Sample records for observatory accident summary

  1. Manned space programs accident/incident summaries (1963 - 1969)

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This summary is a compilation of 508 mishaps assembled from company and NASA records which cover several years of manned space flight activity. The purpose is to provide information to be applied towards accident prevention. The accident/incident summaries are categorized by the following ten systems: cryogenic; electrical; facility/GSE; fuel and propellant; life support; ordnance; pressure; propulsion; structural; and transport/handling. Each accident/incident summary has been summarized by description, cause and recommended preventive action.

  2. High Energy Astronomy Observatory, Mission C, Phase A. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A summary of the Phase A of the High Energy Astronomy Observatory Mission-C (HEAO-C) is presented. The mission, baseline experiments, observatory design, and spacecraft subsystems are described, and the principal mission considerations are discussed. A summary is included of the general recommendations.

  3. 2001 South Dakota motor vehicle traffic accident summary

    DOT National Transportation Integrated Search

    2002-05-01

    The South Dakota Motor Vehicle Traffic Accident Summary was developed to provide : an overview of the South Dakota traffic accident picture, as well as make frequently : requested information available. Information from 2001 comprises the major porti...

  4. 1999 South Dakota motor vehicle traffic accident summary

    DOT National Transportation Integrated Search

    2000-05-01

    The South Dakota Motor Vehicle Traffic Accident Summary was developed to provide : an overview of the South Dakota traffic accident picture, as well as make frequently : requested information available. Information from 1999 comprises the major porti...

  5. 2000 South Dakota motor vehicle traffic accident summary

    DOT National Transportation Integrated Search

    2001-01-01

    The South Dakota Motor Vehicle Traffic Accident Summary was developed to provide : an overview of the South Dakota traffic accident picture, as well as make frequently : requested information available. Information from 2000 comprises the major porti...

  6. 1998 South Dakota motor vehicle traffic accident summary

    DOT National Transportation Integrated Search

    1998-01-01

    The South Dakota Motor Vehicle Traffic Accident Summary was developed to provide : an overview of the South Dakota traffic accident picture, as well as make frequently : requested information available. Information from 1998 comprises the major porti...

  7. 1997 South Dakota motor vehicle traffic accident summary

    DOT National Transportation Integrated Search

    1997-01-01

    The South Dakota Motor Vehicle Traffic Accident Summary was developed to provide an : overview of the South Dakota traffic accident picture, as well as make frequently requested : information available. Information from 1997 comprises the major porti...

  8. Major Railroad Accidents Involving Hazardous Materials Release, Composite Summaries 1969-1978

    DOT National Transportation Integrated Search

    1980-07-31

    This report presents composite summaries describing 75 major railroad accidents in which hazardous materials were released. The selected accidents occurred during the years 1969-1978. The data contained in the individual summaries were derived from v...

  9. Manned Space Programs Accident/Incident Summaries (1970 - 1971)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A compilation of 223 mishaps assembled from company and NASA records covering the Accident/Incident experience in 1970-1971 in the Manned Space Flight Programs is presented. It is the companion volume to NASA-CR-120998 which covered the years 1963-1969. The objectives of this summary is to make available to Government agencies and industrial firms the lessons learned from these mishaps. Each accident/incident summary has been reviewed by description, cause and recommended preventive action. The summaries have been categorized by the following ten systems: (1) Cryogenic; (2) Electrical; (3) Facility/GSE; (4) Fuel and Propellant; (5) Life Support; (6) Ordnance; (7) Pressure; (8) Propulsion; (9) Structural; and (10) Transport/Handling.

  10. Hawaiian volcano observatory summary 103; Part I, seismic data, January to December 2003

    USGS Publications Warehouse

    Nakata, Jennifer S.; Heliker, C.; Orr, T.; Hoblitt, R.

    2004-01-01

    The Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year and a chronological narrative describing the volcanic events. The seismic summary is offered without interpretation as a source of preliminary data. It is complete in the sense that most data for events of M= 1.5 routinely gathered by the Observatory are included. The emphasis in collection of tilt and deformation data has shifted from quarterly measurements at a few water-tube tilt stations ('wet' tilt) to a larger number of continuously recording borehole tiltmeters, repeated measurements at numerous spirit-level tilt stations ('dry' tilt), and surveying of level and trilateration networks. Because of the large quantity of deformation data now gathered and differing schedules of data reduction, the seismic and deformation summaries are published separately. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data dictated an annual publication beginning with Summary 74 for the year 1974. Summary 86 (the introduction of CUSP at HVO) includes a description of the seismic instrumentation, calibration, and processing used in recent years. The present summary includes background information on the seismic network and processing to allow use of the data and to provide an understanding of how they were gathered.

  11. Hawaiian Volcano Observatory summary 100; Part 1, seismic data, January to December 2000

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2001-01-01

    The Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year and a chronological narrative describing the volcanic events. The seismic summary is offered without interpretation as a source of preliminary data. It is complete in the sense that all data for events of M≥1.5 routinely gathered by the Observatory are included. The emphasis in collection of tilt and deformation data has shifted from quarterly measurements at a few water-tube tilt stations (“wet” tilt) to a larger number of continuously recording borehole tiltmeters, repeated measurements at numerous spirit-level tilt stations (“dry” tilt), and surveying of level and trilateration networks. Because of the large quantity of deformation data now gathered and differing schedules of data reduction, the seismic and deformation summaries are published separately. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data dictated an annual publication beginning with Summary 74 for the year 1974. Summary 86 (the introduction of CUSP at HVO) includes a description of the seismic instrumentation, calibration, and processing used in recent years. The present summary includes enough background information on the seismic network and processing to allow use of the data and to provide an understanding of how they were gathered.

  12. Hawaiian Volcano Observatory summary 101: Part 1, seismic data, January to December 2001

    USGS Publications Warehouse

    Nakata, Jennifer S.; Chronological summary by Heliker, C.

    2002-01-01

    The Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year and a chronological narrative describing the volcanic events. The seismic summary is offered without interpretation as a source of preliminary data. It is complete in the sense that all data for events of M>1.5 routinely gathered by the Observatory are included. The emphasis in collection of tilt and deformation data has shifted from quarterly measurements at a few water-tube tilt stations ("wet" tilt) to a larger number of continuously recording borehole tiltmeters, repeated measurements at numerous spirit-level tilt stations ("dry" tilt), and surveying of level and trilateration networks. Because of the large quantity of deformation data now gathered and differing schedules of data reduction, the seismic and deformation summaries are published separately. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data dictated an annual publication beginning with Summary 74 for the year 1974. Summary 86 (the introduction of CUSP at HVO) includes a description of the seismic instrumentation, calibration, and processing used in recent years. The present summary includes enough background information on the seismic network and processing to allow use of the data and to provide an understanding of how they were gathered.

  13. Statistical summary of commercial jet aircraft accidents : worldwide operations, 1959-2009

    DOT National Transportation Integrated Search

    2010-07-01

    The accident statistics presented in this summary are confined to worldwide commercial jet airplanes that are heavier than 60,000 pounds maximum gross weight. Within that set of airplanes, there are two groups excluded: : 1) Airplanes manufactured in...

  14. Terrestrial Planet Finder Coronagraph Observatory summary

    NASA Technical Reports Server (NTRS)

    Ford, Virginia; Levine-Westa, Marie; Kissila, Andy; Kwacka, Eug; Hoa, Tim; Dumonta, Phil; Lismana, Doug; Fehera, Peter; Cafferty, Terry

    2005-01-01

    Creating an optical space telescope observatory capable of detecting and characterizing light from extra-solar terrestrial planets poses technical challenges related to extreme wavefront stability. The Terrestrial Planet Finder Coronagraph design team has been developing an observatory based on trade studies, modeling and analysis that has guided us towards design choices to enable this challenging mission. This paper will describe the current flight baseline design of the observatory and the trade studies that have been performed. The modeling and analysis of this design will be described including predicted performance and the tasks yet to be done.

  15. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  16. MMS Observatory TV Results Contamination Summary

    NASA Technical Reports Server (NTRS)

    Rosecrans, Glenn; Brieda, Lubos; Errigo, Therese

    2014-01-01

    The Magnetospheric Multiscale (MMS) mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earth's magnetosphere. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. In this paper, we report on the extensive thermal vacuum testing campaign. The testing was performed at the Naval Research Laboratory utilizing the "Big Blue" vacuum chamber. A total of ten thermal vacuum tests were performed, including two chamber certifications, three dry runs, and five tests of the individual MMS observatories. During the test, the observatories were enclosed in a thermal enclosure known as the "hamster cage". The enclosure allowed for a detailed thermal control of various observatory zone, but at the same time, imposed additional contamination and system performance requirements. The environment inside the enclosure and the vacuum chamber was actively monitored by several QCMs, RGA, and up to 18 ion gauges. Each spacecraft underwent a bakeout phase, which was followed by 4 thermal cycles. Unique aspects of the TV campaign included slow pump downs with a partial represses, thruster firings, Helium identification, and monitoring pressure spikes with ion gauges. Selected data from these TV tests is presented along with lessons learned.

  17. Summary of interference measurements at selected radio observatories

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C.

    1990-01-01

    Results are presented from a series of RF interference (RFI) observations conducted during 1989 and 1990 at selected radio astronomy observatories in order to choose a site for the SETI, where the local and orbital RFI would be as benign as possible for observations of weak electromagnetic signals. These observatories included the DSS13 at Goldstone (California), the Arecibo Observatory (Puerto Rico), the Algonquin Radio Observatory in Ottawa (Canada), the Ohio State University Radio Observatory in Columbus (Ohio), and the NRAO in Green Bank (West Virginia). The observations characterize the RFI environment at these sites from 1 to 10 GHz, using radio astronomy antennas, feeds, and receivers; SETI signal processors; and stand-alone equipment built specifically for this purpose. The results served as part of the basis for the selection (by the NASA SETI Microwave Observing Project) of NRAO as the site of choice for SETI observations.

  18. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-08-14

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  19. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Phil; Feinberg, Lee

    2006-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  20. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Feinberg, Lee

    2007-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  1. 2004 Missouri state highway system : traffic accident statistics

    DOT National Transportation Integrated Search

    2005-06-27

    The following summary of traffic accidents represents only those accidents that have occurred on the State Highway : System of Missouri in 2004. The information contained in this publication is a summary of the accident reports : provided to the Miss...

  2. 1999 Missouri state highway system : traffic accident statistics

    DOT National Transportation Integrated Search

    2001-01-17

    The following summary of traffic accidents represents only those accidents that have occurred on the State : Highway System of Missouri in 1999. The information contained in this publication is a summary of the accident : reports provided to the Miss...

  3. 2001 Missouri state highway system : traffic accident statistics

    DOT National Transportation Integrated Search

    2002-09-30

    The following summary of traffic accidents represents only those accidents that have occurred on the State : Highway System of Missouri in 2001. The information contained in this publication is a summary of the accident : reports provided to the Miss...

  4. 2000 Missouri state highway system : traffic accident statistics

    DOT National Transportation Integrated Search

    2001-10-25

    The following summary of traffic accidents represents only those accidents that have occurred on the State : Highway System of Missouri in 2000. The information contained in this publication is a summary of the accident : reports provided to the Miss...

  5. 2002 Missouri state highway system : traffic accident statistics

    DOT National Transportation Integrated Search

    2003-07-02

    The following summary of traffic accidents represents only those accidents that have occurred on the State Highway : System of Missouri in 2002. The information contained in this publication is a summary of the accident reports : provided to the Miss...

  6. 2005 Missouri state highway system : traffic accident statistics

    DOT National Transportation Integrated Search

    2006-08-31

    The following summary of traffic accidents represents only those accidents that have occurred on the State Highway : System of Missouri in 2005. The information contained in this publication is a summary of the accident reports : provided to the Miss...

  7. 2003 Missouri state highway system : traffic accident statistics

    DOT National Transportation Integrated Search

    2004-08-12

    The following summary of traffic accidents represents only those accidents that have occurred on the State Highway : System of Missouri in 2003. The information contained in this publication is a summary of the accident reports : provided to the Miss...

  8. What's New for the Orbiting Carbon Observatory-2? A Summary of Changes between the Original and Re-flight Missions

    NASA Astrophysics Data System (ADS)

    Boland, S. W.; Kahn, P. B.

    2012-12-01

    The original Orbiting Carbon Observatory mission was lost in 2009 when the spacecraft failed to achieve orbit due to a launch vehicle failure. In 2010, NASA authorized a re-flight mission, known as the Orbiting Carbon Observatory-2 (OCO-2) mission, with direction to re-use the original hardware, designs, drawings, documents, and procedures wherever possible in order to minimize cost, schedule, and performance risk. During implementation, it was realized that some changes were required due to parts obsolescence, incorporation of lessons learned from the original OCO mission, and to provide optimal science return. In response to the OCO and Glory launch vehicle failures, a change in launch vehicle was also recently announced. A summary of changes, including those to hardware, orbit, and launch vehicle is provided, along with rationale, implementation approach, and impact (if any) on mission science.

  9. Hawaiian Volcano Observatory 1956 Quarterly Administrative Reports

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. This report consists of four parts.

  10. Hawaiian Volcano Observatory seismic data, January to December 2005

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2006-01-01

    The Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year. The seismic summary is offered without interpretation as a source of preliminary data. It is complete in the sense that most data for events of M-1.5 routinely gathered by the Observatory are included. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data dictated an annual publication beginning with Summary 74 for the year 1974. Summary 86 (the introduction of CUSP at HVO) includes a description of the seismic instrumentation, calibration, and processing used in recent years. Beginning with 2004, summaries will simply be identified by the year, rather than Summary number. The present summary includes background information on the seismic network and processing to allow use of the data and to provide an understanding of how they were gathered. A report by Klein and Koyanagi (1980) tabulates instrumentation, calibration, and recording history of each seismic station in the network. It is designed as a reference for users of seismograms and phase data and includes and augments the information in the station table in this summary.

  11. Hawaiian Volcano Observatory Seismic Data, January to December 2006

    USGS Publications Warehouse

    Nakata, Jennifer

    2007-01-01

    Introduction The Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year. The seismic summary is offered without interpretation as a source of preliminary data. It is complete in the sense that most data for events of M>1.5 routinely gathered by the Observatory are included. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data dictated an annual publication beginning with Summary 74 for the year 1974. Summary 86 (the introduction of CUSP at HVO) includes a description of the seismic instrumentation, calibration, and processing used in recent years. Beginning with 2004, summaries are simply identified by the year, rather than Summary number. The present summary includes background information on the seismic network and processing to allow use of the data and to provide an understanding of how they were gathered. A report by Klein and Koyanagi (1980) tabulates instrumentation, calibration, and recording history of each seismic station in the network. It is designed as a reference for users of seismograms and phase data and includes and augments the information in the station table in this summary.

  12. GAIA virtual observatory - development and practices

    NASA Astrophysics Data System (ADS)

    Syrjäsuo, Mikko; Marple, Steve

    2010-05-01

    The Global Auroral Imaging Access, or GAIA, is a virtual observatory providing quick access to summary data from satellite and ground-based instruments that remote sense auroral precipitation (http://gaia-vxo.org). This web-based service facilitates locating data relevant to particular events by simultaneously displaying summary images from various data sets around the world. At the moment, there are GAIA server nodes in Canada, Finland, Norway and the UK. The development is an international effort and the software and metadata are freely available. The GAIA system is based on a relational database which is queried by a dedicated software suite that also creates the graphical end-user interface if such is needed. Most commonly, the virtual observatory is used interactively by using a web browser: the user provides the date and the type of data of interest. As the summary data from multiple instruments are displayed simultaneously, the user can conveniently explore the recorded data. The virtual observatory provides essentially instant access to the images originating from all major auroral instrument networks including THEMIS, NORSTAR, GLORIA and MIRACLE. The scientific, educational and outreach use is limited by creativity rather than access. The first version of the GAIA was developed at the University of Calgary (Alberta, Canada) in 2004-2005. This proof-of-concept included mainly THEMIS and MIRACLE data, which comprised of millions of summary plots and thumbnail images. However, it was soon realised that a complete re-design was necessary to increase flexibility. In the presentation, we will discuss the early history and motivation of GAIA as well as how the development continued towards the current version. The emphasis will be on practical problems and their solutions. Relevant design choices will also be highlighted.

  13. Astronomy and astrophysics communication in the UCM Observatory

    NASA Astrophysics Data System (ADS)

    Crespo-Chacón, I.; de Castro, E.; Díaz, C.; Gallego, J.; Gálvez, M. C.; Hernán-Obispo, M.; López-Santiago, J.; Montes, D.; Pascual, S.; Verdet, A.; Villar, V.; Zamorano, J.

    We present a summary of the last activities of science communication that have taken place in the Observatorio de la Universidad Complutense de Madrid (UCM Observatory) on the occasion of the Third Science Week of the Comunidad Autónoma de Madrid (3-16 November 2003), including guided tours through the observatory facilities, solar observations, and several talks. Moreover the current telescopes, instruments and tools of the UCM Observatory have allowed us to organize other communicating activities such as the live observation, together with its internet broadcast, of total lunar eclipses and other exceptional astronomical events as the Venus transit that took place in 8 June 2004.

  14. Accident/incident bulletin : calendar year 1995

    DOT National Transportation Integrated Search

    1996-08-01

    Railroads must file monthly accident/incident reports with the Federal Railroad Administrations (FRA) Office of Safety. Bulletin 164 is a summary of accident/incident data reported by 679 railroads for calendar year 1995. The FRA Guide for Prepari...

  15. Accident/incident bulletin : calendar year 1996

    DOT National Transportation Integrated Search

    1997-08-01

    Railroads must file monthly accident/incident reports with the Federal Railroad Administrations (FRA) Office of Safety. Bulletin 165 is a summary of accident/incident data reported by 704 railroads for calendar year 1996. There are three basic cat...

  16. The advent of female astronomers at Turin Observatory

    NASA Astrophysics Data System (ADS)

    Bernardi, Gabriella; Vecchiato, Alberto

    2018-04-01

    In this paper we give an historical presentation of the role of women at the Astronomical Observatory of Turin, showing their scientific work and interests, and how their role evolved with time. This exposition is put in its appropriate context with a short summary of the history of the Observatory. In the end we try to give a possible recount of the events that triggered the beginning of female participation in the research and the life of this institution and explain its peculiar character.

  17. The Aula Espazio Gela Observatory: A tool for Solar System Education and Outreach

    NASA Astrophysics Data System (ADS)

    Rojas, J. F.; Perez-Hoyos, S.; Hueso, R.; Mendikoa, I.; Sanchez-Lavega, A.

    2011-10-01

    We present a summary of the activities undertaken over the first year of operations of the "Aula Espazio Gela Observatory", with teaching and astronomy outreach purposes. The observatory belongs to the Universidad del País Vasco and is a fundamental part of the "Master en Ciencia y Tecnología Espacial" (Space Science and Technology master). It is an urban observatory with the dome located on the roof of the School of Engineering at the Universidad del Pais Vasco in Bilbao (Spain).

  18. 1997 Oregon state highway accident rate tables

    DOT National Transportation Integrated Search

    1998-08-01

    The three parts of this report are: : I Results of Analysis containing comparative tables and the Signed Route on Highway list, : II Five year accident rate data by highway sections, : III A summary of this year's fatal traffic accidents. : The first...

  19. System design and specifications. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A design summary of the Earth Observatory Satellite (EOS) is presented. The systems considered in the summary are: (1) the spacecraft structure, (2) electrical power modules, (3) communications and data handling module, (4) attitude determination module, (5) actuation module, and (6) solar array and drive module. The documents which provide the specifications for the systems and the equipment are identified.

  20. Distributed Observatory Management

    NASA Astrophysics Data System (ADS)

    Godin, M. A.; Bellingham, J. G.

    2006-12-01

    A collection of tools for collaboratively managing a coastal ocean observatory have been developed and used in a multi-institutional, interdisciplinary field experiment. The Autonomous Ocean Sampling Network program created these tools to support the Adaptive Sampling and Prediction (ASAP) field experiment that occurred in Monterey Bay in the summer of 2006. ASAP involved the day-to-day participation of a large group of researchers located across North America. The goal of these investigators was to adapt an array of observational assets to optimize data collection and analysis. Achieving the goal required continual interaction, but the long duration of the observatory made sustained co-location of researchers difficult. The ASAP team needed a remote collaboration tool, the capability to add non-standard, interdisciplinary data sets to the overall data collection, and the ability to retrieve standardized data sets from the collection. Over the course of several months and "virtual experiments," the Ocean Observatory Portal (COOP) collaboration tool was created, along with tools for centralizing, cataloging, and converting data sets into common formats, and tools for generating automated plots of the common format data. Accumulating the data in a central location and converting the data to common formats allowed any team member to manipulate any data set quickly, without having to rely heavily on the expertise of data generators to read the data. The common data collection allowed for the development of a wide range of comparison plots and allowed team members to assimilate new data sources into derived outputs such as ocean models quickly. In addition to the standardized outputs, team members were able to produce their own specialized products and link to these through the collaborative portal, which made the experimental process more interdisciplinary and interactive. COOP was used to manage the ASAP vehicle program from its start in July 2006. New summaries were

  1. 76 FR 55079 - Recreational Vessel Accident Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... Accident Reporting AGENCY: Coast Guard, DHS. ACTION: Notice of Advisory Committee recommendations; request for additional public comments. SUMMARY: The Coast Guard has received recommendations from the... system for boating accidents; and (2) take steps to clarify what, how, and when information is reported...

  2. A summary of unmanned aircraft accident/incident data : human factors implications

    DOT National Transportation Integrated Search

    2004-12-01

    A review and analysis of unmanned aircraft (UA) accident data was conducted to identify important human factors issues related to their use. UA accident data were collected from the U.S. Army, Navy, and Air Force. Classification of the accident data ...

  3. HEAO Block 2 study executive summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An executive summary is presented of a preliminary study done on several potential High Energy Astronomy Observatory (HEAO) missions which are follow-on missions to the currently defined HEAO program. The purpose was to examine several typical missions and determine the relative complexities associated with them. The four payloads investigated were (1) a 1.2 m Diameter X-ray Telescope observatory, (2) a Large Area Moderate Angular Resolution (LAMAR) observatory, (3) a cosmic ray observatory, and (4) a gamma ray observatory. Each of the four observatories was considered a national facility. Low cost approaches were stressed throughout, with considerable use of HEAO Block I experience and designs effected to provide a high degree of confidence that such approaches were achievable. The use of the Multi-Mission Spacecraft (MMS) and the HEAO Block I spacecraft was considered as a result of this low cost emphasis. Also, NASA standard components were considered, where applicable.

  4. MMS Observatory Thermal Vacuum Results Contamination Summary

    NASA Technical Reports Server (NTRS)

    Rosecrans, Glenn P.; Errigo, Therese; Brieda, Lubos

    2014-01-01

    The MMS mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earths magnetosphere. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Thermal vacuum testing was conducted at the Naval Research Laboratory (NRL) in their Big Blue vacuum chamber. The individual spacecraft were tested and enclosed in a cryopanel enclosure called a Hamster cage. Specific contamination control validations were actively monitored by several QCMs, a facility RGA, and at times, with 16 Ion Gauges. Each spacecraft underwent a bakeout phase, followed by 4 thermal cycles. Unique aspects of the TV environment included slow pump downs with represses, thruster firings, Helium identification, and monitoring pressure spikes with Ion gauges. Various data from these TV tests will be shown along with lessons learned.

  5. Research Summaries

    ERIC Educational Resources Information Center

    Brock, Stephen E., Ed.

    2009-01-01

    This article presents summaries of three recent crisis management publications: (1) "School Violence: Associations With Control, Security/Enforcement, Educational/Therapeutic Approaches, and Demographic Factors," reviewed by Ashlee Barton; (2) "The Relationship Between Cognitive Coping Styles and PTSD in Survivors of Traffic Accidents," summarized…

  6. Hawaiian Volcano Observatory 1978 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  7. Hawaiian Volcano Observatory 1960 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  8. Hawaiian Volcano Observatory 1959 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  9. Hawaiian Volcano Observatory 1971 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  10. Hawaiian Volcano Observatory 1961 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  11. Hawaiian Volcano Observatory 1974 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  12. Hawaiian Volcano Observatory 1984 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  13. Hawaiian Volcano Observatory 1981 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  14. Hawaiian Volcano Observatory 1980 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  15. Hawaiian Volcano Observatory 1958 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  16. Hawaiian Volcano Observatory 1962 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  17. Hawaiian Volcano Observatory 1970 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  18. Hawaiian Volcano Observatory 1973 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  19. Hawaiian Volcano Observatory 1979 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  20. Hawaiian Volcano Observatory 1977 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  1. Hawaiian Volcano Observatory 1983 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  2. Hawaiian Volcano Observatory 1966 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  3. Hawaiian Volcano Observatory 1965 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  4. Hawaiian Volcano Observatory 1964 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  5. Hawaiian Volcano Observatory 1957 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  6. Hawaiian Volcano Observatory 1972 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  7. Hawaiian Volcano Observatory 1975 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  8. Hawaiian Volcano Observatory 1982 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  9. Hawaiian Volcano Observatory 1976 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  10. Hawaiian Volcano Observatory 1969 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  11. Hawaiian Volcano Observatory 1967 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  12. Hawaiian Volcano Observatory 1968 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  13. Hawaiian Volcano Observatory 1963 Quarterly Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  14. Hawaiian Volcano Observatory 1985 Annual Administrative Report

    USGS Publications Warehouse

    Nakata, Jennifer S.

    2007-01-01

    INTRODUCTORY NOTE The Hawaiian Volcano Observatory Summaries have been published in the current format since 1956. The Quarterly Summaries (1956 through 1973) and the Annual Summaries (1974 through 1985) were originally published as Administrative Reports. These reports have been compiled and published as U.S. Geological Survey Open-File Reports. The quarterly reports have been combined and published as one annual summary. All the summaries from 1956 to the present are now available as .pdf files at http://www.usgs.gov/pubprod. The earthquake summary data are presented as a listing of origin time, depth, magnitude, and other location parameters. Network instrumentation, field station sites, and location algorithms are described. Tilt and other deformation data are included until Summary 77, January to December 1977. From 1978, the seismic and deformation data are published separately, due to differing schedules of data reduction. There are eight quarters - from the fourth quarter of 1959 to the third quarter of 1961 - that were never published. Two of these (4th quarter 1959, 1st quarter 1960) have now been published, using handwritten notes of Jerry Eaton (HVO seismologist at the time) and his colleagues. The seismic records for the remaining six summaries went back to California in 1961 with Jerry Eaton. Other responsibilities intervened, and the seismic summaries were never prepared.

  15. 40 CFR 68.155 - Executive summary.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Executive summary. 68.155 Section 68.155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Risk Management Plan § 68.155 Executive summary. The owner or...

  16. 40 CFR 68.155 - Executive summary.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Executive summary. 68.155 Section 68.155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Risk Management Plan § 68.155 Executive summary. The owner or...

  17. World commercial aircraft accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accidentmore » is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.« less

  18. Heat balance and thermal management of the TMT Observatory

    NASA Astrophysics Data System (ADS)

    Thompson, Hugh; Vogiatzis, Konstantinos

    2014-08-01

    An extensive campaign of aero-thermal modeling of the Thirty Meter Telescope (TMT) has been carried out and presented in other papers. This paper presents a summary view of overall heat balance of the TMT observatory. A key component of this heat balance that can be managed is the internal sources of heat dissipation to the ambient air inside the enclosure. An engineering budget for both daytime and nighttime sources is presented. This budget is used to ensure that the overall effects on daytime cooling and nighttime seeing are tracked and fall within the modeled results that demonstrate that the observatory meets its performance requirements. In the daytime heat fluxes from air-conditioning, solar loading, infiltration, and deliberate venting through the enclosure top vent are included along with equipment heat sources. In the nighttime convective heat fluxes through the open aperture and vent doors, as well as radiation to the sky are tracked along with the nighttime residual heat dissipations after cooling from equipment in the observatory. The diurnal variation of thermal inertia of large masses, such as the telescope structure, is also included. Model results as well as the overall heat balance and thermal management strategy of the observatory are presented.

  19. Hawaiian Volcano Observatory Seismic Data, January to December 2007

    USGS Publications Warehouse

    Nakata, Jennifer S.; Okubo, Paul G.

    2008-01-01

    The U.S. Geological Survey (USGS), Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year. The seismic summary is offered without interpretation as a source of preliminary data and is complete in that most data for events of M=1.5 are included. All latitude and longitude references in this report are stated in Old Hawaiian Datum. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data necessitated an annual publication, beginning with Summary 74 for the year 1974. Beginning in 2004, summaries are simply identified by the year, rather than by summary number. Summaries originally issued as administrative reports were republished in 2007 as Open-File Reports. All the summaries since 1956 are listed at http://geopubs.wr.usgs.gov/ (last accessed September 30, 2008). In January 1986, HVO adopted CUSP (California Institute of Technology USGS Seismic Processing). Summary 86 includes a description of the seismic instrumentation, calibration, and processing used in recent years. The present summary includes background information about the seismic network to provide the end user an understanding of the processing parameters and how the data were gathered. A report by Klein and Koyanagi (1980) tabulates instrumentation, calibration, and recording history of each seismic station in the network. It is designed as a reference for users of seismograms and phase data and includes and augments the information in the station table in this summary.

  20. An Integrated Cyberenvironment for Event-Driven Environmental Observatory Research and Education

    NASA Astrophysics Data System (ADS)

    Myers, J.; Minsker, B.; Butler, R.

    2006-12-01

    National environmental observatories will soon provide large-scale data from diverse sensor networks and community models. While much attention is focused on piping data from sensors to archives and users, truly integrating these resources into the everyday research activities of scientists and engineers across the community, and enabling their results and innovations to be brought back into the observatory, also critical to long-term success of the observatories, is often neglected. This talk will give an overview of the Environmental Cyberinfrastructure Demonstrator (ECID) Cyberenvironment for observatory-centric environmental research and education, under development at the National Center for Supercomputing Applications (NCSA), which is designed to address these issues. Cyberenvironments incorporate collaboratory and grid technologies, web services, and other cyberinfrastructure into an overall framework that balances needs for efficient coordination and the ability to innovate. They are designed to support the full scientific lifecycle both in terms of individual experiments moving from data to workflows to publication and at the macro level where new discoveries lead to additional data, models, tools, and conceptual frameworks that augment and evolve community-scale systems such as observatories. The ECID cyberenvironment currently integrates five major components a collaborative portal, workflow engine, event manager, metadata repository, and social network personalization capabilities - that have novel features inspired by the Cyberenvironment concept and enabling powerful environmental research scenarios. A summary of these components and the overall cyberenvironment will be given in this talk, while other posters will give details on several of the components. The summary will be presented within the context of environmental use case scenarios created in collaboration with researchers from the WATERS (WATer and Environmental Research Systems) Network, a

  1. 1994 Accident sequence precursor program results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.

    1996-01-01

    The Accident Sequence Precursor (ASP) Program involves the systematic review and evaluation of operational events that have occurred at light-water reactors to identify and categorize precursors to potential severe core damage accident sequences. The results of the ASP Program are published in an annual report. The most recent report, which contains the analyses of the precursors for 1994, is NUREG/CR-4674, Vols. 21 and 22, Precursors to Potential Severe Core Damage Accidents: 1994, A Status Report, published in December 1995. This article provides an overview of the ASP review and evaluation process and a summary of the results for 1994. 12more » refs., 2 figs., 4 tabs.« less

  2. Accident history, risk perception and traffic safe behaviour.

    PubMed

    Ngueutsa, Robert; Kouabenan, Dongo Rémi

    2017-09-01

    This study clarifies the associations between accident history, perception of the riskiness of road travel and traffic safety behaviours by taking into account the number and severity of accidents experienced. A sample of 525 road users in Cameroon answered a questionnaire comprising items on perception of risk, safe behaviour and personal accident history. Participants who reported involvement in more than three accidents or involvement in a severe accident perceived road travel as less risky and also reported behaving less safely compared with those involved in fewer, or less severe accidents. The results have practical implications for the prevention of traffic accidents. Practitioner Summary: The associations between accident history, perceived risk of road travel and safe behaviour were investigated using self-report questionnaire data. Participants involved in more than three accidents, or in severe accidents, perceived road travel as less risky and also reported more unsafe behaviour compared with those involved in fewer, or less severe accidents. Campaigns targeting people with a less serious, less extensive accident history should aim to increase awareness of hazards and the potential severity of their consequences, as well as emphasising how easy it is to take the recommended preventive actions. Campaigns targeting those involved in more frequent accidents, and survivors of serious accidents, should address feelings of invulnerability and helplessness.

  3. Site Selection and Deployment Scenarios for Servicing of Deep-Space Observatories

    NASA Technical Reports Server (NTRS)

    Willenberg, Harvey J.; Fruhwirth, Michael A.; Potter, Seth D.; Leete, Stephen J.; Moe, Rud V.

    2001-01-01

    The deep-space environment and relative transportation accessibility of the Weak Stability Boundary (WSB) region connecting the Earth-Moon and Sun-Earth libration points makes the Sun-Earth L2 an attractive operating location for future observatories. A summary is presented of key characteristics of future observatories designed to operate in this region. The ability to service observatories that operate within the region around the Lagrange points may greatly enhance their reliability, lifetime, and scientific return. The range of servicing missions might begin with initial deployment, assembly, test, and checkout. Post-assembly servicing missions might also include maintenance and repair, critical fluids resupply, and instrument upgrades. We define the range of servicing missions that can be performed with extravehicular activity, with teleoperated robots, and with autonomous robots. We then describe deployment scenarios that affect payload design. A trade study is summarized of the benefits and risks of alternative servicing sites, including at the International Space Station, at other low-Earth-orbit locations, at the Earth-Moon L1 location, and on-site at the Sun-Earth L2 location. Required technology trades and development issues for observatory servicing at each site, and with each level of autonomy, are summarized.

  4. The Sudbury Neutrino Observatory

    DOE PAGES

    Bellerive, Alain; Klein, J. R.; McDonald, A. B.; ...

    2016-04-27

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from 8B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. Thismore » review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.« less

  5. Hawaiian Volcano Observatory Seismic Data, January to December 2008

    USGS Publications Warehouse

    Nakata, Jennifer S.; Okubo, Paul G.

    2009-01-01

    The U.S. Geological Survey (USGS), Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during the year. The seismic summary is offered without interpretation as a source of preliminary data and is complete in that most data for events of M greater than 1.5 are included. All latitude and longitude references in this report are stated in Old Hawaiian Datum. The HVO summaries have been published in various forms since 1956. Summaries prior to 1974 were issued quarterly, but cost, convenience of preparation and distribution, and the large quantities of data necessitated an annual publication, beginning with Summary 74 for the year 1974. Beginning in 2004, summaries are simply identified by the year, rather than by summary number. Summaries originally issued as administrative reports were republished in 2007 as Open-File Reports. All the summaries since 1956 are listed at http://geopubs.wr.usgs.gov/ (last accessed 09/21/2009). In January 1986, HVO adopted CUSP (California Institute of Technology USGS Seismic Processing). Summary 86 includes a description of the seismic instrumentation, calibration, and processing used in recent years. The present summary includes background information about the seismic network to provide the end user an understanding of the processing parameters and how the data were gathered. A report by Klein and Koyanagi (1980) tabulates instrumentation, calibration, and recording history of each seismic station in the network. It is designed as a reference for users of seismograms and phase data and includes and augments the information in the station table in this summary. Figures 11-14 are maps showing computer-located hypocenters. The maps were generated using the Generic Mapping Tools (GMT http://gmt.soest.hawaii.edu/, last accessed 09/21/2009) in place of traditional Qplot maps.

  6. Nobeyama Radio Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nobeyama Radio Observatory has telescopes at millimeter and submillimeter wavelengths. It was established in 1982 as an observatory of Tokyo Astronomical Observatory (NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN since 1987), and operates the 45 m telescope, Nobeyama Millimeter Array, and Radioheliograph. High-resolution images of star forming regions and molecular clouds have revealed many aspects of...

  7. Study of Benefits of Passenger Protective Breathing Equipment from Analysis of Past Accidents

    DTIC Science & Technology

    1988-03-01

    Rodeos (Tenerife) El 27 De Marzo De 1977 2. ICAO Aircraft Accident Digest No. 23, No. 2 B-30 AIRCRAFT ACCIDENT SUMMARY Carrier - Continental Airways...than FPL. However, a I’)-second donning de -lay of PBE may have resulted in a net disbenefit. k~f ¶ ~ 17. Key Words 18. Distributiion Stotement...in C-133 Test Article 23 with Postcrash Fire Conditions 5 Accident Profiles for 3/5/67 Varig DC-8 24 6 Accident Profiles for 4/8/68 British Overseas

  8. MDM Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    MDM Observatory was founded by the University of Michigan, Dartmouth College and the Massachusetts Institute of Technology. Current operating partners include Michigan, Dartmouth, MIT, Ohio State University and Columbia University. The observatory is located on the southwest ridge of the KITT PEAK NATIONAL OBSERVATORY near Tucson, Arizona. It operates the 2.4 m Hiltner Telescope and the 1.3 m McG...

  9. WIYN Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Located at Kitt Peak in Arizona. The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, Yale University and the National Optical Astronomy Observatories (NOAO). Most of the capital costs of the observatory were provided by these universities, while NOAO, which operates the other telescopes of the KITT PEAK NATIONAL OBS...

  10. Private Observatories in South Africa

    NASA Astrophysics Data System (ADS)

    Rijsdijk, C.

    2016-12-01

    Descriptions of private observatories in South Africa, written by their owners. Positions, equipment descriptions and observing programmes are given. Included are: Klein Karoo Observatory (B. Monard), Cederberg Observatory (various), Centurion Planetary and Lunar Observatory (C. Foster), Le Marischel Observatory (L. Ferreira), Sterkastaaing Observatory (M. Streicher), Henley on Klip (B. Fraser), Archer Observatory (B. Dumas), Overbeek Observatory (A. Overbeek), Overberg Observatory (A. van Staden), St Cyprian's School Observatory, Fisherhaven Small Telescope Observatory (J. Retief), COSPAR 0433 (G. Roberts), COSPAR 0434 (I. Roberts), Weltevreden Karoo Observatory (D. Bullis), Winobs (M. Shafer)

  11. Sleepy driver near-misses may predict accident risks.

    PubMed

    Powell, Nelson B; Schechtman, Kenneth B; Riley, Robert W; Guilleminault, Christian; Chiang, Rayleigh Ping-ying; Weaver, Edward M

    2007-03-01

    To quantify the prevalence of self-reported near-miss sleepy driving accidents and their association with self-reported actual driving accidents. A prospective cross-sectional internet-linked survey on driving behaviors. Dateline NBC News website. Results are given on 35,217 (88% of sample) individuals with a mean age of 37.2 +/- 13 years, 54.8% women, and 87% white. The risk of at least one accident increased monotonically from 23.2% if there were no near-miss sleepy accidents to 44.5% if there were > or = 4 near-miss sleepy accidents (P < 0.0001). After covariate adjustments, subjects who reported at least one near-miss sleepy accident were 1.13 (95% CI, 1.10 to 1.16) times as likely to have reported at least one actual accident as subjects reporting no near-miss sleepy accidents (P < 0.0001). The odds of reporting at least one actual accident in those reporting > or = 4 near-miss sleepy accidents as compared to those reporting no near-miss sleepy accidents was 1.87 (95% CI, 1.64 to 2.14). Furthermore, after adjustments, the summary Epworth Sleepiness Scale (ESS) score had an independent association with having a near-miss or actual accident. An increase of 1 unit of ESS was associated with a covariate adjusted 4.4% increase of having at least one accident (P < 0.0001). A statistically significant dose-response was seen between the numbers of self-reported sleepy near-miss accidents and an actual accident. These findings suggest that sleepy near-misses may be dangerous precursors to an actual accident.

  12. A Review of Criticality Accidents 2000 Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas P. McLaughlin; Shean P. Monahan; Norman L. Pruvost

    Criticality accidents and the characteristics of prompt power excursions are discussed. Sixty accidental power excursions are reviewed. Sufficient detail is provided to enable the reader to understand the physical situation, the chemistry and material flow, and when available the administrative setting leading up to the time of the accident. Information on the power history, energy release, consequences, and causes are also included when available. For those accidents that occurred in process plants, two new sections have been included in this revision. The first is an analysis and summary of the physical and neutronic features of the chain reacting systems. Themore » second is a compilation of observations and lessons learned. Excursions associated with large power reactors are not included in this report.« less

  13. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    NASA Astrophysics Data System (ADS)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  14. Summary of 1968-1970 multidisciplinary accident investigation reports. Volume 2

    DOT National Transportation Integrated Search

    1972-08-01

    In June 1971, Volume 1 of a two-volume series summarizing the causal factors, conclusions and recommendations which emanated from various in-depth accident reports was published. This first volume contained a listing of these factors according to tea...

  15. World commercial aircraft accidents. Second edition, 1946--1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accidentmore » is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.« less

  16. Observatories and Telescopes of Modern Times

    NASA Astrophysics Data System (ADS)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  17. Aleksandar Kubičcela (1930-2017) - An Astrophysical Research Pioneer at the Astronomical Observatory of Belgrade

    NASA Astrophysics Data System (ADS)

    Popović, L. Č.; Vince, I.

    2018-06-01

    Here, we give a short biography and summary of scientific contributions of Aleksandar Kubičela, a doyen of astronomy in Serbia, and an astrophysical research pioneer at the Astronomical Observatory of Belgrade. Additionally, we evoke some of our memories concerning scientific collaboration with Aleksandar Kubičcela.

  18. Instrument constraints and interface specifications. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The equipment specifications for the thematic mapper and high resolution pointable imager for use on the Earth Observatory Satellite (EOS) are presented. The interface requirements of the systems are defined. The interface requirements are extracted from the equipment specifications and are intended as a summary to be used by the system and spacecraft designer. The appropriate documentation from which the specifications of the equipment are established are identified.

  19. Do failures in non-technical skills contribute to fatal medical accidents in Japan? A review of the 2010-2013 national accident reports.

    PubMed

    Uramatsu, Masashi; Fujisawa, Yoshikazu; Mizuno, Shinya; Souma, Takahiro; Komatsubara, Akinori; Miki, Tamotsu

    2017-02-16

    We sought to clarify how large a proportion of fatal medical accidents can be considered to be caused by poor non-technical skills, and to support development of a policy to reduce number of such accidents by making recommendations about possible training requirements. Summaries of reports of fatal medical accidents, published by the Japan Medical Safety Research Organization, were reviewed individually. Three experienced clinicians and one patient safety expert conducted the reviews to determine the cause of death. Views of the patient safety expert were given additional weight in the overall determination. A total of 73 summary reports of fatal medical accidents were reviewed. These reports had been submitted by healthcare organisations across Japan to the Japan Medical Safety Research Organization between April 2010 and March 2013. The cause of death in fatal medical accidents, categorised into technical skills, non-technical skills and inevitable progress of disease were evaluated. Non-technical skills were further subdivided into situation awareness, decision making, communication, team working, leadership, managing stress and coping with fatigue. Overall, the cause of death was identified as non-technical skills in 34 cases (46.6%), disease progression in 33 cases (45.2%) and technical skills in two cases (5.5%). In two cases, no consensual determination could be achieved. Further categorisation of cases of non-technical skills were identified as 14 cases (41.2%) of problems with situation awareness, eight (23.5%) with team working and three (8.8%) with decision making. These three subcategories, or combinations of them, were identified as the cause of death in 33 cases (97.1%). Poor non-technical skills were considered to be a significant cause of adverse events in nearly half of the fatal medical accidents examined. Improving non-technical skills may be effective for reducing accidents, and training in particular subcategories of non-technical skills may be

  20. Okayama Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Okayama Astrophysical Observatory (OAO) is a branch Observatory of the NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN. Its main facilities are 188 cm and 91 cm telescopes, equipped with newly built instruments with CCD/IR cameras (e.g. OASIS). OAO accepts nearly 300 astronomers a year, according to the observation program scheduled by the committee....

  1. Real-time Data Access From Remote Observatories

    NASA Astrophysics Data System (ADS)

    Detrick, D. L.; Lutz, L. F.; Etter, J. E.; Rosenberg, T. J.; Weatherwax, A. T.

    2006-12-01

    Real-time access to solar-terrestrial data is becoming increasingly important, not only because it is now possible to acquire and access data rapidly via the internet, but also because of the need for timely publication of real-time data for analysis and modeling efforts. Currently, engineering-scaled summary data are available routinely on a daily basis from many observatories, but only when the observatories have continuous, or at least daily network access. Increasingly, the upgrading of remote data acquisition hardware makes it possible to provide data in real-time, and it is becoming normal to expect timely access to data products. The NSF- supported PENGUIn/AGO constellation of autonomous Antarctic research observatories has provided real-time data since December, 2002, when Iridium satellite modems were installed at three sites. The Iridium telecommunications links are maintained continuously, transferring data between the remote observatories and a U.S.-based data acquisition site. The time-limiting factor with this scenario is now the delay in completing a data record before transmission, which can be as short as minutes depending on the sampling rate. The single-channel data throughput of the current systems is 20-MB/day (megabytes per day), but planned installations will be capable of operating with multiple modem channels. The data records are currently posted immediately to a web site accessible by anonymous FTP client software, for use by the instruments' principal investigators, and survey plots of selected signals are published daily. The web publication facilities are being upgraded, in order to allow other interested researchers rapid access to engineering-scaled data products, in several common formats, as well as providing interactive plotting capabilities. The web site will provide access to data from other collaborating observatories (including South Pole and McMurdo Stations), as well as ancillary data accessible from public sites (e.g., Kp

  2. Nuclear Accident Crisis and Liver Disease: A Summary on Evidences

    PubMed Central

    Wiwanitkit, Viroj

    2013-01-01

    The present global concern is on the adverse effect due to exposure to nuclides expelled from the disrupted nuclear power plant accident in Japan. The exposure can induce several adverse effects. In this specific brief review, the author summarizes the evidences on the effect on liver. Discussion is focused on several liver diseases. PMID:25125994

  3. Do failures in non-technical skills contribute to fatal medical accidents in Japan? A review of the 2010–2013 national accident reports

    PubMed Central

    Uramatsu, Masashi; Fujisawa, Yoshikazu; Mizuno, Shinya; Souma, Takahiro; Komatsubara, Akinori; Miki, Tamotsu

    2017-01-01

    Objectives We sought to clarify how large a proportion of fatal medical accidents can be considered to be caused by poor non-technical skills, and to support development of a policy to reduce number of such accidents by making recommendations about possible training requirements. Design Summaries of reports of fatal medical accidents, published by the Japan Medical Safety Research Organization, were reviewed individually. Three experienced clinicians and one patient safety expert conducted the reviews to determine the cause of death. Views of the patient safety expert were given additional weight in the overall determination. Setting A total of 73 summary reports of fatal medical accidents were reviewed. These reports had been submitted by healthcare organisations across Japan to the Japan Medical Safety Research Organization between April 2010 and March 2013. Primary and secondary outcome measures The cause of death in fatal medical accidents, categorised into technical skills, non-technical skills and inevitable progress of disease were evaluated. Non-technical skills were further subdivided into situation awareness, decision making, communication, team working, leadership, managing stress and coping with fatigue. Results Overall, the cause of death was identified as non-technical skills in 34 cases (46.6%), disease progression in 33 cases (45.2%) and technical skills in two cases (5.5%). In two cases, no consensual determination could be achieved. Further categorisation of cases of non-technical skills were identified as 14 cases (41.2%) of problems with situation awareness, eight (23.5%) with team working and three (8.8%) with decision making. These three subcategories, or combinations of them, were identified as the cause of death in 33 cases (97.1%). Conclusions Poor non-technical skills were considered to be a significant cause of adverse events in nearly half of the fatal medical accidents examined. Improving non-technical skills may be effective for

  4. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Sackett, C.

    1999-05-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building and dome has been completed, and first light is planned for spring 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have received an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  5. McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    McDonald Observatory, located in West Texas near Fort Davis, is the astronomical observatory of the University of Texas at Austin. Discoveries at McDonald Observatory include water vapor on Mars, the abundance of rare-earth chemical elements in stars, the discovery of planets circling around nearby stars and the use of the measurements of rapid oscillations in the brightness of white dwarf stars ...

  6. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  7. Decision Analysis Tools for Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  8. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  9. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  10. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Rideout, C.; Vanlew, K.

    1998-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction is nearly completed and first light is planned for fall 1998. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. That telescope has been in use for the past four years by up to 50 schools per month. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have applied for an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  11. Computational modeling of driver speed control with its applications in developing intelligent transportation system to prevent speeding-related accidents.

    DOT National Transportation Integrated Search

    2013-08-01

    Speeding is the leading contributing factor in fatal accidents in NY state, according to NY State Department of Motor : Vehicle Accidents Statistical Summary (2009). Understanding and modeling speeding and speed control is one of major : challenges i...

  12. The Carl Sagan solar and stellar observatories as remote observatories

    NASA Astrophysics Data System (ADS)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  13. WNCC Observatory

    NASA Astrophysics Data System (ADS)

    Snyder, L. F.

    2003-05-01

    Western Nevada Community College (WNCC), located in Carson City, Nevada, is a small two year college with only 6,000 students. Associate degrees and Cer- tificates of Achievement are awarded. The college was built and started classes in 1971 and about 12 years ago the chair of the physics department along with a few in administration had dreams of building a small observatory for education. Around that time a local foundation, Nevada Gaming Foundation for Education Excellence, was looking for a beneficiary in the education field to receive a grant. They decided an observatory at the college met their criteria. Grants to the foundation instigated by Senators, businesses, and Casinos and donations from the local public now total $1.3 million. This paper will explain the different facets of building the observatory, the planning, construction, telescopes and equipment decisions and how we think it will operate for the public, education and research. The organization of local volunteers to operate and maintain the observatory and the planned re- search will be explained.

  14. ``Route of astronomical observatories'' project: Classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2016-10-01

    Observatories offer a good possibility for serial transnational applications. For example one can choose groups like baroque or neoclassical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments or made by famous firms. I will discuss what has been achieved and show examples, like the route of astronomical observatories, the transition from classical astronomy to modern astrophysics. I will also discuss why the implementation of the World Heritage & Astronomy initiative is difficult and why there are problems to nominate observatories for election in the national tentative lists.

  15. Fatigue Management Strategies for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Bendrick, Gregg

    2012-01-01

    Operation of the Stratospheric Observatory for Infrared Astronomy entails a great deal of night-time work, with the potential for both acute and chronic sleep loss, as well as circadian rhythm dysynchrony. Such fatigue can result in performance decrements, with an increased risk of operator error. The NASA Dryden Flight Research Center manages this fatigue risk by means of a layered approach, to include: 1) Education and Training 2) Work Schedule Scoring 3) Obtained Sleep Metrics 4) Workplace and Operational Mitigations and 5) Incident or Accident Investigation. Specifically, quantitative estimation of the work schedule score, as well as the obtained sleep metric, allows Supervisors and Managers to better manage the risk of fatigue within the context of mission requirements.

  16. NASA Marshall Space Flight Center solar observatory report, January - June 1991

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1991-01-01

    Given here is a summary of the solar vector magnetic field, H-alpha, and white-light observations made at the NASA/Marshall Space Flight Center (MSFC) Solar Observatory during its daily periods of operation. The MSFC Solar Observatory facilities consist of the Solar Magnetograph, an f/13, 30-cm Cassegrain system with a 3.5-cm image of the Sun, housed on top of a 12.8-meter tower; a 12.5-cm Razdow H-alpha telescope housed at the base of the tower; an 18-cm Questar telescope with a full aperture white-light filter mounted at the base of the tower; a 30-cm Cassegrain telescope located in a second metal dome; and a 16.5-cm H-alpha telescope mounted on side of the Solar Vector Magnetograph. A concrete block building provides office space, a darkroom for developing film and performing optical testing, a workshop, video displays, and a computer facility for data reduction.

  17. NASA Marshall Space Flight Center Solar Observatory report, July - December 1991

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1992-01-01

    A summary is given of the solar vector magnetic field, H-alpha, and white light observations made at the NASA/Marshall Space Flight Center (MSFC) Solar Observatory during its daily periods of observation. The MSFC Solar Observatory facilities consist of the Solar Magnetograph, an f-13, 30 cm Cassegrain system with a 3.5 cm image of the Sun housed on top of a 12.8 meter tower, a 12.5 cm Razdow H-alpha telescope housed at the base of the tower, an 18 cm Questar telescope with a full aperture white-light filter mounted at the base of the tower, a 30 cm Cassegrain telescope located in a second metal dome, and a 16.5 cm H-alpha telescope mounted on the side of the Solar Vector Magnetograph. A concrete block building provides office space, a darkroom for developing film and performing optical testing, a workshop, video displays, and a computer facility for data reduction.

  18. Coordinated study of Solar-Terrestrial Observatory (STO) payloads on space station

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1988-01-01

    Since the publication of the final report of the science study group in October 1984 on the Solar Terrestrial Observatory (STO), its science goals and objectives have been clearly defined and a conceptual design and analysis was carried out by MSFC/NASA. Plans for the possible placing of the STO aboard the Space Station were made. A series of meetings for the STO science study group were held to review the instruments to be placed on the initial STO at Space Station IOC, and the placement of these instruments on the manned space station, polar platform, and the co-orbiting platform. A summary of these initial STO instruments is presented in Section 2. A brief description of the initial plan for the placement of STO instruments is included in Section 3. Finally, in Section 4, the scenario for the operation of the STO is discussed. These results were obtained from the report of the Solar Terrestrial Observatory mini-workshop held at MSFC on 6 June 1985.

  19. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  20. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.

  1. Final safety analysis report for the Galileo Mission: Volume 2, Book 2: Accident model document: Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-15

    This section of the Accident Model Document (AMD) presents the appendices which describe the various analyses that have been conducted for use in the Galileo Final Safety Analysis Report II, Volume II. Included in these appendices are the approaches, techniques, conditions and assumptions used in the development of the analytical models plus the detailed results of the analyses. Also included in these appendices are summaries of the accidents and their associated probabilities and environment models taken from the Shuttle Data Book (NSTS-08116), plus summaries of the several segments of the recent GPHS safety test program. The information presented in thesemore » appendices is used in Section 3.0 of the AMD to develop the Failure/Abort Sequence Trees (FASTs) and to determine the fuel releases (source terms) resulting from the potential Space Shuttle/IUS accidents throughout the missions.« less

  2. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; VanLew, K.; Melsheimer, T.; Sackett, C.

    1999-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. Construction of the dome and the remote control system has been completed, and the telescope is now on-line and operational over the Internet. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have begun teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  3. U.S. Civil Rotorcraft Accidents, 1963 Through 1997

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.; Kasper, Eugene F.; Iseler, Laura E.

    2000-01-01

    Narrative summary data produced by the U.S. National Transportation Safety Board (NTSB) has been obtained and analyzed for all 8,436 U.S. civil registered rotorcraft accidents which occurred from mid-1963 through 1997. This analysis was based on the NTSB's assignment of each mishap into one of 21 "first event" categories. The number of U.S. civil registered rotorcraft as recorded by the Federal Aviation Administration (FAA) for the same period has also been obtained. Taken together, these data indicate the civil rotorcraft accident rate (on a per 1,000 registered rotorcraft basis) has decreased by almost a factor of 10 (i.e., from 130 accidents per 1,000 rotorcraft in 1964 to 13.4 per 1,000 in 1997). Analysis of the mishap data indicates over 70% of the rotorcraft accidents were associated with one of the following four NTSB "first event" categories: 2408 Loss of engine power (28.5%); 1,322 In-flight collisions with objects (15.7%); 1,114 Loss of control (13.2%); 1,083 Airframe/component/system failure or malfunction (12.8%).

  4. Digital control of the Kuiper Airborne Observatory telescope

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann C.; Snyder, Philip K.

    1989-01-01

    The feasibility of using a digital controller to stabilize a telescope mounted in an airplane is investigated. The telescope is a 30 in. infrared telescope mounted aboard a NASA C-141 aircraft known as the Kuiper Airborne Observatory. Current efforts to refurbish the 14-year-old compensation system have led to considering a digital controller. A typical digital controller is modeled and added into the telescope system model. This model is simulated on a computer to generate the Bode plots and time responses which determine system stability and performance parameters. Important aspects of digital control system hardware are discussed. A summary of the findings shows that a digital control system would result in satisfactory telescope performance.

  5. Explaining the road accident risk: weather effects.

    PubMed

    Bergel-Hayat, Ruth; Debbarh, Mohammed; Antoniou, Constantinos; Yannis, George

    2013-11-01

    This research aims to highlight the link between weather conditions and road accident risk at an aggregate level and on a monthly basis, in order to improve road safety monitoring at a national level. It is based on some case studies carried out in Work Package 7 on "Data analysis and synthesis" of the EU-FP6 project "SafetyNet-Building the European Road Safety Observatory", which illustrate the use of weather variables for analysing changes in the number of road injury accidents. Time series analysis models with explanatory variables that measure the weather quantitatively were used and applied to aggregate datasets of injury accidents for France, the Netherlands and the Athens region, over periods of more than 20 years. The main results reveal significant correlations on a monthly basis between weather variables and the aggregate number of injury accidents, but the magnitude and even the sign of these correlations vary according to the type of road (motorways, rural roads or urban roads). Moreover, in the case of the interurban network in France, it appears that the rainfall effect is mainly direct on motorways--exposure being unchanged, and partly indirect on main roads--as a result of changes in exposure. Additional results obtained on a daily basis for the Athens region indicate that capturing the within-the-month variability of the weather variables and including it in a monthly model highlights the effects of extreme weather. Such findings are consistent with previous results obtained for France using a similar approach, with the exception of the negative correlation between precipitation and the number of injury accidents found for the Athens region, which is further investigated. The outlook for the approach and its added value are discussed in the conclusion. Copyright © 2013. Published by Elsevier Ltd.

  6. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  7. Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.

    2012-09-01

    Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.

  8. Identification and testing of countermeasures for specific alcohol accident types and problems. Volume 1, Executive summary

    DOT National Transportation Integrated Search

    1984-12-01

    This report summarizes work conducted to investigate the feasibility of developing effective countermeasures directed at specific alcohol-related accidents or problems. In Phase I, literature and accident data were reviewed to determine the scope and...

  9. The Boulder magnetic observatory

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.; Pedrie, Kolby L.; Blum, Cletus C.

    2015-08-14

    The Boulder magnetic observatory has, since 1963, been operated by the Geomagnetism Program of the U.S. Geological Survey in accordance with Bureau and national priorities. Data from the observatory are used for a wide variety of scientific purposes, both pure and applied. The observatory also supports developmental projects within the Geomagnetism Program and collaborative projects with allied geophysical agencies.

  10. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  11. The Virtual Observatory: I

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2014-11-01

    The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.

  12. National accident sampling system sample design, phases 2 and 3 : executive summary

    DOT National Transportation Integrated Search

    1979-11-01

    This report describes the Phase 2 and 3 sample design for the : National Accident Sampling System (NASS). It recommends a procedure : for the first-stage selection of Primary Sampling Units (PSU's) and : the second-stage design for the selection of a...

  13. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  14. Summary of the NASA Science Instrument, Observatories and Sensor Systems (SIOSS) Technology Assessment Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology Assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assessed the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. This needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper summarizes the SIOSS findings and recommendations.

  15. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-01-01

    Managed by the Marshall Space Flight Center and built by TRW, the second High Energy Astronomy Observatory was launched November 13, 1978. The observatory carried the largest X-ray telescope ever built and was renamed the Einstein Observatory after achieving orbit.

  16. A preliminary summary of a seismic-refraction survey in the vicinity of the Tonto Forest Observatory, Arizona

    USGS Publications Warehouse

    Roller, J.C.; Jackson, W.H.; Warren, D.H.; Healy, J.H.

    1964-01-01

    The U.S. Geological Survey complete d a seismic-refraction survey in the vicinity of the Tonto Forest Seismological Observatory (T.F.S.O.) in April and May 1964. More than 1200 km of reversed profiles were surveyed to determine the crustal structure and crustal and upper mantle velocities in this area. The purpose of this work was to provide information on wave-propagation paths of seismic events recorded at T.F.S.O. and to improve the performance of the Observatory in locating and identifying these events. First arrivals indicate that the Mohorovicic discontinuity dips to the northeast by as much as 6 degrees under T.F.S.O., and may even be displaced vertically by as much as 5 km immediately north of the Observatory near the boundary of the Basin and Range a n d t he Colorado Plateau Provinces. A preliminary examination of the first arrivals indicates that the crust at T.F.S.O. is at least 30 km thick and is made up of at least two seismic layers. A thin veneer at the surface with a velocity of approximately 4 km/sec is underlain by a layer with a velocity of approximately 5.9 km/sec to 6.1 km/sec. An intermediate layer with velocity of 6.6 to 7.0 km/sec is probably present in the lower crust, but is not revealed by first arrivals. The velocity of seismic waves in the upper mantle is about 7.9 km/sec.

  17. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; VanLew, K.; Melsheimer, T.; Sackett, C.

    2000-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. The telescope is operational over the Internet, and we are now debugging the software to enable schools to control the telescope from classroom computers and take images. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have completed the first teacher training workshops to allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms. The workshops were accredited by the school district, and received very favorable reviews.

  18. The Penllergare Observatory

    NASA Astrophysics Data System (ADS)

    Birks, J. L.

    2005-12-01

    This rather picturesque and historically important Victorian observatory was built by the wealthy John Dillwyn Llewelyn near to his mansion, some four miles north-west of Swansea, Wales. He had many scientific interests, in addition to astronomy, and was a notable pioneer of photography in Wales. Together with his eldest daughter, Thereza, (who married the grandson of the fifth Astronomer Royal, Nevil Maskelyne), he took some early photographs of the Moon from this site. This paper describes the construction of the observatory, and some of those primarily involved with it. Despite its having undergone restoration work in 1982, the state of the observatory is again the cause for much concern.

  19. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  20. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph B.

    2007-01-01

    The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."

  1. Road Traffic Accident Analysis of Ajmer City Using Remote Sensing and GIS Technology

    NASA Astrophysics Data System (ADS)

    Bhalla, P.; Tripathi, S.; Palria, S.

    2014-12-01

    With advancement in technology, new and sophisticated models of vehicle are available and their numbers are increasing day by day. A traffic accident has multi-facet characteristics associated with it. In India 93% of crashes occur due to Human induced factor (wholly or partly). For proper traffic accident analysis use of GIS technology has become an inevitable tool. The traditional accident database is a summary spreadsheet format using codes and mileposts to denote location, type and severity of accidents. Geo-referenced accident database is location-referenced. It incorporates a GIS graphical interface with the accident information to allow for query searches on various accident attributes. Ajmer city, headquarter of Ajmer district, Rajasthan has been selected as the study area. According to Police records, 1531 accidents occur during 2009-2013. Maximum accident occurs in 2009 and the maximum death in 2013. Cars, jeeps, auto, pickup and tempo are mostly responsible for accidents and that the occurrence of accidents is mostly concentrated between 4PM to 10PM. GIS has proved to be a good tool for analyzing multifaceted nature of accidents. While road safety is a critical issue, yet it is handled in an adhoc manner. This Study is a demonstration of application of GIS for developing an efficient database on road accidents taking Ajmer City as a study. If such type of database is developed for other cities, a proper analysis of accidents can be undertaken and suitable management strategies for traffic regulation can be successfully proposed.

  2. NASA's Great Observatories: Paper Model.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

  3. Everyday astronomy @ Sydney Observatory

    NASA Astrophysics Data System (ADS)

    Parello, S. L.

    2008-06-01

    Catering to a broad range of audiences, including many non-English speaking visitors, Sydney Observatory offers everything from school programmes to public sessions, day care activities to night observing, personal interactions to web-based outreach. With a history of nearly 150 years of watching the heavens, Sydney Observatory is now engaged in sharing the wonder with everybody in traditional and innovative ways. Along with time-honoured tours of the sky through two main telescopes, as well as a small planetarium, Sydney Observatory also boasts a 3D theatre, and offers programmes 363 days a year - rain or shine, day and night. Additionally, our website neversleeps, with a blog, YouTube videos, and night sky watching podcasts. And for good measure, a sprinkling of special events such as the incomparable Festival of the Stars, for which most of northern Sydney turns out their lights. Sydney Observatory is the oldest working observatory in Australia, and we're thrilled to be looking forward to our 150th Anniversary next year in anticipation of the International Year of Astronomy immediately thereafter.

  4. A study of general aviation accidents involving children in 2011.

    PubMed

    Poland, Kristin M; Marshall, Nora M

    2014-08-01

    General aviation accidents involving children are rare, but when they do happen, little is known about the children involved, including their age, restraint status, and injuries. This lack of information is due to the fact that the National Transportation Safety Board (NTSB) did not always collect detailed data about passengers involved in accidents. Consequently, in 2011, NTSB investigators collected detailed information on children involved in general aviation accidents and this report provides a summary of the outcomes. During 2011, 19 general aviation accidents and incidents included 39 children who were 14 yr old and younger. In total, 26 children sustained fatal injuries, 2 sustained serious injuries, 5 sustained minor injuries, and 6 sustained no injuries. All of the children less than 2 yr old were restrained in a child restraint system and sustained no injuries in the accidents. At least one 4-yr-old child would have benefited from being restrained in a child restraint system. In addition, in two accidents, it was determined that children were likely sharing a single seat belt. This year-long data collection regarding children involved in general aviation accidents provided substantial information concerning age, restraint status, and injuries. In response to issues identified, the NTSB made improvements to its aviation data management system to routinely collect this information for future investigations and enable subsequent evaluation of the data regarding child passengers involved in general aviation accidents over the long term.

  5. Earth Observatory Satellite system definition study. Report 3: Design cost trade-off studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the design and cost tradeoff aspects of the Earth Observatory Satellite (EOS) development is presented. The design/cost factors that affect a series of mission/system level concepts are discussed. The subjects considered are as follows: (1) spacecraft subsystem cost tradeoffs, (2) ground system cost tradeoffs, and (3) program cost summary. Tables of data are provided to summarize the results of the analyses. Illustrations of the various spacecraft configurations are included.

  6. NASA Extends Chandra X-ray Observatory Contract with the Smithsonian Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    2002-07-01

    NASA NASA has extended its contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass. to August 2003 to provide science and operational support for the Chandra X- ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract is an 11-month period of performance extension to the Chandra X-ray Center contract, with an estimated value of 50.75 million. Total contract value is now 298.2 million. The contract extension resulted from the delay of the launch of the Chandra X-ray Observatory from August 1998 to July 1999. The revised period of performance will continue the contract through Aug. 31, 2003, which is 48 months beyond operational checkout of the observatory. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes both the observatory operations and the science data processing and general observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and distributing by satellite the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and the processing and delivery of the resulting scientific data. Each year, there are on the order of 200 to 250 observing proposals selected out of about 800 submitted, with a total amount of observing time about 20 million seconds. X-ray astronomy can only be performed from space because Earth's atmosphere blocks X-rays from reaching the surface. The Chandra Observatory travels one-third of the way to the Moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg-shaped, orbit is 200 times higher than that of its visible-light- gathering sister, the Hubble Space Telescope. NASA

  7. Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Young, E.; Marcum, P.; Krabbe, A.

    2010-12-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  8. Accidents in Building Engineering in the European Union Countries in the Years 2008 - 2014

    NASA Astrophysics Data System (ADS)

    Harasymiuk, Jolanta; Tadeusz Barski, Janusz

    2017-10-01

    According to the ESAW1, an accident at work is an event that results in physical or mental harm to the person doing the work. As a result of this incident, fatal accidents may occur (which in the course of one year lead to death of the victim) or non-fatal accidents (that imply at least four full calendar days of absence from work). In the paper the authors present the number and the analysis of the causes of accidents at work in the construction industry in years 2008 - 2014 in 28 countries of the European Union. The descriptive statistics method was used to achieve the intended goal. The accident rate indicator for individual European Union countries has been shown in the analyzed period. The structure and trends of accidents during the period under investigation, divided into two groups: fatal accidents and non-fatal accidents, were presented. Both groups were analyzed for what caused them and what factors affected the quantity (Age of the victim, work experience, month of occurrence). On the basis of the analyzed causes and factors causing accidents in the construction industry in years 2008 - 2014, the classification of EU countries has been shown in terms of accidents. The paper was concluded with a summary.

  9. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  10. Studying the Light Pollution around Urban Observatories: Columbus State University’s WestRock Observatory

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Brendon Andrew; Johnson, Michael

    2017-01-01

    Light pollution plays an ever increasing role in the operations of observatories across the world. This is especially true in urban environments like Columbus, GA, where Columbus State University’s WestRock Observatory is located. Light pollution’s effects on an observatory include high background levels, which results in a lower signal to noise ratio. Overall, this will limit what the telescope can detect, and therefore limit the capabilities of the observatory as a whole.Light pollution has been mapped in Columbus before using VIIRS DNB composites. However, this approach did not provide the detailed resolution required to narrow down the problem areas around the vicinity of the observatory. The purpose of this study is to assess the current state of light pollution surrounding the WestRock observatory by measuring and mapping the brightness of the sky due to light pollution using light meters and geographic information system (GIS) software.Compared to VIIRS data this study allows for an improved spatial resolution and a direct measurement of the sky background. This assessment will enable future studies to compare their results to the baseline established here, ensuring that any changes to the way the outdoors are illuminated and their effects can be accurately measured, and counterbalanced.

  11. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-11-13

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  12. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  13. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  14. Griffith Observatory: Hollywood's Celestial Theater

    NASA Astrophysics Data System (ADS)

    Margolis, Emily A.; Dr. Stuart W. Leslie

    2018-01-01

    The Griffith Observatory, perched atop the Hollywood Hills, is perhaps the most recognizable observatory in the world. Since opening in 1935, this Los Angeles icon has brought millions of visitors closer to the heavens. Through an analysis of planning documentation, internal newsletters, media coverage, programming and exhibition design, I demonstrate how the Observatory’s Southern California location shaped its form and function. The astronomical community at nearby Mt. Wilson Observatory and Caltech informed the selection of instrumentation and programming, especially for presentations with the Observatory’s Zeiss Planetarium, the second installed in the United States. Meanwhile the Observatory staff called upon some of Hollywood’s best artists, model makers, and scriptwriters to translate the latest astronomical discoveries into spectacular audiovisual experiences, which were enhanced with Space Age technological displays on loan from Southern California’s aerospace companies. The influences of these three communities- professional astronomy, entertainment, and aerospace- persist today and continue to make Griffith Observatory one of the premiere sites of public astronomy in the country.

  15. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  16. Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Khosroshahi, H. G.; Danesh, A.; Molaeinezhad, A.

    2016-09-01

    The Iranian National Observatory is under construction at an altitude of 3600m at Gargash summit 300km southern Tehran. The site selection was concluded in 2007 and the site monitoring activities have begun since then, which indicates a high quality of the site with a median seeing of 0.7 arcsec through the year. One of the major observing facilities of the observatory is a 3.4m Alt-Az Ritchey-Chretien optical telescope which is currently under design. This f/11 telescope will be equipped with high resolution medium-wide field imaging cameras as well as medium and high resolution spectrographs. In this review, I will give an overview of astronomy research and education in Iran. Then I will go through the past and present activities of the Iranian National Observatory project including the site quality, telescope specifications and instrument capabilities.

  17. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  18. Observatory data and the Swarm mission

    NASA Astrophysics Data System (ADS)

    Macmillan, S.; Olsen, N.

    2013-11-01

    The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth's core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those that may use higher cadence 1-second and 1-minute data from observatories.

  19. Accident epidemiology and the U.S. chemical industry: accident history and worst-case data from RMP*Info.

    PubMed

    Kleindorfer, Paul R; Belke, James C; Elliott, Michael R; Lee, Kiwan; Lowe, Robert A; Feldman, Harold I

    2003-10-01

    This article reports on the data collected on one of the most ambitious government-sponsored environmental data acquisition projects of all time, the Risk Management Plan (RMP) data collected under section 112(r) of the Clean Air Act Amendments of 1990. This RMP Rule 112(r) was triggered by the Bhopal accident in 1984 and led to the requirement that each qualifying facility develop and file with the U.S. Environmental Protection Agency a Risk Management Plan (RMP) as well as accident history data for the five-year period preceding the filing of the RMP. These data were collected in 1999-2001 on more than 15,000 facilities in the United States that store or use listed toxic or flammable chemicals believed to be a hazard to the environment or to human health of facility employees or off-site residents of host communities. The resulting database, RMP*Info, has become a key resource for regulators and researchers concerned with the frequency and severity of accidents, and the underlying facility-specific factors that are statistically associated with accident and injury rates. This article analyzes which facilities actually filed under the Rule and presents results on accident frequencies and severities available from the RMP*Info database. This article also presents summaries of related results from RMP*Info on Offsite Consequence Analysis (OCA), an analytical estimate of the potential consequences of hypothetical worst-case and alternative accidental releases on the public and environment around the facility. The OCA data have become a key input in the evaluation of site security assessment and mitigation policies for both government planners as well as facility managers and their insurers. Following the survey of the RMP*Info data, we discuss the rich set of policy decisions that may be informed by research based on these data.

  20. The Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Odell, C. R.

    1979-01-01

    A convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists is presented. An attempt is made to provide enough detail so that a professional scientist, observer or theorist, can plan how the observatory may be used to further his observing programs or to test theoretical models.

  1. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Anna Michalak, an Orbiting Carbon Observatory science team member from the University of Michigan, Ann Arbor, speaks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  2. INTERMAGNET and magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, Arnaud

    2012-01-01

    A magnetic observatory is a specially designed ground-based facility that supports time-series measurement of the Earth’s magnetic field. Observatory data record a superposition of time-dependent signals related to a fantastic diversity of physical processes in the Earth’s core, mantle, lithosphere, ocean, ionosphere, magnetosphere, and, even, the Sun and solar wind.

  3. Astronomical Archive at Tartu Observatory

    NASA Astrophysics Data System (ADS)

    Annuk, K.

    2007-10-01

    Archiving astronomical data is important task not only at large observatories but also at small observatories. Here we describe the astronomical archive at Tartu Observatory. The archive consists of old photographic plate images, photographic spectrograms, CCD direct--images and CCD spectroscopic data. The photographic plate digitizing project was started in 2005. An on-line database (based on MySQL) was created. The database includes CCD data as well photographic data. A PHP-MySQL interface was written for access to all data.

  4. WFIRST Observatory Performance

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The WFIRST observatory will be a powerful and flexible wide-field near-infrared facility. The planned surveys will provide data applicable to an enormous variety of astrophysical science. This presentation will provide a description of the observatory and its performance characteristics. This will include a discussion of the point spread function, signal-to-noise budgets for representative observing scenarios and the corresponding limiting sensitivity. Emphasis will be given to providing prospective Guest Observers with information needed to begin thinking about new observing programs.

  5. Archive interoperability in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Genova, Françoise

    2003-02-01

    Main goals of Virtual Observatory projects are to build interoperability between astronomical on-line services, observatory archives, databases and results published in journals, and to develop tools permitting the best scientific usage from the very large data sets stored in observatory archives and produced by large surveys. The different Virtual Observatory projects collaborate to define common exchange standards, which are the key for a truly International Virtual Observatory: for instance their first common milestone has been a standard allowing exchange of tabular data, called VOTable. The Interoperability Work Area of the European Astrophysical Virtual Observatory project aims at networking European archives, by building a prototype using the CDS VizieR and Aladin tools, and at defining basic rules to help archive providers in interoperability implementation. The prototype is accessible for scientific usage, to get user feedback (and science results!) at an early stage of the project. ISO archive participates very actively to this endeavour, and more generally to information networking. The on-going inclusion of the ISO log in SIMBAD will allow higher level links for users.

  6. Sofia Observatory Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Temi, Pasquale; Miller, Walter; Dunham, Edward; McLean, Ian; Wolf, Jurgen; Becklin, Eric; Bida, Tom; Brewster, Rick; Casey, Sean; Collins, Peter; hide

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration (SCAI) flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument configuration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. SCAI activities included in-flight partial Science Instrument commissioning prior to the use of the instruments as measuring engines. This paper reports on the data collected during the SCAI flights and presents current SOFIA Observatory performance and characterization.

  7. Executive summary

    NASA Technical Reports Server (NTRS)

    Ayon, Juan A.

    1992-01-01

    The Astrotech 21 Optical Systems Technology Workshop was held in Pasadena, California on March 6-8, 1991. The purpose of the workshop was to examine the state of Optical Systems Technology at the National Aeronautics Space Administration (NASA), and in industry and academia, in view of the potential Astrophysics mission set currently being considered for the late 1990's through the first quarter of the 21st century. The principal result of the workshop is this publication, which contains an assessment of the current state of the technology, and specific technology advances in six critical areas of optics, all necessary for the mission set. The workshop was divided into six panels, each of about a dozen experts in specific fields, representing NASA, industry, and academia. In addition, each panel contained expertise that spanned the spectrum from x-ray to submillimeter wavelengths. This executive summary contains the principal recommendations of each panel. The six technology panels and their chairs were: (1) Wavefront Sensing, Control, and Pointing, Thomas Pitts, Itek Optical Systems, A Division of Litton; (2) Fabrication, Roger Angel, Steward Observatory, University of Arizona; (3) Materials and Structures, Theodore Saito, Lawrence Livermore National Laboratory; (4) Optical Testing, James Wyant, WYKO Corporation; (5) Optical Systems Integrated Modeling, Robert R. Shannon, Optical Sciences Center, University of Arizona; and (6) Advanced Optical Instruments Technology, Michael Shao, Jet Propulsion Laboratory, California Institute of Technology. This Executive Summary contains the principal recommendations of each panel.

  8. In Brief: Deep-sea observatory

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  9. An astronomical observatory for Peru

    NASA Astrophysics Data System (ADS)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  10. A Summary of the History and Achievements of the Alaska Volcano Observatory.

    NASA Astrophysics Data System (ADS)

    Smith, R. W.

    2008-12-01

    Volcanoes of the Aleutian Islands, Kamchatka and the Kurile Islands present a serious threat to aviation on routes from North America to the Far East. On March 27, 1986, an eruption of Augustine Volcano deposited ash over Anchorage and disrupted air traffic in south-central Alaska. The consequences of the colocation of an active volcano and the largest city in Alaska were clearly evident. That event led to a three-way partnership between the US Geological Survey, the University of Alaska Geophysical Institute and the Alaska State Division of Geological and Geophysical Surveys that now maintains a continuous watch through ground instrumentation and satellite imagery providing data from which warnings of eruptions can be issued to airline operators and pilots. The eruption of Redoubt Volcano in December 1989 was AVO's first big test. It spewed volcanic ash to a height of 14,000 m (45,000 feet) and managed to catch KLM 867, a Boeing 747 aircraft in its plume under dark conditions while approaching Anchorage Airport. Further details of the early days of the Alaska Volcano Observatory will be described, along with its recent successes and challenges.

  11. New Opportunities for Cabled Ocean Observatories

    NASA Astrophysics Data System (ADS)

    Duennebier, F. K.; Butler, R.; Karl, D. M.; Roger, L. B.

    2002-12-01

    With the decommissioning of transoceanic telecommunications cables as they become obsolete or uneconomical, there is an opportunity to use these systems for ocean observatories. Two coaxial cables, TPC-1 and HAW-2 are currently in use for observatories, and another, ANZCAN, is scheduled to be used beginning in 2004 to provide a cabled observatory at Station ALOHA, north of Oahu. The ALOHA observatory will provide several Mb/s data rates and about 1 kW of power to experiments installed at Station ALOHA. Sensors can be installed either by wet mateable connection to a junction box on the ocean floor using an ROV, or by acoustic data link to the system. In either case real-time data will be provided to users over the Internet. A Small Experiment Module, to be first installed at the Hawaii-2 Observatory, and later at Station ALOHA, will provide relatively cheap and uncomplicated access to the observatories for relatively simple sensors. Within the next few years, the first electro-optical cables installed in the 1980's will be decommissioned and could be available for scientific use. These cables could provide long "extension cords" (thousands of km) with very high bandwidth and reasonable power to several observatories in remote locations in the ocean. While they could be used in-place, a more exciting scenario is to use cable ships to pick up sections of cable and move them to locations of higher scientific interest. While such moves would not be cheap, the costs would rival the cost of installation and maintenance of a buoyed observatory, with far more bandwidth and power available for science use.

  12. Daily variation characteristics at polar geomagnetic observatories

    NASA Astrophysics Data System (ADS)

    Lepidi, S.; Cafarella, L.; Pietrolungo, M.; Di Mauro, D.

    2011-08-01

    This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French-Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D'Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.

  13. Observatories of Sawai Jai Singh II

    NASA Astrophysics Data System (ADS)

    Johnson-Roehr, Susan N.

    Sawai Jai Singh II, Maharaja of Amber and Jaipur, constructed five observatories in the second quarter of the eighteenth century in the north Indian cities of Shahjahanabad (Delhi), Jaipur, Ujjain, Mathura, and Varanasi. Believing the accuracy of his naked-eye observations would improve with larger, more stable instruments, Jai Singh reengineered common brass instruments using stone construction methods. His applied ingenuity led to the invention of several outsize masonry instruments, the majority of which were used to determine the coordinates of celestial objects with reference to the local horizon. During Jai Singh's lifetime, the observatories were used to make observations in order to update existing ephemerides such as the Zīj-i Ulugh Begī. Jai Singh established communications with European astronomers through a number of Jesuits living and working in India. In addition to dispatching ambassadorial parties to Portugal, he invited French and Bavarian Jesuits to visit and make use of the observatories in Shahjahanabad and Jaipur. The observatories were abandoned after Jai Singh's death in 1743 CE. The Mathura observatory was disassembled completely before 1857. The instruments at the remaining observatories were restored extensively during the nineteenth and twentieth centuries.

  14. The Pierre Auger Cosmic Ray Observatory

    DOE PAGES

    Aab, Alexander

    2015-07-08

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km 2 overlooked by 24 air fluorescence telescopes. Additionally, three high elevation fluorescence telescopes overlook a 23.5 km 2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operationmore » since completion in 2008 and has recorded data from an exposure exceeding 40,000 km 2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.« less

  15. Byurakan Astrophysical Observatory as Cultural Centre

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.

    2017-07-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts. Keywords: Byurakan Astrophysical Observatory, architecture, botanic garden, tourism, Cultural Astronomy.

  16. The McDonald Observatory lunar laser ranging project

    NASA Technical Reports Server (NTRS)

    Silverberg, E. C.

    1978-01-01

    A summary of the activities of the McDonald lunar laser ranging station at Fort Davis for the FY 77-78 fiscal year is presented. The lunar laser experiment uses the observatory 2.7m reflecting telescope on a thrice-per-day, 21-day-per-lunation schedule. Data are recorded on magnetic tapes and sent to the University of Texas at Austin where the data is processed. After processing, the data is distributed to interested analysis centers and later to the National Space Science Data Center where it is available for routine distribution. Detailed reports are published on the McDonald operations after every fourth lunation or approximately once every 115 days. These reports contain a day-by-day documentation of the ranging activity, detailed discussions of the equipment development efforts, and an abundance of other information as is needed to document and archive this important data type.

  17. A Completed Cycle Audit of Psychiatric Discharge Summaries.

    PubMed

    Najim, Hellme; Jaffar, Khalid

    2015-09-01

    Patients discharge summaries are important as they record a vital miles stone in patients' care. Their accurate record improves patients' care and clarifies communication between different health professionals. 60 Discharge summaries from different consultant psychiatrists' case load were audited. The results were analysed and presented with recommendations to improve them a format was suggested. A reaudit of 62 discharge summaries was carried out by the same team after three years in the same catchment area but the practice has changed to inpatient and community. Improvement in most of the areas audited occur in the reaudit which indicates the usefulness of audit in improving clinical practice which a pivotal part of clinical governance. This completed audit cycle has proven that clinical practice has been reviewed and methods of improving it have been implemented. It has been noted that more items were reviewed and added to the second cycle which should be condoned. Discharge summaries are important clinical documents in secondary and primary care communications. They are helpful for secondary care staff as they good references for people in out of hours services and Accident and Emergency. Good quality discharge summaries improve patients care and make it easy to manage clinical risk.

  18. An Analysis of U.S. Civil Rotorcraft Accidents by Cost and Injury (1990-1996)

    NASA Technical Reports Server (NTRS)

    Iseler, Laura; DeMaio, Joe; Rutkowski, Michael (Technical Monitor)

    2002-01-01

    A study of rotorcraft accidents was conducted to identify safety issues and research areas that might lead to a reduction in rotorcraft accidents and fatalities. The primary source of data was summaries of National Transportation Safety Board (NTSB) accident reports. From 1990 to 1996, the NTSB documented 1396 civil rotorcraft accidents in the United States in which 491 people were killed. The rotorcraft data were compared to airline and general aviation data to determine the relative safety of rotorcraft compared to other segments of the aviation industry. In depth analysis of the rotorcraft data addressed demographics, mission, and operational factors. Rotorcraft were found to have an accident rate about ten times that of commercial airliners and about the same as that of general aviation. The likelihood that an accident would be fatal was about equal for all three classes of operation. The most dramatic division in rotorcraft accidents is between flights flown by private pilots versus professional pilots. Private pilots, flying low cost aircraft in benign environments, have accidents that are due, in large part, to their own errors. Professional pilots, in contrast, are more likely to have accidents that are a result of exacting missions or use of specialized equipment. For both groups judgement error is more likely to lead to a fatal accident than are other types of causes. Several approaches to improving the rotorcraft accident rate are recommended. These mostly address improvement in the training of new pilots and improving the safety awareness of private pilots.

  19. An international network of magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  20. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  1. Evaluation Metrics Applied to Accident Tolerant Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannon M. Bragg-Sitton; Jon Carmack; Frank Goldner

    2014-10-01

    being readied for insertion in fiscal year 2015. This paper provides a brief summary of the proposed evaluation process that would be used to evaluate and prioritize the candidate accident tolerant fuel concepts currently under development.« less

  2. The Farid & Moussa Raphael Observatory

    NASA Astrophysics Data System (ADS)

    Hajjar, R.

    2017-06-01

    The Farid & Moussa Raphael Observatory (FMRO) at Notre Dame University Louaize (NDU) is a teaching, research, and outreach facility located at the main campus of the university. It located very close to the Lebanese coast, in an urbanized area. It features a 60-cm Planewave CDK telescope, and instruments that allow for photometric and spetroscopic studies. The observatory currently has one thinned, back-illuminated CCD camera, used as the main imager along with Johnson-Cousin and Sloan photometric filters. It also features two spectrographs, one of which is a fiber fed echelle spectrograph. These are used with a dedicated CCD. The observatory has served for student projects, and summer schools for advanced undergraduate and graduate students. It is also made available for use by the regional and international community. The control system is currently being configured for remote observations. A number of long-term research projects are also being launched at the observatory.

  3. The European Virtual Observatory EURO-VO | Euro-VO

    Science.gov Websites

    : VOTECH EuroVO-DCA EuroVO-AIDA EuroVO-ICE The European Virtual Observatory EURO-VO The Virtual Observatory news Workshop on Virtual Observatory Tools and their Applications, Krakow, Poland June 16-18, organized present the Astronomical Virtual Observatory at the Copernicus (European Earth Observation Programme) Big

  4. Mechanical Overview of the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; McClelland, Ryan S.

    2009-01-01

    The International X-ray Observatory (IXO) is a new collaboration between NASA, ESA, and JAXA which is under study for launch in 2020. IXO will be a large 6600 kilogram Great Observatory-class mission which will build upon the legacies of the Chandra and XMM-Newton X-ray observatories. It combines elements from NASA's Constellation-X program and ESA's XEUS program. The observatory will have a 20-25 meter focal length, which necessitates the use of a deployable instrument module. Currently the project is actively trading configurations and layouts of the various instruments and spacecraft components. This paper will provide a snapshot of the latest observatory configuration under consideration and summarize the observatory from the mechanical engineering perspective.

  5. 110th Anniversary of the Engelhardt Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.

    2012-09-01

    The Engelhardt Astronomical Observatory (EAO) was founded in September 21, 1901. The history of creation of the Engelhard Astronomical Observatory was begun in 1897 with transfer a complimentary to the Kazan University of the unique astronomical equipment of the private observatory in Dresden by known astronomer Vasily Pavlovichem Engelgardt. Having stopped astronomical activity owing to advanced years and illnesses Engelgardt has decided to offer all tools and library of the Astronomical observatory of the Kazan University. Vasily Pavlovich has put the first condition of the donation that his tools have been established as soon as possible and on them supervision are started. In 1898 the decree of Emperor had been allocated means and the ground for construction of the Astronomical observatory is allocated. There is the main historical telescope of the Engelhard Astronomical Observatory the 12-inch refractor which was constructed by English master Grubbom in 1875. The unique tool of the Engelhard Astronomical Observatory is unique in the world now a working telescope heliometer. It's one of the first heliometers, left workshops Repsolda. It has been made in 1874 and established in Engelgardt observatory in 1908 in especially for him the constructed round pavilion in diameter of 3.6 m. Today the Engelhard Astronomical Observatory is the only thing scientifically - educational and cultural - the cognitive astronomical center, located on territory from Moscow up to the most east border of Russia. Currently, the observatory is preparing to enter the protected UNESCO World Heritage List.

  6. Kitt Peak National Observatory | ast.noao.edu

    Science.gov Websites

    National Observatory (KPNO), part of the National Optical Astronomy Observatory (NOAO), supports the most diverse collection of astronomical observatories on Earth for nighttime optical and infrared astronomy and NOAO is the national center for ground-based nighttime astronomy in the United States and is operated

  7. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  8. Worldwide R&D of Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cui, C. Z.; Zhao, Y. H.

    2008-07-01

    Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in the late 1990s to meet the challenges brought up with data avalanche in astronomy. In the paper, current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects are reviewed, a brief introduction of Chinese Virtual Observatory is given.

  9. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-07-01

    A crew member of the STS-93 mission took this photograph of the Chandra X-Ray Observatory, still attached to the Inertial Upper Stage (IUS), backdropped against the darkness of space not long after its release from Orbiter Columbia. Two firings of an attached IUS rocket placed the Observatory into its working orbit. The primary duty of the crew of this mission was to deploy the 50,162-pound Observatory, the world's most powerful x-ray telescope.

  10. Earth Observatory Satellite system definition study. Report 7: EOS system definition report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Earth Observatory Satellite (EOS) study is summarized to show the modular design of a general purpose spacecraft, a mission peculiar segment which performs the EOS-A mission, an Operations Control Center, a Data Processing Facility, and a design for Low Cost Readout Stations. The study verified the practicality and feasibility of the modularized spacecraft with the capability of supporting many missions in the Earth Observation spectrum. The various subjects considered in the summary are: (1) orbit/launch vehicle tradeoff studies and recommendations, (2) instrument constraints and interfaces, (3) design/cost tradeoff and recommendations, (4) low cost management approach and recommendations, (5) baseline system description and specifications, and (6) space shuttle utilization and interfaces.

  11. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  12. Early German plans for southern observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    2002-07-01

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century, Heidelberg and Potsdam astronomers proposed a southern observatory. Then Göttingen astronomers suggested building an observatory in Windhoek for photographing the sky and measuring the solar constant. In 1910 Karl Schwarzschild (1873-1916), after a visit to observatories in the United States, pointed out the usefulness of an observatory in South West Africa, in a climate superior to that in Germany, giving German astronomers access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhoek to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963.

  13. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2003-12-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Our program is also accredited by Colorado State University.

  14. SOFIA - Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  15. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  16. The Malaysian Robotic Solar Observatory (P29)

    NASA Astrophysics Data System (ADS)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  17. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-08-01

    This picture is of an Atlas/Centaur launch vehicle, carrying the High Energy Astronomy Observatory (HEAO)-1, on Launch Complex 36 at the Air Force Eastern Test Range prior to launch on August 12, 1977. The Kennedy Space Center managed the launch operations that included a pre-aunch checkout, launch, and flight, up through the observatory separation in orbit.

  18. Observatory Bibliographies as Research Tools

    NASA Astrophysics Data System (ADS)

    Rots, Arnold H.; Winkelman, S. L.

    2013-01-01

    Traditionally, observatory bibliographies were maintained to provide insight in how successful a observatory is as measured by its prominence in the (refereed) literature. When we set up the bibliographic database for the Chandra X-ray Observatory (http://cxc.harvard.edu/cgi-gen/cda/bibliography) as part of the Chandra Data Archive ((http://cxc.harvard.edu/cda/), very early in the mission, our objective was to make it primarily a useful tool for our user community. To achieve this we are: (1) casting a very wide net in collecting Chandra-related publications; (2) including for each literature reference in the database a wealth of metadata that is useful for the users; and (3) providing specific links between the articles and the datasets in the archive that they use. As a result our users are able to browse the literature and the data archive simultaneously. As an added bonus, the rich metadata content and data links have also allowed us to assemble more meaningful statistics about the scientific efficacy of the observatory. In all this we collaborate closely with the Astrophysics Data System (ADS). Among the plans for future enhancement are the inclusion of press releases and the Chandra image gallery, linking with ADS semantic searching tools, full-text metadata mining, and linking with other observatories' bibliographies. This work is supported by NASA contract NAS8-03060 (CXC) and depends critically on the services provided by the ADS.

  19. The Fram Strait integrated ocean observatory

    NASA Astrophysics Data System (ADS)

    Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.

    2012-04-01

    A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision

  20. Science Enabled by Ocean Observatory Acoustics

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lee, C.; Gobat, J.; Freitag, L.; Miller, J. H.; Committee, I.

    2004-12-01

    Ocean observatories have the potential to examine the physical, chemical, biological, and geological parameters and processes of the ocean at time and space scales previously unexplored. Acoustics provides an efficient and cost-effective means by which these parameters and processes can be measured and information can be communicated. Integrated acoustics systems providing navigation and communications for mobile platforms and conducting acoustical measurements in support of science objectives are critical and essential elements of the ocean observatories presently in the planning and implementation stages. The ORION Workshop (Puerto Rico, 4-8 January 2004) developed science themes that can be addressed utilizing ocean observatory infrastructure. The use of acoustics to sense the 3-d/volumetric ocean environment on all temporal and spatial scales was discussed in many ORION working groups. Science themes that are related to acoustics and measurements using acoustics are reviewed and tabulated, as are the related and sometimes competing requirements for passive listening, acoustic navigation and acoustic communication around observatories. Sound in the sea, brought from observatories to universities and schools via the internet, will also be a major education and outreach mechanism.

  1. Byurakan Astrophysical Observatory as Cultural Centre

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.

    2016-12-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts.

  2. Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.

    1996-01-01

    During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).

  3. The Little Thompson Observatory's Astronomy Education Programs

    NASA Astrophysics Data System (ADS)

    Schweitzer, Andrea E.

    2007-12-01

    The Little Thompson Observatory is a community-built E/PO observatory and is a member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. Annually we have approximately 5,000 visitors, which is roughly equal to the population of the small town of Berthoud, CO. This past year, we have used the funding from our NASA ROSS E/PO grant to expand our teacher workshop programs, and included the baseball-sized meteorite that landed in Berthoud three years ago. Our teacher programs have involved scientists from the Southwest Research Institute and from Fiske Planetarium at CU-Boulder. We thank the NASA ROSS E/PO program for providing this funding! We also held a Colorado Project ASTRO-GEO workshop, and the observatory continues to make high-school astronomy courses available to students from the surrounding school districts. Statewide, this year we helped support the development and construction of three new educational observatories in Colorado, located in Estes Park, Keystone, and Gunnison. The LTO is grateful to have received the recently-retired 24-inch telescope from Mount Wilson Observatory as part of the TIE program. To provide a new home for this historic telescope, we have doubled the size of the observatory and are building a second dome (all with volunteer labor). During 2008 we plan to build a custom pier and refurbish the telescope.

  4. Construction/Application of the Internet Observatories in Japan

    NASA Astrophysics Data System (ADS)

    Satoh, T.; Tsubota, Y.; Matsumoto, N.; Takahashi, N.

    2000-05-01

    We have successfully built two Internet Observatories in Japan: one at Noda campus of the Science University of Tokyo and another at Hiyoshi campus of the Keio Senior High School. Both observatories are equipped with a computerized Meade LX-200 telescope (8" tube at the SUT site and 12" at the Keio site) with a CCD video camera inside the sliding-roof type observatory. Each observatory is controlled by two personal computer: one controls almost everything, including the roof, the telescope, and the camera, while another is dedicated to encode the real-time picture from the CCD video camera into the RealVideo format for live broadcasting. A user can operate the observatory through the web-based interface and can enjoy the real-time picture of the objects via the RealPlayer software. The administrator can run a sequence of batch commands with which no human interaction is needed from the beginning to the end of an observation. Although our observatories are primarily for educational purposes, this system can easily be converted to a signal-triggered one which may be very useful to observe transient phenomena, such as afterglows of gamma-ray bursts. The most remarkable feature of our observatories is that it is very inexpensive (it costs only a few tens of grands). We'll report details of the observatories in the poster, and at the same time, will demonstrate operating the observatories using an internet-connected PC from the meeting site. This work has been supported through the funding from the Telecommunicaitons Advancement Foundation for FY 1998 and 1999.

  5. Who by accident? The social morphology of car accidents.

    PubMed

    Factor, Roni; Yair, Gad; Mahalel, David

    2010-09-01

    Prior studies in the sociology of accidents have shown that different social groups have different rates of accident involvement. This study extends those studies by implementing Bourdieu's relational perspective of social space to systematically explore the homology between drivers' social characteristics and their involvement in specific types of motor vehicle accident. Using a large database that merges official Israeli road-accident records with socioeconomic data from two censuses, this research maps the social order of road accidents through multiple correspondence analysis. Extending prior studies, the results show that different social groups indeed tend to be involved in motor vehicle accidents of different types and severity. For example, we find that drivers from low socioeconomic backgrounds are overinvolved in severe accidents with fatal outcomes. The new findings reported here shed light on the social regularity of road accidents and expose new facets in the social organization of death. © 2010 Society for Risk Analysis.

  6. The MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used

  7. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.

  8. The Astrophysical Multimessenger Observatory Network (AMON)

    NASA Technical Reports Server (NTRS)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; hide

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  9. A Green Robotic Observatory for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  10. Early German Plans for a Southern Observatory

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century the Heidelberg astronomer Max Wolf (1863-1932) proposed a southern observatory. In 1907 Hermann Carl Vogel (1841-1907), director of the Astrophysical Observatory Potsdam, suggested a southern station in Spain. His ideas for building an observatory in Windhuk for photographing the sky and measuring the solar constant were taken over by the Göttingen astronomers. In 1910 Karl Schwarzschild (1873-1916), after having visited the observatories in America, pointed out the usefulness of an observatory in South West Africa, where it would have better weather than in Germany and also give access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhuk to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963, as is well described by Blaauw (1991). Blaauw, Adriaan: ESO's Early History. The European Southern Observatory from Concept to Reality. Garching bei München: ESO 1991.

  11. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Gurman, J. B.; Hourclé, J. A.; Bogart, R. S.; Tian, K.; Hill, F.; Suàrez-Sola, I.; Zarro, D. M.; Davey, A. R.; Martens, P. C.; Yoshimura, K.; Reardon, K. M.

    2006-12-01

    The Virtual Solar Observatory (VSO) has survived its infancy and provides metadata search and data identification for measurements from 45 instrument data sets held at 12 online archives, as well as flare and coronal mass ejection (CME) event lists. Like any toddler, the VSO is good at getting into anything and everything, and is now extending its grasp to more data sets, new missions, and new access methods using its application programming interface (API). We discuss and demonstrate recent changes, including developments for STEREO and SDO, and an IDL-callable interface for the VSO API. We urge the heliophysics community to help civilize this obstreperous youngster by providing input on ways to make the VSO even more useful for system science research in its role as part of the growing cluster of Heliophysics Virtual Observatories.

  12. Project on Chinese Virtual Solar Observatory

    NASA Astrophysics Data System (ADS)

    Lin, Gang-Hua

    2004-09-01

    With going deep into research of solar physics, development of observational instrument and accumulation of obervation data, it urges people to think such things: using data which is observed in different times, places, bands and history data to seek answers of a plenty science problems. In the meanwhile, researcher can easily search the data and analyze data. This is why the project of the virtual solar observatory gained active replies and operation from observatories, institutes and universities in the world. In this article, how we face to the development of the virtual solar observatory and our preliminary project on CVSO are discussed.

  13. Design of a Lunar Farside Observatory

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design of a mantendable lunar farside observatory and science base is presented. A farside observatory will allow high accuracy astronomical observations, as well as the opportunity to perform geological and low gravity studies on the Moon. The requirements of the observatory and its support facilities are determined, and a preliminary timeline for the project development is presented. The primary areas of investigation include observatory equipment, communications, habitation, and surface operations. Each area was investigated to determine the available options, and each option was evaluated to determine the advantages and disadvantages. The options selected for incorporation into the design of the farside base are presented. The observatory equipment deemed most suitable for placement on the lunar farside consist of large optical and radio arrays and seismic equipment. A communications system consisting of a temporary satellite about the L sub 2 libration point and followed by a satellite at the stable L sub 5 libration point was selected. A space station common module was found to be the most practical option for housing the astronauts at the base. Finally, a support system based upon robotic construction vehicles and the use of lunar materials was determined to be a necessary component of the base.

  14. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.; Sackett, C.

    2001-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools in Colorado to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. We are honored that a committee of teachers and administrators from the Thompson School district have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Also in the past year, our training materials have been shared with NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  15. The Cincinnati Observatory as a Research Instrument for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Abel, Nicholas; Regas, Dean; Flateau, Davin C.; Larrabee, Cliff

    2016-06-01

    The Cincinnati Observatory, founded in 1842, was the first public observatory in the Western Hemisphere. The history of Cincinnati is closely intertwined with the history of the Observatory, and with the history of science in the United States. Previous directors of the Observatory helped to create the National Weather Service, the Minor Planet Center, and the first astronomical journal in the U.S. The Cincinnati Observatory was internationally known in the late 19th century, with Jules Verne mentioning the Cincinnati Observatory in two of his books, and the Observatory now stands as a National Historic Landmark.No longer a research instrument, the Observatory is now a tool for promoting astronomy education to the general public. However, with the 11" and 16" refracting telescopes, the Observatory telescopes are very capable of collecting data to fuel undergraduate research projects. In this poster, we will discuss the history of the Observatory, types of student research projects capable with the Cincinnati Observatory, future plans, and preliminary results. The overall goal of this project is to produce a steady supply of undergraduate students collecting, analyzing, and interpreting data, and thereby introduce them to the techniques and methodology of an astronomer at an early stage of their academic career.

  16. The Little Thompson Observatory's Astronomy Education Programs

    NASA Astrophysics Data System (ADS)

    Schweitzer, Andrea E.

    2008-05-01

    The Little Thompson Observatory is a community-built E/PO observatory and is a member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. Annually we have approximately 5,000 visitors, which is roughly equal to the population of the small town of Berthoud, CO. In spring 2008, we offered a special training session to boost participation in the GLOBE at Night international observing program. During 2005-2007 we used the funding from our NASA ROSS E/PO grant to expand our teacher workshop programs, and included the baseball-sized meteorite that landed in Berthoud four years ago. Our teacher programs are ongoing, and include scientists from the Southwest Research Institute and from Fiske Planetarium at CU-Boulder. We thank the NASA ROSS E/PO program for providing this funding! Statewide, we are a founding member of Colorado Project ASTRO-GEO, and the observatory offers high-school astronomy courses to students from the surrounding school districts. We continue to support the development and construction of three new educational observatories in Colorado, located in Estes Park, Keystone and Gunnison. The LTO is grateful to have received the retired 24-inch telescope from Mount Wilson Observatory as part of the TIE program. To provide a new home for this historic telescope, we have doubled the size of the observatory and are building a second dome (almost all construction done with volunteer labor). During 2008 we will be building a custom pier and refurbishing the telescope.

  17. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  18. 2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.

  19. Solar Terrestrial Relations Observatory Spacecraft Artist Concept

    NASA Image and Video Library

    2011-06-01

    An artist conception of one of NASA Solar Terrestrial Relations Observatory STEREO spacecraft. The two observatories currently lie on either side of the sun, providing views of the entire sun simultaneously.

  20. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  1. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  2. The University of Montana's Blue Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Friend, D. B.

    2004-12-01

    The University of Montana's Department of Physics and Astronomy runs the state of Montana's only professional astronomical observatory. The Observatory, located on nearby Blue Mountain, houses a 16 inch Boller and Chivens Cassegrain reflector (purchased in 1970), in an Ash dome. The Observatory sits just below the summit ridge, at an elevation of approximately 6300 feet. Our instrumentation includes an Op-Tec SSP-5A photoelectric photometer and an SBIG ST-9E CCD camera. We have the only undergraduate astronomy major in the state (technically a physics major with an astronomy option), so our Observatory is an important component of our students' education. Students have recently carried out observing projects on the photometry of variable stars and color photometry of open clusters and OB associations. In my poster I will show some of the data collected by students in their observing projects. The Observatory is also used for public open houses during the summer months, and these have become very popular: at times we have had 300 visitors in a single night.

  3. Orbiting Astronomical Observatory-C (OAO-C): Press kit

    NASA Technical Reports Server (NTRS)

    Allaway, H. G.

    1972-01-01

    Mission planning for the Orbiting Astronomical Observatory-C (OAO-C) is presented. The characteristics of the observatory and its capabilities are described. The following experiments are discussed: (1) Princeton Experiment Package, (2) X-ray experiment, and (3) guest investigator program. Results of the OAO-2 observatory are presented. A tabulation of flight events is included.

  4. Robotic Software for the Thacher Observatory

    NASA Astrophysics Data System (ADS)

    Lawrence, George; Luebbers, Julien; Eastman, Jason D.; Johnson, John A.; Swift, Jonathan

    2018-06-01

    The Thacher Observatory—a research and educational facility located in Ojai, CA—uses a 0.7 meter telescope to conduct photometric research on a variety of targets including eclipsing binaries, exoplanet transits, and supernovae. Currently, observations are automated using commercial software. In order to expand the flexibility for specialized scientific observations and to increase the educational value of the facility on campus, we are adapting and implementing the custom observatory control software and queue scheduling developed for the Miniature Exoplanet Radial Velocity Array (MINERVA) to the Thacher Observatory. We present the design and implementation of this new software as well as its demonstrated functionality on the Thacher Observatory.

  5. Planetary research at Lowell Observatory

    NASA Technical Reports Server (NTRS)

    Baum, William A.

    1988-01-01

    Scientific goals include a better determination of the basic physical characteristics of cometary nuclei, a more complete understanding of the complex processes in the comae, a survey of abundances and gas/dust ratios in a large number of comets, and measurement of primordial (12)C/(13)C and (14)N/(15)N ratios. The program also includes the observation of Pluto-Charon mutual eclipses to derive dimensions. Reduction and analysis of extensive narrowband photometry of Comet Halley from Cerro Tololo Inter-American Observatory, Perth Observatory, Lowell Observatory, and Mauna Kea Observatory were completed. It was shown that the 7.4-day periodicity in the activity of Comet Halley was present from late February through at least early June 1986, but there is no conclusive evidence of periodic variability in the preperihelion data. Greatly improved NH scalelengths and lifetimes were derived from the Halley data which lead to the conclusion that the abundance of NH in comets is much higher than previously believed. Simultaneous optical and thermal infrared observations were obtained of Comet P/Temple 2 using the MKO 2.2 m telescope and the NASA IRTF. Preliminary analysis of these observations shows that the comet's nucleus is highly elongated, very dark, and quite red.

  6. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1982-01-01

    This artist's conception depicts the High Energy Astronomy Observatory (HEAO)-1 in orbit. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit. The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. Hardware support for the imaging instruments was provided by American Science and Engineeing. The HEAO spacecraft were built by TRW, Inc. under project management of the Marshall Space Flight Center.

  7. The Fukushima radiation accident: consequences for radiation accident medical management.

    PubMed

    Meineke, Viktor; Dörr, Harald

    2012-08-01

    The March 2011 radiation accident in Fukushima, Japan, is a textbook example of a radiation accident of global significance. In view of the global dimensions of the accident, it is important to consider the lessons learned. In this context, emphasis must be placed on consequences for planning appropriate medical management for radiation accidents including, for example, estimates of necessary human and material resources. The specific characteristics of the radiation accident in Fukushima are thematically divided into five groups: the exceptional environmental influences on the Fukushima radiation accident, particular circumstances of the accident, differences in risk perception, changed psychosocial factors in the age of the Internet and globalization, and the ignorance of the effects of ionizing radiation both among the general public and health care professionals. Conclusions like the need for reviewing international communication, interfacing, and interface definitions will be drawn from the Fukushima radiation accident.

  8. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2002-12-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." In addition, this past summer our program became an accredited course by Colorado State University. Our next project is to partner with the Discovery Center Science Museum and Colorado State University to provide additional teacher education programs. Our training materials have also been shared with TIE/Mt. Wilson, NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  9. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2003-05-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." In addition, this past summer our program became an accredited course by Colorado State University. Our next project is to partner with the Discovery Center Science Museum and Colorado State University to provide additional teacher education programs. Our training materials have also been shared with TIE/Mt. Wilson, NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  10. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    Vast Databanks at the Astronomers' Fingertips Summary A new European initiative called the Astrophysical Virtual Observatory (AVO) is being launched to provide astronomers with a breathtaking potential for new discoveries. It will enable them to seamlessly combine the data from both ground- and space-based telescopes which are making observations of the Universe across the whole range of wavelengths - from high-energy gamma rays through the ultraviolet and visible to the infrared and radio. The aim of the Astrophysical Virtual Observatory (AVO) project, which started on 15 November 2001, is to allow astronomers instant access to the vast databanks now being built up by the world's observatories and which are forming what is, in effect, a "digital sky" . Using the AVO, astronomers will, for example, be able to retrieve the elusive traces of the passage of an asteroid as it passes near the Earth and so enable them to predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded so adding invaluable data to the study of the evolution of stars. Background information on the Astrophysical Virtual Observatory is available in the Appendix. PR Photo 34a/01 : The Astrophysical Virtual Observatory - an artist's impression. The rapidly accumulating database ESO PR Photo 34a/01 ESO PR Photo 34a/01 [Preview - JPEG: 400 x 345 pix - 90k] [Normal - JPEG: 800 x 689 pix - 656k] [Hi-Res - JPEG: 3000 x 2582 pix - 4.3M] ESO PR Photo 34a/01 shows an artist's impression of the Astrophysical Virtual Observatory . Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data - corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being

  11. Addressing the social dimensions of citizen observatories: The Ground Truth 2.0 socio-technical approach for sustainable implementation of citizen observatories

    NASA Astrophysics Data System (ADS)

    Wehn, Uta; Joshi, Somya; Pfeiffer, Ellen; Anema, Kim; Gharesifard, Mohammad; Momani, Abeer

    2017-04-01

    Owing to ICT-enabled citizen observatories, citizens can take on new roles in environmental monitoring, decision making and co-operative planning, and environmental stewardship. And yet implementing advanced citizen observatories for data collection, knowledge exchange and interactions to support policy objectives is neither always easy nor successful, given the required commitment, trust, and data reliability concerns. Many efforts are facing problems with the uptake and sustained engagement by citizens, limited scalability, unclear long-term sustainability and limited actual impact on governance processes. Similarly, to sustain the engagement of decision makers in citizen observatories, mechanisms are required from the start of the initiative in order to have them invest in and, hence, commit to and own the entire process. In order to implement sustainable citizen observatories, these social dimensions therefore need to be soundly managed. We provide empirical evidence of how the social dimensions of citizen observatories are being addressed in the Ground Truth 2.0 project, drawing on a range of relevant social science approaches. This project combines the social dimensions of citizen observatories with enabling technologies - via a socio-technical approach - so that their customisation and deployment is tailored to the envisaged societal and economic impacts of the observatories. The projects consists of the demonstration and validation of six scaled up citizen observatories in real operational conditions both in the EU and in Africa, with a specific focus on flora and fauna as well as water availability and water quality for land and natural resources management. The demonstration cases (4 EU and 2 African) cover the full 'spectrum' of citizen-sensed data usage and citizen engagement, and therefore allow testing and validation of the socio-technical concept for citizen observatories under a range of conditions.

  12. The Paris Observatory has 350 years

    NASA Astrophysics Data System (ADS)

    Lequeux, James

    2017-01-01

    The Paris Observatory is the oldest astronomical observatory that has worked without interruption since its foundation to the present day. The building due to Claude Perrault is still in existence with few modifications, but of course other buildings have been added all along the centuries for housing new instruments and laboratories. In particular, a large dome has been built on the terrace in 1847, with a 38-cm diameter telescope completed in 1857: both are still visible. The main initial purpose of the Observatory was to determine longitudes. This was achieved by Jean-Dominique Cassini using the eclipses of the satellites of Jupiter: a much better map of France was the produced using this method, which unfortunately does not work at sea. Incidentally, the observation of these eclipses led to the discovery in 1676 of the finite velocity of light by Cassini and Rømer. Cassini also discovered the differential rotation of Jupiter and four satellites of Saturn. Then, geodesy was to be the main activity of the Observatory for more than a century, culminating in the famous Cassini map of France completed around 1790. During the first half of the 19th century, under François Arago, the Observatory was at the centre of French physics, which then developed very rapidly. Arago initiated astrophysics in 1810 by showing that the Sun and stars are made of incandescent gas. In 1854, the new director, Urbain Le Verrier, put emphasis on astrometry and celestial mechanics, discovering in particular the anomalous advance of the perihelion of Mercury, which was later to be a proof of General Relativity. In 1858, Leon Foucault built the first modern reflecting telescopes with their silvered glass mirror. Le Verrier created on his side modern meteorology, including some primitive forecasts. The following period was not so bright, due to the enormous project of the Carte du Ciel, which took much of the forces of the Observatory for half a century with little scientific return. In

  13. The Solar Dynamics Observatory (SDO) Education and Outreach (E/PO) Program: Changing Perceptions One Program at a Time

    NASA Technical Reports Server (NTRS)

    Drobnes, Emilie; Littleton, A.; Pesnell, William D.; Beck, K.; Buhr, S.; Durscher, R.; Hill, S.; McCaffrey, M.; McKenzie, D. E.; Myers, D.; hide

    2013-01-01

    We outline the context and overall philosophy for the combined Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program, present a brief overview of all SDO E/PO programs along with more detailed highlights of a few key programs, followed by a review of our results to date, conclude a summary of the successes, failures, and lessons learned, which future missions can use as a guide, while incorporating their own content to enhance the public's knowledge and appreciation of science and technology as well as its benefit to society.

  14. Major Accidents (Gray Swans) Likelihood Modeling Using Accident Precursors and Approximate Reasoning.

    PubMed

    Khakzad, Nima; Khan, Faisal; Amyotte, Paul

    2015-07-01

    Compared to the remarkable progress in risk analysis of normal accidents, the risk analysis of major accidents has not been so well-established, partly due to the complexity of such accidents and partly due to low probabilities involved. The issue of low probabilities normally arises from the scarcity of major accidents' relevant data since such accidents are few and far between. In this work, knowing that major accidents are frequently preceded by accident precursors, a novel precursor-based methodology has been developed for likelihood modeling of major accidents in critical infrastructures based on a unique combination of accident precursor data, information theory, and approximate reasoning. For this purpose, we have introduced an innovative application of information analysis to identify the most informative near accident of a major accident. The observed data of the near accident were then used to establish predictive scenarios to foresee the occurrence of the major accident. We verified the methodology using offshore blowouts in the Gulf of Mexico, and then demonstrated its application to dam breaches in the United Sates. © 2015 Society for Risk Analysis.

  15. Fact book : a summary of information about towaway accidents involving 1973-1975 model cars. Volume 2

    DOT National Transportation Integrated Search

    1976-09-01

    Standardized injury rates and seat belt effectiveness measures are derived from a probability sample of towaway accidents involving 1973-1975 model cars. The data were collected by NHTSA-sponsored teams in five different geographic regions. Weighted ...

  16. Domino effect in chemical accidents: main features and accident sequences.

    PubMed

    Darbra, R M; Palacios, Adriana; Casal, Joaquim

    2010-11-15

    The main features of domino accidents in process/storage plants and in the transportation of hazardous materials were studied through an analysis of 225 accidents involving this effect. Data on these accidents, which occurred after 1961, were taken from several sources. Aspects analyzed included the accident scenario, the type of accident, the materials involved, the causes and consequences and the most common accident sequences. The analysis showed that the most frequent causes are external events (31%) and mechanical failure (29%). Storage areas (35%) and process plants (28%) are by far the most common settings for domino accidents. Eighty-nine per cent of the accidents involved flammable materials, the most frequent of which was LPG. The domino effect sequences were analyzed using relative probability event trees. The most frequent sequences were explosion→fire (27.6%), fire→explosion (27.5%) and fire→fire (17.8%). Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Accident sequence precursor events with age-related contributors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, G.A.; Kohn, W.E.

    1995-12-31

    The Accident Sequence Precursor (ASP) Program at ORNL analyzed about 14.000 Licensee Event Reports (LERs) filed by US nuclear power plants 1987--1993. There were 193 events identified as precursors to potential severe core accident sequences. These are reported in G/CR-4674. Volumes 7 through 20. Under the NRC Nuclear Plant Aging Research program, the authors evaluated these events to determine the extent to which component aging played a role. Events were selected that involved age-related equipment degradation that initiated an event or contributed to an event sequence. For the 7-year period, ORNL identified 36 events that involved aging degradation as amore » contributor to an ASP event. Except for 1992, the percentage of age-related events within the total number of ASP events over the 7-year period ({approximately}19%) appears fairly consistent up to 1991. No correlation between plant ape and number of precursor events was found. A summary list of the age-related events is presented in the report.« less

  18. Operations of and Future Plans for the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, : J.; Abreu, P.; Aglietta, M.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Augermore » Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.« less

  19. Long-lived space observatories for astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Becklin, Eric E.; Beckwith, Steven V. W.; Cowie, Lennox L.; Dupree, Andrea K.; Elliot, James L.; Gallagher, John S.; Helfand, David J.; Jenkins, Edward F.; Johnston, Kenneth J.

    1987-01-01

    NASA's plan to build and launch a fleet of long-lived space observatories that include the Hubble Space Telescope (HST), the Gamma Ray Observatory (GRO), the Advanced X Ray Astrophysics Observatory (AXAF), and the Space Infrared Telescope Facility (SIRTF) are discussed. These facilities are expected to have a profound impact on the sciences of astronomy and astrophysics. The long-lived observatories will provide new insights about astronomical and astrophysical problems that range from the presence of planets orbiting nearby stars to the large-scale distribution and evolution of matter in the universe. An important concern to NASA and the scientific community is the operation and maintenance cost of the four observatories described above. The HST cost about $1.3 billion (1984 dollars) to build and is estimated to require $160 million (1986 dollars) a year to operate and maintain. If HST is operated for 20 years, the accumulated costs will be considerably more than those required for its construction. Therefore, it is essential to plan carefully for observatory operations and maintenance before a long-lived facility is constructed. The primary goal of this report is to help NASA develop guidelines for the operations and management of these future observatories so as to achieve the best possible scientific results for the resources available. Eight recommendations are given.

  20. The First Astronomical Observatory in Cluj-Napoca

    NASA Astrophysics Data System (ADS)

    Szenkovits, Ferenc

    2008-09-01

    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.

  1. SOFIA: Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the great astronomical observatories both space and land based that are now operational. It shows the history of the development of SOFIA, from its conception in 1986 through the contract awards in 1996 and through the planned first flight in 2007. The major components of the observatory are shown and there is a comparison of the SOFIA with the Kuiper Airborne Observatory (KAO), which is the direct predecessor to SOFIA. The development of the aft ramp of the KAO was developed as a result of the wind tunnel tests performed for SOFIA development. Further slides show the airborne observatory layout and the telescope's optical layout. Included are also vies of the 2.5 Meter effective aperture, and the major telescope's components. The presentations reviews the technical challenges encountered during the development of SOFIA. There are also slides that review the wind tunnel tests, and CFD modeling performed during the development of SOFIA. Closing views show many views of the airplane, and views of SOFIA.

  2. Learning lessons from Natech accidents - the eNATECH accident database

    NASA Astrophysics Data System (ADS)

    Krausmann, Elisabeth; Girgin, Serkan

    2016-04-01

    When natural hazards impact industrial facilities that house or process hazardous materials, fires, explosions and toxic releases can occur. This type of accident is commonly referred to as Natech accident. In order to prevent the recurrence of accidents or to better mitigate their consequences, lessons-learned type studies using available accident data are usually carried out. Through post-accident analysis, conclusions can be drawn on the most common damage and failure modes and hazmat release paths, particularly vulnerable storage and process equipment, and the hazardous materials most commonly involved in these types of accidents. These analyses also lend themselves to identifying technical and organisational risk-reduction measures that require improvement or are missing. Industrial accident databases are commonly used for retrieving sets of Natech accident case histories for further analysis. These databases contain accident data from the open literature, government authorities or in-company sources. The quality of reported information is not uniform and exhibits different levels of detail and accuracy. This is due to the difficulty of finding qualified information sources, especially in situations where accident reporting by the industry or by authorities is not compulsory, e.g. when spill quantities are below the reporting threshold. Data collection has then to rely on voluntary record keeping often by non-experts. The level of detail is particularly non-uniform for Natech accident data depending on whether the consequences of the Natech event were major or minor, and whether comprehensive information was available for reporting. In addition to the reporting bias towards high-consequence events, industrial accident databases frequently lack information on the severity of the triggering natural hazard, as well as on failure modes that led to the hazmat release. This makes it difficult to reconstruct the dynamics of the accident and renders the development of

  3. A quarter of a century of the DBQ: some supplementary notes on its validity with regard to accidents.

    PubMed

    de Winter, Joost C F; Dodou, Dimitra; Stanton, Neville A

    2015-01-01

    This article synthesises the latest information on the relationship between the Driver Behaviour Questionnaire (DBQ) and accidents. We show by means of computer simulation that correlations with accidents are necessarily small because accidents are rare events. An updated meta-analysis on the zero-order correlations between the DBQ and self-reported accidents yielded an overall r of .13 (fixed-effect and random-effects models) for violations (57,480 participants; 67 samples) and .09 (fixed-effect and random-effects models) for errors (66,028 participants; 56 samples). An analysis of a previously published DBQ dataset (975 participants) showed that by aggregating across four measurement occasions, the correlation coefficient with self-reported accidents increased from .14 to .24 for violations and from .11 to .19 for errors. Our meta-analysis also showed that DBQ violations (r = .24; 6353 participants; 20 samples) but not DBQ errors (r = - .08; 1086 participants; 16 samples) correlated with recorded vehicle speed. Practitioner Summary: The DBQ is probably the most widely used self-report questionnaire in driver behaviour research. This study shows that DBQ violations and errors correlate moderately with self-reported traffic accidents.

  4. Gemini Observatory |

    Science.gov Websites

    Now Open Operations View All Observing databases offline May 30 Status of Gemini North eNewscast View Gemini Observatory Strategic Vision PDF Gemini North with open wind vents and observing slit at sunset . Gemini South with star-trails of the South Celestial Pole overhead. Gemini Science Meeting Open For

  5. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-01-01

    Both of the High Energy Astronomy Observatory (HEAO) 2/Einstein Observatory imaging devices were used to observe the Great Nebula in Andromeda, M31. This image is a wide field x-ray view of the center region of M31 by the HEAO-2's Imaging Proportional Counter. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  6. Visits to La Plata Observatory

    NASA Astrophysics Data System (ADS)

    Feinstein, A.

    1985-03-01

    La Plata Observatory will welcome visitors to ESO-La Silla that are willing to make a stop at Buenos Aires on their trip to Chile or on their way back. There is a nice guesthouse at the Observatory that can be used, for a couple of days or so, by astronomers interested in visiting the Observatory and delivering talks on their research work to the Argentine colleagues. No payments can, however, be made at present. La Plata is at 60 km from Buenos Aires. In the same area lie the Instituto de Astronomia y Fisica dei Espacio (IAFE), in Buenos Aires proper, and the Instituto Argentino de Radioastronomia (IAR). about 40 km from Buenos Aires on the way to La Plata. Those interested should contacl: Sr Decano Prof. Cesar A. Mondinalli, or Dr Alejandro Feinstein, Observatorio Astron6mico, Paseo dei Bosque, 1900 La Plata, Argentina. Telex: 31216 CESLA AR.

  7. Hydrologic Observatories: Design, Operation, and the Neuse Basin Prototype

    NASA Astrophysics Data System (ADS)

    Reckhow, K.; Band, L.

    2003-12-01

    Hydrologic observatories are conceived as major research facilities that will be available to the full hydrologic community, to facilitate comprehensive, cross-disciplinary and multi-scale measurements necessary to address the current and next generation of critical science and management issues. A network of hydrologic observatories is proposed that both develop national comparable, multidisciplinary data sets and provide study areas to allow scientists, through their own creativity, to make scientific breakthroughs that would be impossible without the proposed observatories. The core objective of an observatory is to improve predictive understanding of the flow paths, fluxes, and residence times of water, sediment and nutrients (the "core data") across a range of spatial and temporal scales across `interfaces'. To assess attainment of this objective, a benchmark will be established in the first year, and evaluated periodically. The benchmark should provide an estimate of prediction uncertainty at points in the stream across scale; the general principle is that predictive understanding must be demonstrated internal to the catchment as well as its outlet. The core data will be needed for practically any hydrologic study, yet absence of these data has been a barrier to larger scale studies in the past. However, advancement of hydrologic science facilitated by the network of hydrologic observatories is expected to focus on a set of science drivers, drawn from the major scientific questions posed by the set of NRC reports and refined into CUAHSI themes. These hypotheses will be tested at all observatories and will be used in the design to ensure the sufficiency of the data set. To make the observatories a national (and international) resource, a key aspect of the operation is the support of remote PI's. This support will include a resident staff of scientists and technicians on the order of 10 FTE's, availability of dormitory, laboratory, workshop space for all

  8. Norwegian Ocean Observatory Network (NOON)

    NASA Astrophysics Data System (ADS)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  9. Accident investigation

    NASA Technical Reports Server (NTRS)

    Laynor, William G. Bud

    1987-01-01

    The National Transportation Safety Board (NTSB) has attributed wind shear as a cause or contributing factor in 15 accidents involving transport-categroy airplanes since 1970. Nine of these were nonfatal; but the other six accounted for 440 lives. Five of the fatal accidents and seven of the nonfatal accidents involved encounters with convective downbursts or microbursts. Of other accidents, two which were nonfatal were encounters with a frontal system shear, and one which was fatal was the result of a terrain induced wind shear. These accidents are discussed with reference to helping the aircraft to avoid the wind shear or if impossible to help the pilot to get through the wind shear.

  10. Designing Hydrologic Observatories as a Community Resource

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Duncan, J. M.

    2004-12-01

    CUAHSI convened a workshop in August 2004 to explore what makes a successful hydrologic observatory. Because of their high cost, only a small number of observatories will be operated, at least initially. (CUAHSI has recommended a pilot network of 5 observatories to develop operational experience and an eventual network of approximately 15 sites.) Because hydrologic scientists can work "in their backyard" (unlike oceanographers or astronomers), hydrologic observatories must offer significant advantages over current methods of field work to successfully attract researchers. Twenty-four teams of scientists submitted "prospectuses" of potential locations for hydrologic observatories for consideration by network attendees. These documents (available at http://www.cuahsi.org) were marketing documents to the workshop participants, who voted for a hypothetical network of 5 observatories from the 24 proposed sites. This network formed the basis for a day of discussions on necessary attributes of core data and how to form a network of observatories from a collection of sites that are designed and implemented individually. Key findings included: 1) Core data must be balanced among disciplines. Although the hydrologic cycle is an organizing principle for the design of HOs, physical data cannot dominate the core data; chemical and biological data, although more expensive to collect, must be given equal footing. 2) New data collection must strategically leverage existing data. Resources are always limited, so that a successful HO must carefully target gaps in existing data, as determined by an explicitly stated conceptual model, and fill them rather than designing an independent study. 3) Site logistics must support remote researchers. Significant resources will be necessary for on-site staff to handle housing, transportation, permitting and other needs. 4) Network-level hypotheses are required early in the implementation of HOs. A network will only emerge around hypotheses

  11. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Vanlew, K.; Melsheimer, T.; Melsheimer, L.; Rideout, C.; Patterson, T.

    1997-12-01

    A second observatory of the Telescopes in Education (TIE) project is in the planning stages, with hopes to be in use by fall 1998. The Little Thompson Observatory will be located adjacent to Berthoud High School in northern Colorado. TIE has offered the observatory a Tinsley 18" Cassegrain telescope on a 10-year loan. Local schools and youth organizations will have prioritized access to the telescope until midnight; after that, the telescope will be open to world-wide use by schools via the Internet. The first TIE observatory is a 24" telescope on Mt. Wilson, already booked through July 1998. That telescope has been in use every clear night for the past four years by up to 50 schools per month. Students remotely control the telescope over the Internet, and then receive the images on their local computers. The estimated cost of the Little Thompson Observatory is roughly \\170,000. However, donations of labor and materials have reduced the final price tag closer to \\40,000. Habitat for Humanity is organized to construct the dome, classrooms, and other facilities. Tom and Linda Melsheimer, who developed the remote telescope control system for the University of Denver's Mount Evans Observatory, are donating a similar control system. The formally-trained, all-volunteer staff will be comprised of local residents, teachers and amateur astronomers. Utilities and Internet access will be provided by the Thompson School District.

  12. Cutting-Edge Science from Arecibo Observatory: Introduction

    NASA Astrophysics Data System (ADS)

    Schmelz, Joan T.

    2017-01-01

    The Arecibo Observatory is home to the largest radio telescope in the world operating above 2 GHz, where molecule emission pertaining to the origins of life proliferate. It also houses the most powerful radar system on the planet, providing crucial information for the assessment of impact hazards of near-Earth asteroids (NEA). It was built to study the ionosphere with a radar system that can also monitor the effects of Space Weather and climate change. Arecibo has a proven track record for doing excellent science, even after 50 years of operations. This talk will include brief summaries of several Arecibo astronomy topics including the (1) latest attempts to resolve the Pleiades distance controversy, which include VLBI and Gaia; (2) galactic and extragalactic molecules; and (3) Arecibo 3D orbit determinations of potentially hazardous asteroids, and the crucial observation required to select Bennu as the target for the recently launched NASA OSIRIS-REx mission. This introduction will set the stage for the invited talks in this session, which include such topics as Fast Radio Bursts, galactic and extragalactic HI results, the pulsar emission problem, and NANOGrav. This work is supported by NSF and NASA.

  13. Observatories on the moon

    NASA Astrophysics Data System (ADS)

    Burns, J. O.; Duric, N.; Taylor, G. J.; Johnson, S. W.

    1990-03-01

    It is suggested that the moon could be a haven for astronomy with observatories on its surface yielding extraordinarily detailed views of the heavens and open new windows to study the universe. The near absence of an atmosphere, the seismic stability of its surface, the low levels of interference from light and radio waves and the abundance of raw materials make the moon an ideal site for constructing advanced astronomical observatories. Due to increased interest in the U.S. in the moon as a scientific platform, planning has begun for a permanent lunar base and for astronomical observatories that might be built on the moon in the 21st century. Three specific projects are discussed: (1) the Very Low Frequency Array (VLFA), which would consist of about 200 dipole antennas, each resembling a TV reception antenna about one meter in length; (2) the Lunar Optical-UV-IR Synthesis Array (LOUISA), which will improve on the resolution of the largest ground-based telescope by a factor of 100,000; and (3) a moon-earth radio interferometer, which would have a resolution of about one-hundredth-thousandth of an arc second at a frequency of 10 GHz.

  14. The many transformations of the University of Illinois Observatory Annex

    NASA Astrophysics Data System (ADS)

    Svec, Michael

    2018-04-01

    The University of Illinois Observatory acquired a second-hand 30-inch Brashear reflector in 1912 with the intent of dedicating it to photoelectric photometry. A small observatory annex was built adjacent to the main observatory. This smaller observatory and its telescope underwent multiple transitions and instrument changes over the next 70 years, reflecting the research interests of Joel Stebbins and Robert H. Baker. The story of this observatory telescope illustrates changes in astronomical instrumentation and research over the course of the twentieth century.

  15. ISS images for Observatory protection

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2015-08-01

    Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.

  16. 21st Century Lightning Protection for High Altitude Observatories

    NASA Astrophysics Data System (ADS)

    Kithil, Richard

    2013-05-01

    One of the first recorded lightning insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times lightning has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to lightning outages to data acquisition computers and connected cabling. The University of Arizona has reported "lightning strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where lightning protection for personnel, electrical systems, associated electronics and data are critical. Designstage lightning protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories lightning protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered lightning protection subsystems in a carefully planned methodology which is specific to each site.

  17. Donald Menzel: His Founding and Funding of Solar Observatories.

    NASA Astrophysics Data System (ADS)

    Welther, B. L.

    2002-12-01

    In January 1961 Donald Menzel wrote to his cousin, M. H. Bruckman, "I am proudest of the observatories that I have built in the West." The first of those facilities, a solar observatory, was founded in 1940 in Colorado and later came to be known as the High Altitude Observatory. The second one, also a solar observatory, was founded a dozen years later at Sacramento Peak in New Mexico. The third facility, however, established at Fort Davis, Texas, was the Harvard Radio Astronomy Observatory. Although Menzel was primarily a theoretical astrophysicist, renowned for his studies of the solar chromosphere, he was also an entrepreneur who had a talent for developing observatories and coping with numerous setbacks in funding and staffing. Where many others would have failed, Menzel succeeded in mentoring colleagues and finding sources of financial support. This paper will draw primarily on letters and other materials in the Harvard University Archives.

  18. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    This supernova in the constellation Cassiopeia was observed by Tycho Brahe in 1572. In this x-ray image from the High Energy Astronomy Observatory (HEAO-2/Einstein Observatory produced by nearly a day of exposure time, the center region appears filled with emissions that can be resolved into patches or knots of material. However, no central pulsar or other collapsed object can be seen. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  19. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This is an x-ray image of the Crab Nebula taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The image is demonstrated by a pulsar, which appears as a bright point due to its pulsed x-ray emissions. The strongest region of diffused emissions comes from just northwest of the pulsar, and corresponds closely to the region of brightest visible-light emission. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  20. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1975-01-01

    The family of High Energy Astronomy Observatory (HEAO) instruments consisted of three unmarned scientific observatories capable of detecting the x-rays emitted by the celestial bodies with high sensitivity and high resolution. The celestial gamma-ray and cosmic-ray fluxes were also collected and studied to learn more about the mysteries of the universe. High-Energy rays cannot be studied by Earth-based observatories because of the obscuring effects of the atmosphere that prevent the rays from reaching the Earth's surface. They had been observed initially by sounding rockets and balloons, and by small satellites that do not possess the needed instrumentation capabilities required for high data resolution and sensitivity. The HEAO carried the instrumentation necessary for this capability. In this photograph, an artist's concept of three HEAO spacecraft is shown: HEAO-1, launched on August 12, 1977; HEAO-2, launched on November 13, 1978; and HEAO-3, launched on September 20. 1979.

  1. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This image is an x-ray view of Eta Carinae Nebula showing bright stars taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The Eta Carinae Nebula is a large and complex cloud of gas, crisscrossed with dark lanes of dust, some 6,500 light years from Earth. Buried deep in this cloud are many bright young stars and a very peculiar variable star. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  2. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    This x-ray photograph of the Supernova remnant Cassiopeia A, taken with the High Energy Astronomy Observatory (HEAO) 2/Einstein Observatory, shows that the regions with fast moving knots of material in the expanding shell are bright and clear. A faint x-ray halo, just outside the bright shell, is interpreted as a shock wave moving ahead of the expanding debris. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  3. NEPTUNE: an under-sea plate scale observatory

    NASA Technical Reports Server (NTRS)

    Beauchamp, P. M.; Heath, G. R.; Maffei, A.; Chave, A.; Howe, B.; Wilcock, W.; Delaney, J.; Kirkham, H.

    2002-01-01

    The NEPTUNE project will establish a linked array of undersea observatories on the Juan de Fuca tectonic plate. This observatory will provide a new kind of research platform for real-time, long-term, plate-scale studies in the ocean and Earth sciences.

  4. Ten years of the Spanish Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Solano, E.

    2015-05-01

    The main objective of the Virtual Observatory (VO) is to guarantee an easy and efficient access and analysis of the information hosted in astronomical archives. The Spanish Virtual Observatory (SVO) is a project that was born in 2004 with the goal of promoting and coordinating the VO-related activities at national level. SVO is also the national contact point for the international VO initiatives, in particular the International Virtual Observatory Alliance (IVOA) and the Euro-VO project. The project, led by Centro de Astrobiología (INTA-CSIC), is structured around four major topics: a) VO compliance of astronomical archives, b) VO-science, c) VO- and data mining-tools, and d) Education and outreach. In this paper I will describe the most important results obtained by the Spanish Virtual Observatory in its first ten years of life as well as the future lines of work.

  5. Professional experience and traffic accidents/near-miss accidents among truck drivers.

    PubMed

    Girotto, Edmarlon; Andrade, Selma Maffei de; González, Alberto Durán; Mesas, Arthur Eumann

    2016-10-01

    To investigate the relationship between the time working as a truck driver and the report of involvement in traffic accidents or near-miss accidents. A cross-sectional study was performed with truck drivers transporting products from the Brazilian grain harvest to the Port of Paranaguá, Paraná, Brazil. The drivers were interviewed regarding sociodemographic characteristics, working conditions, behavior in traffic and involvement in accidents or near-miss accidents in the previous 12 months. Subsequently, the participants answered a self-applied questionnaire on substance use. The time of professional experience as drivers was categorized in tertiles. Statistical analyses were performed through the construction of models adjusted by multinomial regression to assess the relationship between the length of experience as a truck driver and the involvement in accidents or near-miss accidents. This study included 665 male drivers with an average age of 42.2 (±11.1) years. Among them, 7.2% and 41.7% of the drivers reported involvement in accidents and near-miss accidents, respectively. In fully adjusted analysis, the 3rd tertile of professional experience (>22years) was shown to be inversely associated with involvement in accidents (odds ratio [OR] 0.29; 95% confidence interval [CI] 0.16-0.52) and near-miss accidents (OR 0.17; 95% CI 0.05-0.53). The 2nd tertile of professional experience (11-22 years) was inversely associated with involvement in accidents (OR 0.63; 95% CI 0.40-0.98). An evident relationship was observed between longer professional experience and a reduction in reporting involvement in accidents and near-miss accidents, regardless of age, substance use, working conditions and behavior in traffic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Enabling Virtual Access to Latin-American Southern Observatories

    NASA Astrophysics Data System (ADS)

    Filippi, G.

    2010-12-01

    EVALSO (Enabling Virtual Access to Latin-American Southern Observatories) is an international consortium of nine astronomical organisations and research network operators, part-funded under the European Commission FP7, to create and exploit high-speed bandwidth connections to South American observatories. A brief description of the project is presented. The EVALSO Consortium inaugurated a fibre link between the Paranal Observatory and international networks on 4 November 2010 capable of 10 Gigabit per second.

  7. Development of Armenian-Georgian Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg; Kochiashvili, Nino; Astsatryan, Hrach; Harutyunian, Haik; Magakyan, Tigran; Chargeishvili, Ketevan; Natsvlishvili, Rezo; Kukhianidze, Vasil; Ramishvili, Giorgi; Sargsyan, Lusine; Sinamyan, Parandzem; Kochiashvili, Ia; Mikayelyan, Gor

    2009-10-01

    The Armenian-Georgian Virtual Observatory (ArGVO) project is the first initiative in the world to create a regional VO infrastructure based on national VO projects and regional Grid. The Byurakan and Abastumani Astrophysical Observatories are scientific partners since 1946, after establishment of the Byurakan observatory . The Armenian VO project (ArVO) is being developed since 2005 and is a part of the International Virtual Observatory Alliance (IVOA). It is based on the Digitized First Byurakan Survey (DFBS, the digitized version of famous Markarian survey) and other Armenian archival data. Similarly, the Georgian VO will be created to serve as a research environment to utilize the digitized Georgian plate archives. Therefore, one of the main goals for creation of the regional VO is the digitization of large amounts of plates preserved at the plate stacks of these two observatories. The total amount of plates is more than 100,000 units. Observational programs of high importance have been selected and some 3000 plates will be digitized during the next two years; the priority is being defined by the usefulness of the material for future science projects, like search for new objects, optical identifications of radio, IR, and X-ray sources, study of variability and proper motions, etc. Having the digitized material in VO standards, a VO database through the regional Grid infrastructure will be active. This partnership is being carried out in the framework of the ISTC project A-1606 "Development of Armenian-Georgian Grid Infrastructure and Applications in the Fields of High Energy Physics, Astrophysics and Quantum Physics".

  8. The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2003-01-01

    A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.

  9. The Ultimate Private Observatory

    NASA Astrophysics Data System (ADS)

    Aymond, J.

    2009-03-01

    An amateur astronomer from Washington Parish, Southeast Louisiana, USA has designed and built an amazing observatory. It is not only an astronomical observatory, but a home theater, and tornado shelter designed to take a direct hit from an F5 tornado. The facility is fully equipped and automated, with a hydraulically driven roof that weighs 20,571 lbs., which lifts up, then rolls away to the end of the tracks. This leaves the user sitting inside of four 14-foot high walls open to the night sky. It has two premium quality telescopes for viewing deep space and objects inside the solar system. The chair that the observer sits on is also hydraulically driven.

  10. Summary of miscellaneous hazard environments for hypothetical Space Shuttle and Titan IV launch abort accidents

    NASA Technical Reports Server (NTRS)

    Eck, M.; Mukunda, M.

    1989-01-01

    The various analyses described here were aimed at obtaining a more comprehensive understanding and definition of the environments in the vicinity of the Radioisotope Thermal Generator (RTG) during certain Space Transportation System (STS) and Titan IV launch abort accidents. Addressed here are a number of issues covering explosion environments and General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) responses to those environments.

  11. Astronomical Research with the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1997-05-01

    We have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. The MicroObservatory Net consists of five of these telescopes. They are currently being deployed around the world at widely distributed longitudes. Remote access to the MicroObservatories over the Internet has now been implemented. Software for computer control, pointing, focusing, filter selection as well as pattern recognition have all been developed as part of the project. The telescopes can be controlled in real time or in delay mode, from a Macintosh, PC or other computer using Web-based software. The Internet address of the telescopes is http://cfa- www.harvard.edu/cfa/sed/MicroObservatory/MicroObservatory.html. In the real-time mode, individuals have access to all of the telescope control functions without the need for an `on-site' operator. Users can sign up for a specific period of ti me. In the batch mode, users can submit requests for delayed telescope observations. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. The telescopes were designed for classroom instruction, as well as for use by students and amateur astronomers for original scientific research projects. We are currently examining a variety of technical and educational questions about the use of the telescopes including: (1) What are the best approaches to scheduling real-time versus batch mode observations? (2) What criteria should be used for allocating telescope time? (3) With deployment of more than one telescope, is it advantageous for each telescope to be used for just one type of observation, i.e., some for photometric use, others for imaging? And (4) What are the most valuable applications of the MicroObservatories in astronomical research? Support for the MicroObservatory

  12. Portable coastal observatories

    USGS Publications Warehouse

    Frye, Daniel; Butman, Bradford; Johnson, Mark; von der Heydt, Keith; Lerner, Steven

    2000-01-01

    Ocean observational science is in the midst of a paradigm shift from an expeditionary science centered on short research cruises and deployments of internally recording instruments to a sustained observational science where the ocean is monitored on a regular basis, much the way the atmosphere is monitored. While satellite remote sensing is one key way of meeting the challenge of real-time monitoring of large ocean regions, new technologies are required for in situ observations to measure conditions below the ocean surface and to measure ocean characteristics not observable from space. One method of making sustained observations in the coastal ocean is to install a fiber optic cable from shore to the area of interest. This approach has the advantage of providing power to offshore instruments and essentially unlimited bandwidth for data. The LEO-15 observatory offshore of New Jersey (yon Alt et al., 1997) and the planned Katama observatory offshore of Martha's Vineyard (Edson et al., 2000) use this approach. These sites, along with other cabled sites, will play an important role in coastal ocean science in the next decade. Cabled observatories, however, have two drawbacks that limit the number of sites that are likely to be installed. First, the cable and the cable installation are expensive and the shore station needed at the cable terminus is often in an environmentally sensitive area where competing interests must be resolved. Second, cabled sites are inherently limited geographically to sites within reach of the cable, so it is difficult to cover large areas of the coastal ocean.

  13. The potential risk of toxoplasmosis for traffic accidents: A systematic review and meta-analysis.

    PubMed

    Gohardehi, Shaban; Sharif, Mehdi; Sarvi, Shahabeddin; Moosazadeh, Mahmood; Alizadeh-Navaei, Reza; Hosseini, Seyed Abdollah; Amouei, Afsaneh; Pagheh, Abdolsattar; Sadeghi, Mitra; Daryani, Ahmad

    2018-06-12

    Toxoplasmosis is a prevalent infectious disease. Although most people infected by Toxoplasma gondii are asymptomatic, evidence has suggested that this disease might affect some aspects of a host's behavior and associate with schizophrenia, suicide attempt, changes in various aspects of personality, and poor neurocognitive performance. These associations may play roles in increasing the risk of a number of incidents, such as traffic accidents, among infected people. In this regard, this study aimed to provide summary estimates for the available data on the potential risk of toxoplasmosis for traffic accidents. To this end, using a number of search terms, i.e. toxoplasmosis, Toxoplasma gondii, traffic accident, road accident, car accident, crash, and prevalence, literature searches (up to October 1, 2017) were carried out via 6 databases. The meta-analysis was conducted using the StatsDirect statistical software and a P-value less than 0.05 was regarded as significant in all statistical analyses. Out of 1841 identified studies, 9 studies were finally considered eligible for carrying out this systematic review. Reviewing results of these studies indicated that 5 out of 9 studies reported a significant relationship between Toxoplasma gondii and traffic accidents. Additionally, data related to gender showed significant differences between infected and control men and women. Considering age, reviewing the results of these studies revealed a significant difference between the infected people and the Toxoplasma-negative subjects under 45 years of age. However, no significant difference was found between the two groups aged 45 or older. Given these results, it can be concluded that Toxoplasma gondii significantly increases the risk of having traffic accidents. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Social Media Programs at the National Optical Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Sparks, Robert T.; Walker, Constance Elaine; Pompea, Stephen M.

    2015-08-01

    Observatories and other science research organizations want to share their research and activities with the public. The last several years, social media has become and increasingly important venue for communicating information about observatory activities, research and education and public outreach.The National Optical Astronomy Observatory (NOAO) uses a wide variety of social media to communicate with different audiences. NOAO is active on social media platforms including Facebook, Twitter, Google+ and Pinterest. Our social media accounts include those for the National Optical Astronomy Observatory, Cerro Tololo Inter-American Observatory, Kitt Peak National Observatory and our dark skies conservation program Globe at Night.Our social media programs have a variety of audiences. NOAO uses social media to announce and promote NOAO sponsored meetings, observatory news and proposal deadlines to the professional astronomical community. Social media accounts are used to disseminate NOAO press releases, images from the observatory and other science using data from NOAO telescopes.Social media is important in our Education and Public Outreach programs (EPO). Globe at Night has very active facebook and twitter accounts encouraging people to become involved in preserving dark skies. Social media plays a role in recruiting teachers for professional development workshops such as Project Astro.NOAO produces monthly podcasts for the 365 Days of Astronomy podcast featuring interviews with NOAO astronomers. Each podcast highlights the science of an NOAO astronomer, an NOAO operated telescope or instrument, or an NOAO program. A separate series of podcasts is produced for NOAO’s Dark Skies Education programs. All the podcasts are archived at 365daysofastronomy.org.

  15. Sierra Stars Observatory Network: An Accessible Global Network

    NASA Astrophysics Data System (ADS)

    Williams, Richard; Beshore, Edward

    2011-03-01

    The Sierra Stars Observatory Network (SSON) is a unique partnership among professional observatories that provides its users with affordable high-quality calibrated image data. SSON comprises observatories in the Northern and Southern Hemisphere and is in the process of expanding to a truly global network capable of covering the entire sky 24 hours a day in the near future. The goal of SSON is to serve the needs of science-based projects and programs. Colleges, universities, institutions, and individuals use SSON for their education and research projects. The mission of SSON is to promote and expand the use of its facilities among the thousands of colleges and schools worldwide that do not have access to professional-quality automated observatory systems to use for astronomy education and research. With appropriate leadership and guidance educators can use SSON to help teach astronomy and do meaningful scientific projects. The relatively small cost of using SSON for this type of work makes it affordable and accessible for educators to start using immediately. Remote observatory services like SSON need to evolve to better support education and research initiatives of colleges, institutions and individual investigators. To meet these needs, SSON is developing a sophisticated interactive scheduling system to integrate among the nodes of the observatory network. This will enable more dynamic observations, including immediate priority interrupts, acquiring moving objects using ephemeris data, and more.

  16. Daily impaired detachment and short-term effects of impaired sleep quality on next-day commuting near-accidents - an ambulatory diary study.

    PubMed

    Pereira, Diana; Bucher, Sarah; Elfering, Achim

    2016-08-01

    This study investigated the short-term effects of daily recovery, that is, impaired psychological detachment from work and various actigraphical indicators of sleep quality, on near-accidents when commuting to work the next morning. Furthermore, the mediating effect of actigraphically assessed sleep quality on the relationship between impaired psychological detachment from work and near-accidents when commuting to work was analysed. Fifty-six full-time employees of a Swiss assurance company participated in the one-week study. Multilevel analyses revealed that impaired detachment was highly related to a decrease in sleep duration. Furthermore, impaired daily recovery processes, such as impaired psychological detachment from work and disturbed sleep quality, were related to commuting near-accidents. Impaired sleep quality mediated the effect of impaired psychological detachment from work on these near-accidents. Our results show that occupational safety interventions should address both impaired psychological detachment from work and sleep quality in order to prevent near accidents when commuting to work. Practitioner Summary: Commuting accidents occur frequently and have detrimental effects on employees, organisations and society. This study shows that daily lack of recovery, that is, impaired psychological detachment and impaired sleep quality, is related to near-accidents when commuting to work the next morning. Primary prevention of commuting accidents should therefore address daily lack of recovery.

  17. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-01-01

    This photograph is of the High Energy Astronomy Observatory (HEAO)-2 telescope being evaluated by engineers in the clean room of the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). The MSFC was heavily engaged in the technical and scientific aspects, testing and calibration, of the HEAO-2 telescope The HEAO-2 was the first imaging and largest x-ray telescope built to date. The X-Ray Calibration Facility was built in 1976 for testing MSFC's HEAO-2. The facility is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produced a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performance in space is predicted. The original facility contained a 1,000-foot long by 3-foot diameter vacuum tube (for the x-ray path) cornecting an x-ray generator and an instrument test chamber. Recently, the facility was upgraded to evaluate the optical elements of NASA's Hubble Space Telescope, Chandra X-Ray Observatory and Compton Gamma-Ray Observatory.

  18. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-06-01

    This photograph is of the High Energy Astronomy Observatory (HEAO)-2 telescope being checked by engineers in the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). The MSFC was heavily engaged in the technical and scientific aspects, testing and calibration, of the HEAO-2 telescope. The HEAO-2 was the first imaging and largest x-ray telescope built to date. The X-Ray Calibration Facility was built in 1976 for testing MSFC's HEAO-2. The facility is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produced a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performance in space is predicted. The original facility contained a 1,000-foot long by 3-foot diameter vacuum tube (for the x-ray path) cornecting an x-ray generator and an instrument test chamber. Recently, the facility was upgraded to evaluate the optical elements of NASA's Hubble Space Telescope, Chandra X-Ray Observatory and Compton Gamma-Ray Observatory.

  19. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This image is an observation of Quasar 3C 273 by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. It reveals the presence of a new source (upper left) with a red shift that indicates that it is about 10 billion light years away. Quasars are mysterious, bright, star-like objects apparently located at the very edge of the visible universe. Although no bigger than our solar system, they radiate as much visible light as a thousand galaxies. Quasars also emit radio signals and were previously recognized as x-ray sources. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2 was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center.

  20. The Aosta Valley Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Carbognani, A.

    2011-06-01

    OAVdA stands for Astronomical Observatory of the Autonomous Region of the Aosta Valley (Italy). The centre is located in the northwestern Italian Alps, near the border with France and Switzerland (Lat: 45° 47' 22" N, Long: 7° 28' 42" E), at 1675 m above sea level in the Saint-Barthélemy Valley and is managed by the "Fondazione Clément Fillietroz", with funding from local administrations. OAVdA was opened in 2003 as a centre for the popularization of astronomy but, since 2006, the main activity has been scientific research, as a consequence of an official cooperation agreement established with the Italian National Institute for Astrophysics (INAF). In 2009, a planetarium was built near the observatory with a 10-meter dome and 67 seats, which is currently used for educational astronomy. In the year 2009 about 15,200 people visited OAVdA and the planetarium. The staff in 2010 was made up of 12 people, including a scientific team of 5 physicists and astronomers on ESF (European Social Fund) grants and permanently residing at the observatory.

  1. Lessons from the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1998-12-01

    Over the past several years, we have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. Each telescope can be pointed and focused remotely, and filters, field of view and exposure times can be changed easily. The MicroObservatory Net consists of five of these telescopes. They are being deployed around the world at widely distributed longitudes for access to distant night skies during local daytime. Remote access to the MicroObservatories over the Internet has been available to select schools since 1995. The telescopes can be controlled in real time or in delay mode, from any computer using Web-based software. Individuals have access to all of the telescope control functions without the need for an `on-site' operator. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. Images are archived at the Web site, along with sample challenges and a user bulletin board, all of which encourage collaboration between schools. The Internet address of the telescopes is http://mo-www.harvard.edu/MicroObservatory/. The telescopes were designed for classroom instruction by teachers, as well as for use by students and amateur astronomers for original scientific research projects. In this talk, we will review some of the experiences we, students and teachers have had in using the telescopes. Support for the MicroObservatory Net has been provided by the NSF, Apple Computer, Inc. and Kodak, Inc.

  2. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2002-05-01

    The Little Thompson Observatory is believed to be the first of its kind, located next to a high school and accessible to other schools remotely over the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction was done completely by volunteer labor, and the observatory was built on the grounds of Berthoud High School in northern Colorado. During 2001, we averaged 400-500 visitors per month. We are grateful to have received a STScI IDEAS grant to provide teacher training workshops for K-12 schools in northern Colorado to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. We are honored that a committee of teachers and administrators from the Thompson School district have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Also in the past year, our training materials have been shared with NASA Goddard and Howard University, which are working together to develop a similar teacher education program. Our next goal is to add solar observing capability! Please visit our website at www.starkids.org.

  3. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This photograph shows a TRW technician inspecting the completely assembled Chandra X-ray Observatory (CXO) in the Thermal Vacuum Chamber at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  4. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This photograph shows TRW technicians preparing the assembled Chandra X-Ray Observatory (CXO) for an official unveiling at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  5. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  6. OSO-7 Orbiting Solar Observatory program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The seventh Orbiting Solar Observatory (OSO-7) in the continuing series designed to gather solar and celestial data that cannot be obtained from the earth's surface is described. OSO-7 was launched September 29, 1971. It has been highly successful in returning scientific data giving new and important information about solar flare development, coronal temperature variations, streamer dynamics of plasma flow, and solar nuclear processes. OSO-7 is expected to have sufficient lifetime to permit data comparisons with the Skylab A mission during 1973. The OSO-7 is a second generation observatory. It is about twice as large and heavy as its predecessors, giving it considerably greater capability for scientific measurements. This report reviews mission objectives, flight history, and scientific experiments; describes the observatory; briefly compares OSO-7 with the first six OSO's; and summarizes the performance of OSO-7.

  7. [Chernobyl nuclear power plant accident and Tokaimura criticality accident].

    PubMed

    Takada, Jun

    2012-03-01

    It is clear from inspection of historical incidents that the scale of disasters in a nuclear power plant accident is quite low level overwhelmingly compared with a nuclear explosion in nuclear war. Two cities of Hiroshima and Nagasaki were destroyed by nuclear blast with about 20 kt TNT equivalent and then approximately 100,000 people have died respectively. On the other hand, the number of acute death is 30 in the Chernobyl nuclear reactor accident. In this chapter, we review health hazards and doses in two historical nuclear incidents of Chernobyl and Tokaimura criticality accident and then understand the feature of the radiation accident in peaceful utilization of nuclear power.

  8. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1970-01-01

    This artist's concept depicts the third observatory, the High Energy Astronomy Observatory (HEAO)-3 in orbit. Designed and developed by TRW, Inc. under the direction of the Marshall Space Flight Center, the HEAO-3's mission was to survey and map the celestial sphere for gamma-ray flux and make detailed measurements of cosmic-ray particles. It carried three scientific experiments: a gamma-ray spectrometer, a cosmic-ray isotope experiment, and a heavy cosmic-ray nuclei experiment. The HEAO-3 was originally identified as HEAO-C but the designation was changed once the spacecraft achieved orbit.

  9. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-01-01

    This photograph shows the High Energy Astronomy Observatory (HEAO)-1 being assembled at TRW Systems of Redondo Beach, California. The HEAO was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit.

  10. Education and public engagement in observatory operations

    NASA Astrophysics Data System (ADS)

    Gabor, Pavel; Mayo, Louis; Zaritsky, Dennis

    2016-07-01

    Education and public engagement (EPE) is an essential part of astronomy's mission. New technologies, remote observing and robotic facilities are opening new possibilities for EPE. A number of projects (e.g., Telescopes In Education, MicroObservatory, Goldstone Apple Valley Radio Telescope and UNC's Skynet) have developed new infrastructure, a number of observatories (e.g., University of Arizona's "full-engagement initiative" towards its astronomy majors, Vatican Observatory's collaboration with high-schools) have dedicated their resources to practical instruction and EPE. Some of the facilities are purpose built, others are legacy telescopes upgraded for remote or automated observing. Networking among institutions is most beneficial for EPE, and its implementation ranges from informal agreements between colleagues to advanced software packages with web interfaces. The deliverables range from reduced data to time and hands-on instruction while operating a telescope. EPE represents a set of tasks and challenges which is distinct from research applications of the new astronomical facilities and operation modes. In this paper we examine the experience with several EPE projects, and some lessons and challenges for observatory operation.

  11. Georg Neumayer and Melbourne Observatory: an institutional legacy

    NASA Astrophysics Data System (ADS)

    Gillespie, Richard

    This paper assesses Georg Neumayer's impact on the Victorian scientific community, and especially his role in the establishment of Melbourne Observatory as a major scientific institution in colonial Australia. Neumayer's arrival in Melbourne to pursue his own scientific project triggered a chain of events that would lead to the creation of Melbourne Observatory and the integration of Neumayer's geomagnetic and meteorological research into the ongoing program of the observatory. The location of the observatory in South Yarra was a direct result of Neumayer's insistence that the site was the most suitable for geomagnetic measurement. Most critically, Neumayer's attempts to get approval for his project highlighted the need for local scientists to establish political and scientific alliances that would ensure endorsement by international, notably British, scientists, and that would persuade local elites and government of the practical value of their research.

  12. The Science and Design of the AGIS Observatory

    NASA Astrophysics Data System (ADS)

    Schroedter, Martin

    2010-02-01

    The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100 GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05^o diameter) camera. The instrument is designed to provide millicrab sensitivity over a wide (8^o diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. I will describe science drivers behind the AGIS observatory and the design and status of the project. )

  13. The Science and Design of the AGIS Observatory

    NASA Astrophysics Data System (ADS)

    Falcone, Abraham; Aliu, E.; Arlen, T.; Benbow, W.; Buckley, J.; Bugaev, S.; Byrum, K.; Ciupik, L.; Coppi, P.; Digel, S.; Drake, G.; Finley, J.; Fortson, L.; Franco, J.; Funk, S.; Guarino, V.; Gyuk, G.; Hanna, D.; Hiriart, D.; Humensky, B.; Holder, J.; Kaaret, P.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; LeBohec, S.; Maier, G.; Mukherjee, R.; Ong, R.; Otte, N.; Pareschi, G.; Pohl, M.; Quinn, J.; Ramsey, B.; Romani, R.; Rovero, A. C.; Schroedter, M.; Sinnis, C.; Slane, P.; Smith, A.; Swordy, S.; Tajima, H.; Vassiliev, V.; Wagner, R.; Wakely, S. P.; Weekes, T. C.; Weinstein, A.; Williams, D.

    2010-01-01

    The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05 degree/pixel) camera. The instrument is designed to provide millicrab sensitivity over a wide (8 degree diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. This presentation will include a description of science drivers behind the AGIS observatory and the design and status of the project.

  14. Transient Astrophysics Observatory (TAO)

    NASA Astrophysics Data System (ADS)

    Racusin, J. L.; TAO Team

    2016-10-01

    The Transient Astrophysics Observatory (TAO) is a NASA MidEx mission concept (formerly known as Lobster) designed to provide simultaneous wide-field gamma-ray, X-ray, and near-infrared observations of the sky.

  15. NASA Awards Chandra X-Ray Observatory Follow-On Contract

    NASA Astrophysics Data System (ADS)

    2003-08-01

    NASA has awarded a contract to the Smithsonian Astrophysical Observatory in Cambridge, Mass., to provide science and operational support for the Chandra X-ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract will have a period of performance from August 31, 2003, through July 31, 2010, with an estimated value of 373 million. It is a follow-on contract to the existing contract with Smithsonian Astrophysical Observatory that has provided science and operations support to the Observatory since its launch in July 1999. At launch the intended mission life was five years. As a result of Chandra's success, NASA extended the mission from five to 10 years. The value of the original contract was 289 million. The follow-on contract with the Smithsonian Astrophysical Observatory will continue through the 10-year mission. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes the observatory operations, science data processing and the general and guaranteed time observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and up linking the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and processing and delivery of the resulting scientific data. There are approximately 200 to 250 observing proposals selected annually out of about 800 submitted, with a total amount of observing time of about 20 million seconds. Chandra has exceeded expectations of scientists, giving them unique insight into phenomena light years away, such as exotic celestial objects, matter falling into black holes, and stellar explosions. X-ray astronomy can only be performed from space because Earth's atmosphere

  16. Astronomical Observatory of Belgrade from 1924 to 1955

    NASA Astrophysics Data System (ADS)

    Radovanac, M.

    2014-12-01

    History of the Astronomical Observatory in Belgrade, as the presentation is done here, become the field of interest to the author of the present monograph in early 2002. Then, together with Luka C. Popovic, during the Conference "Development of Astronomy among Serbs II" held in early April of that year, he prepared a paper entitled "Astronomska opservatorija tokom Drugog Svetskog rata" (Astronomical Observatory in the Second World War). This paper was based on the archives material concerning the Astronomical Observatory which has been professionally bearing in mind the author's position the subject of his work.

  17. University Observatory, Ludwig-Maximilians-Universität

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The University Observatory of Ludwig-Maximilians-Universität was founded in 1816. Astronomers who worked or graduated at the Munich Observatory include: Fraunhofer, Soldner, Lamont, Seeliger and Karl Schwarzschild. At present four professors and ten staff astronomers work here. Funding comes from the Bavarian Government, the German Science Foundation, and other German and European research progra...

  18. Environmental effects on lunar astronomical observatories

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Taylor, G. Jeffrey; Wetzel, John P.

    1992-01-01

    The Moon offers a stable platform with excellent seeing conditions for astronomical observations. Some troublesome aspects of the lunar environment will need to be overcome to realize the full potential of the Moon as an observatory site. Mitigation of negative effects of vacuum, thermal radiation, dust, and micrometeorite impact is feasible with careful engineering and operational planning. Shields against impact, dust, and solar radiation need to be developed. Means of restoring degraded surfaces are probably essential for optical and thermal control surfaces deployed in long-lifetime lunar facilities. Precursor missions should be planned to validate and enhance the understanding of the lunar environment (e.g., dust behavior without and with human presence) and to determine environmental effects on surfaces and components. Precursor missions should generate data useful in establishing keepout zones around observatory facilities where rocket launches and landings, mining, and vehicular traffic could be detrimental to observatory operation.

  19. Developing an astronomical observatory in Paraguay

    NASA Astrophysics Data System (ADS)

    Troche-Boggino, Alexis E.

    Background: Paraguay has some heritage from the astronomy of the Guarani Indians. Buenaventura Suarez S.J. was a pioneer astronomer in the country in the XVIII century. He built various astronomical instruments and imported others from England. He observed eclipses of Jupiter's satellites and of the Sun and Moon. He published his data in a book and through letters. The Japanese O.D.A. has collaborated in obtaining equipment and advised their government to assist Paraguay in building an astronomical observatory, constructing a moving-roof observatory and training astronomers as observatory operators. Future: An astronomical center is on the horizon and some possible fields of research are being considered. Goal: To improve education at all possible levels by not only observing sky wonders, but also showing how instruments work and teaching about data and image processing, saving data and building a data base. Students must learn how a modern scientist works.

  20. Underreporting of maritime accidents to vessel accident databases.

    PubMed

    Hassel, Martin; Asbjørnslett, Bjørn Egil; Hole, Lars Petter

    2011-11-01

    Underreporting of maritime accidents is a problem not only for authorities trying to improve maritime safety through legislation, but also to risk management companies and other entities using maritime casualty statistics in risk and accident analysis. This study collected and compared casualty data from 01.01.2005 to 31.12.2009, from IHS Fairplay and the maritime authorities from a set of nations. The data was compared to find common records, and estimation of the true number of occurred accidents was performed using conditional probability given positive dependency between data sources, several variations of the capture-recapture method, calculation of best case scenario assuming perfect reporting, and scaling up a subset of casualty information from a marine insurance statistics database. The estimated upper limit reporting performance for the selected flag states ranged from 14% to 74%, while the corresponding estimated coverage of IHS Fairplay ranges from 4% to 62%. On average the study results document that the number of unreported accidents makes up roughly 50% of all occurred accidents. Even in a best case scenario, only a few flag states come close to perfect reporting (94%). The considerable scope of underreporting uncovered in the study, indicates that users of statistical vessel accident data should assume a certain degree of underreporting, and adjust their analyses accordingly. Whether to use correction factors, a safety margin, or rely on expert judgment, should be decided on a case by case basis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Fostering Student Awareness in Observatory STEM Careers

    NASA Astrophysics Data System (ADS)

    Keonaonaokalauae Acohido, Alexis Ann; Michaud, Peter D.; Gemini Public Information and Outreach Staff

    2016-01-01

    It takes more than scientists to run an observatory. Like most observatories, only about 20% of Gemini Observatory's staff is PhD. Scientists, but 100% of those scientists would not be able to do their jobs without the help of engineers, administrators, and other support staff that make things run smoothly. Gemini's Career Brochure was first published in 2014 to show that there are many different career paths available (especially in local host communities) at an astronomical observatory. Along with the printed career brochure, there are supplementary videos available on Gemini's website and Youtube pages that provide a more detailed and personal glimpse into the day-in-the-life of a wide assortment of Gemini employees. A weakness in most observatory's outreach programming point to the notion that students (and teachers) feel there is a disconnect between academics and where students would like to end up in their career future. This project is one of the ways Gemini addresses these concerns. During my 6-month internship at Gemini, I have updated the Career Brochure website conducted more in-depth interviews with Gemini staff to include as inserts with the brochure, and expanded the array of featured careers. The goal of my work is to provide readers with detailed and individualized employee career paths to show; 1) that there are many ways to establish a career in the STEM fields, and 2), that the STEM fields are vastly diverse.

  2. World Virtual Observatory Organization

    NASA Astrophysics Data System (ADS)

    Ignatyev, Mikhail; Pinigin, Gennadij

    On the base of experience of our Unoversity and Observatory we investigate the seven blocks model of virtual organization for consolidation of resources. This model consists of the next blocks: 1.Population-scientists students robots and agents. 2.Aspiration of population groups. 3.Territory. 4.Production. 5.Ecology and safety. 6.Finance. 7. External relations - input and output flows of population information resources.The world virtual observatory is the virtual world which consists of three groups of variables - appearances essences and structured uncertainty which defines the number and distribution of arbitrary coefficients in equivalent equations. The consolodation of recources permit to create the large telescopes with distributed structure on our planet and cosmos. Virtual instruments can have the best characteristics by means of collective effects which have investigated in our paper.

  3. A Survey of Serious Aircraft Accidents Involving Fatigue Fracture. Volume 2. Rotary-Wing Aircraft (Etude sur des Accidents Importants d’Avions du aux Effets des Fractures de Fatigue. Volume 2. Effets sur des Helicopteres).

    DTIC Science & Technology

    1983-04-01

    Convention on International Civil Aviation, Second Edition , March 1966. 5. WORLD AIRLINE ACCIDENT SUMMARY. Civil Aviation Authority, (Great Britain...people who either provided information, or who suggested other sources of information for the current edition of this survey. E.M.R. Alexander Civil...Waverley, New Zealand. F-28C Tail rotor drive shaft. Fatigue strength reduc- ed by softened condition & surface decarbur- isation. AISA 4130 steel. Ref: NZ

  4. Global Health Observatory (GHO)

    MedlinePlus

    ... monitoring partnerships, including the Countdown to 2030 and academic institutions. – Access the portal Global Observatory on Health ... global situation and trends highlights, using core indicators, database views, major publications and links to relevant web ...

  5. Cyberinfrastructure (CI) for Interactive Ocean Observatories: LOOKING Ahead

    NASA Astrophysics Data System (ADS)

    Orcutt, J.; Abbott, M.; Bellingham, J.; Chave, A.; Delaney, J.; Johnson, R.; Lazowska, E.; Moline, M.; Smarr, L.

    2004-12-01

    Investments in next-generation facilities to achieve a permanent, interactive telepresence throughout remote or hostile environments can empower a broad spectrum of autonomous sensornet facilities through the NSF Major Research Equipment and Facililties Construction Ocean Observatories Initiative (OOI). These systems must involve powerful suites of generic cyberinfrastructure tools designed to optimize access and benefits to a large academic and public user base. Many future research and educational efforts focused throughout the ocean basins, especially within heavily populated coastal regions, will be empowered by these new systems. Our project LOOKING (Laboratory for the Ocean Observatory Knowledge Integration Grid) is developing prototype CI for the OOI to achieve these goals. In the case of ocean observatory networks, it is essential to establish powerful network infrastructures linking the wet or subsea portion, with a host of shore station facilities. These components in turn must seamlessly communicate with an ensemble of data repositories, and relevant computer and visualization resources designed to serve a widely diverse ocean science community with real time, broadband access to all observatory system data, products, and metadata. This infrastructure must be secure, reliable, and resilient. It must meet the potentially ambitious latency, bandwidth, and performance requirements demanded by a set of evolving autonomous sensor platforms over a period of decades. This Grid environment must seamlessly interconnect all relevant national and international research and education nets accessible through high speed, next generation communication networks. The primary components of LOOKING are remote services that fulfill the CI needs of the ocean observatory community. These services arise from overarching science and education requirements: 1) Instrument Services operate at the sensor end of an ocean observatory, and are dominantly but not exclusively wet. 2

  6. The role of geomagnetic observatory data during the Swarm mission

    NASA Astrophysics Data System (ADS)

    Ridley, Victoria; Macmillan, Susan; Beggan, Ciaran

    2014-05-01

    The scientific use of Swarm magnetic data and Swarm-derived products is greatly enhanced through combination with observatory data and indices. The strength of observatory data is their long-term accuracy, with great care being taken to ensure temperature control and correction, platform stability and magnetic cleanliness at each site. Observatory data are being distributed with Swarm data as an auxiliary product. We describe the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. Existing collaborations, such as INTERMAGNET and the World Data Centres for Geomagnetism, are proving invaluable for this. We also discuss how observatory measurements are being used to ground-truth Swarm data as part of the Calibration/Validation effort. Recent efforts to improve the coverage and timeliness of observatory data have been encouraged and now over 60 INTERMAGNET observatories and several other high-quality observatories are providing close-to-definitive data within 3 months of measurement. During the Calibration/Validation period these data are gathered and homogenised on a regular basis by BGS. We then identify measurements collected during overhead passes of the Swarm satellites. For each pass, we remove an estimate of the main field from both the data collected at altitude and that collected on the ground. Both sets of data are then normalised relative to the data variance during all passes in the Calibration/Validation period. The absolute differences of the two sets of normalised data can be used as a metric of satellite data quality relative to observatory data quality. This can be examined by universal time, local time, disturbance level and geomagnetic latitude, for example. A preliminary study of CHAMP data, using definitive minute mean observatory data, has shown how this approach can provide a baseline for detecting abnormalities at all

  7. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    This image of the suspected Black Hole, Cygnus X-1, was the first object seen by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. According to the theories to date, one concept of a black hole is a star, perhaps 10 times more massive than the Sun, that has entered the last stages of stelar evolution. There is an explosion triggered by nuclear reactions after which the star's outer shell of lighter elements and gases is blown away into space and the heavier elements in the stellar core begin to collapse upon themselves. Once this collapse begins, the inexorable force of gravity continues to compact the material until it becomes so dense it is squeezed into a mere point and nothing can escape from its extreme gravitational field, not even light. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy.

  8. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    Like the Crab Nebula, the Vela Supernova Remnant has a radio pulsar at its center. In this image taken by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory, the pulsar appears as a point source surrounded by weak and diffused emissions of x-rays. HEAO-2's computer processing system was able to record and display the total number of x-ray photons (a tiny bundle of radiant energy used as the fundamental unit of electromagnetic radiation) on a scale along the margin of the picture. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  9. An Application of CICCT Accident Categories to Aviation Accidents in 1988-2004

    NASA Technical Reports Server (NTRS)

    Evans, Joni K.

    2007-01-01

    Interventions or technologies developed to improve aviation safety often focus on specific causes or accident categories. Evaluation of the potential effectiveness of those interventions is dependent upon mapping the historical aviation accidents into those same accident categories. To that end, the United States civil aviation accidents occurring between 1988 and 2004 (n=26,117) were assigned accident categories based upon the taxonomy developed by the CAST/ICAO Common Taxonomy Team (CICTT). Results are presented separately for four main categories of flight rules: Part 121 (large commercial air carriers), Scheduled Part 135 (commuter airlines), Non-Scheduled Part 135 (on-demand air taxi) and Part 91 (general aviation). Injuries and aircraft damage are summarized by year and by accident category.

  10. Turning a remotely controllable observatory into a fully autonomous system

    NASA Astrophysics Data System (ADS)

    Swindell, Scott; Johnson, Chris; Gabor, Paul; Zareba, Grzegorz; Kubánek, Petr; Prouza, Michael

    2014-08-01

    We describe a complex process needed to turn an existing, old, operational observatory - The Steward Observatory's 61" Kuiper Telescope - into a fully autonomous system, which observers without an observer. For this purpose, we employed RTS2,1 an open sourced, Linux based observatory control system, together with other open sourced programs and tools (GNU compilers, Python language for scripting, JQuery UI for Web user interface). This presentation provides a guide with time estimates needed for a newcomers to the field to handle such challenging tasks, as fully autonomous observatory operations.

  11. Urania in the Marketplace: Observatories as Holiday Destinations

    NASA Astrophysics Data System (ADS)

    Rumstay, Kenneth S.

    2015-01-01

    During the twentieth century astronomical imagery was frequently incorporated, by manufacturers of industrial and consumer goods, into advertisements which appeared in popular magazines in America. The domes and telescopes of major observatories were often featured. In some cases, particularly within the Golden State of California, major astronomical facilities (notably the Lick and Mt. Wilson Observatories) were touted as tourist attractions and were publicized as such by tourist bureaus, railroads, and hotels.A particularly interesting example is provided by the Hotel Vendome in San Jose. With completion of the Lick Observatory (and the 36-inch Great Refractor) in 1887, the local business community felt that the city needed a first-class resort hotel. The architectural firm of Jacob Lenzen & Son was hired to design a grand hotel, comparable to those found in locales such as Monterey and Pasadena. The resulting four-story, 150-room structure cost 250,000, a phenomenal sum in those days. Yet, within just fourteen years, tourist demand led to the construction of a 36-room annex. Of course, a great resort hotel would not be complete without the opportunity for excursion, and the Mt. Hamilton Stage Company offered daily trips to the famous Lick Observatory.Farther south, the Mt. Wilson Observatory began construction of its own hotel in 1905.The original structure was destroyed by fire in 1913, and replaced by a second which was used by visitors until 1966.Early examples of advertisements for these observatories, recalling the heyday of astronomical tourism, are presented. A few more recent ones for Arecibo and Palomar are included for comparison.

  12. Saint Petersburg magnetic observatory: from Voeikovo subdivision to INTERMAGNET certification

    NASA Astrophysics Data System (ADS)

    Sidorov, Roman; Soloviev, Anatoly; Krasnoperov, Roman; Kudin, Dmitry; Grudnev, Andrei; Kopytenko, Yury; Kotikov, Andrei; Sergushin, Pavel

    2017-11-01

    Since June 2012 the Saint Petersburg magnetic observatory is being developed and maintained by two institutions of the Russian Academy of Sciences (RAS) - the Geophysical Center of RAS (GC RAS) and the Saint Petersburg branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of RAS (IZMIRAN SPb). On 29 April 2016 the application of the Saint Petersburg observatory (IAGA code SPG) for introduction into the INTERMAGNET network was accepted after approval by the experts of the first definitive dataset over 2015, produced by the GC RAS, and on 9 June 2016 the SPG observatory was officially certified. One of the oldest series of magnetic observations, originating in 1834, was resumed in the 21st century, meeting the highest quality standards and all modern technical requirements. In this paper a brief historical and scientific background of the SPG observatory foundation and development is given, the stages of its renovation and upgrade in the 21st century are described, and information on its current state is provided. The first results of the observatory functioning are discussed and geomagnetic variations registered at the SPG observatory are assessed and compared with geomagnetic data from the INTERMAGNET observatories located in the same region.

  13. From research institution to astronomical museum: a history of the Stockholm Observatory

    NASA Astrophysics Data System (ADS)

    Yaskell, Steven Haywood

    2008-07-01

    The Royal Swedish Academy of Sciences (RSAS) (or Kungliga Vetenskapsakademien [KvA] in Swedish) founded 1739, opened its first permanent building, an astronomical and meteorological observatory, on 20 September 1753. This was situated at Brunkebergsåsen (formerly Observatorie Lunden, or Observatory Hill), on a high terrace in a northern quarter of Stockholm. This historic building is still sometimes called Gamla Observatoriet (the Old Observatory) and now is formally the Observatory Museum. This paper reviews the history of the Observatory from its function as a scientific astronomical institution to its relatively-recent relegation to museum status.

  14. The Compton Observatory Science Workshop

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R. (Editor); Gehrels, Neil (Editor); Dennis, Brian (Editor)

    1992-01-01

    The Compton Observatory Science Workshop was held in Annapolis, Maryland on September 23-25, 1991. The primary purpose of the workshop was to provide a forum for the exchange of ideas and information among scientists with interests in various areas of high energy astrophysics, with emphasis on the scientific capabilities of the Compton Observatory. Early scientific results, as well as reports on in-flight instrument performance and calibrations are presented. Guest investigator data products, analysis techniques, and associated software were discussed. Scientific topics covered included active galaxies, cosmic gamma ray bursts, solar physics, pulsars, novae, supernovae, galactic binary sources, and diffuse galactic and extragalactic emission.

  15. Automation of Coordinated Planning Between Observatories: The Visual Observation Layout Tool (VOLT)

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Koratkar, Anuradha; Kerbel, Uri; Pell, Vince

    2002-01-01

    Fulfilling the promise of the era of great observatories, NASA now has more than three space-based astronomical telescopes operating in different wavebands. This situation provides astronomers with the unique opportunity of simultaneously observing a target in multiple wavebands with these observatories. Currently scheduling multiple observatories simultaneously, for coordinated observations, is highly inefficient. Coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Because they are time-consuming and expensive to schedule, observatories often limit the number of coordinated observations that can be conducted. In order to exploit new paradigms for observatory operation, the Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center has developed a tool called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide a visual tool to automate the planning of coordinated observations by multiple astronomical observatories. Four of NASA's space-based astronomical observatories - the Hubble Space Telescope (HST), Far Ultraviolet Spectroscopic Explorer (FUSE), Rossi X-ray Timing Explorer (RXTE) and Chandra - are enthusiastically pursuing the use of VOLT. This paper will focus on the purpose for developing VOLT, as well as the lessons learned during the infusion of VOLT into the planning and scheduling operations of these observatories.

  16. Accident Case Study of Organizational Silence Communication Breakdown: Shuttle Columbia, Mission STS-107

    NASA Technical Reports Server (NTRS)

    Rocha, Rodney

    2011-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) ESMD Risk and Knowledge Management team. This document provides a point-in-time, cumulative, summary of key lessons learned derived from the official Columbia Accident Investigation Board (CAIB). Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document. This report is accompanied by a video that will be sent at request

  17. Astronomical Research at the U.S. Air Force Academy Observatory

    NASA Astrophysics Data System (ADS)

    Della-Rose, Devin J.; Carlson, Randall E.; Chun, Francis K.; Giblin, Timothy W.; Novotny, Steven J.; Polsgrove, Daniel E.

    2018-01-01

    The U.S. Air Force Academy (USAFA) Observatory houses 61-cm and 41-cm Ritchey-Chrétien (RC) reflecting telescopes, and serves as the hub for a world-wide network of 50-cm RC reflectors known as the Falcon Telescope Network (FTN). Since the 1970s, the USAFA Observatory has hosted a wide range of student and faculty research projects including variable star photometry, exoplanet light curve and radial velocity studies, near-Earth object astrometry, and “lucky imaging” of manmade spacecraft. Further, the FTN has been used extensively for LEO through GEO satellite photometry and spectroscopy, and for exoplanet photometry. Future capabilities of our observatory complex include fielding several new FTN observatory sites and the acquisition of a 1-meter RC fast-tracking telescope at the USAFA Observatory.

  18. Camille Flammarion's observatory: towards a revival

    NASA Astrophysics Data System (ADS)

    Morel, P.; Pecker, J. C.; Flammarion, A.; Fuentes, P.; Stépanoff, C. A.; Sol, R.; Dufour, G.; Chaufour, R.; Goury-Laffont, J.

    2011-06-01

    Camille Flammarion's observatory, located in Juvisy-sur-Orge in the suburbs of Paris, has been idle since 1962. Property of the Société Astronomique de France (SAF), it was made available to the city of Juvisy-sur-Orge since 1971, and contains a unique collection of objects and books currently being sorted out. The observatory is being restored by the SAF, thanks to the support of the city of Juvisy-sur-Orge, the French Académie des Sciences and the ``Amis de Camille Flammarion'' association. In 2006, the Maxime Goury Laffont foundation funded the refurbishment of the 240 mm refractor and in 2007 funds were obtained to restore the dome and central building. The main aim of the project is to make this historical place a popular observatory dedicated to astronomy and the sciences which Camille Flammarion enjoyed and contributed to. It constitutes a unique example in France of synergies linking associations, municipality, regional- and national-level institutions.

  19. Byurakan Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    This booklet is devoted to NAS RA V. Ambartsumian Byurakan Astrophysical Observatory and is aimed at people interested in astronomy and BAO, pupils and students, BAO visitors and others. The booklet is made as a visiting card and presents concise and full information about BAO. A brief history of BAO, the biography of the great scientist Viktor Ambartsumian, brief biographies of 13 other deserved scientists formerly working at BAO (B.E. Markarian, G.A. Gurzadyan, L.V. Mirzoyan, M.A. Arakelian, et al.), information on BAO telescopes (2.6m, 1m Schmidt, etc.) and other scientific instruments, scientific library and photographic plate archive, Byurakan surveys (including the famous Markarian Survey included in the UNESCO Memory of the World International Register), all scientific meetings held in Byurakan, international scientific collaboration, data on full research staff of the Observatory, as well as former BAO researchers, who have moved to foreign institutions are given in the booklet. At the end, the list of the most important books published by Armenian astronomers and about them is given.

  20. A review of the Fukushima nuclear reactor accident: radiation effects on the thyroid and strategies for prevention.

    PubMed

    Nagataki, Shigenobu; Takamura, Noboru

    2014-10-01

    This is a summary of the nuclear accident at the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Stations (FDNPS) on 11 March 2011 to be used as a review of the radiation effects to the thyroid and strategies of prevention. The amount of radioiodine released to the environment following the Fukushima accident was 120 Peta Becquerel, which is approximately one-tenth of that in the Chernobyl accident. Residents near the FDNPS were evacuated within a few days and foodstuffs were controlled within 1 or 2 weeks. Therefore, thyroid radiation doses were less than 100 mSv (intervention levels for stable iodine administration) in the majority of children, including less than 1 year olds, living in the evacuation areas. Because the incidence of childhood thyroid cancer increased in those residing near the site following the Chernobyl accident, thyroid screening of all children (0-18 years old) in the Fukushima Prefecture was started. To date, screening of more than 280 000 children has resulted in the diagnosis of thyroid cancer in 90 children (approximate incidence, 313 per million). Thus, although the dose of radiation was much lower, the incidence of thyroid cancer appears to be much higher than that following the Chernobyl accident. A comparison of the thyroidal consequences following the Fukushima and Chernobyl nuclear reactor accidents is discussed. We also summarize the recent increased incidence in thyroid cancer in the Fukushima area following the accident in relation to increased thyroid ultrasound screening and the use of advanced ultrasound techniques. http://links.lww.com/COE/A8.

  1. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F. G.; Schulz, J.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ˜2.4 km by ˜5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  2. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  3. Cultural Heritage of Observatories and Instruments - From Classical Astronomy to Modern Astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    Until the middle of the 19th century positioal astronomy with meridian circles played the dominant role. Pulkovo Observatory, St. Petersburg, was the leading institution for this kind of research. The design of this observatory was a model for the construction of observatories in the 19th century. In addition, in Hamburg Observatory and in some other observatories near the coast, time keeping and teaching of navigation were important tasks for astronomers. Around 1860 astronomy underwent a revolution. Astronomers began to investigate the properties of celestial bodies with physical and chemical methods. In the context of “classical astronomy”, only the direction of star light was studied. In the 1860s quantity and quality of radiation were studied for the first time. This was the beginning of modern “astrophysics”, a notion coined in 1865 by the Leipzig astronomer Karl Friedrich Zöllner (1834-1882). It is remarkable that many amateurs started this new astrophysics in private observatories but not in the established observatories like Greenwich, Paris or Pulkovo. In Germany this development started in Bothkamp Observatory near Kiel, with Hermann Carl Vogel (1841-1907), strongly influenced by Zöllner. An important enterprise was the foundation of the Astrophysical Observatory in Potsdam, near Berlin, in 1874 as the first observatory in the world dedicated to astrophysics - a foundation that inspired others. Important innovations and discoveries were made in Potsdam. The new field of astrophysics caused, and was caused by, new instrumentation: spectrographs, instruments for astrophotography, photometers and solar physics instruments. In particular, the glass mirror reflecting telescope was recognised as a more important instrument than a large refractor; for the new observatory in Hamburg-Bergedorf a 1-m reflector, the fourth largest in the world, made by Zeiss of Jena, was acquired in 1911. Another change was made in the architecture, the idea of a park

  4. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Eric Ianson speaks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  5. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Ralph Basilio talks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  6. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Panelists are seen during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  7. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Charles Miller talks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  8. Assessing accident phobia in mild traumatic brain injury: The Accident Fear Questionnaire.

    PubMed

    Sutherland, Jessica; Middleton, Jason; Ornstein, Tisha J; Lawson, Kerry; Vickers, Kristin

    2016-08-01

    Despite a documented prevalence of accident phobia in almost 40% of motor vehicle accident (MVA) survivors, the onset of accident phobia after traumatic brain injury (TBI) remains poorly understood. There is currently a body of knowledge about posttraumatic stress disorder (PTSD) in patients with TBI, but less is known about accident phobia following TBI, particularly in cases of mild TBI (mTBI). Accident phobia can impede safe return to driving or motor vehicle travel, inhibiting return to daily functioning. In addition, pain complaints have been found to correlate positively with postinjury anxiety disorders. The present study sought to determine the reliability and validity of the Accident Fear Questionnaire (AFQ), a measure used to assess accident phobia, in 72 patients with mTBI using secondary data analysis and the subsequent development of accident phobia postinjury. Furthermore, we sought to examine the impact of pain, anxiety, and depression complaints on the AFQ. Results reveal convergent validity and reliability in mTBI populations. Additionally, pain, anxiety, and depression measures were significantly correlated with scores on the AFQ. Psychometrically, the phobia avoidance subscale of the AFQ is a reliable measure for use with mTBI populations, although some limitations were found. In particular, the accident profile (AP) subscale was not found to be reliable or valid and could be eliminated from the AFQ. Collectively, the present study contributes to the small body of published literature evaluating accident phobia in patients with mTBI and the impact of pain on the development of postinjury anxiety disorders. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. First Light of the Renovated Thacher Observatory

    NASA Astrophysics Data System (ADS)

    O'Neill, Katie; Yin, Yao; Edwards, Nick; Swift, Jonathan

    2017-01-01

    The Thacher Observatory, originally a collaboration between UCLA (P.I. G. Abell), Caltech, Pomona College, and the Thacher School, was built in the early 1960s. The goal of the facility was to serve as a training ground for undergraduate and graduate students in Los Angeles area colleges and also to provide hands-on technical training and experience for Thacher students. It was the birthplace of the Summer Science Program which continues today at other campuses. The observatory has now been fully renovated and modernized with a new, 0.7m telescope and dome that can be controlled remotely and in an automated manner. Science programs involving accurate and precise photometry have been initiated, and we project that we will be presenting the first scientific results of the renovated observatory at this meeting.

  10. NASA Names Premier X-Ray Observatory and Schedules Launch

    NASA Astrophysics Data System (ADS)

    1998-12-01

    NASA's Advanced X-ray Astrophysics Facility has been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel laureate, Subrahmanyan Chandrasekhar. The telescope is scheduled to be launched no earlier than April 8, 1999 aboard the Space Shuttle Columbia mission STS-93, commanded by astronaut Eileen Collins. Chandrasekhar, known to the world as Chandra, which means "moon" or "luminous" in Sanskrit, was a popular entry in a recent NASA contest to name the spacecraft. The contest drew more than six thousand entries from fifty states and sixty-one countries. The co-winners were a tenth grade student in Laclede, Idaho, and a high school teacher in Camarillo, CA. The Chandra X-ray Observatory Center (CXC), operated by the Smithsonian Astrophysical Observatory, will control science and flight operations of the Chandra X-ray Observatory for NASA from Cambridge, Mass. "Chandra is a highly appropriate name," said Harvey Tananbaum, Director of the CXC. "Throughout his life Chandra worked tirelessly and with great precision to further our understanding of the universe. These same qualities characterize the many individuals who have devoted much of their careers to building this premier X-ray observatory." "Chandra probably thought longer and deeper about our universe than anyone since Einstein," said Martin Rees, Great Britain's Astronomer Royal. "Chandrasekhar made fundamental contributions to the theory of black holes and other phenomena that the Chandra X-ray Observatory will study. His life and work exemplify the excellence that we can hope to achieve with this great observatory," said NASA Administrator Dan Goldin. Widely regarded as one of the foremost astrophysicists of the 20th century, Chandrasekhar won the Nobel Prize in 1983 for his theoretical studies of physical processes important to the structure and evolution of stars. He and his wife immigrated from India to the U.S. in 1935. Chandrasekhar served on the faculty of the University of

  11. A New Observatory for Eastern College: A Dream Realized

    NASA Astrophysics Data System (ADS)

    Bradstreet, D. H.

    1996-12-01

    The Eastern College Observatory began as a rooftop observing deck with one Celestron 8 telescope in 1976 as the workhorse instrument of the observational astronomy lab within the core curriculum. For 20 years the observing deck served as the crude observatory, being augmented through the years by other computerized Celestron 8's and a 17.5" diameter Dobsonian with computerized setting circles. The lab consisted primarily of visual observations and astrophotography. In 1987 plans were set into motion to raise money to build a permanent Observatory on the roof of the main classroom building. Fundraising efforts included three Jog-A-Thons (raising more than $40,000) and many donations from individuals and foundations. The fundraising was completed in 1996 and a two telescope observatory was constructed in the summer of 1996 complete with warm room, CCD cameras, computers, spectrograph, video network, and computerized single channel photometer. The telescopes are computerized 16" diameter Meade LX200 Schmidt-Cassegrains, each coupled to Gateway Pentium Pro 200 MHz computers. SBIG ST-8 CCD cameras were also secured for each telescope and an Optec SSP-7 photometer and Optomechanics Research 10C Spectrograph were also purchased. A Daystar H-alpha solar filter and Thousand Oaks visual light solar filter have expanded the Observatory's functionality to daytime observing as well. This is especially useful for the thousands of school children who frequent the Planetarium each year. The Observatory primarily serves the core astronomy lab where students must observe and photograph a prescribed number of celestial objects in a semester. Advanced students can take directed studies where they conduct photometry on eclipsing binaries or other variable stars or search for new asteroids. In addition, the Observatory and Planetarium are open to the public. Interested members of the community can reserve time on the telescopes and receive training and supervision from lab assistants

  12. Status of the James Webb Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2013-01-01

    The James Webb Space Telescope (JWST) is the largest cryogenic, space telescope ever built, and will address a broad range of scientific goals from first light in the universe and re-ionization, to characterization of the atmospheres of extrasolar planets. Recently, significant progress has been made in the construction of the observatory with the completion of all 21 flight mirrors that comprise the telescope's optical chain, and the start of flight instrument deliveries to the Goddard Space Flight Center. In this paper we discuss the design of the observatory, and focus on the recent milestone achievements in each of the major observatory sub-systems.

  13. Preventing accidents

    DOT National Transportation Integrated Search

    2005-08-01

    As the most effective strategy for improving safety is to prevent accidents from occurring at all, the Volpe Center applies a broad range of research techniques and capabilities to determine causes and consequences of accidents and to identify, asses...

  14. Boscovich and the Brera Observatory .

    NASA Astrophysics Data System (ADS)

    Antonello, E.

    In the mid 18th century both theoretical and practical astronomy were cultivated in Milan by Barnabites and Jesuits. In 1763 Boscovich was appointed to the chair of mathematics of the University of Pavia in the Duchy of Milan, and the following year he designed an observatory for the Jesuit Collegium of Brera in Milan. The Specola was built in 1765 and it became quickly one of the main european observatories. We discuss the relation between Boscovich and Brera in the framework of a short biography. An account is given of the initial research activity in the Specola, of the departure of Boscovich from Milan in 1773 and his coming back just before his death.

  15. Synchrotron Radiation from Outer Space and the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    2006-01-01

    The universe provides numerous extremely interesting astrophysical sources of synchrotron X radiation. The Chandra X-ray Observatory and other X-ray missions provide powerful probes of these and other cosmic X-ray sources. Chandra is the X-ray component of NASA's Great Observatory Program which also includes the Hubble Space telescope, the Spitzer Infrared Telescope Facility, and the now defunct Compton Gamma-Ray Observatory. The Chandra X-Ray Observatory provides the best angular resolution (sub-arcsecond) of any previous, current, or planned (for the foreseeable near future) space-based X-ray instrumentation. We present here a brief overview of the technical capability of this X-Ray observatory and some of the remarkable discoveries involving cosmic synchrotron sources.

  16. Affordable Earth Observatories for Developing Countries

    NASA Astrophysics Data System (ADS)

    Meurer, R. H.

    Traditionally high cost has been the principal impediment to developing nations desiring to pursue space programs. More particularly, the benefits derivable from a space system have been less than adequate to justify the investment required. Chief among the causes has been the inability of the system to produce results with sufficient direct economic value to the peoples of their countries. Over the past 15 years, however, "the Microspace Revolution" has resulted in dramatic reductions in the cost of space systems, while at the same time technology has improved to provide greater capabilities in the smallest micro- and nano-class1 satellites. Because of these advances, it behooves developing nations to reevaluate space as an option for their national development. This paper summarizes two new micro-satellite concepts - NanoObservatoryTM and MicroObservatoryTM that offer the prom- ise of a dedicated Earth remote sensing capability at costs comparable to or less than simply buying data from the best known large systems, Landsat and SPOT. Each system is defined both by its observation capabilities and technical parameters of the system's design. Moreover, the systems are characterized in terms of the other potential benefits to developing economies, i.e., education of a technical workforce or applications of Earth imagery in solving national needs. Comparisons are provided with more traditional Earth observing satellites. NanoObservatoryTM is principally intended to serve as a developmental system to build general technical expertise space technology and Earth observation. MicroObservatoryTM takes the next step by focusing on a more sophisticated optical imag- ing camera while keeping the spacecraft systems simple and affordable. For both programs, AeroAstro is working with non- profit institutions to develop a corresponding program of technical participation with the nations that elect to pursue such programs. Dependent upon current capabilities, this might include

  17. Visualization of Traffic Accidents

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong; Khattak, Asad

    2010-01-01

    Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.

  18. Occupational accidents aboard merchant ships

    PubMed Central

    Hansen, H; Nielsen, D; Frydenberg, M

    2002-01-01

    Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational accidents as well as dangerous working situations where possible preventive measures may be initiated. Methods: The study is a historical follow up on occupational accidents among crew aboard Danish merchant ships in the period 1993–7. Data were extracted from the Danish Maritime Authority and insurance data. Exact data on time at risk were available. Results: A total of 1993 accidents were identified during a total of 31 140 years at sea. Among these, 209 accidents resulted in permanent disability of 5% or more, and 27 were fatal. The mean risk of having an occupational accident was 6.4/100 years at sea and the risk of an accident causing a permanent disability of 5% or more was 0.67/100 years aboard. Relative risks for notified accidents and accidents causing permanent disability of 5% or more were calculated in a multivariate analysis including ship type, occupation, age, time on board, change of ship since last employment period, and nationality. Foreigners had a considerably lower recorded rate of accidents than Danish citizens. Age was a major risk factor for accidents causing permanent disability. Change of ship and the first period aboard a particular ship were identified as risk factors. Walking from one place to another aboard the ship caused serious accidents. The most serious accidents happened on deck. Conclusions: It was possible to clearly identify work situations and specific risk factors for accidents aboard merchant ships. Most accidents happened while performing daily routine duties. Preventive measures should focus on workplace instructions for all important functions aboard and also on the prevention of accidents caused by walking around aboard the ship. PMID:11850550

  19. [Intervention methodology for training and information for workers of the building sector].

    PubMed

    Pedron, F; Zanin, T; Ferrante, D; Fania, E

    2006-01-01

    Regarding the seriousness of work-accident in Gorizia district, various organizations as ASL 2 "Isontina" (local health agency), INAIL of Friuli Venezia Giulia (National Institute for occupational accident insurance), trade unions and trade associations created a organization called "Observatory for Working-accidents and Professional Illness Prevention". The aim of this association is the promotion of safety in working environment. Diffusing importance of safety in building trade was the first projects of Observatory. So, Observatory carried an initiative to make more aware the workers. Than, it organized training courses for building workers. Moreover, the construction of an informative pamphlet on risks in building trade was made. For some experimental investigation, Observatory works with Department of Psychology, University of Trieste.

  20. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  1. Searching the Heavens and the Earth: This History of Jesuit Observatories

    NASA Astrophysics Data System (ADS)

    Udías, Agustín

    2003-10-01

    Jesuits established a large number of astronomical, geophysical and meteorological observatories during the 17th and 18th centuries and again during the 19th and 20th centuries throughout the world. The history of these observatories has never been published in a complete form. Many early European astronomical observatories were established in Jesuit colleges. During the 17th and 18th centuries Jesuits were the first western scientists to enter into contact with China and India. It was through them that western astronomy was first introduced in these countries. They made early astronomical observations in India and China and they directed for 150 years the Imperial Observatory of Beijing. In the 19th and 20th centuries a new set of observatories were established. Besides astronomy these now included meteorology and geophysics. Jesuits established some of the earliest observatories in Africa, South America and the Far East. Jesuit observatories constitute an often forgotten chapter of the history of these sciences. This volume is aimed at all scientists and students who do not want to forget the Jesuit contributions to science. Link: http://www.wkap.nl/prod/b/1-4020-1189-X

  2. [Sports accidents: 1963-1973 statistics].

    PubMed

    Fasler, S

    1976-01-01

    Every year, the Swiss Accident Insurance Administration is paying a considerable amount of money for sports accidents. From 1963 to 1973 the number of these accidents has increased more markedly than other types of accidents. Different tendencies can be observed in the different types of sports: skiing accidents have, after a long period of retrogression until 1973, shown a noticeable augmentation again. Football accidents and accidents in other types of sports have on the other hand increased year by year. Mountaineering and aquatic sports often result in fatal accidents. The numerous preventive measures in skiing accidents have obviously been successful. Not only the fractures have decreased, but also the average number of days where sickness benefit was paid. Next to the traffic accidents, the skiing accidents are the most expensive ones. The nature of the healing cost in sports accidents has changed during the period from 1967 to 1972, depending on the different types of sports. In particular, hospital costs have changed considerably. The number of medical consultations per accident has decreased. Payment of sickness benefit has followed the development of the salaries on the one hand and the modifications of the number of lost days on the other. Finally, the costs of the annuities show more or less the same tendency as the ones for sickness benefit. A very gross estimation on the economical losses through sports accidents in Switzerland makes us believe that the direct and indirect costs actually amount to more than one thousand millions of Swiss Francs per year.

  3. A Remotely Operated Observatory for Minor Planet Photometry

    NASA Astrophysics Data System (ADS)

    Ditteon, Richard

    2008-05-01

    In October of 2007 Rose-Hulman Institute of Technology in Terre Haute, Indiana began operating the Oakley Southern Sky Observatory (E09) located near Siding Spring Observatory in New South Wales, Australia. The observatory houses a 0.5-m, f/8.4 Ritchey-Chretien telescope mounted on a Paramount ME, German equatorial mount. Attached to the telescope is an STL-1001E CCD camera which has 1024 by 1024, 24 µm pixels, a two-stage thermoelectric cooler, and built in color filter wheel with BVRI and clear filters. Image scale is 1.2 arcseconds per pixel. A cloud sensor is used to monitor sky conditions. The observatory has a roll-off roof with limit switches to detect when the roof is fully open and fully closed. In addition, a switch has been added to the mount to detect when the telescope is parked and that it is safe to open or close the roof. All of the hardware is controlled by a custom program which reads a simple text file containing the sequence of images and targets to be collected each night. The text file is loaded onto the control computer once each day, then the software waits until sunset to determine if the sky is clear. When conditions are favorable, power is turned on, the roof opens, twilight flats, dark and bias frames are recorded, and when it is fully dark data frames are recorded. Images are transferred via the Internet back to Rose-Hulman by another program running in the background. The observatory closes itself before dawn or if it gets cloudy. Currently we are using the observatory for photometry of minor planets. Students are responsible for selecting targets, processing the returned images, determining the period and light curve of each minor planet and writing a paper for publication. Recent results will be presented.

  4. Farm accidents in children.

    PubMed Central

    Cameron, D.; Bishop, C.; Sibert, J. R.

    1992-01-01

    OBJECTIVE--To examine the problem of accidental injury to children on farms. DESIGN--Prospective county based study of children presenting to accident and emergency departments over 12 months with injuries sustained in a farm setting and nationwide review of fatal childhood farm accidents over the four years April 1986 to March 1990. SETTING--Accident and emergency departments in Aberystwyth, Carmarthen, Haverfordwest, and Llanelli and fatal accidents in England, Scotland, and Wales notified to the Health and Safety Executive register. SUBJECTS--Children aged under 16. MAIN OUTCOME MEASURE--Death or injury after farm related accidents. RESULTS--65 accidents were recorded, including 18 fractures. Nine accidents necessitated admission to hospital for a mean of two (range one to four) days. 13 incidents were related to tractors and other machinery; 24 were due to falls. None of these incidents were reported under the statutory notification scheme. 33 deaths were notified, eight related to tractors and allied machinery and 10 related to falling objects. CONCLUSIONS--Although safety is improving, the farm remains a dangerous environment for children. Enforcement of existing safety legislation with significant penalties and targeting of safety education will help reduce accident rates further. PMID:1638192

  5. Power systems for ocean regional cabled observatories

    NASA Technical Reports Server (NTRS)

    Kojima, Junichi; Asakawa, Kenichi; Howe, Bruce M.; Kirkham, Harold

    2004-01-01

    Development of power systems is the most challenging technical issue in the design of ocean regional cabled observatories. ARENA and NEPTUNE are two ocean regional cabled observatory networks with aims that are at least broadly similar. Yet the two designs are quite different in detail. This paper outlines the both systems and explores the reasons for the divergence of design, and shows that it arose because of differences in the priority of requirements.

  6. Toward a Global eHealth Observatory for Nursing.

    PubMed

    Bartz, Claudia C; Hardiker, Nicholas R; Coenen, Amy

    2015-01-01

    This poster summarizes a review of existing health observatories and proposes a new entity for nursing. A nursing eHealth observatory would be an authoritative and respected source of eHealth information that would support nursing decision-making and policy development and add to the body of knowledge about professional nursing and client care outcomes.

  7. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, : J.; Abreu, P.; Aglietta, M.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for siderealmore » modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.« less

  8. The Magnetic Observatory Buildings at the Royal Observatory, Cape

    NASA Astrophysics Data System (ADS)

    Glass, I. S.

    2015-10-01

    During the 1830s there arose a strong international movement, promoted by Carl Friedrich Gauss and Alexander von Humboldt, to characterise the earth's magnetic field. By 1839 the Royal Society in London, driven by Edward Sabine, had organised a "Magnetic Crusade" - the establishment of a series of magnetic and meteorological observatories around the British Empire, including New Zealand, Australia, St Helena and the Cape. This article outlines the history of the latter installation, its buildings and what became of them.

  9. Operating observatories: the need for a new paradigm

    NASA Astrophysics Data System (ADS)

    Payne, Ifan; Veillet, Christian

    2014-08-01

    At a time of declining funding, the managers of ground based observatories may not be in the best position to ensure adequate resources either for developing new facilities or new instruments or for upgrading existing facilities. Nor can there be dependence upon the traditional support for researchers which in turn implies that there is inadequate founding to cover the cost of operations. For historical reasons, an overwhelming number of observatories in the USA are affiliated with, or hosted by, universities yet, because of the traditional lack of entrepreneurial thinking and the complexity and the extent of administrations, a university may not be the best environment to develop new approaches to the management of observatories; nor is an academic background of necessity the best preparation for best management practices. We propose that observatories should adopt a business-like approach, to be service providers, and to use the same metrics as for a business. This approach may entail forming corporations, forming consortia, spreading the risk and to find additional sources of income from sales and spin-offs.

  10. The Ocean Observatories Initiative: A new initiative for sea floor observatory research in the United States

    NASA Astrophysics Data System (ADS)

    Clark, H. L.; Isern, A. R.

    2003-04-01

    The Division of Ocean Sciences of the American National Science Foundation (NSF) plans to initiate construction of an integrated observatory network that will provide the oceanographic research and education communities with a new mode of access to the ocean. This observatory system will have three elements: 1) a regional cabled network consisting of interconnected sites on the seafloor spanning several geological and oceanographic features and processes, 2) several relocatable deep-sea buoys that could also be deployed in harsh environments such as the Southern Ocean, and 3) new construction or enhancements to existing facilities leading to an expanded network of coastal observatories. The primary infrastructure for all components of the Ocean Observatories Initiative (OOI) consists of an array of seafloor junction boxes connected to cables running along the seafloor to individual instruments or instrument clusters. These junction boxes include undersea connectors that provide not only the power and two-way communication needed to support seafloor instrumentation, but also the capability to exchange instrumentation in situ when necessary for conducting new experiments or for repairing existing instruments. Depending upon proximity to the coast and other engineering requirements, the junction box will be either terminated by a long dedicated fiber-optic cable to shore, or by a shorter cable to a surface buoy that is capable of two-way communications with a shore station. The scientific problems driving the need for an ocean observing system are broad in scope and encompass nearly every area of ocean science including: ecological characterizations; role of the ocean in climate; fluids, chemistry, and life in the oceanic crust; dynamics of the oceanic lithosphere and imaging of the earth’s interior; seafloor spreading and subduction; organic carbon fluxes; turbulent mixing and biophysical interaction; and coastal ocean processes. Thirty years ago, NSF leadership

  11. Remote observatory access via the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Horan, Stephen; Anderson, Kurt; Georghiou, Georghios

    1992-01-01

    An investigation of the potential for using the ACTS to provide the data distribution network for a distributed set of users of an astronomical observatory has been conducted. The investigation consisted of gathering the data and interface standards for the ACTS network and the observatory instrumentation and telecommunications devices. A simulation based on COMNET was then developed to test data transport configurations for real-time suitability. The investigation showed that the ACTS network should support the real-time requirements and allow for growth in the observatory needs for data transport.

  12. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    In this photograph, the Chandra X-Ray Observatory (CXO) was installed and mated to the Inertial Upper Stage (IUS) inside the Shuttle Columbia's cargo bay at the Kennedy Space Center. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, the CXO was carried into low-Earth orbit by the Space Shuttle Columbia (STS-93 mission) on July 22, 1999. The Observatory was deployed from the Shuttle's cargo bay at 155 miles above the Earth. Two firings of an attached IUS rocket, and several firings of its own onboard rocket motors, after separating from the IUS, placed the Observatory into its working orbit. The IUS is a solid rocket used to place spacecraft into orbit or boost them away from the Earth on interplanetary missions. Since its first use by NASA in 1983, the IUS has supported a variety of important missions, such as the Tracking and Data Relay Satellite, Galileo spacecraft, Magellan spacecraft, and Ulysses spacecraft. The IUS was built by the Boeing Aerospace Co., at Seattle, Washington and managed by the Marshall Space Flight Center.

  13. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  14. Three Short Videos by the Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Wessells, Stephen; Lowenstern, Jake; Venezky, Dina

    2009-01-01

    This is a collection of videos of unscripted interviews with Jake Lowenstern, who is the Scientist in Charge of the Yellowstone Volcano Observatory (YVO). YVO was created as a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and University of Utah to strengthen the long-term monitoring of volcanic and earthquake unrest in the Yellowstone National Park region. Yellowstone is the site of the largest and most diverse collection of natural thermal features in the world and the first National Park. YVO is one of the five USGS Volcano Observatories that monitor volcanoes within the United States for science and public safety. These video presentations give insights about many topics of interest about this area. Title: Yes! Yellowstone is a Volcano An unscripted interview, January 2009, 7:00 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic features at Yellowstone: 'How do we know Yellowstone is a volcano?', 'What is a Supervolcano?', 'What is a Caldera?','Why are there geysers at Yellowstone?', and 'What are the other geologic hazards in Yellowstone?' Title: Yellowstone Volcano Observatory An unscripted interview, January 2009, 7:15 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions about the Yellowstone Volcano Observatory: 'What is YVO?', 'How do you monitor volcanic activity at Yellowstone?', 'How are satellites used to study deformation?', 'Do you monitor geysers or any other aspect of the Park?', 'Are earthquakes and ground deformation common at Yellowstone?', 'Why is YVO a relatively small group?', and 'Where can I get more information?' Title: Yellowstone Eruptions An unscripted interview, January 2009, 6.45 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic

  15. International ultraviolet explorer observatory operations

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This volume contains the Final Report for the International Ultraviolet Explorer (IUE) Observatory Operations contract, NAS5-28787. The report summarizes the activities of the IUE Observatory over the 13-month period from November 1985 through November 1986 and is arranged in sections according to the functions specified in the Statement of Work (SOW) of the contract. In order to preserve numerical correspondence between the technical SOW elements specified by the contract and the sections of this report, project management activities (SOW element 0.0.) are reported here in Section 7, following the reports of technical SOW elements 1.0 through 6.0. Routine activities have been summarized briefly whenever possible; statistical compilations, reports, and more lengthy supplementary material are contained in the Appendices.

  16. French policy for managing the post-accident phase of a nuclear accident.

    PubMed

    Gallay, F; Godet, J L; Niel, J C

    2015-06-01

    In 2005, at the request of the French Government, the Nuclear Safety Authority (ASN) established a Steering Committee for the Management of the Post-Accident Phase of a Nuclear Accident or a Radiological Emergency, with the objective of establishing a policy framework. Under the supervision of ASN, this Committee, involving several tens of experts from different backgrounds (e.g. relevant ministerial offices, expert agencies, local information commissions around nuclear installations, non-governmental organisations, elected officials, licensees, and international experts), developed a number of recommendations over a 7-year period. First published in November 2012, these recommendations cover the immediate post-emergency situation, and the transition and longer-term periods of the post-accident phase in the case of medium-scale nuclear accidents causing short-term radioactive release (less than 24 h) that might occur at French nuclear facilities. They also apply to actions to be undertaken in the event of accidents during the transportation of radioactive materials. These recommendations are an important first step in preparation for the management of a post-accident situation in France in the case of a nuclear accident. © The Chartered Institution of Building Services Engineers 2014.

  17. Cosmic Explorers and Star Docent Youth Programs at Henize Observatory

    NASA Astrophysics Data System (ADS)

    Kabbes, J.

    2013-04-01

    The Karl G. Henize Observatory at Harper Community College has long served Harper students and the community. College students fulfill observing requirements for astronomy and physical science classes while the general public views objects through a variety of telescopes. In the spring of 2011, the observatory was in trouble. The long time observatory manager had left, the volunteer staff consisted of two individuals, and the Astronomy Club, which traditionally provided staff to operate the observatory, was moribund. We only drew 20-30 visitors for our bi-weekly public sessions. To face such a challenge, two recent complimentary programs, The Cosmic Explorers for grades 3-6 and the Star Docents for students in grades 7-12 were implemented.

  18. Fuel Cycle Research and Development Accident Tolerant Fuels Series 1 (ATF-1) Irradiation Testing FY 2016 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Core, Gregory Matthew

    This report contains a summary of irradiation testing of Fuel Cycle Research and Development (FCRD) Accident Tolerant Fuels Series 1 (ATF 1) experiments performed at Idaho National Laboratory (INL) in FY 2016. ATF 1 irradiation testing work performed in FY 2016 included design, analysis, and fabrication of ATF-1B drop in capsule ATF 1 series experiments and irradiation testing of ATF-1 capsules in the ATR.

  19. Operation of U.S. Geological Survey unmanned digital magnetic observatories

    USGS Publications Warehouse

    Wilson, L.R.

    1990-01-01

    The precision and continuity of data recorded by unmanned digital magnetic observatories depend on the type of data acquisition equipment used and operating procedures employed. Three generations of observatory systems used by the U.S. Geological Survey are described. A table listing the frequency of component failures in the current observatory system has been compiled for a 54-month period of operation. The cause of component failure was generally mechanical or due to lightning. The average percentage data loss per month for 13 observatories operating a combined total of 637 months was 9%. Frequency distributions of data loss intervals show the highest frequency of occurrence to be intervals of less than 1 h. Installation of the third generation system will begin in 1988. The configuration of the third generation observatory system will eliminate most of the mechanical problems, and its components should be less susceptible to lightning. A quasi-absolute coil-proton system will be added to obtain baseline control for component variation data twice daily. Observatory data, diagnostics, and magnetic activity indices will be collected at 12-min intervals via satellite at Golden, Colorado. An improvement in the quality and continuity of data obtained with the new system is expected. ?? 1990.

  20. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Madhulika Guhathakurta, SDO Program Scientist, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  1. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  2. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Mitchell T.; Bunt, R.; Corradini, M.

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affectmore » reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).« less

  3. Astronomical virtual observatory and the place and role of Bulgarian one

    NASA Astrophysics Data System (ADS)

    Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen

    2009-07-01

    Virtual observatory could be defined as a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that combine existing databases from ground-based and orbiting observatories, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies has been compiled from observations in a variety of wavelengths-optical, radio, infrared, gamma ray, X-ray and more. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. During the autumn of the 2001 (26.09.2001) six organizations from Europe put the establishment of the Astronomical Virtual Observatory (AVO)-ESO, ESA, Astrogrid, CDS, CNRS, Jodrell Bank (Dolensky et al., 2003). Its aims have been outlined as follows: - To provide comparative analysis of large sets of multiwavelength data; - To reuse data collected by a single source; - To provide uniform access to data; - To make data available to less-advantaged communities; - To be an educational tool. The Virtual observatory includes: - Tools that make it easy to locate and retrieve data from catalogues, archives, and databases worldwide; - Tools for data analysis, simulation, and visualization; - Tools to compare observations with results obtained from models, simulations and theory; - Interoperability: services that can be used regardless of the clients computing platform, operating system and software capabilities; - Access to data in near real-time, archived data and historical data; - Additional information - documentation, user-guides, reports

  4. Persistence of airline accidents.

    PubMed

    Barros, Carlos Pestana; Faria, Joao Ricardo; Gil-Alana, Luis Alberiko

    2010-10-01

    This paper expands on air travel accident research by examining the relationship between air travel accidents and airline traffic or volume in the period from 1927-2006. The theoretical model is based on a representative airline company that aims to maximise its profits, and it utilises a fractional integration approach in order to determine whether there is a persistent pattern over time with respect to air accidents and air traffic. Furthermore, the paper analyses how airline accidents are related to traffic using a fractional cointegration approach. It finds that airline accidents are persistent and that a (non-stationary) fractional cointegration relationship exists between total airline accidents and airline passengers, airline miles and airline revenues, with shocks that affect the long-run equilibrium disappearing in the very long term. Moreover, this relation is negative, which might be due to the fact that air travel is becoming safer and there is greater competition in the airline industry. Policy implications are derived for countering accident events, based on competition and regulation. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.

  5. Aviation safety and maintenance under major organizational changes, investigating non-existing accidents.

    PubMed

    Herrera, Ivonne A; Nordskag, Arve O; Myhre, Grete; Halvorsen, Kåre

    2009-11-01

    The objective of this paper is to discuss the following questions: Do concurrent organizational changes have a direct impact on aviation maintenance and safety, if so, how can this be measured? These questions were part of the investigation carried out by the Accident Investigation Board, Norway (AIBN). The AIBN investigated whether Norwegian aviation safety had been affected due to major organizational changes between 2000 and 2004. The main concern was the reduction in safety margins and its consequences. This paper presents a summary of the techniques used and explains how they were applied in three airlines and by two offshore helicopter operators. The paper also discusses the development of safety related indicators in the aviation industry. In addition, there is a summary of the lessons learned and safety recommendations. The Norwegian Ministry of Transport has required all players in the aviation industry to follow up the findings and recommendations of the AIBN study.

  6. Haystack Observatory Technology Development Center

    NASA Technical Reports Server (NTRS)

    Beaudoin, Chris; Corey, Brian; Niell, Arthur; Cappallo, Roger; Whitney, Alan

    2013-01-01

    Technology development at MIT Haystack Observatory were focused on four areas in 2012: VGOS developments at GGAO; Digital backend developments and workshop; RFI compatibility at VLBI stations; Mark 6 VLBI data system development.

  7. The Busot Observatory: towards a robotic autonomous telescope

    NASA Astrophysics Data System (ADS)

    García-Lozano, R.; Rodes, J. J.; Torrejón, J. M.; Bernabéu, G.; Berná, J. Á.

    2016-12-01

    We describe the Busot observatory, our project of a fully robotic autonomous telescope. This astronomical observatory, which obtained the Minor Planet Centre code MPC-J02 in 2009, includes a 14 inch MEADE LX200GPS telescope, a 2 m dome, a ST8-XME CCD camera from SBIG, with an AO-8 adaptive optics system, and a filter wheel equipped with UBVRI system. We are also implementing a spectrograph SGS ST-8 for the telescope. Currently, we are involved in long term studies of variable sources such as X-ray binaries systems, and variable stars. In this work we also present the discovery of W UMa systems and its orbital periods derived from the photometry light curve obtained at Busot Observatory.

  8. Invited Review Article: The Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel A.

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  9. Invited review article: The Chandra X-ray Observatory.

    PubMed

    Schwartz, Daniel A

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  10. OpenROCS: a software tool to control robotic observatories

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Sanz, Josep; Vilardell, Francesc; Ribas, Ignasi; Gil, Pere

    2012-09-01

    We present the Open Robotic Observatory Control System (OpenROCS), an open source software platform developed for the robotic control of telescopes. It acts as a software infrastructure that executes all the necessary processes to implement responses to the system events that appear in the routine and non-routine operations associated to data-flow and housekeeping control. The OpenROCS software design and implementation provides a high flexibility to be adapted to different observatory configurations and event-action specifications. It is based on an abstract model that is independent of the specific hardware or software and is highly configurable. Interfaces to the system components are defined in a simple manner to achieve this goal. We give a detailed description of the version 2.0 of this software, based on a modular architecture developed in PHP and XML configuration files, and using standard communication protocols to interface with applications for hardware monitoring and control, environment monitoring, scheduling of tasks, image processing and data quality control. We provide two examples of how it is used as the core element of the control system in two robotic observatories: the Joan Oró Telescope at the Montsec Astronomical Observatory (Catalonia, Spain) and the SuperWASP Qatar Telescope at the Roque de los Muchachos Observatory (Canary Islands, Spain).

  11. 49 CFR 837.3 - Published reports, material contained in the public accident investigation dockets, and accident...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... public accident investigation dockets, and accident database data. 837.3 Section 837.3 Transportation... investigation dockets, and accident database data. (a) Demands for material contained in the NTSB's official public docket files of its accident investigations, or its computerized accident database(s) shall be...

  12. 49 CFR 837.3 - Published reports, material contained in the public accident investigation dockets, and accident...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... public accident investigation dockets, and accident database data. 837.3 Section 837.3 Transportation... investigation dockets, and accident database data. (a) Demands for material contained in the NTSB's official public docket files of its accident investigations, or its computerized accident database(s) shall be...

  13. 49 CFR 837.3 - Published reports, material contained in the public accident investigation dockets, and accident...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... public accident investigation dockets, and accident database data. 837.3 Section 837.3 Transportation... investigation dockets, and accident database data. (a) Demands for material contained in the NTSB's official public docket files of its accident investigations, or its computerized accident database(s) shall be...

  14. 49 CFR 837.3 - Published reports, material contained in the public accident investigation dockets, and accident...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... public accident investigation dockets, and accident database data. 837.3 Section 837.3 Transportation... investigation dockets, and accident database data. (a) Demands for material contained in the NTSB's official public docket files of its accident investigations, or its computerized accident database(s) shall be...

  15. 49 CFR 837.3 - Published reports, material contained in the public accident investigation dockets, and accident...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... public accident investigation dockets, and accident database data. 837.3 Section 837.3 Transportation... investigation dockets, and accident database data. (a) Demands for material contained in the NTSB's official public docket files of its accident investigations, or its computerized accident database(s) shall be...

  16. [Accidents and injuries in the EU. Results of the EuroSafe Reports].

    PubMed

    Bauer, R; Steiner, M; Kisser, R; Macey, S M; Thayer, D

    2014-06-01

    Accidents and injuries are a relevant although largely preventable public health problem. Information on the causes of accidents is the basis for accident prevention and product safety. The current report "Injuries in the European Union", edited by EuroSafe, the European Association for Injury Prevention and Safety Promotion, is a summary of key statistics on accidents and injuries at the EU level. In addition to international data on cause of death, the data of the European Injury Data Base (IDB) in particular are presented. The IDB is a unique data source for the EU based on an internationally standardized dataset of external causes and circumstances of injuries, which is collected in the emergency department of hospitals. Thus, the IDB covers the entire spectrum of accidents and injuries in sufficient detail as is necessary for the derivation of preventive measures and the knowledge of involved products. The currently available IDB data are collected by the participating Member States (2012: Austria, Cyprus, Denmark, Germany, Italy, Latvia, Malta, The Netherlands, Norway, Portugal, Slovenia, and Sweden) in self-interest (i.e., without legal obligation) with the support of the EU health programs. The central database for the IDB is run by the European Commission and provides public access to the aggregated data of the participating countries. Currently, over 100 IDB hospitals in the EU upload around 300,000 cases per year into the EU database. The IDB contains information on all accident sectors (transport, workplace, school etc.) with a focus on leisure and sports accidents. Depending on the accident sector, up to 25 variables (activities, products involved, means of transport etc.) and often also short narratives are recorded for each case. The report shows that 40 million people are treated in a hospital annually in the EU after accidents and violence, and that about 233,000 people die as a consequence of injury. There are large differences between countries

  17. 1995 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.

    1996-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity (SVA) at 6 volcanic centers in 1995: Mount Martin (Katmai Group), Mount Veniaminof, Shishaldin, Makushin, Kliuchef/Korovin, and Kanaga. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) on the 1995 eruptions of 2 Russian volcanoes: Bezymianny and Karymsky. This report summarizes volcanic activity in Alaska during 1995 and the AVO response, as well as information on the 2 Kamchatkan eruptions. Only those reports or inquiries that resulted in a "significant" investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of phone calls throughout the year reporting steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1995 response record.

  18. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    Managed by the Marshall Space Flight Center and built by TRW, the third High Energy Astronomy Observatory was launched September 20, 1979. HEAO-3 was designed to study gamma-rays and cosmic ray particles.

  19. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1995-01-14

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  20. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  1. The Marseille Observatory 1860-1920: missed opportunities and elebrated achievements

    NASA Astrophysics Data System (ADS)

    Caplan, James

    2001-10-01

    After summarizing the early history of the Marseille Observatory (founded by the Jesuits and operational in 1702), I describe the circumstances leading to the takeover by Le Verrier in the 1860s. The observatory was rebuilt on the Plateau Longchamp and new instruments were installed, most notably the 80-cm Foucault glass-mirror telescope. The work of the new observatory is then presented, and the instruments described, starting with the Le Verrier period and continuing through the long directorship of Stephan, and then Bourget. The overall success of the observatory in its Longchamp site was due in part to the assiduous pursuit of routine observations and to the discovery of comets and asteroids, combined with the `exploratory' observations of `nebulae' by Stephan. In addition, the first stellar interferometry observations, and the first applications of the Fabry-Perot interferometer to nebular observations, were important achievements. On the other hand, the failure in the beginning of the twentieth century to adapt the telescopes to photography condemned the observatory to a long period of missed opportunities, from which it did not recover for several decades.

  2. Astronomy Against Terrorism: an Educational Astronomical Observatory Project in Peru

    NASA Astrophysics Data System (ADS)

    Ishitsuka, M.; Montes, H.; Kuroda, T.; Morimoto, M.; Ishitsuka, J.

    2003-05-01

    The Cosmos Coronagraphic Observatory was completely destroyed by terrorists in 1988. In 1995, in coordination with the Minister of Education of Peru, a project to construct a new Educational Astronomical Observatory has been executed. The main purpose of the observatory is to promote an interest in basic space sciences in young students from school to university levels, through basic astronomical studies and observations. The planned observatory will be able to lodge 25 visitors; furthermore an auditorium, a library and a computer room will be constructed to improve the interest of people in astronomy. Two 15-cm refractor telescopes, equipped with a CCD camera and a photometer, will be available for observations. Also a 6-m dome will house a 60-cm class reflector telescope, which will be donated soon, thanks to a fund collected and organized by the Nishi-Harima Astronomical Observatory in Japan. In addition a new modern planetarium donated by the Government of Japan will be installed in Lima, the capital of Peru. These installations will be widely open to serve the requirements of people interested in science.

  3. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1982-01-01

    This artist's concept depicts the High Energy Astronomy Observatory (HEAO)-2 in orbit. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  4. Interactive 3D visualization for theoretical virtual observatories

    NASA Astrophysics Data System (ADS)

    Dykes, T.; Hassan, A.; Gheller, C.; Croton, D.; Krokos, M.

    2018-06-01

    Virtual observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of data sets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2D or volume rendering in 3D. We analyse the current state of 3D visualization for big theoretical astronomical data sets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3D visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based data sets, allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.

  5. Current Status of Carl Sagan Observatory in Mexico

    NASA Astrophysics Data System (ADS)

    Sanchez-Ibarra, A.

    The current status of Observatory "Carl Sagan" (OCS) of University of Sonora is presented. This project was born in 1996 focused to build a small solar-stellar observatory completely operated by remote control. The observatory will be at "Cerro Azul", a 2480 m peak in one of the best regions in the world for astronomical observation, at the Sonora-Arizona desert. The OCS, with three 16 cm solar telescopes and a 55 cm stellar telescope is one of the cheapest observatories, valuated in US200,000 Added to its scientific goals to study solar coronal holes and Supernovae Type 1A, the OCS has a strong educative and cultural program in Astronomy to all levels. At the end of 2001, we started the Program "Constelacion", to build small planetariums through all the countries with a cost of only US80,000. Also, the webcast system for transmission of the solar observations from the prototype OCS at the campus, was expanded to webcast educational programs in Astronomy since July of this year, including courses and diplomats for Latin American people. All of these advances are exposed here.

  6. Behavior of U 3Si 2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle Allan Lawrence; Hales, Jason Dean; Barani, Tommaso

    2016-09-01

    As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Losmore » Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.« less

  7. A robotic observatory in the city

    NASA Astrophysics Data System (ADS)

    Ruch, Gerald T.; Johnston, Martin E.

    2012-05-01

    The University of St. Thomas (UST) Observatory is an educational facility integrated into UST's undergraduate curriculum as well as the curriculum of several local schools. Three characteristics combine to make the observatory unique. First, the telescope is tied directly to the support structure of a four-story parking ramp instead of an isolated pier. Second, the facility can be operated remotely over an Internet connection and is capable of performing observations without a human operator. Third, the facility is located on campus in the heart of a metropolitan area where light pollution is severe. Our tests indicate that, despite the lack of an isolated pier, vibrations from the ramp do not degrade the image quality at the telescope. The remote capability facilitates long and frequent observing sessions and allows others to use the facility without traveling to UST. Even with the high background due to city lights, the sensitivity and photometric accuracy of the system are sufficient to fulfill our pedagogical goals and to perform a variety of scientific investigations. In this paper, we outline our educational mission, provide a detailed description of the observatory, and discuss its performance characteristics.

  8. LAGO: The Latin American giant observatory

    NASA Astrophysics Data System (ADS)

    Sidelnik, Iván; Asorey, Hernán; LAGO Collaboration

    2017-12-01

    The Latin American Giant Observatory (LAGO) is an extended cosmic ray observatory composed of a network of water-Cherenkov detectors (WCD) spanning over different sites located at significantly different altitudes (from sea level up to more than 5000 m a.s.l.) and latitudes across Latin America, covering a wide range of geomagnetic rigidity cut-offs and atmospheric absorption/reaction levels. The LAGO WCD is simple and robust, and incorporates several integrated devices to allow time synchronization, autonomous operation, on board data analysis, as well as remote control and automated data transfer. This detection network is designed to make detailed measurements of the temporal evolution of the radiation flux coming from outer space at ground level. LAGO is mainly oriented to perform basic research in three areas: high energy phenomena, space weather and atmospheric radiation at ground level. It is an observatory designed, built and operated by the LAGO Collaboration, a non-centralized collaborative union of more than 30 institutions from ten countries. In this paper we describe the scientific and academic goals of the LAGO project - illustrating its present status with some recent results - and outline its future perspectives.

  9. Exploring remote operation for ALMA Observatory

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Ovando, Nicolás.; Velez, Gaston; Fuica, Soledad; Schemrl, Anton; Robles, Andres; Ibsen, Jorge; Filippi, Giorgio; Pietriga, Emmanuel

    2014-08-01

    The Atacama Large Millimeter /submillimeter Array (ALMA) will be a unique research instrument composed of at least 66 reconfigurable high-precision antennas, located at the Chajnantor plain in the Chilean Andes at an elevation of 5000 m. The observatory has another office located in Santiago of Chile, 1600 km from the Chajnantor plain. In the Atacama desert, the wonderful observing conditions imply precarious living conditions and extremely high operation costs: i.e: flight tickets, hospitality, infrastructure, water, electricity, etc. It is clear that a purely remote operational model is impossible, but we believe that a mixture of remote and local operation scheme would be beneficial to the observatory, not only in reducing the cost but also in increasing the observatory overall efficiency. This paper describes the challenges and experience gained in such experimental proof of the concept. The experiment was performed over the existing 100 Mbps bandwidth, which connects both sites through a third party telecommunication infrastructure. During the experiment, all of the existent capacities of the observing software were validated successfully, although room for improvement was clearly detected. Network virtualization, MPLS configuration, L2TPv3 tunneling, NFS adjustment, operational workstations design are part of the experiment.

  10. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  11. Observatory Sponsoring Astronomical Image Contest

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  12. Protection against lightning on the geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Čop, R.; Milev, G.; Deželjin, D.; Kosmač, J.

    2014-04-01

    The Sinji Vrh Geomagnetic Observatory was built on the brow of the mountain Gora, above Ajdovščina, and all over Europe one may hardly find an area which is more often struck by lightning than this south-western part of Slovenia. When the humid air masses of a storm front hit the edge of Gora, they rise up more than 1000 m in a very short time, and this causes the additional electrical charge of stormy clouds. The reliability of operations performed in the every building of observatory could be increased by understanding the formation of lightning in the thunderstorm cloud, the application of already proven methods of protection against a strike of lightning and against its secondary effects. To reach this goal the following groups of experts have to co-operate: the experts in the field of protection against lightening phenomenon, the constructors and manufacturers of equipment and the observatory managers.

  13. Protection against lightning at a geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Čop, R.; Milev, G.; Deželjin, D.; Kosmač, J.

    2014-08-01

    The Sinji Vrh Geomagnetic Observatory was built on the brow of Gora, the mountain above Ajdovščina, which is a part of Trnovo plateau, and all over Europe one can hardly find an area which is more often struck by lightning than this southwestern part of Slovenia. When the humid air masses of a storm front hit the edge of Gora, they rise up more than 1000 m in a very short time, and this causes an additional electrical charge of stormy clouds. The reliability of operations performed in every section of the observatory could be increased by understanding the formation of lightning in a thunderstorm cloud and the application of already-proven methods of protection against a stroke of lightning and against its secondary effects. To reach this goal the following groups of experts have to cooperate: experts in the field of protection against lightning, constructors and manufacturers of equipment and observatory managers.

  14. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Richard Fisher, Heliophysics Division Director at NASA Headquarters, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  15. Urban pedestrian accident countermeasures experimental evaluation. Volume 2, Accident studies

    DOT National Transportation Integrated Search

    1975-02-01

    A pedestrian accident data collection system was established in six major cities. The system involved using the regular police accident report form and a specifically designed supplementary data form. The information on the forms was combined, and th...

  16. A Modern Operating System for Near-real-time Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Orcutt, John; Vernon, Frank

    2014-05-01

    The NSF Ocean Observatory Initiative (OOI) provided an opportunity for expanding the capabilities for managing open, near-real-time (latencies of seconds) data from ocean observatories. The sensors deployed in this system largely return data from seafloor, cabled fiber optic cables as well as satellite telemetry. Bandwidth demands range from high-definition movies to the transmission of data via Iridium satellite. The extended Internet also provides an opportunity to not only return data, but to also control the sensors and platforms that comprise the observatory. The data themselves are openly available to any users. In order to provide heightened network security and overall reliability, the connections to and from the sensors/platforms are managed without Layer 3 of the Internet, but instead rely upon message passing using an open protocol termed Advanced Queuing Messaging Protocol (AMQP). The highest bandwidths in the system are in the Regional Scale Network (RSN) off Oregon and Washington and on the continent with highly reliable network connections between observatory components at 10 Gbps. The maintenance of metadata and life cycle histories of sensors and platforms is critical for providing data provenance over the years. The integrated cyberinfrastructure is best thought of as an operating system for the observatory - like the data, the software is also open and can be readily applied to new observatories, for example, in the rapidly evolving Arctic.

  17. Optimizing fixed observational assets in a coastal observatory

    NASA Astrophysics Data System (ADS)

    Frolov, Sergey; Baptista, António; Wilkin, Michael

    2008-11-01

    Proliferation of coastal observatories necessitates an objective approach to managing of observational assets. In this article, we used our experience in the coastal observatory for the Columbia River estuary and plume to identify and address common problems in managing of fixed observational assets, such as salinity, temperature, and water level sensors attached to pilings and moorings. Specifically, we addressed the following problems: assessing the quality of an existing array, adding stations to an existing array, removing stations from an existing array, validating an array design, and targeting of an array toward data assimilation or monitoring. Our analysis was based on a combination of methods from oceanographic and statistical literature, mainly on the statistical machinery of the best linear unbiased estimator. The key information required for our analysis was the covariance structure for a field of interest, which was computed from the output of assimilated and non-assimilated models of the Columbia River estuary and plume. The network optimization experiments in the Columbia River estuary and plume proved to be successful, largely withstanding the scrutiny of sensitivity and validation studies, and hence providing valuable insight into optimization and operation of the existing observational network. Our success in the Columbia River estuary and plume suggest that algorithms for optimal placement of sensors are reaching maturity and are likely to play a significant role in the design of emerging ocean observatories, such as the United State's ocean observation initiative (OOI) and integrated ocean observing system (IOOS) observatories, and smaller regional observatories.

  18. Design of lunar base observatories

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.

    1988-01-01

    Several recently suggested concepts for conducting astronomy from a lunar base are cited. Then, the process and sequence of events that will be required to design an observatory to be emplaced on the Moon are examined.

  19. Architectures of astronomical observation: From Sternwarte Kassel (circa 1560) to the Radcliffe Observatory (1772)

    NASA Astrophysics Data System (ADS)

    Kwan, Alistair Marcus

    Historical observatories did not merely shelter astronomers and their instruments, but interacted with them to shape the range and outcome of astronomical observations. This claim is demonstrated through both improvised and purpose-built observatories from the late sixteenth century to the late eighteenth. The improvised observatories involve various grades of architectural intervention from simple re-purposing of a generic space through to radical renovation and customisation. Some of the observatories examined were never built, and some survive only in textual and visual representations, but all nonetheless reflect astronomers' thinking about what observatories needed to provide, and allow us to reconstruct aspects of what it was like to work in them. Historical observatories hence offer a physical record of observational practices. Reconstructing lost practices and the tacit knowledge involved shows how observatories actively contributed to observations by accommodating, supporting and sheltering observers and instruments. We also see how observatories compromised observations by constraining views and free movement, by failing to provide sufficient support, by being expensive or otherwise difficult to obtain, modify or replace. Some observatories were modified many times, accumulating layers of renovation and addition that reflect both advancement and succession of multiple research programs. Such observatories materially and spatially manifest how observational astronomy developed and also also how observatories, like other buildings, respond to changing needs. Examining observatories for their architectural functions and functional shortcomings connects observational practices, spatial configurations and astronomical instrumentation. Such examination shows that spatial contexts, and hence the buildings that define them, are not passive: to the contrary, observatories are active protagonists in the development and practise of observational astronomy.

  20. 150th Anniversary of the Astronomical Observatory Library of Sciences

    NASA Astrophysics Data System (ADS)

    Solntseva, T.

    The scientific library of the Astronomical observatory of Kyiv Taras Shevchenko University is one of the oldest ones of such a type in Ukraine. Our Astronomical Observatory and its scientific library will celebrate 150th anniversary of their foundation. 900 volumes of duplicates of Olbers' private library underlay our library. These ones were acquired by Russian Academy of Sciences for Poulkovo observatory in 1841 but according to Struve's order were transmitted to Kyiv Saint Volodymyr University. These books are of great value. There are works edited during Copernicus', Kepler's, Galilei's, Newton's, Descartes' lifetime. Our library contains more than 100000 units of storage - monographs, periodical astronomical editions from the first (Astronomische Nachrichten, Astronomical journal, Monthly Notices etc.), editions of the majority of the astronomical observatories and institutions of the world, unique astronomical atlases and maps

  1. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    N° 73-2001 - Paris, 5 December 2001 The aim of AVO is to give astronomers instant access to the vast databanks now being built up by the world's observatories and forming what is in effect a "digital sky". Using AVO astronomers will be able, for example, to retrieve the elusive traces of the passage of an asteroid as it passes the Earth and so predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded, adding invaluable data to the study of the evolution of stars. Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data -corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being digitally reconstructed in the databanks. The volume and complexity of data and information available to astronomers are overwhelming. Hence the problem of how astronomers can possibly manage, distribute and analyse this great wealth of data. The Astrophysical Virtual Observatory will enable them to meet the challenge and "put the Universe online". AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The Commission has awarded a contract valued at EUR 4m for the project, starting on 15 November. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the "real" sky would, in comparison, both be prohibitively costly and take far too long. Towards a Global Virtual Observatory The

  2. Accidents on hospital wards.

    PubMed Central

    Levene, S; Bonfield, G

    1991-01-01

    Eight hospitals reported 781 non-iatrogenic accidents occurring to patients and visitors under 16 years of age during an 18 month period up to October 1989. Accidents more often involved boys and children aged 3 to 5 years old. Falls from a height, slips, and striking accidents were common by day and falls by night. A total of 41% of accidents to inpatients occurred when parents were present. Only three accidents were serious. Altogether 27% involved beds and cots, and only one consequent injury was more than minor. Data collected routinely in case of medicolegal action can be presented in a form that may facilitate preventative work. Potentially remediable causes for concern include falls from beds and cots and the use of makeshift equipment. PMID:1929510

  3. Creation of an instrument maintenance program at W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Hill, G. M.; Kwok, S. H.; Mader, J. A.; Wirth, G. D.; Dahm, S. E.; Goodrich, R. W.

    2014-08-01

    Until a few years ago, the W. M. Keck Observatory (WMKO) did not have a systematic program of instrument maintenance at a level appropriate for a world-leading observatory. We describe the creation of such a program within the context of WMKO's lean operations model which posed challenges but also guided the design of the system and resulted in some unique and notable capabilities. These capabilities and the flexibility of the system have led to its adoption across the Observatory for virtually all PM's. The success of the Observatory in implementing the program and its impact on instrument reliability are presented. Lessons learned are reviewed and strategic implications discussed.

  4. Aquarius Principal Investigator with Observatory

    NASA Image and Video Library

    2011-04-19

    NASA Aquarius Principal Investigator Gary Lagerloef photographed in front of the Aquarius/SAC-D satellite observatory as it is being readied for transportation from Brazil to Vandenberg Air Force Base in California for a June 2011 launch.

  5. Astronomical databases of Nikolaev Observatory

    NASA Astrophysics Data System (ADS)

    Protsyuk, Y.; Mazhaev, A.

    2008-07-01

    Several astronomical databases were created at Nikolaev Observatory during the last years. The databases are built by using MySQL search engine and PHP scripts. They are available on NAO web-site http://www.mao.nikolaev.ua.

  6. McDonald Observatory Visitor Center Education Programs

    NASA Astrophysics Data System (ADS)

    Hemenway, M. K.; Armosky, B. J.; Wetzel, M.; Preston, S.

    2002-12-01

    The opening of the new Visitor Center at McDonald Observatory in Fort Davis, Texas provided an opportunity to greatly expand the Observatory's outreach efforts to students and teachers. In addition to a theater, outdoor telescope park, and amphitheater, the facility contains a classroom and an exhibit entitled ``Decoding Starlight." In preparation for the opening, new teacher-friendly materials were written to provide standards aligned (both state and national) classroom activities for students. These activities form the core for both the multi-day Professional Development Program for teachers and the Student Field Experience Program. Student Field Experiences often begin with a tour specifically designed for student groups to emphasize careers and life at the Observatory. The group then interacts with the exhibit using Exhibit Guides that were developed for various grade levels. When their schedule allows, student groups may also participate in nighttime observing activities. Smaller groups (under 30 members) may choose from a menu of hands-on activities offered within the classroom. The positive reception of these activities has led to their inclusion in the existing Elderhostel program for senior citizens. We gratefully acknowledge the support of NSF 96-26965 ``Fingerprinting the Universe - An Interactive, Bilingual Exhibit on Spectroscopy," NSF 97-05340 ``Universo, Hispanic Heritage Month Programs, and StarDate in the Classroom," and NASA IDEAS HST-ED-90234-.01 ``Enriching the Experience at McDonald Observatory: Pre/Post Visit Materials for Teachers and Students."

  7. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    NASA Astrophysics Data System (ADS)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  8. Improving geomagnetic observatory data in the South Atlantic Anomaly

    NASA Astrophysics Data System (ADS)

    Matzka, Jürgen; Morschhauser, Achim; Brando Soares, Gabriel; Pinheiro, Katia

    2016-04-01

    The Swarm mission clearly proofs the benefit of coordinated geomagnetic measurements from a well-tailored constellation in order to recover as good as possible the contributions of the various geomagnetic field sources. A similar truth applies to geomagnetic observatories. Their scientific value can be maximised by properly arranging the position of individual observatories with respect to the geometry of the external current systems in the ionosphere and magnetosphere, with respect to regions of particular interest for secular variation, and with respect to regions of anomalous electric conductivity in the ground. Here, we report on our plans and recent efforts to upgrade geomagnetic observatories and to recover unpublished data from geomagnetic observatories at low latitudes in the South Atlantic Anomaly. In particular, we target the magnetic equator with the equatorial electrojet and low latitudes to characterise the Sq- and ring current. The observatory network that we present allows also to study the longitudinal structure of these external current systems. The South Atlantic Anomaly region is very interesting due to its secular variation. We will show newly recovered data and comparisons with existing data sets. On the technical side, we introduce low-power data loggers. In addition, we use mobile phone data transfer, which is rapidly evolving in the region and allows timely data access and quality control at remote sites that previously were not connected to the internet.

  9. Remote observing with the Nickel Telescope at Lick Observatory

    NASA Astrophysics Data System (ADS)

    Grigsby, Bryant; Chloros, Konstantinos; Gates, John; Deich, William T. S.; Gates, Elinor; Kibrick, Robert

    2008-07-01

    We describe a project to enable remote observing on the Nickel 1-meter Telescope at Lick Observatory. The purpose was to increase the subscription rate and create more economical means for graduate- and undergraduate students to observe with this telescope. The Nickel Telescope resides in a 125 year old dome on Mount Hamilton. Remote observers may work from any of the University of California (UC) remote observing facilities that have been created to support remote work at both Keck Observatory and Lick Observatory. The project included hardware and software upgrades to enable computer control of all equipment that must be operated by the astronomer; a remote observing architecture that is closely modeled on UCO/Lick's work to implement remote observing between UC campuses and Keck Observatory; new policies to ensure safety of Observatory staff and equipment, while ensuring that the telescope subsystems would be suitably configured for remote use; and new software to enforce the safety-related policies. The results increased the subscription rate from a few nights per month to nearly full subscription, and has spurred the installation of remote observing sites at more UC campuses. Thanks to the increased automation and computer control, local observing has also benefitted and is more efficient. Remote observing is now being implemented for the Shane 3- meter telescope.

  10. NASA X-Ray Observatory Completes Tests Under Harsh Simulated Space Conditions

    NASA Astrophysics Data System (ADS)

    1998-07-01

    NASA's most powerful X-ray observatory has successfully completed a month-long series of tests in the extreme heat, cold, and airless conditions it will encounter in space during its five-year mission to shed new light on some of the darkest mysteries of the universe. The Advanced X-ray Astrophysics Facility was put through the rigorous testing as it was alternately heated and cooled in a special vacuum chamber at TRW Space and Electronics Group in Redondo Beach, Calif., NASA's prime contractor for the observatory. "Successful completion of thermal vacuum testing marks a significant step in readying the observatory for launch aboard the Space Shuttle in January," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "The observatory is a complex, highly sophisticated, precision instrument," explained Wojtalik. "We are pleased with the outcome of the testing, and are very proud of the tremendous team of NASA and contractor technicians, engineers and scientists that came together and worked hard to meet this challenging task." Testing began in May after the observatory was raised into the 60-foot thermal vacuum chamber at TRW. Testing was completed on June 20. During the tests the Advanced X-ray Astrophysics Facility was exposed to 232 degree heat and 195 degree below zero Fahrenheit cold. During four temperature cycles, all elements of the observatory - the spacecraft, telescope, and science instruments - were checked out. Computer commands directing the observatory to perform certain functions were sent from test consoles at TRW to all Advanced X-ray Astrophysics Facility components. A team of contractor and NASA engineers and scientists monitored and evaluated the results. Commands were also sent from, and test data monitored at, the Advanced X-ray Astrophysics Facility Operations Control Center in Cambridge, Mass., as part of the test series. The observatory will be managed and controlled from

  11. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1975-07-01

    This illustration is a schematic of the High Energy Astronomy Observatory (HEAO)-2 and its experiments. It shows the focal plane instruments (at the right) plus the associated electronics for operating the telescope as it transmitted its observations to the ground. A fifth instrument, the Monitor Proportional Counter, is located near the front of the telescope. Four separate astronomical instruments are located at the focus of this telescope and they could be interchanged for different types of observations as the observatory pointed at interesting areas of the Sky. Two of these instruments produced images; a High Resolution Imaging Detector and an Imaging Proportional Counter. The other two instruments, the Solid State Spectrometer and the Crystal Spectrometer, measured the spectra of x-ray objects. A fifth instrument, the Monitor Proportional Counter, continuously viewed space independently to study a wider band of x-ray wavelengths and to examine the rapid time variations in the sources. The HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  12. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    The dramatic change in x-ray emission from the Terzan 2 cluster is shown in this series of 2.5-minute exposures taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory immediately before, during, and after the burst. Total exposure (20 minutes) of the object, including the outburst, is shown in the fourth photograph. These images represent the first observation of an x-ray burst in progress. The actual burst lasted 50 seconds. Among the rarest, and most bizarre, phenomena observed by x-ray astronomers are the so-called cosmic bursters (x-ray sources that suddenly and dramatically increase in intensity then subside). These sudden bursts of intense x-ray radiation apparently come from compact objects with a diameter smaller than 30 miles (48 kilometers). Yet, despite their minuscule size, a typical x-ray burster can release more x-ray energy in a single brief burst than our Sun does in an entire week. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center.

  13. The brazilian indigenous planetary-observatory

    NASA Astrophysics Data System (ADS)

    Afonso, G. B.

    2003-08-01

    We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.

  14. Brazil to Join the European Southern Observatory

    NASA Astrophysics Data System (ADS)

    2010-12-01

    The Federative Republic of Brazil has yesterday signed the formal accession agreement paving the way for it to become a Member State of the European Southern Observatory (ESO). Following government ratification Brazil will become the fifteenth Member State and the first from outside Europe. On 29 December 2010, at a ceremony in Brasilia, the Brazilian Minister of Science and Technology, Sergio Machado Rezende and the ESO Director General, Tim de Zeeuw signed the formal accession agreement aiming to make Brazil a Member State of the European Southern Observatory. Brazil will become the fifteen Member State and the first from outside Europe. Since the agreement means accession to an international convention, the agreement must now be submitted to the Brazilian Parliament for ratification [1]. The signing of the agreement followed the unanimous approval by the ESO Council during an extraordinary meeting on 21 December 2010. "Joining ESO will give new impetus to the development of science, technology and innovation in Brazil as part of the considerable efforts our government is making to keep the country advancing in these strategic areas," says Rezende. The European Southern Observatory has a long history of successful involvement with South America, ever since Chile was selected as the best site for its observatories in 1963. Until now, however, no non-European country has joined ESO as a Member State. "The membership of Brazil will give the vibrant Brazilian astronomical community full access to the most productive observatory in the world and open up opportunities for Brazilian high-tech industry to contribute to the European Extremely Large Telescope project. It will also bring new resources and skills to the organisation at the right time for them to make a major contribution to this exciting project," adds ESO Director General, Tim de Zeeuw. The European Extremely Large Telescope (E-ELT) telescope design phase was recently completed and a major review was

  15. Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.

    2014-09-01

    The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPSmore » eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.« less

  16. Rear-end accident victims. Importance of understanding the accident.

    PubMed Central

    Sehmer, J. M.

    1993-01-01

    Family physicians regularly treat victims of rear-end vehicle accidents. This article describes how taking a detailed history of the accident and understanding the significance of the physical events is helpful in understanding and anticipating patients' morbidity and clinical course. Eight questions to ask patients are suggested to help physicians understand the severity of injury. PMID:8495140

  17. Prevention of bicycle accidents.

    PubMed

    Simpson, A H; Mineiro, J

    1992-01-01

    To elucidate the way of reducing the number of bicycle accidents. A prospective study of all casualties from bicycle accidents attending an accident unit for a 29-month period was performed (1831 patients). A more detailed questionnaire on the causes of accidents was used for the last 12 months of the study (818 patients). In the 0-7 and 8-12 years age groups, 87.5 per cent and 66.2 per cent, respectively, were due to cyclist error. The 8-12-year-old cyclists were twice as likely to have caused the accident if they had not had formal training (risk ratio = 2.0). Over the age of 18 years, 41.4 per cent were due to another road user. A motor vehicle was involved in 633 of the 1831 accidents. Children under the age of 8 years should not be allowed on public roads. Older children should only be allowed on the roads after formal training. This should become part of the school curriculum. A campaign to increase the awareness of motorists would be expected to reduce the number of cycle accidents. It would be beneficial to dedicate more roads and tracks to cycle use. Cyclists should be encouraged to wear more protective gear.

  18. Chicago's Dearborn Observatory: a study in survival

    NASA Astrophysics Data System (ADS)

    Bartky, Ian R.

    2000-12-01

    The Dearborn Observatory, located on the Old University of Chicago campus from 1863 until 1888, was America's most promising astronomical facility when it was founded. Established by the Chicago Astronomical Society and directed by one of the country's most gifted astronomers, it boasted the largest telescope in the world and virtually unlimited operating funds. The Great Chicago Fire of 1871 destroyed its funding and demolished its research programme. Only via the sale of time signals and the heroic efforts of two amateur astronomers did the Dearborn Observatory survive.

  19. The Virtual Observatory: Retrospective and Prospectus

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2010-12-01

    At the ADASS XV in San Lorenzo de El Escorial, Spain, in October 2005, I gave an overview of the accomplishments of the Virtual Observatory initiatives and discussed the imminent transition from development to operations. That transition remains on the horizon for the US Virtual Observatory, and VO projects worldwide have encountered various programmatic challenges. The successes of the Virtual Observatory are many, but thus far are primarily of a technical nature. We have developed a data discovery and data access infrastructure that has been taken up by data centers and observatories around the world. We have web-based interfaces, downloadable toolkits and applications, a security and restricted access capability, standard vocabularies, a sophisticated messaging and alert system for transient events, and the ability for applications to exchange messages and work together seamlessly. This has been accomplished through a strong collaboration between astronomers and information technology specialists. We have been less successful engaging the astronomical researcher. Relatively few papers have been published based on VO-enabled research, and many astronomers remain unfamiliar with the capabilities of the VO despite active training and tutorial programs hosted by several of the major VO projects. As we (finally!) enter the operational phase of the VO, we need to focus on areas that have contributed to the limited take-up of the VO amongst active scientists, such as ease of use, reliability, and consistency. We need to routinely test VO services for aliveness and adherence to standards, working with data providers to fix errors and otherwise removing non-compliant services from those seen by end-users. Technical developments will need to be motivated and prioritized based on scientific utility. We need to continue to embrace new technology and employ it in a context that focuses on research productivity.

  20. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  1. Historical Examples of Lobbying: The Case of Strasbourg Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Heck, Andre

    2012-08-01

    Several astronomical observatories have been established in Strasbourg in very differing contexts. In the late 17th century, an observing post (scientifically sterile) was put on top of a tower, the Hospital Gate, essentially for the prestige of the city and the notoriety of the university. In the 19th century, the observatory built on the Académie hosting the French university was the first attempt to set up in the city a real observatory equipped with genuine instrumentation with the purpose of carrying out serious research, but the succession of political regimes in France and the continual bidding for moving the university to other locations, together with the faltering of later scholars, torpedoed any significant scientific usage of the place. After the 1870-1871 Franco-Prussian war, the German authorities set up a prestigious university campus with a whole range of institutes together with a modern observatory consisting of several buildings and hosting a flotilla of excellent instruments, including the then largest refractor of the country. This paper illustrates various types of lobbying used in the steps above while detailing, from archive documents largely unexploited so far, original research on the two first observatories.

  2. The Architectural and Instrumental Heritage of the Strasbourg University Observatory

    NASA Astrophysics Data System (ADS)

    Davoigneau, Jean

    When, in 1872, Alsace was handed over to Germany, Empperor Wilhelm I decided to make Strasbourg the showcase of his empire, and in particular to build a prestigious university and an observatory. The construction of the observatory was entrusted to the astronomer August Winnecke (1835-1897), former director of the Pulkovo observatory, and to the Baumeister Hermann Eggert. Begun in 1876, the work was completed in 1880. The astronomical instruments, ordered from German makers, were installed during the winter of 1880-1881, and the observatory was inaugurated on September 22, 1881 at the general assembly of the Astronomische Gesellschaft, the international association of astronomers, whose secretary was Winnecke. Marking the south-eastern extremity of the ‘imperial axis’, the architecture of the university observatory harmonizes perfectly with the new German city built on the former French parade grounds. The astronomical heritage operation conducted at the beginning of the present decade provides a richly docurnented and illustrated inventory of both the architecture and instruments of this institution. This work has also highlighted the unique quality of the collection of instruments, befitting the long and complex history of this institution.

  3. Accident data availability

    DOT National Transportation Integrated Search

    2000-06-01

    This project investigates alternate forms of dissemination for the accident information. Costs, capabilities, and compatibility are reviewed for integration of the accident database with a GIS format to allow a graphical and spatial interface. the is...

  4. Using the Critical Zone Observatory Network to Put Geology into Environmental Science

    NASA Astrophysics Data System (ADS)

    Brantley, S. L.

    2017-12-01

    The use of observatories to study the environment in the U.S.A. arguably began in 1910. Since then, many environmental observatories were set up to study impacts of land use change. At that time, observatories did not emphasize geological structure. Around 2004, scientists in the U.S.A. began to emphasize the need to study the Earth's surface as one integrated system that includes the geological underpinnings. In 2007, the Geosciences Directorate within the U.S. National Science Foundation established the Critical Zone Observatory (CZO) program. Today the CZO network has grown to 9 observatories, and 45 countries now host such observatories. A CZO is an observatory that promotes the study of the entire layer of Earth's surface from vegetation canopy to groundwater as one entity. The observatories are somewhat similar to other NSF-funded observatories such as Long Term Ecological Research (LTER) sites but they differ in that they emphasize the history of the landscape and how it mediates today's fluxes. LTERs largely focus on ecological science. The concepts of CZ science and CZOs - developed by the Geosciences Directorate - have been extraordinarily impactful: we now have deeper understanding of how surficial processes respond to tectonic, climatic, and anthropogenic drivers. One reason CZOs succeed is that they host scientists who make measurements in one place that cross timescales from that of the meteorologist to the geologist. The NSF Geosciences Directorate has thus promoted insights showing that many of the unexplained mysteries of "catchment science" or "ecosystem science" can be explained by the underlying geological story of a site. The scientific challenges of this endeavor are dwarfed, however, by cultural challenges. Specifically, while both CZOs and observatories such as LTERs struggle to publish many types of data from different disciplines in a continually changing cyber-world, only CZO scientists find they must repeatedly explain why such

  5. STK: A new CCD camera at the University Observatory Jena

    NASA Astrophysics Data System (ADS)

    Mugrauer, M.; Berthold, T.

    2010-04-01

    The Schmidt-Teleskop-Kamera (STK) is a new CCD-imager, which is operated since begin of 2009 at the University Observatory Jena. This article describes the main characteristics of the new camera. The properties of the STK detector, the astrometry and image quality of the STK, as well as its detection limits at the 0.9 m telescope of the University Observatory Jena are presented. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  6. Confusion about a little observatory: the history of the first high school observatory (German Title: Verwirrung um eine kleine Sternwarte: Die Geschichte der ersten Chemnitzer Schulsternwarte )

    NASA Astrophysics Data System (ADS)

    Pfitzner, Elvira

    By means of a small watercolor, painted by a musicologist, the existence of the highschool observatory of Chemnitz was rediscovered. The small observatory was build in 1893 by means of funds and a donation: after WW I it was also used for popular education. During Nazi times, the observatory fell into neglect, and the mechanical damage made it impossible to put it back into operation after WW II The building was torn down in 1964 and forgotten.

  7. Observatories Combine to Crack Open the Crab Nebula

    NASA Image and Video Library

    2017-12-08

    Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from telescopes spanning nearly the entire breadth of the electromagnetic spectrum, from radio waves seen by the Karl G. Jansky Very Large Array (VLA) to the powerful X-ray glow as seen by the orbiting Chandra X-ray Observatory. And, in between that range of wavelengths, the Hubble Space Telescope's crisp visible-light view, and the infrared perspective of the Spitzer Space Telescope. This composite image of the Crab Nebula, a supernova remnant, was assembled by combining data from five telescopes spanning nearly the entire breadth of the electromagnetic spectrum: the Very Large Array, the Spitzer Space Telescope, the Hubble Space Telescope, the XMM-Newton Observatory, and the Chandra X-ray Observatory. Credits: NASA, ESA, NRAO/AUI/NSF and G. Dubner (University of Buenos Aires) #nasagoddard #space #science

  8. The High Energy Astronomy Observatory X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Miller, R.; Austin, G.; Koch, D.; Jagoda, N.; Kirchner, T.; Dias, R.

    1978-01-01

    The High Energy Astronomy Observatory-Mission B (HEAO-B) is a satellite observatory for the purpose of performing a detailed X-ray survey of the celestial sphere. Measurements will be made of stellar radiation in the range 0.2 through 20 keV. The primary viewing requirement is to provide final aspect solution and internal alignment information to correlate an observed X-ray image with the celestial sphere to within one-and-one-half arc seconds. The Observatory consists of the HEAO Spacecraft together with the X-ray Telescope. The Spacecraft provides the required attitude control and determination system, data telemetry system, space solar power system, and interface with the launch vehicle. The X-ray Telescope includes a high resolution mirror assembly, optical bench metering structure, X-ray detectors, detector positioning system, detector electronics and aspect sensing system.

  9. Severe Accident Scoping Simulations of Accident Tolerant Fuel Concepts for BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R.

    2015-08-01

    Accident-tolerant fuels (ATFs) are fuels and/or cladding that, in comparison with the standard uranium dioxide Zircaloy system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations [1]. It is important to note that the currently used uranium dioxide Zircaloy fuel system tolerates design basis accidents (and anticipated operational occurrences and normal operation) as prescribed by the US Nuclear Regulatory Commission. Previously, preliminary simulations of the plant response have been performed under a range of accident scenarios using various ATF cladding concepts and fully ceramicmore » microencapsulated fuel. Design basis loss of coolant accidents (LOCAs) and station blackout (SBO) severe accidents were analyzed at Oak Ridge National Laboratory (ORNL) for boiling water reactors (BWRs) [2]. Researchers have investigated the effects of thermal conductivity on design basis accidents [3], investigated silicon carbide (SiC) cladding [4], as well as the effects of ATF concepts on the late stage accident progression [5]. These preliminary analyses were performed to provide initial insight into the possible improvements that ATF concepts could provide and to identify issues with respect to modeling ATF concepts. More recently, preliminary analyses for a range of ATF concepts have been evaluated internationally for LOCA and severe accident scenarios for the Chinese CPR1000 [6] and the South Korean OPR-1000 [7] pressurized water reactors (PWRs). In addition to these scoping studies, a common methodology and set of performance metrics were developed to compare and support prioritizing ATF concepts [8]. A proposed ATF concept is based on iron-chromium-aluminum alloys (FeCrAl) [9]. With respect to enhancing accident tolerance, FeCrAl alloys have substantially slower oxidation kinetics compared to the zirconium alloys typically employed. During a severe accident, Fe

  10. The Infrared Space Observatory (ISO)

    NASA Technical Reports Server (NTRS)

    Helou, George; Kessler, Martin F.

    1995-01-01

    ISO, scheduled to launch in 1995, will carry into orbit the most sophisticated infrared observatory of the decade. Overviews of the mission, instrument payload and scientific program are given, along with a comparison of the strengths of ISO and SOFIA.

  11. Applying STAMP in Accident Analysis

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy; Daouk, Mirna; Dulac, Nicolas; Marais, Karen

    2003-01-01

    Accident models play a critical role in accident investigation and analysis. Most traditional models are based on an underlying chain of events. These models, however, have serious limitations when used for complex, socio-technical systems. Previously, Leveson proposed a new accident model (STAMP) based on system theory. In STAMP, the basic concept is not an event but a constraint. This paper shows how STAMP can be applied to accident analysis using three different views or models of the accident process and proposes a notation for describing this process.

  12. United States Department of Energy severe accident research following the Fukushima Daiichi accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, M. T.; Corradini, M.; Rempe, J.

    The U.S. Department of Energy (DOE) has played a major role in the U.S. response to the events at Fukushima Daiichi. During the first several weeks following the accident, U.S. assistance efforts were guided by results from a significant and diverse set of analyses. In the months that followed, a coordinated analysis activity aimed at gaining a more thorough understanding of the accident sequence was completed using laboratory-developed, system-level best-estimate accident analysis codes, while a parallel analysis was conducted by U.S. industry. A comparison of predictions for Unit 1 from these two studies indicated significant differences between MAAP and MELCORmore » results for key plant parameters, such as in-core hydrogen production. On that basis, a crosswalk was completed to determine the key modeling variations that led to these differences. In parallel with these activities, it became clear that there was a need to perform a technology gap evaluation on accident-tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist given the current state of light water reactor (LWR) severe accident research and augmented by insights from Fukushima. In addition, there is growing international recognition that data from Fukushima could significantly reduce uncertainties related to severe accident progression, particularly for boiling water reactors. On these bases, a group of U. S. experts in LWR safety and plant operations was convened by the DOE Office of Nuclear Energy (DOE-NE) to complete technology gap analysis and Fukushima forensics data needs identification activities. The results from these activities were used as the basis for refining DOE-NE's severe accident research and development (R&D) plan. Finally, this paper provides a high-level review of DOE-sponsored R&D efforts in these areas, including planned activities on accident-tolerant components and accident analysis methods.« less

  13. United States Department of Energy severe accident research following the Fukushima Daiichi accidents

    DOE PAGES

    Farmer, M. T.; Corradini, M.; Rempe, J.; ...

    2016-11-02

    The U.S. Department of Energy (DOE) has played a major role in the U.S. response to the events at Fukushima Daiichi. During the first several weeks following the accident, U.S. assistance efforts were guided by results from a significant and diverse set of analyses. In the months that followed, a coordinated analysis activity aimed at gaining a more thorough understanding of the accident sequence was completed using laboratory-developed, system-level best-estimate accident analysis codes, while a parallel analysis was conducted by U.S. industry. A comparison of predictions for Unit 1 from these two studies indicated significant differences between MAAP and MELCORmore » results for key plant parameters, such as in-core hydrogen production. On that basis, a crosswalk was completed to determine the key modeling variations that led to these differences. In parallel with these activities, it became clear that there was a need to perform a technology gap evaluation on accident-tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist given the current state of light water reactor (LWR) severe accident research and augmented by insights from Fukushima. In addition, there is growing international recognition that data from Fukushima could significantly reduce uncertainties related to severe accident progression, particularly for boiling water reactors. On these bases, a group of U. S. experts in LWR safety and plant operations was convened by the DOE Office of Nuclear Energy (DOE-NE) to complete technology gap analysis and Fukushima forensics data needs identification activities. The results from these activities were used as the basis for refining DOE-NE's severe accident research and development (R&D) plan. Finally, this paper provides a high-level review of DOE-sponsored R&D efforts in these areas, including planned activities on accident-tolerant components and accident analysis methods.« less

  14. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Richard Fisher, Heliophysics Division Director at NASA Headquarters, left, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, as Madhulika Guhathakurta, SDO Program Scientist looks on at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  15. Don Hendrix, master Mount Wilson and Palomar Observatories optician

    NASA Astrophysics Data System (ADS)

    Osterbrock, Donald E.

    2003-06-01

    Don O. Hendrix, with at most a high-school education and no previous experience in optics, because an outstanding astronomical optician at Mount Wilson Observatory. He started making Schmidt-camera optics for spectrographs there in 1932, and ultimately made them for all the stellar and nebular spectrographs used at the prime, Newtonian, Cassegrain, and coudé foci of the 60-inch, 100-inch, and Palomar Hale 200-inch telescopes. He completed figuring and polishing the primary 200-inch mirror, and also the Lick Observatory 120-inch primary mirror. Mount Wilson and Palomar Observatory designers Theodore Dunham Jr., Rudolph Minkowski, and Ira S. Bowen led the way for many years in developing fast, effective astronomical spectrographs, based on Hendrix's skills.

  16. [Accidents with the "paraglider"].

    PubMed

    Lang, T H; Dengg, C; Gabl, M

    1988-09-01

    With a collective of 46 patients we show the details and kinds of accidents caused by paragliding. The base for the casuistry of the accidents was a questionnaire which was answered by most of the injured persons. These were questions about the theoretical and practical training, the course of the flight during the different phases, and the subjective point of view of the course of the accident. The patterns of the injuries showed a high incidence of injuries of the spinal column and high risks for the ankles. At the end, we give some advice how to prevent these accidents.

  17. [Accidents in travellers - the hidden epidemic].

    PubMed

    Walz, Alexander; Hatz, Christoph

    2013-06-01

    The risk of malaria and other communicable diseases is well addressed in pre-travel advice. Accidents are usually less discussed. Thus, we aimed at assessing accident figures for the Swiss population, based on data of the register from 2004 to 2008 of the largest Swiss accident insurance organization (SUVA). More than 139'000 accidents over 5 years showed that 65 % of the accidents overseas are injuries, and 24 % are caused by poisoning or harm by cold, heat or air pressure. Most accidents happened during leisure activities or sports. More than one third of the non-lethal and more than 50 % of the fatal accidents happened in Asia. More than three-quarters of non-lethal accidents take place in people between 25 and 54 years. One out of 74 insured persons has an accident abroad per year. Despite of many analysis short-comings of the data set with regard to overseas travel, the figures document the underestimated burden of disease caused by accidents abroad and should affect the given pre-health advice.

  18. INTERIOR OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTH. NOTE THE PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF STANDARDIZING MAGNETIC OBSERVATORY, LOOKING NORTH. NOTE THE PIER (CENTER) ON WHICH WAS WAS MOUNTED MAGNETIC MEASURING INSTRUMENTS FOR TESTING. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  19. Highlights from Three Years of the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    August 12, 2002 marked the third anniversary of the first light observed with the Chandra X-Ray Observatory (CXO) which had been launched on July 23 of that same year. The CXO is the X-ray component of NASA's Great Observatory Program that also includes the Hubble Space Telescope for observations in the visible portion of the electromagnetic spectrum, the now defunct Compton Gamma-Ray Observatory and the soon-to-be-launched Space Infra-Red Telescope Facility. The scientific return from the Observatory has been spectacular. Images of objects as local as the moon's of Jupiter and comets, to those which show the details of the emission of the hot gas pervading clusters of galaxies have been obtained. The technical status of the instrumentation and the performance of the X-ray optics will be reviewed and an overview of some of the exciting results will be presented.

  20. Water Vapor Monitoring at the Roque de LOS Muchachos Observatory

    NASA Astrophysics Data System (ADS)

    Rodriguez-Espinosa, J. M.; Kidger, M.; del Rosario, J. C.; Trancho, G.

    1997-12-01

    We present the first results from a long-term campaign of water vapor monitoring at the Roque de los Muchachos Observatory (Canary Islands, Spain). This observatory is situated on a volcanic peak, on the small island of La Palma. Although its altitude is relatively low (2400 meters), our initial site-testing, taken for site selection for the Spanish 10m telescope project, shows that a significant fraction of nights have water vapor column of 1mm, or lower, with values of 2mm and lower being relatively common, even in summer. The water vapor column can be stable at under 1mm for several nights, with only minimal variations. We contrast the results obtained using an infrared radiometer (on loan from Kitt Peak National Observatory), with those obtained using the 940nm water vapor line and comment briefly on plans for future automatic monitoring of water vapor at the observatory.

  1. Reengineering observatory operations for the time domain

    NASA Astrophysics Data System (ADS)

    Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.

    2014-07-01

    Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.

  2. AstroGrid: the UK's Virtual Observatory Initiative

    NASA Astrophysics Data System (ADS)

    Mann, Robert G.; Astrogrid Consortium; Lawrence, Andy; Davenhall, Clive; Mann, Bob; McMahon, Richard; Irwin, Mike; Walton, Nic; Rixon, Guy; Watson, Mike; Osborne, Julian; Page, Clive; Allan, Peter; Giaretta, David; Perry, Chris; Pike, Dave; Sherman, John; Murtagh, Fionn; Harra, Louise; Bentley, Bob; Mason, Keith; Garrington, Simon

    AstroGrid is the UK's Virtual Observatory (VO) initiative. It brings together the principal astronomical data centres in the UK, and has been funded to the tune of ˜pounds 5M over the next three years, via PPARC, as part of the UK e--science programme. Its twin goals are the provision of the infrastructure and tools for the federation and exploitation of large astronomical (X-ray to radio), solar and space plasma physics datasets, and the delivery of federations of current datasets for its user communities to exploit using those tools. Whilst AstroGrid's work will be centred on existing and future (e.g. VISTA) UK datasets, it will seek solutions to generic VO problems and will contribute to the developing international virtual observatory framework: AstroGrid is a member of the EU-funded Astrophysical Virtual Observatory project, has close links to a second EU Grid initiative, the European Grid of Solar Observations (EGSO), and will seek an active role in the development of the common standards on which the international virtual observatory will rely. In this paper we shall primarily describe the concrete plans for AstroGrid's one-year Phase A study, which will centre on: (i) the definition of detailed science requirements through community consultation; (ii) the undertaking of a ``functionality market survey" to test the utility of existing technologies for the VO; and (iii) a pilot programme of database federations, each addressing different aspects of the general database federation problem. Further information on AstroGrid can be found at AstroGrid .

  3. Aircraft accidents : method of analysis

    NASA Technical Reports Server (NTRS)

    1931-01-01

    The revised report includes the chart for the analysis of aircraft accidents, combining consideration of the immediate causes, underlying causes, and results of accidents, as prepared by the special committee, with a number of the definitions clarified. A brief statement of the organization and work of the special committee and of the Committee on Aircraft Accidents; and statistical tables giving a comparison of the types of accidents and causes of accidents in the military services on the one hand and in civil aviation on the other, together with explanations of some of the important differences noted in these tables.

  4. Connecticut traffic accident facts, 2006

    DOT National Transportation Integrated Search

    2008-04-01

    This report documents facts on reported 2006 traffic accidents included in the : Department database. Sections of the report contain statistics on major categories of traffic : accidents. These categories include all reported accidents, reported alco...

  5. Overview of the Chandra X-Ray Observatory Facility

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Chandra X-Ray Observatory (originally called the Advanced X-Ray Astrophysics Facility - AXAF) is the X-Ray component of NASA's "Great Observatory" Program. Chandra is a NASA facility that provides scientific data to the international astronomical community in response to scientific proposals for its use. The Observatory is the product of the efforts of many organizations in the United States and Europe. The Great Observatories also include the Hubble Space Telescope for space-based observations of astronomical objects primarily in the visible portion of the electromagnetic spectrum, the now defunct Compton Gamma- Ray Observatory that was designed to observe gamma-ray emission from astronomical objects, and the soon-to-be-launched Space Infrared Telescope Facility (SIRTF). The Chandra X-Ray Observatory (hereafter CXO) is sensitive to X-rays in the energy range from below 0.1 to above 10.0 keV corresponding to wavelengths from 12 to 0.12 nanometers. The relationship among the various parts of the electromagnetic spectrum, sorted by characteristic temperature and the corresponding wavelength, is illustrated. The German physicist Wilhelm Roentgen discovered what he thought was a new form of radiation in 1895. He called it X-radiation to summarize its properties. The radiation had the ability to pass through many materials that easily absorb visible light and to free electrons from atoms. We now know that X-rays are nothing more than light (electromagnetic radiation) but at high energies. Light has been given many names: radio waves, microwaves, infrared, visible, ultraviolet, X-ray and gamma radiation are all different forms. Radio waves are composed of low energy particles of light (photons). Optical photons - the only photons perceived by the human eye - are a million times more energetic than the typical radio photon, whereas the energies of X-ray photons range from hundreds to thousands of times higher than that of optical photons. Very low temperature systems

  6. A study on industrial accident rate forecasting and program development of estimated zero accident time in Korea.

    PubMed

    Kim, Tae-gu; Kang, Young-sig; Lee, Hyung-won

    2011-01-01

    To begin a zero accident campaign for industry, the first thing is to estimate the industrial accident rate and the zero accident time systematically. This paper considers the social and technical change of the business environment after beginning the zero accident campaign through quantitative time series analysis methods. These methods include sum of squared errors (SSE), regression analysis method (RAM), exponential smoothing method (ESM), double exponential smoothing method (DESM), auto-regressive integrated moving average (ARIMA) model, and the proposed analytic function method (AFM). The program is developed to estimate the accident rate, zero accident time and achievement probability of an efficient industrial environment. In this paper, MFC (Microsoft Foundation Class) software of Visual Studio 2008 was used to develop a zero accident program. The results of this paper will provide major information for industrial accident prevention and be an important part of stimulating the zero accident campaign within all industrial environments.

  7. Swift Observatory Space Simulation Testing

    NASA Technical Reports Server (NTRS)

    Espiritu, Mellina; Choi, Michael K.; Scocik, Christopher S.

    2004-01-01

    The Swift Observatory is a Middle-Class Explorer (MIDEX) mission that is a rapidly re-pointing spacecraft with immediate data distribution capability to the astronomical community. Its primary objectives are to characterize and determine the origin of Gamma Ray Bursts (GRBs) and to use the collected data on GRB phenomena in order to probe the universe and gain insight into the physics of black hole formation and early universe. The main components of the spacecraft are the Burst Alert Telescope (BAT), Ultraviolet and Optical Telescope (UVOT), X-Ray Telescope (XRT), and Optical Bench (OB) instruments coupled with the Swift spacecraft (S/C) bus. The Swift Observatory will be tested at the Space Environment Simulation (SES) chamber at the Goddard Space Flight Center from May to June 2004 in order to characterize its thermal behavior in a vacuum environment. In order to simulate the independent thermal zones required by the BAT, XRT, UVOT, and OB instruments, the spacecraft is mounted on a chariot structure capable of maintaining adiabatic interfaces and enclosed in a modified, four section MSX fixture in order to accommodate the strategic placement of seven cryopanels (on four circuits), four heater panels, and a radiation source burst simulator mechanism. There are additionally 55 heater circuits on the spacecraft. To mitigate possible migration of silicone contaminants from BAT to the XRT and UVOT instruments, a contamination enclosure is to be fabricated around the BAT at the uppermost section of the MSX fixture. This paper discuses the test requirements and implemented thermal vacuum test configuration for the Swift Observatory.

  8. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, Alexander

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m 2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientificmore » and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.« less

  9. Truck accident and fatality rates calculated from California highway accident statistics for 1980 and 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.N.; Wilmot, E.L.

    California state highway accident rates for three types of truck vehicles (pickup, truck without trailer, and truck with trailer) were analyzed for 1980 and 1981 and for various road types in each of eleven state highway districts. Accident rates have not been available previously that are specific to truck vehicles, particularly truck with trailer. Reported data are presented that lead to several significant observations about truck accident rates: pickup truck accident rates are about twice the composite rates for all vehicle types; the fatality rates for trucks with trailer are nearly twice that for all vehicle types; fatality rates formore » trucks (without trailer) are comparable to the composite rates; and total accident and fatal-plus-injury rates for trucks with trailer are close to the composite rates in urban areas but higher in rural areas. The values for average total accident rates reported in 1981 are: 2.2 accidents per million vehicle miles (mvm) for pickups, 1.5 accidents per mvm for trucks, and 1.4 accidents per mvm for trucks with trailer. The values for average fatality rates reported in 1981 are: 3.8 fatalities per 100 mvm for pickups, 2.8 fatalities per 100 mvm for trucks, and 4.3 fatalities per 100 mvm for trucks with trailer. The reported rates for 1980 are approximately the same.« less

  10. 1995 Kentucky traffic accident facts

    DOT National Transportation Integrated Search

    1995-01-01

    KENTUCKYS TRAFFIC ACCIDENT FACTS report for 1995 is based on accident reports submitted to the Accident Unit housed : in the Kentucky State Police Information Services Branch, Records Section. As required by Kentucky Revised statutes 189.635, : ...

  11. 1996 Kentucky traffic accident facts

    DOT National Transportation Integrated Search

    1996-01-01

    KENTUCKYS TRAFFIC ACCIDENT FACTS report for 1996 is based on accident reports submitted to the Accident Unit housed : in the Kentucky State Police Information Services Branch, Records Section. As required by Kentucky Revised statutes 189.635, : ...

  12. 1998 Kentucky traffic accident facts

    DOT National Transportation Integrated Search

    1998-01-01

    KENTUCKYS TRAFFIC ACCIDENT FACTS report for 1998 is based on accident reports submitted to the Accident Unit housed : in the Kentucky State Police Information Services Branch, Records Section. As required by Kentucky Revised statutes 189.635, : ...

  13. 1997 Kentucky traffic accident facts

    DOT National Transportation Integrated Search

    1997-01-01

    KENTUCKYS TRAFFIC ACCIDENT FACTS report for 1997 is based on accident reports submitted to the Accident Unit housed : in the Kentucky State Police Information Services Branch, Records Section. As required by Kentucky Revised statutes 189.635, : ...

  14. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  15. Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Murdin, P.

    2002-10-01

    Launched on 23 July 1999 on board the SpaceShuttle Columbia from Cape Canaveral, the ChandraX-ray Observatory is the first x-ray astronomytelescope to match the 1/2 arcsecond imagingpower and the 0.1% spectral resolving power ofoptical telescopes. Chandra is named afterSubramanian Chandrasekhar, known as Chandra, andauthor of the Chandrasekhar limit. Chandra hasbeen extremely successful and produc...

  16. Surface ozone variability at Kislovodsk Observatory

    NASA Technical Reports Server (NTRS)

    Elansky, Nikolay F.; Makarov, Oleg V.; Senik, Irina A.

    1994-01-01

    The results of the surface ozone observations at the Observatory 'Kislovodsk', situated in the North Caucasus at the altitude 2070 m a.s.l., are given. The observatory is in the background conditions and the variations of the surface ozone are determined by the natural dynamic and photochemical processes. The mean value of the concentration and its seasonal variations are very near to those obtained at the high-mountain stations in Alps. The daily variations have the features, which remain stable during all warm period of the year (April-October). These features, including the minimum of the surface ozone at noon, are formed by the mountain-valley circulation. The significant variations of the surface ozone are connected with the unstationary lee waves.

  17. Future Astronomical Observatories on the Moon

    NASA Technical Reports Server (NTRS)

    Burns, Jack O. (Editor); Mendell, Wendell W. (Editor)

    1988-01-01

    Papers at a workshop which consider the topic astronomical observations from a lunar base are presented. In part 1, the rationale for performing astronomy on the Moon is established and economic factors are considered. Part 2 includes concepts for individual lunar based telescopes at the shortest X-ray and gamma ray wavelengths, for high energy cosmic rays, and at optical and infrared wavelengths. Lunar radio frequency telescopes are considered in part 3, and engineering considerations for lunar base observatories are discussed in part 4. Throughout, advantages and disadvantages of lunar basing compared to terrestrial and orbital basing of observatories are weighted. The participants concluded that the Moon is very possibly the best location within the inner solar system from which to perform front-line astronomical research.

  18. A comparison of the hazard perception ability of accident-involved and accident-free motorcycle riders.

    PubMed

    Cheng, Andy S K; Ng, Terry C K; Lee, Hoe C

    2011-07-01

    Hazard perception is the ability to read the road and is closely related to involvement in traffic accidents. It consists of both cognitive and behavioral components. Within the cognitive component, visual attention is an important function of driving whereas driving behavior, which represents the behavioral component, can affect the hazard perception of the driver. Motorcycle riders are the most vulnerable types of road user. The primary purpose of this study was to deepen our understanding of the correlation of different subtypes of visual attention and driving violation behaviors and their effect on hazard perception between accident-free and accident-involved motorcycle riders. Sixty-three accident-free and 46 accident-involved motorcycle riders undertook four neuropsychological tests of attention (Digit Vigilance Test, Color Trails Test-1, Color Trails Test-2, and Symbol Digit Modalities Test), filled out the Chinese Motorcycle Rider Driving Violation (CMRDV) Questionnaire, and viewed a road-user-based hazard situation with an eye-tracking system to record the response latencies to potentially dangerous traffic situations. The results showed that both the divided and selective attention of accident-involved motorcycle riders were significantly inferior to those of accident-free motorcycle riders, and that accident-involved riders exhibited significantly higher driving violation behaviors and took longer to identify hazardous situations compared to their accident-free counterparts. However, the results of the regression analysis showed that aggressive driving violation CMRDV score significantly predicted hazard perception and accident involvement of motorcycle riders. Given that all participants were mature and experienced motorcycle riders, the most plausible explanation for the differences between them is their driving style (influenced by an undesirable driving attitude), rather than skill deficits per se. The present study points to the importance of

  19. Risk of road accident associated with the use of drugs: a systematic review and meta-analysis of evidence from epidemiological studies.

    PubMed

    Elvik, Rune

    2013-11-01

    This paper is a corrigendum to a previously published paper where errors were detected. The errors have been corrected in this paper. The paper is otherwise identical to the previously published paper. A systematic review and meta-analysis of studies that have assessed the risk of accident associated with the use of drugs when driving is presented. The meta-analysis included 66 studies containing a total of 264 estimates of the effects on accident risk of using illicit or prescribed drugs when driving. Summary estimates of the odds ratio of accident involvement are presented for amphetamines, analgesics, anti-asthmatics, anti-depressives, anti-histamines, benzodiazepines, cannabis, cocaine, opiates, penicillin and zopiclone (a sleeping pill). For most of the drugs, small or moderate increases in accident risk associated with the use of the drugs were found. Information about whether the drugs were actually used while driving and about the doses used was often imprecise. Most studies that have evaluated the presence of a dose-response relationship between the dose of drugs taken and the effects on accident risk confirm the existence of a dose-response relationship. Use of drugs while driving tends to have a larger effect on the risk of fatal and serious injury accidents than on the risk of less serious accidents (usually property-damage-only accidents). The quality of the studies that have assessed risk varied greatly. There was a tendency for the estimated effects of drug use on accident risk to be smaller in well-controlled studies than in poorly controlled studies. Evidence of publication bias was found for some drugs. The associations found cannot be interpreted as causal relationships, principally because most studies do not control very well for potentially confounding factors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Accuracy of Virginia accident data.

    DOT National Transportation Integrated Search

    1981-09-01

    The sources, magnitude, and characteristics of the inaccuracies in Virginia's police-reported accident data were examined. Five techniques were used to (1) determine how accident data are documented, (2) examine the contents of the accident report us...

  1. 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Manevich, Alexander; Rybin, Alexander

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2006. A significant explosive eruption at Augustine Volcano in Cook Inlet marked the first eruption within several hundred kilometers of principal population centers in Alaska since 1992. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the fall of 2006 and continued to emit copious amounts of volcanic gas into 2007. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  2. Central collecting and evaluating of major accidents and near-miss-events in the Federal Republic of Germany--results, experiences, perspectives.

    PubMed

    Uth, Hans-Joachim; Wiese, Norbert

    2004-07-26

    Lessons learnt from accidents are essential sources for updating state of the art requirements in process safety. To improve this input by a systematic way in the FRG, a central body for collecting and evaluating major accident (ZEMA) was established in 1993. ZEMA is part of the Federal Environmental Agency. All events which are to be notified due to the German Regulation on Major Accidents (Störfall-Verordnung) are centrally collected, analysed (deducing lessons learnt) and documented by ZEMA. The bureau is also responsible for the dissemination of the lessons learnt to all stake holders. This work is done in co-operation with the German Major-Accident Hazard Commission (Störfallkommission) and other international bodies like European MAHB. At the time being, over 375 events from 1980 to 2002 are registered in Germany. For each event, a separate data sheet is published in annual reports, first started in 1993. All information is also available at. A summary evaluation on the events from 1993 to 1999 is presented and some basic lessons learnt are shown. The results from root cause analysis underline the importance of maintenance, detailed knowledge of chemical properties, human factor issues and the role of safety organisation especially connected with subcontractors. The German notification system is described in detail and some experience with the system is reported. Keeping in mind that collecting reports from notified major accidents is only a small amount compared with all the events which might be interesting to learn from, the German Major-Accident Hazard Commission has established a separate body, the subcommittee "Incident Evaluation", which is in charge with collecting and evaluating of minor and near-miss events. Since 1994, a concept for the registration and evaluation of those non-notifiable events was developed. From 2000 on, the concept has been put into operation. Its main elements are; 1. reporting of the incident by the plant operator to an

  3. Occupational accidents among mototaxi drivers.

    PubMed

    Amorim, Camila Rego; de Araújo, Edna Maria; de Araújo, Tânia Maria; de Oliveira, Nelson Fernandes

    2012-03-01

    The use of motorcycles as a means of work has contributed to the increase in traffic accidents, in particular, mototaxi accidents. The aim of this study was to estimate and characterize the incidence of occupational accidents among the mototaxis registered in Feira de Santana, BA. This is a cross-sectional study with descriptive and census data. Of the 300 professionals registered at the Municipal Transportation Service, 267 professionals were interviewed through a structured questionnaire. Then, a descriptive analysis was conducted and the incidence of accidents was estimated based on the variables studied. Relative risks were calculated and statistical significance was determined using the chi-square test and Fisher's exact test, considering p < 0.05. Logistic regression was used in order to perform simultaneous adjustment of variables. Occupational accidents were observed in 10.5% of mototaxis. There were mainly minor injuries (48.7%), 27% of them requiring leaves of absence from work. There was an association between the days of work per week, fatigue in lower limbs and musculoskeletal complaints, and accidents. Knowledge of the working conditions and accidents involved in this activity can be of great importance for the adoption of traffic education policies, and to help prevent accidents by improving the working conditions and lives of these professionals.

  4. Plans for a Northern Cascadia Subduction Zone Observatory

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Wang, K.; Davis, E.; Chadwell, C. D.; Nissen, E.; Moran, K.; Scherwath, M.

    2017-12-01

    To accurately assess earthquake and tsunami hazards posed by the Cascadia Subduction Zone, it is critically important to know which area of the plate interface is locked and whether or not part of the energy is being released aseismically by slow creep on the fault. Deeper locking that extends further to the coast produces stronger shaking in population centers. Shallow locking, on the other hand, leads to bigger tsunamis. We will report on and discuss plans for a new amphibious Northern Cascadia Subduction Zone Observatory (NCSZO) that will leverage the existing NEPTUNE cabled seafloor observatory, which is operated by Ocean Networks Canada (ONC), and the onshore network of geodetic stations, which is operated by Natural Resources Canada (NRCan). To create a NCSZO we plan to (1) add a network of seven GPS-Acoustic (GPS-A) sites offshore Vancouver Island, (2) establish a Deformation Front Observatory, and (3) improve the existing onshore geodetic network (see Figure below). The GPS-A stations will provide the undisturbed motion of the Juan de Fuca (JdF) Plate (1), deformation of the JdF plate (2), deformation of the overriding plate (3-7) and a cabled laboratory to study the potential for continuous GPS-A measurements (6). The Deformation Front Observatory will be used to study possible transient slip events using seafloor pressure and tilt instruments and fluid flux meters.

  5. GENERAL VIEW, LOOKING NORTH, OF ATOMIC PHYSICS OBSERVATORY WHICH CONTAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW, LOOKING NORTH, OF ATOMIC PHYSICS OBSERVATORY WHICH CONTAINS THE WHITE DOME STRUCTURE. THE SHED-LIKE STRUCTURE TO THE LEFT IS THE SEARCH-LIGHT BUILDING. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Atomic Physics Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  6. Construction industry accidents in Spain.

    PubMed

    Camino López, Miguel A; Ritzel, Dale O; Fontaneda, Ignacio; González Alcantara, Oscar J

    2008-01-01

    This paper analyzed industrial accidents that take place on construction sites and their severity. Eighteen variables were studied. We analyzed the influence of each of these with respect to the severity and fatality of the accident. This descriptive analysis was grounded in 1,630,452 accidents, representing the total number of accidents suffered by workers in the construction sector in Spain over the period 1990-2000. It was shown that age, type of contract, time of accident, length of service in the company, company size, day of the week, and the remainder of the variables under analysis influenced the seriousness of the accident. IMPACT ON INJURY PREVENTION: The results obtained show that different training was needed, depending on the severity of accidents, for different age, length of service in the company, organization of work, and time when workers work. The research provides an insight to the likely causes of construction injuries in Spain. As a result of the analysis, industries and governmental agencies in Spain can start to provide appropriate strategies and training to the construction workers.

  7. 49 CFR 835.11 - Obtaining Board accident reports, factual accident reports, and supporting information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Obtaining Board accident reports, factual accident reports, and supporting information. 835.11 Section 835.11 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL TRANSPORTATION SAFETY BOARD TESTIMONY OF BOARD EMPLOYEES § 835.11 Obtaining Board accident reports, factual...

  8. 49 CFR 835.11 - Obtaining Board accident reports, factual accident reports, and supporting information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Obtaining Board accident reports, factual accident reports, and supporting information. 835.11 Section 835.11 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL TRANSPORTATION SAFETY BOARD TESTIMONY OF BOARD EMPLOYEES § 835.11 Obtaining Board accident reports, factual...

  9. 49 CFR 835.11 - Obtaining Board accident reports, factual accident reports, and supporting information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Obtaining Board accident reports, factual accident reports, and supporting information. 835.11 Section 835.11 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL TRANSPORTATION SAFETY BOARD TESTIMONY OF BOARD EMPLOYEES § 835.11 Obtaining Board accident reports, factual...

  10. 49 CFR 835.11 - Obtaining Board accident reports, factual accident reports, and supporting information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Obtaining Board accident reports, factual accident reports, and supporting information. 835.11 Section 835.11 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL TRANSPORTATION SAFETY BOARD TESTIMONY OF BOARD EMPLOYEES § 835.11 Obtaining Board accident reports, factual...

  11. Early Science Results from SOFIA, the Worlds Largest Airborne Observatory

    NASA Astrophysics Data System (ADS)

    De Buizer, J.

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the largest flying observatory ever built, consisting of a 2.7-meter diameter telescope embedded in a modified Boeing 747-SP aircraft. SOFIA is a joint project between NASA and the German Aerospace Center Deutsches Zentrum fur Luft und-Raumfahrt. By flying at altitudes up to 45000 feet, the observatory gets above 99.9% of the infrared-absorbing water vapor in the Earth's atmosphere. This opens up an almost uninterrupted wavelength range from 0.3-1600 microns that is in large part obscured from ground based observatories. Since its 'Initial Science Flight' in December 2010, SOFIA has flown several dozen science flights, and has observed a wide array of objects from Solar System bodies, to stellar nurseries, to distant galaxies. This talk will review some of the exciting new science results from these first flights which were made by three instruments: the mid-infrared camera FORCAST, the far-infrared heterodyne spectrometer GREAT, and the optical occultation photometer HIPO.

  12. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for internal dosimetry. Volume 2: Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M.

    1998-04-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library ofmore » uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on internal dosimetry, (4) short biographies of the experts, and (5) the aggregated results of their responses.« less

  13. A conceptual approach to a citizens' observatory--supporting community-based environmental governance.

    PubMed

    Liu, Hai-Ying; Kobernus, Mike; Broday, David; Bartonova, Alena

    2014-12-12

    In recent years there has been a trend to view the Citizens' Observatory as an increasingly essential tool that provides an approach for better observing, understanding, protecting and enhancing our environment. However, there is no consensus on how to develop such a system, nor is there any agreement on what a Citizens' Observatory is and what results it could produce. The increase in the prevalence of Citizens' Observatories globally has been mirrored by an increase in the number of variables that are monitored, the number of monitoring locations and the types of participating citizens. This calls for a more integrated approach to handle the emerging complexities involved in this field, but before this can be achieved, it is essential to establish a common foundation for Citizens' Observatories and their usage. There are many aspects to a Citizens' Observatory. One view is that its essence is a process that involves environmental monitoring, information gathering, data management and analysis, assessment and reporting systems. Hence, it requires the development of novel monitoring technologies and of advanced data management strategies to capture, analyse and survey the data, thus facilitating their exploitation for policy and society. Practically, there are many challenges in implementing the Citizens' Observatory approach, such as ensuring effective citizens' participation, dealing with data privacy, accounting for ethical and security requirements, and taking into account data standards, quality and reliability. These concerns all need to be addressed in a concerted way to provide a stable, reliable and scalable Citizens' Observatory programme. On the other hand, the Citizens' Observatory approach carries the promise of increasing the public's awareness to risks in their environment, which has a corollary economic value, and enhancing data acquisition at low or no cost. In this paper, we first propose a conceptual framework for a Citizens' Observatory

  14. Earth Observatory Satellite system definition study. Report 1: Orbit/launch vehicle trade-off studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A summary of the constraints and requirements on the Earth Observatory Satellite (EOS-A) orbit and launch vehicle analysis is presented. The propulsion system (hydrazine) and the launch vehicle (Delta 2910) selected for EOS-A are examined. The rationale for the selection of the recommended orbital altitude of 418 nautical miles is explained. The original analysis was based on the EOS-A mission with the Thematic Mapper and the High Resolution Pointable Imager. The impact of the revised mission model is analyzed to show how the new mission model affects the previously defined propulsion system, launch vehicle, and orbit. A table is provided to show all aspects of the EOS multiple mission concepts. The subjects considered include the following: (1) mission orbit analysis, (2) spacecraft parametric performance analysis, (3) launch system performance analysis, and (4) orbits/launch vehicle selection.

  15. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, : J.; Abreu, P.; Aglietta, M.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delaymore » of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.« less

  16. Asteroid photometric observations at Catania and Padova Observatories

    NASA Astrophysics Data System (ADS)

    Gandolfi, D.; Blanco, C.; Cigna, M.

    We present new photometric observations of 27 Euterpe, 173 Ino, 182 Elsa, 539 Pamina, 849 Ara, 2892 Filipenko, 3199 Nefertiti and 2004 UE, carried out between January 2003 and November 2004 at Catania Astrophysical Observatory and Padova Astronomical Observatory. The first determination of the synodic rotational period value of 2892 Filipenko and 2004 UE was obtained. For 182 Elsa, using the H-G magnitude relation (Bowell et al. 1989), we determined the absolute magnitude H and the slope parameter G.

  17. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix E: EOS program supporting system trade data. Part 2: System trade studies no. 9 - 19

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The relative merits of several international data acquisition (IDA) alternatives for the Earth Observatory Satellite (EOS) are established and rated on a cost effectiveness basis. The primary alternatives under consideration are: (1) direct transmission to foreign ground stations, (2) a wideband video tape recorder system for collection of foreign data and processing and distribution from the United States, and (3) a tracking and data relay satellite (TDRS) system for the relay of foreign data to the United States for processing and distribution. A requirements model is established for the analysis on the basis of the heaviest concentration of agricultural areas around the world. The model, the orbit path and the constraints of EOS and data volume summaries are presented. Alternative system descriptions and costs are given in addition to cost-performance summaries.

  18. Solar Dynamics Observatory Artist Concept

    NASA Image and Video Library

    2010-02-11

    The Solar Dynamics Observatory SDO spacecraft, shown above the Earth as it faces toward the Sun. SDO is designed to study the influence of the Sun on the Earth and the inner solar system by studying the solar atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA18169

  19. The Role of Project Science in the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Weisskopf, Martin C.

    2006-01-01

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.

  20. Recent results from the Compton Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelson, P.F.; Hansen, W.W.

    1994-12-01

    The Compton Observatory is an orbiting astronomical observatory for gamma-ray astronomy that covers the energy range from about 30 keV to 30 GeV. The Energetic Gamma Ray Experiment Telescope (EGRET), one of four instruments on-board, is capable of detecting and imaging gamma radiation from cosmic sources in the energy range from approximately 20 MeV to 30 GeV. After about one month of tests and calibration following the April 1991 launch, a 15-month all sky survey was begun. This survey is now complete and the Compton Observatory is well into Phase II of its observing program which includes guest investigator observations.more » Among the highlights from the all-sky survey discussed in this presentation are the following: detection of five pulsars with emission above 100 MeV; detection of more than 24 active galaxies, the most distant at redshift greater than two; detection of many high latitude, unidentified gamma-ray sources, some showing significant time variability; detection of at least two high energy gamma-ray bursts, with emission in one case extending to at least 1 GeV. EGRET has also detected gamma-ray emission from solar flares up to energies of at least 2 GeV and has observed gamma-rays from the Large Magellanic Cloud.« less

  1. International Ultraviolet Explorer Observatory operations

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This volume contains the final report for the International Ultraviolet Explorer IUE Observatory Operations contract. The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to translate competitively selected observing programs into IUE observations, to reduce these observations into meaningful scientific data, and then to present these data to the Guest Observer in a form amenable to the pursuit of scientific research. The IUE Observatory is the key to this objective since it is the central control and support facility for all science operations functions within the IUE Project. In carrying out the operation of this facility, a number of complex functions were provided beginning with telescope scheduling and operation, proceeding to data processing, and ending with data distribution and scientific data analysis. In support of these critical-path functions, a number of other significant activities were also provided, including scientific instrument calibration, systems analysis, and software support. Routine activities have been summarized briefly whenever possible.

  2. 28 CFR 301.106 - Repetitious accidents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Repetitious accidents. 301.106 Section 301.106 Judicial Administration FEDERAL PRISON INDUSTRIES, INC., DEPARTMENT OF JUSTICE INMATE ACCIDENT COMPENSATION General § 301.106 Repetitious accidents. If an inmate worker is involved in successive accidents...

  3. 28 CFR 301.106 - Repetitious accidents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Repetitious accidents. 301.106 Section 301.106 Judicial Administration FEDERAL PRISON INDUSTRIES, INC., DEPARTMENT OF JUSTICE INMATE ACCIDENT COMPENSATION General § 301.106 Repetitious accidents. If an inmate worker is involved in successive accidents...

  4. 49 CFR 195.50 - Reporting accidents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Reporting accidents. 195.50 Section 195.50 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.50 Reporting accidents. An accident...

  5. 49 CFR 195.50 - Reporting accidents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Reporting accidents. 195.50 Section 195.50 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.50 Reporting accidents. An accident...

  6. ESO's First Observatory Celebrates 40th Anniversary

    NASA Astrophysics Data System (ADS)

    2009-03-01

    ESO's La Silla Observatory, which is celebrating its 40th anniversary, became the largest astronomical observatory of its time. It led Europe to the frontline of astronomical research, and is still one of the most scientifically productive in ground-based astronomy. ESO PR Photo 12a/09 La Silla Aerial View ESO PR Photo 12b/09 The ESO New Technology Telescope ESO PR Photo 12c/09 SEST on La Silla ESO PR Photo 12d/09 Looking for the best site ESO PR Video 12a/09 ESOcast 5 With about 300 refereed publications attributable to the work of the observatory per year, La Silla remains at the forefront of astronomy. It has led to an enormous number of scientific discoveries, including several "firsts". The HARPS spectrograph is the world's foremost exoplanet hunter. It detected the system around Gliese 581, which contains what may be the first known rocky planet in a habitable zone, outside the Solar System (ESO 22/07). Several telescopes at La Silla played a crucial role in discovering that the expansion of the Universe is accelerating (ESO 21/98) and in linking gamma-ray bursts -- the most energetic explosions in the Universe since the Big Bang - with the explosions of massive stars (ESO 15/98). Since 1987, the ESO La Silla Observatory has also played an important role in the study and follow-up of the nearest supernova, SN 1987A (ESO 08/07). "The La Silla Observatory continues to offer the astronomical community exceptional capabilities," says ESO Director General, Tim de Zeeuw. "It was ESO's first presence in Chile and as such, it triggered a very long and fruitful collaboration with this country and its scientific community." The La Silla Observatory is located at the edge of the Chilean Atacama Desert, one of the driest and loneliest areas of the world. Like other observatories in this geographical area, La Silla is located far from sources of polluting light and, as the Paranal Observatory that houses the Very Large Telescope, it has one of the darkest and clearest

  7. Future Large-Aperture Ultraviolet/Optical/Infrared Space Observatory

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Mandell, Avi; Polidan, Ron; Tumlinson, Jason

    2016-01-01

    Since the beginning of modern astronomical science in the early 1900s, astronomers have yearned to escape the turbulence and absorption of Earth's atmosphere by placing observatories in space. One of the first papers to lay out the advantages of space astronomy was by Lyman Spitzer in 1946, "Astronomical Advantages of an Extra-Terrestrial Observatory," though later in life he minimized the influence of this work. Since that time, and especially gaining momentum in the 1960s after the launch of Sputnik, astronomers, technologists, and engineers continued to advance, organizing scientific conferences, advocating for necessary technologies, and assessing sophisticated designs for increasingly ambitious space observations at ultraviolet, visual, and infrared (UVOIR) wavelengths. These community-wide endeavors, combined with the explosion in technological capability enabled by the Apollo era, led to rapid advancement in space observatory performance that culminated in the spectacularly successful Hubble Space Telescope (HST), launched in 1990 and still returning surpassing scientific results.

  8. Utilizing Internet Technologies in Observatory Control Systems

    NASA Astrophysics Data System (ADS)

    Cording, Dean

    2002-12-01

    The 'Internet boom' of the past few years has spurred the development of a number of technologies to provide services such as secure communications, reliable messaging, information publishing and application distribution for commercial applications. Over the same period, a new generation of computer languages have also developed to provide object oriented design and development, improved reliability, and cross platform compatibility. Whilst the business models of the 'dot.com' era proved to be largely unviable, the technologies that they were based upon have survived and have matured to the point were they can now be utilized to build secure, robust and complete observatory control control systems. This paper will describe how Electro Optic Systems has utilized these technologies in the development of its third generation Robotic Observatory Control System (ROCS). ROCS provides an extremely flexible configuration capability within a control system structure to provide truly autonomous robotic observatory operation including observation scheduling. ROCS was built using Internet technologies such as Java, Java Messaging Service (JMS), Lightweight Directory Access Protocol (LDAP), Secure Sockets Layer (SSL), eXtendible Markup Language (XML), Hypertext Transport Protocol (HTTP) and Java WebStart. ROCS was designed to be capable of controlling all aspects of an observatory and be able to be reconfigured to handle changing equipment configurations or user requirements without the need for an expert computer programmer. ROCS consists of many small components, each designed to perform a specific task, with the configuration of the system specified using a simple meta language. The use of small components facilitates testing and makes it possible to prove that the system is correct.

  9. Open Technologies at Athabasca University's Geospace Observatories

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Schofield, I. S.

    2012-12-01

    Athabasca University Geophysical Observatories feature two auroral observation sites situated in the subauroral zone of western Canada, separated by approximately 25 km. These sites are both on high-speed internet and ideal for observing phenomena detectable from this latitude, which include noctilucent clouds, meteors, and magnetic and optical aspects of the aurora. General aspects of use of Linux in observatory management are described, with emphasis on recent imaging projects involving control of high resolution digital SLR cameras at low cadence, and inexpensive white light analog video cameras at 30 Hz. Linux shell scripts are extensively used, with image capture controlled by gphoto2, the ivtv-utils package, x264 video coding library, and ffmpeg. Imagemagick allows processing of images in an automated fashion. Image archives and movies are created and can be correlated with magnetic data. Much of the magnetic data stream also uses GMT (Generic Mapping Tools) within shell scripts for display. Additionally, SPASE metadata are generated for most of the magnetic data, thus allowing users of our AUTUMN magnetic data repository to perform SPASE queries on the dataset. Visualization products from our twin observatories will be presented.

  10. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    NASA Astrophysics Data System (ADS)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    The advantages of astronomical observations made above Earth's atmosphere have long been understood: free access to spectral regions inaccessible from Earth (e.g., UV) or affected by the atmosphere's content (e.g., IR). Most robotic, space-based telescopes maintain large angular separation between the Sun and an observational target in order to avoid accidental damage to instruments from the Sun. For most astronomical targets, this possibility is easily avoided by waiting until objects are visible away from the Sun. For the Solar System objects inside Earth's orbit, this is never the case. Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. Commercial suborbital spacecraft are largely expected to go to ~100 km altitude above Earth, providing a limited amount of time for astronomical observations. The unique scientific advantage to these observations is the ability to point close to the Sun: if a suborbital spacecraft accidentally turns too close to the Sun and fries an instrument, it is easy to land the spacecraft and repair the hardware for the next flight. Objects uniquely observed during the short observing window include inner-Earth asteroids, Mercury, Venus, and Sun-grazing comets. Both open-FOV and target-specific observations are possible. Despite many space probes to the inner Solar System, scientific questions remain. These include inner-Earth asteroid size and bulk density informing Solar System evolution studies and efforts to develop methods of mitigation against imminent impactors to Earth; chemistry and dynamics of Venus' atmosphere addressing physical phenomena such as greenhouse effect, atmospheric super-rotation and global resurfacing on Venus. With the Atsa Suborbital Observatory, we combine the strengths of both ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with both in-house facility

  11. Workplace accidents in materials transfer in Finland.

    PubMed

    Perttula, Pia; Salminen, Simo

    2012-01-01

    The aim of this study was to show the proportion of workplace accidents related to materials transfer and to decide whether they were more serious than other kinds of workplace accidents. The research material for this study were statistics and data, available in Finland, regarding workplace accidents and fatal accidents. Twenty-five percent of studied fatal accidents were related to materials transfer; 26.9-27.7% of all workplace accidents in Finland in 2003-2007 were workplace accidents related to materials transfer. Over half (54.7%) of workplace accidents related to materials transfer caused disabilities lasting over 3 days. Most accidents related to materials transfer occurred to men aged 20-49 years. The most common types of injuries were dislocations, sprains and strains.

  12. Geoelectric monitoring at the Boulder magnetic observatory

    USGS Publications Warehouse

    Blum, Cletus; White, Tim; Sauter, Edward A.; Stewart, Duff; Bedrosian, Paul A.; Love, Jeffrey J.

    2017-01-01

    Despite its importance to a range of applied and fundamental studies, and obvious parallels to a robust network of magnetic-field observatories, long-term geoelectric field monitoring is rarely performed. The installation of a new geoelectric monitoring system at the Boulder magnetic observatory of the US Geological Survey is summarized. Data from the system are expected, among other things, to be used for testing and validating algorithms for mapping North American geoelectric fields. An example time series of recorded electric and magnetic fields during a modest magnetic storm is presented. Based on our experience, we additionally present operational aspects of a successful geoelectric field monitoring system.

  13. Education Potential of the National Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Christian, Carol

    2006-12-01

    Research in astronomy is blossoming with the availability of sophisticated instrumentation and tools aimed at breakthroughs in our understanding of the physical universe. Researchers can take advantage of the astronomical infrastructure, the National Virtual Observatory (NVO), for their investigations. . As well, data and tools available to the public are increasing through the distributed resources of observatories, academic institutions, computing facilities and educational organizations. Because Astronomy holds the public interest through engaging content and striking a cord with fundamental questions of human interest, it is a perfect context for science and technical education. Through partnerships we are cultivating, the NVO can be tuned for educational purposes.

  14. 32 CFR 644.532 - Reporting accidents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Reporting accidents. 644.532 Section 644.532... and Improvements § 644.532 Reporting accidents. Immediately upon receipt of information of an accident... that an accident has occurred, the former using command should be requested to send qualified explosive...

  15. 49 CFR 845.40 - Accident report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Accident report. 845.40 Section 845.40... RULES OF PRACTICE IN TRANSPORTATION; ACCIDENT/INCIDENT HEARINGS AND REPORTS Board Reports § 845.40 Accident report. (a) The Board will issue a detailed narrative accident report in connection with the...

  16. Contributing factors in construction accidents.

    PubMed

    Haslam, R A; Hide, S A; Gibb, A G F; Gyi, D E; Pavitt, T; Atkinson, S; Duff, A R

    2005-07-01

    This overview paper draws together findings from previous focus group research and studies of 100 individual construction accidents. Pursuing issues raised by the focus groups, the accident studies collected qualitative information on the circumstances of each incident and the causal influences involved. Site based data collection entailed interviews with accident-involved personnel and their supervisor or manager, inspection of the accident location, and review of appropriate documentation. Relevant issues from the site investigations were then followed up with off-site stakeholders, including designers, manufacturers and suppliers. Levels of involvement of key factors in the accidents were: problems arising from workers or the work team (70% of accidents), workplace issues (49%), shortcomings with equipment (including PPE) (56%), problems with suitability and condition of materials (27%), and deficiencies with risk management (84%). Employing an ergonomics systems approach, a model is proposed, indicating the manner in which originating managerial, design and cultural factors shape the circumstances found in the work place, giving rise to the acts and conditions which, in turn, lead to accidents. It is argued that attention to the originating influences will be necessary for sustained improvement in construction safety to be achieved.

  17. The NCU Lu-Lin Observatory Survived the Taiwan 921 Earthquake

    NASA Astrophysics Data System (ADS)

    Tsay, W. S.; Chang, K. H.; Li, H. H.

    1999-12-01

    The NCU (National Central University) Lu-Lin Observatory is located at Mt. Front Lu-Lin, 120o 52' 25" E and 23o 28' 07" N, a 2862-m peak in the Yu-Shan National Park. The construction of Lu-Lin Observatory was finished in January 1999. Fortunately the Lu-Lin Observatory survived the Taiwan 921 Earthquake that was 7.3 on the Ritcher scale. We are proud of the design of Lu-Lin Observatory adopted H-beam and steel wall even the center of earthquake was only 40 km away. The initial study of Lu-Lin site was started since late 1989. Later on, a three-year project was founded by the National Science Council , which supported the development of a modern seeing monitor for this site survey study from 1990 through 1993. The average seeing of Lu-Lin site is about 1.39 arc-second with average 200 clear nights annually. The sky background of this site is 20.72 mag/arcsec2 in V band and 21.22 mag/arcsec2 in B band. The Lu-Lin observatory is developed for both research and education activity. A homemade 76-cm Super Light Telescope (SLT) and three TAOS's 50-cm robotic telescopes will be the two major research facilities. This work is supported by the National Science Council of Taiwan.

  18. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric E.; Casey, Sean C.; Davidson, Jacqueline A.; Savage, Maureen L.

    1998-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter IR airborne telescope in a Boeing 747-SP is now in its second year. The Universities Space Research Association , teamed with Raytheon E-Systems and United Airlines, is developing and will operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies led by MAN. Work on the aircraft and the preliminary mirror has started. First science flights will begin in 2001 with 20 percent of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, US science instrument complement, and operations concept for the SOFIA observatory, with an emphasis on the science community's participation are discussed.

  19. High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This artist's concept depicts the High Energy Astronomy Observatory (HEAO)-2 in orbit. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  20. The database of the Nikolaev Astronomical Observatory as a unit of an international virtual observatory

    NASA Astrophysics Data System (ADS)

    Protsyuk, Yu.; Pinigin, G.; Shulga, A.

    2005-06-01

    Results of the development and organization of the digital database of the Nikolaev Astronomical Observatory (NAO) are presented. At present, three telescopes are connected to the local area network of NAO. All the data obtained, and results of data processing are entered into the common database of NAO. The daily average volume of new astronomical information obtained from the CCD instruments ranges from 300 MB up to 2 GB, depending on the purposes and conditions of observations. The overwhelming majority of the data are stored in the FITS format. Development and further improvement of storage standards, procedures of data handling and data processing are being carried out. It is planned to create an astronomical web portal with the possibility to have interactive access to databases and telescopes. In the future, this resource may become a part of an international virtual observatory. There are the prototypes of search tools with the use of PHP and MySQL. Efforts for getting more links to the Internet are being made.