Sample records for observatory chile proposal

  1. Implementing an Education and Outreach Program for the Gemini Observatory in Chile.

    NASA Astrophysics Data System (ADS)

    Garcia, M. A.

    2006-08-01

    Beginning in 2001, the Gemini Observatory began the development of an innovative and aggressive education and outreach program at its Southern Hemisphere site in northern Chile. A principal focus of this effort is centered on local education and outreach to communities surrounding the observatory and its base facility in La Serena Chile. Programs are now established with local schools using two portable StarLab planetaria, an internet-based teacher exchange called StarTeachers and multiple partnerships with local educational institutions. Other elements include a CD-ROM-based virtual tour that allows students, teachers and the public to experience the observatory's sites in Chile and Hawaii. This virtual environment allows interaction using a variety of immersive scenarios such as a simulated observation using real data from Gemini. Pilot projects like "Live from Gemini" are currently being developed which use internet videoconferencing technologies to bring the observatory's facilities into classrooms at universities and remote institutions. Lessons learned from the implementation of these and other programs will be introduced and the challenges of developing educational programming in a developing country will be shared.

  2. Monitoring the northern Chile megathrust with the Integrated Plate boundary Observatory Chile (IPOC)

    NASA Astrophysics Data System (ADS)

    Schurr, Bernd; Asch, Günter; Cailleau, Beatrice; Diaz, Guillermo Chong; Barrientos, Sergio; Vilotte, Jean-Pierre; Oncken, Onno

    2010-05-01

    The oceanic Nazca plate subducts beneath the continental South American plate by recurrent rupture of large segments of its interface. The resulting earthquakes are among the largest and most frequent on Earth. Along the Chilean and southern Peruvian margin, all sizeable segments have ruptured at least once in the past 150 years for which there exist historic and/or instrumental records. The one segment that is most mature for re-rupture stretches for more than 500 km along the northernmost Chilean coast between roughly -23° and -18° latitude. It last broke in 1877 in a magnitude ~8.5 earthquake, triggering a major Tsunami. From the historical record, it has been known to have a recurrence cycle of approximately 110 years. The adjoining segments to the south and north broke rather recently in 1995 and 2001 in M>8 earthquakes and an M 7.7 earthquake intruded into the southern part of the seismic gap in 2007 between Antofagasto and Tocopilla. This makes northern Chile a unique natural laboratory to observe a subduction megathrust at various stages of its seismic cycle. For that purpose, installation of long-term observatories started in 2006 in a close cooperation of the Universidad de Chile (Santiago, Chile), the Universidad Catolica del Norte (Antofagasta, Chile), the Institut de Physique du Globe de Paris (France), and the GFZ German research Centre for Geosciences (Germany). Currently we are operating 17 modern seismological stations equipped with STS-2 broadband seismometers and accelerometers (EPI sensor). At least two more stations will be installed in the near future. Continuous GPS, tilt, creep, climate and magnetotellurics measurements are complementing the seismological part. A majority of the sites provide data near real-time. We will present results of seismic monitoring including analysis of the 2007 M7.7 Tocopilla earthquake sequence that was recorded during the installation stage of the observatory. We relocated the mainshock and about a one

  3. The Cerro Tololo Inter-American Observatory Summer Student Programs in La Serena, Chile

    NASA Astrophysics Data System (ADS)

    Kaleida, Catherine C.; Smith, C.; Van Der Bliek, N. S.; James, D.

    2014-01-01

    The Cerro Tololo Inter-American Observatory (CTIO) offers positions for U.S. and Chilean student interns during the Chilean summer months of January-March (northern winter semester) at the CTIO offices in La Serena, Chile. CTIO is part of the National Optical Astronomy Observatory (NOAO) of the United States, focused on the development of astronomy in the southern hemisphere. Six undergraduate research assistantships are offered for U.S. physics and astronomy undergraduate students through the NSF-funded Research Experiences for Undergraduates (REU) program. The CTIO-funded Prácticas de Investigación en Astronomía (PIA) program is run concurrently with the REU program, and offers two research assistantships for Chilean undergraduate or 1st or 2nd year masters students, also at the CTIO offices in La Serena, Chile. The CTIO REU and PIA programs provide exceptional opportunities for students considering a career in astronomy to engage in substantive research activities with scientists working at the forefront of contemporary astrophysics. Student participants work on specific research projects in close collaboration with members of the CTIO scientific and technical staff, such as galaxy clusters, gravitational lensing, supernovae, planetary nebulae, stellar populations, star clusters, star formation, variable stars and interstellar medium. The CTIO REU and PIA programs emphasize observational techniques and provide opportunities for direct observational experience using CTIO's state-of-the-art telescopes and instrumentation. The programs run for 10 weeks, from mid-January to the end of March. A two-night observing run on Cerro Tololo and a field trip to another observatory in Chile are included for students of both programs. These positions are full time, and those selected will receive a modest stipend and subsidized housing on the grounds of the offices of CTIO in La Serena, as well as travel costs to and from La Serena. In addition, the students have the

  4. Site Protection Efforts at the AURA Observatory in Chile

    NASA Astrophysics Data System (ADS)

    Smith, R. Chris; Smith, Malcolm G.; Sanhueza, Pedro

    2015-08-01

    The AURA Observatory (AURA-O) was the first of the major international observatories to be established in northern Chile to exploit the optimal astronomical conditions available there. The site was originally established in 1962 to host the Cerro Tololo Inter-American Observatory (CTIO). It now hosts more than 20 operational telescopes, including some of the leading U.S. and international astronomical facilities in the southern hemisphere, such as the Blanco 4m telescope on Cerro Tololo and the Gemini-South and SOAR telescopes on Cerro Pachón. Construction of the next generation facility, the Large Synoptic Survey Telescope (LSST), has recently begun on Cerro Pachón, while additional smaller telescopes continue to be added to the complement on Cerro Tololo.While the site has become a major platform for international astronomical facilities over the last 50 years, development in the region has led to an ever-increasing threat of light pollution around the site. AURA-O has worked closely with local, regional, and national authorities and institutions (in particular with the Chilean Ministries of Environment and Foreign Relations) in an effort to protect the site so that future generations of telescopes, as well as future generations of Chileans, can benefit from the dark skies in the region. We will summarize our efforts over the past 15 years to highlight the importance of dark sky protection through education and public outreach as well as through more recent promotion of IDA certifications in the region and support for the World Heritage initiatives described by others in this conference.

  5. The International Plate Boundary Observatory Chile (IPOC) in the northern Chile seismic gap

    NASA Astrophysics Data System (ADS)

    Schurr, B.; Asch, A.; Sodoudi, F.; Manzanares, A.; Ritter, O.; Klotz, J.; Chong-Diaz, G.; Barrientos, S.; Villotte, J.-P.; Oncken, O.

    2009-04-01

    Fast convergence between the oceanic Nazca and the continental South American plate is accommodated by recurrent rupture of large segments of the two plates' interface. The resulting earthquakes are among the largest and, for their sizes, most frequent on Earth. Along the Chilean and southern Peruvian margin, all segments have ruptured at least once in the past 150 years for which there exist historic and/or instrumental records. The one segment that is most mature for re-rupture stretches for more than 500 km along the northernmost Chilean coast between roughly -23° and -18° latitude. It last broke in 1877 in a magnitude ~8.8 earthquake, triggering a major Tsunami. From the historical record, it has been known to have a recurrence cycle of approximately 110 years. The adjoining segments to the north and south broke rather recently in 1995 and 2001 in M>8 earthquakes and an M 7.7 earthquake encroached the southern part of the gap in 2007. The IPOC project intends to investigate this segment of the Nazca-South American plate boundary, on which a strong to devastating earthquake is expected to occur within the next years, by monitoring at a variety of time-scales deformation, seismicity, and magnetotelluric fields in the subduction zone at the closing stages of the interseismic cycle before and possibly during occurrence of a big earthquake. For that purpose, installation of long-term observatories in Northern Chile started in 2006 in a close cooperation of the Universidad de Chile (Santiago, Chile), the Universidad Catolica del Norte (Antofagasta, Chile), the Institut de Physique du Globe de Paris (Paris, France), and the German Research Centre for Geosciences (GFZ, Potsdam, Germany). Currently we are operating 14 modern seismological stations equipped with STS-2 broadband seismometers and accelerometers (EPI sensor). At least two more stations will be installed in the near future. To cope with the high resolution and dynamic of the sensors and data acquisition

  6. Protection of Northern Chile as an ICOMOS/IAU ``Window to the Universe''

    NASA Astrophysics Data System (ADS)

    Smith, Malcolm G.

    2015-03-01

    Over the last two decades, La Serena's population has increased by about 70 percent. A site description of the AURA Observatory in Chile as a ``Window to the Universe`` is now available on the recently-launched UNESCO-IAU Astronomical Heritage Web Portal, www.astronomicalheritage.net This can serve as an example of possible material for the Chilean authorities, should they wish to propose the dark skies over much of northern Chile for protection as a World Scientific Heritage site. Some of the steps involved are discussed briefly here.

  7. Protecting Dark Skies in Chile

    NASA Astrophysics Data System (ADS)

    Smith, R. Chris; Sanhueza, Pedro; Phillips, Mark

    2018-01-01

    Current projections indicate that Chile will host approximately 70% of the astronomical collecting area on Earth by 2030, augmenting the enormous area of ALMA with that of three next-generation optical telescopes: LSST, GMTO, and E-ELT. These cutting-edge facilities represent billions of dollars of investment in the astronomical facilities hosted in Chile. The Chilean government, Chilean astronomical community, and the international observatories in Chile have recognized that these investments are threatened by light pollution, and have formed a strong collaboration to work at managing the threats. We will provide an update on the work being done in Chile, ranging from training municipalities about new lighting regulations to exploring international recognition of the dark sky sites of Northern Chile.

  8. Protection of Existing and Potential Astronomical Sites in Chile - an Update.

    NASA Astrophysics Data System (ADS)

    Smith, M. G.; Sanhueza, P.; Norman, D.; Schwarz, H.; Orellana, D.

    2002-12-01

    The IAU's Working Group on Controlling Light Pollution (iauwg) has declared Mauna Kea and a wide strip of Northern Chile between Antofagasta and Chajnanator as top priorities for its efforts to protect existing and potential sites in the Northern and Southern hemispheres respectively. This report provides an update on the iauwg's co-ordinated efforts to protect areas around the major international optical observatories in Chile, as well as the "Chilean Special Zone" (CSZ) mentioned above. This zone is of current and potential interest for the installation of extremely large optical telescopes and includes the ALMA radio-astronomy site. The CSZ is potentially vulnerable to adverse effects of mining in the region. Progess has been made in demonstrating to local mining interests within the CSZ the economic advantages of quality lighting. Educational and outreach activities to a variety of target audiences are building on legislation covering dark skies - itself part of work by the Chilean government to protect the natural heritage of Chile. Substantial good will was generated by an international, bilingual conference held last March in Chile. Just in the region around AURA's Observatory in Chile (Gemini South, CTIO and SOAR), a portable planetarium has been used to reach out to over 600 teachers and 65,000 pupils in the RedLaSer schools network within the last three years. This has attracted the direct interest of Chile's Ministry of Education. Videoconferencing over Internet2 is being used for educational purposes between Chile and various sites in the US. The NSF- initiated Mamalluca municipal observatory now receives more visitors than all the international observatories in Chile combined and is the focus of an expanding local industry of astronomical eco-tourism. Most of this work was supported by funding from, or via, the US NSF through CTIO and Gemini, and from ESO, OCIW, CONAMA and the IDA.

  9. International Summer School on Astronomy and Space Science in Chile, first experience.

    NASA Astrophysics Data System (ADS)

    Stepanova, M.; Arellano-Baeza, A. A.

    I International Summer School on Astronomy and Space Science took place in the Elqui Valley Chile January 15-29 2005 Eighty 12-17 year old students from Chile Russia Venezuela and Bulgaria obtained a valuable experience to work together with outstanding scientists from Chile and Russia and with Russian cosmonaut Alexander Balandine They also had opportunity to visit the main astronomical observatories and to participate in workshops dedicated to the telescope and satellite design and remote sensing This activity was supported by numerous institutions in Chile including the Ministry of Education the European Southern Observatory Chilean Space Agency Chilean Air Force Latin American Association of Space Geophysics the principal Chilean universities and the First Lady Mrs Luisa Duran

  10. Design of a Teacher Professional Development Program for International Collaborative Astronomy Research in Chile

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Seguel, J.; Sparks, R.; Opazo, L.; Walker, C. E.

    2011-12-01

    We have designed (but not yet implemented) a program where five US teachers will team with five Chilean teachers to conduct high-quality astronomical research in Chile that can be brought back to their classrooms and shared with their students. This project will introduce US teachers to four research projects at the Observatorio Cruz del Sur, one the largest municipal observatories in South America. The program would operate over the course of a year or more, with a month of observing and conducting research in Chile. The observatory is located in the small town of Combarbalá (Limari Province, IV Región de Coquimbo) in a region rich in archeological, historical, and cultural heritage. Teachers will use high-sensitivity digital detectors to take data through telescopes and with cameras as part of four research projects- light pollution research, digital photography of dark large areas of the sky using wide angle cameras, asteroid photometry, and exoplanet photometric studies. The project partners the National Optical Astronomy Observatory (Tucson, Arizona and La Serena, Chile), the Municipality of the town of Combarbalá, the National Observatory of Chile/University of Chile, and REUNA, an internet communication alliance that serves Chilean universities and observatories. Since the US teachers will have their astronomy classes running while they are in Chile, the teachers will be communicating with their classes on a regular basis. The teachers will also be providing long-term access to southern sky data for other teachers and students in the US while establishing the basis for long-term collaborative research. We expect the program to establish long-term international research collaborations among US and Chilean teachers and students.

  11. Promoting Dark Sky Protection in Chile: the Gabriel Mistral IDA Dark Sky Sanctuary and Other AURA Initiatives

    NASA Astrophysics Data System (ADS)

    Smith, R. Chris; Smith, Malcolm; Pompea, Stephen; Sanhueza, Pedro; AURA-Chile EPO Team

    2018-01-01

    For over 20 years, AURA has been leading efforts promoting the protection of dark skies in northern Chile. Efforts began in the early 1990s at AURA's Cerro Tololo Inter-American Observatory (CTIO), working in collaboration with other international observatories in Chile including Las Campanas Observatory (LCO) and the European Southern Observatory (ESO). CTIO also partnered with local communities, for example supporting Vicuña's effort to establish the first municipal observatory in Chile. Today we have developed a multifaceted effort of dark sky protection, including proactive government relations at national and local levels, a strong educational and public outreach program, and a program of highlighting international recognition of the dark skies through the IDA Dark Sky Places program. Work on international recognition has included the declaration of the Gabriel Mistral IDA Dark Sky Sanctuary, the first such IDA sanctuary in the world.

  12. Observing proposals on the Web at the National Optical Astronomy Observatories

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; Barnes, Jeannette; Bell, David J.

    1998-07-01

    Proposals for telescope time at facilities available through the National Optical Astronomy Observatories can now be prepared and submitted via the WWW. Investigators submit proposal information through a series of HTML forms to the NOAO server, where the information is processed by Perl CGI scripts. PostScript figures and ASCII files may be attached by investigators for inclusion in their proposals using their browser's upload feature. Proposal information is saved on the server so that investigators can return in later sessions to continue work on a proposal and so that collaborators can participate in writing the proposal if they have access to the proposal account name and password. The system provides on-line verification of LATEX syntax and a spellchecker, and confirms that all sections of the proposal are filled out. Users can request a LATEX or PostScript copy of their proposal by e-mail, or view the proposal on line. The advantages of the Web-based process for our users are convenience, access to on-line documentation, and the simple interface which avoids direct confrontation with LATEX. From the NOAO point of view, the advantage is the use of standardized formats and syntax, particularly as we begin to receive proposals for the Gemini telescopes and some independent observatories.

  13. Relations Between Chile and ESO

    NASA Astrophysics Data System (ADS)

    1994-06-01

    As announced in an earlier Press Release (PR 08/94 of 6 May 1994), a high-ranking ESO delegation visited Santiago de Chile during the week of 24 - 28 May 1994 to discuss various important matters of mutual interest with the Chilean Government. It consisted of Dr. Peter Creola (President of ESO Council), Dr. Catherine Cesarsky (Vice-President of ESO Council), Dr. Henrik Grage (Former Vice-President of ESO Council) and Professor Riccardo Giacconi (ESO Director General), the latter accompanied by his advisers. THE SUPPLEMENTARY TREATY BETWEEN CHILE AND ESO Following a meeting with the ambassadors to Chile of the eight ESO member countries, the ESO delegation was received by the Chilean Minister of Foreign Affairs, Mr. Carlos Figueroa, and members of his staff. The ESO delegation was pleased to receive assurances that the present Chilean Government, like its predecessors, will continue to honour all contractual agreements, in particular the privileges and immunities of this Organisation, which were laid down in the Treaty between ESO and Chile that was signed by the parties in 1963 and ratified the following year. The discussions covered some aspects of the proposed Supplementary Treaty which has been under preparation during the past year. This included in particular the desire of the Chilean side to further increase the percentage of guaranteed time for Chilean astronomers at the future ESO Very Large Telescope (VLT) and also the rules governing the installation by ESO member countries of additional telescopes at the ESO observatories in Chile. ESO invited a Chilean delegation to visit the ESO Headquarters in Garching (Germany) later this year for the final adjustment of the text of the Supplementary Treaty, after which it should be possible to proceed rapidly with the signing and ratification by the Chilean Parliament and the ESO Council. THE SITUATION AROUND PARANAL The ESO delegation expressed its deep concern to the Chilean Government about the continuing legal

  14. Protecting the Local Dark-Sky Areas around the International Observatories in Chile.

    NASA Astrophysics Data System (ADS)

    Smith, M. G.

    2001-12-01

    This report covers efforts by IAU Commission 50's new Working Group on Light Pollution to slow or halt the spread of incipient light pollution near the VLT, the Magellan 6.5m telescopes, Gemini South, SOAR, Blanco and many smaller telescopes in Chile. An effort has just begun to protect the ALMA site in Northern Chile from RFI. Such work includes extensive outreach programs to the local population, schools and industry as well as to local, regional and national levels of government in Chile. The group is working internationally with such organizations as the IDA; one member has recently led the production of "The first world atlas of the artificial night-sky brightness". These efforts have resulted in the first national-level environmental legislation covering dark skies as part of a government effort to protect the environment. Chilean manufacturers are now producing competitive, full-cut-off, street lighting designed specifically to comply with the new legislation. The Chilean national tourism agency is supporting "Astronomical Tourism" based on the dark, clear skies of Chile. An international conference on Controlling Light Pollution and RFI will be held in La Serena, Chile on 5-7 March, 2002, backed up by a parallel meeting of Chilean amateur astronomers. Much work remains to be done. Most of this work is supported by funding from the US National Science Foundation through CTIO, and from ESO, OCIW and CONAMA.

  15. Expedition Atacama - project AMOS in Chile

    NASA Astrophysics Data System (ADS)

    Tóth, J.; Kaniansky, S.

    2016-01-01

    The Slovak Video Meteor Network operates since 2009 (Tóth et al., 2011). It currently consists of four semi-automated all-sky video cameras, developed at the Astronomical Observatory in Modra, Comenius University in Bratislava, Slovakia. Two new generations of AMOS (All-sky Meteor Orbit System) cameras operate fully automatically at the Canary Islands, Tenerife and La Palma, since March 2015 (Tóth et al., 2015). As a logical step, we plan to cover the southern hemisphere from Chile. We present observational experiences in meteor astronomy from the Atacama Desert and other astronomical sites in Chile. This summary of the observations lists meteor spectra records (26) between Nov.5-13, 2015 mostly Taurid meteors, single and double station meteors as well as the first light from the permanent AMOS stations in Chile.

  16. Visits to La Plata Observatory

    NASA Astrophysics Data System (ADS)

    Feinstein, A.

    1985-03-01

    La Plata Observatory will welcome visitors to ESO-La Silla that are willing to make a stop at Buenos Aires on their trip to Chile or on their way back. There is a nice guesthouse at the Observatory that can be used, for a couple of days or so, by astronomers interested in visiting the Observatory and delivering talks on their research work to the Argentine colleagues. No payments can, however, be made at present. La Plata is at 60 km from Buenos Aires. In the same area lie the Instituto de Astronomia y Fisica dei Espacio (IAFE), in Buenos Aires proper, and the Instituto Argentino de Radioastronomia (IAR). about 40 km from Buenos Aires on the way to La Plata. Those interested should contacl: Sr Decano Prof. Cesar A. Mondinalli, or Dr Alejandro Feinstein, Observatorio Astron6mico, Paseo dei Bosque, 1900 La Plata, Argentina. Telex: 31216 CESLA AR.

  17. Eso's Situation in Chile

    NASA Astrophysics Data System (ADS)

    1995-02-01

    the purpose to do science and not to participate in polemics or litigations. For this reason, ESO has until now been silent in these matters, but we have now become obliged to make our opinion known". The ESO representative also made it clear, that "ESO does not question the rights of the claimants to recur to the Chilean Tribunals which must decide on the matter of ownership, and that ESO cannot be party to this lawsuit". He added that "ESO fully trusts that the Chilean Government will do whatever is necessary to defend the immunity of ESO". THE CURRENT SITUATION During the past few days, declarations from high officials at the Chilean Ministry of Foreign Affairs have been made which clearly confirm ESO's immunity of jurisdiction from Chilean Courts. The same opinion has been ventured by Chilean experts in international law, quoted in various Chilean newspapers. On Friday, February 17, the Chilean Minister of Foreign Affairs, Mr. Jose M. Insulza, made a similar, very eloquent statement. ESO welcomes these articulate expressions that support its official position and trusts that the current situation will be speedily resolved by the competent Chilean authorities, so that the construction work at Paranal will not be stopped. During the past three decades, ESO's presence in Chile has been characterised by good relations to all sides. The development of astronomy in Chile during the past decades has reached such a level that it will now benefit from a new quality of cooperation. In addition to its past and numerous services to Chilean astronomy, ESO has recently considered to establish a "guaranteed" observing time for astronomers from this country, both at La Silla and the future VLT observatory on Paranal. With a proposed 10 percent quota for the VLT, Chilean astronomers will in fact have free access to the equivalent of 40 percent of one 8.2-metre telescope; the associated, not insignificant cost is entirely carried by ESO. ESO has also considered to incorporate

  18. President of Czech Republic visits ESO's Paranal Observatory

    NASA Astrophysics Data System (ADS)

    2011-04-01

    On 6 April 2011, the ESO Paranal Observatory was honoured with a visit from the President of the Czech Republic, Václav Klaus, and his wife Livia Klausová, who also took the opportunity to admire Cerro Armazones, the future site of the planned E-ELT. The distinguished visitor was shown the technical installations at the observatory, and was present when the dome of one of the four 8.2-metre Unit Telescopes of ESO's Very Large Telescope opened for a night's observing at Cerro Paranal, the world's most advanced visible-light observatory. "I'm delighted to welcome President Klaus to the Paranal Observatory and to show him first-hand the world-leading astronomical facility that ESO has designed, has built, and operates for European astronomy," said ESO's Director General, Tim de Zeeuw. President Klaus replied, "I am very impressed by the remarkable technology that ESO has built here in the heart of the desert. Czech astronomers are already making good use of these facilities and we look forward to having Czech industry and its scientific community contribute to the future E-ELT." From the VLT platform, the President had the opportunity to admire Cerro Armazones as well as other spectacular views of Chile's Atacama Desert surrounding Paranal. Adjacent to Cerro Paranal, Armazones has been chosen as the site for the future E-ELT (see eso1018). ESO is seeking approval from its governing bodies by the end of 2011 for the go-ahead for the 1-billion euro E-ELT. Construction is expected to begin in 2012 and the start of operations is planned for early in the next decade. President Klaus was accompanied by the Minister of Foreign Affairs of the Czech Republic, Karel Schwarzenberg, the Czech Ambassador in Chile, Zdenek Kubánek, dignitaries of the government, and a Czech industrial delegation. The group was hosted at Paranal by the ESO Director General, Tim de Zeeuw, the ESO Representative in Chile, Massimo Tarenghi, the Director of Operations, Andreas Kaufer, and Jan Palous

  19. A VBA Desktop Database for Proposal Processing at National Optical Astronomy Observatories

    NASA Astrophysics Data System (ADS)

    Brown, Christa L.

    National Optical Astronomy Observatories (NOAO) has developed a relational Microsoft Windows desktop database using Microsoft Access and the Microsoft Office programming language, Visual Basic for Applications (VBA). The database is used to track data relating to observing proposals from original receipt through the review process, scheduling, observing, and final statistical reporting. The database has automated proposal processing and distribution of information. It allows NOAO to collect and archive data so as to query and analyze information about our science programs in new ways.

  20. The 2015 Chile-U.S. Astronomy Education Outreach Summit in Chile

    NASA Astrophysics Data System (ADS)

    Preston, Sandra Lee; Arnett, Dinah; Hardy, Eduardo; Cabezón, Sergio; Spuck, Tim; Fields, Mary Sue; Smith, R. Chris

    2015-08-01

    The first Chile-U.S. Astronomy Education Outreach Summit occurred March 22-28, 2015. The Summit was organized and supported by the U.S. Embassy in Chile, Associated Universities Inc., Association of Universities for Research in Astronomy, the Carnegie Institution for Science, the Image of Chile Foundation, the National Science Foundation, and La Comisión Nacional de Investigación Científica y Tecnológica. The Summit brought together a team of leading experts and officials from Chile and the U.S. to share best practices in astronomy education and outreach. In addition, Summit participants discussed enhancing existing partnerships, and building new collaborations between U.S. Observatories and astronomy education outreach leaders in Chile.The Summit was an exciting and intense week of work and travel. Discussions opened in Santiago on March 22 with a variety of astronomy education and public outreach work sessions, a public forum, and on March 23 the U.S. Embassy sponsored a Star Party. On Tuesday, March 24, the Summit moved to San Pedro de Atacama, where activities included work sessions, a visit to the Atacama Large Millimeter/Submillimeter Array telescope facilities, and a second public forum. From San Pedro, the team traveled to La Serena for additional work sessions, visits to Gemini and Cerro Tololo, a third public forum, and the closing session. At each stop, authorities and the broader community were invited to participate and provide valuable input on the current state, and the future, of astronomy education and public outreach.Following the Summit a core working committee has continued meeting to draft a “roadmap document” based on findings from the Summit. This document will help to identify potential gaps in astronomy outreach efforts, and how the U.S. facilities and Chilean institutions might work together strategically to address these needs. The first draft of this “roadmap document” will be made available for comment in both Spanish and

  1. ESO and Chile: 10 Years of Productive Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    2006-06-01

    ESO and the Government of Chile launched today the book "10 Years Exploring the Universe", written by the beneficiaries of the ESO-Chile Joint Committee. This annual fund provides grants for individual Chilean scientists, research infrastructures, scientific congresses, workshops for science teachers and astronomy outreach programmes for the public. In a ceremony held in Santiago on 19 June 2006, the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) and the Chilean Ministry of Foreign Affairs marked the 10th Anniversary of the Supplementary Agreement, which granted to Chilean astronomers up to 10 percent of the total observing time on ESO telescopes. This agreement also established an annual fund for the development of astronomy, managed by the so-called "ESO-Chile Joint Committee". ESO PR Photo 21/06 ESO PR Photo 21/06 Ten Years ESO-Chile Agreement Ceremony The celebration event was hosted by ESO Director General, Dr. Catherine Cesarsky, and the Director of Special Policy for the Chilean Ministry of Foreign Affairs, Ambassador Luis Winter. "ESO's commitment is, and always will be, to promote astronomy and scientific knowledge in the country hosting our observatories", said ESO Director General, Dr. Catherine Cesarsky. "We hope Chile and Europe will continue with great achievements in this fascinating joint adventure, the exploration of the universe." On behalf of the Government of Chile, Ambassador Luis Winter outlined the historical importance of the Supplementary Agreement, ratified by the Chilean Congress in 1996. "Such is the magnitude of ESO-Chile Joint Committee that, only in 2005, this annual fund represented 8 percent of all financing sources for Chilean astronomy, including those from Government and universities", Ambassador Winter said. The ESO Representative and Head of Science in Chile, Dr. Felix Mirabel, and the appointed Chilean astronomer for the ESO-Chile Joint Committee, Dr. Leonardo Bronfman, also took part in the

  2. Transboundary protected area proposals along the Southern Andes of Chile and Argentina: Status of current efforts

    Treesearch

    Peter Keller

    2007-01-01

    An evolving network of protected areas along the southern Andes of Chile and Argentina-the heart of Patagonia-are in various stages of evaluation and potential Transboundary Protected Area designations. This paper examines three such efforts. The first proposal is the North Andean-Patagonia Regional Eco-Corridor, which was the subject of a recent bilateral meeting...

  3. Exploring remote operation for ALMA Observatory

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Ovando, Nicolás.; Velez, Gaston; Fuica, Soledad; Schemrl, Anton; Robles, Andres; Ibsen, Jorge; Filippi, Giorgio; Pietriga, Emmanuel

    2014-08-01

    The Atacama Large Millimeter /submillimeter Array (ALMA) will be a unique research instrument composed of at least 66 reconfigurable high-precision antennas, located at the Chajnantor plain in the Chilean Andes at an elevation of 5000 m. The observatory has another office located in Santiago of Chile, 1600 km from the Chajnantor plain. In the Atacama desert, the wonderful observing conditions imply precarious living conditions and extremely high operation costs: i.e: flight tickets, hospitality, infrastructure, water, electricity, etc. It is clear that a purely remote operational model is impossible, but we believe that a mixture of remote and local operation scheme would be beneficial to the observatory, not only in reducing the cost but also in increasing the observatory overall efficiency. This paper describes the challenges and experience gained in such experimental proof of the concept. The experiment was performed over the existing 100 Mbps bandwidth, which connects both sites through a third party telecommunication infrastructure. During the experiment, all of the existent capacities of the observing software were validated successfully, although room for improvement was clearly detected. Network virtualization, MPLS configuration, L2TPv3 tunneling, NFS adjustment, operational workstations design are part of the experiment.

  4. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    NASA Astrophysics Data System (ADS)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  5. Calbuco’s plume over Chile

    NASA Image and Video Library

    2015-04-29

    The natural color image below, acquired on April 25 by the Advanced Land Imager on NASA’s Earth Observing-1 satellite, shows Calbuco’s plume rising above the cloud deck over Chile. Read more here: earthobservatory.nasa.gov/IOTD/view.php?id=85791&eocn... Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  7. Unveiling the nature of INTEGRAL objects through optical spectroscopy. VI. A multi-observatory identification campaign

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Mason, E.; Morelli, L.; Cellone, S. A.; McBride, V. A.; Palazzi, E.; Bassani, L.; Bazzano, A.; Bird, A. J.; Charles, P. A.; Dean, A. J.; Galaz, G.; Gehrels, N.; Landi, R.; Malizia, A.; Minniti, D.; Panessa, F.; Romero, G. E.; Stephen, J. B.; Ubertini, P.; Walter, R.

    2008-04-01

    Using 8 telescopes in the northern and southern hemispheres, plus archival data from two on-line sky surveys, we performed a systematic optical spectroscopic study of 39 putative counterparts of unidentified or poorly studied INTEGRAL sources in order to determine or at least better assess their nature. This was implemented within the framework of our campaign to reveal the nature of newly-discovered and/or unidentified sources detected by INTEGRAL. Our results show that 29 of these objects are active galactic nuclei (13 of which are of Seyfert 1 type, 15 are Seyfert 2 galaxies and one is possibly a BL Lac object) with redshifts between 0.011 and 0.316, 7 are X-ray binaries (5 with high-mass companions and 2 with low-mass secondaries), one is a magnetic cataclysmic variable, one is a symbiotic star and one is possibly an active star. Thus, the large majority (74%) of the identifications in this sample belongs to the AGN class. When possible, the main physical parameters for these hard X-ray sources were also computed using the multiwavelength information available in the literature. These identifications further underscore the importance of INTEGRAL in studying the hard X-ray spectra of all classes of X-ray emitting objects, and the effectiveness of a strategy of multi-catalogue cross-correlation plus optical spectroscopy to securely pinpoint the actual nature of still unidentified hard X-ray sources. Based on observations collected at the following observatories: ESO (La Silla, Chile), partly under program 079.A-0171(A); Astronomical Observatory of Bologna in Loiano (Italy); Astronomical Observatory of Asiago (Italy); Cerro Tololo Interamerican Observatory (Chile); Complejo Astronómico El Leoncito (San Juan, Argentina); South African Astronomical Observatory (Sutherland, South Africa); Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (Canary Islands, Spain); Anglo-Australian Observatory (Siding Spring, Australia); Apache Point

  8. The Software Distribution for Gemini Observatory's Science Operations Group

    NASA Astrophysics Data System (ADS)

    Hoenig, M. D.; Clarke, M.; Pohlen, M.; Hirst, P.

    2014-05-01

    Gemini Observatory consists of two telescopes in different hemispheres. It also operates mostly on a queue observing model, meaning observations are performed by staff working shifts as opposed to PIs. For these two reasons alone, maintaining and distributing a diverse software suite is not a trivial matter. We present a way to make the appropriate tools available to staff at Gemini North and South, whether they are working on the summit or from our base facility offices in Hilo, Hawai'i and La Serena, Chile.

  9. Atmospheric Extinction Coefficients in the Ic Band for Several Major International Observatories: Results from the BiSON Telescopes, 1984-2016

    NASA Astrophysics Data System (ADS)

    Hale, S. J.; Chaplin, W. J.; Davies, G. R.; Elsworth, Y. P.; Howe, R.; Lund, M. N.; Moxon, E. Z.; Thomas, A.; Pallé, P. L.; Rhodes, E. J., Jr.

    2017-09-01

    Over 30 years of solar data have been acquired by the Birmingham Solar Oscillations Network (BiSON), an international network of telescopes used to study oscillations of the Sun. Five of the six BiSON telescopes are located at major observatories. The observational sites are, in order of increasing longitude: Mount Wilson (Hale) Observatory (MWO), California, USA; Las Campanas Observatory, Chile; Observatorio del Teide, Izaña, Tenerife, Canary Islands; the South African Astronomical Observatory, Sutherland, South Africa; Carnarvon, Western Australia; and the Paul Wild Observatory, Narrabri, New South Wales, Australia. The BiSON data may be used to measure atmospheric extinction coefficients in the {{{I}}}{{c}} band (approximately 700-900 nm), and presented here are the derived atmospheric extinction coefficients from each site over the years 1984-2016.

  10. Astronomy in Chile Education Ambassadors Program' Gives On-site Experience to Build Knowledge and Enhance Impact: Success of Inaugural Class and Plans for the Future

    NASA Astrophysics Data System (ADS)

    Blue, Charles E.; Spuck, Timothy; ACEAP 2015 Team

    2016-01-01

    A collation of leading U.S. astronomy organizations and observatories selected its first class of educators who traveled to Chile in June/July 2015 as part of the Astronomy in Chile Educator Ambassadors Program (ACEAP). Chosen from a pool of more than 50 applicants, this inaugural group of nine amateur astronomers, planetarium personnel, and astronomy educators toured the major U.S.-funded astronomy facilities in Chile. While there, each ACEAP Ambassador received an in-depth, behind-the-scenes learning experience on the instruments, science, and research coming out of some of the world's most productive and advanced astronomy observatories. In addition, participants learned essential communication skills to help share these exciting experiences with others. Participants also experienced Chilean culture and society, as well as the astrotourism industry that has emerged in Chile.The ultimate goal of this program is to have each ambassador share their experiences as broadly as possible with students and the public across the United States.A first report of the program's inaugural year will be presented as well as the long-term impacts that have already emerged and are in development.

  11. The Exoplanet Microlensing Survey by the Proposed WFIRST Observatory

    NASA Technical Reports Server (NTRS)

    Barry, Richard; Kruk, Jeffrey; Anderson, Jay; Beaulieu, Jean-Philippe; Bennett, David P.; Catanzarite, Joseph; Cheng, Ed; Gaudi, Scott; Gehrels, Neil; Kane, Stephen; hide

    2012-01-01

    The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010 listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the . coming decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing. measure the expansion history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be selected through a guest observer program. A Science Definition Team has been established to assist NASA in the development of a Design Reference Mission that accomplishes this diverse array of science programs with a single observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet detection. The observatory. with science goals that are complimentary to the Kepler exoplanet transit mission, is designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the masses for most detected exoplanets down to 0.1 Earth masses.

  12. A Virtual Field Trip to the Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Fisher, R. Scott; Michaud, P. D.

    2010-01-01

    Live from Gemini (LfG) is a virtual field trip using video conferencing technology to connect primary, secondary and post-secondary students with scientists and educators at the Gemini Observatory. As a pilot project, LfG is rapidly becoming one of the observatory's most often-requested educational programs for learners of all ages. The program aligns exceptionally well with national science (and technology) standards, as well as existing school curricula. This combination makes it easy for teachers to justify participation in the program, especially as the necessary video conferencing technology becomes ever more ubiquitous in classrooms and technology learning centers around the world. In developing and testing this pilot project, a programmatic approach and philosophy evolved that includes post-field-trip educational materials, multi-disciplinary subject matter (astronomy, geology, mathematics, meteorology, engineering and even language - the program is offered in Spanish from Gemini South in Chile), and the establishment of a personal connection and rapport with students. The presenters work to create a comfortable interaction despite the perceived technological barriers. The authors’ experiences with the LfG pilot project convince us that this model is viable for almost any astronomical observatory and should be considered by any dynamic, technology- and education-oriented facility.

  13. Brazil to Join the European Southern Observatory

    NASA Astrophysics Data System (ADS)

    2010-12-01

    The Federative Republic of Brazil has yesterday signed the formal accession agreement paving the way for it to become a Member State of the European Southern Observatory (ESO). Following government ratification Brazil will become the fifteenth Member State and the first from outside Europe. On 29 December 2010, at a ceremony in Brasilia, the Brazilian Minister of Science and Technology, Sergio Machado Rezende and the ESO Director General, Tim de Zeeuw signed the formal accession agreement aiming to make Brazil a Member State of the European Southern Observatory. Brazil will become the fifteen Member State and the first from outside Europe. Since the agreement means accession to an international convention, the agreement must now be submitted to the Brazilian Parliament for ratification [1]. The signing of the agreement followed the unanimous approval by the ESO Council during an extraordinary meeting on 21 December 2010. "Joining ESO will give new impetus to the development of science, technology and innovation in Brazil as part of the considerable efforts our government is making to keep the country advancing in these strategic areas," says Rezende. The European Southern Observatory has a long history of successful involvement with South America, ever since Chile was selected as the best site for its observatories in 1963. Until now, however, no non-European country has joined ESO as a Member State. "The membership of Brazil will give the vibrant Brazilian astronomical community full access to the most productive observatory in the world and open up opportunities for Brazilian high-tech industry to contribute to the European Extremely Large Telescope project. It will also bring new resources and skills to the organisation at the right time for them to make a major contribution to this exciting project," adds ESO Director General, Tim de Zeeuw. The European Extremely Large Telescope (E-ELT) telescope design phase was recently completed and a major review was

  14. Pre-seismic anomalous geomagnetic signature related to M8.3 earthquake occurred in Chile on September 16-th, 2015

    NASA Astrophysics Data System (ADS)

    Armand Stanica, Dragos, ,, Dr.; Stanica, Dumitru, ,, Dr.; Vladimirescu, Nicoleta

    2016-04-01

    In this paper, we retrospectively analyzed the geomagnetic data collected, via internet (www.intermagnet.com), on the interval 01 July-30 September 2015 at the observatories Easter Island (IMP) and Pilar (PIL), placed in Chile and Argentina, respectively, to emphasize a possible relationship between the pre-seismic anomalous behavior of the normalized function Bzn and M8.3 earthquake, that occurred in Offshore Coquimbo (Chile) on September 16-th, 2015. The daily mean distributions of the normalized function Bzn=Bz/Bperp (where Bz is vertical component of the geomagnetic field; Bperp is geomagnetic component perpendicular to the geoelectrical strike) and its standard deviation (STDEV) are performed in the ULF frequency range 0.001Hz to 0.0083Hz by using the FFT band-pass filter analysis. It was demonstrated that in pre-seismic conditions the Bzn has a significant enhancement due to the crustal electrical conductivity changes, possibly associated with the earthquake-induced rupture-processes and high-pressure fluid flow through the faulting system developed inside the foci and its neighboring area. After analyzing the anomalous values of the normalized function Bzn obtained at Easter Island and Pilar observatories, the second one taken as reference, we used a statistical analysis, based on a standardized random variable equation, to identify on 1-2 September 2015 a pre-seismic signature related to the M8.3 earthquake. The lead time was 14 days before the M8.3 earthquake occurrence. The final conclusion is that the proposed geomagnetic methodology might be used to provide suitable information for the extreme earthquake hazard assessment.

  15. The Ocean Observatories Initiative: Data, Data and More Data

    NASA Astrophysics Data System (ADS)

    Crowley, M. F.; Vardaro, M.; Belabbassi, L.; Smith, M. J.; Garzio, L. M.; Knuth, F.; Glenn, S. M.; Schofield, O.; Lichtenwalner, C. S.; Kerfoot, J.

    2016-02-01

    The Ocean Observatories Initiative (OOI), a project funded by the National Science Foundation (NSF) and managed by the Consortium for Ocean Leadership, is a networked infrastructure of science-driven sensor systems that measure the physical, chemical, geological, and biological variables in the ocean and seafloor on coastal, regional, and global scales. OOI long term research arrays have been installed off the Washington coast (Cabled), Massachusetts and Oregon coasts (Coastal) and off Alaska, Greenland, Chile and Argentina (Global). Woods Hole Oceanographic Institution and Oregon State University are responsible for the coastal and global moorings and their autonomous vehicles. The University of Washington is responsible for cabled seafloor systems and moorings. Rutgers University operates the Cyberinfrastructure (CI) portion of the OOI, which acquires, processes and distributes data to the scientists, researchers, educators and the public. It also provides observatory mission command and control, data assessment and distribution, and long-term data management. This talk will present an overview of the OOI infrastructure and its three primary websites which include: 1) An OOI overview website offering technical information on the infrastructure ranging from instruments to science goals, news, deployment updates, and information on the proposal process, 2) The Education and Public Engagement website where students can view and analyze exactly the same data that scientists have access to at exactly the same time, but with simple visualization tools and compartmentalized lessons that lead them through complex science questions, and 3) The primary data access website and machine to machine interface where anyone can plot or download data from the over 700 instruments within the OOI Network.

  16. The Remote Observatories of the Southeastern Association for Research in Astronomy (SARA)

    NASA Astrophysics Data System (ADS)

    Keel, William C.; Oswalt, Terry; Mack, Peter; Henson, Gary; Hillwig, Todd; Batcheldor, Daniel; Berrington, Robert; De Pree, Chris; Hartmann, Dieter; Leake, Martha; Licandro, Javier; Murphy, Brian; Webb, James; Wood, Matt A.

    2017-01-01

    We describe the remote facilities operated by the Southeastern Association for Research in Astronomy (SARA) , a consortium of colleges and universities in the US partnered with Lowell Observatory, the Chilean National Telescope Allocation Committee, and the Instituto de Astrofísica de Canarias. SARA observatories comprise a 0.96 m telescope at Kitt Peak, Arizona; one of 0.6 m aperture on Cerro Tololo, Chile; and the 1 m Jacobus Kapteyn Telescope at the Roque de los Muchachos, La Palma, Spain. All are operated using standard VNC or Radmin protocols communicating with on-site PCs. Remote operation offers considerable flexibility in scheduling, allowing long-term observational cadences difficult to achieve with classical observing at remote facilities, as well as obvious travel savings. Multiple observers at different locations can share a telescope for training, educational use, or collaborative research programs. Each telescope has a CCD system for optical imaging, using thermoelectric cooling to avoid the need for frequent local service, and a second CCD for offset guiding. The Arizona and Chile telescopes also have fiber-fed echelle spectrographs. Switching between imaging and spectroscopy is very rapid, so a night can easily accommodate mixed observing modes. We present some sample observational programs. For the benefit of other groups organizing similar consortia, we describe the operating structure and principles of SARA, as well as some lessons learned from almost 20 years of remote operations.

  17. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  18. Strategies for personnel sustainable lifecycle at astronomical observatories and local industry development

    NASA Astrophysics Data System (ADS)

    Bendek, Eduardo A.; Leatherbee, Michael; Smith, Heather; Strappa, Valentina; Zinnecker, Hans; Perez, Mario

    2014-08-01

    Specialized manpower required to efficiently operate world-class observatories requires large investments in time and resources to train personnel in very specific areas of engineering. Isolation and distances to mayor cities pose a challenge to retain motivated and qualified personnel on the mountain. This paper presents strategies that we believe may be effective for retaining this specific know-how in the astronomy field; while at the same time develop a local support industry for observatory operations and astronomical instrumentation development. For this study we choose Chile as a research setting because it will host more than 60% of the world's ground based astronomical infrastructure by the end of the decade, and because the country has an underdeveloped industry for astronomy services. We identify the astronomical infrastructure that exists in the country as well as the major research groups and industrial players. We further identify the needs of observatories that could be outsourced to the local economy. As a result, we suggest spin-off opportunities that can be started by former observatory employees and therefore retaining the knowhow of experienced people that decide to leave on-site jobs. We also identify tools to facilitate this process such as the creation of a centralized repository of local capabilities and observatory needs, as well as exchange programs within astronomical instrumentation groups. We believe that these strategies will contribute to a positive work environment at the observatories, reduce the operation and development costs, and develop a new industry for the host country.

  19. EVALSO: A New High-speed Data Link to Chilean Observatories

    NASA Astrophysics Data System (ADS)

    2010-11-01

    Stretching 100 kilometres through Chile's harsh Atacama Desert, a newly inaugurated data cable is creating new opportunities at ESO's Paranal Observatory and the Observatorio Cerro Armazones. Connecting these facilities to the main Latin American scientific data backbone completes the last gap in the high-speed link between the observatories and Europe. This new cable is part of the EVALSO (Enabling Virtual Access to Latin American Southern Observatories) project [1], a European Commission FP7 [2] co-funded programme co-ordinated by the University of Trieste that includes ESO, Observatorio Cerro Armazones (OCA, part of Ruhr-Universität Bochum), the Chilean academic network REUNA and other organisations. As well as the cable itself, the EVALSO project involves buying capacity on existing infrastructure to complete a high-bandwidth connection from the Paranal area to ESO's headquarters near Munich, Germany. Project co-ordinator Fernando Liello said: "This project has been an excellent collaboration between the consortium members. As well as giving a fast connection to the two observatories, it brings wider benefits to the academic communities both in Europe and Latin America." The sites of Paranal and Armazones are ideal for astronomical observation due to their high altitude, clear skies and remoteness from light pollution. But their location means they are far from any pre-existing communications infrastructure, which until now has left them dependent on a microwave link to send scientific data back to a base station near Antofagasta. Telescopes at ESO's Paranal observatory produce well over 100 gigabytes of data per night, equivalent to more than 20 DVDs, even after compressing the files. While the existing link is sufficient to carry the data from the current generation of instruments at the Very Large Telescope (VLT), it does not have the bandwidth to handle data from the VISTA telescope (Visible and Infrared Survey Telescope for Astronomy, see eso0949), or for

  20. [Public health infrastructure investment difficulties in Chile: concessions and public tenders].

    PubMed

    Goyenechea, Matías

    2016-05-12

    This paper seeks to highlight the problems of gaps in health infrastructure in Chile, and to analyze the mechanisms by which it is provided. In Chile this is done in two ways: the first is through competitive bidding or sector-wide modality. The second way is through hospital concessions. Both mechanisms have had difficulties in recent years, which are reported. Finally, we propose ways to improve the provision of health infrastructure in Chile.

  1. ESO Delegation to Visit Chile: the Chile-Eso Treaty and Paranal

    NASA Astrophysics Data System (ADS)

    1994-05-01

    The ESO Council, in its extraordinary session on 28 April 1994, among other matters discussed the relations with the Republic of Chile and the situation around Paranal mountain [1], the designated site for the ESO Very Large Telescope (VLT). Council decided to send a high ranking delegation to Santiago de Chile to discuss with Chilean authorities the pending problems, including the finalisation of the new Treaty between the Republic of Chile and ESO and the legal aspects of the Paranal location. The ESO delegation will consist of Dr. Peter Creola (President of ESO Council), Dr. Catherine Cesarsky (Vice-President of ESO Council), Dr. Henrik Grage (Former Vice-President of ESO Council) and Professor Riccardo Giacconi (ESO Director General), the latter accompanied by his advisers. The delegation will arrive in Chile during the second half of May 1994. The ESO delegation will meet with the Chilean Minister of Foreign Affairs, Mr. Carlos Figueroa, and the Secretary of State in the Ministry of Foreign Affairs, Mr. Jose Miguel Insulza. Other meetings at high level are being planned. The delegation will report about these discussions to the ESO Council during its ordinary session on 7 - 8 June 1994. FOUR PARANAL PHOTOS AVAILABLE A series of four photos which show the current status of the work at Paranal has been prepared. Photographic colour prints for use by the media can be requested from the ESO Information and Photographic Service (please remember to indicate the identification numbers). [1] See ESO Press Release 07/94 of 21 April 1994. PHOTO CAPTIONS ESO PR PHOTO 08/94-1: CERRO PARANAL This aerial photo of the Paranal mountain, the designated site for the ESO Very Large Telescope (VLT), was obtained on 22 March 1994. Paranal is situated in the driest part of the Chilean Atacama desert, approx. 130 km south of the city of Antofagasta, and about 12 km from the Pacific Ocean. In this view towards the West, the ocean is seen in the background. The altitude is 2650 metres

  2. Sharing the skies: the Gemini Observatory international time allocation process

    NASA Astrophysics Data System (ADS)

    Margheim, Steven J.

    2016-07-01

    Gemini Observatory serves a diverse community of four partner countries (United States, Canada, Brazil, and Argentina), two hosts (Chile and University of Hawaii), and limited-term partnerships (currently Australia and the Republic of Korea). Observing time is available via multiple opportunities including Large and Long Pro- grams, Fast-turnaround programs, and regular semester queue programs. The slate of programs for observation each semester must be created by merging programs from these multiple, conflicting sources. This paper de- scribes the time allocation process used to schedule the overall science program for the semester, with emphasis on the International Time Allocation Committee and the software applications used.

  3. Chile.

    PubMed

    1988-09-01

    Chile is a long (2650 miles), narrow (250 miles at widest point) country sandwiched between the Andes mountains and the Pacific. The northern desert is rich in copper and nitrates; the temperate middle region is agricultural and supports the major cities, including Santiago, the capital, and the port of Valparaiso; and the southern region is a cold and damp area of forests, grasslands, lakes, and fjords. The country is divided into 12 administrative regions. Chile's population of 12.5 million are mainly of Spanish or Indian descent or mestizos. Literacy is 92.3%, and the national language is Spanish. Infant mortality is 18.1/1000, and life expectancy is 68.2 years. 82% of the people are urban, and most are Roman Catholics. Chile was settled by the Spanish in 1541 and attached to the Viceroyalty of Peru. Independence was won in 1818 under the leadership of Bernardo O'Higgins. In the 1880s Chile extended its sovereignty over the Strait of Magellan in the south and areas of southern Peru and Bolivia in the north. An officially parliamentary government, elected by universal suffrage, drifted into oligarchy and finally into a military dictatorship under Carlos Ibanez in 1924. Constitutional government was restored in 1932. The Christian Democratic government of Eduardo Frei (1964-70) inaugurated major reforms, including land redistribution, education, and far-reaching social and economic policies. A Marxist government under Salvador Allende lasted from 1970 to 1973 when the present military government of General Pinochet Ugarte took power, overthrew Allende, abolished the Congress, and banned political parties. It has moved the country in the direction of a free market economy but at the cost of systematic violations of human rights. A new constitution was promulgated in 1981, and congressional elections have been scheduled for October, 1989. A "National Accord for Transition to Full Democracy" was mediated by the Catholic Church in 1985. The social reforms of the

  4. Socioeconomic determinants of disability in Chile.

    PubMed

    Zitko Melo, Pedro; Cabieses Valdes, Báltica

    2011-10-01

    Disability is a worldwide public health priority. A shift from a biomedical perspective of dysfunction to a broader social understanding of disability has been proposed. Among many different social factors described in the past, socioeconomic position remains as a key multidimensional determinant of health. The study goal was to analyze the relationship between disability and different domains of socioeconomic position in Chile. Cross-sectional analysis of an anonymized population-based survey conducted in Chile in 2006. Any disability (dichotomous variable) and 6 different types of disability were analyzed on the bases of their relationship with income quintiles, occupational status, educational level, and material living standards (quality of the housing, overcrowding rate and sanitary conditions). Confounding and interaction effects were explored using R statistical program. Income, education, occupation, and material measures of socioeconomic position, along with some sociodemographic characteristics of the population, were independently associated with the chance of being disabled in Chile. Interestingly, classic measures of socioeconomic position (income, education, and occupation) were consistently associated with any disability in Chile, whereas material living conditions were partially confounded by these classic measures. In addition to this, each type of disability showed a particular pattern of related social determinants, which also varied by age group. This study contributed to the understanding of disability in Chile and how different domains of socioeconomic position might be associated with this prevalent condition. Disability remains a complex multidimensional public health problem in Chile that requires the inclusion of a wide range of risk factors, of which socioeconomic position is particularly relevant. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Hydrologic Observatories: Design, Operation, and the Neuse Basin Prototype

    NASA Astrophysics Data System (ADS)

    Reckhow, K.; Band, L.

    2003-12-01

    Hydrologic observatories are conceived as major research facilities that will be available to the full hydrologic community, to facilitate comprehensive, cross-disciplinary and multi-scale measurements necessary to address the current and next generation of critical science and management issues. A network of hydrologic observatories is proposed that both develop national comparable, multidisciplinary data sets and provide study areas to allow scientists, through their own creativity, to make scientific breakthroughs that would be impossible without the proposed observatories. The core objective of an observatory is to improve predictive understanding of the flow paths, fluxes, and residence times of water, sediment and nutrients (the "core data") across a range of spatial and temporal scales across `interfaces'. To assess attainment of this objective, a benchmark will be established in the first year, and evaluated periodically. The benchmark should provide an estimate of prediction uncertainty at points in the stream across scale; the general principle is that predictive understanding must be demonstrated internal to the catchment as well as its outlet. The core data will be needed for practically any hydrologic study, yet absence of these data has been a barrier to larger scale studies in the past. However, advancement of hydrologic science facilitated by the network of hydrologic observatories is expected to focus on a set of science drivers, drawn from the major scientific questions posed by the set of NRC reports and refined into CUAHSI themes. These hypotheses will be tested at all observatories and will be used in the design to ensure the sufficiency of the data set. To make the observatories a national (and international) resource, a key aspect of the operation is the support of remote PI's. This support will include a resident staff of scientists and technicians on the order of 10 FTE's, availability of dormitory, laboratory, workshop space for all

  6. Designing Hydrologic Observatories as a Community Resource

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Duncan, J. M.

    2004-12-01

    CUAHSI convened a workshop in August 2004 to explore what makes a successful hydrologic observatory. Because of their high cost, only a small number of observatories will be operated, at least initially. (CUAHSI has recommended a pilot network of 5 observatories to develop operational experience and an eventual network of approximately 15 sites.) Because hydrologic scientists can work "in their backyard" (unlike oceanographers or astronomers), hydrologic observatories must offer significant advantages over current methods of field work to successfully attract researchers. Twenty-four teams of scientists submitted "prospectuses" of potential locations for hydrologic observatories for consideration by network attendees. These documents (available at http://www.cuahsi.org) were marketing documents to the workshop participants, who voted for a hypothetical network of 5 observatories from the 24 proposed sites. This network formed the basis for a day of discussions on necessary attributes of core data and how to form a network of observatories from a collection of sites that are designed and implemented individually. Key findings included: 1) Core data must be balanced among disciplines. Although the hydrologic cycle is an organizing principle for the design of HOs, physical data cannot dominate the core data; chemical and biological data, although more expensive to collect, must be given equal footing. 2) New data collection must strategically leverage existing data. Resources are always limited, so that a successful HO must carefully target gaps in existing data, as determined by an explicitly stated conceptual model, and fill them rather than designing an independent study. 3) Site logistics must support remote researchers. Significant resources will be necessary for on-site staff to handle housing, transportation, permitting and other needs. 4) Network-level hypotheses are required early in the implementation of HOs. A network will only emerge around hypotheses

  7. [Ecology and health in Chile: present and future development].

    PubMed

    Oyarzún, M

    1997-09-01

    In response to the progressive environmental deterioration, the Ecological Society of America has made a proposal, called "Sustainable Biosphere Initiative", to do research, teaching and decision making processes on biodiversity, global change and the effects of human activities on environment. The goal of appropriate environmental protection and welfare for mankind includes health and quality of life. Presently, Chile faces a number of environmental problems such as pollution, excessive urban growth, loss of agricultural areas, disposal of solid waste and species extinction. The lack of education and information in Chile, on these problems, is worrisome. The role of universities to overcome this deficit should be crucial in the future sustainable development of Chile.

  8. NASA Extends Chandra X-ray Observatory Contract with the Smithsonian Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    2002-07-01

    NASA NASA has extended its contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass. to August 2003 to provide science and operational support for the Chandra X- ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract is an 11-month period of performance extension to the Chandra X-ray Center contract, with an estimated value of 50.75 million. Total contract value is now 298.2 million. The contract extension resulted from the delay of the launch of the Chandra X-ray Observatory from August 1998 to July 1999. The revised period of performance will continue the contract through Aug. 31, 2003, which is 48 months beyond operational checkout of the observatory. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes both the observatory operations and the science data processing and general observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and distributing by satellite the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and the processing and delivery of the resulting scientific data. Each year, there are on the order of 200 to 250 observing proposals selected out of about 800 submitted, with a total amount of observing time about 20 million seconds. X-ray astronomy can only be performed from space because Earth's atmosphere blocks X-rays from reaching the surface. The Chandra Observatory travels one-third of the way to the Moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg-shaped, orbit is 200 times higher than that of its visible-light- gathering sister, the Hubble Space Telescope. NASA

  9. Toward a Global eHealth Observatory for Nursing.

    PubMed

    Bartz, Claudia C; Hardiker, Nicholas R; Coenen, Amy

    2015-01-01

    This poster summarizes a review of existing health observatories and proposes a new entity for nursing. A nursing eHealth observatory would be an authoritative and respected source of eHealth information that would support nursing decision-making and policy development and add to the body of knowledge about professional nursing and client care outcomes.

  10. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  11. Seismology in Chile

    USGS Publications Warehouse

    Kausel, E.

    1983-01-01

    The Department of Geology and Geophysics, which is under the faculties of Mathematics and Physical Sciences of the University of Chile, is the organization that is responsible for the Seismological Service of Chile and for installing,operating, and maintaining the seismological stations as well as all the strong-motion stations in Chile.

  12. Development of telescope control system for the 50cm telescope of UC Observatory Santa Martina

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Reveco, Johnny; Vanzi, Leonardo; Fernández, Jose M.; Escarate, Pedro; Suc, Vincent

    2012-09-01

    The main telescope of the UC Observatory Santa Martina is a 50cm optical telescope donated by ESO to Pontificia Universidad Catolica de Chile. During the past years the telescope has been refurbished and used as the main facility for testing and validating new instruments under construction by the center of Astro-Engineering UC. As part of this work, the need to develop a more efficient and flexible control system arises. The new distributed control system has been developed on top of Internet Communication Engine (ICE), a framework developed by Zeroc Inc. This framework features a lightweight but powerful and flexible inter-process communication infrastructure and provides binding to classic and modern programming languages, such as, C/C++, java, c#, ruby-rail, objective c, etc. The result of this work shows ICE as a real alternative for CORBA and other de-facto distribute programming framework. Classical control software architecture has been chosen and comprises an observation control system (OCS), the orchestrator of the observation, which controls the telescope control system (TCS), and detector control system (DCS). The real-time control and monitoring system is deployed and running over ARM based single board computers. Other features such as logging and configuration services have been developed as well. Inter-operation with other main astronomical control frameworks are foreseen in order achieve a smooth integration of instruments when they will be integrated in the main observatories in the north of Chile

  13. Chile.

    PubMed

    1992-05-01

    The background notes on Chile provide a statistical summary of the population, geography, government, and the economy, and more descriptive text on the history, population, government, economy, defense, and foreign relations. In brief, Chile has 13.3 million Spanish Indian (Mestizos), European, and Indian inhabitants and an annual growth rate of 1.6%. 96% are literate. Infant mortality is 18/1000. 34% of the population are involved in industry and commerce, 30% in services, 19% in agriculture and forestry and fishing, 7% in construction, and 2% in mining. The major city is Santiago. The government, which gained independence in 1810, is a republic with executive, legislative, and judicial branches. There are 12 regions. There are 6 major political parties. Suffrage is universal at 18 years. Gross domestic product (GDP) is $29.2 billion. The annual growth rate is 5% and inflation is 19%. Copper, timber, fish, iron ore, nitrates, precious metals, and molybdenum are its natural resources. Agricultural products are 9% of GDP and include wheat, potatoes, corn, sugar beets, onions, beans, fruits, and livestock. Industry is 21% of GDP and includes mineral refining, metal manufacturing, food and fish processing, paper and wood products, and finished textiles. $8.3 billion is the value of exports and $7 billion of imports. Export markets are in Japan, the US, Germany, Brazil, and the United Kingdom. Chile received $3.5 billion in economic aid between 1949-85, but little in recent years. 83% live in urban centers, principally around Santiago. Congressional representation is made on the basis of elections by a unique binomial majority system. Principal government officials are identified. Chile has a diversified free market economy and is almost self-sufficient in food production. The US is a primary trading partner. 49% of Chile's exports are minerals. Chile maintains diplomatic relations with 70 countries, however, relations are strained with Argentina and Bolivia. Relations

  14. Early German plans for southern observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    2002-07-01

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century, Heidelberg and Potsdam astronomers proposed a southern observatory. Then Göttingen astronomers suggested building an observatory in Windhoek for photographing the sky and measuring the solar constant. In 1910 Karl Schwarzschild (1873-1916), after a visit to observatories in the United States, pointed out the usefulness of an observatory in South West Africa, in a climate superior to that in Germany, giving German astronomers access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhoek to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963.

  15. Chile stand management for mechanical green chile harvest

    USDA-ARS?s Scientific Manuscript database

    Currently the red chile crop is mechanically harvested. Because the pods will be dehydrated before consumption, breakage and bruising of red pods is not a concern. Green chile, however, is currently hand harvested because of the fragile nature of the fruit and the need to avoid pod damage. Hand h...

  16. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.

  17. Tourism in Chile | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications ‹› You are here CTIO Home » Outreach » Tourism » Tourism in Chile Tourism in Chile Map of

  18. German Foreign Minister Visits Paranal Observatory

    NASA Astrophysics Data System (ADS)

    2002-03-01

    During his current tour of countries in South America, the Honourable Foreign Minister of Germany, Mr. Joschka Fischer, stopped over at the ESO Paranal Observatory Wednesday night (March 6 - 7, 2002). Arriving in Antofagasta, capital of the II Chilean region, the Foreign Minister and his suite was met by local Chilean officials, headed by Mr. Jorge Molina, Intendente of the Region, as well as His Excellency, the German Ambassador to Chile, Mr. Georg CS Dick and others. In the afternoon of March 6, the Foreign Minister, accompanied by a distinguished delegation from the German Federal Parliament as well as by businessmen from Germany, travelled to Paranal, site of the world's largest optical/infrared astronomical facility, the ESO Very Large Telescope (VLT). The delegation was welcomed by the Observatory Director, Dr. Roberto Gilmozzi, the VLT Programme Manager, Professor Massimo Tarenghi, the ESO Representative in Chile, Mr. Daniel Hofstadt and ESO staff members, and also by Mr. Reinhard Junker, Deputy Director General (European Co-operation) at the German Ministry for Education and Research. The visitors were shown the various high-tech installations at this remote desert site, some of which have been constructed by German firms. Moreover, most of the large, front-line VLT astronomical instruments have been built in collaboration between ESO and European research institutes, several of these in Germany. One of the latest arrivals to Paranal, the CONICA camera (cf. ESO PR 25/01 ), was built under an ESO contract by the Max-Planck-Institutes for Astronomy (MPIA, in Heidelberg) and Extraterrestrial Physics (MPE, in Garching). The guests had the opportunity to enjoy the spectacular sunset over the Pacific Ocean from the terrace of the new Residencia building ( Photos 05/02 ). At the beginning of the night, the Minister was invited to the Control Room for the VLT Interferometer (VLTI) from where this unique new facility ( ESO PR 23/01 ) is now being thoroughly tested

  19. The possible astronomical function of the El Molle stone circle at the ESO Observatory La Silla. II: The updated measurement campaign

    NASA Astrophysics Data System (ADS)

    Bernardi, Gabriella; Vecchiato, Alberto; Bucciarelli, Beatrice

    2014-07-01

    This paper reviews and updates the accounts of a previous article discussing the possible astronomical significance of a peculiar, man-made circular stone structure, located close to the European Southern Observatory in La Silla, Chile, and attributed to the El Molle culture. Thanks to further, higher-accuracy measurements in situ, we can confirm some of the original hypotheses and dismiss others, upholding the main tenets of the original work.

  20. Astro Chile | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  1. E-ELT Site Chosen - World's Biggest Eye on the Sky to be Located on Armazones, Chile

    NASA Astrophysics Data System (ADS)

    2010-04-01

    parameters had to be taken into account as well, such as the costs of construction and operations, and the operational and scientific synergy with other major facilities (VLT/VLTI, VISTA, VST, ALMA and SKA etc). In March 2010, the ESO Council was provided with a preliminary report with the main conclusions from the E-ELT Site Selection Advisory Committee [1]. These conclusions confirmed that all the sites examined in the final shortlist (Armazones, Ventarrones, Tolonchar and Vizcachas in Chile, and La Palma in Spain) have very good conditions for astronomical observing, each one with its particular strengths. The technical report concluded that Cerro Armazones, near Paranal, stands out as the clearly preferred site, because it has the best balance of sky quality for all the factors considered and can be operated in an integrated fashion with ESO's Paranal Observatory. Cerro Armazones and Paranal share the same ideal conditions for astronomical observations. In particular, over 320 nights are clear per year. Taking into account the very clear recommendation of the Site Selection Advisory Committee and all other relevant aspects, especially the scientific quality of the site, Council has now endorsed the choice of Cerro Armazones as the E-ELT baseline site [2]. "Adding the transformational scientific capabilities of the E-ELT to the already tremendously powerful integrated VLT observatory guarantees the long-term future of Paranal as the most advanced optical/infrared observatory in the world and further strengthens ESO's position as the world-leading organisation for ground-based astronomy," says de Zeeuw. In anticipation of the choice of Cerro Armazones as the future site of the E-ELT and to facilitate and support the project, the Chilean Government has agreed to donate to ESO a substantial tract of land contiguous to ESO's Paranal property and containing Armazones in order to ensure the continued protection of the site against all adverse influences, in particular light

  2. Distributed Observatory Management

    NASA Astrophysics Data System (ADS)

    Godin, M. A.; Bellingham, J. G.

    2006-12-01

    posted to the COOP tool on a daily basis, and updated with announcements on schedule, system status, voting results from previous day, ocean, atmosphere, hardware, adaptive sampling and coordinated control and forecast. The collection of standardized data files was used to generate daily plots of observed and predicted currents, temperature, and salinity. Team members were able to participate from any internet-accessible location using common Internet browsers, and any team member could add to the day's summary, point out trends and discuss observations, and make an adaptation proposal. If a team member submitted a proposal, team-wide discussion and voting followed. All interactions were archived and left publicly accessible so that future experiments could be made more systematic with increased automation. The need for collaboration and data handling tools is important for future ocean observatories, which will require 24-hour per day, 7-day a week interactions over many years. As demonstrated in the ASAP experiment, the COOP tool and associated data handling tools allowed scientists to coherently and collaboratively manage an ocean observatory, without being co-located at the observatory. Lessons learned from operating these collaborative tools during the ASAP experiment provide an important foundation for creating even more capable portals.

  3. [Mental health financing in Chile: a pending debt].

    PubMed

    Errázuriz, Paula; Valdés, Camila; Vöhringer, Paul A; Calvo, Esteban

    2015-09-01

    In spite of the high prevalence of mental health disorders in Chile, there is a significant financing deficit in this area when compared to the world's average. The financing for mental health has not increased in accordance with the objectives proposed in the 2000 Chilean National Mental Health and Psychiatry Plan, and only three of the six mental health priorities proposed by this plan have secure financial coverage. The National Health Strategy for the Fulfilment of Health Objectives for the decade 2011-2020 acknowledges that mental disorders worsen the quality of life, increase the risk of physical illness, and have a substantial economic cost for the country. Thus, this article focuses on the importance of investing in mental health, the cost of not doing so, and the need for local mental health research. The article discusses how the United States is trying to eliminate the financial discrimination suffered by patients with mental health disorders, and concludes with public policy recommendations for Chile.

  4. ISS images for Observatory protection

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2015-08-01

    Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.

  5. Nobeyama Radio Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nobeyama Radio Observatory has telescopes at millimeter and submillimeter wavelengths. It was established in 1982 as an observatory of Tokyo Astronomical Observatory (NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN since 1987), and operates the 45 m telescope, Nobeyama Millimeter Array, and Radioheliograph. High-resolution images of star forming regions and molecular clouds have revealed many aspects of...

  6. Early German Plans for a Southern Observatory

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century the Heidelberg astronomer Max Wolf (1863-1932) proposed a southern observatory. In 1907 Hermann Carl Vogel (1841-1907), director of the Astrophysical Observatory Potsdam, suggested a southern station in Spain. His ideas for building an observatory in Windhuk for photographing the sky and measuring the solar constant were taken over by the Göttingen astronomers. In 1910 Karl Schwarzschild (1873-1916), after having visited the observatories in America, pointed out the usefulness of an observatory in South West Africa, where it would have better weather than in Germany and also give access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhuk to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963, as is well described by Blaauw (1991). Blaauw, Adriaan: ESO's Early History. The European Southern Observatory from Concept to Reality. Garching bei München: ESO 1991.

  7. MDM Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    MDM Observatory was founded by the University of Michigan, Dartmouth College and the Massachusetts Institute of Technology. Current operating partners include Michigan, Dartmouth, MIT, Ohio State University and Columbia University. The observatory is located on the southwest ridge of the KITT PEAK NATIONAL OBSERVATORY near Tucson, Arizona. It operates the 2.4 m Hiltner Telescope and the 1.3 m McG...

  8. WIYN Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Located at Kitt Peak in Arizona. The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, Yale University and the National Optical Astronomy Observatories (NOAO). Most of the capital costs of the observatory were provided by these universities, while NOAO, which operates the other telescopes of the KITT PEAK NATIONAL OBS...

  9. Private Observatories in South Africa

    NASA Astrophysics Data System (ADS)

    Rijsdijk, C.

    2016-12-01

    Descriptions of private observatories in South Africa, written by their owners. Positions, equipment descriptions and observing programmes are given. Included are: Klein Karoo Observatory (B. Monard), Cederberg Observatory (various), Centurion Planetary and Lunar Observatory (C. Foster), Le Marischel Observatory (L. Ferreira), Sterkastaaing Observatory (M. Streicher), Henley on Klip (B. Fraser), Archer Observatory (B. Dumas), Overbeek Observatory (A. Overbeek), Overberg Observatory (A. van Staden), St Cyprian's School Observatory, Fisherhaven Small Telescope Observatory (J. Retief), COSPAR 0433 (G. Roberts), COSPAR 0434 (I. Roberts), Weltevreden Karoo Observatory (D. Bullis), Winobs (M. Shafer)

  10. How government can support protection of “dark skies” as a public policy: the experience of Chile

    NASA Astrophysics Data System (ADS)

    Rodriguez, Gabriel

    2015-08-01

    For more than fifty years Chile has been the host of world-leading optical and radio astronomical observatories because of the exceptional atmospheric conditions and the existence of isolated areas in the northern desert regions. As of today, Chile, through agreements with foreign governments and international research institutions around the world concentrates almost 30% of the total radio and optical observation capabilities of the planet, scattered in different sites. With the new projects already planned or in construction, the country will be the host of almost 70% of the total world-wide observational facilities by 2021-2022Since the beginning of the astronomical research activities in Chile, the government has played an increasing role in attracting and facilitating the installation of these projects. The presentation shows how the relationship between the government and international consortia has evolved with special reference to designing policies to protect “dark skies” and to manage the relationship between the observations sites, the local productive activities to be developed in the same areas, mainly mining and energy, and the relationship with local communities and aboriginal populations and traditions. Special reference will be made to recent initiatives connected with World Heritage program of UNESCO, new laws and regulations and public awareness and education.

  11. ALMA Observatory Equipped with its First Antenna

    NASA Astrophysics Data System (ADS)

    2008-12-01

    High in the Atacama region of northern Chile one of the world’s most advanced telescopes has just passed a major milestone. The first of many state-of-the-art antennas has been handed over to the Atacama Large Millimeter/submillimeter Array (ALMA) project. ALMA is being built by a global partnership whose North American partners are led by the National Radio Astronomy Observatory (NRAO). With ALMA, astronomers will study the cool Universe, the molecular gas and tiny dust grains from which stars, planetary systems, galaxies and even life are formed. ALMA will provide new, much-needed insights into the formation of stars and planets, and will reveal distant galaxies in the early Universe, which we see as they were over ten billion years ago. ALMA will initially comprise 66 high-precision antennas, with the option to expand in the future. There will be an array of fifty 12-meter diameter antennas, acting together as a single giant telescope, and a compact array composed of 7-meter and 12-meter antennas. The first 12-meter antenna to be handed over to the observatory was built by Mitsubishi Electric Corporation for the National Astronomical Observatory of Japan, one of the ALMA partners. It will shortly be joined by North American and European antennas. “Our Japanese colleagues have produced this state-of-the-art antenna to exacting specifications. We are very excited about the handover because now we can fully equip this antenna for scientific observations,” said Thijs de Graauw, ALMA Director. Antennas arriving at the ALMA site undergo a series of tests to ensure that they meet the strict requirements of the telescope. The antennas have surfaces accurate to less than the thickness of a human hair, and can be pointed precisely enough to pick out a golf ball at a distance of 9 miles. “The handover of the first Japanese antenna is the crowning achievement of the ALMA Project to date,” said Adrian Russell, the North American ALMA Project Director at NRAO. The

  12. Green Chile Pepper Harvest Mechanization

    USDA-ARS?s Scientific Manuscript database

    Pungent green chile (genus /Capsicum/, also spelled chili) is a large, fragile fruit growing on berry shrubs. Chile is harvested by hand to maximize yields and minimize fruit damage. Labor for hand harvesting chile is increasingly costly and difficult to obtain. Harvest mechanization is viewed as...

  13. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    NASA Astrophysics Data System (ADS)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  14. Earth Observatory Satellite (EOS) Definition Phase Report, Volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    System definition studies were conducted of the Earth Observatory Satellite (EOS). The studies show that the concept of an Earth Observatory Satellite in a near-earth, sun-synchronous orbit would make a unique contribution to the goals of a coordinated program for acquisition of data for environmental research with applications to earth resource inventory and management. The technical details for the proposed development of sensors, spacecraft, and a ground data processing system are presented.

  15. Which Observatories have the Clearest Skies? A Comparative Analysis of 2004 as Seen by the Night Sky Live Global Network of CONCAMs

    NASA Astrophysics Data System (ADS)

    Pereira, W. E.; Muzzin, V.; Merlo, M.; Shamir, L.; Nemiroff, R. J.; Night Sky Live Collaboration

    2004-12-01

    Nearly identical fisheye CONCAMs are now deployed at many major observatories as part of the Night Sky Live (NSL) global network and return real-time data to http://NightSkyLive.net . Combined, these images create a unique ability to assess and compare the relative ground-truth clarity of the skies above these observatories every few minutes. To this end, data and images from CONCAMs are used to estimate the fraction of time that stars are detectable in at least half the sky for each month of 2004. This preliminary comparison was done by visual inspection of on-line archived CONCAM images. Sites involved include Mauna Kea (Hawaii), Haleakala (Hawaii), Siding Spring (Australia), Canary Islands (Spain), Kitt Peak (Arizona), Cerro Pachon (Chile), Wise (Israel), and Sutherland (South Africa).

  16. [Early detection of cervical cancer in Chile: time for change].

    PubMed

    Léniz Martelli, Javiera; Van De Wyngard, Vanessa; Lagos, Marcela; Barriga, María Isabel; Puschel Illanes, Klaus; Ferreccio Readi, Catterina

    2014-08-01

    Mortality rates for cervical cancer (CC) in Chile are higher than those of developed countries and it has an unequal socioeconomic distribution. The recognition of human papilloma virus (HPV) as the causal agent of cervical cancer in the early 80's changed the prevention paradigms. Current goals are to prevent HPV infection by vaccination before the onset of sexual activity and to detect HPV infection in women older than 30 years. This article reviews CC prevention and early detection methods, discusses relevant evidence to support a change in Chile and presents an innovation proposal. A strategy of primary screening based on HPV detection followed by triage of HPV-positive women by colposcopy in primary care or by cytological or molecular reflex testing is proposed. Due to the existence in Chile of a well-organized nationwide CC prevention program, the replacement of a low-sensitivity screening test such as the Papanicolau test with a highly sensitive one such as HPV detection, could quickly improve the effectiveness of the program. The program also has a network of personnel qualified to conduct naked-eye inspections of the cervix, who could easily be trained to perform triage colposcopy. The incorporation of new prevention strategies could reduce the deaths of Chilean women and correct inequities.

  17. Observatories and Telescopes of Modern Times

    NASA Astrophysics Data System (ADS)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  18. Closing the Loop for ALMA - Three antennas working in unison open new bright year for revolutionary observatory

    NASA Astrophysics Data System (ADS)

    2010-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) has passed a key milestone crucial for the high quality images that will be the trademark of this revolutionary new tool for astronomy. Astronomers and engineers have, for the first time, successfully linked three of the observatory's antennas at the 5000-metre elevation observing site in northern Chile. Having three antennas observing in unison paves the way for precise images of the cool Universe at unprecedented resolution, by providing the missing link to correct errors that arise when only two antennas are used. On 20 November 2009 the third antenna for the ALMA observatory was successfully installed at the Array Operations Site, the observatory's "high site" on the Chajnantor plateau, at an altitude of 5000 metres in the Chilean Andes. Later, after a series of technical tests, astronomers and engineers observed the first signals from an astronomical source making use of all three 12-metre diameter antennas linked together, and are now working around the clock to establish the stability and readiness of the system. "The first signal using just two ALMA antennas, observed in October, can be compared to a baby's first babblings," says Leonardo Testi, the European Project Scientist for ALMA at ESO. "Observing with a third antenna represents the moment when the baby says its very first, meaningful word - not yet a full sentence, but overwhelmingly exciting! The linking of three antennas is indeed the first actual step towards our goal of achieving precise and sharp images at submillimetre wavelengths." The successful linking of the antenna trio was a key test of the full electronic and software system now being installed at ALMA, and its success anticipates the future capabilities of the observatory. When complete, ALMA will have at least 66 high-tech antennas operating together as an "interferometer", working as a single, huge telescope probing the sky in the millimetre and submillimetre wavelengths of light

  19. Operating observatories: the need for a new paradigm

    NASA Astrophysics Data System (ADS)

    Payne, Ifan; Veillet, Christian

    2014-08-01

    At a time of declining funding, the managers of ground based observatories may not be in the best position to ensure adequate resources either for developing new facilities or new instruments or for upgrading existing facilities. Nor can there be dependence upon the traditional support for researchers which in turn implies that there is inadequate founding to cover the cost of operations. For historical reasons, an overwhelming number of observatories in the USA are affiliated with, or hosted by, universities yet, because of the traditional lack of entrepreneurial thinking and the complexity and the extent of administrations, a university may not be the best environment to develop new approaches to the management of observatories; nor is an academic background of necessity the best preparation for best management practices. We propose that observatories should adopt a business-like approach, to be service providers, and to use the same metrics as for a business. This approach may entail forming corporations, forming consortia, spreading the risk and to find additional sources of income from sales and spin-offs.

  20. Social Media Programs at the National Optical Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Sparks, Robert T.; Walker, Constance Elaine; Pompea, Stephen M.

    2015-08-01

    Observatories and other science research organizations want to share their research and activities with the public. The last several years, social media has become and increasingly important venue for communicating information about observatory activities, research and education and public outreach.The National Optical Astronomy Observatory (NOAO) uses a wide variety of social media to communicate with different audiences. NOAO is active on social media platforms including Facebook, Twitter, Google+ and Pinterest. Our social media accounts include those for the National Optical Astronomy Observatory, Cerro Tololo Inter-American Observatory, Kitt Peak National Observatory and our dark skies conservation program Globe at Night.Our social media programs have a variety of audiences. NOAO uses social media to announce and promote NOAO sponsored meetings, observatory news and proposal deadlines to the professional astronomical community. Social media accounts are used to disseminate NOAO press releases, images from the observatory and other science using data from NOAO telescopes.Social media is important in our Education and Public Outreach programs (EPO). Globe at Night has very active facebook and twitter accounts encouraging people to become involved in preserving dark skies. Social media plays a role in recruiting teachers for professional development workshops such as Project Astro.NOAO produces monthly podcasts for the 365 Days of Astronomy podcast featuring interviews with NOAO astronomers. Each podcast highlights the science of an NOAO astronomer, an NOAO operated telescope or instrument, or an NOAO program. A separate series of podcasts is produced for NOAO’s Dark Skies Education programs. All the podcasts are archived at 365daysofastronomy.org.

  1. [Health research and health technology assessment in Chile].

    PubMed

    Espinoza, Manuel Antonio; Cabieses, Báltica; Paraje, Guillermo

    2014-01-01

    Health research is considered an essential element for the improvement of population health and it has been recommended that a share of the national health budget should be allocated to develop this field. Chile has undertaken efforts in the last decades in order to improve the governmental structure created to promote the development of health research, which has increased human resources and funding opportunities. On the other hand, the sustained economic growth of Chile in the last decades suggests that the health expenditure will maintain its increasing trend in the following years. This additional funding could be used to improve coverage of current activities performed in the health system, but also to address the incorporation of new strategies. More recently, health technology assessment (HTA) has been proposed as a process to support decisions about allocation of resources based on scientific evidence. This paper examines the relationship between the development of health research and the HTA process. First, it presents a brief diagnosis of the situation of health research in Chile. Second, it reviews the conceptual basis and the methods that account for the relationship between a HTA process and the development of health research. In particular, it emphasizes the relevance of identifying information gaps where funding additional research can be considered a good use of public resources. Finally, it discusses the challenges and possible courses of action that Chile could take in order to guarantee the continuous improvement of an articulated structure for health research and HTA.

  2. Dutch Minister of Science Visits ESO Facilities in Chile

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Mrs. Maria van der Hoeven, the Dutch Minister of Education, Culture and Science, who travelled to the Republic of Chile, arrived at the ESO Paranal Observatory on Friday afternoon, May 13, 2005. The Minister was accompanied, among others, by the Dutch Ambassador to Chile, Mr. Hinkinus Nijenhuis, and Mr. Cornelis van Bochove, the Dutch Director of Science. The distinguished visitors were able to acquaint themselves with one of the foremost European research facilities, the ESO Very Large Telescope (VLT), during an overnight stay at this remote site, and later, with the next major world facility in sub-millimetre and millimetre astronomy, the Atacama Large Millimeter Array (ALMA). At Paranal, the guests were welcomed by the ESO Director General, Dr. Catherine Cesarsky; the ESO Council President, Prof. Piet van der Kruit; the ESO Representative in Chile, Prof. Felix Mirabel; the Director of the La Silla Paranal Observatory, Dr. Jason Spyromilio; by one of the Dutch members of the ESO Council, Prof. Tim de Zeeuw; by the renowned astrophysicist from Leiden, Prof. Ewine van Dishoek, as well as by ESO staff members. The visitors were shown the various high-tech installations at the observatory, including many of the large, front-line VLT astronomical instruments that have been built in collaboration between ESO and European research institutes. Explanations were given by ESO astronomers and engineers and the Minister gained a good impression of the wide range of exciting research programmes that are carried out with the VLT. Having enjoyed the spectacular sunset over the Pacific Ocean from the Paranal deck, the Minister visited the VLT Control Room from where the four 8.2-m Unit Telescopes and the VLT Interferometer (VLTI) are operated. Here, the Minister was invited to follow an observing sequence at the console of the Kueyen (UT2) and Melipal (UT3) telescopes. "I was very impressed, not just by the technology and the science, but most of all by all the people involved

  3. Okayama Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Okayama Astrophysical Observatory (OAO) is a branch Observatory of the NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN. Its main facilities are 188 cm and 91 cm telescopes, equipped with newly built instruments with CCD/IR cameras (e.g. OASIS). OAO accepts nearly 300 astronomers a year, according to the observation program scheduled by the committee....

  4. Astro Tourism in Chile | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications ‹› You are here CTIO Home » Outreach » Tourism » Astro Tourism in Chile Astro Tourism in

  5. Climatology at the Roque de LOS Muchachos Observatory

    NASA Astrophysics Data System (ADS)

    Varela, Antonia M.; Muñoz-Tuñón, Casiana

    2009-09-01

    The Roque de los Muchachos Observatory (ORM) at La Palma (Canary Islands) is one of the two top pre-selected sites for hosting the future European Extremely Large Telescope (E-ELT), the other ones are Ventarrones (Chile), Macon (Argentine) and Aklim (Maroc). Meteorological and seeing conditions are crucial both for the site selection and for telescope design and feasibility studies for adaptive optics. The ELTs shall be very sensitive to wind behavior when operating in open air, therefore ground level wind velocity and wind gust are also required for the feasibility of the telescope construction. Here we analyze the wind speed and wind direction, the air temperature, the relative humidity and the barometric pressure statistical results obtained from data recorded at different sites at the ORM by several Automatic Weather Stations (AWS) since 1985, day and night time separately. Ground wind speed regimes (775mbar) are compared with those provided by satellites from 200 to 700mbar. There exists also observational evidence of the correlation between the seeing and the wind speed and wind direction that will be discussed in this work.

  6. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Sackett, C.

    1999-05-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building and dome has been completed, and first light is planned for spring 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have received an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  7. Detecting Extrasolar Planets With Millimeter-Wave Observatories

    NASA Astrophysics Data System (ADS)

    1996-01-01

    . Another important advantage is that, at millimeter wavelengths, the star's brightness poses less of a problem for observers because, while it is still brighter than a planet, the difference in brightness between the two is far less. Because of the physical nature of the objects themselves, protoplanets in different stages of formation could readily be detected by advanced millimeter-wave observatories. The observatories that could provide these advantages are the Millimeter Array (MMA), a proposed 40-antenna millimeter-wave telescope that could be operational by 2005, and an upgraded version of the existing Very Large Array (VLA), a 27-antenna radio telescope in New Mexico. The MMA is a radio telescope designed to operate at wavelengths from 11.5 millimeters down to 0.5 millimeters, or frequencies from 26 to 650 GHz. It will use 40 precision antennas, each 8 meters in diameter, all operating in concert to produce extremely high- resolution images. As is done with the existing VLA and VLBA radio telescopes, the signals from all the MMA antennas will be processed in a special-purpose computer called a correlator. The processing of the signals corrects for atmospheric propagation effects and for the fact that the "synthesized telescope" is in fact made up of individual antennas. Planning for the MMA began as early as 1983, and a number of scientific workshops have allowed U.S. researchers to make known their needs for a millimeter-wave observatory to serve a wide variety of specialties. The National Science Foundation (NSF) provided initial design funding to NRAO in 1995 for MMA studies. Currently, MMA efforts are centered on selecting an appropriate site, which must be very high, dry and flat. A site at 16,500 feet elevation in northern Chile is now being tested. Hawaii's Mauna Kea is also under consideration. If funding is approved for the MMA, the instrument could be in operation by the year 2005. The MMA is expected to be an international instrument, with funding from

  8. McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    McDonald Observatory, located in West Texas near Fort Davis, is the astronomical observatory of the University of Texas at Austin. Discoveries at McDonald Observatory include water vapor on Mars, the abundance of rare-earth chemical elements in stars, the discovery of planets circling around nearby stars and the use of the measurements of rapid oscillations in the brightness of white dwarf stars ...

  9. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  10. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  11. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  12. Architectural Blueprint for Plate Boundary Observatories based on interoperable Data Management Platforms

    NASA Astrophysics Data System (ADS)

    Kerschke, D. I.; Häner, R.; Schurr, B.; Oncken, O.; Wächter, J.

    2014-12-01

    Interoperable data management platforms play an increasing role in the advancement of knowledge and technology in many scientific disciplines. Through high quality services they support the establishment of efficient and innovative research environments. Well-designed research environments can facilitate the sustainable utilization, exchange, and re-use of scientific data and functionality by using standardized community models. Together with innovative 3D/4D visualization, these concepts provide added value in improving scientific knowledge-gain, even across the boundaries of disciplines. A project benefiting from the added value is the Integrated Plate boundary Observatory in Chile (IPOC). IPOC is a European-South American network to study earthquakes and deformation at the Chilean continental margin and to monitor the plate boundary system for capturing an anticipated great earthquake in a seismic gap. In contrast to conventional observatories that monitor individual signals only, IPOC captures a large range of different processes through various observation methods (e.g., seismographs, GPS, magneto-telluric sensors, creep-meter, accelerometer, InSAR). For IPOC a conceptual design has been devised that comprises an architectural blueprint for a data management platform based on common and standardized data models, protocols, and encodings as well as on an exclusive use of Free and Open Source Software (FOSS) including visualization components. Following the principles of event-driven service-oriented architectures, the design enables novel processes by sharing and re-using functionality and information on the basis of innovative data mining and data fusion technologies. This platform can help to improve the understanding of the physical processes underlying plate deformations as well as the natural hazards induced by them. Through the use of standards, this blueprint can not only be facilitated for other plate observing systems (e.g., the European Plate

  13. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Rideout, C.; Vanlew, K.

    1998-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction is nearly completed and first light is planned for fall 1998. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. That telescope has been in use for the past four years by up to 50 schools per month. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have applied for an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  14. 27 CFR 9.154 - Chiles Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Chiles Valley. (a) Name. The name of the viticultural area described in this section is “Chiles Valley... viticultural area are four 1:24,000 Scale U.S.G.S. topography maps. They are titled: (1) St. Helena, CA 1960 photorevised 1980; (2) Rutherford, CA 1951 photorevised 1968; (3) Chiles Valley, CA 1958 photorevised 1980; (4...

  15. Gemini Observatory Takes its Local Communities on an Expanding Journey

    NASA Astrophysics Data System (ADS)

    Harvey, Janice; Michaud, Peter

    2012-08-01

    Currently in its 7th year (2011) Hawaii's annual Journey through the Universe (JttU) program is a flagship Gemini Observatory public education/outreach initiative involving a broad cross-section of the local Hawai'i Island astronomical community, the public, educators, businesses, local government officials, and thousands of local students. This paper describes the program, its history, planning, implementation, as well as the program's objectives and philosophy. The success of this program is documented here, as measured by continuous and expanding engagement of educators, the community, and the public, along with formal evaluation feedback and selected informal verbal testimony. The program's success also serves as justification for the planned adaptation of a version of the program in Chile in 2011 (adapted for Chilean educational and cultural differences). Finally, lessons learned are shared which have refined the program for Gemini's host communities but can also apply to any institution wishing to initiate a similar program.

  16. A Strategy for Urban Astronomical Observatory Site Preservation: The Southern Arizona Example

    NASA Astrophysics Data System (ADS)

    Craine, Eric R.; Craine, Brian L.; Craine, Patrick R.; Craine, Erin M.; Fouts, Scott

    2014-05-01

    Urbanized observatories are under financial pressures for numerous and complex reasons, including concerns that increasing sky brightness will continue to erode their scientific viability. The history of urbanized observatories is one of steady decline and divestiture. We argue that light at night (LAN) impacts of urban growth are inadequately understood, that current measurement techniques are incomplete in scope, and that both limit the effectiveness of mitigation programs. We give examples of these factors for Pima County, Arizona, and propose techniques and a program that could provide focus and power to mitigation efforts, and could extend the longevity of southern Arizona observatories.

  17. Chile Country Analysis Brief

    EIA Publications

    2016-01-01

    Chile is the only member of the Organization of Economic Cooperation and Development (OECD) in South America. It is the fifth-largest consumer of energy on the continent, but unlike most other large economies in the region, it is only a minor producer of fossil fuels. Therefore, Chile is heavily dependent on energy imports.

  18. Area Handbook Series: Chile: A Country Study

    DTIC Science & Technology

    1982-05-01

    de Educaci6n en Chile a Partir de 1973." (Paper presented at workshop "Six...34Salud en Chile : El Problema de Fondo," Mensaje [Santiago], 28, No. 282, September 1979, 558-66. Goldrich, Daniel, Raymond B. Pratt, and C. R. Schuller...Transforma- ciones del Sistema de Ateni6n M6dica en Chile ." (Paper pre- sented at workshop "Six Years of Military Rule in Chile ," sponsored by

  19. The Carl Sagan solar and stellar observatories as remote observatories

    NASA Astrophysics Data System (ADS)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  20. WNCC Observatory

    NASA Astrophysics Data System (ADS)

    Snyder, L. F.

    2003-05-01

    Western Nevada Community College (WNCC), located in Carson City, Nevada, is a small two year college with only 6,000 students. Associate degrees and Cer- tificates of Achievement are awarded. The college was built and started classes in 1971 and about 12 years ago the chair of the physics department along with a few in administration had dreams of building a small observatory for education. Around that time a local foundation, Nevada Gaming Foundation for Education Excellence, was looking for a beneficiary in the education field to receive a grant. They decided an observatory at the college met their criteria. Grants to the foundation instigated by Senators, businesses, and Casinos and donations from the local public now total $1.3 million. This paper will explain the different facets of building the observatory, the planning, construction, telescopes and equipment decisions and how we think it will operate for the public, education and research. The organization of local volunteers to operate and maintain the observatory and the planned re- search will be explained.

  1. ``Route of astronomical observatories'' project: Classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2016-10-01

    Observatories offer a good possibility for serial transnational applications. For example one can choose groups like baroque or neoclassical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments or made by famous firms. I will discuss what has been achieved and show examples, like the route of astronomical observatories, the transition from classical astronomy to modern astrophysics. I will also discuss why the implementation of the World Heritage & Astronomy initiative is difficult and why there are problems to nominate observatories for election in the national tentative lists.

  2. Historical and recent large megathrust earthquakes in Chile

    NASA Astrophysics Data System (ADS)

    Ruiz, S.; Madariaga, R.

    2018-05-01

    Recent earthquakes in Chile, 2014, Mw 8.2 Iquique, 2015, Mw 8.3 Illapel and 2016, Mw 7.6 Chiloé have put in evidence some problems with the straightforward application of ideas about seismic gaps, earthquake periodicity and the general forecast of large megathrust earthquakes. In northern Chile, before the 2014 Iquique earthquake 4 large earthquakes were reported in written chronicles, 1877, 1786, 1615 and 1543; in North-Central Chile, before the 2015 Illapel event, 3 large earthquakes 1943, 1880, 1730 were reported; and the 2016 Chiloé earthquake occurred in the southern zone of the 1960 Valdivia megathrust rupture, where other large earthquakes occurred in 1575, 1737 and 1837. The periodicity of these events has been proposed as a good long-term forecasting. However, the seismological aspects of historical Chilean earthquakes were inferred mainly from old chronicles written before subduction in Chile was discovered. Here we use the original description of earthquakes to re-analyze the historical archives. Our interpretation shows that a-priori ideas, like seismic gaps and characteristic earthquakes, influenced the estimation of magnitude, location and rupture area of the older Chilean events. On the other hand, the advance in the characterization of the rheological aspects that controlled the contact between Nazca and South-American plate and the study of tsunami effects provide better estimations of the location of historical earthquakes along the seismogenic plate interface. Our re-interpretation of historical earthquakes shows a large diversity of earthquakes types; there is a major difference between giant earthquakes that break the entire plate interface and those of Mw 8.0 that only break a portion of it.

  3. Foreshocks and aftershocks of the 2014 M8.1 Iquique, northern Chile, megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Soto, Hugo; Sippl, Christian; Schurr, Bernd; Asch, Günter; Tilmann, Frederik; Comte, Diana; Ruiz, Sergio; Oncken, Onno

    2017-04-01

    The M8.1 2014 Iquique earthquake broke a central piece of the long-standing, >500 km long northern Chile seismic gap. The Iquique earthquake sequence started off with a M6.7 thrust event presumably in the upper plate seaward of the Chilean coastline. Deformation was quickly transferred onto the megathrust with three more events of M>6 until it culminated in the mainshock that broke a compact asperity with possibly up to 12 m of slip two weeks later. The mainshock was followed by vigorous aftershock sequence, including a M7.7 event just south of the main slip patch approx. two days later. The whole sequence of events was well recorded by the Integrated Plate Boundary Observatory Chile (IPOC). The IPOC network was complemented quickly after the first large foreshock by 60 additional temporary seismic stations deployed by the University of Chile and the German Research Centre for Geosciences - GFZ. Processing the continuous data with an automated multi-step process for event detection, association and phase picking, we located more than 25,000 events for one month preceding and nine months following the Iquique mainshock. Whereas the foreshocks skirt around the updip limit of the mainshock asperity, the aftershocks agglomerate in two belts, one updip and one downdip of the main asperity offshore the Chilean coast. The deepest events on the plate interface reach 65 km depth in two separated clusters under the coastal cordillera, which show a significant difference in dip, indicating strong long-wavelength slab topography or a slab tear. We will also analyze upper- and deeper intra-plate seismicity and in particular its changes following the Iquique mainshock.

  4. Chile Earthquake: U.S. and International Response

    DTIC Science & Technology

    2010-03-11

    5 United Nations Office for the Coordination of Humanitarian Affairs, “Chile Earthquake: Situation Report #2,” March 1, 2010; Gobierno de Chile...U.S. Department of State, March 2, 2010. 6 “Bachelet decreta primer Estado de Catástrofe desde terremoto de 1985,” El Mercurio (Chile), March 1...2010; “Amplían toque de queda en zonas más afectadas por terremoto en Chile,” Agence France Presse, March 1, 2010; “160 detained, one killed during

  5. U.S. and European ALMA Partners Sign Agreement Green Light for World's Most Powerful Radio Observatory

    NASA Astrophysics Data System (ADS)

    2003-02-01

    Dr. Rita Colwell, director of the U.S. National Science Foundation (NSF), and Dr. Catherine Cesarsky, director general of the European Southern Observatory (ESO), today signed a historic agreement jointly to construct and operate ALMA, the Atacama Large Millimeter Array, the world's largest and most powerful radio telescope operating at millimeter and sub-millimeter wavelengths. "With this agreement, we usher in a new age of research in astronomy," said Dr. Colwell. "By working together in this truly global partnership, the international astronomy community will be able to ensure the research capabilities needed to meet the long-term demands of our scientific enterprise, and we will be able to study and understand our Universe in ways that have previously been beyond our vision." ALMA Array Artist's Conception of ALMA Array in Compact Configuration (Click on Image for Larger Version) Other Images Available: Artist's conception of the antennas for the Atacama Large Millimeter Array Moonrise over ALMA test equipment near Cerro Chajnantor, Chile VertexRSI antenna at the VLA test site Dr. Cesarsky also commented, "This agreement signifies the start of a great project of contemporary astronomy and astrophysics. Representing Europe, and in collaboration with many laboratories and institutes on this continent, we together look forward toward wonderful research projects. With ALMA, we may learn how the earliest galaxies in the Universe really looked like, to mention but one of the many eagerly awaited opportunities with this marvelous facility." When complete in 2011, ALMA will be an array of 64, 12-meter radio antennas that will work together as one telescope to study millimeter and sub-millimeter wavelength light from space. These wavelengths of the electromagnetic spectrum, which cross the critical boundary between infrared and microwave radiation, hold the key to understanding such processes as planet and star formation, the formation of early galaxies and galaxy

  6. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  7. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.

  8. Letter from Chile: Re-establishing health care in Chile

    PubMed Central

    Jiménez, Jorge

    1993-01-01

    Chile's long term social policy has produced very impressive outcomes in general health indicators, with a national health service established as early as 1952. During the years of the Pinochet dictatorship (1973-89) public health institutions were greatly affected, with sharp diminution in financing which affected investment and salaries. The democratic government initiated in 1990 faced a difficult situation, with underpaid staff and decrepit hospitals. The ministry took immediate action to improve salaries and start an ambitious health sector reform including investment in infrastructure, technology, and modern management. Decentralisation and autonomy, changes in payment for service mechanisms, and a public-private mix are the main objectives of this reform, keeping the public role as predominant in the proposed structure. This process has been affected by union unrest and public opinion dissatisfaction, which tend to present obstacles to progress in this complicated issue. Imagesp729-ap730-a

  9. Rule of Repression in Chile.

    ERIC Educational Resources Information Center

    American Indian Journal, 1979

    1979-01-01

    This report on the current condition of the Mapuche Indians of Chile is edited from a document on the "Situation of Human Rights in Chile" and details the repressive and inhumane treatment of the largest indigenous ethnic minority in the country. (Author/RTS)

  10. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; VanLew, K.; Melsheimer, T.; Sackett, C.

    1999-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. Construction of the dome and the remote control system has been completed, and the telescope is now on-line and operational over the Internet. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have begun teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  11. The Chandra X-ray Observatory: An Astronomical Facility Available to the World

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.

    2006-01-01

    The Chandra X-ray observatory, one of NASA's "Great Observatories," provides high angular and spectral resolution X-ray data which is freely available to all. In this review I describe the instruments on chandra along with their current calibration, as well as the chandra proposal system, the freely-available Chandra analysis software package CIAO, and the Chandra archive. As Chandra is in its 6th year of operation, the archive already contains calibrated observations of a large range of X-ray sources. The Chandra X-ray Center is committed to assisting astronomers from any country who wish to use data from the archive or propose for observations

  12. An Information Retrieval and Recommendation System for Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Mukund, Nikhil; Thakur, Saurabh; Abraham, Sheelu; Aniyan, A. K.; Mitra, Sanjit; Sajeeth Philip, Ninan; Vaghmare, Kaustubh; Acharjya, D. P.

    2018-03-01

    We present a machine-learning-based information retrieval system for astronomical observatories that tries to address user-defined queries related to an instrument. In the modern instrumentation scenario where heterogeneous systems and talents are simultaneously at work, the ability to supply people with the right information helps speed up the tasks for detector operation, maintenance, and upgradation. The proposed method analyzes existing documented efforts at the site to intelligently group related information to a query and to present it online to the user. The user in response can probe the suggested content and explore previously developed solutions or probable ways to address the present situation optimally. We demonstrate natural language-processing-backed knowledge rediscovery by making use of the open source logbook data from the Laser Interferometric Gravitational Observatory (LIGO). We implement and test a web application that incorporates the above idea for LIGO Livingston, LIGO Hanford, and Virgo observatories.

  13. The evolution of optics education at the U.S. National Optical Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Pompea, Stephen M.; Walker, Constance E.; Sparks, Robert T.

    2014-07-01

    The last decade of optics education at the U.S. National Optical Astronomy Observatory will be described in terms of program planning, assessment of community needs, identification of networks and strategic partners, the establishment of specific program goals and objectives, and program metrics and evaluation. A number of NOAO's optics education programs for formal and informal audiences will be described, including our Hands-On Optics program, illumination engineering/dark skies energy education programs, afterschool programs, adaptive optics education program, student outreach, and Galileoscope program. Particular emphasis will be placed on techniques for funding and sustaining high-quality programs. The use of educational gap analysis to identify the key needs of the formal and informal educational systems will be emphasized as a technique that has helped us to maximize our educational program effectiveness locally, regionally, nationally, and in Chile.

  14. A Strategy for Urban Astronomical Observatory Site Preservation: The Southern Arizona Example (Abstract)

    NASA Astrophysics Data System (ADS)

    Craine, E. R.; Craine, B. L.; Craine, P. R.; Craine, E. M.; Fouts, S.

    2014-12-01

    (Abstract only) Urbanized observatories are under financial pressures for numerous and complex reasons, including concerns that increasing sky brightness will continue to erode their scientific viability. The history of urbanized observatories is one of steady decline and divestiture. We argue that light at night (LAN) impacts of urban growth are inadequately understood, that current measurement techniques are incomplete in scope, and that both limit the effectiveness of mitigation programs. We give examples of these factors for Pima County, Arizona, and propose techniques and a program that could provide focus and power to mitigation efforts, and could extend the longevity of southern Arizona observatories.

  15. Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.

    2012-09-01

    Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.

  16. The Boulder magnetic observatory

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.; Pedrie, Kolby L.; Blum, Cletus C.

    2015-08-14

    The Boulder magnetic observatory has, since 1963, been operated by the Geomagnetism Program of the U.S. Geological Survey in accordance with Bureau and national priorities. Data from the observatory are used for a wide variety of scientific purposes, both pure and applied. The observatory also supports developmental projects within the Geomagnetism Program and collaborative projects with allied geophysical agencies.

  17. A green observatory in the Chilean Atacama desert

    NASA Astrophysics Data System (ADS)

    Ramolla, Michael; Westhues, Christian; Hackstein, Moritz; Haas, Martin; Hodapp, Klaus; Lemke, Roland; Barr Domínguez, Angie; Chini, Rolf; Murphy, Miguel

    2016-08-01

    Since 2007, the Ruhr-Universität Bochum (RUB) in Germany and Universidad Católica del Norte (UCN) in Chile jointly operate the Universitätssternwarte der Ruhr-Universität Bochum (USB), which is located in direct neighborhood of the future E-ELT of ESO. It is the only observatory powered exclusively by solar panels and wind turbines. Excess power is stored in batteries that allow uninterrupted operation even in windless nights. The scientific equipment consists of three robotic optical telescopes with apertures ranging from 15 cm (RoBoTT) over 25 cm (BESTII) to 40 cm (BMT) and one 80 cm (IRIS) infra-red telescope. The optical telescopes are equipped with Johnson and Sloan broad band filters together with a large number of narrow and intermediate bands. In the infrared, J,H and K filters are available, accompanied by several narrow bands near the K band wavelength. The second Nasmyth focus in the 80 cm telescope feeds a high resolution echelle spectrograph similar to the FEROS instrument of ESO. This variety of instruments has evolved from different collaborations, i.e. with the University of Hawaii (IfA) in the USA, which provided the near-infrared-camera of the IRIS telescope, or with the Deutsches Zentrum für Luft- und Raumfahrt (DLR) in Germany, which provided the BESTII telescope. The highly automatized processes on all telescopes enable a single person to run the whole facility, providing the high cost efficiency required for an university observatory. The excellent site conditions allow projects that require daily observations of astronomical objects over epochs of several months or years. Here we report on such studies of young stellar objects from the Bochum Galactic Disk Survey, the multiplicity of stars, quasar variability or the hunt for exo-planets.

  18. Wildfires in Chile: A review

    NASA Astrophysics Data System (ADS)

    Úbeda, Xavier; Sarricolea, Pablo

    2016-11-01

    This paper reviews the literature examining the wildfire phenomenon in Chile. Since ancient times, Chile's wildfires have shaped the country's landscape, but today, as in many other parts of the world, the fire regime - pattern, frequency and intensity - has grown at an alarming rate. In 2014, > 8000 fires were responsible for burning c. 130,000 ha, making it the worst year in Chile's recent history. The reasons for this increase appear to be the increment in the area planted with flammable species; the rejection of these landscape modifications on the part of local communities that target these plantations in arson attacks; and, the adoption of intensive forest management practices resulting in the accumulation of a high fuel load. These trends have left many native species in a precarious situation and forest plantation companies under considerable financial pressure. An additional problem is posed by fires at the wildland urban interface (WUI), threatening those inhabitants that live in Chile's most heavily populated cities. The prevalence of natural fires in Chile; the relationship between certain plant species and fire in terms of seed germination strategies and plant adaptation; the relationship between fire and invasive species; and, the need for fire prevention systems and territorial plans that include fire risk assessments are some of the key aspects discussed in this article. Several of the questions raised will require further research, including just how fire-dependent the ecosystems in Chile are, how the forest at the WUI can be better managed to prevent human and material damage, and how best to address the social controversy that pits the Mapuche population against the timber companies.

  19. Observatory Science with the NICER X-ray Timing Instrument

    NASA Astrophysics Data System (ADS)

    Remillard, Ronald A.

    2016-04-01

    This presentation is submitted on behalf of the NICER Observatory Science Working Group. NICER will be deployed on the International Space Station later in 2016. The X-ray sensitivity spans 0.2-12 keV, with CCD-like spectral resolution, low background rates, and unprecedented timing accuracy. A Guest Observer (GO) Program has been approved by NASA as one of the proposed Science Enhancement Options, contingent on NICER meeting its Prime Mission Science Objectives. The NICER Science team will observe limited Observatory Science targets (i.e., sources other than neutron stars) in year 1, and GO observations will constitute 50% of the exposures in year 2. Thereafter, NICER will compete for continuation via the NASA Senior Review process. NICER Instrument performance is compared with Missions such as XMM-Newton and RXTE. We briefly highlight the expected themes for Observatory Science relating to accreting black holes on all mass scales, magnetic CVs, active stars, and clusters of galaxies.

  20. Studies to Control Endemic Typhoid Fever in Chile

    DTIC Science & Technology

    1982-01-29

    de las colecistopatias en Chile . Rev.Med.Chile 100:1376- 1381, 1972. 8. Medina, E., Kaempffer, A.M., DeCroizet, V.A., Yrrazaval, Toporowicz, M...Epidemoologia de las colecistopatias en Chile . II. Factores de importancia en estudios de autopsia. Rev.Med.Chile 100:1382-1389, 1972. 9. Marinovio, I...necesario ef ec tuar previamente ex5menes bactereol.’gicos de inocuidad y potencia_ de la vacuna en el Instituto de Salud Priblica de

  1. The Virtual Observatory: I

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2014-11-01

    The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.

  2. Possible astronomical meanings of some El Molle relics near the ESO Observatory at La Silla

    NASA Astrophysics Data System (ADS)

    Bernardi, Gabriella; Vecchiato, Alberto; Bucciarelli, Beatrice

    2012-07-01

    This paper describes a peculiar, man-made circular stone structure, associated with the ancient rock engravings that are around the site of La Silla in Chile close to the European Southern Observatory, and are attributed to the El Molle Culture. Three stones of the circle, different from all the others, were likely to pinpoint the alignment of three bright stars close to the horizon, as seen from a specific vantage point inside the structure. The El Molle was the only period in which this alignment occurred significantly close to the horizon, moreover it was only in this epoch that it could also be associated with the transition from the warm to the cold season, a period of the year which was quite important for a society that supported itself by herding and farming.

  3. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  4. Vibration isolation system for the Stratospheric Observatory For Infrared Astronomy (SOFIA)

    NASA Technical Reports Server (NTRS)

    Kaiser, T.; Kunz, N.

    1988-01-01

    The Vibration Isolation System for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is studied. Included are discussions of the various concepts, design goals, concerns, and the proposed configuration for the Vibration Isolation System.

  5. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-01-01

    Managed by the Marshall Space Flight Center and built by TRW, the second High Energy Astronomy Observatory was launched November 13, 1978. The observatory carried the largest X-ray telescope ever built and was renamed the Einstein Observatory after achieving orbit.

  6. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; VanLew, K.; Melsheimer, T.; Sackett, C.

    2000-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. The telescope is operational over the Internet, and we are now debugging the software to enable schools to control the telescope from classroom computers and take images. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have completed the first teacher training workshops to allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms. The workshops were accredited by the school district, and received very favorable reviews.

  7. The Penllergare Observatory

    NASA Astrophysics Data System (ADS)

    Birks, J. L.

    2005-12-01

    This rather picturesque and historically important Victorian observatory was built by the wealthy John Dillwyn Llewelyn near to his mansion, some four miles north-west of Swansea, Wales. He had many scientific interests, in addition to astronomy, and was a notable pioneer of photography in Wales. Together with his eldest daughter, Thereza, (who married the grandson of the fifth Astronomer Royal, Nevil Maskelyne), he took some early photographs of the Moon from this site. This paper describes the construction of the observatory, and some of those primarily involved with it. Despite its having undergone restoration work in 1982, the state of the observatory is again the cause for much concern.

  8. [Papillomavirus and cervical cancer in Chile].

    PubMed

    O'Ryan, Miguel; Valenzuela, María Teresa

    2008-11-01

    Molecular, clinical and epidemiological studies have established beyond doubt that human papiloma viruses (HPV) cause cervical cancer. The virus is also associated with genital warts and other less common cancers in oropharynx, vulva, vagina and penis. Worldwide, VPH genotypes 16 and 18 are the most common high risk genotypes, detected in near 70% of women with cervical cancer. The discovery of a cause-effect relationship between several carcinogenic microorganisms and cancer open avenues for new diagnostic, treatment and prevention strategies. In this issue of Revista Médica de Chile, two papers on HPV are presented. Guzman and colleagues demonstrate that HPV can be detected in 66% to 77% of healthy male adolescents bypolymerase chain reaction and that positivity depends on the site of the penis that is sampled. These results support the role of male to female transmission of high risk HPVs in Chile and should lead to even more active educational campaigns. The second paper provides recommendations for HPV vaccine use in Chile, generated by the Immunization Advisory Committee of the Chilean Infectious Disease Society. To issue these recommendations, the Committee analyzes the epidemiological information available on HPV infection and cervical cancer in Chile, vaccine safety and effectiveness data, and describes cost-effectiveness studies. Taking into account that universal vaccination is controversial, the Committee favors vaccine use in Chile and it's incorporation into a national program. However, there is an indication that the country requires the implementation of an integrated surveillance approach including cross matching of data obtained from HPV genotype surveillance, monitoring of vaccination coverage, and surveillance of cervical cancer. The final decision of universal vaccine use in Chile should be based on a through analysis of information.ev Mid Chile

  9. Chile: Civil-Military Relations and Democratic Consolidation

    DTIC Science & Technology

    1998-12-01

    Publishers, 1992), 41. 26 Javier Martinez and Alvaro Diaz , Chile The Great Transformation (Harrisonburg, Virginia: The Brookings Institution, 1996...the world economy, by means of technological advancements, makes it necessary to reduce 32 Javier Martinez and Alvaro Diaz , Chile the Great...disapproves the executive’s budget. There is no 60 Alicia Frohman, "Chile: External Actors and the Transition to Democracy," in Beyond Sovereignty

  10. NASA Awards Chandra X-Ray Observatory Follow-On Contract

    NASA Astrophysics Data System (ADS)

    2003-08-01

    NASA has awarded a contract to the Smithsonian Astrophysical Observatory in Cambridge, Mass., to provide science and operational support for the Chandra X-ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract will have a period of performance from August 31, 2003, through July 31, 2010, with an estimated value of 373 million. It is a follow-on contract to the existing contract with Smithsonian Astrophysical Observatory that has provided science and operations support to the Observatory since its launch in July 1999. At launch the intended mission life was five years. As a result of Chandra's success, NASA extended the mission from five to 10 years. The value of the original contract was 289 million. The follow-on contract with the Smithsonian Astrophysical Observatory will continue through the 10-year mission. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes the observatory operations, science data processing and the general and guaranteed time observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and up linking the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and processing and delivery of the resulting scientific data. There are approximately 200 to 250 observing proposals selected annually out of about 800 submitted, with a total amount of observing time of about 20 million seconds. Chandra has exceeded expectations of scientists, giving them unique insight into phenomena light years away, such as exotic celestial objects, matter falling into black holes, and stellar explosions. X-ray astronomy can only be performed from space because Earth's atmosphere

  11. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  12. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph B.

    2007-01-01

    The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."

  13. KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Lee; Lee, Chung-Uk; Park, Byeong-Gon; Kim, Dong-Jin; Cha, Sang-Mok; Lee, Yongseok; Han, Cheongho; Chun, Moo-Young; Yuk, Insoo

    2016-02-01

    The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.

  14. Usefulness and dangers of relying on grant acknowledgments in an observatory bibliography

    NASA Astrophysics Data System (ADS)

    Winkelman, Sherry; Rots, Arnold

    2016-07-01

    The purpose of this paper is to present a quantitative assessment of how well grant and/or program acknowledgments reflect the science impact of Chandra observing, archive, and theory programs and to assess whether observatory acknowledgments alone are a good indicator for inclusion in an observatory bibliography. For grant citations we find that curators will often need to determine the correct grant being cited and they will need to assess relationship between the content of a paper and the grant proposal being cited for statistics to be meaningful. We also find a significant number of papers can be attributed to observing programs through grant links only and that performing full-text searches against the ADS for grant numbers can lead to additional articles for inclusion in the bibliography. When looking at acknowledgment sections as a whole, we find that using an observatory acknowledgment as the sole source for determining inclusion in a bibliography will greatly underestimate the number of science papers attributable to the observatory.

  15. NASA's Great Observatories: Paper Model.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

  16. Everyday astronomy @ Sydney Observatory

    NASA Astrophysics Data System (ADS)

    Parello, S. L.

    2008-06-01

    Catering to a broad range of audiences, including many non-English speaking visitors, Sydney Observatory offers everything from school programmes to public sessions, day care activities to night observing, personal interactions to web-based outreach. With a history of nearly 150 years of watching the heavens, Sydney Observatory is now engaged in sharing the wonder with everybody in traditional and innovative ways. Along with time-honoured tours of the sky through two main telescopes, as well as a small planetarium, Sydney Observatory also boasts a 3D theatre, and offers programmes 363 days a year - rain or shine, day and night. Additionally, our website neversleeps, with a blog, YouTube videos, and night sky watching podcasts. And for good measure, a sprinkling of special events such as the incomparable Festival of the Stars, for which most of northern Sydney turns out their lights. Sydney Observatory is the oldest working observatory in Australia, and we're thrilled to be looking forward to our 150th Anniversary next year in anticipation of the International Year of Astronomy immediately thereafter.

  17. [A scientometric view of Revista Médica de Chile].

    PubMed

    Krauskopf, Manuel; Krauskopf, Erwin

    2008-08-01

    During the last decade Revista Médica de Chile increased its visibility, measured on citations and impact factor. To perform a scientometric analysis to assess the performance of Revista Médica de Chile. Thomson's-ISI Web of Science and Journal Citation Reports QCR) were consulted for performance indicators of Revista Médica de Chile and Latin American journals whose subject is General and Internal Medicine. We also report the h-index of the journal, which infers quality linked to the quantity of the output. According to the h-index, Revista Médica de Chile ranks 4 among the 36 journals indexed and published by Argentina, Brazil, Chile and México. The top ten articles published by Revista Médica de Chile and the institutions with the higher contribution to the journal, were identified using citations. In the Latin American region, Brazil relevantly increased its scientific output. However, Argentina, Chile and México maintain a plateau during the last decade. Revista Médica de Chile increased notoriously its performance. Its contribution to the Chilean scientific community dedicated to Medicine appears to be of central value.

  18. Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Young, E.; Marcum, P.; Krabbe, A.

    2010-12-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  19. An Overview of the Performance of the Chandra X-ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Aldcroft, T. L.; Bautz, M.; Cameron, R. A.; Dewey, D.; Drake, J. J.; Grant, C. E.; Marshall, H. L.; Murray, S. S.

    2004-01-01

    The Chandra X-ray Observatory is the X-ray component of NASA's Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASA s Marshall Space Flight Center (MSFC) manages the Project and provides Project Science; Northrop Grumman Space Technology (NGST - formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the Observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support and is responsible for ground operations including the Chandra X-ray Center (CXC). Telescope and instrument teams at SAO, the Massachusetts Institute of Technology (MIT), the Pennsylvania State University (PSU), the Space Research Institute of the Netherlands (SRON), the Max-Planck Institut fur extraterrestrische Physik (MPE), and the University of Kiel support also provide technical support to the Chandra Project. We present here a detailed description of the hardware, its on-orbit performance, and a brief overview of some of the remarkable discoveries that illustrate that performance.

  20. Where Do Mexico and Chile Stand on Inclusive Education? Short Title: Inclusion in Mexico and Chile

    ERIC Educational Resources Information Center

    García-Cedillo, Ismael; Romero-Contreras, Silvia; Ramos-Abadie, Liliana

    2015-01-01

    This paper discusses the background, current situation and challenges of educational integration and inclusive education in Mexico and Chile. These countries obtained similar low results on the academic achievement of their students (Mexico last and Chile second last) among OECD countries; and above average scores, among Latin-American countries.…

  1. Counternarcotic Efforts in the Southern Cone: Chile

    DTIC Science & Technology

    1990-06-30

    deportation is simply not practical . Statistics of cocaine coming into Chile by "ant smuggling" do not exist. Carabineros mentions that according to...existing evidence is contradictory. A recent report ordered by the Ministry of Foreign 10 Affairs does not support the allegation that Chile is being used...Gugliotta and Jeff Leen, Kings of Cocaine (New York: Harper and Row, 1989) p.23. 11 industry based in Chile and controlled by a few refiners who bought

  2. Studying the Light Pollution around Urban Observatories: Columbus State University’s WestRock Observatory

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Brendon Andrew; Johnson, Michael

    2017-01-01

    Light pollution plays an ever increasing role in the operations of observatories across the world. This is especially true in urban environments like Columbus, GA, where Columbus State University’s WestRock Observatory is located. Light pollution’s effects on an observatory include high background levels, which results in a lower signal to noise ratio. Overall, this will limit what the telescope can detect, and therefore limit the capabilities of the observatory as a whole.Light pollution has been mapped in Columbus before using VIIRS DNB composites. However, this approach did not provide the detailed resolution required to narrow down the problem areas around the vicinity of the observatory. The purpose of this study is to assess the current state of light pollution surrounding the WestRock observatory by measuring and mapping the brightness of the sky due to light pollution using light meters and geographic information system (GIS) software.Compared to VIIRS data this study allows for an improved spatial resolution and a direct measurement of the sky background. This assessment will enable future studies to compare their results to the baseline established here, ensuring that any changes to the way the outdoors are illuminated and their effects can be accurately measured, and counterbalanced.

  3. [Beginning of the Microbiology education in Chile: formation centers].

    PubMed

    Osorio, Carlos

    2015-08-01

    The first Chair of Microbiology in Chile was created in the School of Medicine of the Cañadilla at the University of Chile in 1892. Dr. Alejandro del Río Soto Aguilar was its first Professor. For almost three decades it was the only educational center for microbiologists in Chile. Among them were the first Professors of the new School of Medicine of the Catholic University of Chile and of the University of Concepción.

  4. The Arecibo Observatory Space Academy

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ford, Linda A.; Zambrano-Marin, Luisa; Petty, Bryan M.; Sternke, Elizabeth; Ortiz, Andrew M.; Rivera-Valentin, Edgard G.

    2015-11-01

    The Arecibo Observatory Space Academy (AOSA) is a ten (10) week pre-college research program for students in grades 9-12. Our mission is to prepare students for academic and professional careers by allowing them to receive an independent and collaborative research experience on topics related to space and aide in their individual academic and social development. Our objectives are to (1) Supplement the student’s STEM education via inquiry-based learning and indirect teaching methods, (2) Immerse students in an ESL environment, further developing their verbal and written presentation skills, and (3) To foster in every student an interest in science by exploiting their natural curiosity and knowledge in order to further develop their critical thinking and investigation skills. AOSA provides students with the opportunity to share lectures with Arecibo Observatory staff, who have expertise in various STEM fields. Each Fall and Spring semester, selected high school students, or Cadets, from all over Puerto Rico participate in this Saturday academy where they receive experience designing, proposing, and carrying out research projects related to space exploration, focusing on four fields: Physics/Astronomy, Biology, Engineering, and Sociology. Cadets get the opportunity to explore their topic of choice while practicing many of the foundations of scientific research with the goal of designing a space settlement, which they present at the NSS-NASA Ames Space Settlement Design Contest. At the end of each semester students present their research to their peers, program mentors, and Arecibo Observatory staff. Funding for this program is provided by NASA SSERVI-LPI: Center for Lunar Science and Exploration with partial support from the Angel Ramos Visitor Center through UMET and management by USRA.

  5. ESO's First Observatory Celebrates 40th Anniversary

    NASA Astrophysics Data System (ADS)

    2009-03-01

    ESO's La Silla Observatory, which is celebrating its 40th anniversary, became the largest astronomical observatory of its time. It led Europe to the frontline of astronomical research, and is still one of the most scientifically productive in ground-based astronomy. ESO PR Photo 12a/09 La Silla Aerial View ESO PR Photo 12b/09 The ESO New Technology Telescope ESO PR Photo 12c/09 SEST on La Silla ESO PR Photo 12d/09 Looking for the best site ESO PR Video 12a/09 ESOcast 5 With about 300 refereed publications attributable to the work of the observatory per year, La Silla remains at the forefront of astronomy. It has led to an enormous number of scientific discoveries, including several "firsts". The HARPS spectrograph is the world's foremost exoplanet hunter. It detected the system around Gliese 581, which contains what may be the first known rocky planet in a habitable zone, outside the Solar System (ESO 22/07). Several telescopes at La Silla played a crucial role in discovering that the expansion of the Universe is accelerating (ESO 21/98) and in linking gamma-ray bursts -- the most energetic explosions in the Universe since the Big Bang - with the explosions of massive stars (ESO 15/98). Since 1987, the ESO La Silla Observatory has also played an important role in the study and follow-up of the nearest supernova, SN 1987A (ESO 08/07). "The La Silla Observatory continues to offer the astronomical community exceptional capabilities," says ESO Director General, Tim de Zeeuw. "It was ESO's first presence in Chile and as such, it triggered a very long and fruitful collaboration with this country and its scientific community." The La Silla Observatory is located at the edge of the Chilean Atacama Desert, one of the driest and loneliest areas of the world. Like other observatories in this geographical area, La Silla is located far from sources of polluting light and, as the Paranal Observatory that houses the Very Large Telescope, it has one of the darkest and clearest

  6. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-11-13

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  7. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    NASA Astrophysics Data System (ADS)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    The installation of Earthscope Transportable Array-style geophysical observatories in Chile expands open data seismic recording capabilities in the southern hemisphere by nearly 30%, and has nearly tripled the number of seismic stations providing freely-available data in southern South America. Through the use of collocated seismic and atmospheric sensors at these stations we are able to analyze how local atmospheric conditions generate seismic noise, which can degrade data in seismic frequency bands at stations in the ';roaring forties' (S latitudes). Seismic vaults that are climate-controlled and insulated from the local environment are now employed throughout the world in an attempt to isolate seismometers from as many noise sources as possible. However, this is an expensive solution that is neither practical nor possible for all seismic deployments; and also, the increasing number and scope of temporary seismic deployments has resulted in the collection and archiving of terabytes of seismic data that is affected to some degree by natural seismic noise sources such as wind and atmospheric pressure changes. Changing air pressure can result in a depression and subsequent rebound of Earth's surface - which generates low frequency noise in seismic frequency bands - and even moderate winds can apply enough force to ground-coupled structures or to the surface above the seismometers themselves, resulting in significant noise. The 10 stations of the permanent Geophysical Reporting Observatories (GRO Chile), jointly installed during 2011-12 by IRIS and the Chilean Servicio Sismológico, include instrumentation in addition to the standard three seismic components. These stations, spaced approximately 300 km apart along the length of the country, continuously record a variety of atmospheric data including infrasound, air pressure, wind speed, and wind direction. The collocated seismic and atmospheric sensors at each station allow us to analyze both datasets together, to

  8. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  9. Griffith Observatory: Hollywood's Celestial Theater

    NASA Astrophysics Data System (ADS)

    Margolis, Emily A.; Dr. Stuart W. Leslie

    2018-01-01

    The Griffith Observatory, perched atop the Hollywood Hills, is perhaps the most recognizable observatory in the world. Since opening in 1935, this Los Angeles icon has brought millions of visitors closer to the heavens. Through an analysis of planning documentation, internal newsletters, media coverage, programming and exhibition design, I demonstrate how the Observatory’s Southern California location shaped its form and function. The astronomical community at nearby Mt. Wilson Observatory and Caltech informed the selection of instrumentation and programming, especially for presentations with the Observatory’s Zeiss Planetarium, the second installed in the United States. Meanwhile the Observatory staff called upon some of Hollywood’s best artists, model makers, and scriptwriters to translate the latest astronomical discoveries into spectacular audiovisual experiences, which were enhanced with Space Age technological displays on loan from Southern California’s aerospace companies. The influences of these three communities- professional astronomy, entertainment, and aerospace- persist today and continue to make Griffith Observatory one of the premiere sites of public astronomy in the country.

  10. Search for repeating events at the plate interface in the seismic sequence of the 2014 Mw8.1 Iquique earthquake, Chile

    NASA Astrophysics Data System (ADS)

    Kummerow, Joern; Asch, Guenter; Sens-Schönfelder, Christoph; Schurr, Bernd; Tilmann, Frederik; Shapiro, Serge A.

    2017-04-01

    The 2014 Mw8.1 Iquique earthquake occurred along a segment of the northern Chile- southern Peru seismic gap which had not ruptured for more than 100 years. A specific feature of this event is the observation of prominent foreshock clusters with successively increasing seismic moment releases starting several months before the main shock (e.g., Schurr et al., 2014). The entire seismic sequence, including also the aftershock seismicity, was monitored exceptionally well by the Integrated Plate Boundary Observatory Chile (IPOC). Here, we present results from a systematic, long-term search for repeating seismic events along the plate interface in the source region of the 1 April 2014 (Mw8.1) Iquique main shock. Repeating earthquakes are widely assumed to indicate recurrent ruptures on the same fault patch and to accommodate aseismic slip in the creeping portions around the seismic patch. According to this concept, the analysis of repeating events and of their temporal behaviour provides a tool to estimate the amount of creep. We use the IPOC and two additional local seismic networks and select recorded waveforms of several hundreds of located earthquakes within the foreshock and aftershock series as template events. Waveforms are windowed around the P and S phases and bandpass-filtered for different frequency bands. Window starts are defined by manually revised P onset times. We then run a newly implemented correlation detector on the resampled, continuous seismic data to find highly similar waveforms for each template event. Repeating earthquakes are finally identified by a combination of estimated source dimensions, high waveform similarity and precise relative relocations of the events within each multiplet group. The analysis of the spatial and temporal patterns of the detected repeating earthquake sequences allows to test the proposed idea of progressive unlocking of the plate boundary before the Iquique main shock.

  11. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  12. Making Kew Observatory: the Royal Society, the British Association and the politics of early Victorian science.

    PubMed

    Macdonald, Lee T

    2015-09-01

    Built in 1769 as a private observatory for King George III, Kew Observatory was taken over in 1842 by the British Association for the Advancement of Science (BAAS). It was then quickly transformed into what some claimed to be a 'physical observatory' of the sort proposed by John Herschel - an observatory that gathered data in a wide range of physical sciences, including geomagnetism and meteorology, rather than just astronomy. Yet this article argues that the institution which emerged in the 1840s was different in many ways from that envisaged by Herschel. It uses a chronological framework to show how, at every stage, the geophysicist and Royal Artillery officer Edward Sabine manipulated the project towards his own agenda: an independent observatory through which he could control the geomagnetic and meteorological research, including the ongoing 'Magnetic Crusade'. The political machinations surrounding Kew Observatory, within the Royal Society and the BAAS, may help to illuminate the complex politics of science in early Victorian Britain, particularly the role of 'scientific servicemen' such as Sabine. Both the diversity of activities at Kew and the complexity of the observatory's origins make its study important in the context of the growing field of the 'observatory sciences'.

  13. The current situation for gastric cancer in Chile

    PubMed Central

    Caglevic, Christian; Silva, Shirley; Mahave, Mauricio; Rolfo, Christian; Gallardo, Jorge

    2016-01-01

    Gastric cancer is a neoplasm with a high incidence and mortality rate in Chile where more than 3000 people die every year from this type of cancer. This study shows the clinical and epidemiological considerations of this disease, information about translational research on this pathology in Chile, the contribution of Chilean doctors to the development of gastric cancer management awareness and the general situation of gastric cancer in Chile. PMID:28105078

  14. The current situation for gastric cancer in Chile.

    PubMed

    Caglevic, Christian; Silva, Shirley; Mahave, Mauricio; Rolfo, Christian; Gallardo, Jorge

    2016-01-01

    Gastric cancer is a neoplasm with a high incidence and mortality rate in Chile where more than 3000 people die every year from this type of cancer. This study shows the clinical and epidemiological considerations of this disease, information about translational research on this pathology in Chile, the contribution of Chilean doctors to the development of gastric cancer management awareness and the general situation of gastric cancer in Chile.

  15. Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Khosroshahi, H. G.; Danesh, A.; Molaeinezhad, A.

    2016-09-01

    The Iranian National Observatory is under construction at an altitude of 3600m at Gargash summit 300km southern Tehran. The site selection was concluded in 2007 and the site monitoring activities have begun since then, which indicates a high quality of the site with a median seeing of 0.7 arcsec through the year. One of the major observing facilities of the observatory is a 3.4m Alt-Az Ritchey-Chretien optical telescope which is currently under design. This f/11 telescope will be equipped with high resolution medium-wide field imaging cameras as well as medium and high resolution spectrographs. In this review, I will give an overview of astronomy research and education in Iran. Then I will go through the past and present activities of the Iranian National Observatory project including the site quality, telescope specifications and instrument capabilities.

  16. Rising Expectations in Brazil and Chile

    ERIC Educational Resources Information Center

    Elacqua, Gregory; Alves, Fatima

    2014-01-01

    Two themes connect Brazil and Chile: one is economic success; the other is social unrest. Protests rocked cities across Brazil in June 2013, and in Chile, recent student protests turned violent. Yet living conditions in both nations are better now than they've ever been. Successful economic and social reforms over the last two decades have led to…

  17. Overview of the Chandra X-Ray Observatory Facility

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Chandra X-Ray Observatory (originally called the Advanced X-Ray Astrophysics Facility - AXAF) is the X-Ray component of NASA's "Great Observatory" Program. Chandra is a NASA facility that provides scientific data to the international astronomical community in response to scientific proposals for its use. The Observatory is the product of the efforts of many organizations in the United States and Europe. The Great Observatories also include the Hubble Space Telescope for space-based observations of astronomical objects primarily in the visible portion of the electromagnetic spectrum, the now defunct Compton Gamma- Ray Observatory that was designed to observe gamma-ray emission from astronomical objects, and the soon-to-be-launched Space Infrared Telescope Facility (SIRTF). The Chandra X-Ray Observatory (hereafter CXO) is sensitive to X-rays in the energy range from below 0.1 to above 10.0 keV corresponding to wavelengths from 12 to 0.12 nanometers. The relationship among the various parts of the electromagnetic spectrum, sorted by characteristic temperature and the corresponding wavelength, is illustrated. The German physicist Wilhelm Roentgen discovered what he thought was a new form of radiation in 1895. He called it X-radiation to summarize its properties. The radiation had the ability to pass through many materials that easily absorb visible light and to free electrons from atoms. We now know that X-rays are nothing more than light (electromagnetic radiation) but at high energies. Light has been given many names: radio waves, microwaves, infrared, visible, ultraviolet, X-ray and gamma radiation are all different forms. Radio waves are composed of low energy particles of light (photons). Optical photons - the only photons perceived by the human eye - are a million times more energetic than the typical radio photon, whereas the energies of X-ray photons range from hundreds to thousands of times higher than that of optical photons. Very low temperature systems

  18. Checklist, diversity and distribution of testate amoebae in Chile.

    PubMed

    Fernández, Leonardo D; Lara, Enrique; Mitchell, Edward A D

    2015-10-01

    Bringing together more than 170 years of data, this study represents the first attempt to construct a species checklist and analyze the diversity and distribution of testate amoebae in Chile, a country that encompasses the southwestern region of South America, countless islands and part of the Antarctic. In Chile, known diversity includes 416 testate amoeba taxa (64 genera, 352 infrageneric taxa), 24 of which are here reported for the first time. Species-accumulation plots show that in Chile, the number of testate amoeba species reported has been continually increasing since the mid-19th century without leveling off. Testate amoebae have been recorded in 37 different habitats, though they are more diverse in peatlands and rainforest soils. Only 11% of species are widespread in continental Chile, while the remaining 89% of the species exhibit medium or short latitudinal distribution ranges. Also, species composition of insular Chile and the Chilean Antarctic territory is a depauperated subset of that found in continental Chile. Nearly, the 10% of the species reported here are endemic to Chile and many of them are distributed only within the so-called Chilean biodiversity hotspot (ca. 25° S-47° S). These findings are here thoroughly discussed in a biogeographical and evolutionary context. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. An intragenic approach to confer glyphosate resistance in chile (Capsicum annuum) by introducing an in vitro mutagenized chile EPSPS gene encoding for a glyphosate resistant EPSPS protein

    PubMed Central

    Bagga, Suman; Apodaca, Kimberly; Lucero, Yvonne

    2018-01-01

    Chile pepper (Capsicum annuum) is an important high valued crop worldwide, and when grown on a large scale has problems with weeds. One important herbicide used is glyphosate. Glyphosate inactivates the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), a key enzyme in the synthesis of aromatic amino acids. A transgenic approach towards making glyphosate resistant plants, entails introducing copies of a gene encoding for glyphosate-resistant EPSPS enzyme into the plant. The main objective of our work was to use an intragenic approach to confer resistance to glyphosate in chile which would require using only chile genes for transformation including the selectable marker. Tobacco was used as the transgenic system to identify different gene constructs that would allow for the development of the intragenic system for chile, since chile transformation is inefficient. An EPSPS gene was isolated from chile and mutagenized to introduce substitutions that are known to make the encoded enzyme resistant to glyphosate. The promoter for EPSPS gene was isolated from chile and the mutagenized chile EPSPS cDNA was engineered behind both the CaMV35S promoter and the EPSPS promoter. The leaves from the transformants were checked for resistance to glyphosate using a cut leaf assay. In tobacco, though both gene constructs exhibited some degree of resistance to glyphosate, the construct with the CaMV35S promoter was more effective and as such chile was transformed with this gene construct. The chile transformants showed resistance to low concentrations of glyphosate. Furthermore, preliminary studies showed that the mutated EPSPS gene driven by the CaMV35S promoter could be used as a selectable marker for transformation. We have shown that an intragenic approach can be used to confer glyphosate-resistance in chile. However, we need a stronger chile promoter and a mutated chile gene that encodes for a more glyphosate resistant EPSPS protein. PMID:29649228

  20. [New medical schools in Chile].

    PubMed

    Castillo, P

    1994-03-01

    In Chile there are six established medical schools at public (Chile, Valparaiso and Temuco) or private (Catholic, Concepción and Austral) universities created between 1833 and 1971. Since 1990, three new medical schools (two private) were created and a fourth is projected, concerning the chilean medical corps. We present three position articles on the subject written by Dean Pedro Rosso, from the Catholic University, Dr Pedro Castillo, Chief of Human Resources of the Ministry of Health and Dean Alejandro Goic from the University of Chile. Dean Rosso emphasizes the need to have assessment procedures that guarantee quality standards in the new medical schools. Dr Castillo attracts attention on preserving the compromise with the society, inherent to chilean medicine. Dean Goic analyzes systematically the reasons to prevent the proliferation of medical schools in the country, maintaining an equilibrium between freedom of teaching and public faith protection.

  1. Observatory data and the Swarm mission

    NASA Astrophysics Data System (ADS)

    Macmillan, S.; Olsen, N.

    2013-11-01

    The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth's core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those that may use higher cadence 1-second and 1-minute data from observatories.

  2. ALMA Test Sharpens Vision of New Observatory

    NASA Astrophysics Data System (ADS)

    2010-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) has passed a key milestone crucial to producing the high-quality images that will be the trademark of this revolutionary new tool for astronomy. A team of ALMA astronomers and engineers successfully linked three of the observatory's advanced antennas at the 16,500-foot-elevation observing site in northern Chile. Linking three antennas to work in unison for the first time allowed the ALMA team to correct errors that can arise when only two antennas are used, thus paving the way for precise, high-resolution imaging. The three-antenna linkup was a key test of the full electronic and software system now being installed at ALMA. Its success shows that the completed ALMA system of 66 high-tech antennas will be capable of producing astronomical images of unprecedented quality at its designed observing wavelengths. "This successful test shows that we are well on the way to providing the clear, sharp ALMA images that will open a whole new window for observing the Universe. We look forward to imaging stars and planets as well as galaxies in their formation processes," said Fred Lo, director of the National Radio Astronomy Observatory (NRAO), which leads North America's participation in the ALMA project. A multi-antenna imaging system such as ALMA uses its antennas in pairs, with each antenna working with every other antenna. Each pair contributes a unique piece of information about the region of sky under observation. The contributions of all the pairs are collected and computer-processed into a completed image following the observation. Earlier ALMA tests, at the ALMA Test Facility in New Mexico, at ALMA's lower-elevation Operations Support Facility, and at the high observing site, had successfully linked pairs of antennas. This demonstrated the proper functioning of the antennas and electronic systems as what scientists and engineers call interferometer pairs. However, the information from one pair of antennas may be

  3. The Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Odell, C. R.

    1979-01-01

    A convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists is presented. An attempt is made to provide enough detail so that a professional scientist, observer or theorist, can plan how the observatory may be used to further his observing programs or to test theoretical models.

  4. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Anna Michalak, an Orbiting Carbon Observatory science team member from the University of Michigan, Ann Arbor, speaks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  5. A conceptual approach to a citizens' observatory--supporting community-based environmental governance.

    PubMed

    Liu, Hai-Ying; Kobernus, Mike; Broday, David; Bartonova, Alena

    2014-12-12

    In recent years there has been a trend to view the Citizens' Observatory as an increasingly essential tool that provides an approach for better observing, understanding, protecting and enhancing our environment. However, there is no consensus on how to develop such a system, nor is there any agreement on what a Citizens' Observatory is and what results it could produce. The increase in the prevalence of Citizens' Observatories globally has been mirrored by an increase in the number of variables that are monitored, the number of monitoring locations and the types of participating citizens. This calls for a more integrated approach to handle the emerging complexities involved in this field, but before this can be achieved, it is essential to establish a common foundation for Citizens' Observatories and their usage. There are many aspects to a Citizens' Observatory. One view is that its essence is a process that involves environmental monitoring, information gathering, data management and analysis, assessment and reporting systems. Hence, it requires the development of novel monitoring technologies and of advanced data management strategies to capture, analyse and survey the data, thus facilitating their exploitation for policy and society. Practically, there are many challenges in implementing the Citizens' Observatory approach, such as ensuring effective citizens' participation, dealing with data privacy, accounting for ethical and security requirements, and taking into account data standards, quality and reliability. These concerns all need to be addressed in a concerted way to provide a stable, reliable and scalable Citizens' Observatory programme. On the other hand, the Citizens' Observatory approach carries the promise of increasing the public's awareness to risks in their environment, which has a corollary economic value, and enhancing data acquisition at low or no cost. In this paper, we first propose a conceptual framework for a Citizens' Observatory

  6. Designing Observatories for the Hydrologic Sciences

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.

    2004-05-01

    The need for longer-term, multi-scale, coherent, and multi-disciplinary data to test hypotheses in hydrologic science has been recognized by numerous prestigious review panels over the past decade (e.g. NRC's Basic Research Opportunities in Earth Science). Designing such observatories has proven to be a challenge not only on scientific, but also technological, economic and even sociologic levels. The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) has undertaken a "paper" prototype design of a hydrologic observatory (HO) for the Neuse River Basin, NC and plans to solicit proposals and award grants to develop implementation plans for approximately 10 basins (which may be defined by topographic or groundwater divides) during the summer of 2004. These observatories are envisioned to be community resources with data available to all scientists, with support facilities to permit their use by both local and remote investigators. This paper presents the broad design concepts which were developed from a national team of scientists for the Neuse River Basin Prototype. There are three fundamental characteristics of a watershed or river basin that are critical for answering the major scientific questions proposed by the NRC to advance hydrologic, biogeochemical and ecological sciences: (1) the store and flux of water, sediment, nutrients and contaminants across interfaces at multiple scales must be identified; (2) the residence time of these constituents, and (3) their flowpaths and response spectra to forcing must be estimated. "Stores" consist of subsurface, land surface and atmospheric volumes partitioned over the watershed. The HO will require "core measurements" which will serve the communities of hydrologic science for long range research questions. The core measurements will also provide context for shorter-term or hypothesis-driven research investigations. The HO will support "mobile measurement facilities" designed to support teams

  7. Chile's seismogenic coupling zones - geophysical and neotectonic observations from the South American subduction zone prior to the Maule 2010 earthquake

    NASA Astrophysics Data System (ADS)

    Oncken With Tipteq, Onno; Ipoc Research Groups

    2010-05-01

    Accumulation of deformation at convergent plate margins is recently identified to be highly discontinuous and transient in nature: silent slip events, non-volcanic tremors, afterslip, fault coupling and complex response patterns of the upper plate during a single event as well as across several seismic cycles have all been observed in various settings and combinations. Segments of convergent plate margins with high recurrence rates and at different stages of the rupture cycle like the Chilean margin offer an exceptional opportunity to study these features and their interaction resolving behaviour during the seismic cycle and over repeated cycles. A past (TIPTEQ) and an active international initiative (IPOC; Integrated Plate Boundary Observatory Chile) address these goals with research groups from IPG Paris, Seismological Survey of Chile, Free University Berlin, Potsdam University, Hamburg University, IFM-GEOMAR Kiel, and GFZ Potsdam employing an integrated plate boundary observatory and associated projects. We focus on the south Central Chilean convergent margin and the North Chilean margin as natural laboratories embracing the recent Maule 2010 megathrust event. Here, major recent seismic events have occurred (south Central Chile: 1960, Mw = 9.5; 2010, Mw = 8.8; North Chile: 1995, Mw = 8; 2001, Mw = 8.7; 2007, Mw: 7.8) or are expected in the very near future (Iquique, last ruptured 1877, Mw = 8.8) allowing observation at critical time windows of the seismic cycle. Seismic imaging and seismological data have allowed us to relocate major rupture hypocentres and to locate the geometry of the locked zone and the degree of locking in both areas. The reflection seismic data exhibit well defined changes of reflectivity and Vp/Vs ratio along the plate interface that can be correlated with different parts of the coupling zone as well as with changes during the seismic cycle. Observations suggest an important role of the hydraulic system, an inference that is strongly

  8. Central Chile

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The beginning of spring in central Chile looked like this to SeaWiFS. The snow-covered Andes mark the country's eastern border, and phytoplankton blooms and river sediment plumes fill the waters off its west coast. A large eddy due west of Concepcion is highlighted by the phytoplankton it contains.

  9. INTERMAGNET and magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, Arnaud

    2012-01-01

    A magnetic observatory is a specially designed ground-based facility that supports time-series measurement of the Earth’s magnetic field. Observatory data record a superposition of time-dependent signals related to a fantastic diversity of physical processes in the Earth’s core, mantle, lithosphere, ocean, ionosphere, magnetosphere, and, even, the Sun and solar wind.

  10. On the possibility of producing definitive magnetic observatory data within less than one year

    NASA Astrophysics Data System (ADS)

    Mandić, Igor; Korte, Monika

    2017-04-01

    Geomagnetic observatory data are fundamental in geomagnetic field studies and are widely used in other applications. Often they are combined with satellite and ground survey data. Unfortunately, the observatory definitive data are only available with a time lag ranging from several months up to more than a year. The reason for this lag is the annual production of the final calibration values, i.e. baselines that are used to correct preliminary data from continuously recording magnetometers. In this paper, we will show that the preparation of definitive geomagnetic data is possible within a calendar year and presents an original method for prompt and automatic estimation of the observatory baselines. The new baselines, obtained in a mostly automatic manner, are compared with the baselines reported on INTERMAGNET DVDs for the 2009-2011 period. The high quality of the baselines obtained by the proposed method indicates its suitability for data processing in fully automatic observatories when automated absolute instruments will be deployed at remote sites.

  11. Astronomical Archive at Tartu Observatory

    NASA Astrophysics Data System (ADS)

    Annuk, K.

    2007-10-01

    Archiving astronomical data is important task not only at large observatories but also at small observatories. Here we describe the astronomical archive at Tartu Observatory. The archive consists of old photographic plate images, photographic spectrograms, CCD direct--images and CCD spectroscopic data. The photographic plate digitizing project was started in 2005. An on-line database (based on MySQL) was created. The database includes CCD data as well photographic data. A PHP-MySQL interface was written for access to all data.

  12. WFIRST Observatory Performance

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The WFIRST observatory will be a powerful and flexible wide-field near-infrared facility. The planned surveys will provide data applicable to an enormous variety of astrophysical science. This presentation will provide a description of the observatory and its performance characteristics. This will include a discussion of the point spread function, signal-to-noise budgets for representative observing scenarios and the corresponding limiting sensitivity. Emphasis will be given to providing prospective Guest Observers with information needed to begin thinking about new observing programs.

  13. Archive interoperability in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Genova, Françoise

    2003-02-01

    Main goals of Virtual Observatory projects are to build interoperability between astronomical on-line services, observatory archives, databases and results published in journals, and to develop tools permitting the best scientific usage from the very large data sets stored in observatory archives and produced by large surveys. The different Virtual Observatory projects collaborate to define common exchange standards, which are the key for a truly International Virtual Observatory: for instance their first common milestone has been a standard allowing exchange of tabular data, called VOTable. The Interoperability Work Area of the European Astrophysical Virtual Observatory project aims at networking European archives, by building a prototype using the CDS VizieR and Aladin tools, and at defining basic rules to help archive providers in interoperability implementation. The prototype is accessible for scientific usage, to get user feedback (and science results!) at an early stage of the project. ISO archive participates very actively to this endeavour, and more generally to information networking. The on-going inclusion of the ISO log in SIMBAD will allow higher level links for users.

  14. Spatio-temporal modelling for assessing air pollution in Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Nicolis, Orietta; Camaño, Christian; Mařın, Julio C.; Sahu, Sujit K.

    2017-01-01

    In this work, we propose a space-time approach for studying the PM2.5 concentration in the city of Santiago de Chile. In particular, we apply the autoregressive hierarchical model proposed by [1] using the PM2.5 observations collected by a monitoring network as a response variable and numerical weather forecasts from the Weather Research and Forecasting (WRF) model as covariate together with spatial and temporal (periodic) components. The approach is able to provide short-term spatio-temporal predictions of PM2.5 concentrations on a fine spatial grid (at 1km × 1km horizontal resolution.)

  15. Acoustic communications for cabled seafloor observatories

    NASA Astrophysics Data System (ADS)

    Freitag, L.; Stojanovic, M.

    2003-04-01

    Cabled seafloor observatories will provide scientists with a continuous presence in both deep and shallow water. In the deep ocean, connecting sensors to seafloor nodes for power and data transfer will require cables and a highly-capable ROV, both of which are potentially expensive. For many applications where very high bandwidth is not required, and where a sensor is already designed to operate on battery power, the use of acoustic links should be considered. Acoustic links are particularly useful for large numbers of low-bandwidth sensors scattered over tens of square kilometers. Sensors used to monitor the chemistry and biology of vent fields are one example. Another important use for acoustic communication is monitoring of AUVs performing pre-programmed or adaptive sampling missions. A high data rate acoustic link with an AUV allows the observer on shore to direct the vehicle in real-time, providing for dynamic event response. Thus both fixed and mobile sensors motivate the development of observatory infrastructure that provides power-efficient, high bandwidth acoustic communication. A proposed system design that can provide the wireless infrastructure, and further examples of its use in networks such as NEPTUNE, are presented.

  16. Coupled geohazards at Southern Andes (Copahue-Lanín volcanoes): Chile's GEO supersite proposal

    NASA Astrophysics Data System (ADS)

    Lara, Luis E.; Cordova, Loreto

    2017-04-01

    volcanism (the so-called Red Nacional de Vigilancia Volcánica at Sernageomin) and tectonics (Centro Sismólogico Nacional at Universidad de Chile) allow a good complement with space-borne data (e.g., we observed deformation by GPS and InSAR at Villarrica volcano related to the March 3, 2015 eruption) in order to promote basic and applied research for a successful national strategy of disaster risk reduction. In addition, at least 3 active national research grants focus in this area and a number of young scientists are working there. Thus, we propose the Copahue-Lanín (37.5-39.5°S) segment of the Southern Volcanic Zone as a Geohazards Supersite and look forward for an enhanced engagement of the scientific community in this area.

  17. OECD Reviews of School Resources: Chile 2017

    ERIC Educational Resources Information Center

    Santiago, Paulo; Fiszbein, Ariel; Jaramillo, Sandra García; Radinger, Thomas

    2017-01-01

    This country review report for Chile provides, from an international perspective, an independent analysis of major issues facing the use of school resources in Chile, current policy initiatives, and possible future approaches. The report serves three purposes: i) to provide insights and advice to Chilean education authorities; ii) to help other…

  18. Sofia Observatory Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Temi, Pasquale; Miller, Walter; Dunham, Edward; McLean, Ian; Wolf, Jurgen; Becklin, Eric; Bida, Tom; Brewster, Rick; Casey, Sean; Collins, Peter; hide

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration (SCAI) flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument configuration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. SCAI activities included in-flight partial Science Instrument commissioning prior to the use of the instruments as measuring engines. This paper reports on the data collected during the SCAI flights and presents current SOFIA Observatory performance and characterization.

  19. A Partnership for a Community College in Chile

    ERIC Educational Resources Information Center

    McCrink, Carmen L.; Whitford, Heidi

    2017-01-01

    This chapter describes the results of case study research on a partnership between a community college in the United States and a university in Chile that attempted to develop the first community college system in Chile.

  20. In Brief: Deep-sea observatory

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  1. An astronomical observatory for Peru

    NASA Astrophysics Data System (ADS)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  2. Documents from Chile Public Participation Training – Chile – January 2013

    EPA Pesticide Factsheets

    EPA delivered a two-day workshop in Chile, on public participation. The course intended to enable students to increase the level of public impact through the levels of public participation, found on EPA’s Public Participation Guide.

  3. New Opportunities for Cabled Ocean Observatories

    NASA Astrophysics Data System (ADS)

    Duennebier, F. K.; Butler, R.; Karl, D. M.; Roger, L. B.

    2002-12-01

    With the decommissioning of transoceanic telecommunications cables as they become obsolete or uneconomical, there is an opportunity to use these systems for ocean observatories. Two coaxial cables, TPC-1 and HAW-2 are currently in use for observatories, and another, ANZCAN, is scheduled to be used beginning in 2004 to provide a cabled observatory at Station ALOHA, north of Oahu. The ALOHA observatory will provide several Mb/s data rates and about 1 kW of power to experiments installed at Station ALOHA. Sensors can be installed either by wet mateable connection to a junction box on the ocean floor using an ROV, or by acoustic data link to the system. In either case real-time data will be provided to users over the Internet. A Small Experiment Module, to be first installed at the Hawaii-2 Observatory, and later at Station ALOHA, will provide relatively cheap and uncomplicated access to the observatories for relatively simple sensors. Within the next few years, the first electro-optical cables installed in the 1980's will be decommissioned and could be available for scientific use. These cables could provide long "extension cords" (thousands of km) with very high bandwidth and reasonable power to several observatories in remote locations in the ocean. While they could be used in-place, a more exciting scenario is to use cable ships to pick up sections of cable and move them to locations of higher scientific interest. While such moves would not be cheap, the costs would rival the cost of installation and maintenance of a buoyed observatory, with far more bandwidth and power available for science use.

  4. Daily variation characteristics at polar geomagnetic observatories

    NASA Astrophysics Data System (ADS)

    Lepidi, S.; Cafarella, L.; Pietrolungo, M.; Di Mauro, D.

    2011-08-01

    This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French-Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D'Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.

  5. Observatories of Sawai Jai Singh II

    NASA Astrophysics Data System (ADS)

    Johnson-Roehr, Susan N.

    Sawai Jai Singh II, Maharaja of Amber and Jaipur, constructed five observatories in the second quarter of the eighteenth century in the north Indian cities of Shahjahanabad (Delhi), Jaipur, Ujjain, Mathura, and Varanasi. Believing the accuracy of his naked-eye observations would improve with larger, more stable instruments, Jai Singh reengineered common brass instruments using stone construction methods. His applied ingenuity led to the invention of several outsize masonry instruments, the majority of which were used to determine the coordinates of celestial objects with reference to the local horizon. During Jai Singh's lifetime, the observatories were used to make observations in order to update existing ephemerides such as the Zīj-i Ulugh Begī. Jai Singh established communications with European astronomers through a number of Jesuits living and working in India. In addition to dispatching ambassadorial parties to Portugal, he invited French and Bavarian Jesuits to visit and make use of the observatories in Shahjahanabad and Jaipur. The observatories were abandoned after Jai Singh's death in 1743 CE. The Mathura observatory was disassembled completely before 1857. The instruments at the remaining observatories were restored extensively during the nineteenth and twentieth centuries.

  6. [Health inequality gap in inmigrant versus local children in Chile].

    PubMed

    Cabieses, Baltica; Chepo, Macarena; Oyarte, Marcela; Markkula, Niina; Bustos, Patricia; Pedrero, Víctor; Delgado, Iris

    2017-12-01

    Children and young international migrants face different health challenges compa red with the local population, particularly if they live in insecure environments or adverse social conditions. This study seeks to identify gaps in health outcomes of children between immigrant and local population in Chile. This study analyses data from three sources: (i) Born in Chile: Electronic records of antenatal visits from all municipal antenatal clinics of Recoleta in 2012; (ii) Growing up in Chile: Population survey "National Socioeconomic Characterization" (CASEN) from 2013 and (iii) Getting sick in Chile: Data of all hospital discharges in 2012, provided by the department of statistics and health information (DEIS) of the Ministry of Health. (I) Born in Chile: Im migrants more frequently have psychosocial risk (62.3% vs 50.1% in Chileans) and enter later into the program (63.1% vs 33.4% enter later than 14 weeks of pregnancy). All birth outcomes were better among immigrants (e.g. caesarean sections rates: 24.2% immigrants vs % Chileans). (ii) Growing up in Chile: A higher proportion of migrant children is outside the school system and lives in multidi mensional poverty (40% immigrants vs 23.2% Chileans). (iii) Getting sick in Chile: Injuries and other external causes were more frequent cause of hospitalisation among migrants (23.6%) than the local population (16.7%) aged between 7 and 14 years. Addressing the needs of the children in Chile, regardless of their immigration status, is an ethical, legal and moral imperative.

  7. The Pierre Auger Cosmic Ray Observatory

    DOE PAGES

    Aab, Alexander

    2015-07-08

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km 2 overlooked by 24 air fluorescence telescopes. Additionally, three high elevation fluorescence telescopes overlook a 23.5 km 2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operationmore » since completion in 2008 and has recorded data from an exposure exceeding 40,000 km 2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.« less

  8. Jürgen Stock: From One End of the Andes to the Other

    NASA Astrophysics Data System (ADS)

    Vivas, A. K.; Stock, M. J.

    2015-05-01

    Jürgen Stock (1923-2004) will always be remembered for his work on astronomical site testing. He led the efforts to find the best place for CTIO, and his work had a large influence in the setting of other observatories in Chile. He was the first director of CTIO (1963-1966). After his time in Chile, he moved to the other end of the Andes and was in charge of the site selection and the construction of the only professional observatory in Venezuela, the Llano del Hato National Observatory.

  9. Byurakan Astrophysical Observatory as Cultural Centre

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.

    2017-07-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts. Keywords: Byurakan Astrophysical Observatory, architecture, botanic garden, tourism, Cultural Astronomy.

  10. Documents from Chile Public Participation Training – Chile – March 2011

    EPA Pesticide Factsheets

    EPA delivered a two-day workshop in Santiago, Chile, on public participation. The course intended to enable students to increase the level of public impact through the levels of public participation, found on EPA’s Public Participation Guide.

  11. A solar radiation database for Chile.

    PubMed

    Molina, Alejandra; Falvey, Mark; Rondanelli, Roberto

    2017-11-01

    Chile hosts some of the sunniest places on earth, which has led to a growing solar energy industry in recent years. However, the lack of high resolution measurements of solar irradiance becomes a critical obstacle for both financing and design of solar installations. Besides the Atacama Desert, Chile displays a large array of "solar climates" due to large latitude and altitude variations, and so provides a useful testbed for the development of solar irradiance maps. Here a new public database for surface solar irradiance over Chile is presented. This database includes hourly irradiance from 2004 to 2016 at 90 m horizontal resolution over continental Chile. Our results are based on global reanalysis data to force a radiative transfer model for clear sky solar irradiance and an empirical model based on geostationary satellite data for cloudy conditions. The results have been validated using 140 surface solar irradiance stations throughout the country. Model mean percentage error in hourly time series of global horizontal irradiance is only 0.73%, considering both clear and cloudy days. The simplicity and accuracy of the model over a wide range of solar conditions provides confidence that the model can be easily generalized to other regions of the world.

  12. The Cherenkov Telescope Array Observatory: top level use cases

    NASA Astrophysics Data System (ADS)

    Bulgarelli, A.; Kosack, K.; Hinton, J.; Tosti, G.; Schwanke, U.; Schwarz, J.; Colomé, P.; Conforti, V.; Khelifi, B.; Goullon, J.; Ong, R.; Markoff, S.; Contreras, J. L.; Lucarelli, F.; Antonelli, L. A.; Bigongiari, C.; Boisson, C.; Bosnjak, Z.; Brau-Nogué, S.; Carosi, A.; Chen, A.; Cotter, G.; Covino, S.; Daniel, M.; De Cesare, G.; de Ona Wilhelmi, E.; Della Volpe, M.; Di Pierro, F.; Fioretti, V.; Füßling, M.; Garczarczyk, M.; Gaug, M.; Glicenstein, J. F.; Goldoni, P.; Götz, D.; Grandi, P.; Heller, M.; Hermann, G.; Inoue, S.; Knödlseder, J.; Lenain, J.-P.; Lindfors, E.; Lombardi, S.; Luque-Escamilla, P.; Maier, G.; Marisaldi, M.; Mundell, C.; Neyroud, N.; Noda, K.; O'Brien, P.; Petrucci, P. O.; Martí Ribas, J.; Ribó, M.; Rodriguez, J.; Romano, P.; Schmid, J.; Serre, N.; Sol, H.; Schussler, F.; Stamerra, A.; Stolarczyk, T.; Vandenbrouck, J.; Vercellone, S.; Vergani, S.; Zech, A.; Zoli, A.

    2016-08-01

    Today the scientific community is facing an increasing complexity of the scientific projects, from both a technological and a management point of view. The reason for this is in the advance of science itself, where new experiments with unprecedented levels of accuracy, precision and coverage (time and spatial) are realised. Astronomy is one of the fields of the physical sciences where a strong interaction between the scientists, the instrument and software developers is necessary to achieve the goals of any Big Science Project. The Cherenkov Telescope Array (CTA) will be the largest ground-based very high-energy gamma-ray observatory of the next decades. To achieve the full potential of the CTA Observatory, the system must be put into place to enable users to operate the telescopes productively. The software will cover all stages of the CTA system, from the preparation of the observing proposals to the final data reduction, and must also fit into the overall system. Scientists, engineers, operators and others will use the system to operate the Observatory, hence they should be involved in the design process from the beginning. We have organised a workgroup and a workflow for the definition of the CTA Top Level Use Cases in the context of the Requirement Management activities of the CTA Observatory. Scientists, instrument and software developers are collaborating and sharing information to provide a common and general understanding of the Observatory from a functional point of view. Scientists that will use the CTA Observatory will provide mainly Science Driven Use Cases, whereas software engineers will subsequently provide more detailed Use Cases, comments and feedbacks. The main purposes are to define observing modes and strategies, and to provide a framework for the flow down of the Use Cases and requirements to check missing requirements and the already developed Use-Case models at CTA sub-system level. Use Cases will also provide the basis for the definition of

  13. Relationship between Ripples and Gravity Waves Observed in OH Airglow over the Andes Lidar Observatory

    NASA Astrophysics Data System (ADS)

    Cao, B.; Gelinas, L. J.; Liu, A. Z.; Hecht, J. H.

    2016-12-01

    Instabilities generated by large amplitude gravity waves are ubiquitous in the mesopause region, and contribute to the strong forcing on the background atmosphere. Gravity waves and ripples generated by instability are commonly detected by high resolution airglow imagers that measure the hydroxyl emissions near the mesopause ( 87 km). Recently, a method based on 2D wavelet is developed by Gelinas et al. to characterize the statistics of ripple parameters from the Aerospace Infrared Camera at Andes Lidar Observatory located at Cerro Pachón, Chile (70.74°W, 30.25°S). In the meantime, data from a collocated all-sky imager is used to derive gravity wave parameters and their statistics. In this study, the relationship between the ripples and gravity waves that appeared at the same time and location are investigated in terms of their orientations, magnitudes and scales, to examine the statistical properties of the gravity wave induced instabilities and the ripples they generate.

  14. An international network of magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  15. Chile: Political and Economic Conditions and U.S. Relations

    DTIC Science & Technology

    2010-03-02

    until 1818. By 1932, Chile had established a mass electoral democracy, which endured until 1973. During much of this period, Chile was governed by...served as “senators-for-life” and nine senators were designated by the armed forces and other bodies. 14 Peter M. Siavelis, “ Electoral System...Course in Democracy,” Washington Post , November 25, 2006. 24 “Chile: Pinochet-era Education Law Finally Replaced,” Latin News Weekly Report, August 20

  16. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  17. Analysis and Modeling of the Wavefield Generated by Explosions at the San Andreas Fault Observatory at Depth

    DTIC Science & Technology

    2010-09-01

    method to ~ 4 Hz wave propagation using SAFOD borehole seismometers and the Parkfield Array Seismic Observatory (PASO) array (Thurber et al., 2004...limitations in mind, we apply our method to ~ 4 Hz wave propagation using SAFOD borehole seismometers and the Parkfield Array Seismic Observatory (PASO...Proposal No. BAA09-69 ABSTRACT Surface array and deep borehole recordings of chemical explosions in the near-source (0-20 km) region are studied to

  18. The Farid & Moussa Raphael Observatory

    NASA Astrophysics Data System (ADS)

    Hajjar, R.

    2017-06-01

    The Farid & Moussa Raphael Observatory (FMRO) at Notre Dame University Louaize (NDU) is a teaching, research, and outreach facility located at the main campus of the university. It located very close to the Lebanese coast, in an urbanized area. It features a 60-cm Planewave CDK telescope, and instruments that allow for photometric and spetroscopic studies. The observatory currently has one thinned, back-illuminated CCD camera, used as the main imager along with Johnson-Cousin and Sloan photometric filters. It also features two spectrographs, one of which is a fiber fed echelle spectrograph. These are used with a dedicated CCD. The observatory has served for student projects, and summer schools for advanced undergraduate and graduate students. It is also made available for use by the regional and international community. The control system is currently being configured for remote observations. A number of long-term research projects are also being launched at the observatory.

  19. The Virtual Watershed Observatory: Cyberinfrastructure for Model-Data Integration and Access

    NASA Astrophysics Data System (ADS)

    Duffy, C.; Leonard, L. N.; Giles, L.; Bhatt, G.; Yu, X.

    2011-12-01

    The Virtual Watershed Observatory (VWO) is a concept where scientists, water managers, educators and the general public can create a virtual observatory from integrated hydrologic model results, national databases and historical or real-time observations via web services. In this paper, we propose a prototype for automated and virtualized web services software using national data products for climate reanalysis, soils, geology, terrain and land cover. The VWO has the broad purpose of making accessible water resource simulations, real-time data assimilation, calibration and archival at the scale of HUC 12 watersheds (Hydrologic Unit Code) anywhere in the continental US. Our prototype for model-data integration focuses on creating tools for fast data storage from selected national databases, as well as the computational resources necessary for a dynamic, distributed watershed simulation. The paper will describe cyberinfrastructure tools and workflow that attempts to resolve the problem of model-data accessibility and scalability such that individuals, research teams, managers and educators can create a WVO in a desired context. Examples are given for the NSF-funded Shale Hills Critical Zone Observatory and the European Critical Zone Observatories within the SoilTrEC project. In the future implementation of WVO services will benefit from the development of a cloud cyber infrastructure as the prototype evolves to data and model intensive computation for continental scale water resource predictions.

  20. The European Virtual Observatory EURO-VO | Euro-VO

    Science.gov Websites

    : VOTECH EuroVO-DCA EuroVO-AIDA EuroVO-ICE The European Virtual Observatory EURO-VO The Virtual Observatory news Workshop on Virtual Observatory Tools and their Applications, Krakow, Poland June 16-18, organized present the Astronomical Virtual Observatory at the Copernicus (European Earth Observation Programme) Big

  1. Studies to Control Endemic Typhoid Fever in Chile

    DTIC Science & Technology

    1985-09-01

    Society for Microbiology, Chapter 16. 10. Medina E, Yrarrazaval M. (1983) Fiebre tifoidea en Chile: Consideraciones epideniologicas. Revista Medica de...epidesiologia de la fiebre tifoidea . Boletin de !a Escuela de Medicina, Pontificia universidad catolica de Chile. 30:113-119. 14. Reyes H, Olea M, Hernandez

  2. The opto-cryo-mechanical design of the short wavelength camera for the CCAT Observatory

    NASA Astrophysics Data System (ADS)

    Parshley, Stephen C.; Adams, Joseph; Nikola, Thomas; Stacey, Gordon J.

    2014-07-01

    The CCAT observatory is a 25-m class Gregorian telescope designed for submillimeter observations that will be deployed at Cerro Chajnantor (~5600 m) in the high Atacama Desert region of Chile. The Short Wavelength Camera (SWCam) for CCAT is an integral part of the observatory, enabling the study of star formation at high and low redshifts. SWCam will be a facility instrument, available at first light and operating in the telluric windows at wavelengths of 350, 450, and 850 μm. In order to trace the large curvature of the CCAT focal plane, and to suit the available instrument space, SWCam is divided into seven sub-cameras, each configured to a particular telluric window. A fully refractive optical design in each sub-camera will produce diffraction-limited images. The material of choice for the optical elements is silicon, due to its excellent transmission in the submillimeter and its high index of refraction, enabling thin lenses of a given power. The cryostat's vacuum windows double as the sub-cameras' field lenses and are ~30 cm in diameter. The other lenses are mounted at 4 K. The sub-cameras will share a single cryostat providing thermal intercepts at 80, 15, 4, 1 and 0.1 K, with cooling provided by pulse tube cryocoolers and a dilution refrigerator. The use of the intermediate temperature stage at 15 K minimizes the load at 4 K and reduces operating costs. We discuss our design requirements, specifications, key elements and expected performance of the optical, thermal and mechanical design for the short wavelength camera for CCAT.

  3. Mechanical Overview of the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; McClelland, Ryan S.

    2009-01-01

    The International X-ray Observatory (IXO) is a new collaboration between NASA, ESA, and JAXA which is under study for launch in 2020. IXO will be a large 6600 kilogram Great Observatory-class mission which will build upon the legacies of the Chandra and XMM-Newton X-ray observatories. It combines elements from NASA's Constellation-X program and ESA's XEUS program. The observatory will have a 20-25 meter focal length, which necessitates the use of a deployable instrument module. Currently the project is actively trading configurations and layouts of the various instruments and spacecraft components. This paper will provide a snapshot of the latest observatory configuration under consideration and summarize the observatory from the mechanical engineering perspective.

  4. A new mix of power for the ESO installations in Chile: greener, more reliable, cheaper

    NASA Astrophysics Data System (ADS)

    Filippi, G.; Tamai, R.; Kalaitzoglou, D.; Wild, W.; Delorme, A.; Rioseco, D.

    2016-07-01

    The highest sky quality demands for astronomical research impose to locate observatories often in areas not easily reached by the existing power infrastructures. At the same time, availability and cost of power is a primary factor for sustainable operations. Power may also be a potential source for CO2 pollution. As part of its green initiatives, ESO is in the process of replacing the power sources for its own, La Silla and Paranal-Armazones, and shared, ALMA, installations in Chile in order to provide them with more reliable, affordable, and smaller CO2 footprint power solutions. The connectivity to the Chilean interconnected power systems (grid) which is to extensively use Non-Conventional Renewable Energy (NCRE) as well as the use of less polluting fuels wherever self-generation cannot be avoided are key building blocks for the solutions selected for every site. In addition, considerations such as the environmental impact and - if required - the partnership with other entities have also to be taken into account. After years of preparatory work to which the Chilean Authorities provided great help and support, ESO has now launched an articulated program to upgrade the existing agreements/facilities in i) the La Silla Observatory, from free to regulated grid client status due to an agreement with a Solar Farm private initiative, in ii) the Paranal-Armazones Observatory, from local generation using liquefied petroleum gas (LPG) to connection to the grid which is to extensively use NCRE, and last but not least, in iii) the ALMA Observatory where ESO participates together with North American and East Asian partners, from replacing the LPG as fuel for the turbine local generation system with the use of less polluting natural gas (NG) supplied by a pipe connection to eliminate the pollution caused by the LPG trucks (currently 1 LPG truck from the VIII region, Bio Bio, to the II region, ALMA and back every day, for a total of 3000km). The technologies used and the status

  5. 75 FR 3756 - Preserved Mushrooms from Chile, China, India, and Indonesia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-22

    ...)] Preserved Mushrooms from Chile, China, India, and Indonesia AGENCY: United States International Trade... preserved mushrooms from Chile, China, India, and Indonesia. SUMMARY: The Commission hereby gives notice of... mushrooms from Chile, China, India, and Indonesia would be likely to lead to continuation or recurrence of...

  6. 110th Anniversary of the Engelhardt Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.

    2012-09-01

    The Engelhardt Astronomical Observatory (EAO) was founded in September 21, 1901. The history of creation of the Engelhard Astronomical Observatory was begun in 1897 with transfer a complimentary to the Kazan University of the unique astronomical equipment of the private observatory in Dresden by known astronomer Vasily Pavlovichem Engelgardt. Having stopped astronomical activity owing to advanced years and illnesses Engelgardt has decided to offer all tools and library of the Astronomical observatory of the Kazan University. Vasily Pavlovich has put the first condition of the donation that his tools have been established as soon as possible and on them supervision are started. In 1898 the decree of Emperor had been allocated means and the ground for construction of the Astronomical observatory is allocated. There is the main historical telescope of the Engelhard Astronomical Observatory the 12-inch refractor which was constructed by English master Grubbom in 1875. The unique tool of the Engelhard Astronomical Observatory is unique in the world now a working telescope heliometer. It's one of the first heliometers, left workshops Repsolda. It has been made in 1874 and established in Engelgardt observatory in 1908 in especially for him the constructed round pavilion in diameter of 3.6 m. Today the Engelhard Astronomical Observatory is the only thing scientifically - educational and cultural - the cognitive astronomical center, located on territory from Moscow up to the most east border of Russia. Currently, the observatory is preparing to enter the protected UNESCO World Heritage List.

  7. Kitt Peak National Observatory | ast.noao.edu

    Science.gov Websites

    National Observatory (KPNO), part of the National Optical Astronomy Observatory (NOAO), supports the most diverse collection of astronomical observatories on Earth for nighttime optical and infrared astronomy and NOAO is the national center for ground-based nighttime astronomy in the United States and is operated

  8. Worldwide R&D of Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cui, C. Z.; Zhao, Y. H.

    2008-07-01

    Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in the late 1990s to meet the challenges brought up with data avalanche in astronomy. In the paper, current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects are reviewed, a brief introduction of Chinese Virtual Observatory is given.

  9. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-07-01

    A crew member of the STS-93 mission took this photograph of the Chandra X-Ray Observatory, still attached to the Inertial Upper Stage (IUS), backdropped against the darkness of space not long after its release from Orbiter Columbia. Two firings of an attached IUS rocket placed the Observatory into its working orbit. The primary duty of the crew of this mission was to deploy the 50,162-pound Observatory, the world's most powerful x-ray telescope.

  10. Perchlorate contamination in Chile: Legacy, challenges, and potential solutions.

    PubMed

    Vega, Marcela; Nerenberg, Robert; Vargas, Ignacio T

    2018-07-01

    This paper reviews the unique situation of perchlorate contamination in Chile, including its sources, presence in environmental media and in the human population, and possible steps to mitigate its health impacts. Perchlorate is a ubiquitous water contaminant that inhibits thyroid function. Standards for drinking water range from 2 to 18 µg L -1 in United States and Europe. A major natural source of perchlorate contamination is Chile saltpeter, found in the Atacama Desert. High concentrations of perchlorate have presumably existed in this region, in soils, sediments, surface waters and groundwaters, for millions of years. As a result of this presence, and the use of Chile saltpeter as a nitrogen fertilizer, perchlorate in Chile has been found at concentrations as high as 1480 µg L -1 in drinking water, 140 µg/kg -1 in fruits, and 30 µg L -1 in wine. Health studies in Chile have shown concentrations of 100 µg L - 1 in breast milk and 20 µg L -1 in neonatal serum. It is important to acknowledge perchlorate as a potential health concern in Chile, and assess mitigation strategies. A more thorough survey of perchlorate in Chilean soils, sediments, surface waters, groundwaters, and food products can help better assess the risks and potentially develop standards. Also, perchlorate treatment technologies should be more closely assessed for relevance to Chile. The Atacama Desert is a unique biogeochemical environment, with millions of years of perchlorate exposure, which can be mined for novel perchlorate-reducing microorganisms, potentially leading to new biological treatment processes for perchlorate-containing waters, brines, and fertilizers. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Estudio del campo ocupacional del traductor en Santiago de Chile (A Study of Opportunities for Professional Translators in Santiago, Chile).

    ERIC Educational Resources Information Center

    Cabrera, Ileana; And Others

    A study of translation as a profession in Chile covered two areas: a diagnostic study of the real need for literary, scientific, and technical translations, and a followup study of graduates of the translation degree program at the Catholic Pontifical University of Chile (Santiago). The analysis considered the relationship between the need for…

  12. Multiple Stars in the Field

    DTIC Science & Technology

    2008-01-01

    Southern Observatory Karl - Schwarzschild -Str. 2 85748 Garching Germany :--. ,") 1 ’< ’ I () ___ I Andrei Tokovinin Inter-American Observatory...Chile Monika Petr-Gotzens European Southern Observatory Karl -Schwarschild-Str. 2 85748 Garching Germany Series Editor Bruno Leibundgut European

  13. The Death of Socialism in Chile

    DTIC Science & Technology

    1992-06-05

    Frank S. Smallwood, M.A. •. Member Accepted this 5th day of June 1992 by: 9 4-A1 %/ Director, Graduate Philip J . Brookes, Ph.D. Degree Programs The...P. 2. 2 Jorge Palacios, CHILE: An Attempt at "Historic Compromise". (Chicago: Banner Press, 1979), p. 79. 3 David J . Bowen, The Land and People of...Washington, D. C. American University Press, 1982), p. 35. 6 Robert J . Alexander, The Tragedy of Chile. (London: Greenwood Press, 1978), p. 314. CHAPTER

  14. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  15. The Revolutionary Left and Terrorist Violence in Chile.

    DTIC Science & Technology

    1986-06-01

    Fraude Electoral Designada por la Facultad de Derecho de la Pontifica Universidad de Chile," in Libro Blanco del Cambio de Gobierno de Chile, Editorial...Chilean law, could not be invaded by the police. The MIR never became a formal political party. It completely rejected the electoral process

  16. Growth of Astronomy Education in Chile: a late but successful story

    NASA Astrophysics Data System (ADS)

    Quintana, Hernán

    2017-06-01

    The first present international observatories were stablished in Chile by 1963, at a time when local astronomy was devoted to traditional Fundamental Astronomy research, as in most other Latin-american countries. For over 35 years little was achieved in the way of effectively developing a healthy university teaching in the field, in spite of initiatives started and helped in the mid-sixties by some astronomers at CTIO or ESO. Up to 1998, when a second try to start a university degree, this time at U. Católica, was unexpectedly successful, the number of Chileans astronomers had remained constant or slightly decreased. The number started to grow significantly when the new degree attracted the keen interest of students, reaching the potential widely recognized since a long time. Today some 13 universities have astronomy courses or degrees and the number of students and post-docs are in the hundreds.The series of events and university policies originally prevailing in the country, and the changes that allowed the new state of affairs, will be reviewed and described. This will include the barriers and difficulties encountered, and the ways devised to overcome these.

  17. Evaluating the effect of synchronized sea lice treatments in Chile.

    PubMed

    Arriagada, G; Stryhn, H; Sanchez, J; Vanderstichel, R; Campistó, J L; Rees, E E; Ibarra, R; St-Hilaire, S

    2017-01-01

    The sea louse is considered an important ectoparasite that affects farmed salmonids around the world. Sea lice control relies heavily on pharmacological treatments in several salmon-producing countries, including Chile. Among options for drug administration, immersion treatments represent the majority of antiparasitic control strategies used in Chile. As a topical procedure, immersion treatments do not induce a long lasting effect; therefore, re-infestation from neighbouring farms may undermine their efficacy. Synchronization of treatments has been proposed as a strategy to improve immersion treatment performance, but it has not been evaluated so far. Using a repeated-measures linear mixed-effect model, we evaluated the impact of treatment synchronization of neighbouring farms (within 10km seaway distance) on the adult lice mean abundance from weeks 2 to 8 post-treatment on rainbow trout and Atlantic salmon farms in Chile, while controlling for external and internal sources of lice before the treatments, and also for environmental and fish-related variables. Results indicate that treatment synchronization was significantly associated with lower adult lice levels from weeks 5 to 7 after treatment. This relationship appeared to be linear, suggesting that higher levels of synchronization may result in lower adult sea lice levels during these weeks. These findings suggest that synchronization can improve the performance of immersion delousing treatments by keeping sea lice levels low for a longer period of time. Our results may be applicable to other regions of the world where immersion treatments are widely used. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2003-12-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Our program is also accredited by Colorado State University.

  19. HELIO: The Heliophysics Integrated Observatory

    NASA Technical Reports Server (NTRS)

    Bentley, R. D.; Csillaghy, A.; Aboudarham, J.; Jacquey, C.; Hapgood, M. A.; Bocchialini, K.; Messerotti, M.; Brooke, J.; Gallagher, P.; Fox, P.; hide

    2011-01-01

    Heliophysics is a new research field that explores the Sun-Solar System Connection; it requires the joint exploitation of solar, heliospheric, magnetospheric and ionospheric observations. HELIO, the Heliophysics Integrated Observatory, will facilitate this study by creating an integrated e-Infrastructure that has no equivalent anywhere else. It will be a key component of a worldwide effort to integrate heliophysics data and will coordinate closely with international organizations to exploit synergies with complementary domains. HELIO was proposed under a Research Infrastructure call in the Capacities Programme of the European Commission's 7th Framework Programme (FP7). The project was selected for negotiation in January 2009; following a successful conclusion to these, the project started on 1 June 2009 and will last for 36 months.

  20. Creating Data that Never Die: Building a Spectrograph Data Pipeline in the Virtual Observatory Era

    NASA Astrophysics Data System (ADS)

    Mink, D. J.; Wyatt, W. F.; Roll, J. B.; Tokarz, S. P.; Conroy, M. A.; Caldwell, N.; Kurtz, M.; Geller, M. J.

    2005-12-01

    Data pipelines for modern complex astronomical instruments do not begin when the data is taken and end when it is delivered to the user. Information must flow between the observatory and the observer from the time a project is conceived and between the observatory and the world well past the time when the original observers have extracted all the information they want from the data. For the 300-fiber Hectospec low dispersion spectrograph on the MMT, the SAO Telescope Data Center is constructing a data pipeline which provides assistance from preparing and submitting observing proposals through observation, reduction, and analysis to publication and an afterlife in the Virtual Observatory. We will describe our semi-automatic pipeline and how it has evolved over the first nine months of operation.

  1. SOFIA - Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  2. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  3. [Consumption of antidepressants in Chile from 1992 to 2004].

    PubMed

    Jirón, Marcela; Machado, Márcio; Ruiz, Inés

    2008-09-01

    Data from the Ministry of Health show that in Chile in 2004, 17% of the population had some form of depression, and mood disorders are the tenth cause of disability-adjusted life years (DALY) loss. To determine consumption of antidepressants (ADs) in Chile from 1992 to 2004. National sales data were obtained from the company IMS Health Chile and converted into defined daily doses (DDDs) per 1,000 inhabitants per day. Available ADs were classified in four pharmacological groups (i.e., serotonin-norepinephrine reuptake inhibitors, SNRLs; selective-serotonin reuptake inhibitors, SSRLs; tricyclic antidepressants, TCAs; and others). Total economic burden of ADs utilization and cost per DDDs were also calculated. Trends over time were analyzed using Pearson-R2. Total ADs consumption in Chile measured by DDDs per 1,000 inhabitants per day (DHD) increased linearly (y =0.901x + 1.9129; R2 =0.9296; p <0.001) from 2.5 in 1992 to 11.7 in 2004 (total growth of 470.2%). SSRLs were the drug class with higher consumption, and fluoxetine the most commonly consumed antidepressant. SSRLs were the drugs that dominated the market representing 79% of the total drug consumption throughout the years. Total economic burden of ADs in Chile (total cost of DDDs consumed) increased from US$65.4 million in 2001 to US$74.6 million in 2004 (14% increase). Average cost per DDD of all AD increased linearly, however not significantly from US$ 0.94 in 2001 to US$ 1.04 in 2004 (y =0.0362x + 0.8784; R2 =0.7382; p =0,262). DDDs per 1,000 inhabitants per day increased linearly over 470% from 1992-2004. SSRLs were the most commonly consumed drugs in Chile. Future research should evaluate the cost-effectiveness of antidepressants in Chile, comparing the results with drug utilization, and determining if unnecessary expenditures have been paid out.

  4. Behavioral problems and tobacco use among adolescents in Chile.

    PubMed

    Caris, Luis; Varas, Marianela; Anthony, Christopher B; Anthony, James C

    2003-08-01

    To examine the association between behavioral problems and tobacco smoking among adolescent students in Chile. Data were drawn from a study that included questionnaire surveys of 46 907 school-attending adolescents in all 13 of the administrative regions of Chile. Assessments were based on an adapted, Spanish-language version of the Drug Use Screening Inventory. The conditional form of the logistic regression model was used for analysis, with matching of students on individual schools, and with further statistical adjustments for sex, age, and selected risk factors. The prevalence of tobacco smoking among the adolescents was very high across all of Chile, with a level between 56% and 65% in each of the 13 regions. The estimated odds of tobacco use in youths at the highest level of behavioral problems was about twice that for youths at the lowest levels, both before and after controlling for sex, age, lack of participation in recreational activities, level of irritability, and levels of problems with school, family attention, and mental health. These findings help to complement and complete the evidence of prior studies on tobacco smoking among adolescents with behavior problems, including recent research on Central American youths. Although the magnitude of observed associations in Chile was not as great as that for the associations found in Central America, both the strength of these associations and their statistical significance were observed throughout Chile. This is the first study in Chile on potentially causal relationships such as these.

  5. The Malaysian Robotic Solar Observatory (P29)

    NASA Astrophysics Data System (ADS)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  6. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-08-01

    This picture is of an Atlas/Centaur launch vehicle, carrying the High Energy Astronomy Observatory (HEAO)-1, on Launch Complex 36 at the Air Force Eastern Test Range prior to launch on August 12, 1977. The Kennedy Space Center managed the launch operations that included a pre-aunch checkout, launch, and flight, up through the observatory separation in orbit.

  7. Toward a Serial International Approach of the High Mountain Observatories, within important Dark Sky Value

    NASA Astrophysics Data System (ADS)

    Cotte, Michel

    2015-08-01

    Practical approach of Dark Sky places as possible WH sites leads some of us to underline the exceptional role of high mountain observatories as “Windows to the Universe” for the Human being. Till today, such places keep very important dark sky properties and consequently important astronomical functions.We have to take count that quality of the sky at a given place and dark sky conservation policy is something very important, but not enough by itself to justify inscription on the WH List. It must be related to important cultural or/and natural value. That means presence of significant heritage features in the field of astronomy and science for listing as WH cultural property, or with other natural attributes of exceptional significance to be listed as WH natural property. Case of both natural and cultural WH high value place is also possible as “mixt WH site”.The Dark Sky place must also meet to a sufficient integrity/authenticity degree for the today tangible heritage of astronomy and to a very significant contribution to the international history of science and astronomy as intangible attribute of the place. That point must be demonstrated by a serious comparative analysis with similar places in the world and in the region. In case of serial nomination as examined there, each individual site must contribute significantly to the Outstanding Universal Value of the global series.First, we intend to give a short account of the today trend for a possible serial nomination of the most significant high mountain observatory keeping important heritage of their major periods for the sky observation (Western Europe, Chile, North America, etc.).Second, communication will present a case study with Pic du Midi in French Pyrenees, coming from the early origin of mountain scientific stations and observatories (end of 19th C) in Europe, with a long, continuous and important astronomical and scientific history till today with active programs of sky and atmosphere

  8. Observatory Bibliographies as Research Tools

    NASA Astrophysics Data System (ADS)

    Rots, Arnold H.; Winkelman, S. L.

    2013-01-01

    Traditionally, observatory bibliographies were maintained to provide insight in how successful a observatory is as measured by its prominence in the (refereed) literature. When we set up the bibliographic database for the Chandra X-ray Observatory (http://cxc.harvard.edu/cgi-gen/cda/bibliography) as part of the Chandra Data Archive ((http://cxc.harvard.edu/cda/), very early in the mission, our objective was to make it primarily a useful tool for our user community. To achieve this we are: (1) casting a very wide net in collecting Chandra-related publications; (2) including for each literature reference in the database a wealth of metadata that is useful for the users; and (3) providing specific links between the articles and the datasets in the archive that they use. As a result our users are able to browse the literature and the data archive simultaneously. As an added bonus, the rich metadata content and data links have also allowed us to assemble more meaningful statistics about the scientific efficacy of the observatory. In all this we collaborate closely with the Astrophysics Data System (ADS). Among the plans for future enhancement are the inclusion of press releases and the Chandra image gallery, linking with ADS semantic searching tools, full-text metadata mining, and linking with other observatories' bibliographies. This work is supported by NASA contract NAS8-03060 (CXC) and depends critically on the services provided by the ADS.

  9. The Fram Strait integrated ocean observatory

    NASA Astrophysics Data System (ADS)

    Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.

    2012-04-01

    A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision

  10. Science Enabled by Ocean Observatory Acoustics

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lee, C.; Gobat, J.; Freitag, L.; Miller, J. H.; Committee, I.

    2004-12-01

    Ocean observatories have the potential to examine the physical, chemical, biological, and geological parameters and processes of the ocean at time and space scales previously unexplored. Acoustics provides an efficient and cost-effective means by which these parameters and processes can be measured and information can be communicated. Integrated acoustics systems providing navigation and communications for mobile platforms and conducting acoustical measurements in support of science objectives are critical and essential elements of the ocean observatories presently in the planning and implementation stages. The ORION Workshop (Puerto Rico, 4-8 January 2004) developed science themes that can be addressed utilizing ocean observatory infrastructure. The use of acoustics to sense the 3-d/volumetric ocean environment on all temporal and spatial scales was discussed in many ORION working groups. Science themes that are related to acoustics and measurements using acoustics are reviewed and tabulated, as are the related and sometimes competing requirements for passive listening, acoustic navigation and acoustic communication around observatories. Sound in the sea, brought from observatories to universities and schools via the internet, will also be a major education and outreach mechanism.

  11. The First US Naval Observatory CCD Astrograph Catalog

    NASA Astrophysics Data System (ADS)

    Zacharias, N.; Urban, S. E.; Zacharias, M. I.; Hall, D. M.; Wycoff, G. L.; Rafferty, T. J.; Germain, M. E.; Holdenried, E. R.; Pohlman, J. W.; Gauss, F. S.; Monet, D. G.; Winter, L.

    2000-10-01

    The USNO CCD Astrograph (UCA) started an astrometric survey in 1998 February at Cerro Tololo, Chile. This first, preliminary catalog (UCAC1) includes data taken up to 1999 November with about 80% of the Southern Hemisphere covered. Observing continues, and full sky coverage is expected by mid-2003 after moving the instrument to a Northern Hemisphere site in early 2001. The survey is performed in a single bandpass (579-642 nm), a twofold overlap pattern of fields, and with a long and a short exposure on each field. Stars in the magnitude range 10-14 have positional precisions of <=20 mas. At the limiting magnitude of R~16 mag, the positional precision is 70 mas. The UCAC aims at a density (stars per square degree) larger than that of the Guide Star Catalog (GSC) with a positional accuracy similar to Tycho. The UCAC program is a major step toward a high-precision densification of the optical reference frame in the post-Hipparcos era, and the first stage, the UCAC1 contains over 27 million stars. Preliminary proper motions are included, which were derived from Tycho-2, Hipparcos, and ground-based transit circle and photographic surveys for the bright stars (V<=12.5 mag) and the USNO A2.0 for the fainter stars. The accuracy of the proper motions varies widely, from 1 to over 15 mas yr-1. The UCAC1 is available on CD-ROM from the US Naval Observatory.

  12. [Main characteristics of current biomedical research, in Chile].

    PubMed

    Valdés S, Gloria; Armas M, Rodolfo; Reyes B, Humberto

    2012-04-01

    Biomedical research is a fundamental tool for the development of a country, requiring human and financial resources. To define some current characteristics of biomedical research, in Chile. Data on entities funding bio-medical research, participant institutions, and the number of active investigators for the period 2007-2009 were obtained from institutional sources; publications indexed in PubMed for 2008-2009 were analysed. Most financial resources invested in biomedical research projects (approximately US$ 19 million per year) came from the "Comisión Nacional de Investigación Científica y Tecnológica" (CONICYT), a state institution with 3 independent Funds administering competitive grant applications open annually to institutional or independent investigators in Chile. Other sources and universities raised the total amount to US$ 26 million. Since 2007 to 2009, 408 investigators participated in projects funded by CONICYT. The main participant institutions were Universidad de Chile and Pontificia Universidad Católica de Chile, both adding up to 84% of all funded projects. Independently, in 2009,160 research projects -mainly multi centric clinical trials- received approximately US$ 24 million from foreign pharmaceutical companies. Publications listed in PubMed were classified as "clinical research" (n = 879, including public health) or "basic biomedical research" (n = 312). Biomedical research in Chile is mainly supported by state funds and university resources, but clinical trials also obtained an almost equivalent amount from foreign resources. Investigators are predominantly located in two universities. A small number of MD-PhD programs are aimed to train and incorporate new scientists. Only a few new Medical Schools participate in biomedical research. A National Registry of biomedical research projects, including the clinical trials, is required among other initiatives to stimulate research in biomedical sciences in Chile.

  13. Byurakan Astrophysical Observatory as Cultural Centre

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.

    2016-12-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts.

  14. Coastal Chile Perspective View

    NASA Image and Video Library

    2010-03-04

    This perspective view from NASA Shuttle Radar Topography Mission of coastal Chile indicates the epicenter red marker of the 8.8 earthquake on Feb. 27, 2010, just offshore of the Maule region in the Bahia de Chanco.

  15. La atencion preescolar en Chile: desafios para la redemocratizacion (Preschool Care in Chile: Challenges for Redemocratization. Discussion Paper No. 13).

    ERIC Educational Resources Information Center

    Filp, Johanna; Undurrage, Consuelo

    This paper examines the current status of programs for preschool children in Chile. Section 1 of the paper provides an overview of the situation of preschool children in Chile. The country's population includes more than 1.6 million children between the ages of 0 and 5 years 11 months, and in urban areas, 18.4 percent of children between the ages…

  16. Virtual Borders Between Chile and Its Neighbors: Argentina, Peru and Bolivia

    DTIC Science & Technology

    2007-03-30

    Estadísticas, “ Inmigrantes en Chile ”, Santiago Census, 2002 20 ...Studies and Research Center, 1998), 13 22 Military Studies and Research Center, Chile en la Region. CESIM. 2001; available from <http...Estatuto de Inversiones Extranjeras en Chile ”, ( Santiago: 1974), Capitulo I,19 35 The International Center for Adjustment of Disputes of Investment

  17. Nutrition and national development: the case of Chile.

    PubMed

    Solimano, G; Hakim, P

    1979-01-01

    This study is an historical analysis of food consumption and nutrition in Chile emphasizing the influence of political and economic factors on nutritional standards. It attempts to document and explain the persistence of malnutrition as a widespread social problem in Chile even as the country achieved a relatively advanced state of economic development and boasted an unusually progressive record of social legislation. The major findings of the study were: (a) Chile's pattern of development, social reform efforts notwithstanding, consistently discriminated against low-income groups, and (b) this discrimination perpetuated low standards of nutrition and low levels of food consumption among the country's poor and undermined the effectiveness of specific measures to alleviate malnutrition.

  18. Concentrating Solar Power Projects in Chile | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. Atacama-1 NREL Chile Concentrating solar power (CSP) projects in Chile are listed belowâ€"

  19. The Little Thompson Observatory's Astronomy Education Programs

    NASA Astrophysics Data System (ADS)

    Schweitzer, Andrea E.

    2007-12-01

    The Little Thompson Observatory is a community-built E/PO observatory and is a member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. Annually we have approximately 5,000 visitors, which is roughly equal to the population of the small town of Berthoud, CO. This past year, we have used the funding from our NASA ROSS E/PO grant to expand our teacher workshop programs, and included the baseball-sized meteorite that landed in Berthoud three years ago. Our teacher programs have involved scientists from the Southwest Research Institute and from Fiske Planetarium at CU-Boulder. We thank the NASA ROSS E/PO program for providing this funding! We also held a Colorado Project ASTRO-GEO workshop, and the observatory continues to make high-school astronomy courses available to students from the surrounding school districts. Statewide, this year we helped support the development and construction of three new educational observatories in Colorado, located in Estes Park, Keystone, and Gunnison. The LTO is grateful to have received the recently-retired 24-inch telescope from Mount Wilson Observatory as part of the TIE program. To provide a new home for this historic telescope, we have doubled the size of the observatory and are building a second dome (all with volunteer labor). During 2008 we plan to build a custom pier and refurbish the telescope.

  20. Construction/Application of the Internet Observatories in Japan

    NASA Astrophysics Data System (ADS)

    Satoh, T.; Tsubota, Y.; Matsumoto, N.; Takahashi, N.

    2000-05-01

    We have successfully built two Internet Observatories in Japan: one at Noda campus of the Science University of Tokyo and another at Hiyoshi campus of the Keio Senior High School. Both observatories are equipped with a computerized Meade LX-200 telescope (8" tube at the SUT site and 12" at the Keio site) with a CCD video camera inside the sliding-roof type observatory. Each observatory is controlled by two personal computer: one controls almost everything, including the roof, the telescope, and the camera, while another is dedicated to encode the real-time picture from the CCD video camera into the RealVideo format for live broadcasting. A user can operate the observatory through the web-based interface and can enjoy the real-time picture of the objects via the RealPlayer software. The administrator can run a sequence of batch commands with which no human interaction is needed from the beginning to the end of an observation. Although our observatories are primarily for educational purposes, this system can easily be converted to a signal-triggered one which may be very useful to observe transient phenomena, such as afterglows of gamma-ray bursts. The most remarkable feature of our observatories is that it is very inexpensive (it costs only a few tens of grands). We'll report details of the observatories in the poster, and at the same time, will demonstrate operating the observatories using an internet-connected PC from the meeting site. This work has been supported through the funding from the Telecommunicaitons Advancement Foundation for FY 1998 and 1999.

  1. Proposed Multiconjugate Adaptive Optics Experiment at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, B J; Gavel, D T; Flath, L M

    2001-08-15

    While the theory behind design of multiconjugate adaptive optics (MCAO) systems is growing, there is still a paucity of experience building and testing such instruments. We propose using the Lick adaptive optics (AO) system as a basis for demonstrating the feasibility/workability of MCAO systems, testing underlying assumptions, and experimenting with different approaches to solving MCAO system issues.

  2. 20-micron transparency and atmospheric water vapor at the Wyoming Infrared Observatory

    NASA Technical Reports Server (NTRS)

    Grasdalen, G. L.; Gehrz, R. D.; Hackwell, J. A.; Freedman, R.

    1985-01-01

    The atmospheric transparency at 19.5 and 23 microns from the Wyoming Infrared Observatory over the past six years has been examined. It is found that the transparency is largely controlled by the season. Four months: June, July, August, and September have very poor 20-micron transparency. During the rest of the year the transparency is usually quite good at 19.5 microns and moderately good at 23 microns. Using rawinsonde data and theoretical calculations for the expected infrared transparency, the measures of 20-micron transparency were calibrated in terms of atmospheric water-vapor content. The water vapor over the Wyoming Infrared Observatory is found to compare favorably with that above other proposed or developed sites: Mauna Kea, Mount Graham, and Wheeler Peak.

  3. The MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used

  4. The Astrophysical Multimessenger Observatory Network (AMON)

    NASA Technical Reports Server (NTRS)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; hide

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  5. A Green Robotic Observatory for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  6. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Gurman, J. B.; Hourclé, J. A.; Bogart, R. S.; Tian, K.; Hill, F.; Suàrez-Sola, I.; Zarro, D. M.; Davey, A. R.; Martens, P. C.; Yoshimura, K.; Reardon, K. M.

    2006-12-01

    The Virtual Solar Observatory (VSO) has survived its infancy and provides metadata search and data identification for measurements from 45 instrument data sets held at 12 online archives, as well as flare and coronal mass ejection (CME) event lists. Like any toddler, the VSO is good at getting into anything and everything, and is now extending its grasp to more data sets, new missions, and new access methods using its application programming interface (API). We discuss and demonstrate recent changes, including developments for STEREO and SDO, and an IDL-callable interface for the VSO API. We urge the heliophysics community to help civilize this obstreperous youngster by providing input on ways to make the VSO even more useful for system science research in its role as part of the growing cluster of Heliophysics Virtual Observatories.

  7. Proposed Great Salt Lake Basin Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Tarboton, D. G.

    2004-12-01

    The dynamic physiography and population growth within the Great Salt Lake Basin provide the opportunity to observe climate and human-induced land-surface changes affecting water availability, water quality, and water use, thereby making the Great Salt Lake Basin a microcosm of contemporary water resource issues and an excellent site to pursue interdisciplinary and integrated hydrologic science. Important societal concerns center on: How do climate variability and human-induced landscape changes affect hydrologic processes, water quality and availability, and aquatic ecosystems over a range of scales? What are the resource, social, and economic consequences of these changes? The steep topography and large climatic gradients of the Great Salt Lake Basin yield hydrologic systems that are dominated by non-linear interactions between snow deposition and snow melt in the mountains, stream flow and groundwater recharge in the mid-elevations, and evaporative losses from the desert floor at lower elevations. Because the Great Salt Lake Basin terminates in a closed basin lake, it is uniquely suited to closing the water, solute, and sediment balances in a way that is rarely possible in a watershed of a size sufficient for coupling to investigations of atmospheric processes. Proposed infrastructure will include representative densely instrumented focus areas that will be nested within a basin-wide network, thereby quantifying fluxes, residence times, pathways, and storage volumes over a range of scales and land uses. The significant and rapid ongoing urbanization presents the opportunity for observations that quantify the interactions among hydrologic processes, human induced changes and social and economic dynamics. One proposed focus area will be a unique, highly instrumented mountain-to-basin transect that will quantify hydrologic processes extending from the mountain ridge top to the Great Salt Lake. The transect will range in elevation from about 1200 m to 3200 m, with a

  8. Comparison of six green chile (capsicum annum) cultivars for efficiency of Etgar® machine harvest

    USDA-ARS?s Scientific Manuscript database

    As U.S. demand for fresh market green chile rises green chile acreage in the U.S. is declining due to limited availability and high cost of hand labor to harvest it. Many farmers are opting to grow crops other than green chile. Green chile is a New Mexican pod-type chile that is harvested when the...

  9. Terrestrial Planet Finder Coronagraph Observatory summary

    NASA Technical Reports Server (NTRS)

    Ford, Virginia; Levine-Westa, Marie; Kissila, Andy; Kwacka, Eug; Hoa, Tim; Dumonta, Phil; Lismana, Doug; Fehera, Peter; Cafferty, Terry

    2005-01-01

    Creating an optical space telescope observatory capable of detecting and characterizing light from extra-solar terrestrial planets poses technical challenges related to extreme wavefront stability. The Terrestrial Planet Finder Coronagraph design team has been developing an observatory based on trade studies, modeling and analysis that has guided us towards design choices to enable this challenging mission. This paper will describe the current flight baseline design of the observatory and the trade studies that have been performed. The modeling and analysis of this design will be described including predicted performance and the tasks yet to be done.

  10. Project on Chinese Virtual Solar Observatory

    NASA Astrophysics Data System (ADS)

    Lin, Gang-Hua

    2004-09-01

    With going deep into research of solar physics, development of observational instrument and accumulation of obervation data, it urges people to think such things: using data which is observed in different times, places, bands and history data to seek answers of a plenty science problems. In the meanwhile, researcher can easily search the data and analyze data. This is why the project of the virtual solar observatory gained active replies and operation from observatories, institutes and universities in the world. In this article, how we face to the development of the virtual solar observatory and our preliminary project on CVSO are discussed.

  11. Design of a Lunar Farside Observatory

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design of a mantendable lunar farside observatory and science base is presented. A farside observatory will allow high accuracy astronomical observations, as well as the opportunity to perform geological and low gravity studies on the Moon. The requirements of the observatory and its support facilities are determined, and a preliminary timeline for the project development is presented. The primary areas of investigation include observatory equipment, communications, habitation, and surface operations. Each area was investigated to determine the available options, and each option was evaluated to determine the advantages and disadvantages. The options selected for incorporation into the design of the farside base are presented. The observatory equipment deemed most suitable for placement on the lunar farside consist of large optical and radio arrays and seismic equipment. A communications system consisting of a temporary satellite about the L sub 2 libration point and followed by a satellite at the stable L sub 5 libration point was selected. A space station common module was found to be the most practical option for housing the astronauts at the base. Finally, a support system based upon robotic construction vehicles and the use of lunar materials was determined to be a necessary component of the base.

  12. Exploring the Unknown: Cabled Ocean Observatory Data and Discovery in University Education

    NASA Astrophysics Data System (ADS)

    Pelz, M.; Scherwath, M.; Riddell, D. J.; Hoeberechts, M.; Bourdeault-Fournier, A.; Schine, J.; Sammarco, P. M. P.

    2016-12-01

    Cabled ocean observatories, which supply continuous power and Internet connectivity to subsea instruments from the coast to the deep sea, enable us to extend our reach into unexplored regions of the ocean. Sensors become our eyes and ears in this mysterious world, allowing instructors and students to have a virtual presence in an environment that is otherwise inaccessible for human study. Networks of always-on sensors in habitats as diverse as submarine canyons, hypoxic marine basins, and active hydrothermal vent systems provide unprecedented opportunities for students to ask real scientific questions and to answer those questions with real data. Ocean Networks Canada (ONC), an initiative of the University of Victoria, operates coastal and deep ocean cabled observatories, including VENUS and NEPTUNE off the west coast of British Columbia, Canada. ONC supports instructors in the creation of lab and course materials using observatory data. Data from the observatories are freely accessible through a web-based interface, which allows students to continue their investigations beyond the in-class activities. Here, we present three examples of the application of data from Ocean Networks Canada's cabled observatories in post-secondary education: an undergraduate lab in marine ecology in which students investigate the factors affecting spatial variation in benthic animal diversity using ocean sensor data and video footage from cameras on the seafloor; an undergraduate field course in acoustic ethnography in which students incorporate recordings from ONC's hydrophone arrays; and a graduate student "research derby" in which students propose hypotheses that can be investigated using ONC data in whole or in part, with rewards for those successful in publishing the results of their study in a peer-reviewed journal within two years.

  13. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.; Sackett, C.

    2001-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools in Colorado to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. We are honored that a committee of teachers and administrators from the Thompson School district have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Also in the past year, our training materials have been shared with NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  14. [Undergraduate and postgraduate studies in the biological sciences in Chile (1985)].

    PubMed

    Niemeyer, H

    1986-01-01

    teaching undergraduate students in sciences. Teachers in graduate programs should be qualified active researchers. 4. The creation is proposed of a Consejo Nacional de Universidades (National Council of Universities), to be autonomous and composed primarily of outstanding scientists. One of the main functions of this Council would be to licence universities to grant undergraduate and graduate academic degrees in science. 5. The Sociedad de Biología de Chile must maintain an interest in the evaluation of undergraduate and graduate studies in life sciences.

  15. 75 FR 19658 - Preserved Mushrooms From Chile, China, India, and Indonesia; Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... Mushrooms From Chile, China, India, and Indonesia; Determinations On the basis of the record \\1\\ developed... antidumping duty orders on preserved mushrooms from Chile, China, India, and Indonesia would be likely to lead... Mushrooms from Chile, China, India, and Indonesia: Investigation Nos. 731-TA-776-779 (Second Review). By...

  16. The Cincinnati Observatory as a Research Instrument for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Abel, Nicholas; Regas, Dean; Flateau, Davin C.; Larrabee, Cliff

    2016-06-01

    The Cincinnati Observatory, founded in 1842, was the first public observatory in the Western Hemisphere. The history of Cincinnati is closely intertwined with the history of the Observatory, and with the history of science in the United States. Previous directors of the Observatory helped to create the National Weather Service, the Minor Planet Center, and the first astronomical journal in the U.S. The Cincinnati Observatory was internationally known in the late 19th century, with Jules Verne mentioning the Cincinnati Observatory in two of his books, and the Observatory now stands as a National Historic Landmark.No longer a research instrument, the Observatory is now a tool for promoting astronomy education to the general public. However, with the 11" and 16" refracting telescopes, the Observatory telescopes are very capable of collecting data to fuel undergraduate research projects. In this poster, we will discuss the history of the Observatory, types of student research projects capable with the Cincinnati Observatory, future plans, and preliminary results. The overall goal of this project is to produce a steady supply of undergraduate students collecting, analyzing, and interpreting data, and thereby introduce them to the techniques and methodology of an astronomer at an early stage of their academic career.

  17. The Little Thompson Observatory's Astronomy Education Programs

    NASA Astrophysics Data System (ADS)

    Schweitzer, Andrea E.

    2008-05-01

    The Little Thompson Observatory is a community-built E/PO observatory and is a member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. Annually we have approximately 5,000 visitors, which is roughly equal to the population of the small town of Berthoud, CO. In spring 2008, we offered a special training session to boost participation in the GLOBE at Night international observing program. During 2005-2007 we used the funding from our NASA ROSS E/PO grant to expand our teacher workshop programs, and included the baseball-sized meteorite that landed in Berthoud four years ago. Our teacher programs are ongoing, and include scientists from the Southwest Research Institute and from Fiske Planetarium at CU-Boulder. We thank the NASA ROSS E/PO program for providing this funding! Statewide, we are a founding member of Colorado Project ASTRO-GEO, and the observatory offers high-school astronomy courses to students from the surrounding school districts. We continue to support the development and construction of three new educational observatories in Colorado, located in Estes Park, Keystone and Gunnison. The LTO is grateful to have received the retired 24-inch telescope from Mount Wilson Observatory as part of the TIE program. To provide a new home for this historic telescope, we have doubled the size of the observatory and are building a second dome (almost all construction done with volunteer labor). During 2008 we will be building a custom pier and refurbishing the telescope.

  18. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  19. Large-scale trench-perpendicular mantle flow beneath northern Chile

    NASA Astrophysics Data System (ADS)

    Reiss, M. C.; Rumpker, G.; Woelbern, I.

    2017-12-01

    We investigate the anisotropic properties of the forearc region of the central Andean margin by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. The data stems from the Integrated Plate boundary Observatory Chile (IPOC) located in northern Chile, covering an approximately 120 km wide coastal strip between 17°-25° S with an average station spacing of 60 km. With partly over ten years of data, this data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements yield two distinct anisotropic layers. The teleseismic measurements show a change of fast polarizations directions from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, given the geometry of absolute plate motion and strike of the trench, mostly perpendicular to the trench. Shear-wave splitting from local earthquakes shows fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow source. Comparisons between fast polarization directions and the strike of the local fault systems yield a good agreement. We use forward modelling to test the influence of the upper layer on the teleseismic measurements. We show that the observed variations of teleseismic measurements along the trench are caused by the anisotropy in the upper layer. Accordingly, the mantle layer is best characterized by an anisotropic fast axes parallel to the absolute plate motion which is roughly trench-perpendicular. This anisotropy is likely caused by a combination of crystallographic preferred orientation of the mantle mineral olivine as fossilized anisotropy in the slab and entrained flow beneath the slab. We interpret the upper anisotropic layer to be confined to the crust of the overriding continental

  20. Managing hazardous pollutants in Chile: arsenic.

    PubMed

    Sancha, Ana María; O'Ryan, Raul

    2008-01-01

    Chile is one of the few countries that faces the environmental challenge posed by extensive arsenic pollution, which exists in the northern part of the country. Chile has worked through various options to appropriately address the environmental challenge of arsenic pollution of water and air. Because of cost and other reasons, copying standards used elsewhere in the world was not an option for Chile. Approximately 1.8 million people, representing about 12% of the total population of the country, live in arsenic-contaminated areas. In these regions, air, water, and soil are contaminated with arsenic from both natural and anthropogenic sources. For long periods, water consumed by the population contained arsenic levels that exceeded values recommended by the World Health Organization. Exposure to airborne arsenic also occurred near several large cities, as a consequence of both natural contamination and the intensive mining activity carried out in those areas. In rural areas, indigenous populations, who lack access to treated water, were also exposed to arsenic by consuming foods grown locally in arsenic-contaminated soils. Health effects in children and adults from arsenic exposure first appeared in the 1950s. Such effects included vascular, respiratory, and skin lesions from intake of high arsenic levels in drinking water. Methods to remove arsenic from water were evaluated, developed, and implemented that allowed significant reductions in exposure at a relatively low cost. Construction and operation of treatment plants to remove arsenic from water first began in the 1970s. Beginning in the 1990s, epidemiological studies showed that the rate of lung and bladder cancer in the arsenic-polluted area was considerably higher than mean cancer rates for the country. Cancer incidence was directly related to arsenic exposure. During the 1990s, international pressure and concern by Chile's Health Ministry prompted action to regulate arsenic emissions from copper smelters. A

  1. Fault rupture process and strong ground motion simulation of the 2014/04/01 Northern Chile (Pisagua) earthquake (Mw8.2)

    NASA Astrophysics Data System (ADS)

    Pulido Hernandez, N. E.; Suzuki, W.; Aoi, S.

    2014-12-01

    A megathrust earthquake occurred in Northern Chile in April 1, 2014, 23:46 (UTC) (Mw 8.2), in a region that had not experienced a major earthquake since the great 1877 (~M8.6) event. This area had been already identified as a mature seismic gap with a strong interseismic coupling inferred from geodetic measurements (Chlieh et al., JGR, 2011 and Metois et al., GJI, 2013). We used 48 components of strong motion records belonging to the IPOC network in Northern Chile to investigate the source process of the M8.2 Pisagua earthquake. Acceleration waveforms were integrated to get velocities and filtered between 0.02 and 0.125 Hz. We assumed a single fault plane segment with an area of 180 km by 135 km, a strike of 357, and a dip of 18 degrees (GCMT). We set the starting point of rupture at the USGS hypocenter (19.610S, 70.769W, depth 25km), and employed a multi-time-window linear waveform inversion method (Hartzell and Heaton, BSSA, 1983), to derive the rupture process of the Pisagua earthquake. Our results show a slip model characterized by one large slip area (asperity) localized 50 km south of the epicenter, a peak slip of 10 m and a total seismic moment of 2.36 x 1021Nm (Mw 8.2). Fault rupture slowly propagated to the south in front of the main asperity for the initial 25 seconds, and broke it by producing a strong acceleration stage. The fault plane rupture velocity was in average 2.9 km/s. Our calculations show an average stress drop of 4.5MPa for the entire fault rupture area and 12MPa for the asperity area. We simulated the near-source strong ground motion records in a broad frequency band (0.1 ~ 20 Hz), to investigate a possible multi-frequency fault rupture process as the one observed in recent mega-thrust earthquakes such as the 2011 Tohoku-oki (M9.0). Acknowledgments Strong motion data was kindly provided by Chile University as well as the IPOC (Integrated Plate boundary Observatory Chile).

  2. CHILE: An Evidence-Based Preschool Intervention for Obesity Prevention in Head Start

    ERIC Educational Resources Information Center

    Davis, Sally M.; Sanders, Sarah G.; FitzGerald, Courtney A.; Keane, Patricia C.; Canaca, Glenda F.; Volker-Rector, Renee

    2013-01-01

    Background: Obesity is a major concern among American Indians and Hispanics. The Child Health Initiative for Lifelong Eating and Exercise (CHILE) is an evidence-based intervention to prevent obesity in children enrolled in 16 Head Start (HS) Centers in rural communities. The design and implementation of CHILE are described. Methods: CHILE uses a…

  3. Solar Terrestrial Relations Observatory Spacecraft Artist Concept

    NASA Image and Video Library

    2011-06-01

    An artist conception of one of NASA Solar Terrestrial Relations Observatory STEREO spacecraft. The two observatories currently lie on either side of the sun, providing views of the entire sun simultaneously.

  4. The Large Observatory For X-ray Timing (LOFT): The ESA Mission and Proposed US Contributions

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Feroci, M.; den Herder, J.; Bozzo, E.; Chakrabarty, D.; Wilson, C.; Consortium, LOFT; US-LOFT Collaboration

    2013-04-01

    High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m2-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer fundamental questions about matter under extreme conditions. The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionize the study of collapsed objects in our Galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an innovative design and the development of large-area monolithic silicon drift detectors, the Large Area Detector (LAD) on board LOFT will achieve an effective area of over 10 m2 (more than an order of magnitude larger than any spaceborne predecessor) in the 2-30 keV range (up to 50 keV in expanded mode), yet still fits in a conventional platform and medium-class launcher. With this large area and a spectral resolution of <260 eV, LOFT will yield unprecedented information on strongly curved spacetimes and matter under extreme conditions of pressure and magnetic field strength. A second instrument onboard LOFT, the Wide Field Monitor (WFM), will discover and localize X-ray transients and impulsive events and monitor spectral state changes with unprecedented sensitivity and coverage. Through the LOFT Burst Alert System (LBAS), locations and times of impulsive events discovered by the WFM will be relayed to the ground within about 30 seconds. In this talk, we will present an overview of the design and status of the LOFT mission and describe the proposed US contributions currently under evaluation by NASA. NRL participation in LOFT is funded by NASA.

  5. The Beagle Channel Dispute between Argentina and Chile: An Historical Analysis

    DTIC Science & Technology

    1985-11-22

    DTICr--1’ ’-’CTE~l THETSIS APPROVAL. TITLE OF THESIS: The Beagle Channel Dispute Between Argentina and Chile : An istorical Analysis " AME OF...85, subject: Security Review of Student Papers. 1. The enclosed thesis entitled "The Beagle Channel Dispute Between Argentina and Chile : An Historical...Title of Thesis: The Beagle Channel Dispute Between Argentina and Chile : An Historical Analysis David Robert Struthers, Master of Science in Strategic

  6. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  7. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  8. The University of Montana's Blue Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Friend, D. B.

    2004-12-01

    The University of Montana's Department of Physics and Astronomy runs the state of Montana's only professional astronomical observatory. The Observatory, located on nearby Blue Mountain, houses a 16 inch Boller and Chivens Cassegrain reflector (purchased in 1970), in an Ash dome. The Observatory sits just below the summit ridge, at an elevation of approximately 6300 feet. Our instrumentation includes an Op-Tec SSP-5A photoelectric photometer and an SBIG ST-9E CCD camera. We have the only undergraduate astronomy major in the state (technically a physics major with an astronomy option), so our Observatory is an important component of our students' education. Students have recently carried out observing projects on the photometry of variable stars and color photometry of open clusters and OB associations. In my poster I will show some of the data collected by students in their observing projects. The Observatory is also used for public open houses during the summer months, and these have become very popular: at times we have had 300 visitors in a single night.

  9. Orbiting Astronomical Observatory-C (OAO-C): Press kit

    NASA Technical Reports Server (NTRS)

    Allaway, H. G.

    1972-01-01

    Mission planning for the Orbiting Astronomical Observatory-C (OAO-C) is presented. The characteristics of the observatory and its capabilities are described. The following experiments are discussed: (1) Princeton Experiment Package, (2) X-ray experiment, and (3) guest investigator program. Results of the OAO-2 observatory are presented. A tabulation of flight events is included.

  10. Robotic Software for the Thacher Observatory

    NASA Astrophysics Data System (ADS)

    Lawrence, George; Luebbers, Julien; Eastman, Jason D.; Johnson, John A.; Swift, Jonathan

    2018-06-01

    The Thacher Observatory—a research and educational facility located in Ojai, CA—uses a 0.7 meter telescope to conduct photometric research on a variety of targets including eclipsing binaries, exoplanet transits, and supernovae. Currently, observations are automated using commercial software. In order to expand the flexibility for specialized scientific observations and to increase the educational value of the facility on campus, we are adapting and implementing the custom observatory control software and queue scheduling developed for the Miniature Exoplanet Radial Velocity Array (MINERVA) to the Thacher Observatory. We present the design and implementation of this new software as well as its demonstrated functionality on the Thacher Observatory.

  11. Planetary research at Lowell Observatory

    NASA Technical Reports Server (NTRS)

    Baum, William A.

    1988-01-01

    Scientific goals include a better determination of the basic physical characteristics of cometary nuclei, a more complete understanding of the complex processes in the comae, a survey of abundances and gas/dust ratios in a large number of comets, and measurement of primordial (12)C/(13)C and (14)N/(15)N ratios. The program also includes the observation of Pluto-Charon mutual eclipses to derive dimensions. Reduction and analysis of extensive narrowband photometry of Comet Halley from Cerro Tololo Inter-American Observatory, Perth Observatory, Lowell Observatory, and Mauna Kea Observatory were completed. It was shown that the 7.4-day periodicity in the activity of Comet Halley was present from late February through at least early June 1986, but there is no conclusive evidence of periodic variability in the preperihelion data. Greatly improved NH scalelengths and lifetimes were derived from the Halley data which lead to the conclusion that the abundance of NH in comets is much higher than previously believed. Simultaneous optical and thermal infrared observations were obtained of Comet P/Temple 2 using the MKO 2.2 m telescope and the NASA IRTF. Preliminary analysis of these observations shows that the comet's nucleus is highly elongated, very dark, and quite red.

  12. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1982-01-01

    This artist's conception depicts the High Energy Astronomy Observatory (HEAO)-1 in orbit. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit. The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. Hardware support for the imaging instruments was provided by American Science and Engineeing. The HEAO spacecraft were built by TRW, Inc. under project management of the Marshall Space Flight Center.

  13. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2002-12-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." In addition, this past summer our program became an accredited course by Colorado State University. Our next project is to partner with the Discovery Center Science Museum and Colorado State University to provide additional teacher education programs. Our training materials have also been shared with TIE/Mt. Wilson, NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  14. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2003-05-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." In addition, this past summer our program became an accredited course by Colorado State University. Our next project is to partner with the Discovery Center Science Museum and Colorado State University to provide additional teacher education programs. Our training materials have also been shared with TIE/Mt. Wilson, NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  15. Non university sources of science in Chile

    NASA Astrophysics Data System (ADS)

    Soto, Leopoldo

    2016-05-01

    The following ideas are widely accepted in Chile with respect to scientific activity: is carried out mainly in universities and science is considered a naturally university activity, that was developed in a period of more than 150 years by isolated individual efforts, c) it was transformed into an institutionalized activity at the universities after the university reform movement at the end of the 1960 decade, d) the activity is finally institutionalized in the country with the creation of the “Comisión Nacional de Investigatión Científica y Tecnológica, CONICYT (National Commission for Scientific and Technological Research) in 1967. This work presents preliminary findings showing that there are other institutional initiatives, different to the efforts from universities and directly dependent of the Chilean Government, in order to produce science and technology in Chile. This governmental initiatives start at the beginning of the Republic of Chile circa of 1810.

  16. Addressing the social dimensions of citizen observatories: The Ground Truth 2.0 socio-technical approach for sustainable implementation of citizen observatories

    NASA Astrophysics Data System (ADS)

    Wehn, Uta; Joshi, Somya; Pfeiffer, Ellen; Anema, Kim; Gharesifard, Mohammad; Momani, Abeer

    2017-04-01

    Owing to ICT-enabled citizen observatories, citizens can take on new roles in environmental monitoring, decision making and co-operative planning, and environmental stewardship. And yet implementing advanced citizen observatories for data collection, knowledge exchange and interactions to support policy objectives is neither always easy nor successful, given the required commitment, trust, and data reliability concerns. Many efforts are facing problems with the uptake and sustained engagement by citizens, limited scalability, unclear long-term sustainability and limited actual impact on governance processes. Similarly, to sustain the engagement of decision makers in citizen observatories, mechanisms are required from the start of the initiative in order to have them invest in and, hence, commit to and own the entire process. In order to implement sustainable citizen observatories, these social dimensions therefore need to be soundly managed. We provide empirical evidence of how the social dimensions of citizen observatories are being addressed in the Ground Truth 2.0 project, drawing on a range of relevant social science approaches. This project combines the social dimensions of citizen observatories with enabling technologies - via a socio-technical approach - so that their customisation and deployment is tailored to the envisaged societal and economic impacts of the observatories. The projects consists of the demonstration and validation of six scaled up citizen observatories in real operational conditions both in the EU and in Africa, with a specific focus on flora and fauna as well as water availability and water quality for land and natural resources management. The demonstration cases (4 EU and 2 African) cover the full 'spectrum' of citizen-sensed data usage and citizen engagement, and therefore allow testing and validation of the socio-technical concept for citizen observatories under a range of conditions.

  17. The Paris Observatory has 350 years

    NASA Astrophysics Data System (ADS)

    Lequeux, James

    2017-01-01

    The Paris Observatory is the oldest astronomical observatory that has worked without interruption since its foundation to the present day. The building due to Claude Perrault is still in existence with few modifications, but of course other buildings have been added all along the centuries for housing new instruments and laboratories. In particular, a large dome has been built on the terrace in 1847, with a 38-cm diameter telescope completed in 1857: both are still visible. The main initial purpose of the Observatory was to determine longitudes. This was achieved by Jean-Dominique Cassini using the eclipses of the satellites of Jupiter: a much better map of France was the produced using this method, which unfortunately does not work at sea. Incidentally, the observation of these eclipses led to the discovery in 1676 of the finite velocity of light by Cassini and Rømer. Cassini also discovered the differential rotation of Jupiter and four satellites of Saturn. Then, geodesy was to be the main activity of the Observatory for more than a century, culminating in the famous Cassini map of France completed around 1790. During the first half of the 19th century, under François Arago, the Observatory was at the centre of French physics, which then developed very rapidly. Arago initiated astrophysics in 1810 by showing that the Sun and stars are made of incandescent gas. In 1854, the new director, Urbain Le Verrier, put emphasis on astrometry and celestial mechanics, discovering in particular the anomalous advance of the perihelion of Mercury, which was later to be a proof of General Relativity. In 1858, Leon Foucault built the first modern reflecting telescopes with their silvered glass mirror. Le Verrier created on his side modern meteorology, including some primitive forecasts. The following period was not so bright, due to the enormous project of the Carte du Ciel, which took much of the forces of the Observatory for half a century with little scientific return. In

  18. Framework for Informed Policy Making Using Data from National Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Wee, B.; Taylor, J. R.; Poinsatte, J.

    2012-12-01

    Large-scale environmental changes pose challenges that straddle environmental, economic, and social boundaries. As we design and implement climate adaptation strategies at the Federal, state, local, and tribal levels, accessible and usable data are essential for implementing actions that are informed by the best available information. Data-intensive science has been heralded as an enabler for scientific breakthroughs powered by advanced computing capabilities and interoperable data systems. Those same capabilities can be applied to data and information systems that facilitate the transformation of data into highly processed products. At the interface of scientifically informed public policy and data intensive science lies the potential for producers of credible, integrated, multi-scalar environmental data like the National Ecological Observatory Network (NEON) and its partners to capitalize on data and informatics interoperability initiatives that enable the integration of environmental data from across credible data sources. NSF's large-scale environmental observatories such as NEON and the Ocean Observatories Initiative (OOI) are designed to provide high-quality, long-term environmental data for research. These data are also meant to be repurposed for operational needs that like risk management, vulnerability assessments, resource management, and others. The proposed USDA Agriculture Research Service (ARS) Long Term Agro-ecosystem Research (LTAR) network is another example of such an environmental observatory that will produce credible data for environmental / agricultural forecasting and informing policy. To facilitate data fusion across observatories, there is a growing call for observation systems to more closely coordinate and standardize how variables are measured. Together with observation standards, cyberinfrastructure standards enable the proliferation of an ecosystem of applications that utilize diverse, high-quality, credible data. Interoperability

  19. The Mass Media and Political Socialization: Chile, 1970-2000

    ERIC Educational Resources Information Center

    Walter, Amy R.

    2005-01-01

    This project seeks to determine the effect of the mass media on political attitudes and behaviors in Chile between the years 1970 and 2000. The relationship between the media and "political socialization" is just now gaining recognition in scholarly research, and Chile offers an excellent case study. This paper traces these two variables…

  20. Multi-Instrument Study to Investigate the Formation and Growth of Equatorial Irregularities

    DTIC Science & Technology

    2011-11-01

    located at Huancayo, Peru (geographic: 12.01 oS, 284.80 oE; geomagnetic : 0.62 oN, 356.23 oE; see Figure for the experimental geometry) [Figures 2...interferometer (FPI) located at Arequipa, Peru (geographic: 16.47 oS, 288.52 oE; geomagnetic : 3.4 oS, 0.0 oE, proposal Co-I Meriwether is the instrument PI...Cerro Tololo Inter-American Observatory (CTIO) near La Serena, Chile (geographic: 30.17 oS, 289.19 oE; geomagnetic : 16.72 oS, 0.42 oE, proposal Co-I

  1. The World Space Observatory Ultraviolet (WSO-UV), as a bridge to future UV astronomy

    NASA Astrophysics Data System (ADS)

    Shustov, B.; Gómez de Castro, A. I.; Sachkov, M.; Vallejo, J. C.; Marcos-Arenal, P.; Kanev, E.; Savanov, I.; Shugarov, A.; Sichevskii, S.

    2018-04-01

    Ultraviolet (UV) astronomy is a vital branch of space astronomy. Many dozens of short-term UV-experiments in space, as well as long-term observatories, have brought a very important knowledge on the physics and chemistry of the Universe during the last decades. Unfortunately, no large UV-observatories are planned to be launched by most of space agencies in the coming 10-15 years. Conversely, the large UVOIR observatories of the future will appear not earlier than in 2030s. This paper briefly describes the projects that have been proposed by various groups. We conclude that the World Space Observatory-Ultraviolet (WSO-UV) will be the only 2-m class UV telescope with capabilities similar to those of the HST for the next decade. The WSO-UV has been described in detail in previous publications, and this paper updates the main characteristics of its instruments and the current state of the whole project. It also addresses the major science topics that have been included in the core program of the WSO-UV, making this core program very relevant to the current state of the UV-astronomy. Finally, we also present here the ground segment architecture that will implement this program.

  2. Operations of and Future Plans for the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, : J.; Abreu, P.; Aglietta, M.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Augermore » Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.« less

  3. Long-lived space observatories for astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Becklin, Eric E.; Beckwith, Steven V. W.; Cowie, Lennox L.; Dupree, Andrea K.; Elliot, James L.; Gallagher, John S.; Helfand, David J.; Jenkins, Edward F.; Johnston, Kenneth J.

    1987-01-01

    NASA's plan to build and launch a fleet of long-lived space observatories that include the Hubble Space Telescope (HST), the Gamma Ray Observatory (GRO), the Advanced X Ray Astrophysics Observatory (AXAF), and the Space Infrared Telescope Facility (SIRTF) are discussed. These facilities are expected to have a profound impact on the sciences of astronomy and astrophysics. The long-lived observatories will provide new insights about astronomical and astrophysical problems that range from the presence of planets orbiting nearby stars to the large-scale distribution and evolution of matter in the universe. An important concern to NASA and the scientific community is the operation and maintenance cost of the four observatories described above. The HST cost about $1.3 billion (1984 dollars) to build and is estimated to require $160 million (1986 dollars) a year to operate and maintain. If HST is operated for 20 years, the accumulated costs will be considerably more than those required for its construction. Therefore, it is essential to plan carefully for observatory operations and maintenance before a long-lived facility is constructed. The primary goal of this report is to help NASA develop guidelines for the operations and management of these future observatories so as to achieve the best possible scientific results for the resources available. Eight recommendations are given.

  4. Core network infrastructure supporting the VLT at ESO Paranal in Chile

    NASA Astrophysics Data System (ADS)

    Reay, Harold

    2000-06-01

    In October 1997 a number of projects were started at ESO's Paranal Observatory at Cerro Paranal in Chile to upgrade the communications infrastructure in place at the time. The planned upgrades were to internal systems such as computer data networks and telephone installations and also data links connecting Paranal to other ESO sites. This paper details the installation work carried out on the Paranal Core Network (PCN) during the period of October 1997 to December 1999. These installations were to provide both short term solutions to the requirement for reliable high bandwidth network connectivity between Paranal and ESO HQ in Garching, Germany in time for UTI (Antu) first light and perhaps more importantly, to provide the core systems necessary for a site moving towards operational status. This paper explains the reasons for using particular cable types, network topology, and fiber backbone design and implementation. We explain why it was decided to install the PCN in two distinct stages and how equipment used in temporary installations was re-used in the Very Large Telescope networks. Finally we describe the tools used to monitor network and satellite link performance and will discuss whether network backbone bandwidth meets the expected utilization and how this bandwidth can easily be increased in the future should there be a requirement.

  5. The First Astronomical Observatory in Cluj-Napoca

    NASA Astrophysics Data System (ADS)

    Szenkovits, Ferenc

    2008-09-01

    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.

  6. SOFIA: Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the great astronomical observatories both space and land based that are now operational. It shows the history of the development of SOFIA, from its conception in 1986 through the contract awards in 1996 and through the planned first flight in 2007. The major components of the observatory are shown and there is a comparison of the SOFIA with the Kuiper Airborne Observatory (KAO), which is the direct predecessor to SOFIA. The development of the aft ramp of the KAO was developed as a result of the wind tunnel tests performed for SOFIA development. Further slides show the airborne observatory layout and the telescope's optical layout. Included are also vies of the 2.5 Meter effective aperture, and the major telescope's components. The presentations reviews the technical challenges encountered during the development of SOFIA. There are also slides that review the wind tunnel tests, and CFD modeling performed during the development of SOFIA. Closing views show many views of the airplane, and views of SOFIA.

  7. Gemini Observatory |

    Science.gov Websites

    Now Open Operations View All Observing databases offline May 30 Status of Gemini North eNewscast View Gemini Observatory Strategic Vision PDF Gemini North with open wind vents and observing slit at sunset . Gemini South with star-trails of the South Celestial Pole overhead. Gemini Science Meeting Open For

  8. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-01-01

    Both of the High Energy Astronomy Observatory (HEAO) 2/Einstein Observatory imaging devices were used to observe the Great Nebula in Andromeda, M31. This image is a wide field x-ray view of the center region of M31 by the HEAO-2's Imaging Proportional Counter. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  9. Norwegian Ocean Observatory Network (NOON)

    NASA Astrophysics Data System (ADS)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  10. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Vanlew, K.; Melsheimer, T.; Melsheimer, L.; Rideout, C.; Patterson, T.

    1997-12-01

    A second observatory of the Telescopes in Education (TIE) project is in the planning stages, with hopes to be in use by fall 1998. The Little Thompson Observatory will be located adjacent to Berthoud High School in northern Colorado. TIE has offered the observatory a Tinsley 18" Cassegrain telescope on a 10-year loan. Local schools and youth organizations will have prioritized access to the telescope until midnight; after that, the telescope will be open to world-wide use by schools via the Internet. The first TIE observatory is a 24" telescope on Mt. Wilson, already booked through July 1998. That telescope has been in use every clear night for the past four years by up to 50 schools per month. Students remotely control the telescope over the Internet, and then receive the images on their local computers. The estimated cost of the Little Thompson Observatory is roughly \\170,000. However, donations of labor and materials have reduced the final price tag closer to \\40,000. Habitat for Humanity is organized to construct the dome, classrooms, and other facilities. Tom and Linda Melsheimer, who developed the remote telescope control system for the University of Denver's Mount Evans Observatory, are donating a similar control system. The formally-trained, all-volunteer staff will be comprised of local residents, teachers and amateur astronomers. Utilities and Internet access will be provided by the Thompson School District.

  11. Summary of interference measurements at selected radio observatories

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C.

    1990-01-01

    Results are presented from a series of RF interference (RFI) observations conducted during 1989 and 1990 at selected radio astronomy observatories in order to choose a site for the SETI, where the local and orbital RFI would be as benign as possible for observations of weak electromagnetic signals. These observatories included the DSS13 at Goldstone (California), the Arecibo Observatory (Puerto Rico), the Algonquin Radio Observatory in Ottawa (Canada), the Ohio State University Radio Observatory in Columbus (Ohio), and the NRAO in Green Bank (West Virginia). The observations characterize the RFI environment at these sites from 1 to 10 GHz, using radio astronomy antennas, feeds, and receivers; SETI signal processors; and stand-alone equipment built specifically for this purpose. The results served as part of the basis for the selection (by the NASA SETI Microwave Observing Project) of NRAO as the site of choice for SETI observations.

  12. Observatories on the moon

    NASA Astrophysics Data System (ADS)

    Burns, J. O.; Duric, N.; Taylor, G. J.; Johnson, S. W.

    1990-03-01

    It is suggested that the moon could be a haven for astronomy with observatories on its surface yielding extraordinarily detailed views of the heavens and open new windows to study the universe. The near absence of an atmosphere, the seismic stability of its surface, the low levels of interference from light and radio waves and the abundance of raw materials make the moon an ideal site for constructing advanced astronomical observatories. Due to increased interest in the U.S. in the moon as a scientific platform, planning has begun for a permanent lunar base and for astronomical observatories that might be built on the moon in the 21st century. Three specific projects are discussed: (1) the Very Low Frequency Array (VLFA), which would consist of about 200 dipole antennas, each resembling a TV reception antenna about one meter in length; (2) the Lunar Optical-UV-IR Synthesis Array (LOUISA), which will improve on the resolution of the largest ground-based telescope by a factor of 100,000; and (3) a moon-earth radio interferometer, which would have a resolution of about one-hundredth-thousandth of an arc second at a frequency of 10 GHz.

  13. The many transformations of the University of Illinois Observatory Annex

    NASA Astrophysics Data System (ADS)

    Svec, Michael

    2018-04-01

    The University of Illinois Observatory acquired a second-hand 30-inch Brashear reflector in 1912 with the intent of dedicating it to photoelectric photometry. A small observatory annex was built adjacent to the main observatory. This smaller observatory and its telescope underwent multiple transitions and instrument changes over the next 70 years, reflecting the research interests of Joel Stebbins and Robert H. Baker. The story of this observatory telescope illustrates changes in astronomical instrumentation and research over the course of the twentieth century.

  14. SARA South Observatory: A Fully Automated Boller & Chivens 0.6-m Telescope at C.T.I.O.

    NASA Astrophysics Data System (ADS)

    Mack, Peter; KanniahPadmanaban, S. Y.; Kaitchuck, R.; Borstad, A.; Luzier, N.

    2010-05-01

    The SARA South Observatory is the re-birth of the Lowell 24-inch telescope located on the south-east ridge of Cerro Tololo, Chile. Installed in 1968 this Boller & Chivens telescope fell into disuse for almost 20 years. The telescope and observatory have undergone a major restoration. A new dome with a wide slit has been fully automated with an ACE SmartDome controller featuring autonomous closure. The telescope was completely gutted, repainted, and virtually every electronic component and wire replaced. Modern infrastructure, such as USB, Ethernet and video ports have been incorporated into the telescope tube saddle boxes. Absolute encoders have been placed on the Hour Angle and declination axes with a resolution of less than 0.7 arc seconds. The secondary mirror is also equipped with an absolute encoder and temperature sensor to allow for fully automated focus. New mirror coatings, automated mirror covers, a new 150mm refractor, and new instrumentation have been deployed. An integrated X-stage guider and dual filter wheel containing 18 filters is used for direct imaging. The guider camera can be easily removed and a standard 2-inch eyepiece used for occasional viewing by VIP's at C.T.I.O. A 12 megapixel all-sky camera produces color images every 30 seconds showing details in the Milky Way and Magellanic Clouds. Two low light level cameras are deployed; one on the finder and one at the top of the telescope showing a 30° field. Other auxiliary equipment, including daytime color video cameras, weather station and remotely controllable power outlets permit complete control and servicing of the system. The SARA Consortium (www.saraobservatory.org), a collection of ten eastern universities, also operates a 0.9-m telescope at the Kitt Peak National Observatory using an almost identical set of instruments with the same ACE control system. This project was funded by the SARA Consortium.

  15. The Mexican participation at the Pierre Auger Observatory: Recent results

    NASA Astrophysics Data System (ADS)

    Román, S.; Alcaráz, F.; Cantoral, E.; Castro, J.; Cordero, A.; Fernández, A.; López, R.; Pacheco, C.; Rubín, M.; Salazar, H.; Valdés, J.; Vargas, M.; Villaseñor, L.; Zepeda, A.

    1998-02-01

    In this work we present the participations of the Mexican group at development of the Pierre Auger Observatory. We have been working in both parts of the hybrid proposed for the Auger detector, the fluorescence and the surface detectors. In the part of fluorescence, we have analyzed the resolution of the Hi-Res optical design of the fluorescence detector observatory. We have found a heterogeneus image resolution. We propose to use a lensless Schmidt camera (with spherical image surface) to duplicate the field of view to 30×30 degrees and simultaneously guarantee a resolution of one degree over of the whole field of view. By the Surface Detector, a water Čerenkov detector (WCD) prototype of reduced dimensions (cylinder 1.54 diameter filled with purified water up to 1.20 m high) is used to obtain preliminary experimental results that validate the concept of remote calibration and monitoring of WCDs. We use muons that stop and decay inside the WCD and, in a complementary way, muons that croos the WCD. We used a moun telescope trigger in order to study the charge distribution of vertical muons, their pulse amplitude decay and the Cerenkov light attenuation length of those secondary cosmic muons we include the bacteria population content for the four months of operation to validate the monitoring method.

  16. The debate in Chile on organ donation revisited.

    PubMed

    Kottow Lang, Miguel Hugo

    2016-08-29

    The worldwide scarcity of cadaveric organs for transplants is on the rise, due in part to extended medical indications and longevity of chronic patients with organic insufficiencies. Chile has an extremely low donor rate of 6.7 per million. Although consent is presumed by law, and recently amended to include a “reciprocity principle”, nearly four million persons have expressed in writing their unwillingness to donate and, of those remaining, 53% of families have rejected donating the organs of their deceased. New proposals are urgently needed, even if some of them have previously been rejected: nonmaterial incentives, partial donations and unveiling anonymity to enhance personal ties between donors and recipients. Transparency, information and assistance are to be reinforced in order to regain trust in transplant procedures.

  17. EUSO-SPB2: second generation Extreme Universe Space Observatory (EUSO) on board a Super-Pressure Balloon (SPB), The University of Alabama in Huntsville, Co-I PROPOSAL

    NASA Astrophysics Data System (ADS)

    Reardon, Patrick

    This is the Co-Investigator Proposal for EUSO-SPB2, second generation Extreme Universe Space Observatory on a Super-Pressure Balloon, being led by PI Angela V. Olinto at the University of Chicago. We propose to design, build, deploy, and publish the scientific results of a second generation of the Extreme Universe Space Observatory (EUSO), to be flown aboard a Super-Pressure Balloon (SBP). EUSO-SPB2 will monitor the night sky of the Southern hemisphere to study cosmic rays of very high to ultrahigh energies and pioneer the search for cosmogenic tau neutrinos from space. EUSO-SPB2 will be the first instrument to observe Cherenkov light from extensive air-showers high in the atmosphere. EUSOSPB2 will observe a large sample of cosmic rays from 0.1 to 1 EeV with the Cherenkov technique and will discriminate among the Cherenkov profiles of primary protons, heavy nuclei, and photons. It will also characterize the background for upward going showers initiated by the decay of tau leptons, which are expected to be produced by Earthskimming tau neutrinos. A coincidence veto will be developed for EUSO-SPB2 so it can characterize the background for Cherenkov signals from the neutrino produced tau leptons. EUSO-SPB2 will also use fluorescence observations to measure, for the first time, the evolution of nearly horizontal high altitude extensive air showers, which develop at the nearly constant low-density atmosphere. Such measurements will provide a unique channel to probe hadronic interaction models at ultrahigh energies, and may elucidate the reason why ultrahigh-energy cosmic ray (UHECR) showers observed by ground-based detectors contain more muons than expected from hadronic interaction models. EUSO-SPB2 is a pathfinder for the more ambitious space-based measurements by the Probe Of Extreme Multi-Messenger Astrophysics (POEMMA), currently proposed for a NASA design study. POEMMA will combine the well-developed Orbiting Widefield Light-collectors (OWL) concept with the

  18. 21st Century Lightning Protection for High Altitude Observatories

    NASA Astrophysics Data System (ADS)

    Kithil, Richard

    2013-05-01

    One of the first recorded lightning insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times lightning has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to lightning outages to data acquisition computers and connected cabling. The University of Arizona has reported "lightning strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where lightning protection for personnel, electrical systems, associated electronics and data are critical. Designstage lightning protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories lightning protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered lightning protection subsystems in a carefully planned methodology which is specific to each site.

  19. Euro50: Proposal for a 50 m Optical and Infrared Telescope

    NASA Astrophysics Data System (ADS)

    Ardeberg, Arne; Andersen, Torben; Rodriguez Espinosa, Jose Miguel

    Staff from Instituto de Astrofisica de Canarias, Lund Observatory, Physics Department and Larmor Research Institute at Galway, and Tuorla Observatory is collaborating on studies for a 50 m optical and infrared telescope. The telescope concepts are based on the work on extremely large telescopes carried out during 1991-2000 at Lund Observatory, and on the experience from the 10.4 m segmented Grantecan telescope presently under construction. The proposed 50 m telescope is a fully adaptive Nasmyth telescope with a Ritchey Chretien configuration. It will have an aspherical, segmented primary mirror with 2 m large segments and a deformable secondary. Adaptive optics will be implemented in several steps. From the beginning, there will be single-conjugate adaptive optics for the K-band. Next, and within the first year of operation, the telescope will have single-conjugate adaptive optics for visible wavelengths. As a third step, and another year of operation, dual-conjugate adaptive optics will be made available for the K-band. The telescope will be housed in a co-rotating enclosure at the Roque de los Muchachos observatory on La Palma. Further studies are in progress aiming at preparation of a proposal during the first half of 2002.

  20. VizieR Online Data Catalog: Light curves of WASP-52 (Mancini+, 2017)

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Southworth, J.; Raia, G.; Tregloan-Reed, J.; Molliere, P.; Bozza, V.; Bretton, M.; Bruni, I.; Ciceri, S.; D'Ago, G.; Dominik, M.; Hinse, T. C.; Hundertmark, M.; Jorgensen, U. G.; Korhonen, H.; Rabus, M.; Rahvar, S.; Starkey, D.; Calchi Novati, S.; Figuera Jaimes, R.; Henning, T.; Juncher, D.; Haugbolle, T.; Kains, N.; Popovas, A.; Schmidt, R. W.; Skottfelt, J.; Snodgrass, C.; Surdej, J.; Wertz, O.

    2018-03-01

    Light curves of transit events of the extrasolar planet WASP-52b. One of the datasets was obtained using the Cassini 1.52m Telescope (Gunn r) at the Astronomical Observatory of Bologna in Loiano (Italy). Three of the datasets were obtained using the Zeiss 1.23m telescope (Cousins R and Cousins I) at the German-Spanish Astronomical Centre at Calar Alto (Spain). Four of the datasets were obtained using the MPG 2.2m telescope (Sloan g, Sloan r, Sloan i, Sloan z) at the ESO Observatory in La Silla (Chile). Four of the datasets were obtained using the 1.54m Danish Telescope at the ESO Observatory in La Silla (Chile). (2 data files).

  1. Donald Menzel: His Founding and Funding of Solar Observatories.

    NASA Astrophysics Data System (ADS)

    Welther, B. L.

    2002-12-01

    In January 1961 Donald Menzel wrote to his cousin, M. H. Bruckman, "I am proudest of the observatories that I have built in the West." The first of those facilities, a solar observatory, was founded in 1940 in Colorado and later came to be known as the High Altitude Observatory. The second one, also a solar observatory, was founded a dozen years later at Sacramento Peak in New Mexico. The third facility, however, established at Fort Davis, Texas, was the Harvard Radio Astronomy Observatory. Although Menzel was primarily a theoretical astrophysicist, renowned for his studies of the solar chromosphere, he was also an entrepreneur who had a talent for developing observatories and coping with numerous setbacks in funding and staffing. Where many others would have failed, Menzel succeeded in mentoring colleagues and finding sources of financial support. This paper will draw primarily on letters and other materials in the Harvard University Archives.

  2. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    This supernova in the constellation Cassiopeia was observed by Tycho Brahe in 1572. In this x-ray image from the High Energy Astronomy Observatory (HEAO-2/Einstein Observatory produced by nearly a day of exposure time, the center region appears filled with emissions that can be resolved into patches or knots of material. However, no central pulsar or other collapsed object can be seen. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  3. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This is an x-ray image of the Crab Nebula taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The image is demonstrated by a pulsar, which appears as a bright point due to its pulsed x-ray emissions. The strongest region of diffused emissions comes from just northwest of the pulsar, and corresponds closely to the region of brightest visible-light emission. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  4. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1975-01-01

    The family of High Energy Astronomy Observatory (HEAO) instruments consisted of three unmarned scientific observatories capable of detecting the x-rays emitted by the celestial bodies with high sensitivity and high resolution. The celestial gamma-ray and cosmic-ray fluxes were also collected and studied to learn more about the mysteries of the universe. High-Energy rays cannot be studied by Earth-based observatories because of the obscuring effects of the atmosphere that prevent the rays from reaching the Earth's surface. They had been observed initially by sounding rockets and balloons, and by small satellites that do not possess the needed instrumentation capabilities required for high data resolution and sensitivity. The HEAO carried the instrumentation necessary for this capability. In this photograph, an artist's concept of three HEAO spacecraft is shown: HEAO-1, launched on August 12, 1977; HEAO-2, launched on November 13, 1978; and HEAO-3, launched on September 20. 1979.

  5. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This image is an x-ray view of Eta Carinae Nebula showing bright stars taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The Eta Carinae Nebula is a large and complex cloud of gas, crisscrossed with dark lanes of dust, some 6,500 light years from Earth. Buried deep in this cloud are many bright young stars and a very peculiar variable star. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  6. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    This x-ray photograph of the Supernova remnant Cassiopeia A, taken with the High Energy Astronomy Observatory (HEAO) 2/Einstein Observatory, shows that the regions with fast moving knots of material in the expanding shell are bright and clear. A faint x-ray halo, just outside the bright shell, is interpreted as a shock wave moving ahead of the expanding debris. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  7. NEPTUNE: an under-sea plate scale observatory

    NASA Technical Reports Server (NTRS)

    Beauchamp, P. M.; Heath, G. R.; Maffei, A.; Chave, A.; Howe, B.; Wilcock, W.; Delaney, J.; Kirkham, H.

    2002-01-01

    The NEPTUNE project will establish a linked array of undersea observatories on the Juan de Fuca tectonic plate. This observatory will provide a new kind of research platform for real-time, long-term, plate-scale studies in the ocean and Earth sciences.

  8. Ten years of the Spanish Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Solano, E.

    2015-05-01

    The main objective of the Virtual Observatory (VO) is to guarantee an easy and efficient access and analysis of the information hosted in astronomical archives. The Spanish Virtual Observatory (SVO) is a project that was born in 2004 with the goal of promoting and coordinating the VO-related activities at national level. SVO is also the national contact point for the international VO initiatives, in particular the International Virtual Observatory Alliance (IVOA) and the Euro-VO project. The project, led by Centro de Astrobiología (INTA-CSIC), is structured around four major topics: a) VO compliance of astronomical archives, b) VO-science, c) VO- and data mining-tools, and d) Education and outreach. In this paper I will describe the most important results obtained by the Spanish Virtual Observatory in its first ten years of life as well as the future lines of work.

  9. Hydrothermal Exploration at the Chile Triple Junction - ABE's last adventure?

    NASA Astrophysics Data System (ADS)

    German, C. R.; Shank, T. M.; Lilley, M. D.; Lupton, J. E.; Blackman, D. K.; Brown, K. M.; Baumberger, T.; Früh-Green, G.; Greene, R.; Saito, M. A.; Sylva, S.; Nakamura, K.; Stanway, J.; Yoerger, D. R.; Levin, L. A.; Thurber, A. R.; Sellanes, J.; Mella, M.; Muñoz, J.; Diaz-Naveas, J. L.; Inspire Science Team

    2010-12-01

    In February and March 2010 we conducted preliminary exploration for hydrothermal plume signals along the East Chile Rise where it intersects the continental margin at the Chile Triple Junction (CTJ). This work was conducted as one component of our larger NOAA-OE funded INSPIRE project (Investigation of South Pacific Reducing Environments) aboard RV Melville cruise MV 1003 (PI: Andrew Thurber, Scripps) with all shiptime funded through an award of the State of California to Andrew Thurber and his co-PI's. Additional support came from the Census of Marine Life (ChEss and CoMarge projects). At sea, we conducted a series of CTD-rosette and ABE autonomous underwater vehicle operations to prospect for and determine the nature of any seafloor venting at, or adjacent to, the point where the the East Chile Rise subducts beneath the continental margin. Evidence from in situ sensing (optical backscatter, Eh) and water column analyses of dissolved CH4, δ3He and TDFe/TDMn concentrations document the presence of two discrete sites of venting, one right at the triple junction and the other a further 10km along axis, north of the Triple Junction, but still within the southernmost segment of the East Chile Rise. From an intercomparison of the abundance of different chemical signals we can intercompare likely characteristics of these differet source sites and also differentiate between them and the high methane concentrations released from cold seep sites further north along the Chile Margin, both with the CTJ region and also at the Concepcion Methane Seep Area (CMSA). This multi-disciplinary and international collaboration - involving scientists from Chile, the USA, Europe and Japan - can serve as an excellent and exciting launchpoint for wide-ranging future investigations of the Chile Triple Junction area - the only place on Earth where an oceanic spreading center is being actively subducted beneath a continent and also the only place on Earth where all known forms of deep

  10. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Phil; Feinberg, Lee

    2006-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  11. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Feinberg, Lee

    2007-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  12. [Statement of the Advisory Committee on Immunizations of Sociedad Chilena de Infectología about outbreaks of hepatitis A in Chile].

    PubMed

    Villena, Rodolfo; Wilhelm, Jan; Calvo, Ximena; Cerda, Jaime; Escobar, Carola; Moreno, Gabriela; Veliz, Liliana; Potin, Marcela

    2017-08-01

    This document represents the position of the Chilean Infectious Diseases Society Advisory Committee on Immunization Practices regarding hepatitis A epidemiological situation in Chile. The recommendations are based on local epidemiological data, the hepatitis A virus infection characteristics and the global experience with the available vaccines. In relation to hepatitis A, Chile is no longer a highly endemic area but actually an intermediate one, currently concentrating cases in individuals over 15 years of age, with frequent outbreaks. In 2017 we have seen an important outbreak of genotype 1A in men who have sex with men (MSM). The current endemic, the presence of regular outbreaks, the frequency of natural disasters in Chile, together with the availability of safe, effective vaccines and local cost-effectiveness studies led us to propose measures for outbreak control for high risk groups protection and mid and long term, including a more definitive solution which is universal vaccination against this disease in small children.

  13. Global TIE: Developing a Virtual Network of Robotic Observatories for K-12 Education

    NASA Astrophysics Data System (ADS)

    Mayo, L. A.; Clark, G.

    2001-11-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible to schools all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA-sponsored Telescopes In Education (TIE, http://tie.jpl.nasa.gov) project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. Global TIE provides unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns essentially unused observatory facilities into valuable, state-of-the-art teaching centers. This presentation describes the Global TIE Observatory data and organizational systems and details the

  14. Comparative mechanical harvest efficiency of New Mexico green chile cultivars

    USDA-ARS?s Scientific Manuscript database

    New Mexico-type green chile (Capsicum annuum) is one of New Mexico’s leading horticultural commodities. The crop is harvested when fruit are fully sized, but in the physiologically immature green stage, for fresh and processed markets. Cultivated acreage of green chile in New Mexico is threatened du...

  15. Enabling Virtual Access to Latin-American Southern Observatories

    NASA Astrophysics Data System (ADS)

    Filippi, G.

    2010-12-01

    EVALSO (Enabling Virtual Access to Latin-American Southern Observatories) is an international consortium of nine astronomical organisations and research network operators, part-funded under the European Commission FP7, to create and exploit high-speed bandwidth connections to South American observatories. A brief description of the project is presented. The EVALSO Consortium inaugurated a fibre link between the Paranal Observatory and international networks on 4 November 2010 capable of 10 Gigabit per second.

  16. Evaluating a NoSQL Alternative for Chilean Virtual Observatory Services

    NASA Astrophysics Data System (ADS)

    Antognini, J.; Araya, M.; Solar, M.; Valenzuela, C.; Lira, F.

    2015-09-01

    Currently, the standards and protocols for data access in the Virtual Observatory architecture (DAL) are generally implemented with relational databases based on SQL. In particular, the Astronomical Data Query Language (ADQL), language used by IVOA to represent queries to VO services, was created to satisfy the different data access protocols, such as Simple Cone Search. ADQL is based in SQL92, and has extra functionality implemented using PgSphere. An emergent alternative to SQL are the so called NoSQL databases, which can be classified in several categories such as Column, Document, Key-Value, Graph, Object, etc.; each one recommended for different scenarios. Within their notable characteristics we can find: schema-free, easy replication support, simple API, Big Data, etc. The Chilean Virtual Observatory (ChiVO) is developing a functional prototype based on the IVOA architecture, with the following relevant factors: Performance, Scalability, Flexibility, Complexity, and Functionality. Currently, it's very difficult to compare these factors, due to a lack of alternatives. The objective of this paper is to compare NoSQL alternatives with SQL through the implementation of a Web API REST that satisfies ChiVO's needs: a SESAME-style name resolver for the data from ALMA. Therefore, we propose a test scenario by configuring a NoSQL database with data from different sources and evaluating the feasibility of creating a Simple Cone Search service and its performance. This comparison will allow to pave the way for the application of Big Data databases in the Virtual Observatory.

  17. Chile Informed Question Paper - Military

    DTIC Science & Technology

    2003-01-01

    superior military strength and regional economic integration. Internally, Chile also faces little threat; however, militants from the Mapuche ...considered a significant threat.11 The most significant internal security concern is the ongoing campaign by Mapuche indigenous community militants to

  18. Development of Armenian-Georgian Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg; Kochiashvili, Nino; Astsatryan, Hrach; Harutyunian, Haik; Magakyan, Tigran; Chargeishvili, Ketevan; Natsvlishvili, Rezo; Kukhianidze, Vasil; Ramishvili, Giorgi; Sargsyan, Lusine; Sinamyan, Parandzem; Kochiashvili, Ia; Mikayelyan, Gor

    2009-10-01

    The Armenian-Georgian Virtual Observatory (ArGVO) project is the first initiative in the world to create a regional VO infrastructure based on national VO projects and regional Grid. The Byurakan and Abastumani Astrophysical Observatories are scientific partners since 1946, after establishment of the Byurakan observatory . The Armenian VO project (ArVO) is being developed since 2005 and is a part of the International Virtual Observatory Alliance (IVOA). It is based on the Digitized First Byurakan Survey (DFBS, the digitized version of famous Markarian survey) and other Armenian archival data. Similarly, the Georgian VO will be created to serve as a research environment to utilize the digitized Georgian plate archives. Therefore, one of the main goals for creation of the regional VO is the digitization of large amounts of plates preserved at the plate stacks of these two observatories. The total amount of plates is more than 100,000 units. Observational programs of high importance have been selected and some 3000 plates will be digitized during the next two years; the priority is being defined by the usefulness of the material for future science projects, like search for new objects, optical identifications of radio, IR, and X-ray sources, study of variability and proper motions, etc. Having the digitized material in VO standards, a VO database through the regional Grid infrastructure will be active. This partnership is being carried out in the framework of the ISTC project A-1606 "Development of Armenian-Georgian Grid Infrastructure and Applications in the Fields of High Energy Physics, Astrophysics and Quantum Physics".

  19. The Ultimate Private Observatory

    NASA Astrophysics Data System (ADS)

    Aymond, J.

    2009-03-01

    An amateur astronomer from Washington Parish, Southeast Louisiana, USA has designed and built an amazing observatory. It is not only an astronomical observatory, but a home theater, and tornado shelter designed to take a direct hit from an F5 tornado. The facility is fully equipped and automated, with a hydraulically driven roof that weighs 20,571 lbs., which lifts up, then rolls away to the end of the tracks. This leaves the user sitting inside of four 14-foot high walls open to the night sky. It has two premium quality telescopes for viewing deep space and objects inside the solar system. The chair that the observer sits on is also hydraulically driven.

  20. [Who finances medical research in Chile?].

    PubMed

    Reyes, H; Kauffmann, R; Goic, A

    1995-10-01

    To identify those institutions granting medical research in Chile, every issue of Revista Médica de Chile published between 1987 and 1994 was reviewed, under the assumption that a vast majority (over 70%) of papers released by Chilean authors in topics of internal medicine and related subspecialties would have been submitted for publication in this journal. This assumption was based in the solid prestige of Revista Médica de Chile among Chilean physicians and investigators: it is one of the oldest medical journals in the world (founded in 1872) and its inclusion in the most important international indexes (e.g. Index Medicus, Current Contents) qualifies it in the "mainstream literature". Papers classified as "Original Articles", "Clinical Experiences", "Review Articles", "Public Health", "Case Reports", "Clinical Laboratory", "Special Articles" and "Medical Education" were screened for acknowledgment of financial support beyond the resources needed for routine clinical work. Among 1,528 manuscripts published, 344 were "Original Articles" and 61.3% of them acknowledged special financial support. Five hundred and one manuscripts were "Clinical Experiences" and 21.5% of them received special financial support; similar proportions were detected in "Review Articles" and "Public Health" topics. The institution ranked as providing support most often was the "Fondo Nacional de Ciencias y Tecnología" (FONDECYT), a governmental fund that assigns resources to research in all areas of science and technology through a peer-reviewed nationwide annual contest. FONDECYT was identified as provider of financial support to 45.2% of the "Original Articles" and "Clinical Experiences"; Chilean universities were mentioned by 33.6% and other entities (including pharmaceutical companies, other national and foreign organizations) by 23.1%. The University of Chile was the main Chilean university mentioned in the acknowledgments. The proportion of papers receiving special financial support

  1. VizieR Online Data Catalog: OGLE-III. Magellanic Clouds stellar proper motions (Poleski+, 2012)

    NASA Astrophysics Data System (ADS)

    Poleski, R.; Soszynski, I.; Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Wyrzykowski, L.; Ulaczyk, K.

    2012-06-01

    The OGLE-III project observed the MCs between 2001 and 2009 with 1.3-m Warsaw telescope, which is situated at the Las Campanas Observatory, Chile. The observatory is operated by the Carnegie Institution for Science. (4 data files).

  2. [Medical specialization in Chile. A centralized vision].

    PubMed

    Clouet-Huerta, Diego E; González, Bárbara; Correa, Katherine

    2017-11-01

    Medical graduates face different postgraduate training options, but their priority is to obtain a primary medical specialty, defined as a specialty that does not derive from other. There are different specialty training programs in Chile, which can be dependent or independent of the Ministry of Health. The information about these programs is available in different Internet sites. However a centralized information service that groups and synthetize these programs is lacking, hampering graduate choice decisions. This article aims to review all specialization program modalities, providing a general vision of the institutional structure and implications that govern the specialization process in Chile.

  3. Coastal Chile Shaded Relief View

    NASA Image and Video Library

    2010-03-04

    This color-coded shaded relief view from NASA Shuttle Radar Topography Mission of coastal Chile indicates the epicenter red marker of the 8.8 earthquake on Feb. 27, 2010, just offshore of the Maule region in the Bahia de Chanco.

  4. Astronomical Research with the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1997-05-01

    We have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. The MicroObservatory Net consists of five of these telescopes. They are currently being deployed around the world at widely distributed longitudes. Remote access to the MicroObservatories over the Internet has now been implemented. Software for computer control, pointing, focusing, filter selection as well as pattern recognition have all been developed as part of the project. The telescopes can be controlled in real time or in delay mode, from a Macintosh, PC or other computer using Web-based software. The Internet address of the telescopes is http://cfa- www.harvard.edu/cfa/sed/MicroObservatory/MicroObservatory.html. In the real-time mode, individuals have access to all of the telescope control functions without the need for an `on-site' operator. Users can sign up for a specific period of ti me. In the batch mode, users can submit requests for delayed telescope observations. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. The telescopes were designed for classroom instruction, as well as for use by students and amateur astronomers for original scientific research projects. We are currently examining a variety of technical and educational questions about the use of the telescopes including: (1) What are the best approaches to scheduling real-time versus batch mode observations? (2) What criteria should be used for allocating telescope time? (3) With deployment of more than one telescope, is it advantageous for each telescope to be used for just one type of observation, i.e., some for photometric use, others for imaging? And (4) What are the most valuable applications of the MicroObservatories in astronomical research? Support for the MicroObservatory

  5. Landsat View: Santiago, Chile

    NASA Image and Video Library

    2017-12-08

    Santiago, Chile, ranks among the world's fastest growing cities. Chile is South America's fifth largest economy with strong export and tourism markets. More than a third of Chile's population lives in Santiago as of 2009. Taken on January 9, 1985, and January 30, 2010, this pair of images from the Landsat 5 satellite illustrates the city's steady growth. The images were made with infrared and visible light (Landsat bands 4, 3, and 2) so that plant-covered land is red. Bare or sparsely vegetated land is tan, and the city is dark silver. In the fifteen years that elapsed between 1985 and 2010, the city expanded away from the Andes Mountains along spoke-like lines, which are major roads. ---- NASA and the U.S. Department of the Interior through the U.S. Geological Survey (USGS) jointly manage Landsat, and the USGS preserves a 40-year archive of Landsat images that is freely available over the Internet. The next Landsat satellite, now known as the Landsat Data Continuity Mission (LDCM) and later to be called Landsat 8, is scheduled for launch in 2013. In honor of Landsat’s 40th anniversary in July 2012, the USGS released the LandsatLook viewer – a quick, simple way to go forward and backward in time, pulling images of anywhere in the world out of the Landsat archive. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Recent climate variations in Chile: constraints from borehole temperature profiles

    NASA Astrophysics Data System (ADS)

    Pickler, Carolyne; Gurza Fausto, Edmundo; Beltrami, Hugo; Mareschal, Jean-Claude; Suárez, Francisco; Chacon-Oecklers, Arlette; Blin, Nicole; Cortés Calderón, Maria Teresa; Montenegro, Alvaro; Harris, Rob; Tassara, Andres

    2018-04-01

    We have compiled, collected, and analyzed 31 temperature-depth profiles from boreholes in the Atacama Desert in central and northern Chile. After screening these profiles, we found that only nine profiles at four different sites were suitable to invert for ground temperature history. For all the sites, no surface temperature variations could be resolved for the period 1500-1800. In the northern coastal region of Chile, there is no perceptible temperature variation at all from 1500 to present. In the northern central Chile region, between 26 and 28° S, the data suggest a cooling from ≈ 1850 to ≈ 1980 followed by a 1.9 K warming starting ≈ 20-40 years BP. This result is consistent with the ground surface temperature histories for Peru and the semiarid regions of South America. The duration of the cooling trend is poorly resolved and it may coincide with a marked short cooling interval in the 1960s that is found in meteorological records. The total warming is greater than that inferred from proxy climate reconstructions for central Chile and southern South America, and by the PMIP3-CMIP5 surface temperature simulations for the north-central Chile grid points. The differences among different climate reconstructions, meteorological records, and models are likely due to differences in spatial and temporal resolution among the various data sets and the models.

  7. [Eugenic abortion could explain the lower infant mortality in Cuba compared to that in Chile].

    PubMed

    Donoso S, Enrique; Carvajal C, Jorge A

    2012-08-01

    Cuba and Chile have the lower infant mortality rates of Latin America. Infant mortality rate in Cuba is similar to that of developed countries. Chilean infant mortality rate is slightly higher than that of Cuba. To investigate if the lower infant mortality rate in Cuba, compared to Chile, could be explained by eugenic abortion, considering that abortion is legal in Cuba but not in Chile. We compared total and congenital abnormalities related infant mortality in Cuba and Chile during 2008, based on vital statistics of both countries. In 2008, infant mortality rates in Chile were significantly higher than those of Cuba (7.8 vs. 4.7 per 1,000 live born respectively, odds ratio (OR) 1.67; 95% confidence intervals (Cl) 1.52-1.83). Congenital abnormalities accounted for 33.8 and 19.2% of infant deaths in Chile and Cuba, respectively. Discarding infant deaths related to congenital abnormalities, infant mortality rate continued to be higher in Chile than in Cuba (5.19 vs. 3.82 per 1000 live born respectively, OR 1.36; 95%CI 1.221.52). Considering that antenatal diagnosis is widely available in both countries, but abortion is legal in Cuba but not in Chile, we conclude that eugenic abortion may partially explain the lower infant mortality rate observed in Cuba compared to that observed in Chile.

  8. Portable coastal observatories

    USGS Publications Warehouse

    Frye, Daniel; Butman, Bradford; Johnson, Mark; von der Heydt, Keith; Lerner, Steven

    2000-01-01

    Ocean observational science is in the midst of a paradigm shift from an expeditionary science centered on short research cruises and deployments of internally recording instruments to a sustained observational science where the ocean is monitored on a regular basis, much the way the atmosphere is monitored. While satellite remote sensing is one key way of meeting the challenge of real-time monitoring of large ocean regions, new technologies are required for in situ observations to measure conditions below the ocean surface and to measure ocean characteristics not observable from space. One method of making sustained observations in the coastal ocean is to install a fiber optic cable from shore to the area of interest. This approach has the advantage of providing power to offshore instruments and essentially unlimited bandwidth for data. The LEO-15 observatory offshore of New Jersey (yon Alt et al., 1997) and the planned Katama observatory offshore of Martha's Vineyard (Edson et al., 2000) use this approach. These sites, along with other cabled sites, will play an important role in coastal ocean science in the next decade. Cabled observatories, however, have two drawbacks that limit the number of sites that are likely to be installed. First, the cable and the cable installation are expensive and the shore station needed at the cable terminus is often in an environmentally sensitive area where competing interests must be resolved. Second, cabled sites are inherently limited geographically to sites within reach of the cable, so it is difficult to cover large areas of the coastal ocean.

  9. Assessing the Potential for Interstate Conflict Between Chile and Peru: A Political Economy Approach

    DTIC Science & Technology

    2009-03-01

    Militares Peru-Chile no Se Han Afectado por Diferendo,” El Comercio , April 6, 2008. 329 Chile/Peru: Tensions Flare on Maritime Border Change.” 330 “FF...Relaciones Militares Peru-Chile no Se Han Afectado por Diferendo.” El Comercio , April 6, 2008. “Relations Falter for Peru, Chile.” Chicago Tribune...América Latina y el Mediterráneo (Centro de Estudios e Investigaciones Militares: Santiago, 2000), 82. 129 “A. P. Bureau Chief in Peru is Ordered out of

  10. Honors in Chile: New Engagements in the Higher Education System

    ERIC Educational Resources Information Center

    Skewes, Juan Carlos; Sampaio, Carlos Alberto Cioce; Conway, Frederick J.

    2012-01-01

    Honors programs are rare in Latin America, and in Chile they were unknown before 2003. At the Universidad Austral de Chile, an interdisciplinary group of scholars linked to environmental studies put forward a pilot project for implementing a new experience in higher education. Challenged by an educational environment where (i) apathy and…

  11. Erratum: "Kinematics of the Orion Nebula Cluster: Velocity Substructure and Spectroscopic Binaries" (2009, ApJ, 697, 1103)

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Hartmann, Lee; Furesz, Gabor; Mateo, Mario; Megeath, S. Tom

    2013-08-01

    Not Available This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  12. Sierra Stars Observatory Network: An Accessible Global Network

    NASA Astrophysics Data System (ADS)

    Williams, Richard; Beshore, Edward

    2011-03-01

    The Sierra Stars Observatory Network (SSON) is a unique partnership among professional observatories that provides its users with affordable high-quality calibrated image data. SSON comprises observatories in the Northern and Southern Hemisphere and is in the process of expanding to a truly global network capable of covering the entire sky 24 hours a day in the near future. The goal of SSON is to serve the needs of science-based projects and programs. Colleges, universities, institutions, and individuals use SSON for their education and research projects. The mission of SSON is to promote and expand the use of its facilities among the thousands of colleges and schools worldwide that do not have access to professional-quality automated observatory systems to use for astronomy education and research. With appropriate leadership and guidance educators can use SSON to help teach astronomy and do meaningful scientific projects. The relatively small cost of using SSON for this type of work makes it affordable and accessible for educators to start using immediately. Remote observatory services like SSON need to evolve to better support education and research initiatives of colleges, institutions and individual investigators. To meet these needs, SSON is developing a sophisticated interactive scheduling system to integrate among the nodes of the observatory network. This will enable more dynamic observations, including immediate priority interrupts, acquiring moving objects using ephemeris data, and more.

  13. [Penicillin production in Chile between 1944 and 1954].

    PubMed

    Ibarra, Cecilia; Parada, Mirtha

    2015-02-01

    Penicillin production in Chile was a pioneering development; however there is not much information to learn about it. The Chilean Institute for Bacteriology (Instituto Bacteriológico de Chile) produced penicillin between 1944 and 1973. The stage starting in 1953 is better known since there was an agreement with United Nations. Our research focused on building a story about production between 1944 and 1954 based on archival information and the national and international historic context. Our results place Chile amongst the pioneer countries in the successful industrialization of the drug. Our conclusions are that this was a proper industrial production as opposite to a pilot plant - a name commonly used to call the early factory. We explain the production plant trajectory by making relations between technological change and governance. Finally, we believe the later expansion of the plant, in the context of the agreement with the United Nations, took place under unpromising governance conditions, which called for passive innovation and technology management.

  14. Rainfall erosivity in Central Chile

    NASA Astrophysics Data System (ADS)

    Bonilla, Carlos A.; Vidal, Karim L.

    2011-11-01

    SummaryOne of the most widely used indicators of potential water erosion risk is the rainfall-runoff erosivity factor ( R) of the Revised Universal Soil Loss Equation (RUSLE). R is traditionally determined by calculating a long-term average of the annual sum of the product of a storm's kinetic energy ( E) and its maximum 30-min intensity ( I30), known as the EI30. The original method used to calculate EI30 requires pluviograph records for at most 30-min time intervals. Such high resolution data is difficult to obtain in many parts of the world, and processing it is laborious and time-consuming. In Chile, even though there is a well-distributed rain gauge network, there is no systematic characterization of the territory in terms of rainfall erosivity. This study presents a rainfall erosivity map for most of the cultivated land in the country. R values were calculated by the prescribed method for 16 stations with continuous graphical record rain gauges in Central Chile. The stations were distributed along 800 km (north-south), and spanned a precipitation gradient of 140-2200 mm yr -1. More than 270 years of data were used, and 5400 storms were analyzed. Additionally, 241 spatially distributed R values were generated by using an empirical procedure based on annual rainfall. Point estimates generated by both methods were interpolated by using kriging to create a map of rainfall erosivity for Central Chile. The results show that the empirical procedure used in this study predicted the annual rainfall erosivity well (model efficiency = 0.88). Also, an increment in the rainfall erosivities was found as a result of the rainfall depths, a regional feature determined by elevation and increasing with latitude from north to south. R values in the study area range from 90 MJ mm ha -1 h -1 yr -1 in the north up to 7375 MJ mm ha -1 h -1 yr -1 in the southern area, at the foothills of the Andes Mountains. Although the map and the estimates could be improved in the future by

  15. Artificial intelligence for the CTA Observatory scheduler

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro

    2014-08-01

    The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint

  16. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-01-01

    This photograph is of the High Energy Astronomy Observatory (HEAO)-2 telescope being evaluated by engineers in the clean room of the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). The MSFC was heavily engaged in the technical and scientific aspects, testing and calibration, of the HEAO-2 telescope The HEAO-2 was the first imaging and largest x-ray telescope built to date. The X-Ray Calibration Facility was built in 1976 for testing MSFC's HEAO-2. The facility is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produced a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performance in space is predicted. The original facility contained a 1,000-foot long by 3-foot diameter vacuum tube (for the x-ray path) cornecting an x-ray generator and an instrument test chamber. Recently, the facility was upgraded to evaluate the optical elements of NASA's Hubble Space Telescope, Chandra X-Ray Observatory and Compton Gamma-Ray Observatory.

  17. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-06-01

    This photograph is of the High Energy Astronomy Observatory (HEAO)-2 telescope being checked by engineers in the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). The MSFC was heavily engaged in the technical and scientific aspects, testing and calibration, of the HEAO-2 telescope. The HEAO-2 was the first imaging and largest x-ray telescope built to date. The X-Ray Calibration Facility was built in 1976 for testing MSFC's HEAO-2. The facility is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produced a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performance in space is predicted. The original facility contained a 1,000-foot long by 3-foot diameter vacuum tube (for the x-ray path) cornecting an x-ray generator and an instrument test chamber. Recently, the facility was upgraded to evaluate the optical elements of NASA's Hubble Space Telescope, Chandra X-Ray Observatory and Compton Gamma-Ray Observatory.

  18. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This image is an observation of Quasar 3C 273 by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. It reveals the presence of a new source (upper left) with a red shift that indicates that it is about 10 billion light years away. Quasars are mysterious, bright, star-like objects apparently located at the very edge of the visible universe. Although no bigger than our solar system, they radiate as much visible light as a thousand galaxies. Quasars also emit radio signals and were previously recognized as x-ray sources. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2 was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center.

  19. The Aosta Valley Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Carbognani, A.

    2011-06-01

    OAVdA stands for Astronomical Observatory of the Autonomous Region of the Aosta Valley (Italy). The centre is located in the northwestern Italian Alps, near the border with France and Switzerland (Lat: 45° 47' 22" N, Long: 7° 28' 42" E), at 1675 m above sea level in the Saint-Barthélemy Valley and is managed by the "Fondazione Clément Fillietroz", with funding from local administrations. OAVdA was opened in 2003 as a centre for the popularization of astronomy but, since 2006, the main activity has been scientific research, as a consequence of an official cooperation agreement established with the Italian National Institute for Astrophysics (INAF). In 2009, a planetarium was built near the observatory with a 10-meter dome and 67 seats, which is currently used for educational astronomy. In the year 2009 about 15,200 people visited OAVdA and the planetarium. The staff in 2010 was made up of 12 people, including a scientific team of 5 physicists and astronomers on ESF (European Social Fund) grants and permanently residing at the observatory.

  20. Chile: Political and Economic Conditions and U.S. Relations

    DTIC Science & Technology

    2010-02-18

    electoral democracy, which endured until 1973. During much of this period, Chile was governed by presidents who pursued import-substitution...the armed forces and other bodies. 6 Peter M. Siavelis, “ Electoral System, Coalitional Disintegration, and the Future of Chile’s Concertación...Course in Democracy,” Washington Post , November 25, 2006. 16 “Chile: Pinochet-era Education Law Finally Replaced,” Latin News Weekly Report, August 20

  1. Lessons from the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1998-12-01

    Over the past several years, we have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. Each telescope can be pointed and focused remotely, and filters, field of view and exposure times can be changed easily. The MicroObservatory Net consists of five of these telescopes. They are being deployed around the world at widely distributed longitudes for access to distant night skies during local daytime. Remote access to the MicroObservatories over the Internet has been available to select schools since 1995. The telescopes can be controlled in real time or in delay mode, from any computer using Web-based software. Individuals have access to all of the telescope control functions without the need for an `on-site' operator. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. Images are archived at the Web site, along with sample challenges and a user bulletin board, all of which encourage collaboration between schools. The Internet address of the telescopes is http://mo-www.harvard.edu/MicroObservatory/. The telescopes were designed for classroom instruction by teachers, as well as for use by students and amateur astronomers for original scientific research projects. In this talk, we will review some of the experiences we, students and teachers have had in using the telescopes. Support for the MicroObservatory Net has been provided by the NSF, Apple Computer, Inc. and Kodak, Inc.

  2. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2002-05-01

    The Little Thompson Observatory is believed to be the first of its kind, located next to a high school and accessible to other schools remotely over the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction was done completely by volunteer labor, and the observatory was built on the grounds of Berthoud High School in northern Colorado. During 2001, we averaged 400-500 visitors per month. We are grateful to have received a STScI IDEAS grant to provide teacher training workshops for K-12 schools in northern Colorado to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. We are honored that a committee of teachers and administrators from the Thompson School district have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Also in the past year, our training materials have been shared with NASA Goddard and Howard University, which are working together to develop a similar teacher education program. Our next goal is to add solar observing capability! Please visit our website at www.starkids.org.

  3. Estimating error statistics for Chambon-la-Forêt observatory definitive data

    NASA Astrophysics Data System (ADS)

    Lesur, Vincent; Heumez, Benoît; Telali, Abdelkader; Lalanne, Xavier; Soloviev, Anatoly

    2017-08-01

    We propose a new algorithm for calibrating definitive observatory data with the goal of providing users with estimates of the data error standard deviations (SDs). The algorithm has been implemented and tested using Chambon-la-Forêt observatory (CLF) data. The calibration process uses all available data. It is set as a large, weakly non-linear, inverse problem that ultimately provides estimates of baseline values in three orthogonal directions, together with their expected standard deviations. For this inverse problem, absolute data error statistics are estimated from two series of absolute measurements made within a day. Similarly, variometer data error statistics are derived by comparing variometer data time series between different pairs of instruments over few years. The comparisons of these time series led us to use an autoregressive process of order 1 (AR1 process) as a prior for the baselines. Therefore the obtained baselines do not vary smoothly in time. They have relatively small SDs, well below 300 pT when absolute data are recorded twice a week - i.e. within the daily to weekly measures recommended by INTERMAGNET. The algorithm was tested against the process traditionally used to derive baselines at CLF observatory, suggesting that statistics are less favourable when this latter process is used. Finally, two sets of definitive data were calibrated using the new algorithm. Their comparison shows that the definitive data SDs are less than 400 pT and may be slightly overestimated by our process: an indication that more work is required to have proper estimates of absolute data error statistics. For magnetic field modelling, the results show that even on isolated sites like CLF observatory, there are very localised signals over a large span of temporal frequencies that can be as large as 1 nT. The SDs reported here encompass signals of a few hundred metres and less than a day wavelengths.

  4. CHILE: An Evidence-Based Preschool Intervention for Obesity Prevention in Head Start

    PubMed Central

    Sanders, Sarah G.; FitzGerald, Courtney A.; Keane, Patricia C.; Canaca, Glenda F.; Volker-Rector, Renee

    2012-01-01

    BACKGROUND Obesity is a major concern among American Indians and Hispanics. The Child Health Initiative for Lifelong Eating and Exercise (CHILE) is an evidence-based intervention to prevent obesity in children enrolled in 16 Head Start (HS) Centers in rural communities. The design and implementation of CHILE are described. METHODS CHILE uses a socio-ecological approach to improve dietary intake and increase physical activity. The intervention includes: a classroom curriculum; teacher and food service training; family engagement; grocery store participation; and health care provider support. RESULTS Lessons learned from CHILE include: the need to consider availability of recommended foods; the necessity of multiple training sessions for teachers and food service; the need to tailor the family events to local needs; consideration of the profit needs of grocery stores; and sensitivity to the time constraints of health care providers. CONCLUSIONS HS can play an important role in preventing obesity in children. CHILE is an example of a feasible intervention that addresses nutrition and physical activity for preschool children that can be incorporated into HS curricula and aligns with HS national performance standards. PMID:23343323

  5. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This photograph shows a TRW technician inspecting the completely assembled Chandra X-ray Observatory (CXO) in the Thermal Vacuum Chamber at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  6. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This photograph shows TRW technicians preparing the assembled Chandra X-Ray Observatory (CXO) for an official unveiling at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  7. Foreshocks and aftershocks locations of the 2014 Pisagua, N. Chile earthquake: history of a megathrust earthquake nucleation

    NASA Astrophysics Data System (ADS)

    Fuenzalida Velasco, Amaya; Rietbrock, Andreas; Tavera, Hernando; Ryder, Isabelle; Ruiz, Sergio; Thomas, Reece; De Angelis, Silvio; Bondoux, Francis

    2015-04-01

    The April 2014 Mw 8.1 Pisagua earthquake occurred in the Northern Chile seismic gap: a region of the South American subduction zone lying between Arica city and the Mejillones Peninsula. It is believed that this part of the subduction zone has not experienced a large earthquake since 1877. Thanks to the identification of this seismic gap, the north of Chile was well instrumented before the Pisagua earthquake, including the Integrated Plate boundary Observatory Chile (IPOC) network and the Chilean local network installed by the Centro Sismologico Nacional (CSN). These instruments were able to record the full foreshock and aftershock sequences, allowing a unique opportunity to study the nucleation process of large megathrust earthquakes. To improve azimuthal coverage of the Pisagua seismic sequence, after the earthquake, in collaboration with the Instituto Geofisico del Peru (IGP) we installed a temporary seismic network in south of Peru. The network comprised 12 short-period stations located in the coastal area between Moquegua and Tacna and they were operative from 1st May 2014. We also installed three stations on the slopes of the Ticsiani volcano to monitor any possible change in volcanic activity following the Pisagua earthquake. In this work we analysed the continuous seismic data recorded by CSN and IPOC networks from 1 March to 30 June to obtain the catalogue of the sequence, including foreshocks and aftershocks. Using an automatic algorithm based in STA/LTA we obtained the picks for P and S waves. Association in time and space defined the events and computed an initial location using Hypo71 and the 1D local velocity model. More than 11,000 events were identified with this method for the whole period, but we selected the best resolved events that include more than 7 observed arrivals with at least 2 S picks of them, to relocate these events using NonLinLoc software. For the main events of the sequence we carefully estimate event locations and we obtained

  8. OSO-7 Orbiting Solar Observatory program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The seventh Orbiting Solar Observatory (OSO-7) in the continuing series designed to gather solar and celestial data that cannot be obtained from the earth's surface is described. OSO-7 was launched September 29, 1971. It has been highly successful in returning scientific data giving new and important information about solar flare development, coronal temperature variations, streamer dynamics of plasma flow, and solar nuclear processes. OSO-7 is expected to have sufficient lifetime to permit data comparisons with the Skylab A mission during 1973. The OSO-7 is a second generation observatory. It is about twice as large and heavy as its predecessors, giving it considerably greater capability for scientific measurements. This report reviews mission objectives, flight history, and scientific experiments; describes the observatory; briefly compares OSO-7 with the first six OSO's; and summarizes the performance of OSO-7.

  9. First description of Echinococcus ortleppi and cystic echinococcosis infection status in Chile.

    PubMed

    Corrêa, Felipe; Stoore, Caroll; Horlacher, Pamina; Jiménez, Mauricio; Hidalgo, Christian; Alvarez Rojas, Cristian A; Figueiredo Barros, Guilherme; Bunselmeyer Ferreira, Henrique; Hernández, Marcela; Cabrera, Gonzalo; Paredes, Rodolfo

    2018-01-01

    Cystic echinococcosis (CE), a parasitic disease caused by the cestode Echinococcus granulosus sensu lato (s.l.), is a worldwide zoonotic infection. Although endemic in Chile, information on the molecular characteristics of CE in livestock remains scarce. Therefore we aimed to describe the status of infection with E. granulosus s.l. in cattle from central Chile and also to contribute to the study of the molecular epidemiology of this parasite. According to our results, the prevalence of CE is 18.84% in cattle, similar to previous reports from Chile, suggesting that the prevalence in Santiago Metropolitan area has not changed in the last 30 years. Most of the cysts were found only in lungs (51%), followed by concurrent infection in liver and lungs (30%), and only liver (19%). Molecular characterization of the genetic diversity and population structure of E. granulosus s.l. from cattle in central Chile was performed using a section of the cytochrome c oxidase subunit 1 (cox1) mitochondrial gene. E. granulosus sensu stricto (s.s.) (G1-G3 genotypes) was confirmed by RFLP-PCR to be the dominant species affecting cattle (284 samples/290 samples); we also report for the first time in Chile the presence of E. ortleppi (G5 genotype) (2 samples/61 samples). The Chilean E. granulosus s.s. parsimony network displayed 1 main haplotype. Additional studies using isolates from many locations across Chile and different intermediate hosts will provide more data on the molecular structure of E. granulosus s.s. within this region. Likewise, investigations of the importance of E. ortleppi in human infection in Chile deserve future attention.

  10. The Stratospheric Observatory for Infrared Astronomy (SOFIA) - Current Status, Recent Results, Future Plans, and Synergies with the AKARI Archive

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2017-01-01

    The Stratospheric Observatory for Infrared Astronomy comprises a 2.7m diameter telescope mounted in a heavily modified B747SP aircraft. The SOFIA program is a joint US NASA and German DLR program, with the development and operations costs split roughly 80%:20%, respectively. Although the observatory is funded by these two nations, its observing time is open to proposals from astronomers of any nationality. The observatory has been flying and taking scientific data since 2010 and currently observes astronomical targets from the stratosphere for approximately 800 research flight hours per year. Seven science instruments (with an eighth coming online in 2020) cover the visible to sub-millimeter wavelengths with a variety of spectral resolutions ranging up to 1e8. The AKARI Archive with its 1.7 to 180 micron wavelength coverage is a natural complementary source for follow-up observations with SOFIA. This presentation will cover the current SOFIA technical capabilities and will present a few recent science highlights that demonstrate the SOFIA/AKARI complementarity. The presentation will also cover the SOFIA proposal process and will summarize other partnership opportunities for additional observing time on SOFIA.

  11. [Geographical distribution of physicians in Chile].

    PubMed

    Goic, A

    1995-03-01

    In 1994, Chile had 15,451 active physicians (less than 70 years old) for a population of 14,027,344 with a ratio of 1 physician per 908 inhabitants, a satisfactory figure compared to other countries of similar socio-economical development. Ratios of 1:880 and 1:843 are projected for 1999 and 2004 respectively. The annual rate of physician's population growth (2.2%), that is superior to the general population's growth rate (1.6%), will increase to about 2.5% per annum in 2001 as a consequence of the creation of three new medical schools. However, the distribution of physicians along the country is unsatisfactory. While the capital (Metropolitan Region) has a ratio of 1 physician per 629 inhabitants, the figure for the Region of Maule is 1:2,113. Only two of ten regions, excepting the capital, have a ratio lower than 1:1,000. Sixty percent of physicians live in Santiago while only 40% of the general population does so, illustrating their high concentration. Median ratio in Chile, that better reflects the reality than the mean, is 1:1,280. The heterogeneous distribution of physicians in Chile is a sign of social inequity that must be corrected. In a free society a better physician distribution is achieved with economical and professional incentives given by health institutions.

  12. Complexity in Size, Recurrence and Source of Historical Earthquakes and Tsunamis in Central Chile

    NASA Astrophysics Data System (ADS)

    Cisternas, M.

    2013-05-01

    Central Chile has a 470-year-long written earthquake history, the longest of any part of the country. Thanks to the early and continuous Spanish settlement of this part of Chile (32°- 35° S), records document destructive earthquakes and tsunamis in 1575, 1647, 1730, 1822, 1906 and 1985. This sequence has promoted the idea that central Chile's large subduction inter-plate earthquakes recur at regular intervals of about 80 years. The last of these earthquakes, in 1985, was even forecast as filling a seismic gap on the thrust boundary between the subducting Nazca Plate and the overriding South America Plate. Following this logic, the next large earthquake in metropolitan Chile will not occur until late in the 21st century. However, here I challenge this conclusion by reporting recently discovered historical evidence in Spain, Japan, Peru, and Chile. This new evidence augments the historical catalog in central Chile, strongly suggests that one of these earthquakes previously assumed to occur on the inter-plate interface in fact occurred elsewhere, and forces the conclusion that another of these earthquakes (and its accompanying tsunami) dwarfed the others. These findings complicate the task of assessing the hazard of future earthquakes in Chile's most populated region.

  13. 77 FR 12903 - Suggestions for Environmental Cooperation Pursuant to the United States-Chile Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... the U.S.-Chile Free Trade Agreement; and (4) the Environmental Review of the U.S.-Chile Free Trade....- Chile Free Trade Agreement (FTA). The Commission is to meet every two years to advance environmental... granting of money is directly associated with this request for suggestions for the Work Program. There is...

  14. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1970-01-01

    This artist's concept depicts the third observatory, the High Energy Astronomy Observatory (HEAO)-3 in orbit. Designed and developed by TRW, Inc. under the direction of the Marshall Space Flight Center, the HEAO-3's mission was to survey and map the celestial sphere for gamma-ray flux and make detailed measurements of cosmic-ray particles. It carried three scientific experiments: a gamma-ray spectrometer, a cosmic-ray isotope experiment, and a heavy cosmic-ray nuclei experiment. The HEAO-3 was originally identified as HEAO-C but the designation was changed once the spacecraft achieved orbit.

  15. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-01-01

    This photograph shows the High Energy Astronomy Observatory (HEAO)-1 being assembled at TRW Systems of Redondo Beach, California. The HEAO was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit.

  16. Education and public engagement in observatory operations

    NASA Astrophysics Data System (ADS)

    Gabor, Pavel; Mayo, Louis; Zaritsky, Dennis

    2016-07-01

    Education and public engagement (EPE) is an essential part of astronomy's mission. New technologies, remote observing and robotic facilities are opening new possibilities for EPE. A number of projects (e.g., Telescopes In Education, MicroObservatory, Goldstone Apple Valley Radio Telescope and UNC's Skynet) have developed new infrastructure, a number of observatories (e.g., University of Arizona's "full-engagement initiative" towards its astronomy majors, Vatican Observatory's collaboration with high-schools) have dedicated their resources to practical instruction and EPE. Some of the facilities are purpose built, others are legacy telescopes upgraded for remote or automated observing. Networking among institutions is most beneficial for EPE, and its implementation ranges from informal agreements between colleagues to advanced software packages with web interfaces. The deliverables range from reduced data to time and hands-on instruction while operating a telescope. EPE represents a set of tasks and challenges which is distinct from research applications of the new astronomical facilities and operation modes. In this paper we examine the experience with several EPE projects, and some lessons and challenges for observatory operation.

  17. Georg Neumayer and Melbourne Observatory: an institutional legacy

    NASA Astrophysics Data System (ADS)

    Gillespie, Richard

    This paper assesses Georg Neumayer's impact on the Victorian scientific community, and especially his role in the establishment of Melbourne Observatory as a major scientific institution in colonial Australia. Neumayer's arrival in Melbourne to pursue his own scientific project triggered a chain of events that would lead to the creation of Melbourne Observatory and the integration of Neumayer's geomagnetic and meteorological research into the ongoing program of the observatory. The location of the observatory in South Yarra was a direct result of Neumayer's insistence that the site was the most suitable for geomagnetic measurement. Most critically, Neumayer's attempts to get approval for his project highlighted the need for local scientists to establish political and scientific alliances that would ensure endorsement by international, notably British, scientists, and that would persuade local elites and government of the practical value of their research.

  18. The Science and Design of the AGIS Observatory

    NASA Astrophysics Data System (ADS)

    Schroedter, Martin

    2010-02-01

    The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100 GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05^o diameter) camera. The instrument is designed to provide millicrab sensitivity over a wide (8^o diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. I will describe science drivers behind the AGIS observatory and the design and status of the project. )

  19. The Science and Design of the AGIS Observatory

    NASA Astrophysics Data System (ADS)

    Falcone, Abraham; Aliu, E.; Arlen, T.; Benbow, W.; Buckley, J.; Bugaev, S.; Byrum, K.; Ciupik, L.; Coppi, P.; Digel, S.; Drake, G.; Finley, J.; Fortson, L.; Franco, J.; Funk, S.; Guarino, V.; Gyuk, G.; Hanna, D.; Hiriart, D.; Humensky, B.; Holder, J.; Kaaret, P.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; LeBohec, S.; Maier, G.; Mukherjee, R.; Ong, R.; Otte, N.; Pareschi, G.; Pohl, M.; Quinn, J.; Ramsey, B.; Romani, R.; Rovero, A. C.; Schroedter, M.; Sinnis, C.; Slane, P.; Smith, A.; Swordy, S.; Tajima, H.; Vassiliev, V.; Wagner, R.; Wakely, S. P.; Weekes, T. C.; Weinstein, A.; Williams, D.

    2010-01-01

    The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05 degree/pixel) camera. The instrument is designed to provide millicrab sensitivity over a wide (8 degree diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. This presentation will include a description of science drivers behind the AGIS observatory and the design and status of the project.

  20. Global TIE Observatories: Real Time Observational Astronomy Through a Robotic Telescope Network

    NASA Astrophysics Data System (ADS)

    Clark, G.; Mayo, L. A.

    2001-12-01

    activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. This presentation describes the Global TIE Observatory data and organizational systems and details the technology, partnerships, operational capabilities, science applications, and learning opportunities that this powerful virtual observatory network will provide.

  1. Transient Astrophysics Observatory (TAO)

    NASA Astrophysics Data System (ADS)

    Racusin, J. L.; TAO Team

    2016-10-01

    The Transient Astrophysics Observatory (TAO) is a NASA MidEx mission concept (formerly known as Lobster) designed to provide simultaneous wide-field gamma-ray, X-ray, and near-infrared observations of the sky.

  2. Astronomical Observatory of Belgrade from 1924 to 1955

    NASA Astrophysics Data System (ADS)

    Radovanac, M.

    2014-12-01

    History of the Astronomical Observatory in Belgrade, as the presentation is done here, become the field of interest to the author of the present monograph in early 2002. Then, together with Luka C. Popovic, during the Conference "Development of Astronomy among Serbs II" held in early April of that year, he prepared a paper entitled "Astronomska opservatorija tokom Drugog Svetskog rata" (Astronomical Observatory in the Second World War). This paper was based on the archives material concerning the Astronomical Observatory which has been professionally bearing in mind the author's position the subject of his work.

  3. University Observatory, Ludwig-Maximilians-Universität

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The University Observatory of Ludwig-Maximilians-Universität was founded in 1816. Astronomers who worked or graduated at the Munich Observatory include: Fraunhofer, Soldner, Lamont, Seeliger and Karl Schwarzschild. At present four professors and ten staff astronomers work here. Funding comes from the Bavarian Government, the German Science Foundation, and other German and European research progra...

  4. A Tsunami Model for Chile for (Re) Insurance Purposes

    NASA Astrophysics Data System (ADS)

    Arango, Cristina; Rara, Vaclav; Puncochar, Petr; Trendafiloski, Goran; Ewing, Chris; Podlaha, Adam; Vatvani, Deepak; van Ormondt, Maarten; Chandler, Adrian

    2014-05-01

    Catastrophe models help (re)insurers to understand the financial implications of catastrophic events such as earthquakes and tsunamis. In earthquake-prone regions such as Chile,(re)insurers need more sophisticated tools to quantify the risks facing their businesses, including models with the ability to estimate secondary losses. The 2010 (M8.8) Maule (Chile) earthquake highlighted the need for quantifying losses from secondary perils such as tsunamis, which can contribute to the overall event losses but are not often modelled. This paper presents some key modelling aspects of a new earthquake catastrophe model for Chile developed by Impact Forecasting in collaboration with Aon Benfield Research partners, focusing on the tsunami component. The model has the capability to model tsunami as a secondary peril - losses due to earthquake (ground-shaking) and induced tsunamis along the Chilean coast are quantified in a probabilistic manner, and also for historical scenarios. The model is implemented in the IF catastrophe modelling platform, ELEMENTS. The probabilistic modelling of earthquake-induced tsunamis uses a stochastic event set that is consistent with the seismic (ground shaking) hazard developed for Chile, representing simulations of earthquake occurrence patterns for the region. Criteria for selecting tsunamigenic events (from the stochastic event set) are proposed which take into consideration earthquake location, depth and the resulting seabed vertical displacement and tsunami inundation depths at the coast. The source modelling software RuptGen by Babeyko (2007) was used to calculate static seabed vertical displacement resulting from earthquake slip. More than 3,600 events were selected for tsunami simulations. Deep and shallow water wave propagation is modelled using the Delft3D modelling suite, which is a state-of-the-art software developed by Deltares. The Delft3D-FLOW module is used in 2-dimensional hydrodynamic simulation settings with non-steady flow

  5. Environmental effects on lunar astronomical observatories

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Taylor, G. Jeffrey; Wetzel, John P.

    1992-01-01

    The Moon offers a stable platform with excellent seeing conditions for astronomical observations. Some troublesome aspects of the lunar environment will need to be overcome to realize the full potential of the Moon as an observatory site. Mitigation of negative effects of vacuum, thermal radiation, dust, and micrometeorite impact is feasible with careful engineering and operational planning. Shields against impact, dust, and solar radiation need to be developed. Means of restoring degraded surfaces are probably essential for optical and thermal control surfaces deployed in long-lifetime lunar facilities. Precursor missions should be planned to validate and enhance the understanding of the lunar environment (e.g., dust behavior without and with human presence) and to determine environmental effects on surfaces and components. Precursor missions should generate data useful in establishing keepout zones around observatory facilities where rocket launches and landings, mining, and vehicular traffic could be detrimental to observatory operation.

  6. Developing an astronomical observatory in Paraguay

    NASA Astrophysics Data System (ADS)

    Troche-Boggino, Alexis E.

    Background: Paraguay has some heritage from the astronomy of the Guarani Indians. Buenaventura Suarez S.J. was a pioneer astronomer in the country in the XVIII century. He built various astronomical instruments and imported others from England. He observed eclipses of Jupiter's satellites and of the Sun and Moon. He published his data in a book and through letters. The Japanese O.D.A. has collaborated in obtaining equipment and advised their government to assist Paraguay in building an astronomical observatory, constructing a moving-roof observatory and training astronomers as observatory operators. Future: An astronomical center is on the horizon and some possible fields of research are being considered. Goal: To improve education at all possible levels by not only observing sky wonders, but also showing how instruments work and teaching about data and image processing, saving data and building a data base. Students must learn how a modern scientist works.

  7. Stratospheric Observatory for Infrared Astornomy and Planetary Science

    NASA Astrophysics Data System (ADS)

    Reach, William T.; SOFIA Sciece Mission Operations

    2016-10-01

    The Stratospheric Observatory for Infrared Astronomy enables observations at far-infrared wavelengths, including the range 30-300 microns that is nearly completely obscured from the ground. By flying in the stratosphere above 95% of atmospheric water vapor, access is opened to photometric, spectroscopic, and polarimetric observations of Solar System targets spanning small bodies through major planets. Extrasolar planetary systems can be observed through their debris disks or transits, and forming planetary systems through protoplanetary disks, protostellar envelopes, and molecular cloud cores. SOFIA operates out of Southern California most of the year. For the summer of 2016, we deployed to New Zealand with 3 scientific instruments. The HAWC+ far-infrared photopolarimeter was recently flown and is in commissioning, and two projects are in Phase A study to downselect to one new facility instrument. The Cycle 5 observing proposal results are anticipated to be be released by the time of this DPS meeting, and successful planetary proposals will be advertised.

  8. [Mental disorders among immigrants in Chile].

    PubMed

    Rojas, Graciela; Fritsch, Rosemarie; Castro, Ariel; Guajardo, Viviana; Torres, Pamela; Díaz, Berta

    2011-10-01

    Chile is receiving immigrant populations coming from other Latin-American countries. To determine the prevalence of Common Mental Disorders (CMD) among immigrants who live in Independencia, a quarter in Santiago, Chile. A cross sectional study was carried out in the primary health care clinic and in the state-funded school of Independencia. A representative sample of 282 adults and 341 children were interviewed. Mental disorders were diagnosed using CIS-R and MINI structured interviews. The interviewed immigrants came mostly from Peru. The prevalence of mental disorders in the adult population was 17.8% and among children, it was 29.3%. The adult immigrants have a lower prevalence of mental disorders than the Chilean population but it increases among children. Barriers of access to health services, that should be solved, were detected.

  9. [Risk groups for tuberculosis in Chile].

    PubMed

    Herrera, Tania

    2015-02-01

    Tuberculosis (TB) remains a major global and national problem. In Chile the incidence rate has remained at 13 per 100,000 inhabitants for several years without tendency to the expected decline that would allow their elimination by 2020. As a low prevalence country, TB cases have been concentrated in risk groups, reaching 33% in 2013, and this proportion increases as younger people are analyzed. The main risk groups in Chile are HIV co-infection, foreigners and population of prisons. By 2013, the proportion of cases for these three groups was 8.7%, 8.4% and 3.9% respectively, and these percentages vary significantly when regional situation is analyzed. In addition, many of these patients have more than one risk factor, demons-rating the existence of clusters more vulnerable to TB.

  10. Fostering Student Awareness in Observatory STEM Careers

    NASA Astrophysics Data System (ADS)

    Keonaonaokalauae Acohido, Alexis Ann; Michaud, Peter D.; Gemini Public Information and Outreach Staff

    2016-01-01

    It takes more than scientists to run an observatory. Like most observatories, only about 20% of Gemini Observatory's staff is PhD. Scientists, but 100% of those scientists would not be able to do their jobs without the help of engineers, administrators, and other support staff that make things run smoothly. Gemini's Career Brochure was first published in 2014 to show that there are many different career paths available (especially in local host communities) at an astronomical observatory. Along with the printed career brochure, there are supplementary videos available on Gemini's website and Youtube pages that provide a more detailed and personal glimpse into the day-in-the-life of a wide assortment of Gemini employees. A weakness in most observatory's outreach programming point to the notion that students (and teachers) feel there is a disconnect between academics and where students would like to end up in their career future. This project is one of the ways Gemini addresses these concerns. During my 6-month internship at Gemini, I have updated the Career Brochure website conducted more in-depth interviews with Gemini staff to include as inserts with the brochure, and expanded the array of featured careers. The goal of my work is to provide readers with detailed and individualized employee career paths to show; 1) that there are many ways to establish a career in the STEM fields, and 2), that the STEM fields are vastly diverse.

  11. [Illegitimate patients: Undocumented immigrants' access to health care in Chile].

    PubMed

    Concha, Nanette Liberona; Mansilla, Miguel Ángel

    2017-01-01

    In recent decades, Chile has become a destination for immigrants from other South American countries, which has significantly impacted public services - particularly the public health system - at the economic, social, and cultural levels. The aim of this paper is to provide substantiated information on issues concerning undocumented immigrants' access to health care in Chile. A qualitative methodology, fundamentally an ethnography of the clinical setting, was used. Results were then analyzed in relation to theories of power asymmetries and interethnic relations. The research results highlight the lack of compliance with existing regulations and the exercise of discretionary personal judgment as barriers to access. It is concluded that in Chile immigrants in general, and undocumented immigrants in particular, are considered to be illegitimate patients.

  12. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  13. Chile: Una Vision Politica, Economica y Social (Chile: A Political, Economic, and Social View).

    ERIC Educational Resources Information Center

    Cortes-Hwang, Adriana

    1972-01-01

    This address seeks to explain in brief the historical background and political, economic, and social conditions leading to the democratic election of a Marxist president in Chile. A historical sketch of Chilean government from independence in 1810 is provided with a description of the situation just before Salvador Allende's election in 1969. Some…

  14. World Virtual Observatory Organization

    NASA Astrophysics Data System (ADS)

    Ignatyev, Mikhail; Pinigin, Gennadij

    On the base of experience of our Unoversity and Observatory we investigate the seven blocks model of virtual organization for consolidation of resources. This model consists of the next blocks: 1.Population-scientists students robots and agents. 2.Aspiration of population groups. 3.Territory. 4.Production. 5.Ecology and safety. 6.Finance. 7. External relations - input and output flows of population information resources.The world virtual observatory is the virtual world which consists of three groups of variables - appearances essences and structured uncertainty which defines the number and distribution of arbitrary coefficients in equivalent equations. The consolodation of recources permit to create the large telescopes with distributed structure on our planet and cosmos. Virtual instruments can have the best characteristics by means of collective effects which have investigated in our paper.

  15. MMS Observatory TV Results Contamination Summary

    NASA Technical Reports Server (NTRS)

    Rosecrans, Glenn; Brieda, Lubos; Errigo, Therese

    2014-01-01

    The Magnetospheric Multiscale (MMS) mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earth's magnetosphere. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. In this paper, we report on the extensive thermal vacuum testing campaign. The testing was performed at the Naval Research Laboratory utilizing the "Big Blue" vacuum chamber. A total of ten thermal vacuum tests were performed, including two chamber certifications, three dry runs, and five tests of the individual MMS observatories. During the test, the observatories were enclosed in a thermal enclosure known as the "hamster cage". The enclosure allowed for a detailed thermal control of various observatory zone, but at the same time, imposed additional contamination and system performance requirements. The environment inside the enclosure and the vacuum chamber was actively monitored by several QCMs, RGA, and up to 18 ion gauges. Each spacecraft underwent a bakeout phase, which was followed by 4 thermal cycles. Unique aspects of the TV campaign included slow pump downs with a partial represses, thruster firings, Helium identification, and monitoring pressure spikes with ion gauges. Selected data from these TV tests is presented along with lessons learned.

  16. Transpiration Rate for Chile Peppers Irrigated with Brackish Groundwater and ro Concentrate

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Baath, G.

    2016-12-01

    Fresh water availability is declining in most of the semi-arid and arid regions across the world including southwestern United States. Use of marginal quality groundwater has been increasing for sustaining agriculture in these arid regions. Reverse Osmosis (RO) can treat brackish groundwater but the possibility of using RO concentrate for irrigation needs further exploration. This greenhouse study evaluates the transpiration rate, water use, leaching fraction and yield responses of five selected chile pepper (Capsicum annuum) cultivars irrigated with natural brackish groundwater and RO concentrate. The four saline water treatments used for irrigation were tap water of EC 0.6 (control), ground water of EC 3 and 5 dS/m and RO concentrate of EC 8 dS/m. The transpiration of all chile peppers cultivars decreased and leaching fraction increased with increasing irrigation water salinity. Based on the water use efficiency (WUEY) of selected chile pepper cultivars, brackish water of EC ≤ 3 dS/m can be used for irrigation. The average yield of chile peppers was stable up to a saturated soil paste extract electrical conductivity (ECe) of about 2 dS/m, although further increases in ECe resulted in an exponential yield decline. This study showed that yield reductions in chile peppers irrigated with Ca rich brackish groundwater were less than those reported using NaCl dominant saline solution studies. Environmentally safe reuse of RO concentrate could stimulate implementation of inland desalination in water scarce areas and increase greenhouse chile pepper cultivation.

  17. Global Health Observatory (GHO)

    MedlinePlus

    ... monitoring partnerships, including the Countdown to 2030 and academic institutions. – Access the portal Global Observatory on Health ... global situation and trends highlights, using core indicators, database views, major publications and links to relevant web ...

  18. Cyberinfrastructure (CI) for Interactive Ocean Observatories: LOOKING Ahead

    NASA Astrophysics Data System (ADS)

    Orcutt, J.; Abbott, M.; Bellingham, J.; Chave, A.; Delaney, J.; Johnson, R.; Lazowska, E.; Moline, M.; Smarr, L.

    2004-12-01

    Investments in next-generation facilities to achieve a permanent, interactive telepresence throughout remote or hostile environments can empower a broad spectrum of autonomous sensornet facilities through the NSF Major Research Equipment and Facililties Construction Ocean Observatories Initiative (OOI). These systems must involve powerful suites of generic cyberinfrastructure tools designed to optimize access and benefits to a large academic and public user base. Many future research and educational efforts focused throughout the ocean basins, especially within heavily populated coastal regions, will be empowered by these new systems. Our project LOOKING (Laboratory for the Ocean Observatory Knowledge Integration Grid) is developing prototype CI for the OOI to achieve these goals. In the case of ocean observatory networks, it is essential to establish powerful network infrastructures linking the wet or subsea portion, with a host of shore station facilities. These components in turn must seamlessly communicate with an ensemble of data repositories, and relevant computer and visualization resources designed to serve a widely diverse ocean science community with real time, broadband access to all observatory system data, products, and metadata. This infrastructure must be secure, reliable, and resilient. It must meet the potentially ambitious latency, bandwidth, and performance requirements demanded by a set of evolving autonomous sensor platforms over a period of decades. This Grid environment must seamlessly interconnect all relevant national and international research and education nets accessible through high speed, next generation communication networks. The primary components of LOOKING are remote services that fulfill the CI needs of the ocean observatory community. These services arise from overarching science and education requirements: 1) Instrument Services operate at the sensor end of an ocean observatory, and are dominantly but not exclusively wet. 2

  19. Orbiting Geophysical Observatory Attitude Control Subsystem Design Survey. NASA/ERC Design Criteria Program, Guidance and Control

    NASA Technical Reports Server (NTRS)

    Mc Kenna, K. J.; Schmeichel, H.

    1968-01-01

    This design survey summarizes the history of the Orbiting Geophysical Observatories' (OGO) Attitude Control Subsystem (ACS) from the proposal phase through current flight experience. Problems encountered in design, fabrication, test, and on orbit are discussed. It is hoped that the experiences of the OGO program related here will aid future designers.

  20. Assessment of models proposed for the 1981 revision of the IGRF.

    USGS Publications Warehouse

    Peddie, N.W.; Fabiano, E.B.

    1982-01-01

    For the second revision of the International Geomagnetic Reference Field (IGRF), the US National Aeronautics and Space Administration (NASA), the UK Institute of Geological Sciences (IGS), and the US Geological Survey (USGS) submitted proposed models of the Earth's main magnetic field at 1965.0, 1970.0, 1975.0, and 1980.0, and its secular variation during 1980-1985. We assessed the proposed models by comparing them with annual mean values from worldwide magnetic observatories data for 1978-1980 from 63 US magnetic repeat stations, and rates-of-change values for worldwide magnetic observatories for 1965-1985 that were derived from straight lines fitted to annual means for 5-yr intervals. We also mutually compared the 1980 models.-from Authors

  1. The role of geomagnetic observatory data during the Swarm mission

    NASA Astrophysics Data System (ADS)

    Ridley, Victoria; Macmillan, Susan; Beggan, Ciaran

    2014-05-01

    The scientific use of Swarm magnetic data and Swarm-derived products is greatly enhanced through combination with observatory data and indices. The strength of observatory data is their long-term accuracy, with great care being taken to ensure temperature control and correction, platform stability and magnetic cleanliness at each site. Observatory data are being distributed with Swarm data as an auxiliary product. We describe the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. Existing collaborations, such as INTERMAGNET and the World Data Centres for Geomagnetism, are proving invaluable for this. We also discuss how observatory measurements are being used to ground-truth Swarm data as part of the Calibration/Validation effort. Recent efforts to improve the coverage and timeliness of observatory data have been encouraged and now over 60 INTERMAGNET observatories and several other high-quality observatories are providing close-to-definitive data within 3 months of measurement. During the Calibration/Validation period these data are gathered and homogenised on a regular basis by BGS. We then identify measurements collected during overhead passes of the Swarm satellites. For each pass, we remove an estimate of the main field from both the data collected at altitude and that collected on the ground. Both sets of data are then normalised relative to the data variance during all passes in the Calibration/Validation period. The absolute differences of the two sets of normalised data can be used as a metric of satellite data quality relative to observatory data quality. This can be examined by universal time, local time, disturbance level and geomagnetic latitude, for example. A preliminary study of CHAMP data, using definitive minute mean observatory data, has shown how this approach can provide a baseline for detecting abnormalities at all

  2. [The 140th anniversary of Revista Médica de Chile].

    PubMed

    Reyes, B Humberto; Andresen, H Max; Palma, H Joaquín

    2012-01-01

    Revista Médica de Chile was founded in 1872 and thus is one of the oldest medical journals being published since the 19th Century. The sponsoring institution--"Sociedad Médica de Santiago", founded in 1869--initially was the only scientific society in Chile, gathering medical doctors from every existing specialty. With the splitting of independent organizations representing specific specialties, including subspecial-ties of internal medicine, Sociedad Médica de Santiago focused its scope of action to become the "Chilean Society of Internal Medicine". Its official journal -Revista Médica de Chile--is currently a general and internal medicine journal that also publishes articles on scientific and technological advances in many fields of medicine and health sciences. While initially all authors were Chilean, the journal is now open to submissions from abroad and since the year 2000 articles are published in English when the local language of authors is not Spanish. The number of articles received determines an increasing administrative and editorial burden and, together with the high cost of publishing, will require changes in publication policies. The journal will participate in continuing medical education programs as soon as reaccreditation of medical specialties becomes officially organized in Chile.

  3. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    This image of the suspected Black Hole, Cygnus X-1, was the first object seen by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. According to the theories to date, one concept of a black hole is a star, perhaps 10 times more massive than the Sun, that has entered the last stages of stelar evolution. There is an explosion triggered by nuclear reactions after which the star's outer shell of lighter elements and gases is blown away into space and the heavier elements in the stellar core begin to collapse upon themselves. Once this collapse begins, the inexorable force of gravity continues to compact the material until it becomes so dense it is squeezed into a mere point and nothing can escape from its extreme gravitational field, not even light. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy.

  4. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    Like the Crab Nebula, the Vela Supernova Remnant has a radio pulsar at its center. In this image taken by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory, the pulsar appears as a point source surrounded by weak and diffused emissions of x-rays. HEAO-2's computer processing system was able to record and display the total number of x-ray photons (a tiny bundle of radiant energy used as the fundamental unit of electromagnetic radiation) on a scale along the margin of the picture. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  5. Turning a remotely controllable observatory into a fully autonomous system

    NASA Astrophysics Data System (ADS)

    Swindell, Scott; Johnson, Chris; Gabor, Paul; Zareba, Grzegorz; Kubánek, Petr; Prouza, Michael

    2014-08-01

    We describe a complex process needed to turn an existing, old, operational observatory - The Steward Observatory's 61" Kuiper Telescope - into a fully autonomous system, which observers without an observer. For this purpose, we employed RTS2,1 an open sourced, Linux based observatory control system, together with other open sourced programs and tools (GNU compilers, Python language for scripting, JQuery UI for Web user interface). This presentation provides a guide with time estimates needed for a newcomers to the field to handle such challenging tasks, as fully autonomous observatory operations.

  6. Urania in the Marketplace: Observatories as Holiday Destinations

    NASA Astrophysics Data System (ADS)

    Rumstay, Kenneth S.

    2015-01-01

    During the twentieth century astronomical imagery was frequently incorporated, by manufacturers of industrial and consumer goods, into advertisements which appeared in popular magazines in America. The domes and telescopes of major observatories were often featured. In some cases, particularly within the Golden State of California, major astronomical facilities (notably the Lick and Mt. Wilson Observatories) were touted as tourist attractions and were publicized as such by tourist bureaus, railroads, and hotels.A particularly interesting example is provided by the Hotel Vendome in San Jose. With completion of the Lick Observatory (and the 36-inch Great Refractor) in 1887, the local business community felt that the city needed a first-class resort hotel. The architectural firm of Jacob Lenzen & Son was hired to design a grand hotel, comparable to those found in locales such as Monterey and Pasadena. The resulting four-story, 150-room structure cost 250,000, a phenomenal sum in those days. Yet, within just fourteen years, tourist demand led to the construction of a 36-room annex. Of course, a great resort hotel would not be complete without the opportunity for excursion, and the Mt. Hamilton Stage Company offered daily trips to the famous Lick Observatory.Farther south, the Mt. Wilson Observatory began construction of its own hotel in 1905.The original structure was destroyed by fire in 1913, and replaced by a second which was used by visitors until 1966.Early examples of advertisements for these observatories, recalling the heyday of astronomical tourism, are presented. A few more recent ones for Arecibo and Palomar are included for comparison.

  7. Saint Petersburg magnetic observatory: from Voeikovo subdivision to INTERMAGNET certification

    NASA Astrophysics Data System (ADS)

    Sidorov, Roman; Soloviev, Anatoly; Krasnoperov, Roman; Kudin, Dmitry; Grudnev, Andrei; Kopytenko, Yury; Kotikov, Andrei; Sergushin, Pavel

    2017-11-01

    Since June 2012 the Saint Petersburg magnetic observatory is being developed and maintained by two institutions of the Russian Academy of Sciences (RAS) - the Geophysical Center of RAS (GC RAS) and the Saint Petersburg branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of RAS (IZMIRAN SPb). On 29 April 2016 the application of the Saint Petersburg observatory (IAGA code SPG) for introduction into the INTERMAGNET network was accepted after approval by the experts of the first definitive dataset over 2015, produced by the GC RAS, and on 9 June 2016 the SPG observatory was officially certified. One of the oldest series of magnetic observations, originating in 1834, was resumed in the 21st century, meeting the highest quality standards and all modern technical requirements. In this paper a brief historical and scientific background of the SPG observatory foundation and development is given, the stages of its renovation and upgrade in the 21st century are described, and information on its current state is provided. The first results of the observatory functioning are discussed and geomagnetic variations registered at the SPG observatory are assessed and compared with geomagnetic data from the INTERMAGNET observatories located in the same region.

  8. From research institution to astronomical museum: a history of the Stockholm Observatory

    NASA Astrophysics Data System (ADS)

    Yaskell, Steven Haywood

    2008-07-01

    The Royal Swedish Academy of Sciences (RSAS) (or Kungliga Vetenskapsakademien [KvA] in Swedish) founded 1739, opened its first permanent building, an astronomical and meteorological observatory, on 20 September 1753. This was situated at Brunkebergsåsen (formerly Observatorie Lunden, or Observatory Hill), on a high terrace in a northern quarter of Stockholm. This historic building is still sometimes called Gamla Observatoriet (the Old Observatory) and now is formally the Observatory Museum. This paper reviews the history of the Observatory from its function as a scientific astronomical institution to its relatively-recent relegation to museum status.

  9. The Compton Observatory Science Workshop

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R. (Editor); Gehrels, Neil (Editor); Dennis, Brian (Editor)

    1992-01-01

    The Compton Observatory Science Workshop was held in Annapolis, Maryland on September 23-25, 1991. The primary purpose of the workshop was to provide a forum for the exchange of ideas and information among scientists with interests in various areas of high energy astrophysics, with emphasis on the scientific capabilities of the Compton Observatory. Early scientific results, as well as reports on in-flight instrument performance and calibrations are presented. Guest investigator data products, analysis techniques, and associated software were discussed. Scientific topics covered included active galaxies, cosmic gamma ray bursts, solar physics, pulsars, novae, supernovae, galactic binary sources, and diffuse galactic and extragalactic emission.

  10. Automation of Coordinated Planning Between Observatories: The Visual Observation Layout Tool (VOLT)

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Koratkar, Anuradha; Kerbel, Uri; Pell, Vince

    2002-01-01

    Fulfilling the promise of the era of great observatories, NASA now has more than three space-based astronomical telescopes operating in different wavebands. This situation provides astronomers with the unique opportunity of simultaneously observing a target in multiple wavebands with these observatories. Currently scheduling multiple observatories simultaneously, for coordinated observations, is highly inefficient. Coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Because they are time-consuming and expensive to schedule, observatories often limit the number of coordinated observations that can be conducted. In order to exploit new paradigms for observatory operation, the Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center has developed a tool called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide a visual tool to automate the planning of coordinated observations by multiple astronomical observatories. Four of NASA's space-based astronomical observatories - the Hubble Space Telescope (HST), Far Ultraviolet Spectroscopic Explorer (FUSE), Rossi X-ray Timing Explorer (RXTE) and Chandra - are enthusiastically pursuing the use of VOLT. This paper will focus on the purpose for developing VOLT, as well as the lessons learned during the infusion of VOLT into the planning and scheduling operations of these observatories.

  11. Astronomical Research at the U.S. Air Force Academy Observatory

    NASA Astrophysics Data System (ADS)

    Della-Rose, Devin J.; Carlson, Randall E.; Chun, Francis K.; Giblin, Timothy W.; Novotny, Steven J.; Polsgrove, Daniel E.

    2018-01-01

    The U.S. Air Force Academy (USAFA) Observatory houses 61-cm and 41-cm Ritchey-Chrétien (RC) reflecting telescopes, and serves as the hub for a world-wide network of 50-cm RC reflectors known as the Falcon Telescope Network (FTN). Since the 1970s, the USAFA Observatory has hosted a wide range of student and faculty research projects including variable star photometry, exoplanet light curve and radial velocity studies, near-Earth object astrometry, and “lucky imaging” of manmade spacecraft. Further, the FTN has been used extensively for LEO through GEO satellite photometry and spectroscopy, and for exoplanet photometry. Future capabilities of our observatory complex include fielding several new FTN observatory sites and the acquisition of a 1-meter RC fast-tracking telescope at the USAFA Observatory.

  12. Camille Flammarion's observatory: towards a revival

    NASA Astrophysics Data System (ADS)

    Morel, P.; Pecker, J. C.; Flammarion, A.; Fuentes, P.; Stépanoff, C. A.; Sol, R.; Dufour, G.; Chaufour, R.; Goury-Laffont, J.

    2011-06-01

    Camille Flammarion's observatory, located in Juvisy-sur-Orge in the suburbs of Paris, has been idle since 1962. Property of the Société Astronomique de France (SAF), it was made available to the city of Juvisy-sur-Orge since 1971, and contains a unique collection of objects and books currently being sorted out. The observatory is being restored by the SAF, thanks to the support of the city of Juvisy-sur-Orge, the French Académie des Sciences and the ``Amis de Camille Flammarion'' association. In 2006, the Maxime Goury Laffont foundation funded the refurbishment of the 240 mm refractor and in 2007 funds were obtained to restore the dome and central building. The main aim of the project is to make this historical place a popular observatory dedicated to astronomy and the sciences which Camille Flammarion enjoyed and contributed to. It constitutes a unique example in France of synergies linking associations, municipality, regional- and national-level institutions.

  13. Rubella outbreaks following virus importations: the experience of Chile.

    PubMed

    Gallegos, Doris; Olea, Andrea; Sotomayor, Viviana; González, Claudia; Muñoz, Juan Carlos; Ramos, Mónica; Espinoza, M Cecilia; Mendoza, Gladys; Torres, Graciela; Espiñeira, Emilio; Andrade, Winston; Fernández, Jorge; Fasce, Rodrigo

    2011-09-01

    Strategies for accelerated control of rubella and congenital rubella syndrome (CRS) in Chile included mass vaccination of women of childbearing age in 1999 but did not include vaccination of adult men. We reviewed data from Chile's integrated surveillance system for measles, rubella, and CRS from 2004 through 2009 and describe the epidemiology of rubella outbreaks and implementation of control measures in 2005 and 2007 following mass vaccination of women. Population estimates from census data were used to calculate rubella incidence rates. The age distribution of rubella cases during 2007 was compared with rubella vaccination opportunities by birth cohort to orient mass vaccination of adult men. In 2005, an institutional outbreak of rubella occurred among male naval recruits 18-22 years of age, with 46 confirmed cases over a 5-month period. Beginning in March 2007, rubella outbreaks among young adults in the capital of Santiago spread throughout Chile, resulting in >4000 confirmed rubella cases. Delayed control measures and rapid dissemination among young adults led to widespread transmission. From 2007 through 2009, rubella incidence was highest among adult men not included in previous vaccination strategies. Mass vaccination of men 19-29 years of age was conducted in November 2007 to interrupt rubella transmission. Chile's experience suggests that vaccination strategies for rubella and CRS elimination need to include both men and women.

  14. [Availability of physicians and specialists in Chile].

    PubMed

    Guillou, Michèle; Carabantes C, Jorge; Bustos F, Verónica

    2011-05-01

    The availability and planning of Human Resources are important issues in many countries, as it is a key factor to cope with the critical challenges of Health Care Systems. In Chile, the Ministry of Health has undertaken several studies in order to improve knowledge about the medical workforce both in public and private sectors. The aim of this paper is to update and systematize the existing data on physicians and specialists availability in Chile. Several information sources were crossed to obtain new and more precise figures about this topic. According to the Internal Revenue System, 29.996 physicians practice medicine in the country, 43% of them hired in public services, part or full time. There is a high concentration of professionals in the central regions of Chile. Being the overall density of physicians of one per 559 inhabitants, the figures in the central region is one per 471 and one per more than 800 in the South and North. Between 2004 and 2008, the public sector increased its physician workforce by more than 80% in primary health care and more than 20% in the secondary and tertiary levels. This paper presents a method for a more rigorous identification of the categories of general practitioner and specialist respectively, and the results obtained from the databases used.

  15. Global Biogeochemical Fluxes Program for the Ocean Observatories Initiative: A Proposal. (Invited)

    NASA Astrophysics Data System (ADS)

    Ulmer, K. M.; Taylor, C.

    2010-12-01

    The overarching emphasis of the Global Biogeochemical Flux Ocean Observatories Initiative is to assess the role of oceanic carbon, both living and non-, in the Earth climate system. Modulation of atmospheric CO2 and its influence on global climate is a function of the quantitative capacity of the oceans to sequester organic carbon into deep waters. Critical to our understanding of the role of the oceans in the global cycling of carbon are the quantitative dynamics in both time and space of the fixation of CO2 into organic matter by surface ocean primary production and removal of this carbon to deep waters via the “biological pump”. To take the next major step forward in advancing our understanding of the oceanic biological pump, a global observation program is required that: (i) greatly improves constraints on estimates of global marine primary production (PP), a critical factor in understanding the global CO2 cycle and for developing accurate estimates of export production (EP); (ii) explores the spatiotemporal links between PP, EP and the biogeochemical processes that attenuate particulate organic carbon (POC) flux; (iii) characterizes microbial community structure and dynamics both in the surface and deep ocean; (iv) develops a comprehensive picture of the chemical and biological processes that take place from the surface ocean to the sea floor; (v) provides unique time-series samples for detailed laboratory-based chemical and biological characterization and tracer studies that will enable connections to be made between the operation of the biological pump at present and in the geologic past. The primary goal is to provide high quality biological and biogeochemical observational data for the modeling and prediction efforts of the global CO2 cycle research community. Crucial to the realization of the GBF-OOI is the development of reliable, long-term, time-series ocean observation platforms capable of precise

  16. Byurakan Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    This booklet is devoted to NAS RA V. Ambartsumian Byurakan Astrophysical Observatory and is aimed at people interested in astronomy and BAO, pupils and students, BAO visitors and others. The booklet is made as a visiting card and presents concise and full information about BAO. A brief history of BAO, the biography of the great scientist Viktor Ambartsumian, brief biographies of 13 other deserved scientists formerly working at BAO (B.E. Markarian, G.A. Gurzadyan, L.V. Mirzoyan, M.A. Arakelian, et al.), information on BAO telescopes (2.6m, 1m Schmidt, etc.) and other scientific instruments, scientific library and photographic plate archive, Byurakan surveys (including the famous Markarian Survey included in the UNESCO Memory of the World International Register), all scientific meetings held in Byurakan, international scientific collaboration, data on full research staff of the Observatory, as well as former BAO researchers, who have moved to foreign institutions are given in the booklet. At the end, the list of the most important books published by Armenian astronomers and about them is given.

  17. The Next Generation Airborne Observatory - SOFIA

    NASA Astrophysics Data System (ADS)

    Erickson, E. F.; Davidson, J. A.

    1993-05-01

    NASA and the astronomical community have planned SOFIA - the Stratospheric Observatory for Infrared Astronomy - to extend and expand the capabilities of airborne astronomy. Just as the KAO telescope has three times the aperture of its Learjet predecessor, SOFIA's aperture will be three times that of the KAO. Thus SOFIA will surpass the angular resolution of the KAO by a factor of three and its per-pixel sensitivity by at least a factor of nine at wavelengths beyond 10 \\mm.. Following the tradition of the KAO and Learjet programs, the user community will provide most of the SOFIA focal plane instruments. Scientists will fly their new instruments as soon as they become operational, assuring immediate application of state-of-the-art technology throughout the anticipated 20 year observatory lifetime. Annual peer review of submitted proposals guarantees a vigorous observing program. Armed by 15-20 different instrument teams, reinforced by an additional ~ 50 guest investigator groups, and flying 160 8-hour sorties per year, SOFIA will attack a very broad range of astronomical problems. To name just a few, SOFIA will: probe km-scale structure of planetary atmospheres and ring systems; measure the luminosity function of young stellar objects down to values ~ less. 0.1 L\\sun.; identify accreting protostars; and trace structure and location of dominant energetic activity in IR-luminous galaxies with ~ 1 kpc resolution at 100 Mpc. The Astronomy and Astrophysics Survey (Bahcall) committee ranked SOFIA as the highest priority moderate cost new mission for NASA in the 1990s. SOFIA has been thoroughly studied and is ready to start development. If funding is available in FY95, SOFIA could be flying by the end of the decade.

  18. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F. G.; Schulz, J.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ˜2.4 km by ˜5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  19. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  20. Press Meeting 20 January 2003: First Light for Europe's Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2002-12-01

    international VO efforts in the United States and Asia-Pacific region. This is part of an International Virtual Observatory Alliance to define essential new data standards so that the VO concept can have a global dimension. The AVO partners will join with all astronomical data centres in Europe to put forward an FP6 IST (Sixth Framework Programme - Information Society Technologies Programme) Integrated Project proposal to make a European VO fully operational by the end of 2007.

  1. Properties of Cathodoluminescence for Cryogenic Applications of SiO2-based Space Observatory Optics and Coatings

    NASA Technical Reports Server (NTRS)

    Evans, Amberly; Dennison, J.R.; Wilson, Gregory; Dekany, Justin; Bowers Charles W.; Meloy, Robert; Heaney, James B.

    2013-01-01

    Disordered thin film SiO2SiOx coatings undergoing electron-beam bombardment exhibit cathodoluminescence, which can produce deleterious stray background light in cryogenic space-based astronomical observatories exposed to high-energy electron fluxes from space plasmas. As future observatory missions push the envelope into more extreme environments and more complex and sensitive detection, a fundamental understanding of the dependencies of this cathodoluminescence becomes critical to meet performance objectives of these advanced space-based observatories. Measurements of absolute radiance and emission spectra as functions of incident electron energy, flux, and power typical of space environments are presented for thin (60-200 nm) SiO2SiOx optical coatings on reflective metal substrates over a range of sample temperatures (40-400 K) and emission wavelengths (260-5000 nm). Luminescent intensity and peak wavelengths of four distinct bands were observed in UVVISNIR emission spectra, ranging from 300 nm to 1000 nm. A simple model is proposed that describes the dependence of cathodoluminescence on irradiation time, incident flux and energy, sample thickness, and temperature.

  2. The Bulimulidae (Mollusca: Pulmonata) from the Región de Atacama, northern Chile

    PubMed Central

    2015-01-01

    The bulimulid genus Bostryx Troschel, 1847 is the most species-rich genus of land snails found in Chile, with the majority of its species found only in the northern part of the country, usually in arid coastal zones. This genus has been sparsely studied in Chile and there is little information on their distribution, diversity or ecology. Here, for the first time, a formal analysis of the diversity of bulimulids in the Región de Atacama, northern Chile, is reported. Of the seventeen species recorded for the area, most of them were efectively found in the field collections and one record was based on literature. Five taxa are described as new: Bostryx ancavilorum sp. nov., Bostryx breurei sp. nov., Bostryx calderaensis sp. nov., Bostryx ireneae sp. nov. and Bostryx valdovinosi sp. nov., and the known geographic distribution of seven species is extended. Results reveal that the Región de Atacama is the richest region in terrestrial snails in Chile, after the Juan Fernández Archipelago. All of the terrestrial molluscan species occurring in the area are endemic to Chile, most of them with restricted geographic distributions along the coastal zones, and none of them are currently protected by law. Further sampling in northern Chile will probably reveal more snail species to be discovered and described. PMID:26587346

  3. The Bulimulidae (Mollusca: Pulmonata) from the Región de Atacama, northern Chile.

    PubMed

    Araya, Juan Francisco

    2015-01-01

    The bulimulid genus Bostryx Troschel, 1847 is the most species-rich genus of land snails found in Chile, with the majority of its species found only in the northern part of the country, usually in arid coastal zones. This genus has been sparsely studied in Chile and there is little information on their distribution, diversity or ecology. Here, for the first time, a formal analysis of the diversity of bulimulids in the Región de Atacama, northern Chile, is reported. Of the seventeen species recorded for the area, most of them were efectively found in the field collections and one record was based on literature. Five taxa are described as new: Bostryx ancavilorum sp. nov., Bostryx breurei sp. nov., Bostryx calderaensis sp. nov., Bostryx ireneae sp. nov. and Bostryx valdovinosi sp. nov., and the known geographic distribution of seven species is extended. Results reveal that the Región de Atacama is the richest region in terrestrial snails in Chile, after the Juan Fernández Archipelago. All of the terrestrial molluscan species occurring in the area are endemic to Chile, most of them with restricted geographic distributions along the coastal zones, and none of them are currently protected by law. Further sampling in northern Chile will probably reveal more snail species to be discovered and described.

  4. Indirect probes of supersymmetry breaking in the JEM-EUSO observatory

    NASA Astrophysics Data System (ADS)

    Albuquerque, Ivone F. M.; Cavalcante de Souza, Jairo

    2013-01-01

    In this paper we propose indirect probes of the supersymmetry-breaking scale, through observations in the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). We consider scenarios where the lightest supersymmetric particle is the gravitino, and the next-to-lightest supersymmetric particle (NLSP) is a long-lived slepton. We demonstrate that JEM-EUSO will be able to probe models where the NLSP decays, therefore probing supersymmetry-breaking scales below 5×106GeV. The observatory field of view will be large enough to detect a few tens of events per year, depending on its energy threshold. This is complementary to a previous proposal [I. Albuquerque , Phys. Rev. Lett. 92, 221802 (2004)PRLTAO0031-9007] where it was shown that 1km3 neutrino telescopes can directly probe this scale. NLSPs will be produced by the interaction of high-energy neutrinos in the Earth. Here we investigate scenarios where they subsequently decay, either in the atmosphere after escaping the Earth or right before leaving the Earth, producing taus. These can be detected by JEM-EUSO and have two distinctive signatures: one, they are produced in the Earth and go upwards in the atmosphere, which allows discrimination from atmospheric taus, and second, as NLSPs are always produced in pairs, coincident taus will be a strong signature for these events. Assuming that the neutrino flux is equivalent to the Waxman-Bahcall limit, we determine the rate of taus from NLSP decays reaching JEM-EUSO’s field of view.

  5. Cultural Heritage of Observatories and Instruments - From Classical Astronomy to Modern Astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    Until the middle of the 19th century positioal astronomy with meridian circles played the dominant role. Pulkovo Observatory, St. Petersburg, was the leading institution for this kind of research. The design of this observatory was a model for the construction of observatories in the 19th century. In addition, in Hamburg Observatory and in some other observatories near the coast, time keeping and teaching of navigation were important tasks for astronomers. Around 1860 astronomy underwent a revolution. Astronomers began to investigate the properties of celestial bodies with physical and chemical methods. In the context of “classical astronomy”, only the direction of star light was studied. In the 1860s quantity and quality of radiation were studied for the first time. This was the beginning of modern “astrophysics”, a notion coined in 1865 by the Leipzig astronomer Karl Friedrich Zöllner (1834-1882). It is remarkable that many amateurs started this new astrophysics in private observatories but not in the established observatories like Greenwich, Paris or Pulkovo. In Germany this development started in Bothkamp Observatory near Kiel, with Hermann Carl Vogel (1841-1907), strongly influenced by Zöllner. An important enterprise was the foundation of the Astrophysical Observatory in Potsdam, near Berlin, in 1874 as the first observatory in the world dedicated to astrophysics - a foundation that inspired others. Important innovations and discoveries were made in Potsdam. The new field of astrophysics caused, and was caused by, new instrumentation: spectrographs, instruments for astrophotography, photometers and solar physics instruments. In particular, the glass mirror reflecting telescope was recognised as a more important instrument than a large refractor; for the new observatory in Hamburg-Bergedorf a 1-m reflector, the fourth largest in the world, made by Zeiss of Jena, was acquired in 1911. Another change was made in the architecture, the idea of a park

  6. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Eric Ianson speaks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  7. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Ralph Basilio talks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  8. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Panelists are seen during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  9. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Charles Miller talks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  10. The Unexpected Awakening of Chaitén Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Carn, Simon A.; Pallister, John S.; Lara, Luis; Ewert, John W.; Watt, Sebastian; Prata, Alfred J.; Thomas, Ronald J.; Villarosa, Gustavo

    2009-06-01

    On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile's southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low-altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally. Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.

  11. The Unexpected Awakening of Chaitén Volcano, Chile

    USGS Publications Warehouse

    Carn, Simon A.; Zogorski, John S.; Lara, Luis; Ewert, John W.; Watt, Sebastian; Prata, Alfred J.; Thomas, Ronald J.; Villarosa, Gustavo

    2009-01-01

    On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile's southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low-altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally. Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.

  12. Chiquicamata Mine, Chile

    NASA Image and Video Library

    2016-08-24

    Chuquicamata, in Chile's Atacama Desert, is the largest open pit copper mine in the world, by excavated volume. The copper deposits were first exploited in pre-Hispanic times. Open pit mining began in the early 20th century when a method was developed to work low grade oxidized copper ores. The image was acquired September 2, 2007, covers an area of 19.5 by 29.3 km, and is located at 22.1 degrees south, 68.9 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA20973

  13. First Light of the Renovated Thacher Observatory

    NASA Astrophysics Data System (ADS)

    O'Neill, Katie; Yin, Yao; Edwards, Nick; Swift, Jonathan

    2017-01-01

    The Thacher Observatory, originally a collaboration between UCLA (P.I. G. Abell), Caltech, Pomona College, and the Thacher School, was built in the early 1960s. The goal of the facility was to serve as a training ground for undergraduate and graduate students in Los Angeles area colleges and also to provide hands-on technical training and experience for Thacher students. It was the birthplace of the Summer Science Program which continues today at other campuses. The observatory has now been fully renovated and modernized with a new, 0.7m telescope and dome that can be controlled remotely and in an automated manner. Science programs involving accurate and precise photometry have been initiated, and we project that we will be presenting the first scientific results of the renovated observatory at this meeting.

  14. Forest nursery management in Chile

    Treesearch

    Rene Escobar R.; Manuel Sanchez O.; Guillermo Pereira C.

    2002-01-01

    The forest economy in Chile is based on products from artificial reforestation efforts on approximately 2 million ha. From these, about 1.5 million ha (75%) are planted with Pinus radiata, 400,000 ha (20%) with species of Eucalyptus, principally E. globulus and E. nitens, and the rest (5%) composed by other...

  15. Analysis of seismicity and stress before and after the Mw 8.1 Pisagua, Chile, 2014 earthquake

    NASA Astrophysics Data System (ADS)

    Grigoli, F.; Cesca, S.; Dahm, T.; Hainzl, S.

    2014-12-01

    On April 1st, 2014 at 23:46:50 UTC, a powerful earthquake of magnitude Mw 8.1 occurred offshore the Northern Chile in the region of the North Chilean seismic gap. The epicenter of the earthquake was approximately 50 km offshore the Chilean coast, near the town of Pisagua. Two days after the main event a Mw 7.6 aftershock struck approximately the same area. In order to identify spatio-temporal changes of source parameters and stress before and after the mainshock, we analyzed in detail the local seismicity above magnitude Mw 3.0 within the time period 01/01/2013-30/04/2014 and estimated long term trends in b-values and earthquake productivity. We used data from the IPOC (Integrated Plate boundary Observatory Chile) regional seismic network, consisting of 20 "in land" broadband station deployed and managed by the GFZ-Potsdam. The recorded earthquake catalog shows an intense foreshock activity consisting of more than 1000 M3+ events in the source region. Full waveform techniques are used to derive both locations and focal mechanisms of about 435 seismic events. The location process has been performed by using a waveform stacking method (Grigoli et al 2013, 2014) with a layered velocity model based on CRUST 2.0 (see the attached figure for the location results of one of these events). Moment tensor inversion has been performed by using the KIWI tool software (Cesca et al. 2010), which is based on a two-step inversion approach. The first step consists in the inversion of the amplitude spectra to retrieve the best fitting focal planes, while the second inversion step is carried out in time domain to solve the focal mechanism polarity and to obtain the centroid location and time. Both location and moment tensor inversion resulted in agreement with the geodynamical settings of the region. Mapping the b-value reveals a spatiotemporal anomaly of low b-values characterizing the frequency-magnitude distribution of the foreshocks in the source area of the mainshock. Finally

  16. New University Law Decreed in Chile.

    ERIC Educational Resources Information Center

    Walsh, John

    1981-01-01

    Describes Chile's restructuring of higher education which emphasizes professional preparation in the universities and conforms to market-oriented economic theories of the government. Many of the social sciences and some natural science degree programs will be banished under this restructuring. (DS)

  17. NASA Names Premier X-Ray Observatory and Schedules Launch

    NASA Astrophysics Data System (ADS)

    1998-12-01

    NASA's Advanced X-ray Astrophysics Facility has been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel laureate, Subrahmanyan Chandrasekhar. The telescope is scheduled to be launched no earlier than April 8, 1999 aboard the Space Shuttle Columbia mission STS-93, commanded by astronaut Eileen Collins. Chandrasekhar, known to the world as Chandra, which means "moon" or "luminous" in Sanskrit, was a popular entry in a recent NASA contest to name the spacecraft. The contest drew more than six thousand entries from fifty states and sixty-one countries. The co-winners were a tenth grade student in Laclede, Idaho, and a high school teacher in Camarillo, CA. The Chandra X-ray Observatory Center (CXC), operated by the Smithsonian Astrophysical Observatory, will control science and flight operations of the Chandra X-ray Observatory for NASA from Cambridge, Mass. "Chandra is a highly appropriate name," said Harvey Tananbaum, Director of the CXC. "Throughout his life Chandra worked tirelessly and with great precision to further our understanding of the universe. These same qualities characterize the many individuals who have devoted much of their careers to building this premier X-ray observatory." "Chandra probably thought longer and deeper about our universe than anyone since Einstein," said Martin Rees, Great Britain's Astronomer Royal. "Chandrasekhar made fundamental contributions to the theory of black holes and other phenomena that the Chandra X-ray Observatory will study. His life and work exemplify the excellence that we can hope to achieve with this great observatory," said NASA Administrator Dan Goldin. Widely regarded as one of the foremost astrophysicists of the 20th century, Chandrasekhar won the Nobel Prize in 1983 for his theoretical studies of physical processes important to the structure and evolution of stars. He and his wife immigrated from India to the U.S. in 1935. Chandrasekhar served on the faculty of the University of

  18. A New Observatory for Eastern College: A Dream Realized

    NASA Astrophysics Data System (ADS)

    Bradstreet, D. H.

    1996-12-01

    The Eastern College Observatory began as a rooftop observing deck with one Celestron 8 telescope in 1976 as the workhorse instrument of the observational astronomy lab within the core curriculum. For 20 years the observing deck served as the crude observatory, being augmented through the years by other computerized Celestron 8's and a 17.5" diameter Dobsonian with computerized setting circles. The lab consisted primarily of visual observations and astrophotography. In 1987 plans were set into motion to raise money to build a permanent Observatory on the roof of the main classroom building. Fundraising efforts included three Jog-A-Thons (raising more than $40,000) and many donations from individuals and foundations. The fundraising was completed in 1996 and a two telescope observatory was constructed in the summer of 1996 complete with warm room, CCD cameras, computers, spectrograph, video network, and computerized single channel photometer. The telescopes are computerized 16" diameter Meade LX200 Schmidt-Cassegrains, each coupled to Gateway Pentium Pro 200 MHz computers. SBIG ST-8 CCD cameras were also secured for each telescope and an Optec SSP-7 photometer and Optomechanics Research 10C Spectrograph were also purchased. A Daystar H-alpha solar filter and Thousand Oaks visual light solar filter have expanded the Observatory's functionality to daytime observing as well. This is especially useful for the thousands of school children who frequent the Planetarium each year. The Observatory primarily serves the core astronomy lab where students must observe and photograph a prescribed number of celestial objects in a semester. Advanced students can take directed studies where they conduct photometry on eclipsing binaries or other variable stars or search for new asteroids. In addition, the Observatory and Planetarium are open to the public. Interested members of the community can reserve time on the telescopes and receive training and supervision from lab assistants

  19. Early Child Care Education: Evidence from the New Law in Chile

    ERIC Educational Resources Information Center

    Castillo, Felipe Aravena; Lobos, Marta Quiroga

    2017-01-01

    In the last decade, Chile has focused on early childhood education and care (ECEC) as a key opportunity to increase student-learning outcomes and decrease socio-economic inequalities. The creation of Chile's Under-Secretariat of ECEC in 2015 highlights the relevance of this educational stage. The purpose of this study is to analyse the new law…

  20. Astronomy and astrophysics communication in the UCM Observatory

    NASA Astrophysics Data System (ADS)

    Crespo-Chacón, I.; de Castro, E.; Díaz, C.; Gallego, J.; Gálvez, M. C.; Hernán-Obispo, M.; López-Santiago, J.; Montes, D.; Pascual, S.; Verdet, A.; Villar, V.; Zamorano, J.

    We present a summary of the last activities of science communication that have taken place in the Observatorio de la Universidad Complutense de Madrid (UCM Observatory) on the occasion of the Third Science Week of the Comunidad Autónoma de Madrid (3-16 November 2003), including guided tours through the observatory facilities, solar observations, and several talks. Moreover the current telescopes, instruments and tools of the UCM Observatory have allowed us to organize other communicating activities such as the live observation, together with its internet broadcast, of total lunar eclipses and other exceptional astronomical events as the Venus transit that took place in 8 June 2004.

  1. Status of the James Webb Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2013-01-01

    The James Webb Space Telescope (JWST) is the largest cryogenic, space telescope ever built, and will address a broad range of scientific goals from first light in the universe and re-ionization, to characterization of the atmospheres of extrasolar planets. Recently, significant progress has been made in the construction of the observatory with the completion of all 21 flight mirrors that comprise the telescope's optical chain, and the start of flight instrument deliveries to the Goddard Space Flight Center. In this paper we discuss the design of the observatory, and focus on the recent milestone achievements in each of the major observatory sub-systems.

  2. India-based neutrino observatory (INO): Physics reach and status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indumathi, D.

    We present a review of the physics reach and current status of the proposed India-based Neutrino Observatory (INO). We briefly outline details of the INO location and the present status of detector development. We then present the physics goals and simulation studies of the main detector, the magnetised Iron Calorimeter (ICAL) detector, to be housed in INO. The ICAL detector would make precision measurements of neutrino oscillation parameters with atmospheric neutrinos including a measurement of the neutrino mass hierarchy. Additional synergies with other experiments due to the complete insensitivity of ICAL to the CP phase are also discussed.

  3. Boscovich and the Brera Observatory .

    NASA Astrophysics Data System (ADS)

    Antonello, E.

    In the mid 18th century both theoretical and practical astronomy were cultivated in Milan by Barnabites and Jesuits. In 1763 Boscovich was appointed to the chair of mathematics of the University of Pavia in the Duchy of Milan, and the following year he designed an observatory for the Jesuit Collegium of Brera in Milan. The Specola was built in 1765 and it became quickly one of the main european observatories. We discuss the relation between Boscovich and Brera in the framework of a short biography. An account is given of the initial research activity in the Specola, of the departure of Boscovich from Milan in 1773 and his coming back just before his death.

  4. What Was out of the Frame? A Dialogic Look at Youth Media Production in a Cultural Diversity and Educational Context in Chile

    ERIC Educational Resources Information Center

    Valdivia, Andrea

    2017-01-01

    This article accounts for an experience of digital storytelling workshops with indigenous adolescents in Chile, and proposes a theoretical and methodological approach to analyze digital creations with a dialogic and ethnographic point of view. Based on this, it discusses the possibilities of digital media production as a strategy for the…

  5. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The key issues in the Earth Observatory Satellite (EOS) program which are subject to configuration study and tradeoff are identified. The issue of a combined operational and research and development program is considered. It is stated that cost and spacecraft weight are the key design variables and design options are proposed in terms of these parameters. A cost analysis of the EOS program is provided. Diagrams of the satellite configuration and subsystem components are included.

  6. 75 FR 22369 - Certain Preserved Mushrooms From Chile, India, Indonesia, and the People's Republic of China...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...-851] Certain Preserved Mushrooms From Chile, India, Indonesia, and the People's Republic of China... orders on certain preserved mushrooms (mushrooms) from Chile, India, Indonesia, and the People's Republic... reviews of the antidumping duty orders on mushrooms from Chile, India, Indonesia, and the PRC, pursuant to...

  7. Synchrotron Radiation from Outer Space and the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    2006-01-01

    The universe provides numerous extremely interesting astrophysical sources of synchrotron X radiation. The Chandra X-ray Observatory and other X-ray missions provide powerful probes of these and other cosmic X-ray sources. Chandra is the X-ray component of NASA's Great Observatory Program which also includes the Hubble Space telescope, the Spitzer Infrared Telescope Facility, and the now defunct Compton Gamma-Ray Observatory. The Chandra X-Ray Observatory provides the best angular resolution (sub-arcsecond) of any previous, current, or planned (for the foreseeable near future) space-based X-ray instrumentation. We present here a brief overview of the technical capability of this X-Ray observatory and some of the remarkable discoveries involving cosmic synchrotron sources.

  8. An international campaign of the 19th century to determine the solar parallax. The US Naval expedition to the southern hemisphere 1849-1852

    NASA Astrophysics Data System (ADS)

    Schrimpf, Andreas

    2014-04-01

    In 1847 Christian Ludwig Gerling, Marburg (Germany), suggested the solar parallax to be determined by measuring the position of Venus close to its inferior conjunction, especially at the stationary points, from observatories on nearly the same meridian but widely differing in latitude. James M. Gilliss, astronomer at the newly founded U.S. Naval Observatory, enthusiastically adopted this idea and procured a grant for the young astronomical community of the United States for an expedition to Chile. There they were to observe several conjunctions of Venus and oppositions of Mars, while the accompanying measurements were to be taken at the US Naval Observatory in Washington D.C. and the Harvard College Observatory at Cambridge, USA. This expedition was supported by A.V. Humboldt, C.F. Gauß, J.F. Encke, S.C. Walker, A.D. Bache, B. Peirce and others. From 1849 to 1852 not only were astronomical, but also meteorological and magnetic observations and measurements recorded, mainly in Santa Lucia close to Santiago, Chile. By comparing these measurements with those taken simultaneously at other observatories around the world the solar parallax could be calculated, although incomplete data from the corresponding northern observatories threatened the project's success. In retrospect this expedition can be recognized as the foundation of the Chilean astronomy. The first director of the new National Astronomical Observatory of Chile was Dr. C.W. Moesta, a Hessian student of Christian Ludwig Gerling's. The exchange of data between German, American and other astronomers during this expedition was well mediated by J.G. Flügel, consul of the United States of America and representative of the Smithsonian Institution in Europe, who altogether played a major role in nurturing the relationship between the growing scientific community in the U.S. and the well established one in Europe at that time.

  9. [Brucellosis in Chile: Description of a series of 13 cases].

    PubMed

    Olivares, Roberto; Vidal, Pamela; Sotomayor, Camila; Norambuena, Mackarenna; Luppi, Mario; Silva, Francisco; Cifuentes, Marcela

    2017-06-01

    Brucellosis is a zoonosis caused by Brucella spp. It may be acquired by consuming unpasteurized dairy products. Brucellosis has a low incidence in Chile, thus, we have a scarce data. To report and to characterize the first series of clinical cases of adult patients diagnosed with brucellosis in Chile. We describe a series of 13 clinical cases in patients diagnosed between 2000 and 2016 in three different centers in the Metropolitan Region, Chile. A retrospective analysis was performed on clinical presentation, laboratory, antibiotic treatment, morbidity and mortality. The mean age was 50 years old. Eight cases had a record of consumption of unpasteurized dairy products. The most frequently reported complaints were fever. The most frequent focal point involved was the spine. Only one patient had a positive blood culture, while the diagnosis was made using serological techniques in the other part of the group. The most indicated antibiotic regimens were doxycycline-rifampicin and doxycycline-gentamicin. The hospital stay was 20 days approximately as an average. Clinical cure was achieved in all cases. Brucellosis is an infrequent zoonosis in Chile, and it produces a nonspecific clinical picture, so it is necessary to have high suspicion to make the diagnosis based in the antecedent of consumption of unpasteurized dairy or raw meat.

  10. Affordable Earth Observatories for Developing Countries

    NASA Astrophysics Data System (ADS)

    Meurer, R. H.

    Traditionally high cost has been the principal impediment to developing nations desiring to pursue space programs. More particularly, the benefits derivable from a space system have been less than adequate to justify the investment required. Chief among the causes has been the inability of the system to produce results with sufficient direct economic value to the peoples of their countries. Over the past 15 years, however, "the Microspace Revolution" has resulted in dramatic reductions in the cost of space systems, while at the same time technology has improved to provide greater capabilities in the smallest micro- and nano-class1 satellites. Because of these advances, it behooves developing nations to reevaluate space as an option for their national development. This paper summarizes two new micro-satellite concepts - NanoObservatoryTM and MicroObservatoryTM that offer the prom- ise of a dedicated Earth remote sensing capability at costs comparable to or less than simply buying data from the best known large systems, Landsat and SPOT. Each system is defined both by its observation capabilities and technical parameters of the system's design. Moreover, the systems are characterized in terms of the other potential benefits to developing economies, i.e., education of a technical workforce or applications of Earth imagery in solving national needs. Comparisons are provided with more traditional Earth observing satellites. NanoObservatoryTM is principally intended to serve as a developmental system to build general technical expertise space technology and Earth observation. MicroObservatoryTM takes the next step by focusing on a more sophisticated optical imag- ing camera while keeping the spacecraft systems simple and affordable. For both programs, AeroAstro is working with non- profit institutions to develop a corresponding program of technical participation with the nations that elect to pursue such programs. Dependent upon current capabilities, this might include

  11. Management Information Systems for Faculty Allocations in Institutions of Higher Education: A Case Study for the Universidad de Santiago de Chile.

    ERIC Educational Resources Information Center

    Karadima, Oscar

    The transformation of the present manual system of data manipulation at the Universidad de Santiago de Chile into a computer-based information system capable of supporting decision making is proposed. The information system would be used to determine the number of faculty required by each academic department, based on the number of weekly hours…

  12. Stratospheric Observatory for Infrared Astronomy (SOFIA) Acoustical Resonance Technical Assessment Report

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Kehoe, Michael W.; Gupta, Kajal K.; Kegerise, Michael A.; Ginsberg, Jerry H.; Kolar, Ramesh

    2009-01-01

    A request was submitted on September 2, 2004 concerning the uncertainties regarding the acoustic environment within the Stratospheric Observatory for Infrared Astronomy (SOFIA) cavity, and the potential for structural damage from acoustical resonance or tones, especially if they occur at or near a structural mode. The requestor asked for an independent expert opinion on the approach taken by the SOFIA project to determine if the project's analysis, structural design and proposed approach to flight test were sound and conservative. The findings from this assessment are recorded in this document.

  13. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  14. Searching the Heavens and the Earth: This History of Jesuit Observatories

    NASA Astrophysics Data System (ADS)

    Udías, Agustín

    2003-10-01

    Jesuits established a large number of astronomical, geophysical and meteorological observatories during the 17th and 18th centuries and again during the 19th and 20th centuries throughout the world. The history of these observatories has never been published in a complete form. Many early European astronomical observatories were established in Jesuit colleges. During the 17th and 18th centuries Jesuits were the first western scientists to enter into contact with China and India. It was through them that western astronomy was first introduced in these countries. They made early astronomical observations in India and China and they directed for 150 years the Imperial Observatory of Beijing. In the 19th and 20th centuries a new set of observatories were established. Besides astronomy these now included meteorology and geophysics. Jesuits established some of the earliest observatories in Africa, South America and the Far East. Jesuit observatories constitute an often forgotten chapter of the history of these sciences. This volume is aimed at all scientists and students who do not want to forget the Jesuit contributions to science. Link: http://www.wkap.nl/prod/b/1-4020-1189-X

  15. Spectroscopic pulsational frequency identification and mode determination of γ Doradus star HD 12901

    NASA Astrophysics Data System (ADS)

    Brunsden, E.; Pollard, K. R.; Cottrell, P. L.; Wright, D. J.; De Cat, P.

    2012-12-01

    Using multisite spectroscopic data collected from three sites, the frequencies and pulsational modes of the γ Doradus star HD 12901 were identified. A total of six frequencies in the range 1-2 d-1 were observed, their identifications supported by multiple line-profile measurement techniques and previously published photometry. Five frequencies were of sufficient signal-to-noise ratio for mode identification, and all five displayed similar three-bump standard deviation profiles which were fitted well with (l,m) = (1,1) modes. These fits had reduced χ2 values of less than 18. We propose that this star is an excellent candidate to test models of non-radially pulsating γ Doradus stars as a result of the presence of multiple (1,1) modes. This paper includes data taken at the Mount John University Observatory of the University of Canterbury (New Zealand), the McDonald Observatory of the University of Texas at Austin (Texas, USA) and the European Southern Observatory at La Silla (Chile).

  16. Careers in Astronomy

    NASA Astrophysics Data System (ADS)

    Harvey, J.

    2015-11-01

    The debut of Gemini Observatory's “career brochures” and companion video website, brings the diversity and excitement of observatory careers to students in a new and innovative manner. The materials support the observatory's goal of diversifying its workforce and encouraging host community students (in Hawaii and Chile) to pursue STEM careers. By integrating brief printed profiles, with personal video interviews, students experience the excitement that observatory staff feel for their work and better appreciate observatory career opportunities that are challenging, rewarding, and foster a passion found in few other careers.

  17. Immigrant health workers in Chile: is there a Latin American "brain drain"?

    PubMed

    Cabieses, Baltica; Tunstall, Helena

    2012-08-01

    Most research on the phenomenon of "brain drain" (one-way flow of highly skilled/educated individuals) has focused on movement between the least developed and most highly developed countries. Therefore, the significance of patterns of migration to middle-income countries such as those in Latin America is less clear. The aim of this study was to outline key features of international health worker "brain drain" to Chile to promote discussion and further research on this phenomenon as it pertains to the Latin American region. The study compared immigrant health workers living in Chile to both Chilean-born health workers and other immigrants living in Chile using a qualitative nationwide dataset (the results of Chile's 2009 National Socioeconomic Characterization Survey). Demographic, socioeconomic, and health-related variables were included in the analyses, which were weighted by population to obtain nationally representative estimates. In 2009, immigrant health workers represented 2.2% of all health personnel and 2.6% of all resident immigrants in the country. While most immigrant health workers had a universitylevel education, about 25% had only a high school-level education or less. There was no statistically significant difference between the distribution of immigrant health workers' household income and that of Chilean-born health workers. A significantly higher proportion of the immigrant group reported no entitlement to health care provision. While the results of this study do not indicate a significant international health worker "brain drain" to Chile, they do suggest distinctive patterns of migration within the Latin American region. Future studies in Chile could confirm the validity of these results, using a larger sample of immigrant health workers.

  18. A Remotely Operated Observatory for Minor Planet Photometry

    NASA Astrophysics Data System (ADS)

    Ditteon, Richard

    2008-05-01

    In October of 2007 Rose-Hulman Institute of Technology in Terre Haute, Indiana began operating the Oakley Southern Sky Observatory (E09) located near Siding Spring Observatory in New South Wales, Australia. The observatory houses a 0.5-m, f/8.4 Ritchey-Chretien telescope mounted on a Paramount ME, German equatorial mount. Attached to the telescope is an STL-1001E CCD camera which has 1024 by 1024, 24 µm pixels, a two-stage thermoelectric cooler, and built in color filter wheel with BVRI and clear filters. Image scale is 1.2 arcseconds per pixel. A cloud sensor is used to monitor sky conditions. The observatory has a roll-off roof with limit switches to detect when the roof is fully open and fully closed. In addition, a switch has been added to the mount to detect when the telescope is parked and that it is safe to open or close the roof. All of the hardware is controlled by a custom program which reads a simple text file containing the sequence of images and targets to be collected each night. The text file is loaded onto the control computer once each day, then the software waits until sunset to determine if the sky is clear. When conditions are favorable, power is turned on, the roof opens, twilight flats, dark and bias frames are recorded, and when it is fully dark data frames are recorded. Images are transferred via the Internet back to Rose-Hulman by another program running in the background. The observatory closes itself before dawn or if it gets cloudy. Currently we are using the observatory for photometry of minor planets. Students are responsible for selecting targets, processing the returned images, determining the period and light curve of each minor planet and writing a paper for publication. Recent results will be presented.

  19. Power systems for ocean regional cabled observatories

    NASA Technical Reports Server (NTRS)

    Kojima, Junichi; Asakawa, Kenichi; Howe, Bruce M.; Kirkham, Harold

    2004-01-01

    Development of power systems is the most challenging technical issue in the design of ocean regional cabled observatories. ARENA and NEPTUNE are two ocean regional cabled observatory networks with aims that are at least broadly similar. Yet the two designs are quite different in detail. This paper outlines the both systems and explores the reasons for the divergence of design, and shows that it arose because of differences in the priority of requirements.

  20. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, : J.; Abreu, P.; Aglietta, M.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for siderealmore » modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.« less

  1. The Magnetic Observatory Buildings at the Royal Observatory, Cape

    NASA Astrophysics Data System (ADS)

    Glass, I. S.

    2015-10-01

    During the 1830s there arose a strong international movement, promoted by Carl Friedrich Gauss and Alexander von Humboldt, to characterise the earth's magnetic field. By 1839 the Royal Society in London, driven by Edward Sabine, had organised a "Magnetic Crusade" - the establishment of a series of magnetic and meteorological observatories around the British Empire, including New Zealand, Australia, St Helena and the Cape. This article outlines the history of the latter installation, its buildings and what became of them.

  2. The Ocean Observatories Initiative: A new initiative for sea floor observatory research in the United States

    NASA Astrophysics Data System (ADS)

    Clark, H. L.; Isern, A. R.

    2003-04-01

    The Division of Ocean Sciences of the American National Science Foundation (NSF) plans to initiate construction of an integrated observatory network that will provide the oceanographic research and education communities with a new mode of access to the ocean. This observatory system will have three elements: 1) a regional cabled network consisting of interconnected sites on the seafloor spanning several geological and oceanographic features and processes, 2) several relocatable deep-sea buoys that could also be deployed in harsh environments such as the Southern Ocean, and 3) new construction or enhancements to existing facilities leading to an expanded network of coastal observatories. The primary infrastructure for all components of the Ocean Observatories Initiative (OOI) consists of an array of seafloor junction boxes connected to cables running along the seafloor to individual instruments or instrument clusters. These junction boxes include undersea connectors that provide not only the power and two-way communication needed to support seafloor instrumentation, but also the capability to exchange instrumentation in situ when necessary for conducting new experiments or for repairing existing instruments. Depending upon proximity to the coast and other engineering requirements, the junction box will be either terminated by a long dedicated fiber-optic cable to shore, or by a shorter cable to a surface buoy that is capable of two-way communications with a shore station. The scientific problems driving the need for an ocean observing system are broad in scope and encompass nearly every area of ocean science including: ecological characterizations; role of the ocean in climate; fluids, chemistry, and life in the oceanic crust; dynamics of the oceanic lithosphere and imaging of the earth’s interior; seafloor spreading and subduction; organic carbon fluxes; turbulent mixing and biophysical interaction; and coastal ocean processes. Thirty years ago, NSF leadership

  3. Remote observatory access via the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Horan, Stephen; Anderson, Kurt; Georghiou, Georghios

    1992-01-01

    An investigation of the potential for using the ACTS to provide the data distribution network for a distributed set of users of an astronomical observatory has been conducted. The investigation consisted of gathering the data and interface standards for the ACTS network and the observatory instrumentation and telecommunications devices. A simulation based on COMNET was then developed to test data transport configurations for real-time suitability. The investigation showed that the ACTS network should support the real-time requirements and allow for growth in the observatory needs for data transport.

  4. The socioeconomic impact of drug-related crimes in Chile.

    PubMed

    Fernández, Matías

    2012-11-01

    Illegal drug use and trafficking are closely connected to crime. This article estimates the socioeconomic impact of this connection in Chile. Goldstein's tripartite model was applied quantifying drug-crime connections and then using those estimates to measure the socioeconomic impact of drug-related crimes. This was estimated in terms of both the monetary cost of law enforcement, and lost productivity due to incarceration. This socioeconomic impact can be divided into: (a) the direct costs arising from infractions to Chile's Drug Law, and the indirect costs originated by crimes linked only partially to drug consumption and trafficking; (b) is measured in productivity losses, as well as in costs to the three branches of Chile's criminal justice system (police, judiciary, and prisons); and (c) is attributed to the three illicit drugs most prevalent in Chile: cannabis, cocaine hydrochloride (CH) and cocaine base paste (CBP). The socioeconomic impact of Chile's drug-crime relationship in 2006 is estimated to be USD 268 million. Out of this amount, 36% is spent on national Drug Law enforcement, and the remaining 64% comes from the connection of drug use and trafficking with non-Drug-Law-related crimes. The police bear the largest share of drug enforcement costs (32%), followed by penitentiaries (25%). Productivity losses due to incarceration for drug-related crimes represent 29% of the total impact. 53% of the costs are attributable to CBP, 29% to CH, and the remaining 18% to cannabis. The impact of CBP is greater when indirect costs are taken into account, although direct costs are primarily associated with CH. The majority of costs is attributed to the trafficking and consumption of CBP, a drug with a relatively low prevalence. Based on the results, this study suggests reviewing drug enforcement policies to differentiate them according to the social and individual harm caused by each drug. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    In this photograph, the Chandra X-Ray Observatory (CXO) was installed and mated to the Inertial Upper Stage (IUS) inside the Shuttle Columbia's cargo bay at the Kennedy Space Center. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, the CXO was carried into low-Earth orbit by the Space Shuttle Columbia (STS-93 mission) on July 22, 1999. The Observatory was deployed from the Shuttle's cargo bay at 155 miles above the Earth. Two firings of an attached IUS rocket, and several firings of its own onboard rocket motors, after separating from the IUS, placed the Observatory into its working orbit. The IUS is a solid rocket used to place spacecraft into orbit or boost them away from the Earth on interplanetary missions. Since its first use by NASA in 1983, the IUS has supported a variety of important missions, such as the Tracking and Data Relay Satellite, Galileo spacecraft, Magellan spacecraft, and Ulysses spacecraft. The IUS was built by the Boeing Aerospace Co., at Seattle, Washington and managed by the Marshall Space Flight Center.

  6. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  7. Three Short Videos by the Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Wessells, Stephen; Lowenstern, Jake; Venezky, Dina

    2009-01-01

    This is a collection of videos of unscripted interviews with Jake Lowenstern, who is the Scientist in Charge of the Yellowstone Volcano Observatory (YVO). YVO was created as a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and University of Utah to strengthen the long-term monitoring of volcanic and earthquake unrest in the Yellowstone National Park region. Yellowstone is the site of the largest and most diverse collection of natural thermal features in the world and the first National Park. YVO is one of the five USGS Volcano Observatories that monitor volcanoes within the United States for science and public safety. These video presentations give insights about many topics of interest about this area. Title: Yes! Yellowstone is a Volcano An unscripted interview, January 2009, 7:00 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic features at Yellowstone: 'How do we know Yellowstone is a volcano?', 'What is a Supervolcano?', 'What is a Caldera?','Why are there geysers at Yellowstone?', and 'What are the other geologic hazards in Yellowstone?' Title: Yellowstone Volcano Observatory An unscripted interview, January 2009, 7:15 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions about the Yellowstone Volcano Observatory: 'What is YVO?', 'How do you monitor volcanic activity at Yellowstone?', 'How are satellites used to study deformation?', 'Do you monitor geysers or any other aspect of the Park?', 'Are earthquakes and ground deformation common at Yellowstone?', 'Why is YVO a relatively small group?', and 'Where can I get more information?' Title: Yellowstone Eruptions An unscripted interview, January 2009, 6.45 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic

  8. International ultraviolet explorer observatory operations

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This volume contains the Final Report for the International Ultraviolet Explorer (IUE) Observatory Operations contract, NAS5-28787. The report summarizes the activities of the IUE Observatory over the 13-month period from November 1985 through November 1986 and is arranged in sections according to the functions specified in the Statement of Work (SOW) of the contract. In order to preserve numerical correspondence between the technical SOW elements specified by the contract and the sections of this report, project management activities (SOW element 0.0.) are reported here in Section 7, following the reports of technical SOW elements 1.0 through 6.0. Routine activities have been summarized briefly whenever possible; statistical compilations, reports, and more lengthy supplementary material are contained in the Appendices.

  9. An empirical analysis of primary and secondary pharmaceutical patents in Chile.

    PubMed

    Abud, María José; Hall, Bronwyn; Helmers, Christian

    2015-01-01

    We analyze the patent filing strategies of foreign pharmaceutical companies in Chile distinguishing between "primary" (active ingredient) and "secondary" patents (patents on modified compounds, formulations, dosages, particular medical uses, etc.). There is prior evidence that secondary patents are used by pharmaceutical originator companies in the U.S. and Europe to extend patent protection on drugs in length and breadth. Using a novel dataset that comprises all drugs registered in Chile between 1991 and 2010 as well as the corresponding patents and trademarks, we find evidence that foreign originator companies pursue similar strategies in Chile. We find a primary to secondary patents ratio of 1:4 at the drug-level, which is comparable to the available evidence for Europe; most secondary patents are filed over several years following the original primary patent and after the protected active ingredient has obtained market approval in Chile. This points toward effective patent term extensions through secondary patents. Secondary patents dominate "older" therapeutic classes like anti-ulcer and anti-depressants. In contrast, newer areas like anti-virals and anti-neoplastics (anti-cancer) have a much larger share of primary patents.

  10. An Empirical Analysis of Primary and Secondary Pharmaceutical Patents in Chile

    PubMed Central

    Abud, María José; Hall, Bronwyn; Helmers, Christian

    2015-01-01

    We analyze the patent filing strategies of foreign pharmaceutical companies in Chile distinguishing between “primary” (active ingredient) and “secondary” patents (patents on modified compounds, formulations, dosages, particular medical uses, etc.). There is prior evidence that secondary patents are used by pharmaceutical originator companies in the U.S. and Europe to extend patent protection on drugs in length and breadth. Using a novel dataset that comprises all drugs registered in Chile between 1991 and 2010 as well as the corresponding patents and trademarks, we find evidence that foreign originator companies pursue similar strategies in Chile. We find a primary to secondary patents ratio of 1:4 at the drug-level, which is comparable to the available evidence for Europe; most secondary patents are filed over several years following the original primary patent and after the protected active ingredient has obtained market approval in Chile. This points toward effective patent term extensions through secondary patents. Secondary patents dominate “older” therapeutic classes like anti-ulcer and anti-depressants. In contrast, newer areas like anti-virals and anti-neoplastics (anti-cancer) have a much larger share of primary patents. PMID:25915050

  11. The Avalanche Catastrophe of El Teniente-chile: August 8 of 1944.

    NASA Astrophysics Data System (ADS)

    Vergara, J.; Baros, M.

    The avalanche of El Teniente-Chile (~34S) August 8 of 1944, was the most serious avalanche accident in Chile of the last 100 years. On the night of August 8, 1944, a major avalanche impacted a The Sewell, a worked village of the Copper Mine of El Teniente, there were 102 fatalities, 8 building, one school and one bridged de- stroyed. Due to a storm over the central part of Chile where intense precipitation fall over the Andes mountains during nine days. Historical precipitation records near to Sewell shows that total rainfall during the storms was 299mm (La Rufina) and 349mm (Bullileo), and the day before of avalanche the 24 hours rain intensity was 93mm. The Weilbull statistical analysis of monthly snowfall (water equivalent) record in Sewell from 1912-2001 show that the total August 1944 snowfall (621mm) was the larger of the all historical records and the return period is close one events in 180 years, and the annual snowfall during 1944 was 1140mm and return periods was 3.8 years. KEYWRODS: Chile, Avalanches, Andes Mountains, Avalanche Disaster, Historical Snow Records.

  12. Cosmic Explorers and Star Docent Youth Programs at Henize Observatory

    NASA Astrophysics Data System (ADS)

    Kabbes, J.

    2013-04-01

    The Karl G. Henize Observatory at Harper Community College has long served Harper students and the community. College students fulfill observing requirements for astronomy and physical science classes while the general public views objects through a variety of telescopes. In the spring of 2011, the observatory was in trouble. The long time observatory manager had left, the volunteer staff consisted of two individuals, and the Astronomy Club, which traditionally provided staff to operate the observatory, was moribund. We only drew 20-30 visitors for our bi-weekly public sessions. To face such a challenge, two recent complimentary programs, The Cosmic Explorers for grades 3-6 and the Star Docents for students in grades 7-12 were implemented.

  13. Operation of U.S. Geological Survey unmanned digital magnetic observatories

    USGS Publications Warehouse

    Wilson, L.R.

    1990-01-01

    The precision and continuity of data recorded by unmanned digital magnetic observatories depend on the type of data acquisition equipment used and operating procedures employed. Three generations of observatory systems used by the U.S. Geological Survey are described. A table listing the frequency of component failures in the current observatory system has been compiled for a 54-month period of operation. The cause of component failure was generally mechanical or due to lightning. The average percentage data loss per month for 13 observatories operating a combined total of 637 months was 9%. Frequency distributions of data loss intervals show the highest frequency of occurrence to be intervals of less than 1 h. Installation of the third generation system will begin in 1988. The configuration of the third generation observatory system will eliminate most of the mechanical problems, and its components should be less susceptible to lightning. A quasi-absolute coil-proton system will be added to obtain baseline control for component variation data twice daily. Observatory data, diagnostics, and magnetic activity indices will be collected at 12-min intervals via satellite at Golden, Colorado. An improvement in the quality and continuity of data obtained with the new system is expected. ?? 1990.

  14. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Madhulika Guhathakurta, SDO Program Scientist, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  15. Different Seed Selection and Conservation Practices for Fresh Market and Dried Chile Farmers in Aguascalientes, Mexico

    PubMed Central

    de Jesús Luna-Ruíz, José; Gepts, Paul

    2010-01-01

    Different Seed Selection and Conservation Practices for Fresh Market and Dried Chile Farmers in Aguascalientes, Mexico. The process of selecting and saving seed is the most basic and oldest of agricultural practices. In today’s modern and highly capital-intensive agriculture, seeds are often treated like another chemical input. This study sought to examine seed selection and saving practices among chile farmers in Aguascalientes, Mexico, where both industrial and traditional agriculture are practiced. We observed a clear division among farmers who plant chile peppers commercially. Sixty-eight chile pepper farmers were surveyed in order to document seed selection and saving practices. Fifteen respondents (22%) planted chile peppers destined for the fresh market and all utilized purchased commercial seed of F1 hybrid varieties. Fifty-three farmers (78%) planted chiles to be dried and either saved their own or purchased seeds that others had saved and selected. Farmers who saved their own seed sought to maintain an ideotype, rather than directionally select for certain traits, much like Cleveland et al. (2000) chronicled in central Mexican maize farmers. Farmers would benefit from a participatory plant-breeding program in order to maintain productive seed stock for the continued cultivation of dried chile pepper in the state. PMID:21212817

  16. Different Seed Selection and Conservation Practices for Fresh Market and Dried Chile Farmers in Aguascalientes, Mexico.

    PubMed

    Kraft, Kraig H; de Jesús Luna-Ruíz, José; Gepts, Paul

    2010-12-01

    Different Seed Selection and Conservation Practices for Fresh Market and Dried Chile Farmers in Aguascalientes, Mexico. The process of selecting and saving seed is the most basic and oldest of agricultural practices. In today's modern and highly capital-intensive agriculture, seeds are often treated like another chemical input. This study sought to examine seed selection and saving practices among chile farmers in Aguascalientes, Mexico, where both industrial and traditional agriculture are practiced. We observed a clear division among farmers who plant chile peppers commercially. Sixty-eight chile pepper farmers were surveyed in order to document seed selection and saving practices. Fifteen respondents (22%) planted chile peppers destined for the fresh market and all utilized purchased commercial seed of F1 hybrid varieties. Fifty-three farmers (78%) planted chiles to be dried and either saved their own or purchased seeds that others had saved and selected. Farmers who saved their own seed sought to maintain an ideotype, rather than directionally select for certain traits, much like Cleveland et al. (2000) chronicled in central Mexican maize farmers. Farmers would benefit from a participatory plant-breeding program in order to maintain productive seed stock for the continued cultivation of dried chile pepper in the state.

  17. Glacial Hazards in Chile: Processes, Assessment, Mitigation and Risk Management Strategies

    NASA Astrophysics Data System (ADS)

    Glasser, N. F.; Wilson, R.; Casassa, G., Sr.; Reynolds, J.; Harrison, S.; Shannon, S. R.; Schaefer, M.; Iribarran, P.

    2017-12-01

    Glacial Lake Outburst Floods (GLOFs) are capable of travelling considerable distances from their source and they represent one of the most important glacial hazards. In line with observations in other parts of the world, the frequency of GLOF events in Chile has increased in recent decades highlighting the need to quantify the flood risk posed to downstream areas. This poster presents the work of the `Glacial Hazards in Chile' project which aims to (1) better understand the processes that govern the development of GLOFs in Chile, (2) estimate the socio-economic effects of GLOFs in Chile, and (3) provide a GLOF risk assessment framework that can be applied to Chile and other lower income countries globally. As an initial step towards the completion of these aims, we have recently compiled the first glacial lake inventory for the central and Patagonian Andes, which details the temporal development of glacial lakes in this region over the past three decades. This analysis was used to identify two lakes of interest that were visited during a fieldwork expedition in February 2017. The first of these, Lago Chileno in Patagonia, has recently produced a large GLOF causing significant damage to the downstream floodplain, whilst the second was identified as one of the fastest growing lakes in the central Andes. Both these lakes were surveyed using aerial imagery acquired with a drone and a custom-built bathymetry boat, data from which will help to improve our understanding of the physical processes associated with glacial lake development and failure within the Chilean Andes.

  18. VizieR Online Data Catalog: Spectra of 75 Swift/BAT optical counterparts (Parisi, 2014)

    NASA Astrophysics Data System (ADS)

    Parisi, P.; Masetti, N.; Rojas, A. F.; Jimenez-Bailon, E.; Chavushyan, V.; Palazzi, E.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Minniti, D.; Morelli, L.; Ubertini, P.

    2013-11-01

    The following telescopes were used for the optical spectroscopic study presented here: * the 1.5m at the Cerro Tololo Interamerican Observatory (CTIO), Chile * the 1.52m "Cassini" telescope of the Astronomical Observatory of Bologna, in Loiano, Italy * the 1.82m "Copernicus" telescope of the Astronomical Observatory of Asiago, Italy * the 2.1m telescope of the Observatorio Astronomico Nacional in San Pedro Martir, Mexico (2 data files).

  19. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  20. Astronomical virtual observatory and the place and role of Bulgarian one

    NASA Astrophysics Data System (ADS)

    Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen

    2009-07-01

    Virtual observatory could be defined as a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that combine existing databases from ground-based and orbiting observatories, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies has been compiled from observations in a variety of wavelengths-optical, radio, infrared, gamma ray, X-ray and more. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. During the autumn of the 2001 (26.09.2001) six organizations from Europe put the establishment of the Astronomical Virtual Observatory (AVO)-ESO, ESA, Astrogrid, CDS, CNRS, Jodrell Bank (Dolensky et al., 2003). Its aims have been outlined as follows: - To provide comparative analysis of large sets of multiwavelength data; - To reuse data collected by a single source; - To provide uniform access to data; - To make data available to less-advantaged communities; - To be an educational tool. The Virtual observatory includes: - Tools that make it easy to locate and retrieve data from catalogues, archives, and databases worldwide; - Tools for data analysis, simulation, and visualization; - Tools to compare observations with results obtained from models, simulations and theory; - Interoperability: services that can be used regardless of the clients computing platform, operating system and software capabilities; - Access to data in near real-time, archived data and historical data; - Additional information - documentation, user-guides, reports

  1. Contrast Threshold of Lunar Crescents Visibility for Ramadan and Syawal 1431 H at Bosscha Observatory

    NASA Astrophysics Data System (ADS)

    Arumaningtyas, E. P.; Raharto, M.

    2010-12-01

    In this paper we present the prediction of the first lunar crescent visibility using contrast based on Schaefer's model and best time proposed by [12] for the beginning of Ramadhan and Syawal 1431 H at observing place in Bosscha Observatory, [E 107° 36.96', S 6° 49.55', with elevation of 1310 meters above sea level]. The geocentric altitude of the Moon at the sunset time on August 10 is 1° 58.98' and illuminated fraction of crescent (FI) = 0.20%. On August 11, 2010 the altitude of the Moon at the sunset time is 15° 42.71' and FI = 2.57%. The calculated contrast on August 10, 2010 is less than zero. It means that the brightness of the moon is smaller than brightness of the sky. Based on the contrast value, it is impossible to observe the lunar crescent by the naked eye at that time, even equipped by special design telescope for the crescent observation at Bosscha Observatory. Sultan [11] proposed a predicted model it is still possible to observe the very young lunar crescent even under circumstance before the time of sunset, if the contrast of sky is perfect. On August 11, 2010 contrast has its maximum at 50 minutes after sunset. The result of observation of the lunar crescent at Bosscha Observatory, the crescent could be seen before sunset at 17.15 local time (UT+7 hours) using special design telescope with additional nose of 1 meter length [6]. The model used here is tend to predict the brightness for naked eye observation, which less contrast compare to observation with the well design telescope.

  2. [Haiti, new immigrant community in Chile].

    PubMed

    Sánchez P, Katherin; Valderas J, Jaime; Messenger C, Karen; Sánchez G, Carolina; Barrera Q, Francisco

    2018-04-01

    Migration is a growing phenomenon in Latin America influenced by several factors such as economic stability, employment, social welfare, education and health system. Currently Chile has a positive migration flow rate. Particularly, a significant number of Haitian immigrants has been observed du ring the last years, especially after earthquake of 2010. These immigrants present a different cultural background expressed in relevant aspects of living including parenting and healthcare. Knowing the Haitian culture and its health situation is relevant for a better understanding of their health needs. Haitian people come to Chile looking for a cordial reception and willing to find a place with better perspectives of wellbeing in every sense. Immigration represents a major challenge for Chilean health system that must be embraced. Integration efforts in jobs, health, education system and community living should be enhanced to ensure a prosper settlement in our country. A new immigration law is crucial to solving major problems derived from current law created in 1975.

  3. Haystack Observatory Technology Development Center

    NASA Technical Reports Server (NTRS)

    Beaudoin, Chris; Corey, Brian; Niell, Arthur; Cappallo, Roger; Whitney, Alan

    2013-01-01

    Technology development at MIT Haystack Observatory were focused on four areas in 2012: VGOS developments at GGAO; Digital backend developments and workshop; RFI compatibility at VLBI stations; Mark 6 VLBI data system development.

  4. The Busot Observatory: towards a robotic autonomous telescope

    NASA Astrophysics Data System (ADS)

    García-Lozano, R.; Rodes, J. J.; Torrejón, J. M.; Bernabéu, G.; Berná, J. Á.

    2016-12-01

    We describe the Busot observatory, our project of a fully robotic autonomous telescope. This astronomical observatory, which obtained the Minor Planet Centre code MPC-J02 in 2009, includes a 14 inch MEADE LX200GPS telescope, a 2 m dome, a ST8-XME CCD camera from SBIG, with an AO-8 adaptive optics system, and a filter wheel equipped with UBVRI system. We are also implementing a spectrograph SGS ST-8 for the telescope. Currently, we are involved in long term studies of variable sources such as X-ray binaries systems, and variable stars. In this work we also present the discovery of W UMa systems and its orbital periods derived from the photometry light curve obtained at Busot Observatory.

  5. Invited Review Article: The Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel A.

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  6. Invited review article: The Chandra X-ray Observatory.

    PubMed

    Schwartz, Daniel A

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  7. OpenROCS: a software tool to control robotic observatories

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Sanz, Josep; Vilardell, Francesc; Ribas, Ignasi; Gil, Pere

    2012-09-01

    We present the Open Robotic Observatory Control System (OpenROCS), an open source software platform developed for the robotic control of telescopes. It acts as a software infrastructure that executes all the necessary processes to implement responses to the system events that appear in the routine and non-routine operations associated to data-flow and housekeeping control. The OpenROCS software design and implementation provides a high flexibility to be adapted to different observatory configurations and event-action specifications. It is based on an abstract model that is independent of the specific hardware or software and is highly configurable. Interfaces to the system components are defined in a simple manner to achieve this goal. We give a detailed description of the version 2.0 of this software, based on a modular architecture developed in PHP and XML configuration files, and using standard communication protocols to interface with applications for hardware monitoring and control, environment monitoring, scheduling of tasks, image processing and data quality control. We provide two examples of how it is used as the core element of the control system in two robotic observatories: the Joan Oró Telescope at the Montsec Astronomical Observatory (Catalonia, Spain) and the SuperWASP Qatar Telescope at the Roque de los Muchachos Observatory (Canary Islands, Spain).

  8. A typology of female sex work in the Metropolitan Region of Santiago, Chile.

    PubMed

    Belmar, Julieta; Stuardo, Valeria; Folch, Cinta; Carvajal, Bielka; Clunes, Maria José; Montoliu, Alexandra; Casabona, Jordi

    2018-04-01

    In Chile, sex work takes place covertly in a variety of venues and locations. Formative research using time-location sampling methods is important in order to understand the nature of this diversity. This study used qualitative methods to develop a typology of female sex work in the Metropolitan Region of Santiago, Chile, using semi-structured interviews, focus groups and ethnographic fieldwork during visits to sex work venues. The study identified seven types of venue, which reflect the context and regulatory framework of the country and the structural vulnerabilities that affect female sex workers in Chile. These venues and locations include: cafés con piernas (coffee with legs); nightclubs, topless bars and cabarets; brothels; hotels; street and highway soliciting; massage parlours; and private residences. Formative research methods were helpful in identifying and characterising the venues and locations in which sex work occurred. Barriers to accessing and mapping specific locations were also identified. Recommendations for addressing these barriers include working with non-governmental organisations to map venues and initiate contact with the populations of interest. A comprehensive typology of sex work in the Metropolitan Region of Santiago, Chile, is an essential element for future time-location sampling and bio-behavioural research in the context of second-generation surveillance for HIV and sexually transmitted infections in Chile.

  9. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    Managed by the Marshall Space Flight Center and built by TRW, the third High Energy Astronomy Observatory was launched September 20, 1979. HEAO-3 was designed to study gamma-rays and cosmic ray particles.

  10. [Changes in the patterns of disease after the epidemiological transition in health in Chile, 1950-2003].

    PubMed

    Luque, Cecilia; Cisternas, Felipe A; Araya, Magdalena

    2006-06-01

    During the twentieth century there was a change in the pattern of diseases in Europe, with an increase in the incidence of allergies and autoimmune disorders, that paralleled a decrease of infectious conditions. The Hygiene hypothesis proposes that these phenomena are causally related. To evaluate the epidemiological changes of allergic, autoimmune, and infectious diseases in Chile between 1950 and 2003. Search for the incidence and prevalence of these diseases in the national records published by the Ministry of Health, as well as through a systematic search of national literature using PubMed and Scielo as search engines. The annual incidence of tuberculosis, rheumatic fever, measles, and typhoid fever has progressively diminished in Chile since 1970. Figures for the national prevalence for asthma, rheumatoid arthritis, and type I diabetes are scarce and difficult to compare, but clearly show an increasing epidemiological trend in the last 20 years. The national figures suggest that, although the country has only recently gone through an epidemiological transition in health problems, there are detectable changes that show the same trends described in Europe.

  11. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1995-01-14

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  12. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  13. The Marseille Observatory 1860-1920: missed opportunities and elebrated achievements

    NASA Astrophysics Data System (ADS)

    Caplan, James

    2001-10-01

    After summarizing the early history of the Marseille Observatory (founded by the Jesuits and operational in 1702), I describe the circumstances leading to the takeover by Le Verrier in the 1860s. The observatory was rebuilt on the Plateau Longchamp and new instruments were installed, most notably the 80-cm Foucault glass-mirror telescope. The work of the new observatory is then presented, and the instruments described, starting with the Le Verrier period and continuing through the long directorship of Stephan, and then Bourget. The overall success of the observatory in its Longchamp site was due in part to the assiduous pursuit of routine observations and to the discovery of comets and asteroids, combined with the `exploratory' observations of `nebulae' by Stephan. In addition, the first stellar interferometry observations, and the first applications of the Fabry-Perot interferometer to nebular observations, were important achievements. On the other hand, the failure in the beginning of the twentieth century to adapt the telescopes to photography condemned the observatory to a long period of missed opportunities, from which it did not recover for several decades.

  14. Astronomy Against Terrorism: an Educational Astronomical Observatory Project in Peru

    NASA Astrophysics Data System (ADS)

    Ishitsuka, M.; Montes, H.; Kuroda, T.; Morimoto, M.; Ishitsuka, J.

    2003-05-01

    The Cosmos Coronagraphic Observatory was completely destroyed by terrorists in 1988. In 1995, in coordination with the Minister of Education of Peru, a project to construct a new Educational Astronomical Observatory has been executed. The main purpose of the observatory is to promote an interest in basic space sciences in young students from school to university levels, through basic astronomical studies and observations. The planned observatory will be able to lodge 25 visitors; furthermore an auditorium, a library and a computer room will be constructed to improve the interest of people in astronomy. Two 15-cm refractor telescopes, equipped with a CCD camera and a photometer, will be available for observations. Also a 6-m dome will house a 60-cm class reflector telescope, which will be donated soon, thanks to a fund collected and organized by the Nishi-Harima Astronomical Observatory in Japan. In addition a new modern planetarium donated by the Government of Japan will be installed in Lima, the capital of Peru. These installations will be widely open to serve the requirements of people interested in science.

  15. Xenopus laevis and Emerging Amphibian Pathogens in Chile.

    PubMed

    Soto-Azat, Claudio; Peñafiel-Ricaurte, Alexandra; Price, Stephen J; Sallaberry-Pincheira, Nicole; García, María Pía; Alvarado-Rybak, Mario; Cunningham, Andrew A

    2016-12-01

    Amphibians face an extinction crisis with no precedence. Two emerging infectious diseases, ranaviral disease caused by viruses within the genus Ranavirus and chytridiomycosis due to Batrachochytrium dendrobatidis (Bd), have been linked with amphibian mass mortalities and population declines in many regions of the globe. The African clawed frog (Xenopus laevis) has been indicated as a vector for the spread of these pathogens. Since the 1970s, this species has been invasive in central Chile. We collected X. laevis and dead native amphibians in Chile between 2011 and 2013. We conducted post-mortem examinations and molecular tests for Ranavirus and Bd. Eight of 187 individuals (4.3 %) tested positive for Ranavirus: seven X. laevis and a giant Chilean frog (Calyptocephallela gayi). All positive cases were from the original area of X. laevis invasion. Bd was found to be more prevalent (14.4 %) and widespread than Ranavirus, and all X. laevis Bd-positive animals presented low to moderate levels of infection. Sequencing of a partial Ranavirus gene revealed 100 % sequence identity with Frog Virus 3. This is the first report of Ranavirus in Chile, and these preliminary results are consistent with a role for X. laevis as an infection reservoir for both Ranavirus and Bd.

  16. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1982-01-01

    This artist's concept depicts the High Energy Astronomy Observatory (HEAO)-2 in orbit. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  17. Interactive 3D visualization for theoretical virtual observatories

    NASA Astrophysics Data System (ADS)

    Dykes, T.; Hassan, A.; Gheller, C.; Croton, D.; Krokos, M.

    2018-06-01

    Virtual observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of data sets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2D or volume rendering in 3D. We analyse the current state of 3D visualization for big theoretical astronomical data sets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3D visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based data sets, allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.

  18. Current Status of Carl Sagan Observatory in Mexico

    NASA Astrophysics Data System (ADS)

    Sanchez-Ibarra, A.

    The current status of Observatory "Carl Sagan" (OCS) of University of Sonora is presented. This project was born in 1996 focused to build a small solar-stellar observatory completely operated by remote control. The observatory will be at "Cerro Azul", a 2480 m peak in one of the best regions in the world for astronomical observation, at the Sonora-Arizona desert. The OCS, with three 16 cm solar telescopes and a 55 cm stellar telescope is one of the cheapest observatories, valuated in US200,000 Added to its scientific goals to study solar coronal holes and Supernovae Type 1A, the OCS has a strong educative and cultural program in Astronomy to all levels. At the end of 2001, we started the Program "Constelacion", to build small planetariums through all the countries with a cost of only US80,000. Also, the webcast system for transmission of the solar observations from the prototype OCS at the campus, was expanded to webcast educational programs in Astronomy since July of this year, including courses and diplomats for Latin American people. All of these advances are exposed here.

  19. A robotic observatory in the city

    NASA Astrophysics Data System (ADS)

    Ruch, Gerald T.; Johnston, Martin E.

    2012-05-01

    The University of St. Thomas (UST) Observatory is an educational facility integrated into UST's undergraduate curriculum as well as the curriculum of several local schools. Three characteristics combine to make the observatory unique. First, the telescope is tied directly to the support structure of a four-story parking ramp instead of an isolated pier. Second, the facility can be operated remotely over an Internet connection and is capable of performing observations without a human operator. Third, the facility is located on campus in the heart of a metropolitan area where light pollution is severe. Our tests indicate that, despite the lack of an isolated pier, vibrations from the ramp do not degrade the image quality at the telescope. The remote capability facilitates long and frequent observing sessions and allows others to use the facility without traveling to UST. Even with the high background due to city lights, the sensitivity and photometric accuracy of the system are sufficient to fulfill our pedagogical goals and to perform a variety of scientific investigations. In this paper, we outline our educational mission, provide a detailed description of the observatory, and discuss its performance characteristics.

  20. LAGO: The Latin American giant observatory

    NASA Astrophysics Data System (ADS)

    Sidelnik, Iván; Asorey, Hernán; LAGO Collaboration

    2017-12-01

    The Latin American Giant Observatory (LAGO) is an extended cosmic ray observatory composed of a network of water-Cherenkov detectors (WCD) spanning over different sites located at significantly different altitudes (from sea level up to more than 5000 m a.s.l.) and latitudes across Latin America, covering a wide range of geomagnetic rigidity cut-offs and atmospheric absorption/reaction levels. The LAGO WCD is simple and robust, and incorporates several integrated devices to allow time synchronization, autonomous operation, on board data analysis, as well as remote control and automated data transfer. This detection network is designed to make detailed measurements of the temporal evolution of the radiation flux coming from outer space at ground level. LAGO is mainly oriented to perform basic research in three areas: high energy phenomena, space weather and atmospheric radiation at ground level. It is an observatory designed, built and operated by the LAGO Collaboration, a non-centralized collaborative union of more than 30 institutions from ten countries. In this paper we describe the scientific and academic goals of the LAGO project - illustrating its present status with some recent results - and outline its future perspectives.

  1. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  2. Observatory Sponsoring Astronomical Image Contest

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  3. Protection against lightning on the geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Čop, R.; Milev, G.; Deželjin, D.; Kosmač, J.

    2014-04-01

    The Sinji Vrh Geomagnetic Observatory was built on the brow of the mountain Gora, above Ajdovščina, and all over Europe one may hardly find an area which is more often struck by lightning than this south-western part of Slovenia. When the humid air masses of a storm front hit the edge of Gora, they rise up more than 1000 m in a very short time, and this causes the additional electrical charge of stormy clouds. The reliability of operations performed in the every building of observatory could be increased by understanding the formation of lightning in the thunderstorm cloud, the application of already proven methods of protection against a strike of lightning and against its secondary effects. To reach this goal the following groups of experts have to co-operate: the experts in the field of protection against lightening phenomenon, the constructors and manufacturers of equipment and the observatory managers.

  4. Protection against lightning at a geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Čop, R.; Milev, G.; Deželjin, D.; Kosmač, J.

    2014-08-01

    The Sinji Vrh Geomagnetic Observatory was built on the brow of Gora, the mountain above Ajdovščina, which is a part of Trnovo plateau, and all over Europe one can hardly find an area which is more often struck by lightning than this southwestern part of Slovenia. When the humid air masses of a storm front hit the edge of Gora, they rise up more than 1000 m in a very short time, and this causes an additional electrical charge of stormy clouds. The reliability of operations performed in every section of the observatory could be increased by understanding the formation of lightning in a thunderstorm cloud and the application of already-proven methods of protection against a stroke of lightning and against its secondary effects. To reach this goal the following groups of experts have to cooperate: experts in the field of protection against lightning, constructors and manufacturers of equipment and observatory managers.

  5. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Richard Fisher, Heliophysics Division Director at NASA Headquarters, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  6. A Modern Operating System for Near-real-time Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Orcutt, John; Vernon, Frank

    2014-05-01

    The NSF Ocean Observatory Initiative (OOI) provided an opportunity for expanding the capabilities for managing open, near-real-time (latencies of seconds) data from ocean observatories. The sensors deployed in this system largely return data from seafloor, cabled fiber optic cables as well as satellite telemetry. Bandwidth demands range from high-definition movies to the transmission of data via Iridium satellite. The extended Internet also provides an opportunity to not only return data, but to also control the sensors and platforms that comprise the observatory. The data themselves are openly available to any users. In order to provide heightened network security and overall reliability, the connections to and from the sensors/platforms are managed without Layer 3 of the Internet, but instead rely upon message passing using an open protocol termed Advanced Queuing Messaging Protocol (AMQP). The highest bandwidths in the system are in the Regional Scale Network (RSN) off Oregon and Washington and on the continent with highly reliable network connections between observatory components at 10 Gbps. The maintenance of metadata and life cycle histories of sensors and platforms is critical for providing data provenance over the years. The integrated cyberinfrastructure is best thought of as an operating system for the observatory - like the data, the software is also open and can be readily applied to new observatories, for example, in the rapidly evolving Arctic.

  7. Optimizing fixed observational assets in a coastal observatory

    NASA Astrophysics Data System (ADS)

    Frolov, Sergey; Baptista, António; Wilkin, Michael

    2008-11-01

    Proliferation of coastal observatories necessitates an objective approach to managing of observational assets. In this article, we used our experience in the coastal observatory for the Columbia River estuary and plume to identify and address common problems in managing of fixed observational assets, such as salinity, temperature, and water level sensors attached to pilings and moorings. Specifically, we addressed the following problems: assessing the quality of an existing array, adding stations to an existing array, removing stations from an existing array, validating an array design, and targeting of an array toward data assimilation or monitoring. Our analysis was based on a combination of methods from oceanographic and statistical literature, mainly on the statistical machinery of the best linear unbiased estimator. The key information required for our analysis was the covariance structure for a field of interest, which was computed from the output of assimilated and non-assimilated models of the Columbia River estuary and plume. The network optimization experiments in the Columbia River estuary and plume proved to be successful, largely withstanding the scrutiny of sensitivity and validation studies, and hence providing valuable insight into optimization and operation of the existing observational network. Our success in the Columbia River estuary and plume suggest that algorithms for optimal placement of sensors are reaching maturity and are likely to play a significant role in the design of emerging ocean observatories, such as the United State's ocean observation initiative (OOI) and integrated ocean observing system (IOOS) observatories, and smaller regional observatories.

  8. Regulating self-selection into private health insurance in Chile and the United States.

    PubMed

    Vargas Bustamante, Arturo; Méndez, Claudio A

    2016-07-01

    In the 1980s, Chile adopted a mixed (public and private) model for health insurance coverage similar to the one recently outlined by the Affordable Care Act in the United States (US). In such a system, a mix of public and private health plans offer nearly universal coverage using a combined approach of managed competition and subsidies for low-income individuals. This paper uses a "most different" case study design to compare policies implemented in Chile and the US to address self-selection into private insurance. We argue that the implementation of a mixed health insurance system in Chile without the appropriate regulations was complex, and it generated a series of inequities and perverse incentives. The comparison of Chile and the US healthcare reforms examines the different approaches that both countries have used to manage economic competition, address health insurance self-selection and promote solidarity. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    Vast Databanks at the Astronomers' Fingertips Summary A new European initiative called the Astrophysical Virtual Observatory (AVO) is being launched to provide astronomers with a breathtaking potential for new discoveries. It will enable them to seamlessly combine the data from both ground- and space-based telescopes which are making observations of the Universe across the whole range of wavelengths - from high-energy gamma rays through the ultraviolet and visible to the infrared and radio. The aim of the Astrophysical Virtual Observatory (AVO) project, which started on 15 November 2001, is to allow astronomers instant access to the vast databanks now being built up by the world's observatories and which are forming what is, in effect, a "digital sky" . Using the AVO, astronomers will, for example, be able to retrieve the elusive traces of the passage of an asteroid as it passes near the Earth and so enable them to predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded so adding invaluable data to the study of the evolution of stars. Background information on the Astrophysical Virtual Observatory is available in the Appendix. PR Photo 34a/01 : The Astrophysical Virtual Observatory - an artist's impression. The rapidly accumulating database ESO PR Photo 34a/01 ESO PR Photo 34a/01 [Preview - JPEG: 400 x 345 pix - 90k] [Normal - JPEG: 800 x 689 pix - 656k] [Hi-Res - JPEG: 3000 x 2582 pix - 4.3M] ESO PR Photo 34a/01 shows an artist's impression of the Astrophysical Virtual Observatory . Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data - corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being

  10. Ancient Leishmaniasis in a Highland Desert of Northern Chile

    PubMed Central

    Costa, Maria Antonietta; Matheson, Carney; Iachetta, Lucia; Llagostera, Agustín; Appenzeller, Otto

    2009-01-01

    Background Leishmaniasis is an infectious disease endemic today in many areas of South America. Methodology We discovered morphologic and molecular evidence of ancient infections in 4 female skulls in the archaeological cemetery of Coyo Oriente, in the desert of San Pedro de Atacama, Northern Chile. The boney facial lesions visible in the skulls could have been caused by a number of chronic infections including chronic Leishmaniasis. This diagnosis was confirmed using PCR-sequenced analyses of bone fragments from the skulls of the affected individuals.Leishmaniasis is not normally found in the high-altitude desert of Northern Chile; where the harsh climate does not allow the parasite to complete its life cycle. The presence of Leishmaniasis in ancient skulls from the region implies infection by the protozoan in an endemic area–likely, in our subjects, to have been the lowlands of North-Eastern Argentina or in Southern Bolivia. Conclusions We propose that the presence of the disease in ancient times in the high altitude desert of San Pedro de Atacama is the result of an exogamic system of patrilocal marriages, where women from different cultures followed their husbands to their ancestral homes, allowing immigrant women, infected early in life, to be incorporated in the Atacama desert society before they became disfigured by the disease. The present globalization of goods and services and the extraordinary facile movement of people across borders and continents have lead to a resurgence of infectious diseases and re-emergence of infections such as Leishmaniasis. We show here that such factors were already present millennia ago, shaping demographic trends and the epidemiology of infections just as they do today. PMID:19746163

  11. Design of lunar base observatories

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.

    1988-01-01

    Several recently suggested concepts for conducting astronomy from a lunar base are cited. Then, the process and sequence of events that will be required to design an observatory to be emplaced on the Moon are examined.

  12. Architectures of astronomical observation: From Sternwarte Kassel (circa 1560) to the Radcliffe Observatory (1772)

    NASA Astrophysics Data System (ADS)

    Kwan, Alistair Marcus

    Historical observatories did not merely shelter astronomers and their instruments, but interacted with them to shape the range and outcome of astronomical observations. This claim is demonstrated through both improvised and purpose-built observatories from the late sixteenth century to the late eighteenth. The improvised observatories involve various grades of architectural intervention from simple re-purposing of a generic space through to radical renovation and customisation. Some of the observatories examined were never built, and some survive only in textual and visual representations, but all nonetheless reflect astronomers' thinking about what observatories needed to provide, and allow us to reconstruct aspects of what it was like to work in them. Historical observatories hence offer a physical record of observational practices. Reconstructing lost practices and the tacit knowledge involved shows how observatories actively contributed to observations by accommodating, supporting and sheltering observers and instruments. We also see how observatories compromised observations by constraining views and free movement, by failing to provide sufficient support, by being expensive or otherwise difficult to obtain, modify or replace. Some observatories were modified many times, accumulating layers of renovation and addition that reflect both advancement and succession of multiple research programs. Such observatories materially and spatially manifest how observational astronomy developed and also also how observatories, like other buildings, respond to changing needs. Examining observatories for their architectural functions and functional shortcomings connects observational practices, spatial configurations and astronomical instrumentation. Such examination shows that spatial contexts, and hence the buildings that define them, are not passive: to the contrary, observatories are active protagonists in the development and practise of observational astronomy.

  13. The University of Tokyo Atacama Observatory 6.5m telescope: project overview and current status

    NASA Astrophysics Data System (ADS)

    Yoshii, Y.; Doi, M.; Kohno, K.; Miyata, T.; Motohara, K.; Kawara, K.; Tanaka, M.; Minezaki, T.; Sako, S.; Morokuma, T.; Tamura, Y.; Tanabe, T.; Takahashi, H.; Konishi, M.; Kamizuka, T.; Kato, N.; Aoki, T.; Soyano, T.; Tarusawa, K.; Handa, T.; Koshida, S.; Bronfman, L.; Ruiz, M. T.; Hamuy, M.; Garay, G.

    2016-07-01

    The University of Tokyo Atacama Observatory Project is to construct a 6.5m infrared telescope at the summit of Co. Chajnantor (5640m altitude) in northern Chile, promoted by the University of Tokyo. Thanks to the dry climate (PWV 0.5mm) and the high altitude, it will achieve excellent performance in the NIR to MIR wavelengths. The telescope has two Nasmyth foci where the facility instruments are installed and two folded-Cassegrain foci for carry-in instruments. All these four foci can be switched by rotating a tertiary mirror. The final focal ratio is 12.2 and the telescope foci have large field-of-view of 25° in diameter. We adopted the 6.5m light-weighted borosilicate honeycomb primary mirror and its support system that are developed by Steward Observatory Richard F. Caris Mirror Lab. The dome enclosure has the shape of carousel, and large ventilation windows with shutters control the wind to flush heat inside the dome. The operation building with control room, aluminizing chamber and maintenance facilities is located at the side of the dome. Two cameras, SWIMS for spectroscopy and imaging in the near-infrared and MIMIZUKU in the mid-infrared, are being developed as the first-generation facility instruments. The operation of the telescope will be remotely carried out from a base facility at San Pedro de Atacama, 50km away from the summit. The construction of the telescope is now underway. Fabrication of the telescope mount has almost finished, and the pre-assembly has been carried out in Japan. The primary, secondary, and tertiary mirrors and their cells have been also fabricated, as well as their cells and support systems. Fabrication of the enclosure is now underway, and their pre-assembly in Japan will be carried out in 2016. Construction of the base facility at San Pedro de Atacama has been already completed in 2014, and operated for the activities in Atacama. The telescope is now scheduled to see the first light at the beginning of 2018.

  14. 150th Anniversary of the Astronomical Observatory Library of Sciences

    NASA Astrophysics Data System (ADS)

    Solntseva, T.

    The scientific library of the Astronomical observatory of Kyiv Taras Shevchenko University is one of the oldest ones of such a type in Ukraine. Our Astronomical Observatory and its scientific library will celebrate 150th anniversary of their foundation. 900 volumes of duplicates of Olbers' private library underlay our library. These ones were acquired by Russian Academy of Sciences for Poulkovo observatory in 1841 but according to Struve's order were transmitted to Kyiv Saint Volodymyr University. These books are of great value. There are works edited during Copernicus', Kepler's, Galilei's, Newton's, Descartes' lifetime. Our library contains more than 100000 units of storage - monographs, periodical astronomical editions from the first (Astronomische Nachrichten, Astronomical journal, Monthly Notices etc.), editions of the majority of the astronomical observatories and institutions of the world, unique astronomical atlases and maps

  15. CHILES Con Pol: An ultra-deep JVLA survey probing galaxy evolution and cosmic magnetism

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.; Momjian, Emmanuel; van Gorkom, Jacqueline; Rupen, Michael P.; Greiner, Maksim; Ensslin, Torsten A.; Bonzini, Margherita; Padovani, Paolo; Harrison, Ian; Brown, Michael L.; Gim, Hansung; Yun, Min S.; Maddox, Natasha; Stewart, Adam; Fender, Rob P.; Tremou, Evangelia; Chomiuk, Laura; Peters, Charee; Wilcots, Eric M.; Lazio, Joseph

    2015-08-01

    We are undertaking a 1000 hour campaign with the Karl G. Jansky VLA to survey 0.2 square degrees of the COSMOS field in full polarization continuum at 1.4 GHz. Our observations are part of a joint program with the spectral line COSMOS HI Large Extragalactic Survey (CHILES). When complete, we expect our CHILES Continuum Polarization (CHILES Con Pol) survey to reach an SKA-era sensitivity of 500 nJy per 4 arcsecond resolving beam, the deepest view of the radio sky yet. CHILES Con Pol will open new and fertile parameter space, with sensitivity to star formation rates of 10 Msun per year out to an unprecedented redshift of z=2, and ultra-luminous infrared galaxies and sub-millimeter galaxies out to redshifts of z=8 and beyond. This rich resource will extend the utility of radio band studies beyond the usual radio quasar and radio galaxy populations, opening sensitivity to the starforming and radio-quiet AGN populations that form the bulk of extragalactic sources detected in the optical, X-ray, and infrared bands. In this talk I will outline the key science of CHILES Con Pol, including galaxy evolution and novel measurements of intergalactic magnetic fields. I will present initial results from the first 180 hours of the survey and describe our forthcoming Data Release 1. I invite the astronomical community to consider unique science that can be pursued with CHILES Con Pol radio data.

  16. Sensing Urban Patterns with Antenna Mappings: The Case of Santiago, Chile.

    PubMed

    Graells-Garrido, Eduardo; Peredo, Oscar; García, José

    2016-07-15

    Mobile data has allowed us to sense urban dynamics at scales and granularities not known before, helping urban planners to cope with urban growth. A frequently used kind of dataset are Call Detail Records (CDR), used by telecommunication operators for billing purposes. Being an already extracted and processed dataset, it is inexpensive and reliable. A common assumption with respect to geography when working with CDR data is that the position of a device is the same as the Base Transceiver Station (BTS) it is connected to. Because the city is divided into a square grid, or by coverage zones approximated by Voronoi tessellations, CDR network events are assigned to corresponding areas according to BTS position. This geolocation may suffer from non negligible error in almost all cases. In this paper we propose "Antenna Virtual Placement" (AVP), a method to geolocate mobile devices according to their connections to BTS, based on decoupling antennas from its corresponding BTS according to its physical configuration (height, downtilt, and azimuth). We use AVP applied to CDR data as input for two different tasks: first, from an individual perspective, what places are meaningful for them? And second, from a global perspective, how to cluster city areas to understand land use using floating population flows? For both tasks we propose methods that complement or improve prior work in the literature. Our proposed methods are simple, yet not trivial, and work with daily CDR data from the biggest telecommunication operator in Chile. We evaluate them in Santiago, the capital of Chile, with data from working days from June 2015. We find that: (1) AVP improves city coverage of CDR data by geolocating devices to more city areas than using standard methods; (2) we find important places (home and work) for a 10% of the sample using just daily information, and recreate the population distribution as well as commuting trips; (3) the daily rhythms of floating population allow to cluster

  17. Ethical living: relinking ethics and consumption through care in Chile and Brazil.

    PubMed

    Ariztia, Tomas; Agloni, Nurjk; Pellandini-Simányi, Léna

    2018-06-01

    Mainstream conceptualizations of 'ethical consumption' equate the notion with conscious, individual, market-mediated choices motivated by ethical or political aims that transcend ordinary concerns. Drawing on recent sociology and anthropology of consumption literature on the links between ordinary ethics and ethical consumption, this article discusses some of the limitations of this conceptualization. Using data from 32 focus groups conducted in Chile and Brazil, we propose a conceptualization of ethical consumption that does not centre on individual, market-mediated choices but understands it at the level of practical outcomes, which we refer to as different forms of 'ethical living'. To do that, we argue, we need to depart from the deontological understanding of ethics that underpins mainstream approaches to ethical consumption and adopt a more consequentialist view focusing on ethical outcomes. We develop these points through describing one particular ordinary moral regime that seemed to be predominant in participants' accounts of ethics and consumption in both Chile and Brazil: one that links consumption and ethics through care. We show that the moral regime of care leads to 'ethical outcomes', such as energy saving or limiting overconsumption, yet contrary to the mainstream view of ethical consumption emphasizing politicized choice expressed through markets, these result from following ordinary ethics, often through routines of practices. © London School of Economics and Political Science 2017.

  18. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    N° 73-2001 - Paris, 5 December 2001 The aim of AVO is to give astronomers instant access to the vast databanks now being built up by the world's observatories and forming what is in effect a "digital sky". Using AVO astronomers will be able, for example, to retrieve the elusive traces of the passage of an asteroid as it passes the Earth and so predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded, adding invaluable data to the study of the evolution of stars. Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data -corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being digitally reconstructed in the databanks. The volume and complexity of data and information available to astronomers are overwhelming. Hence the problem of how astronomers can possibly manage, distribute and analyse this great wealth of data. The Astrophysical Virtual Observatory will enable them to meet the challenge and "put the Universe online". AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The Commission has awarded a contract valued at EUR 4m for the project, starting on 15 November. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the "real" sky would, in comparison, both be prohibitively costly and take far too long. Towards a Global Virtual Observatory The

  19. Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico.

    PubMed

    Aguilar-Meléndez, Araceli; Morrell, Peter L; Roose, Mikeal L; Kim, Seung-Chul

    2009-06-01

    The chile of Mesoamerica, Capsicum annuum, is one of five domesticated chiles in the Americas. Among the chiles, it varies the most in size, form, and color of its fruits. Together with maize, C. annuum is one of the principal elements of the neotropical diets of Mesoamerican civilizations. Despite the great economic and cultural importance of C. annuum both worldwide and in Mexico, however, very little is known about its geographic origin and number of domestications. Here we sampled a total of 80 accessions from Mexico (58 semiwild and 22 domesticated) and examined nucleotide sequence diversity at three single- or low-copy nuclear loci, Dhn, G3pdh, and Waxy. Across the three loci, we found an average reduction of ca. 10% in the diversity of domesticates relative to semiwild chiles and geographic structure within Mexican populations. The Yucatan Peninsula contained a large number of haplotypes, many of which were unique, suggesting an important region of chile domestication and center of diversity. The present sampling of loci did not conclusively resolve the number and location of domestications, but several lines of evidence suggest multiple independent domestications from widely distributed progenitor populations.

  20. Creation of an instrument maintenance program at W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Hill, G. M.; Kwok, S. H.; Mader, J. A.; Wirth, G. D.; Dahm, S. E.; Goodrich, R. W.

    2014-08-01

    Until a few years ago, the W. M. Keck Observatory (WMKO) did not have a systematic program of instrument maintenance at a level appropriate for a world-leading observatory. We describe the creation of such a program within the context of WMKO's lean operations model which posed challenges but also guided the design of the system and resulted in some unique and notable capabilities. These capabilities and the flexibility of the system have led to its adoption across the Observatory for virtually all PM's. The success of the Observatory in implementing the program and its impact on instrument reliability are presented. Lessons learned are reviewed and strategic implications discussed.