="hlt">observed</span> reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed <span class="hlt">vertically</span> resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020066676&hterms=Russell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26Nf%3DPublication-Date%257CBTWN%2B20000101%2B20001231%26N%3D0%26No%3D10%26Ntt%3DRussell','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020066676&hterms=Russell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26Nf%3DPublication-Date%257CBTWN%2B20000101%2B20001231%26N%3D0%26No%3D10%26Ntt%3DRussell"><span>Case Studies of the <span class="hlt">Vertical</span> Structure of the Direct Shortwave Aerosol Radiative Forcing During TARFOX</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Redemann, J.; Turco, R. P.; Liou, K. N.; Hobbs, P. V.; Hartley, W. S.; Bergstrom, R. W.; Browell, E. V.; Russell, P. B.</p> <p>2000-01-01</p> <p>The <span class="hlt">vertical</span> structure of aerosol-induced radiative flux changes in the Earth's troposphere affects local heating rates and thereby convective processes, the formation and lifetime of clouds, and hence the distribution of chemical constituents. We present <span class="hlt">observationally</span> based estimates of the <span class="hlt">vertical</span> structure of direct shortwave aerosol radiative forcing for two case studies from the Tropospheric Aerosol Radiative Forcing <span class="hlt">Observational</span> Experiment (TARFOX) which took place on the U.S. east coast in July 1996. The aerosol radiative forcings are computed using the Fu-Liou broadband radiative transfer model. The aerosol optical properties used in the radiative transfer simulations are calculated from independent <span class="hlt">vertically</span> resolved estimates of the complex aerosol indices of refraction in two to three distinct <span class="hlt">vertical</span> layers, using <span class="hlt">profiles</span> of in situ particle size distributions measured aboard the University of Washington research aircraft. Aerosol single-scattering albedos at 450 nm thus determined range from 0.9 to 0.985, while the asymmetry factor varies from 0.6 to 0.8. The instantaneous shortwave aerosol radiative forcings derived from the optical properties of the aerosols are of the order of -36 Wm(exp -2) at the top of the atmosphere and about -56 Wm(exp -2) at the surface for both case studies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950004651','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950004651"><span>Polarimetric method of estimation of <span class="hlt">vertical</span> aerosol distribution in application to <span class="hlt">observations</span> of ozone and NO2</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Elansky, Nikolay F.; Kadyshevich, Elena A.; Savastyuk, Vladimir V.</p> <p>1994-01-01</p> <p>The degree of polarization of skylight at the zenith during twilight depends on the aerosol content in the atmosphere. The long-term <span class="hlt">observations</span> at the high-mountain research station 'Kislovodsk' (North Caucasus) have shown that the variation of the degree of polarization after the eruption of the El Chichon volcano can serve as the effective parameter characterizing the <span class="hlt">vertical</span> aerosol stratification in the atmosphere. The results of the measurements are confirmed by the numerical calculations. The algorithm of the retrieval of the <span class="hlt">vertical</span> aerosol distribution on the base of the measurements of the degree of polarization is proposed. This method can be applied for the increasing of the precision of O3, NO2, and other gas content measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050180394','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050180394"><span>Retrieval of Raindrop Size Distribution, <span class="hlt">Vertical</span> Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.</p> <p>2005-01-01</p> <p>Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), <span class="hlt">vertical</span> air velocity, and attenuation by precipitation and water vapor in light stratiform rain using <span class="hlt">observations</span> by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the <span class="hlt">vertical</span> air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the <span class="hlt">observed</span> reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the <span class="hlt">observed</span> reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........32L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........32L"><span><span class="hlt">Observed</span> and Simulated Supercell Demise Depicted by VORTEX2 <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Letkewicz, Casey Elizabeth</p> <p></p> <p>Over the past several decades, supercell thunderstorms have been the subject of much research, aimed at understanding their governing dynamics and better forecasting their potential hazards. While focus has been placed on understanding supercells' developing and mature stages, fewer studies have examined the conditions and processes associated with supercell demise. The current gaps in our understanding of supercell demise in turn suggest that we do not yet fully understand supercell maintenance. On 9 June 2009, the Verification of the Origins of Rotation in Tornadoes Experiment 2009-2010 (VORTEX2) captured a unique dataset of dense <span class="hlt">observations</span> throughout the lifetime of an isolated supercell, including its demise. The storm formed just to the cool side of a quasi-stationary synoptic boundary, initially exhibiting strong low-level rotation. Over time, however, the storm moved deeper into the cool air and completely dissipated. Three near-inflow soundings launched over the lifetime of the supercell illustrated an increase in low-level convective inhibition (CIN) over time. However, an elevated layer containing sufficient instability and modest inhibition was also present, and the near-storm environment demonstrated a notable decrease in bulk <span class="hlt">vertical</span> wind shear and storm-relative helicity over the lifetime of the storm. While the likely impact of an increasingly stable near-storm environment is seemingly straightforward, the possible contributions from the elevated layer of instability, the extent to which the evolving kinematic <span class="hlt">profile</span> influenced storm dissipation, and the relevant processes at work, are less certain. Such details are not easily extracted from the <span class="hlt">observations</span>. Thus, an idealized modeling approach was adopted to isolate the trends in the thermodynamic and kinematic <span class="hlt">profiles</span> and understand their relative contributions to storm demise, and also assess the relevant processes. Based on the evolving near-storm environment on 9 June 2009, a new modeling</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816258P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816258P"><span>Reconstruction of <span class="hlt">Vertical</span> <span class="hlt">Profile</span> of Permittivity of Layered Media which is Probed Using <span class="hlt">Vertical</span> Differential Antenna</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pochanin, Gennadiy P.; Poyedinchuk, Anatoliy Y.; Varianytsia-Roshchupkina, Liudmyla A.; Pochanina, Iryna Ye.</p> <p>2016-04-01</p> <p>Results of this research are intended to use at GPR investigations of layered media (for example, at roads' inspection) for the processing of collected data and reconstruction of dependence of permittivity on the depth. Recently, an antenna system with a <span class="hlt">vertical</span> differential configuration of receiving module (Patent UA81652) for GPR was suggested and developed The main advantage of the differential antennas in comparison with bistatic antennas is a high electromagnetic decoupling between the transmitting and receiving modules. The new <span class="hlt">vertical</span> differential configuration has an additional advantage because it allows collecting GPR data reflected by layered media without any losses of information about these layers [1] and, potentially, it is a more accurate instrument for the layers thickness measurements [2]. The developed antenna system is tested in practice with the GPR at asphalt thickness measurements [3] and shown an accuracy which is better than 0.5 cm. Since this antenna system is good for sounding from above the surface (air coupled technique), the mobile laboratory was equipped with the developed GPR [3]. In order to process big set of GPR data that collected during probing at long routes of the roads, for the data processing it was tested new algorithm of the inverse problem solution. It uses a fast algorithm for calculation of electromagnetic wave diffraction by non-uniform anisotropic layers [4]. The algorithm is based on constructing a special case solution to the Riccati equation for the Cauchy problem and enables a qualitative description of the wave diffraction by the electromagnetic structure of the type within a unitary framework. At this stage as initial data we used synthetic GPR data that were obtained as results of the FDTD simulation of the problem of UWB electromagnetic impulse diffraction on layered media. Differential and bistatic antenna configurations were tested at several different <span class="hlt">profiles</span> of permittivity. Meanings of permittivity of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=PROFILE+AND+OF+AND+THE+AND+HIGHER+AND+EDUCATION+AND+TEACHER&pg=2&id=EJ978326','ERIC'); return false;" href="https://eric.ed.gov/?q=PROFILE+AND+OF+AND+THE+AND+HIGHER+AND+EDUCATION+AND+TEACHER&pg=2&id=EJ978326"><span><span class="hlt">Observed</span> Classroom Quality <span class="hlt">Profiles</span> of Kindergarten Classrooms in Finland</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Salminen, Jenni; Lerkkanen, Marja-Kristiina; Poikkeus, Anna-Maija; Pakarinen, Eija; Siekkinen, Martti; Hannikainen, Maritta; Poikonen, Pirjo-Liisa; Rasku-Puttonen, Helena</p> <p>2012-01-01</p> <p>Research Findings: The aim of the present study was to examine classroom quality <span class="hlt">profiles</span> of kindergarten classrooms using a person-centered approach and to analyze these patterns in regard to teacher and classroom characteristics. <span class="hlt">Observations</span> of the domains of Emotional Support, Classroom Organization, and Instructional Support were conducted in…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7521G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7521G"><span>Aircraft-borne DOAS limb <span class="hlt">observations</span> of iodine monoxide around Borneo</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Großmann, Katja; Hossaini, Ryan; Mantle, Hannah; Chipperfield, Martyn; Wittrock, Folkard; Peters, Enno; Lampel, Johannes; Walker, Hannah; Heard, Dwayne; Krystofiak, Gisèle; Catoire, Valéry; Dorf, Marcel; Werner, Bodo; Pfeilsticker, Klaus</p> <p>2015-04-01</p> <p>Iodine monoxide (IO) has a major impact on the photochemistry of the troposphere. It can for example catalytically destroy ozone, influence the atmospheric oxidation capacity by changing the partitioning of the HOx and NOx species, or contribute to the formation of ultrafine particles. Information regarding the <span class="hlt">vertical</span> distribution of IO is still sparse since only few <span class="hlt">vertical</span> <span class="hlt">profiles</span> of IO exist for the troposphere. Spectroscopic measurements were carried out from aboard the research aircraft DLR-Falcon during the SHIVA (Stratospheric ozone: Halogen Impacts in a Varying Atmosphere) campaign at Malaysian Borneo in November and December 2011 to study the abundance and transport of trace gases in the lower atmosphere. Sixteen research flights were performed covering legs near the surface in the marine boundary layer (MBL) as well as in the free troposphere (FT) up to an altitude of 13 km. The spectroscopic measurements were evaluated using the Differential Optical Absorption Spectroscopy (DOAS) technique in limb geometry, which supports <span class="hlt">observations</span> of UV/visible absorbing trace gases, such as O4, BrO, IO, NO2, HCHO, CHOCHO, HONO and H2O, and altitude information was gained via the O4 scaling technique and/or full inversion. The inferred <span class="hlt">vertical</span> <span class="hlt">profiles</span> of IO showed mixing ratios of 0.5-1.5 ppt in the MBL, which decreased to 0.1-0.3 ppt in the FT. Occasionally, the IO <span class="hlt">observed</span> in the FT of the marine environment coincided with elevated amounts of CO, but no IO was <span class="hlt">observed</span> over land, neither in the boundary layer, nor in the FT. This behavior strongly indicated that the major sources for IO were organic and inorganic precursor molecules emitted from the ocean, which during daytime rapidly formed a sizable amount of IO in the MBL that was occasionally transported into the FT where efficient loss processes for IO must exist. The inferred <span class="hlt">vertical</span> <span class="hlt">profiles</span> of IO are compared to simulations using the global 3-D chemistry transport model TOMCAT including recent fluxes</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A43E0334F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A43E0334F"><span>Improved Ozone <span class="hlt">Profile</span> Retrievals Using Multispectral Measurements from NASA 'A Train' Satellites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, D.; Worden, J.; Livesey, N. J.; Irion, F. W.; Schwartz, M. J.; Bowman, K. W.; Pawson, S.; Wargan, K.</p> <p>2013-12-01</p> <p>Ozone, a radiatively and chemically important trace gas, plays various roles in different altitude ranges in the atmosphere. In the stratosphere, it absorbs the solar UV radiation from the Sun and protects us from sunburn and skin cancers. In the upper troposphere, ozone acts as greenhouse gas. Ozone in the middle troposphere reacts with many anthropogenic pollutants and cleans up the atmosphere. Near surface ozone is harmful to human health and plant life. Accurate monitoring of ozone <span class="hlt">vertical</span> distributions is crucial for a better understanding of air quality and climate change. The Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder (MLS) are both in orbit on the Earth <span class="hlt">Observing</span> System Aura satellite and are providing ozone concentration <span class="hlt">profile</span> measurements. MLS <span class="hlt">observes</span> limb signals from 118 GHz to 2.5 THz, and measures upper tropospheric and stratospheric ozone concentration (among many other species) with a <span class="hlt">vertical</span> resolution of about 3 km. OMI is a nadir-viewing pushbroom ultraviolet-visible (UV-VIS) imaging spectrograph that measures backscattered radiances covering the 270-500 nm wavelength range. AIRS is a grating spectrometer, on EOS Aqua satellite, that measures the thermal infrared (TIR) radiances emitted by Earth's surface and by gases and particles in the spectral range 650 - 2665 cm-1. We present an approach to combine simultaneously measured UV and TIR radiances together with the retrieved MLS ozone fields, to improve the ozone sounding. This approach has the potential to provide a decadal record of ozone <span class="hlt">profiles</span> with an improved spatial coverage and <span class="hlt">vertical</span> resolution from space missions. For evaluating the quality of retrieved <span class="hlt">profiles</span>, we selected a set of AIRS and OMI measurements, whose ground pixels were collocated with ozonesonde launch sites. The results from combination of these measurements are presented and discussed. The improvements on <span class="hlt">vertical</span> resolution of tropospheric ozone <span class="hlt">profiles</span> from the MLS/AIRS/OMI joint</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750023548','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750023548"><span><span class="hlt">Vertical</span> temperature and density patterns in the Arctic mesosphere analyzed as gravity waves</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eberstein, I. J.; Theon, J. S.</p> <p>1975-01-01</p> <p>Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind <span class="hlt">profiles</span> and one density <span class="hlt">profile</span> were <span class="hlt">observed</span> independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature <span class="hlt">profiles</span> from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature <span class="hlt">profile</span> was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The <span class="hlt">vertical</span> wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004OcMod...7..285H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004OcMod...7..285H"><span>Evaluation of <span class="hlt">vertical</span> coordinate and <span class="hlt">vertical</span> mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halliwell, George R.</p> <p></p> <p><span class="hlt">Vertical</span> coordinate and <span class="hlt">vertical</span> mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid <span class="hlt">vertical</span> coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential <span class="hlt">vertical</span> mixing models: the nonlocal K-<span class="hlt">Profile</span> Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" <span class="hlt">vertical</span> mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid <span class="hlt">vertical</span> coordinates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711182K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711182K"><span>Evolution of Metallic Trace Elements in Contaminated River Sediments: Geochemical Variation Along River Linear and <span class="hlt">Vertical</span> <span class="hlt">Profile</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kanbar, Hussein; Montarges-Pelletier, Emmanuelle; Mansuy-Huault, Laurence; Losson, Benoit; Manceau, Luc; Bauer, Allan; Bihannic, Isabelle; Gley, Renaud; El Samrani, Antoine; Kobaissi, Ahmad; Kazpard, Veronique; Villieras, Frédéric</p> <p>2015-04-01</p> <p>Metal pollution in riverine systems poses a serious threat that jeopardizes water and sediment quality, and hence river dwelling biota. Since those metallic pollutants can be transported for long distances via river flow, river management has become a great necessity, especially in times where industrial activities and global climate change are causing metal release and spreading (by flooding events). These changes are able to modify river hydrodynamics, and as a consequence natural physico-chemical status of different aquatic system compartments, which in turn alter metal mobility, availability and speciation. <span class="hlt">Vertical</span> <span class="hlt">profiles</span> of sediments hold the archive of what has been deposited for several tenths of years, thus they are used as a tool to study what had been deposited in rivers beds. The studied area lies in the Orne river, northeastern France. This river had been strongly modified physically and affected by steelmaking industrial activities that had boosted in the middle of the last century. This study focuses on several sites along the linear of the Orne river, as well as <span class="hlt">vertical</span> <span class="hlt">profiles</span> of sediments. Sediment cores were collected at sites where sedimentation is favoured, and in particular upstream two dams, built in the second half of the XXth century for industrial purposes. Sediment cores were sliced into 2-5cm layers, according to suitability, and analysed for physical and physico-chemical properties, elemental content and mineralogy. Data of the <span class="hlt">vertical</span> <span class="hlt">profile</span> in a sediment core is important to show the evolution of sediments as a function of depth, and hence age, in terms of nature, size and constituents. The physical properties include particle size distribution (PSD) and water content. In addition, the physico-chemical properties, such as pH and oxido-reduction potential (ORP) of interstitial water from undisturbed cores were also detected. Total elemental content of sediment and available ones of extracted interstitial waters was detected using</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930071514&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dvertical%2Bheight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930071514&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dvertical%2Bheight"><span>Satellite <span class="hlt">observations</span> of a polar low over the Norwegian Sea by Special Sensor Microwave Imager, Geosat, and TIROS-N Operational <span class="hlt">Vertical</span> Sounder</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Claud, Chantal; Mognard, Nelly M.; Katsaros, Kristina B.; Chedin, Alain; Scott, Noelle A.</p> <p>1993-01-01</p> <p>Many polar lows are generated at the boundary between sea ice and the ocean, in regions of large temperature gradients, where in situ <span class="hlt">observations</span> are rare or nonexistent. Since satellite <span class="hlt">observations</span> are frequent in high-latitude regions, they can be used to detect polar lows and track their propagation and evolution. The Special Sensor Microwave/Imager (SSM/I) providing estimates of surface wind speed, integrated cloud liquid water content, water vapor content, and precipitation size ice-scattering signal over the ocean; the Geosat radar altimeter measuring surface wind speed and significant wave height; and the TIROS-N Operational <span class="hlt">Vertical</span> Sounder (TOVS) allowing the determination of temperature and humidity <span class="hlt">profiles</span> in the atmosphere have been used in synergy for a specific case which occurred in the Norwegian Sea on January, 23-24 1988. All three instruments show sharp atmospheric gradients associated with the propagation of this low across the ocean, which permit the detection of the polar low at a very early stage and tracking it during its development, propagation, and decay. The wind speed gradients are measured with good qualitative agreement between the altimeter and SSM/I. TOVS retrieved fields prior to the formation of the low confirm the presence of an upper level trough, while during the mature phase baroclinicity can be <span class="hlt">observed</span> in the 1000-500 hPa geopotential thicknesses.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G11A1059S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G11A1059S"><span>Six years after the El Mayor-Cucapah earthquake: Transient far-field postseismic <span class="hlt">vertical</span> motion <span class="hlt">observed</span> by tide gauges and GPS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith-Konter, B. R.; Gonzalez-Ortega, J. A.; Merrifield, M. A.; Tong, X.; Sandwell, D. T.; Hardy, S.; Howell, S. M.</p> <p>2016-12-01</p> <p>On April 4, 2010, the El Mayor-Cucapah earthquake (Mw 7.2) ruptured a 120 km long set of faults of the southernmost San Andreas Fault System in northeastern Baja California, Mexico. Near-field coseismic GPS <span class="hlt">observations</span> revealed up to 1.1 m of horizontal surface slip and 0.6 m of <span class="hlt">vertical</span> subsidence at near-field stations. Early near-field InSAR and GPS time series postseismic <span class="hlt">observations</span> also suggested several tens of centimeters of afterslip occurred within the first two years, however postseismic transients due to viscoelastic or poroelastic relaxation have also been offered as candidate models. Here we investigate the role of viscoelastic transients from six years of regional far-field ( 200 km from rupture) tide gauge and <span class="hlt">vertical</span> GPS time series <span class="hlt">observations</span> to further constrain postseismic deformation mechanisms. <span class="hlt">Vertical</span> viscoelastic postseismic models of the El Mayor-Cucapah earthquake suggest alternating quadrants of uplift and subsidence straddling the rupture, with uplift to the north near the Salton Trough and subsidence to the west spanning the San Diego and Ensenada regions. These decaying transient motions are confirmed by both <span class="hlt">vertical</span> postseismic GPS and tide gauge-altimetry <span class="hlt">observations</span>, in both the near- and far fields. For example, tide gauge data in San Diego, which typically record <span class="hlt">vertical</span> land motions on the order of a few millimeters per year, recorded nearly 30 mm of transient land subsidence over the first 3 years. We find that the magnitude and decay of far-field postseismic subsidence can be attributed to viscoelastic relaxation of the mantle assuming a temporally varying rheology; viscosities as low as 1017 Pa-s for at least the first 6-12 months, followed by an increasing viscosity on the order of 1018 Pa-s in the years following, best fit the data. While transient viscosity anomalies have been previously suggested from GPS data spanning the first 1.5 years following the earthquake [Pollitz et al., 2012], the combined results from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28649041','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28649041"><span>Determination of the <span class="hlt">vertical</span> <span class="hlt">profile</span> of particle number concentration adjacent to a motorway using an unmanned aerial vehicle.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Villa, T F; Jayaratne, E R; Gonzalez, L F; Morawska, L</p> <p>2017-11-01</p> <p>A quantitative assessment of the <span class="hlt">vertical</span> <span class="hlt">profile</span> of traffic pollution, specifically particle number concentration (PNC), in an open space adjacent to a motorway was possible for the first time, to the knowledge of the authors, using an Unmanned Aerial Vehicle (UAV) system. Until now, traffic pollution has only been measured at ground level while the <span class="hlt">vertical</span> distribution, is limited to studies conducted from buildings or fixed towers and balloons. This new UAV system demonstrated that the PNC sampled during the period form 10 a.m. to 4 p.m., outside the rush hours with a constant traffic flow, increased from a concentration of 2 × 10 4 p/cm 3 near the ground up to 10 m, and then sharply decreased attaining a steady value of 4 × 10 3 p/cm 3 beyond a height of about 40 m. While more comprehensive investigations would be warranted under different conditions, such as topography and vehicle and fuel type, this finding is of great significance, given that it demonstrates the impact of traffic emissions on human exposure, but less so to pollution within the upper part of the boundary layer. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.3539M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.3539M"><span><span class="hlt">Vertical</span> <span class="hlt">profiles</span> of ClNO2 measured in Utah: dry deposition of N2O5 as a source of ClNO2</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McLaren, Robert; Roberts, James M.; Kercher, James P.; Thornton, Joel A.; Brown, Steven S.; Edwards, Peter M.; Young, Cora Y.; Dube, William P.; Washenfelder, Rebecca A.; Williams, Eric J.; Holloway, John S.; Bates, Timothy S.; Quinn, Patricia K.</p> <p>2013-04-01</p> <p>Several recent <span class="hlt">observations</span> of nitryl chloride (ClNO2) have suggested that this compound can accumulate to significant levels (several ppb) in the nocturnal boundary layer at night. Its photolytic loss the next day can be a significant source of chlorine atom radicals. The source of ClNO2 is known to be the heterogeneous reaction of N2O5 with aerosol chloride, not just confined to coastal regions but also <span class="hlt">observed</span> thousands of kilometers inland in urban areas. During the Uintah Basin Winter Ozone Study (2012), we made measurements of ClNO2 by CIMS on a tower in a remote region of Utah where intensive natural gas extraction operations via hydraulic fracturing were occurring. Levels of ClNO2 were surprisingly high at night (up to 2 ppb) even though coastal aerosols were not present. Soils in the region were alkaline with high chloride content. To address the potential of N2O5 dry deposition as a source of ClNO2, we measured <span class="hlt">vertical</span> <span class="hlt">profiles</span> of ClNO2 from 1 to 12 m agl with a movable inlet. We <span class="hlt">observed</span> negative gradients of ClNO2 and positive gradients of N2O5, which suggest that dry deposition of N2O5 and reaction with soil chloride as a source of ClNO2.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000116581','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000116581"><span>BOREAS AFM-06 Mean Temperature <span class="hlt">Profile</span> Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)</p> <p>2000-01-01</p> <p>The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) <span class="hlt">profiler</span> system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides temperature <span class="hlt">profiles</span> at 15 heights, containing the variables of virtual temperature, <span class="hlt">vertical</span> velocity, the speed of sound, and w-bar. The data are stored in tabular ASCII files. The mean temperature <span class="hlt">profile</span> data are available from the Earth <span class="hlt">Observing</span> System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110009934','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110009934"><span><span class="hlt">Profiling</span> Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.</p> <p>2010-01-01</p> <p>A synergistic process was developed to study the <span class="hlt">vertical</span> distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET <span class="hlt">observations</span> were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol <span class="hlt">vertical</span> extinction <span class="hlt">profiles</span> retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different <span class="hlt">vertical</span> distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol <span class="hlt">vertical</span> distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the <span class="hlt">vertical</span> <span class="hlt">profile</span> of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating <span class="hlt">profiles</span> have implications for the stability and convection in the lower troposphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1420835','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1420835"><span>Radar - ESRL Wind <span class="hlt">Profiler</span> with RASS, Wasco Airport - Derived Data</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McCaffrey, Katherine</p> <p></p> <p><span class="hlt">Profiles</span> of turbulence dissipation rate for 15-minute intervals, time-stamped at the beginning of the 15-minute period, during the final 30 minutes of each hour. During that time, the 915-MHz wind <span class="hlt">profiling</span> radar was in an optimized configuration with a <span class="hlt">vertically</span> pointing beam only for measuring accurate spectral widths of <span class="hlt">vertical</span> velocity. A bias-corrected dissipation rate also was <span class="hlt">profiled</span> (described in McCaffrey et al. 2017). Hourly files contain two 15-minute <span class="hlt">profiles</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1968/0146/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1968/0146/report.pdf"><span><span class="hlt">Vertical</span> mass transfer in open channel flow</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jobson, Harvey E.</p> <p>1968-01-01</p> <p>The <span class="hlt">vertical</span> mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration <span class="hlt">profiles</span> were measured. From these <span class="hlt">profiles</span> along with the measured velocity distribution both the <span class="hlt">vertical</span> mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the <span class="hlt">vertical</span> mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the <span class="hlt">vertical</span> transfer coefficient. <span class="hlt">Vertical</span> mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25806404','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25806404"><span>Quadrupedal galloping control for a wide range of speed via <span class="hlt">vertical</span> impulse scaling.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, Hae-Won; Kim, Sangbae</p> <p>2015-03-25</p> <p>This paper presents a bio-inspired quadruped controller that allows variable-speed galloping. The controller design is inspired by <span class="hlt">observations</span> from biological runners. Quadrupedal animals increase the <span class="hlt">vertical</span> impulse that is generated by ground reaction forces at each stride as running speed increases and the duration of each stance phase reduces, whereas the swing phase stays relatively constant. Inspired by this <span class="hlt">observation</span>, the presented controller estimates the required <span class="hlt">vertical</span> impulse at each stride by applying the linear momentum conservation principle in the <span class="hlt">vertical</span> direction and prescribes the ground reaction forces at each stride. The design process begins with deriving a planar model from the MIT Cheetah 2 robot. A baseline periodic limit cycle is obtained by optimizing ground reaction force <span class="hlt">profiles</span> and the temporal gait pattern (timing and duration of gait phases). To stabilize the optimized limit cycle, the obtained limit cycle is converted to a state feedback controller by representing the obtained ground reaction force <span class="hlt">profiles</span> as functions of the state variable, which is monotonically increasing throughout the gait, adding impedance control around the height and pitch trajectories of the obtained limit cycle and introducing a finite state machine and a pattern stabilizer to enforce the optimized gait pattern. The controller that achieves a stable 3 m s(-1) gallop successfully adapts the speed change by scaling the <span class="hlt">vertical</span> ground reaction force to match the momentum lost by gravity and adding a simple speed controller that controls horizontal speed. Without requiring additional gait optimization processes, the controller achieves galloping at speeds ranging from 3 m s(-1) to 14.9 m s(-1) while respecting the torque limit of the motor used in the MIT Cheetah 2 robot. The robustness of the controller is verified by demonstrating stable running during various disturbances, including 1.49 m step down and 0.18 m step up, as well as random ground</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011959','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011959"><span>Seasonal Variations in Titan's Stratosphere <span class="hlt">Observed</span> with Cassini/CIRS: Temperature, Trace Molecular Gas and Aerosol Mixing Ratio <span class="hlt">Profiles</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vinatier, S.; Bezard, B.; Anderson, C. M.; Coustenis, A.; Teanby, N.</p> <p>2012-01-01</p> <p>Titan's northern spring equinox occurred in August 2009. General Circulation Models (e.g. Lebonnois et al., 2012) predict strong modifications of the global circulation in this period, with formation of two circulation cells instead of the pole-to-pole cell that occurred during northern winter. This winter single cell, which had its descending branch at the north pole, was at the origin of the enrichment of molecular abundances and high stratopause temperatures <span class="hlt">observed</span> by Cassini/CIRS at high northern latitudes (e.g. Achterberg et al., 2011, Coustenis et al., 2010, Teanby et al., 2008, Vinatier et al., 2010). The predicted dynamical seasonal variations after the equinox have strong impact on the spatial distributions of trace gas, temperature and aerosol abundances. We will present here an analysis of CIRS limb-geometry datasets acquired in 2010 and 2011 that we used to monitor the seasonal evolution of the <span class="hlt">vertical</span> <span class="hlt">profiles</span> of temperature, molecular (C2H2, C2H6, HCN, ..) and aerosol abundances.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790012464','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790012464"><span>Thunderstorm <span class="hlt">vertical</span> velocities and mass flux estimated from satellite data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Adler, R. F.; Fenn, D. D.</p> <p>1979-01-01</p> <p>Infrared geosynchronous satellite data with an interval of five minutes between images are used to estimate thunderstorm top ascent rates on two case study days. A mean <span class="hlt">vertical</span> velocity of 3.5/ms for 19 clouds is calculated at a height of 8.7 km. This upward motion is representative of an area of approximately 10km on a side. Thunderstorm mass flux of approximately 2x10 to the 11th power/gs is calculated, which compares favorably with previous estimates. There is a significant difference in the mean calculated <span class="hlt">vertical</span> velocity between elements associated with severe weather reports (w bar=4.6/ms) and those with no such reports (2.5/ms). Calculations were made using a velocity <span class="hlt">profile</span> for an axially symmetric jet to estimate the peak updraft velocity. For the largest <span class="hlt">observed</span> w value of 7.8/ms the calculation indicates a peak updraft of approximately 50/ms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35..193I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35..193I"><span>Validation of GOME (ERS-2) NO2 <span class="hlt">vertical</span> column data with ground-based measurements at Issyk-Kul (Kyrgyzstan)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ionov, D.; Sinyakov, V.; Semenov, V.</p> <p></p> <p>Starting from 1995 the global monitoring of atmospheric nitrogen dioxide is carried out by the measurements of nadir-viewing GOME spectrometer aboard ERS-2 satellite. Continuous validation of that data by means of comparisons with well-controlled ground-based measurements is important to ensure the quality of GOME data products and improve related retrieval algorithms. At the station of Issyk-Kul (Kyrgyzstan) the ground-based spectroscopic <span class="hlt">observations</span> of NO2 <span class="hlt">vertical</span> column have been started since 1983. The station is located on the northern shore of Issyk-Kul lake, 1650 meters above the sea level (42.6 N, 77.0 E). The site is equipped with grating spectrometer for the twilight measurements of zenith-scattered solar radiation in the visible range, and applies the DOAS technique to retrieve NO2 <span class="hlt">vertical</span> column. It is included in the list of NDSC stations as a complementary one. The present study is focused on validation of GOME NO2 <span class="hlt">vertical</span> column data, based on 8-year comparison with correlative ground-based measurements at Issyk-Kul station in 1996-2003. Within the investigation, an agreement of both individual and monthly averaged GOME measurements with corresponding twilight ground-based <span class="hlt">observations</span> is examined. Such agreement is analyzed with respect to different conditions (season, sun elevation), temporal/spatial criteria choice (actual overpass location, correction for diurnal variation) and data processing (GDP version 2.7, 3.0). In addition, NO2 <span class="hlt">vertical</span> columns were integrated from simultaneous stratospheric <span class="hlt">profile</span> measurements by NASA HALOE and SAGE-II/III satellite instruments and introduced to explain the differences with ground-based <span class="hlt">observations</span>. In particular cases, NO2 <span class="hlt">vertical</span> <span class="hlt">profiles</span> retrieved from the twilight ground-based measurements at Issuk-Kul were also included into comparison. Overall, summertime GOME NO2 <span class="hlt">vertical</span> columns were found to be systematicaly lower than ground-based data. This work was supported by International Association</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1409263-climate-impacts-calipso-guided-corrections-black-carbon-aerosol-vertical-distributions-global-climate-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1409263-climate-impacts-calipso-guided-corrections-black-carbon-aerosol-vertical-distributions-global-climate-model"><span>Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol <span class="hlt">Vertical</span> Distributions in a Global Climate Model</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.</p> <p></p> <p>Here, we alleviate the bias in the tropospheric <span class="hlt">vertical</span> distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite <span class="hlt">Observations</span> (CALIPSO)-derived <span class="hlt">vertical</span> <span class="hlt">profiles</span>. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC <span class="hlt">vertical</span> distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ~8–50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the globalmore » average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the <span class="hlt">vertical</span> distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC <span class="hlt">vertical</span> distribution.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1409263-climate-impacts-calipso-guided-corrections-black-carbon-aerosol-vertical-distributions-global-climate-model','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1409263-climate-impacts-calipso-guided-corrections-black-carbon-aerosol-vertical-distributions-global-climate-model"><span>Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol <span class="hlt">Vertical</span> Distributions in a Global Climate Model</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; ...</p> <p>2017-09-13</p> <p>Here, we alleviate the bias in the tropospheric <span class="hlt">vertical</span> distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite <span class="hlt">Observations</span> (CALIPSO)-derived <span class="hlt">vertical</span> <span class="hlt">profiles</span>. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC <span class="hlt">vertical</span> distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ~8–50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the globalmore » average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the <span class="hlt">vertical</span> distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC <span class="hlt">vertical</span> distribution.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22270707-x6-class-flare-induced-vertical-kink-oscillations-large-scale-plasma-curtain-observed-solar-dynamics-observatory-atmospheric-imaging-assembly','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22270707-x6-class-flare-induced-vertical-kink-oscillations-large-scale-plasma-curtain-observed-solar-dynamics-observatory-atmospheric-imaging-assembly"><span>X6.9-CLASS FLARE-INDUCED <span class="hlt">VERTICAL</span> KINK OSCILLATIONS IN A LARGE-SCALE PLASMA CURTAIN AS <span class="hlt">OBSERVED</span> BY THE SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Srivastava, A. K.; Goossens, M.</p> <p>2013-11-01</p> <p>We present rare <span class="hlt">observational</span> evidence of <span class="hlt">vertical</span> kink oscillations in a laminar and diffused large-scale plasma curtain as <span class="hlt">observed</span> by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The X6.9-class flare in active region 11263 on 2011 August 9 induces a global large-scale disturbance that propagates in a narrow lane above the plasma curtain and creates a low density region that appears as a dimming in the <span class="hlt">observational</span> image data. This large-scale propagating disturbance acts as a non-periodic driver that interacts asymmetrically and obliquely with the top of the plasma curtain and triggers the <span class="hlt">observed</span> oscillations. In themore » deeper layers of the curtain, we find evidence of <span class="hlt">vertical</span> kink oscillations with two periods (795 s and 530 s). On the magnetic surface of the curtain where the density is inhomogeneous due to coronal dimming, non-decaying <span class="hlt">vertical</span> oscillations are also <span class="hlt">observed</span> (period ≈ 763-896 s). We infer that the global large-scale disturbance triggers <span class="hlt">vertical</span> kink oscillations in the deeper layers as well as on the surface of the large-scale plasma curtain. The properties of the excited waves strongly depend on the local plasma and magnetic field conditions.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002ClDy...19..397G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002ClDy...19..397G"><span>The atmospheric boundary layer in the CSIRO global climate model: simulations versus <span class="hlt">observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garratt, J. R.; Rotstayn, L. D.; Krummel, P. B.</p> <p>2002-07-01</p> <p>A 5-year simulation of the atmospheric boundary layer in the CSIRO global climate model (GCM) is compared with detailed boundary-layer <span class="hlt">observations</span> at six locations, two over the ocean and four over land. Field <span class="hlt">observations</span>, in the form of surface fluxes and <span class="hlt">vertical</span> <span class="hlt">profiles</span> of wind, temperature and humidity, are generally available for each hour over periods of one month or more in a single year. GCM simulations are for specific months corresponding to the field <span class="hlt">observations</span>, for each of five years. At three of the four land sites (two in Australia, one in south-eastern France), modelled rainfall was close to the <span class="hlt">observed</span> climatological values, but was significantly in deficit at the fourth (Kansas, USA). <span class="hlt">Observed</span> rainfall during the field expeditions was close to climatology at all four sites. At the Kansas site, modelled screen temperatures (Tsc), diurnal temperature amplitude and sensible heat flux (H) were significantly higher than <span class="hlt">observed</span>, with modelled evaporation (E) much lower. At the other three land sites, there is excellent correspondence between the diurnal amplitude and phase and absolute values of each variable (Tsc, H, E). Mean monthly <span class="hlt">vertical</span> <span class="hlt">profiles</span> for specific times of the day show strong similarities: over land and ocean in <span class="hlt">vertical</span> shape and absolute values of variables, and in the mixed-layer and nocturnal-inversion depths (over land) and the height of the elevated inversion or height of the cloud layer (over the sea). Of special interest is the presence climatologically of early morning humidity inversions related to dewfall and of nocturnal low-level jets; such features are found in the GCM simulations. The <span class="hlt">observed</span> day-to-day variability in <span class="hlt">vertical</span> structure is captured well in the model for most sites, including, over a whole month, the temperature range at all levels in the boundary layer, and the mix of shallow and deep mixed layers. Weaknesses or unrealistic structure include the following, (a) unrealistic model mixed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRD..114.9205W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRD..114.9205W"><span>Remote sensing of cirrus cloud <span class="hlt">vertical</span> size <span class="hlt">profile</span> using MODIS data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xingjuan; Liou, K. N.; Ou, Steve S. C.; Mace, G. G.; Deng, M.</p> <p>2009-05-01</p> <p>This paper describes an algorithm for inferring cirrus cloud top and cloud base effective particle sizes and cloud optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS) 0.645, 1.64 and 2.13, and 3.75 μm band reflectances/radiances. This approach uses a successive minimization method based on a look-up library of precomputed reflectances/radiances from an adding-doubling radiative transfer program, subject to corrections for Rayleigh scattering at the 0.645 μm band, above-cloud water vapor absorption, and 3.75 μm thermal emission. The algorithmic accuracy and limitation of the retrieval method were investigated by synthetic retrievals subject to the instrument noise and the perturbation of input parameters. The retrieval algorithm was applied to three MODIS cirrus scenes over the Atmospheric Radiation Measurement Program's southern Great Plain site, north central China, and northeast Asia. The reliability of retrieved cloud optical thicknesses and mean effective particle sizes was evaluated by comparison with MODIS cloud products and qualitatively good correlations were obtained for all three cases, indicating that the performance of the <span class="hlt">vertical</span> sizing algorithm is comparable with the MODIS retrieval program. Retrieved cloud top and cloud base ice crystal effective sizes were also compared with those derived from the collocated ground-based millimeter wavelength cloud radar for the first case and from the Cloud <span class="hlt">Profiling</span> Radar onboard CloudSat for the other two cases. Differences between retrieved and radar-derived cloud properties are discussed in light of assumptions made in the collocation process and limitations in radar remote sensing characteristics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999AtmEn..33.4717V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999AtmEn..33.4717V"><span>Application of a numerical model for the planetary boundary layer to the <span class="hlt">vertical</span> distribution of radon and its daughter products</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vinod Kumar, A.; Sitaraman, V.; Oza, R. B.; Krishnamoorthy, T. M.</p> <p></p> <p>A one-dimensional numerical planetary boundary layer (PBL) model is developed and applied to study the <span class="hlt">vertical</span> distribution of radon and its daughter products in the atmosphere. The meteorological model contains parameterization for the <span class="hlt">vertical</span> diffusion coefficient based on turbulent kinetic energy and energy dissipation ( E- ɛ model). The increased <span class="hlt">vertical</span> resolution and the realistic concentration of radon and its daughter products based on the time-dependent PBL model is compared with the steady-state model results and field <span class="hlt">observations</span>. The ratio of radon concentration at higher levels to that at the surface has been studied to see the effects of atmospheric stability. The significant change in the <span class="hlt">vertical</span> <span class="hlt">profile</span> of concentration due to decoupling of the upper portion of the boundary layer from the shallow lower stable layer is explained by the PBL model. The disequilibrium ratio of 214Bi/ 214Pb broadly agrees with the <span class="hlt">observed</span> field values. The sharp decrease in the ratio during transition from unstable to stable atmospheric condition is also reproduced by the model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900041694&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvertical%2Bheight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900041694&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvertical%2Bheight"><span><span class="hlt">Vertical</span> motions in the Uranian atmosphere - An analysis of radio <span class="hlt">observations</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hofstadter, Mark D.; Berge, Glenn L.; Muhleman, Duane O.</p> <p>1990-01-01</p> <p>The present, 6-cm radio map of Uranus indicates latitudinal features which may be due to <span class="hlt">vertical</span> motions of the atmosphere. It appears in light of Voyager IR measurements as well as previously obtained radio data that these large-scale <span class="hlt">vertical</span> motions, which have not undergone significant changes over the course of 8 years, extend from the 0.1- to the 45-bar levels; this span corresponds to a height of the order of 250 km. The latitudinal structures are believed to be primarily caused by horizontal variations of absorber abundances.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A51A0005T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A51A0005T"><span>An Object-Oriented Approach for Analyzing CALIPSO's <span class="hlt">Profile</span> <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trepte, C. R.</p> <p>2016-12-01</p> <p>The CALIPSO satellite mission is a pioneering international partnership between NASA and the French Space Agency, CNES. Since launch on 28 April 2006, CALIPSO has been acquiring near-continuous lidar <span class="hlt">profile</span> <span class="hlt">observations</span> of clouds and aerosols in the Earth's atmosphere. Many studies have profitably used these <span class="hlt">observations</span> to advance our understanding of climate, weather and air quality. For the most part, however, these studies have considered CALIPSO <span class="hlt">profile</span> measurements independent from one another and have not related each to neighboring or family <span class="hlt">observations</span> within a cloud element or aerosol feature. In this presentation we describe an alternative approach that groups measurements into objects visually identified from CALIPSO browse images. The approach makes use of the Visualization of CALIPSO (VOCAL) software tool that enables a user to outline a region of interest and save coordinates into a database. The selected features or objects can then be analyzed to explore spatial correlations over the feature's domain and construct bulk statistical properties for each structure. This presentation will show examples that examine cirrus and dust layers and will describe how this object-oriented approach can provide added insight into physical processes beyond conventional statistical treatments. It will further show results with combined measurements from other A-Train sensors to highlight advantages of viewing features in this manner.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7100L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7100L"><span>Methane at Ascension Island, southern tropical Atlantic Ocean: continuous ground measurement and <span class="hlt">vertical</span> <span class="hlt">profiling</span> above the Trade-Wind Inversion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lowry, David; Brownlow, Rebecca; Fisher, Rebecca; Nisbet, Euan; Lanoisellé, Mathias; France, James; Thomas, Rick; Mackenzie, Rob; Richardson, Tom; Greatwood, Colin; Freer, Jim; Cain, Michelle; Warwick, Nicola; Pyle, John</p> <p>2015-04-01</p> <p> δ13CCH4. The marine boundary layer at the surface has CH4 mixing ratios below 1800ppb. In the mixing layer of the TWI, values increase, and above 2000m, methane is above 1820ppb. Back trajectory analysis shows that these inputs are from African savanna and wetland emissions. After <span class="hlt">vertical</span> mixing events the difference across the TWI reduces to less than 10ppb. The experiment has demonstrated the feasibility of UAV work to <span class="hlt">observe</span> methane at Ascension. In effect, Ascension becomes a 'virtual mountain observatory' - measurements here can both use the Trade Winds to monitor the wide South Atlantic and Southern Ocean, and also the air above the TWI to assess inputs from tropical Africa and S. America. Comparison of continuous ground measurements, <span class="hlt">vertical</span> UAV <span class="hlt">profiles</span> and data from the Ascension TCCON site, potentially allows <span class="hlt">observation</span> of a complete atmospheric <span class="hlt">profile</span>. Acknowledgement This work is supported by the Natural Environment Research Council Grant NE/K005979/1</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE10000E..0LM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE10000E..0LM"><span>Mistic winds, a microsatellite constellation approach to high-resolution <span class="hlt">observations</span> of the atmosphere using infrared sounding and 3d winds measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.</p> <p>2016-10-01</p> <p>MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric <span class="hlt">vertical</span> <span class="hlt">profiles</span> of atmospheric temperature and humidity at high (3-4 km) horizontal and <span class="hlt">vertical</span> ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR <span class="hlt">vertical</span> <span class="hlt">profiles</span> and <span class="hlt">vertically</span> resolved atmospheric motion vector wind <span class="hlt">observations</span> in the troposphere. These <span class="hlt">observations</span> are highly complementary to present and emerging environmental <span class="hlt">observing</span> systems, and would provide a combination of high <span class="hlt">vertical</span> and horizontal resolution not provided by any other environmental <span class="hlt">observing</span> system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new <span class="hlt">observations</span>, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these <span class="hlt">observations</span> from geostationary orbit. In addition, this <span class="hlt">observation</span> capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH41A2741P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH41A2741P"><span><span class="hlt">Observation</span> and modelling of the Fe XXI line <span class="hlt">profile</span> <span class="hlt">observed</span> by IRIS during the impulsive phase of flares</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Polito, V.; Testa, P.; De Pontieu, B.; Allred, J. C.</p> <p>2017-12-01</p> <p>The <span class="hlt">observation</span> of the high temperature (above 10 MK) Fe XXI 1354.1 A line with the Interface Region Imaging Spectrograph (IRIS) has provided significant insights into the chromospheric evaporation process in flares. In particular, the line is often <span class="hlt">observed</span> to be completely blueshifted, in contrast to previous <span class="hlt">observations</span> at lower spatial and spectral resolution, and in agreement with predictions from theoretical models. Interestingly, the line is also <span class="hlt">observed</span> to be mostly symmetric and with a large excess above the thermal width. One popular interpretation for the excess broadening is given by assuming a superposition of flows from different loop strands. In this work, we perform a statistical analysis of Fe XXI line <span class="hlt">profiles</span> <span class="hlt">observed</span> by IRIS during the impulsive phase of flares and compare our results with hydrodynamic simulations of multi-thread flare loops performed with the 1D RADYN code. Our results indicate that the multi-thread models cannot easily reproduce the symmetry of the line and that some other physical process might need to be invoked in order to explain the <span class="hlt">observed</span> <span class="hlt">profiles</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090012453','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090012453"><span>Production of Lightning NO(x) and its <span class="hlt">Vertical</span> Distribution Calculated from 3-D Cloud-scale Chemical Transport Model Simulations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ott, Lesley; Pickering, Kenneth; Stenchikov, Georgiy; Allen, Dale; DeCaria, Alex; Ridley, Brian; Lin, Ruei-Fong; Lang, Steve; Tao, Wei-Kuo</p> <p>2009-01-01</p> <p>A 3-D cloud scale chemical transport model that includes a parameterized source of lightning NO(x), based on <span class="hlt">observed</span> flash rates has been used to simulate six midlatitude and subtropical thunderstorms <span class="hlt">observed</span> during four field projects. Production per intracloud (P(sub IC) and cloud-to-ground (P(sub CG)) flash is estimated by assuming various values of P(sub IC) and P(sub CG) for each storm and determining which production scenario yields NO(x) mixing ratios that compare most favorably with in-cloud aircraft <span class="hlt">observations</span>. We obtain a mean P(sub CG) value of 500 moles NO (7 kg N) per flash. The results of this analysis also suggest that on average, P(sub IC) may be nearly equal to P(sub CG), which is contrary to the common assumption that intracloud flashes are significantly less productive of NO than are cloud-to-ground flashes. This study also presents <span class="hlt">vertical</span> <span class="hlt">profiles</span> of the mass of lightning NO(x), after convection based on 3-D cloud-scale model simulations. The results suggest that following convection, a large percentage of lightning NO(x), remains in the middle and upper troposphere where it originated, while only a small percentage is found near the surface. The results of this work differ from <span class="hlt">profiles</span> calculated from 2-D cloud-scale model simulations with a simpler lightning parameterization that were peaked near the surface and in the upper troposphere (referred to as a "C-shaped" <span class="hlt">profile</span>). The new model results (a backward C-shaped <span class="hlt">profile</span>) suggest that chemical transport models that assume a C-shaped <span class="hlt">vertical</span> <span class="hlt">profile</span> of lightning NO(x) mass may place too much mass neat the surface and too little in the middle troposphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070023321','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070023321"><span>Estimating the Soil Temperature <span class="hlt">Profile</span> from a Single Depth <span class="hlt">Observation</span>: A Simple Empirical Heatflow Solution</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holmes, Thomas; Owe, Manfred; deJeu, Richard</p> <p>2007-01-01</p> <p>Two data sets of experimental field <span class="hlt">observations</span> with a range of meteorological conditions are used to investigate the possibility of modeling near-surface soil temperature <span class="hlt">profiles</span> in a bare soil. It is shown that commonly used heat flow methods that assume a constant ground heat flux can not be used to model the extreme variations in temperature that occur near the surface. This paper proposes a simple approach for modeling the surface soil temperature <span class="hlt">profiles</span> from a single depth <span class="hlt">observation</span>. This approach consists of two parts: 1) modeling an instantaneous ground flux <span class="hlt">profile</span> based on net radiation and the ground heat flux at 5cm depth; 2) using this ground heat flux <span class="hlt">profile</span> to extrapolate a single temperature <span class="hlt">observation</span> to a continuous near surface temperature <span class="hlt">profile</span>. The new model is validated with an independent data set from a different soil and under a range of meteorological conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28813094','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28813094"><span>Fatty acid <span class="hlt">profile</span> in <span class="hlt">vertical</span> strata of elephant grass subjected to intermittent stocking.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dias, Kamila M; Schmitt, Daniel; Rodolfo, Giselle R; Deschamps, Francisco C; Camargo, Guilherme N; Pereira, Raphael S; Sbrissia, André F</p> <p>2017-01-01</p> <p>The milk and meat from animals with a pasture-based diet have higher proportions of CLA and C18:3 and lower omega-6:omega-3 ratios than products from animals with diets based on corn silage and concentrate. However, most of the published studies have evaluated fatty acid <span class="hlt">profiles</span> in temperate climate grasses and the literature with tropical grasses is scarce. Thus, the aim of this study was to evaluate the morphological and fatty acid compositions in the <span class="hlt">vertical</span> strata of elephant grass (Pennisetum purpureum Schum.) swards subjected to grazing heights (90 or 120 cm pre-grazing heights) and levels of defoliation (50% or 70% removal of the initial pre-grazing height). There were no interactions among pre-grazing height, the level of defoliation and grazing stratum. However, higher proportion of C18:3 (58% and 63%) was found in the 90-cm swards and in the half upper stratum. A higher proportion of C18:3 was associated with a higher leaf proportion and crude protein content. Thus, the upper stratum of sward or a grazing management scheme (e.g. first-last stocking) resulting in a higher proportion of leaves and crude protein both provide higher proportions of C18:3 to animals grazing in elephant grass swards.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1999/4212/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1999/4212/report.pdf"><span>Numerical simulation of <span class="hlt">vertical</span> ground-water flux of the Rio Grande from ground-water temperature <span class="hlt">profiles</span>, central New Mexico</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bartolino, James R.; Niswonger, Richard G.</p> <p>1999-01-01</p> <p>An important gap in the understanding of the hydrology of the Middle Rio Grande Basin, central New Mexico, is the rate at which water from the Rio Grande recharges the Santa Fe Group aquifer system. Several methodologies-including use of the Glover-Balmer equation, flood pulses, and channel permeameters- have been applied to this problem in the Middle Rio Grande Basin. In the work presented here, ground-water temperature <span class="hlt">profiles</span> and ground-water levels beneath the Rio Grande were measured and numerically simulated at four sites. The direction and rate of <span class="hlt">vertical</span> ground-water flux between the river and underlying aquifer was simulated and the effective <span class="hlt">vertical</span> hydraulic conductivity of the sediments underlying the river was estimated through model calibration. Seven sets of nested piezometers were installed during July and August 1996 at four sites along the Rio Grande in the Albuquerque area, though only four of the piezometer nests were simulated. In downstream order, these four sites are (1) the Bernalillo site, upstream from the New Mexico State Highway 44 bridge in Bernalillo (piezometer nest BRN02); (2) the Corrales site, upstream from the Rio Rancho sewage treatment plant in Rio Rancho (COR01); (3) the Paseo del Norte site, upstream from the Paseo del Norte bridge in Albuquerque (PDN01); and (4) the Rio Bravo site, upstream from the Rio Bravo bridge in Albuquerque (RBR01). All piezometers were completed in the inner-valley alluvium of the Santa Fe Group aquifer system. Ground-water levels and temperatures were measured in the four piezometer nests a total of seven times in the 24-month period from September 1996 through August 1998. The flux between the surface- and ground-water systems at each of the field sites was quantified by one-dimensional numerical simulation of the water and heat exchange in the subsurface using the heat and water transport model VS2DH. Model calibration was aided by the use of PEST, a model-independent computer program that uses</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960027029','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960027029"><span><span class="hlt">Vertical</span> distribution of clouds over Hampton, Virginia <span class="hlt">observed</span> by lidar under the ECLIPS and FIRE ETO programs</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vaughan, M. A.; Winker, D. M.</p> <p>1994-01-01</p> <p>Intensive cloud lidar <span class="hlt">observations</span> have been made by NASA Langley Research Center during the two <span class="hlt">observation</span> phases of the ECLIPS project. Less intensive but longer term <span class="hlt">observations</span> have been conducted as part of the FIRE extended time <span class="hlt">observation</span> (ETO) program since 1987. We present a preliminary analysis of the <span class="hlt">vertical</span> distribution of clouds based on these <span class="hlt">observations</span>. A mean cirrus thickness of just under 1 km has been <span class="hlt">observed</span> with a mean altitude of about 80 percent of the tropopause height. Based on the lidar data, cirrus coverage was estimated to be just under 20 percent, representing roughly 50 percent of all clouds studied. Cirrus was <span class="hlt">observed</span> to have less seasonal variation than lower clouds. Mid-level clouds are found to occur primarily in association with frontal activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813468M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813468M"><span>"Atmospheric Measurements by Ultra-Light SpEctrometer" (AMULSE) dedicated to <span class="hlt">vertical</span> <span class="hlt">profile</span> measurements of greenhouse gases (CO2, CH4) under stratospheric balloons: instrumental development and field application.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maamary, Rabih; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albora, Grégory; Chauvin, Nicolas; Miftah-El-Khair, Zineb; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Moulin, Eric; Ramonet, Michel; Bréon, François-Marie; Durry, Georges</p> <p>2016-04-01</p> <p>Human activities disrupt natural biogeochemical cycles such as the carbon and contribute to an increase in the concentrations of the greenhouse gases (carbone dioxide and methane) in the atmosphere. The current atmospheric transport modeling (the <span class="hlt">vertical</span> trade) still represents an important source of uncertainty in the determination of regional flows of greenhouse gases, which means that a good knowledge of the <span class="hlt">vertical</span> distribution of CO2 is necessary to (1) make the link between the ground measurements and spatial measurements that consider an integrated concentration over the entire column of the atmosphere, (2) validate and if possible improve CO2 transport model to make the link between surface emissions and <span class="hlt">observed</span> concentration. The aim of this work is to develop a lightweight instrument (based on mid-infrared laser spectrometry principles) for in-situ measuring at high temporal/spatial resolution (5 Hz) the <span class="hlt">vertical</span> <span class="hlt">profiles</span> of the CO2 and the CH4 using balloons (meteorological and BSO at high precision levels (< 1 ppm in 1 second integration time for the CO2 sensor, and smaller than several tenths of ppb in 1 second integration time for the CH4 sensor). The instrument should be lighter than 2.5 kg in order to facilitate authorizations, costs and logistics flights. These laser spectrometers are built on recent instrumental developments. Several flights were successfully done in the region Champagne-Ardenne and in Canada recently. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS défi instrumental and the region Champagne-Ardenne.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24459424','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24459424"><span>Intercomparison of <span class="hlt">vertical</span> structure of storms revealed by ground-based (NMQ) and spaceborne radars (CloudSat-CPR and TRMM-PR).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fall, Veronica M; Cao, Qing; Hong, Yang</p> <p>2013-01-01</p> <p>Spaceborne radars provide great opportunities to investigate the <span class="hlt">vertical</span> structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud <span class="hlt">Profiling</span> Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar <span class="hlt">observations</span> can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the <span class="hlt">vertical</span> structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the <span class="hlt">vertical</span> <span class="hlt">profile</span> of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the <span class="hlt">vertical</span> structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3891436','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3891436"><span>Intercomparison of <span class="hlt">Vertical</span> Structure of Storms Revealed by Ground-Based (NMQ) and Spaceborne Radars (CloudSat-CPR and TRMM-PR)</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fall, Veronica M.; Hong, Yang</p> <p>2013-01-01</p> <p>Spaceborne radars provide great opportunities to investigate the <span class="hlt">vertical</span> structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud <span class="hlt">Profiling</span> Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar <span class="hlt">observations</span> can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the <span class="hlt">vertical</span> structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the <span class="hlt">vertical</span> <span class="hlt">profile</span> of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the <span class="hlt">vertical</span> structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts. PMID:24459424</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA31A2386L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA31A2386L"><span>Ionospheric disturbances in low- and middle-latitudes induced by neutral winds and <span class="hlt">vertical</span> ExB drift during the 2015 St. Patrick's Day storm</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, W. K.; Kil, H.; Krall, J.</p> <p>2016-12-01</p> <p>Significant longitudinal and latitudinal modulations in plasma density were <span class="hlt">observed</span> by satellites during the 17 March 2015 storm. Pronounced equatorial ionization anomaly (EIA) and ionization trough developed in the Indian sector (60°-90°E), whereas those features did not appear in the African sector (20°-40°E). Significant ionospheric uplift was <span class="hlt">observed</span> in the Indian sector, but the uplift was ignorable in the African sector. The <span class="hlt">vertical</span> ExB drift is an important factor for the longitudinal variation of the ionospheric morphology, but the <span class="hlt">observed</span> latitudinal density <span class="hlt">profiles</span> are not explained satisfactorily by the effect of the <span class="hlt">vertical</span> ExB drift alone. In this study, we investigate the combined effect of <span class="hlt">vertical</span> ExB drift and meridional winds by conducting SAMI2 (Sam2 is Another Model of the Ionosphere) model simulations. By comparing the model results with satellite <span class="hlt">observations</span>, we will assess the ionospheric conditions in the Indian and African sectors. The <span class="hlt">observations</span> of Defense Meteorological satellite Program, Swarm, and Communication/Navigation Outage Forecasting System satellites will be analyzed for this purpose.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040012672&hterms=deep+neural+network&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddeep%2Bneural%2Bnetwork','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040012672&hterms=deep+neural+network&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddeep%2Bneural%2Bnetwork"><span>Objective Classification of Radar <span class="hlt">Profile</span> Types, and Their Relationship to Lightning Occurrence</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boccippio, Dennis</p> <p>2003-01-01</p> <p>A cluster analysis technique is used to identify 16 "archetypal" <span class="hlt">vertical</span> radar <span class="hlt">profile</span> types from a large, globally representative sample of <span class="hlt">profiles</span> from the TRMM Precipitation Radar. These include nine convective types (7 of these deep convective) and seven stratiform types (5 of these clearly glaciated). Radar <span class="hlt">profile</span> classification provides an alternative to conventional deep convective storm metrics, such as 30 dBZ echo height, maximum reflectivity or VIL. As expected, the global frequency of occurrence of deep convective <span class="hlt">profile</span> types matches satellite-<span class="hlt">observed</span> total lightning production, including to very small scall local features. Each location's "mix" of <span class="hlt">profile</span> types provides an objective description of the local convective spectrum, and in turn, is a first step in objectively classifying convective regimes. These classifiers are tested as inputs to a neural network which attempts to predict lightning occurrence based on radar-only storm <span class="hlt">observations</span>, and performance is compared with networks using traditional radar metrics as inputs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B22G..05N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B22G..05N"><span>OH radical "life expectancy" within and above the Amazon rainforest: <span class="hlt">vertical</span>, diel and seasonal variations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nölscher, A.; Yanez-Serrano, A. M.; Kesselmeier, J.; Artaxo, P. P.; Wolff, S.; Trebs, I.; Williams, J.</p> <p>2013-12-01</p> <p>The Amazon rainforest forest is the world's largest contiguous ecosystem. Being about 6 million km2 it is around two thirds the area of the United States. The Amazon forest plays an important part of the Earth's hydrological, energy and carbon cycles. Photosynthetic uptake of CO2 by the rainforest affects the global radiative budget and concomitant release of reactive biogenic volatile organic compounds (BVOCs) can directly impact the atmosphere's primary oxidant, the hydroxyl (OH) radical as well as aerosol production and growth. Direct measurement of the total atmospheric OH reactivity (or inverse OH lifetime), in parallel with the individual BVOC can reveal insights into the coupling between biogenic emissions, atmospheric oxidation processes, canopy transport, and the OH budget. In this study we present for the first time, <span class="hlt">vertical</span> <span class="hlt">profiles</span> of total OH reactivity and biogenic VOCs that were monitored simultaneously throughout dry season, wet season and transition periods, from a remote tropical rainforest site in the Amazon (Amazonian Tall Tower Observatory (ATTO), S 02°08'38.8'', W 58°59'59.5'', 120 m above sea level, 150 km NE of the city of Manaus, Brazil). The <span class="hlt">profiles</span> consisted of sequential measurements at 0.05m, 0.5m, 4 m, 12m, 24m, 38m, 53m and 79m, a single <span class="hlt">profile</span> taking 16 minutes to complete. The measurements were made using Proton Transfer Reaction Mass Spectrometry (PTR-MS), directly in the case of BVOC and using the Comparative Reactivity Method pre-reactor for total OH reactivity. The <span class="hlt">vertical</span>, diel and seasonal variations in total OH reactivity will be discussed. Total OH reactivity and isoprene <span class="hlt">profiles</span> were <span class="hlt">observed</span> to vary strongly between the seasons. Biogenic emissions from the canopy impacted the measurements as well as photo-oxidation, turbulent mixing, and deposition. Tower in the Amazon rainforest for measurements of <span class="hlt">vertical</span> <span class="hlt">profiles</span> of BVOCs and total OH reactivity from the forest floor, through the canopy, up to 80m.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030014604','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030014604"><span>Raman Lidar <span class="hlt">Profiling</span> of Aerosols Over the Central US; Diurnal Variability and Comparisons with the GOCART Model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ferrare, R. A.; Chin, M.; Clayton, M.; Turner, D.</p> <p>2002-01-01</p> <p>We use <span class="hlt">profiles</span> of aerosol extinction, water vapor mixing ratio, and relative humidity measured by the ARM SGP Raman lidar in northern Oklahoma to show how the <span class="hlt">vertical</span> distributions of aerosol extinction and water vapor vary throughout the diurnal cycle. While significant (20-30%) variations in aerosol extinction occurred near the surface as well as aloft, smaller (approximately 10%) variations were <span class="hlt">observed</span> in the diurnal variability of aerosol optical thickness (AOT). The diurnal variations in aerosol extinction <span class="hlt">profiles</span> are well correlated with corresponding variations in the average relative humidity <span class="hlt">profiles</span>. The water vapor mixing ratio <span class="hlt">profiles</span> and integrated water vapor amounts generally show less diurnal variability. The Raman lidar <span class="hlt">profiles</span> are also used to evaluate the aerosol optical thickness and aerosol extinction <span class="hlt">profiles</span> simulated by the GOCART global aerosol model. Initial comparisons show that the AOT simulated by GOCART was in closer agreement with the AOT derived from the Raman lidar and Sun photometer measurements during November 2000 than during September 2000. For both months, the <span class="hlt">vertical</span> variability in average aerosol extinction <span class="hlt">profiles</span> simulated by GOCART is less than the variability in the corresponding Raman lidar <span class="hlt">profiles</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160014728','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160014728"><span>Utilizing the <span class="hlt">Vertical</span> Variability of Precipitation to Improve Radar QPE</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gatlin, Patrick N.; Petersen, Walter A.</p> <p>2016-01-01</p> <p>Characteristics of the melting layer and raindrop size distribution can be exploited to further improve radar quantitative precipitation estimation (QPE). Using dual-polarimetric radar and disdrometers, we found that the characteristic size of raindrops reaching the ground in stratiform precipitation often varies linearly with the depth of the melting layer. As a result, a radar rainfall estimator was formulated using D(sub m) that can be employed by polarimetric as well as dual-frequency radars (e.g., space-based radars such as the GPM DPR), to lower the bias and uncertainty of conventional single radar parameter rainfall estimates by as much as 20%. Polarimetric radar also suffers from issues associated with sampling the <span class="hlt">vertical</span> distribution of precipitation. Hence, we characterized the <span class="hlt">vertical</span> <span class="hlt">profile</span> of polarimetric parameters (VP3)-a radar manifestation of the evolving size and shape of hydrometeors as they fall to the ground-on dual-polarimetric rainfall estimation. The VP3 revealed that the <span class="hlt">profile</span> of ZDR in stratiform rainfall can bias dual-polarimetric rainfall estimators by as much as 50%, even after correction for the <span class="hlt">vertical</span> <span class="hlt">profile</span> of reflectivity (VPR). The VP3 correction technique that we developed can improve operational dual-polarimetric rainfall estimates by 13% beyond that offered by a VPR correction alone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28874485','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28874485"><span>A Physician's Perspective On <span class="hlt">Vertical</span> Integration.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Berenson, Robert A</p> <p>2017-09-01</p> <p><span class="hlt">Vertical</span> integration has been a central feature of health care delivery system change for more than two decades. Recent studies have demonstrated that <span class="hlt">vertically</span> integrated health care systems raise prices and costs without <span class="hlt">observable</span> improvements in quality, despite many theoretical reasons why cost control and improved quality might occur. Less well studied is how physicians view their newfound partnerships with hospitals. In this article I review literature findings and other <span class="hlt">observations</span> on five aspects of <span class="hlt">vertical</span> integration that affect physicians in their professional and personal lives: patients' access to physicians, physician compensation, autonomy versus system support, medical professionalism and culture, and lifestyle. I conclude that the movement toward physicians' alignment with and employment in <span class="hlt">vertically</span> integrated systems seems inexorable but that policy should not promote such integration either intentionally or inadvertently. Instead, policy should address the flaws in current payment approaches that reward high prices and excessive service use-outcomes that <span class="hlt">vertical</span> integration currently produces. Project HOPE—The People-to-People Health Foundation, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GMD....11..937C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GMD....11..937C"><span>ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along <span class="hlt">vertical</span> soil <span class="hlt">profiles</span> in Europe</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.</p> <p>2018-03-01</p> <p>Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a <span class="hlt">vertically</span> discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against <span class="hlt">observations</span> of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their <span class="hlt">vertical</span> <span class="hlt">profiles</span> at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916884B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916884B"><span><span class="hlt">Vertical</span> nutrient fluxes, turbulence and the distribution of chlorophyll a in the north-eastern North Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bendtsen, Jørgen; Richardson, Katherine</p> <p>2017-04-01</p> <p>During summer the northern North Sea is characterized by nutrient rich bottom water masses and nutrient poor surface layers. This explains the distribution of chlorophyll a in the water column where a subsurface maximum, referred to as the deep chlorophyll maximum (DCM), often is present during the growth season. <span class="hlt">Vertical</span> transport of nutrients between bottom water masses and the well lit surface layer stimulates phytoplankton growth and this generally explains the location of the DCM. However, a more specific understanding of the interplay between <span class="hlt">vertical</span> transports, nutrient fluxes and phytoplankton abundance is required for identifying the nature of the <span class="hlt">vertical</span> transport processes, e.g the role of advection versus <span class="hlt">vertical</span> turbulent diffusion or the role of localized mixing associated with mesoscale eddies. We present results from the VERMIX study in the north-eastern North Sea where nutrients, chlorophyll a and turbulence <span class="hlt">profiles</span> were measured along five north-south directed transects in July 2016. A high-resolution sampling program, with horizontal distances of 1-10 km between CTD-stations, resolved the horizontal gradients of chlorophyll a across the steep bottom slope from the relatively shallow central North Sea ( 50-80 m) towards the deep Norwegian Trench (>700 m). Low oxygen concentrations in the bottom water masses above the slope indicated enhanced biological production where <span class="hlt">vertical</span> mixing would stimulate phytoplankton growth around the DCM. Measurements of variable fluorescence (Fv/Fm) showed elevated values in the DCM which demonstrates a higher potential for electron transport in the Photosystem II in the phytoplankton cells, i.e. an indication of nutrient-rich conditions favorable for phytoplankton production. <span class="hlt">Profiles</span> of the <span class="hlt">vertical</span> shear and microstructure of temperature and salinity were measured by a VMP-250 turbulence <span class="hlt">profiler</span> and the <span class="hlt">vertical</span> diffusion of nutrients was calculated from the estimated <span class="hlt">vertical</span> turbulent diffusivity and the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29724459','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29724459"><span><span class="hlt">Vertical</span> <span class="hlt">profiles</span> of Fukushima Dai-ichi NPP-derived radiocesium concentrations in the waters of the southwestern Okhotsk Sea (2011-2017).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Inoue, Mutsuo; Morokado, Toshiki; Fujimoto, Ken; Miki, Shizuho; Kofuji, Hisaki; Isoda, Yutaka; Nagao, Seiya</p> <p>2018-04-30</p> <p>We examined the <span class="hlt">vertical</span> 134 Cs and 137 Cs concentration <span class="hlt">profiles</span> in the southwestern Okhotsk Sea in 2011, 2013, and 2017. In June 2011, atmospheric deposition-derived 134 Cs from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) was detected at depths of 0-200 m (0.06-0.6 mBq/L). In July 2013, 134 Cs detected at depths of 100-200 m (∼0.05 mBq/L) was ascribed to the transport of low-level 134 Cs-contaminated water and/or the convection of radioactive depositions (<0.03 mBq/L at depths of 0-50 m). In July 2017, 134 Cs was detected in water samples at depths above 300 m (0.03-0.05 mBq/L), and the inventory, decay-corrected to the FDNPP accident date, exhibited its maximum value (85 Bq/m 2 ) during this period. Combining temperature-salinity data with the concentrations of global fallout-derived 137 Cs led to a plausible explanation for this <span class="hlt">observation</span>, which is a consequence of re-entry of FDNPP-derived radiocesium through the Kuril Strait from the northwestern North Pacific Ocean to the Okhotsk Sea and subsequent mixing with the south Okhotsk subsurface layer until 2017. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110007955&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dvertical%2Bheight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110007955&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dvertical%2Bheight"><span>The <span class="hlt">Vertical</span> Distribution of Thin Features Over the Arctic Analysed from CALIPSO <span class="hlt">Observations</span>. Part 2; Aerosols</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Devasthale, Abhya; Tjernstrom, Michael; Omar, Ali H.</p> <p>2010-01-01</p> <p>Influx of aerosols from the mid-latitudes has a wide range of impacts on the Arctic atmosphere. In this study, the capability of the CALIPSO-CALIOP instrument to provide accurate <span class="hlt">observations</span> of aerosol layers is exploited to characterize their <span class="hlt">vertical</span> distribution, probability density functions (PDFs) of aerosol layer thickness, base and top heights, and optical depths over the Arctic for the 4-yr period from June 2006 to May 2010. It is shown that the bulk of aerosols, from about 65% in winter to 45% in summer, are confined below the lowermost kilometer of the troposphere. In the middle troposphere (3-5 km), spring and autumn seasons show slightly higher aerosol amounts compared to other two seasons. The relative <span class="hlt">vertical</span> distribution of aerosols shows that clean continental aerosol is the largest contributor in all seasons except in summer, when layers of polluted continental aerosols are almost as large. In winter and spring, polluted continental aerosols are the second largest contributor to the total number of <span class="hlt">observed</span> aerosol layers, whereas clean marine aerosol is the second largest contributor in summer and autumn. The PDFs of the geometrical thickness of the <span class="hlt">observed</span> aerosol layers peak about 400-700 m. Polluted continental and smoke aerosols, which are associated with the intrusions from mid-latitudes, have much broader distributions of optical and geometrical thicknesses, suggesting that they appear more often optically thicker and higher up in the troposphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016tac..confE..20M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016tac..confE..20M"><span>Poster 8: ALMA <span class="hlt">observations</span> of Titan : <span class="hlt">Vertical</span> and spatial distributions of nitriles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moreno, Raphael; Lellouch, Emmanuel; Vinatier, Sandrine; Gurwell, Mark; Moullet, Arielle; Lara, Luisa; Hidayat, Taufiq</p> <p>2016-06-01</p> <p>We report submm <span class="hlt">observations</span> of Titan performed with the ALMA interferometer centered at the rotational frequencies of HCN(4-3) and HNC(4-3), i.e. 354 and 362 GHz. These measurements yielded disk-resolved emission spectra of Titan with an angular resolution of ˜0.47". Titan's angular surface diameter was 0.77". Data were acquired in summer 2012 near the greatest eastern and western elongations of Titan at a spectral resolution of 122 kHz (λ/dλ = 3106). We will present radiative transfer analysis of the acquired spectra. With the combination of all the detected rotational lines, we will constrain the atmospheric temperature, the spatial and <span class="hlt">vertical</span> distribution HCN, HC3N, CH3CN, HNC, C2H5CN, as well as isotopic ratios.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PApGe.173..607L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PApGe.173..607L"><span>Multiple Frequency Contrast Source Inversion Method for <span class="hlt">Vertical</span> Electromagnetic <span class="hlt">Profiling</span>: 2D Simulation Results and Analyses</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Jinghe; Song, Linping; Liu, Qing Huo</p> <p>2016-02-01</p> <p>A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the <span class="hlt">vertical</span> electromagnetic <span class="hlt">profiling</span> (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910026202&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvertical%2Bheight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910026202&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvertical%2Bheight"><span>Ultrahigh <span class="hlt">vertical</span> resolution radar measurements in the lower stratosphere at Arecibo</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ierkic, H. M.; Perillat, P.; Woodman, R. F.</p> <p>1990-01-01</p> <p>The paper reports on heretofore unprecedented <span class="hlt">observations</span> of the turbulent layers in the lower stratosphere using the Arecibo 2380-MHz radar. Spectral <span class="hlt">profiles</span> with about 20 m height and 15 s time resolutions at altitudes in the range 16-19 km are used to parametrize relevant characteristics of the turbulence, namely, <span class="hlt">vertical</span> widths, distributions, lifetimes, and cutoffs height. These measurements validate previous deconvolved estimates and are free from contaminating factors like shear or beam broadening and partial reflections. Some theoretical predictions are verified, in particular those relating to the height of cutoff and the outer scale of the turbulence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.6493B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.6493B"><span>Microphysical variability of Amazonian deep convective cores <span class="hlt">observed</span> by CloudSat and simulated by a multi-scale modeling framework</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brant Dodson, J.; Taylor, Patrick C.; Branson, Mark</p> <p>2018-05-01</p> <p>Recently launched cloud <span class="hlt">observing</span> satellites provide information about the <span class="hlt">vertical</span> structure of deep convection and its microphysical characteristics. In this study, CloudSat reflectivity data is stratified by cloud type, and the contoured frequency by altitude diagrams reveal a double-arc structure in deep convective cores (DCCs) above 8 km. This suggests two distinct hydrometeor modes (snow versus hail/graupel) controlling variability in reflectivity <span class="hlt">profiles</span>. The day-night contrast in the double arcs is about four times larger than the wet-dry season contrast. Using QuickBeam, the <span class="hlt">vertical</span> reflectivity structure of DCCs is analyzed in two versions of the Superparameterized Community Atmospheric Model (SP-CAM) with single-moment (no graupel) and double-moment (with graupel) microphysics. Double-moment microphysics shows better agreement with <span class="hlt">observed</span> reflectivity <span class="hlt">profiles</span>; however, neither model variant captures the double-arc structure. Ultimately, the results show that simulating realistic DCC <span class="hlt">vertical</span> structure and its variability requires accurate representation of ice microphysics, in particular the hail/graupel modes, though this alone is insufficient.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008Geomo.102..554P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008Geomo.102..554P"><span><span class="hlt">Profile</span> convexities in bedrock and alluvial streams</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phillips, Jonathan D.; Lutz, J. David</p> <p>2008-12-01</p> <p>Longitudinal <span class="hlt">profiles</span> of bedrock streams in central Kentucky, and of coastal plain streams in southeast Texas, were analyzed to determine the extent to which they exhibit smoothly concave <span class="hlt">profiles</span> and to relate <span class="hlt">profile</span> convexities to environmental controls. None of the Kentucky streams have smoothly concave <span class="hlt">profiles</span>. Because all <span class="hlt">observed</span> knickpoints are associated with <span class="hlt">vertical</span> joints, if they are migrating it either occurs rapidly between <span class="hlt">vertical</span> joints, or migrating knickpoints become stalled at structural features. These streams have been adjusting to downcutting of the Kentucky River for at least 1.3 Ma, suggesting that the time required to produce a concave <span class="hlt">profile</span> is long compared to the typical timescale of environmental change. A graded concave longitudinal <span class="hlt">profile</span> is not a reasonable prediction or benchmark condition for these streams. The characteristic <span class="hlt">profile</span> forms of the Kentucky River gorge area are contingent on a particular combination of lithology, structure, hydrologic regime, and geomorphic history, and therefore do not represent any general type of equilibrium state. Few stream <span class="hlt">profiles</span> in SE Texas conform to the ideal of the smoothly, strongly concave <span class="hlt">profile</span>. Major convexities are caused by inherited topography, geologic controls, recent and contemporary geomorphic processes, and anthropic effects. Both the legacy of Quaternary environmental change and ongoing changes make it unlikely that consistent boundary conditions will exist for long. Further, the few exceptions within the study area-i.e., strongly and smoothly concave longitudinal <span class="hlt">profiles</span>-suggest that ample time has occurred for strongly concave <span class="hlt">profiles</span> to develop and that such <span class="hlt">profiles</span> do not necessarily represent any mutual adjustments between slope, transport capacity, and sediment supply. The simplest explanation of any tendency toward concavity is related to basic constraints on channel steepness associated with geomechanical stability and minimum slopes necessary to convey flow</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011OptCo.284.2141S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011OptCo.284.2141S"><span>Loss reduction in silicon nanophotonic waveguide micro-bends through etch <span class="hlt">profile</span> improvement</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Selvaraja, Shankar Kumar; Bogaerts, Wim; Van Thourhout, Dries</p> <p>2011-04-01</p> <p>Single mode silicon photonic wire waveguides allow low-loss sharp micro-bends, which enables compact photonic devices and circuits. The circuit compactness is achieved at the cost of loss induced by micro-bends, which can seriously affect the device performance. The bend loss strongly depends on the bend radius, polarization, waveguide dimension and <span class="hlt">profile</span>. In this paper, we present the effect of waveguide <span class="hlt">profile</span> on the bend loss. We present waveguide <span class="hlt">profile</span> improvement with optimized etch chemistry and the role of etch chemistry in adapting the etch <span class="hlt">profile</span> of silicon is investigated. We experimentally demonstrate that by making the waveguide sidewalls <span class="hlt">vertical</span>, the bend loss can be reduced up to 25% without affecting the propagation loss of the photonic wires. The bend loss of a 2 μm bend has been reduced from 0.039dB/90° bend to 0.028dB/90° bend by changing the sidewall angle from 81° to 90°, respectively. The propagation loss of 2.7 ± 0.1dB/cm and 3 ± 0.09dB/cm was <span class="hlt">observed</span> for sloped and <span class="hlt">vertical</span> photonic wires respectively was obtained.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPP11041B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPP11041B"><span>Analysis of <span class="hlt">vertical</span> stability limits and <span class="hlt">vertical</span> displacement event behavior on NSTX-U</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boyer, Mark; Battaglia, Devon; Gerhardt, Stefan; Menard, Jonathan; Mueller, Dennis; Myers, Clayton; Sabbagh, Steven; Smith, David</p> <p>2017-10-01</p> <p>The National Spherical Torus Experiment Upgrade (NSTX-U) completed its first run campaign in 2016, including commissioning a larger center-stack and three new tangentially aimed neutral beam sources. NSTX-U operates at increased aspect ratio due to the larger center-stack, making <span class="hlt">vertical</span> stabilization more challenging. Since ST performance is improved at high elongation, improvements to the <span class="hlt">vertical</span> control system were made, including use of multiple up-down-symmetric flux loop pairs for real-time estimation, and filtering to remove noise. Similar operating limits to those on NSTX (in terms of elongation and internal inductance) were achieved, now at higher aspect ratio. To better understand the <span class="hlt">observed</span> limits and project to future operating points, a database of <span class="hlt">vertical</span> displacement events and <span class="hlt">vertical</span> oscillations <span class="hlt">observed</span> during the plasma current ramp-up on NSTX/NSTX-U has been generated. Shots were clustered based on the characteristics of the VDEs/oscillations, and the plasma parameter regimes associated with the classes of behavior were studied. Results provide guidance for scenario development during ramp-up to avoid large oscillations at the time of diverting, and provide the means to assess stability of target scenarios for the next campaign. Results will also guide plans for improvements to the <span class="hlt">vertical</span> control system. Work supported by U.S. D.O.E. Contract No. DE-AC02-09CH11466.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914370S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914370S"><span>Seasonal Transport in Mars' Mesosphere revealed by Nitric Oxide Nightglow <span class="hlt">vertical</span> <span class="hlt">profiles</span> and global images from IUVS/MAVEN</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stiepen, Arnaud; Stewart, Ian; Jain, Sonal; Schneider, Nicholas; Deighan, Justin; Gonzàlez-Galindo, Francisco; Gérard, Jean-Claude; Stevens, Michael; Bougher, Stephen; Milby, Zachariah; Evans, Scott; Chaffin, Michael; McClintock, William; Clarke, John; Holsclaw, Greg; Montmessin, Franck; Lefèvre, Franck; Lo, Daniel; Jakosky, Bruce</p> <p>2017-04-01</p> <p>We analyze the ultraviolet nightglow in the atmosphere of Mars through Nitric Oxide (NO) δ and γ bands emissions. On the dayside thermosphere of Mars, solar extreme ultraviolet radiation partly dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried by the day-to-night hemispheric transport. They preferentially descend in the nightside mesosphere in the winter hemisphere, where they can radiatively recombine to form NO(C2Π). The excited molecules promptly relax by emitting photons in the UV δ bands and in the γ bands through cascades via the A2Σ, v' = 0 state. These emissions are thus indicators of the N and O atom fluxes transported from the dayside to Mars' nightside and the winter descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015). <span class="hlt">Observations</span> of these emissions have been accumulated on a large dataset of nightside disk images and <span class="hlt">vertical</span> <span class="hlt">profiles</span> obtained at the limb by the Imaging Ultraviolet Spectrograph (IUVS, McClintock et al., 2015) instrument when the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is at its apoapsis and its periapsis phases along its orbit, respectively. We present discussion on the variability in the brightness, altitude and topside scale height of the emission with season, geographical position and local time and possible interpretation for local and global changes in the mesosphere dynamics. IUVS images and limb scans reveal unexpected complex structure of the emission. The brightest emission is <span class="hlt">observed</span> close to the winter pole. The emission is also surprisingly more intense in some sectors located close to the equator : at 120˚ and 150˚ longitude. <span class="hlt">Observations</span> also reveal spots and streaks, indicating irregularities in the wind circulation pattern and possible impact of waves and tides. The disk images and limb <span class="hlt">profiles</span> are compared to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810054292&hterms=vertical+integration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dvertical%2Bintegration','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810054292&hterms=vertical+integration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dvertical%2Bintegration"><span>The altitude distribution of the Venus ultraviolet nightglow and implications on <span class="hlt">vertical</span> transport</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gerard, J. C.; Stewart, A. I. F.; Bougher, S. W.</p> <p>1981-01-01</p> <p>The altitude distribution of the nitric oxide nightglow was measured with an ultraviolet spectrometer on board Pioneer Venus, in order to study the effects of the distribution on the Venus nightside lower thermosphere transport properties. Limb <span class="hlt">profiles</span> were obtained with an 8 ms integration period on several orbits near periapsis. The <span class="hlt">observations</span> were made between P minus 2 min and P plus 4 min, where altitude ranges between 150 and 350 km, and latitude varies from 24 degrees N to 9 degrees S. A method independent of the spacecraft attitude data was used to fit the <span class="hlt">observed</span> limb <span class="hlt">profiles</span>, and to find the altitude of the maximum of the layer (115 plus or minus 2 km), and the topside scale height (about 3 km). It is shown that downward transport by diffusion alone is not sufficient, and if <span class="hlt">vertical</span> motion is parameterized by eddy diffusion, an eddy diffusion coefficient is deduced from the altitude of the layer.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050210138','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050210138"><span>Multisensor <span class="hlt">Observation</span> and Simulation of Snowfall During the 2003 Wakasa Bay Field Experiment</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Benjamin T.; Petty, Grant W.; Skofronick-Jackson, Gail; Wang, James W.</p> <p>2005-01-01</p> <p>This research seeks to assess and improve the accuracy of microphysical assumptions used in satellite passive microwave radiative transfer models and retrieval algorithms by exploiting complementary <span class="hlt">observations</span> from satellite radiometers, such as TRMM/AMSR-E/GPM, and coincident aircraft instruments, such as the next generation precipitation radar (PR-2). We focus in particular on aircraft data obtained during the Wakasa Bay field experiment, Japan 2003, pertaining to surface snowfall events. The <span class="hlt">observations</span> of <span class="hlt">vertical</span> <span class="hlt">profiles</span> of reflectivity and Doppler-derived fall speeds are used in conjunction with the radiometric measurements to identify 1-D <span class="hlt">profiles</span> of precipitation particle types, sizes, and concentrations that are consistent with the <span class="hlt">observations</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdWR..105..217T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdWR..105..217T"><span>Numerical determination of <span class="hlt">vertical</span> water flux based on soil temperature <span class="hlt">profiles</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tabbagh, Alain; Cheviron, Bruno; Henine, Hocine; Guérin, Roger; Bechkit, Mohamed-Amine</p> <p>2017-07-01</p> <p>High sensitivity temperature sensors (0.001 K sensitivity Pt100 thermistors), positioned at intervals of a few centimetres along a <span class="hlt">vertical</span> soil <span class="hlt">profile</span>, allow temperature measurements to be made which are sensitive to water flux through the soil. The development of high data storage capabilities now makes it possible to carry out in situ temperature recordings over long periods of time. By directly applying numerical models of convective and conductive heat transfer to experimental data recorded as a function of depth and time, it is possible to calculate Darcy's velocity from the convection transfer term, thus allowing water infiltration/exfiltration through the soil to be determined as a function of time between fixed depths. In the present study we consider temperature data recorded at the Boissy-le-Châtel (Seine et Marne, France) experimental station between April 16th, 2009 and March 8th, 2010, at six different depths and 10-min time intervals. We make use of two numerical finite element models to solve the conduction/convection heat transfer equation and compare their merits. These two models allow us to calculate the corresponding convective flux rate every day using a group of three sensors. The comparison of the two series of calculated values centred at 24 cm shows reliable results for periods longer than 8 days. These results are transformed in infiltration/exfiltration value after determining the soil volumetric heat capacity. The comparison with the rainfall and evaporation data for periods of ten days shows a close accordance with the behaviour of the system governed by rainfall evaporation rate during winter and spring.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008DSRII..55..582P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008DSRII..55..582P"><span>Internal tides and <span class="hlt">vertical</span> mixing over the Kerguelen Plateau</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Young-Hyang; Fuda, Jean-Luc; Durand, Isabelle; Naveira Garabato, Alberto C.</p> <p>2008-03-01</p> <p>Within the context of the natural iron-fertilization study KEOPS, time series measurements of CTD and LADCP <span class="hlt">profiles</span> at a site (50.6°S, 72°E; 528 m) coinciding with an annual phytoplankton bloom over the Kerguelen Plateau were made during the January-February 2005 KEOPS cruise. An important activity of highly nonlinear semidiurnal internal tides having peak-to-peak isopycnal displacements of up to 80 m is identified. These internal tides appear to be a principal agent for promoting elevated <span class="hlt">vertical</span> mixing indispensable for upward transfer of iron within the seasonal thermocline. We estimate local <span class="hlt">vertical</span> eddy diffusivities of the order of 4×10 -4 m 2 s -1 using a Thorpe scale analysis. Although this estimate is higher by an order of magnitude than the canonical value O (0.1×10 -4 m 2 s -1) in the open ocean away from boundaries, it is consistent with nonlinear internal wave/wave interaction theories, as verified by independent diffusivity estimates using the <span class="hlt">vertical</span> wavenumber spectral methods for shear and strain. It is also suggested that the general ocean circulation may play an important role in preconditioning the bloom in that the relatively sluggish circulation over the shallow plateau (compared to the much more dynamic neighbouring deep ocean) may foster the bloom's <span class="hlt">observed</span> annual recurrence over the plateau.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170006199&hterms=cost+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcost%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170006199&hterms=cost+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcost%2Bwind"><span>MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution <span class="hlt">Observations</span> of the Atmosphere Using Infrared Sounding and 3D Winds Measurements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.</p> <p>2016-01-01</p> <p>MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric <span class="hlt">vertical</span> <span class="hlt">profiles</span> of atmospheric temperature and humidity at high (3-4 km) horizontal and <span class="hlt">vertical</span> ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR <span class="hlt">vertical</span> <span class="hlt">profiles</span> and <span class="hlt">vertically</span> resolved atmospheric motion vector wind <span class="hlt">observations</span> in the troposphere. These <span class="hlt">observations</span> are highly complementary to present and emerging environmental <span class="hlt">observing</span> systems, and would provide a combination of high <span class="hlt">vertical</span> and horizontal resolution not provided by any other environmental <span class="hlt">observing</span> system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new <span class="hlt">observations</span>, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these <span class="hlt">observations</span> from geostationary orbit. In addition, this <span class="hlt">observation</span> capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A51S..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A51S..07M"><span>MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution <span class="hlt">Observations</span> of the Atmosphere using Infrared Sounding and 3D Winds Measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.</p> <p>2015-12-01</p> <p>MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric <span class="hlt">vertical</span> <span class="hlt">profiles</span> of atmospheric temperature and humidity at high (3-4 km) horizontal and <span class="hlt">vertical</span> ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR <span class="hlt">vertical</span> <span class="hlt">profiles</span> and <span class="hlt">vertically</span> resolved atmospheric motion vector wind <span class="hlt">observations</span> in the troposphere. These <span class="hlt">observations</span> are highly complementary to present and emerging environmental <span class="hlt">observing</span> systems, and would provide a combination of high <span class="hlt">vertical</span> and horizontal resolution not provided by any other environmental <span class="hlt">observing</span> system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new <span class="hlt">observations</span>, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these <span class="hlt">observations</span> from geostationary orbit. In addition, this <span class="hlt">observation</span> capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9978E..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9978E..04M"><span>MISTiC Winds: A micro-satellite constellation approach to high resolution <span class="hlt">observations</span> of the atmosphere using infrared sounding and 3D winds measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.</p> <p>2016-09-01</p> <p>MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric <span class="hlt">vertical</span> <span class="hlt">profiles</span> of atmospheric temperature and humidity at high (3-4 km) horizontal and <span class="hlt">vertical</span> ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR <span class="hlt">vertical</span> <span class="hlt">profiles</span> and <span class="hlt">vertically</span> resolved atmospheric motion vector wind <span class="hlt">observations</span> in the troposphere. These <span class="hlt">observations</span> are highly complementary to present and emerging environmental <span class="hlt">observing</span> systems, and would provide a combination of high <span class="hlt">vertical</span> and horizontal resolution not provided by any other environmental <span class="hlt">observing</span> system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new <span class="hlt">observations</span>, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these <span class="hlt">observations</span> from geostationary orbit. In addition, this <span class="hlt">observation</span> capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23013316','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23013316"><span><span class="hlt">Vertically</span> resolved measurements of nighttime radical reservoirs in Los Angeles and their contribution to the urban radical budget.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Young, Cora J; Washenfelder, Rebecca A; Roberts, James M; Mielke, Levi H; Osthoff, Hans D; Tsai, Catalina; Pikelnaya, Olga; Stutz, Jochen; Veres, Patrick R; Cochran, Anthony K; VandenBoer, Trevor C; Flynn, James; Grossberg, Nicole; Haman, Christine L; Lefer, Barry; Stark, Harald; Graus, Martin; de Gouw, Joost; Gilman, Jessica B; Kuster, William C; Brown, Steven S</p> <p>2012-10-16</p> <p>Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first <span class="hlt">vertically</span> resolved measurements of ClNO(2), together with <span class="hlt">vertically</span> resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average <span class="hlt">profiles</span> of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual <span class="hlt">vertical</span> <span class="hlt">profiles</span> did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These <span class="hlt">observations</span> are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different <span class="hlt">vertical</span> distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that <span class="hlt">vertical</span> gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24683321','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24683321"><span>Adaptive super-twisting <span class="hlt">observer</span> for estimation of random road excitation <span class="hlt">profile</span> in automotive suspension systems.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rath, J J; Veluvolu, K C; Defoort, M</p> <p>2014-01-01</p> <p>The estimation of road excitation <span class="hlt">profile</span> is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation <span class="hlt">profile</span> are considered for modeling. To address the issue of estimation of road <span class="hlt">profile</span>, we develop an adaptive supertwisting <span class="hlt">observer</span> for state and unknown road <span class="hlt">profile</span> estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed <span class="hlt">observer</span> for state and unknown input estimation for nonlinear active suspension system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3934084','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3934084"><span>Adaptive Super-Twisting <span class="hlt">Observer</span> for Estimation of Random Road Excitation <span class="hlt">Profile</span> in Automotive Suspension Systems</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rath, J. J.; Veluvolu, K. C.; Defoort, M.</p> <p>2014-01-01</p> <p>The estimation of road excitation <span class="hlt">profile</span> is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation <span class="hlt">profile</span> are considered for modeling. To address the issue of estimation of road <span class="hlt">profile</span>, we develop an adaptive supertwisting <span class="hlt">observer</span> for state and unknown road <span class="hlt">profile</span> estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed <span class="hlt">observer</span> for state and unknown input estimation for nonlinear active suspension system. PMID:24683321</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70178660','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70178660"><span><span class="hlt">Observations</span> of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fandel, Christina L.; Lippmann, Thomas C.; Irish, James D.; Brothers, Laura L.</p> <p>2017-01-01</p> <p>Field <span class="hlt">observations</span> of current <span class="hlt">profiles</span> and temperature, salinity, and density structure were used to examine <span class="hlt">vertical</span> mixing within two pockmarks in Belfast Bay, Maine. The first is located in 21 m water depth (sea level to rim), nearly circular in shape with a 45 m rim diameter and 12 m rim-to-bottom relief. The second is located in 25 m water depth, more elongated in shape with an approximately 80 m (36 m) major (minor) axis length at the rim, and 17 m relief. Hourly averaged current <span class="hlt">profiles</span> were acquired from bottom-mounted acoustic Doppler current <span class="hlt">profilers</span> deployed on the rim and center of each pockmark over successive 42 h periods in July 2011. Conductivity–temperature–depth casts at the rim and center of each pockmark show warmer, fresher water in the upper water column, evidence of both active and fossil thermocline structure 5–8 m above the rim, and well-mixed water below the rim to the bottom. <span class="hlt">Vertical</span> velocities show up- and down-welling events that extend into the depths of each pockmark. An <span class="hlt">observed</span> temperature change at both the rim and center occurs coincident with an overturning event below the rim, and suggests active mixing of the water column into the depths of each pockmark. <span class="hlt">Vertical</span> <span class="hlt">profiles</span> of horizontal velocities show depth variation at both the center and rim consistent with turbulent logarithmic current boundary layers, and suggest that form drag may possibly be influencing the local flow regime. While resource limitations prevented <span class="hlt">observation</span> of the current structure and water properties at a control site, the acquired data suggest that active mixing and overturning within the sampled pockmarks occur under typical benign conditions, and that current flows are influenced by upstream bathymetric irregularities induced by distant pockmarks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016tac..confE..34R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016tac..confE..34R"><span>Titan's aerosol optical properties with VIMS <span class="hlt">observations</span> at the limb</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rannou, Pascal; Seignovert, Benoit; Le Mouelic, Stephane; Sotin, Christophe</p> <p>2016-06-01</p> <p>The study of Titan properties with remote sensing relies on a good knowledge of the atmosphere properties. The in-situ <span class="hlt">observations</span> made by Huygens combined with recent advances in the definition of methane properties enable to model and interpret <span class="hlt">observations</span> with a very good accuracy. Thanks to these progresses, we can analyze in this work the <span class="hlt">observations</span> made at the limb of Titan in order to retrieve information on the haze properties as its <span class="hlt">vertical</span> <span class="hlt">profiles</span> but also the spectral behaviour between 0.88 and 5.2 µm. To study the haze layer and more generally the source of opacities in the stratosphere, we use some <span class="hlt">observation</span> made at the limb of Titan by the VIMS instrument onboard Cassini. We used a model in spherical geometry and in single scattering, and we accounted for the multiple scattering with a parallel plane model that evaluate the multiple scattering source function at the plane of the limb. Our scope is to retrieve informations about the <span class="hlt">vertical</span> distribution of the haze, its spectral properties, but also to obtain details about the shape of the methane windows to desantangle the role of the methane and of the aerosols. We started our study at the latitude of 55°N, with a image taken in 2006 with a relatively high spatial resolution (for VIMS). Our preliminary results shows the spectral properties of the aerosols are the same whatever the altitude. This is a consequence of the large scale mixing. From limb <span class="hlt">profile</span> between 0.9 and 5.2 µm, we can probe the haze layer from about 500 km (at 0.9 µm) to the ground (at 5.2 µm). We find that the <span class="hlt">vertical</span> <span class="hlt">profile</span> of the haze layer shows three distinct scale heights with transitions around 250 km and 350 km. We also clearly a transition around 70-90 km that may be due to the top of a condensation layer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM43C..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM43C..03K"><span>Superposed epoch analysis of <span class="hlt">vertical</span> ion velocity, electron temperature, field-aligned current, and thermospheric wind in the dayside auroral region as <span class="hlt">observed</span> by DMSP and CHAMP</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kervalishvili, G.; Lühr, H.</p> <p>2016-12-01</p> <p>This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, <span class="hlt">vertical</span> ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on <span class="hlt">observations</span> collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat <span class="hlt">profiles</span> of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat <span class="hlt">profiles</span> of the ion <span class="hlt">vertical</span> velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat <span class="hlt">profiles</span> of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G31D0940P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G31D0940P"><span>Precipitation information from GNSS Polarimetric Radio Occultation <span class="hlt">observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Padulles, R.; Cardellach, E.; Turk, J.; Tomás, S.; Ao, C. O.; de la Torre-Juárez, M.</p> <p>2017-12-01</p> <p>There is currently a gap in satellite <span class="hlt">observations</span> of the moisture structure during heavy precipitation conditions, since infrared and microwave sounders cannot sense water vapor structure near the surface in the presence of intense precipitation. Conversely, Global Navigation Satellite System (GNSS) Radio Occultations (RO) can <span class="hlt">profile</span> the moisture structure with high precision and <span class="hlt">vertical</span> resolution, but cannot directly indicate the presence of precipitation. Polarimetric RO (PRO) measurements have been proposed as a method to characterize heavy rain in GNSS RO, by measuring the polarimetric differential phase delay induced by large size hydrometeors. The PRO concept will be tested from space for the first time on board the Spanish PAZ satellite, planned for launch by the end of 2017. Therefore, for the first time ever, GNSS RO measurements will be taken at two polarizations, to exploit the potential capabilities of polarimetric RO for detecting and quantifying heavy precipitation events. If the concept is proved, PAZ will mean a new application of the GNSS Radio-Occultation <span class="hlt">observations</span>, by providing coincident thermodynamic and precipitation information with high <span class="hlt">vertical</span> resolution within regions with thick clouds. Before the launch, a series of studies have been performed in order to assess the retrieval of precipitation information from the polarimetric <span class="hlt">observations</span>. These studies have been based on coincident <span class="hlt">observations</span> from the COSMIC / FORMOSAT-3 RO satellite constellation, and TRMM and GPM missions. This massive collocation exercise allowed us to build a series of Look Up Tables that relate probabilistically the precipitation intensity to the polarimetric <span class="hlt">observables</span>. Such studies needed a previous characterization of the polarimetric <span class="hlt">observable</span>, since it contains contributions from the ionosphere and the emitting and receiving systems. For this purpose, complete end-to-end simulations have been performed, where information from the ionospheric state</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUSMSA31B..09M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUSMSA31B..09M"><span>Geocoronal Balmer α line <span class="hlt">profile</span> <span class="hlt">observations</span> and forward-model analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mierkiewicz, E. J.; Bishop, J.; Roesler, F. L.; Nossal, S. M.</p> <p>2006-05-01</p> <p>High spectral resolution geocoronal Balmer α line <span class="hlt">profile</span> <span class="hlt">observations</span> from Pine Bluff Observatory (PBO) are presented in the context of forward-model analysis. Because Balmer series column emissions depend significantly on multiple scattering, retrieval of hydrogen parameters of general aeronomic interest from these <span class="hlt">observations</span> (e.g., the hydrogen column abundance) currently requires a forward modeling approach. This capability is provided by the resonance radiative transfer code LYAO_RT. We have recently developed a parametric data-model comparison search procedure employing an extensive grid of radiative transport model input parameters (defining a 6-dimensional parameter space) to map-out bounds for feasible forward model retrieved atomic hydrogen density distributions. We applied this technique to same-night (March, 2000) ground-based Balmer α data from PBO and geocoronal Lyman β measurements from the Espectrógrafo Ultravioleta extremo para la Radiación Difusa (EURD) instrument on the Spanish satellite MINISAT-1 (provided by J.F. Gómez and C. Morales of the Laboratorio de Astrofisica Espacial y Física Fundamental, INTA, Madrid, Spain) in order to investigate the modeling constraints imposed by two sets of independent geocoronal intensity measurements, both of which rely on astronomical calibration methods. In this poster we explore extending this analysis to the line <span class="hlt">profile</span> information also contained in the March 2000 PBO Balmer α data set. In general, a decrease in the Doppler width of the Balmer α emission with shadow altitude is a persistent feature in every night of PBO <span class="hlt">observations</span> in which a wide range of shadow altitudes are <span class="hlt">observed</span>. Preliminary applications of the LYAO_RT code, which includes the ability to output Doppler line <span class="hlt">profiles</span> for both the singly and multiply scattered contributions to the Balmer α emission line, displays good qualitative agreement with regard to geocoronal Doppler width trends <span class="hlt">observed</span> from PBO. Model-data Balmer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110011689','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110011689"><span>Improving the Automatic Inversion of Digital ISIS-2 Ionogram Reflection Traces into Topside <span class="hlt">Vertical</span> Electron-Density <span class="hlt">Profiles</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Benson, R. F.; Truhlik, V.; Huang, X.; Wang, Y.; Bilitza, D.</p> <p>2011-01-01</p> <p>The topside-sounders on the four satellites of the International Satellites for Ionospheric Studies (ISIS) program were designed as analog systems. The resulting ionograms were displayed on 35-mm film for analysis by visual inspection. Each of these satellites, launched between 1962 and 1971, produced data for 10 to 20 years. A number of the original telemetry tapes from this large data set have been converted directly into digital records. Software, known as the TOPside Ionogram Scalar with True-height (TOPIST) algorithm has been produced that enables the automatic inversion of ISIS-2 ionogram reflection traces into topside <span class="hlt">vertical</span> electron-density <span class="hlt">profiles</span> Ne(h). More than million digital Alouette/ISIS topside ionograms have been produced and over 300,000 are from ISIS 2. Many of these ISIS-2 ionograms correspond to a passive mode of operation for the detection of natural radio emissions and thus do not contain ionospheric reflection traces. TOPIST, however, is not able to produce Ne(h) <span class="hlt">profiles</span> from all of the ISIS-2 ionograms with reflection traces because some of them did not contain frequency information. This information was missing due to difficulties encountered during the analog-to-digital conversion process in the detection of the ionogram frame-sync pulse and/or the frequency markers. Of the many digital topside ionograms that TOPIST was able to process, over 200 were found where direct comparisons could be made with Ne(h) <span class="hlt">profiles</span> that were produced by manual scaling in the early days of the ISIS program. While many of these comparisons indicated excellent agreement (<10% average difference over the entire <span class="hlt">profile</span>) there were also many cases with large differences (more than a factor of two). Here we will report on two approaches to improve the automatic inversion process: (1) improve the quality of the digital ionogram database by remedying the missing frequency-information problem when possible, and (2) using the above-mentioned comparisons as</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22489318-observation-dopant-profile-independent-electron-transport-sub-monolayer-tio-sub-stacked-zno-thin-films-grown-atomic-layer-deposition','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22489318-observation-dopant-profile-independent-electron-transport-sub-monolayer-tio-sub-stacked-zno-thin-films-grown-atomic-layer-deposition"><span><span class="hlt">Observation</span> of dopant-<span class="hlt">profile</span> independent electron transport in sub-monolayer TiO{sub x} stacked ZnO thin films grown by atomic layer deposition</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.</p> <p>2016-01-18</p> <p>Dopant-<span class="hlt">profile</span> independent electron transport has been <span class="hlt">observed</span> through a combined study of temperature dependent electrical resistivity and magnetoresistance measurements on a series of Ti incorporated ZnO thin films with varying degree of static-disorder. These films were grown by atomic layer deposition through in-situ <span class="hlt">vertical</span> stacking of multiple sub-monolayers of TiO{sub x} in ZnO. Upon decreasing ZnO spacer layer thickness, electron transport smoothly evolved from a good metallic to an incipient non-metallic regime due to the intricate interplay of screening of spatial potential fluctuations and strength of static-disorder in the films. Temperature dependent phase-coherence length as extracted from the magnetotransport measurementmore » revealed insignificant role of inter sub-monolayer scattering as an additional channel for electron dephasing, indicating that films were homogeneously disordered three-dimensional electronic systems irrespective of their dopant-<span class="hlt">profiles</span>. Results of this study are worthy enough for both fundamental physics perspective and efficient applications of multi-stacked ZnO/TiO{sub x} structures in the emerging field of transparent oxide electronics.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1362201-root-traits-explain-observed-tundra-vegetation-nitrogen-uptake-patterns-implications-trait-based-land-models-tundra-uptake-model-data-comparison','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1362201-root-traits-explain-observed-tundra-vegetation-nitrogen-uptake-patterns-implications-trait-based-land-models-tundra-uptake-model-data-comparison"><span>Root traits explain <span class="hlt">observed</span> tundra vegetation nitrogen uptake patterns: Implications for trait-based land models: Tundra N Uptake Model-Data Comparison</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhu, Qing; Iversen, Colleen M.; Riley, William J.; ...</p> <p>2016-12-23</p> <p>Ongoing climate warming will likely perturb <span class="hlt">vertical</span> distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of <span class="hlt">vertically</span> explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a <span class="hlt">vertically</span> explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake <span class="hlt">profiles</span>. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the <span class="hlt">observations</span>. <span class="hlt">Observations</span> using an 15N tracer showed that plant N uptake <span class="hlt">profiles</span> were not consistently related to root biomass density <span class="hlt">profiles</span>, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the <span class="hlt">observed</span> patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake <span class="hlt">profiles</span> we <span class="hlt">observed</span>. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1362201','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1362201"><span>Root traits explain <span class="hlt">observed</span> tundra vegetation nitrogen uptake patterns: Implications for trait-based land models: Tundra N Uptake Model-Data Comparison</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhu, Qing; Iversen, Colleen M.; Riley, William J.</p> <p></p> <p>Ongoing climate warming will likely perturb <span class="hlt">vertical</span> distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of <span class="hlt">vertically</span> explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a <span class="hlt">vertically</span> explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake <span class="hlt">profiles</span>. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the <span class="hlt">observations</span>. <span class="hlt">Observations</span> using an 15N tracer showed that plant N uptake <span class="hlt">profiles</span> were not consistently related to root biomass density <span class="hlt">profiles</span>, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the <span class="hlt">observed</span> patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake <span class="hlt">profiles</span> we <span class="hlt">observed</span>. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.G33B1145P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.G33B1145P"><span>Terrestrial water storage variations and surface <span class="hlt">vertical</span> deformation derived from GPS and GRACE <span class="hlt">observations</span> in Nepal and Himalayas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pan, Y.; Shen, W.; Hwang, C.</p> <p>2015-12-01</p> <p>As an elastic Earth, the surface <span class="hlt">vertical</span> deformation is in response to hydrological mass change on or near Earth's surface. The continuous GPS (CGPS) records show surface <span class="hlt">vertical</span> deformations which are significant information to estimate the variation of terrestrial water storage. We compute the loading deformations at GPS stations based on synthetic models of seasonal water load distribution and then invert the synthetic GPS data for surface mass distribution. We use GRACE gravity <span class="hlt">observations</span> and hydrology models to evaluate seasonal water storage variability in Nepal and Himalayas. The coherence among GPS inversion results, GRACE and hydrology models indicate that GPS can provide quantitative estimates of terrestrial water storage variations by inverting the surface deformation <span class="hlt">observations</span>. The annual peak-to-peak surface mass change derived from GPS and GRACE results reveal seasonal loads oscillations of water, snow and ice. Meanwhile, the present uplifting of Nepal and Himalayas indicates the hydrology mass loss. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29723834','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29723834"><span>Metalimnetic oxygen minima alter the <span class="hlt">vertical</span> <span class="hlt">profiles</span> of carbon dioxide and methane in a managed freshwater reservoir.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McClure, Ryan P; Hamre, Kathleen D; Niederlehner, B R; Munger, Zackary W; Chen, Shengyang; Lofton, Mary E; Schreiber, Madeline E; Carey, Cayelan C</p> <p>2018-04-30</p> <p>Metalimnetic oxygen minimum zones (MOMs) commonly develop during the summer stratified period in freshwater reservoirs because of both natural processes and water quality management. While several previous studies have examined the causes of MOMs, much less is known about their effects, especially on reservoir biogeochemistry. MOMs create distinct redox gradients in the water column which may alter the magnitude and <span class="hlt">vertical</span> distribution of dissolved methane (CH 4 ) and carbon dioxide (CO 2 ). The <span class="hlt">vertical</span> distribution and diffusive efflux of CH 4 and CO 2 was monitored for two consecutive open-water seasons in a eutrophic reservoir that develops MOMs as a result of the operation of water quality engineering systems. During both summers, elevated concentrations of CH 4 accumulated within the anoxic MOM, reaching a maximum of 120 μM, and elevated concentrations of CO 2 accumulated in the oxic hypolimnion, reaching a maximum of 780 μM. Interestingly, the largest <span class="hlt">observed</span> diffusive CH 4 effluxes occurred before fall turnover in both years, while peak diffusive CO 2 effluxes occurred both before and during turnover. Our data indicate that MOMs can substantially change the <span class="hlt">vertical</span> distribution of CH 4 and CO 2 in the water column in reservoirs, resulting in the accumulation of CH 4 in the metalimnion (vs. at the sediments) and CO 2 in the hypolimnion. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>