Sample records for observatory control system

  1. Utilizing Internet Technologies in Observatory Control Systems

    NASA Astrophysics Data System (ADS)

    Cording, Dean

    2002-12-01

    The 'Internet boom' of the past few years has spurred the development of a number of technologies to provide services such as secure communications, reliable messaging, information publishing and application distribution for commercial applications. Over the same period, a new generation of computer languages have also developed to provide object oriented design and development, improved reliability, and cross platform compatibility. Whilst the business models of the 'dot.com' era proved to be largely unviable, the technologies that they were based upon have survived and have matured to the point were they can now be utilized to build secure, robust and complete observatory control control systems. This paper will describe how Electro Optic Systems has utilized these technologies in the development of its third generation Robotic Observatory Control System (ROCS). ROCS provides an extremely flexible configuration capability within a control system structure to provide truly autonomous robotic observatory operation including observation scheduling. ROCS was built using Internet technologies such as Java, Java Messaging Service (JMS), Lightweight Directory Access Protocol (LDAP), Secure Sockets Layer (SSL), eXtendible Markup Language (XML), Hypertext Transport Protocol (HTTP) and Java WebStart. ROCS was designed to be capable of controlling all aspects of an observatory and be able to be reconfigured to handle changing equipment configurations or user requirements without the need for an expert computer programmer. ROCS consists of many small components, each designed to perform a specific task, with the configuration of the system specified using a simple meta language. The use of small components facilitates testing and makes it possible to prove that the system is correct.

  2. Turning a remotely controllable observatory into a fully autonomous system

    NASA Astrophysics Data System (ADS)

    Swindell, Scott; Johnson, Chris; Gabor, Paul; Zareba, Grzegorz; Kubánek, Petr; Prouza, Michael

    2014-08-01

    We describe a complex process needed to turn an existing, old, operational observatory - The Steward Observatory's 61" Kuiper Telescope - into a fully autonomous system, which observers without an observer. For this purpose, we employed RTS2,1 an open sourced, Linux based observatory control system, together with other open sourced programs and tools (GNU compilers, Python language for scripting, JQuery UI for Web user interface). This presentation provides a guide with time estimates needed for a newcomers to the field to handle such challenging tasks, as fully autonomous observatory operations.

  3. Towards a new Mercator Observatory Control System

    NASA Astrophysics Data System (ADS)

    Pessemier, W.; Raskin, G.; Prins, S.; Saey, P.; Merges, F.; Padilla, J. P.; Van Winckel, H.; Waelkens, C.

    2010-07-01

    A new control system is currently being developed for the 1.2-meter Mercator Telescope at the Roque de Los Muchachos Observatory (La Palma, Spain). Formerly based on transputers, the new Mercator Observatory Control System (MOCS) consists of a small network of Linux computers complemented by a central industrial controller and an industrial real-time data communication network. Python is chosen as the high-level language to develop flexible yet powerful supervisory control and data acquisition (SCADA) software for the Linux computers. Specialized applications such as detector control, auto-guiding and middleware management are also integrated in the same Python software package. The industrial controller, on the other hand, is connected to the majority of the field devices and is targeted to run various control loops, some of which are real-time critical. Independently of the Linux distributed control system (DCS), this controller makes sure that high priority tasks such as the telescope motion, mirror support and hydrostatic bearing control are carried out in a reliable and safe way. A comparison is made between different controller technologies including a LabVIEW embedded system, a PROFINET Programmable Logic Controller (PLC) and motion controller, and an EtherCAT embedded PC (soft-PLC). As the latter is chosen as the primary platform for the lower level control, a substantial part of the software is being ported to the IEC 61131-3 standard programming languages. Additionally, obsolete hardware is gradually being replaced by standard industrial alternatives with fast EtherCAT communication. The use of Python as a scripting language allows a smooth migration to the final MOCS: finished parts of the new control system can readily be commissioned to replace the corresponding transputer units of the old control system with minimal downtime. In this contribution, we give an overview of the systems design, implementation details and the current status of the project.

  4. TELICS—A Telescope Instrument Control System for Small/Medium Sized Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Srivastava, Mudit K.; Ramaprakash, A. N.; Burse, Mahesh P.; Chordia, Pravin A.; Chillal, Kalpesh S.; Mestry, Vilas B.; Das, Hillol K.; Kohok, Abhay A.

    2009-10-01

    For any modern astronomical observatory, it is essential to have an efficient interface between the telescope and its back-end instruments. However, for small and medium-sized observatories, this requirement is often limited by tight financial constraints. Therefore a simple yet versatile and low-cost control system is required for such observatories to minimize cost and effort. Here we report the development of a modern, multipurpose instrument control system TELICS (Telescope Instrument Control System) to integrate the controls of various instruments and devices mounted on the telescope. TELICS consists of an embedded hardware unit known as a common control unit (CCU) in combination with Linux-based data acquisition and user interface. The hardware of the CCU is built around the ATmega 128 microcontroller (Atmel Corp.) and is designed with a backplane, master-slave architecture. A Qt-based graphical user interface (GUI) has been developed and the back-end application software is based on C/C++. TELICS provides feedback mechanisms that give the operator good visibility and a quick-look display of the status and modes of instruments as well as data. TELICS has been used for regular science observations since 2008 March on the 2 m, f/10 IUCAA Telescope located at Girawali in Pune, India.

  5. OpenROCS: a software tool to control robotic observatories

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Sanz, Josep; Vilardell, Francesc; Ribas, Ignasi; Gil, Pere

    2012-09-01

    We present the Open Robotic Observatory Control System (OpenROCS), an open source software platform developed for the robotic control of telescopes. It acts as a software infrastructure that executes all the necessary processes to implement responses to the system events that appear in the routine and non-routine operations associated to data-flow and housekeeping control. The OpenROCS software design and implementation provides a high flexibility to be adapted to different observatory configurations and event-action specifications. It is based on an abstract model that is independent of the specific hardware or software and is highly configurable. Interfaces to the system components are defined in a simple manner to achieve this goal. We give a detailed description of the version 2.0 of this software, based on a modular architecture developed in PHP and XML configuration files, and using standard communication protocols to interface with applications for hardware monitoring and control, environment monitoring, scheduling of tasks, image processing and data quality control. We provide two examples of how it is used as the core element of the control system in two robotic observatories: the Joan Oró Telescope at the Montsec Astronomical Observatory (Catalonia, Spain) and the SuperWASP Qatar Telescope at the Roque de los Muchachos Observatory (Canary Islands, Spain).

  6. Astrobo: Towards a new observatory control system for the Garching Observatory 0.6m

    NASA Astrophysics Data System (ADS)

    Schweyer, T.; Jarmatz, P.; Burwitz, V.

    2016-12-01

    The recently installed Campus Observatory Garching (COG) 0.6m telescope features a wide array of instruments, including a wide-field imager and a variety of spectrographs. To support all these different instruments and improve time usage, it was decided to develop a new control system from scratch, that will be able to safely observe autonomously as well as manually (for student lab courses). It is built using an hierarchical microservice architecture, which allows well-specified communication between its components regardless of the programming language used. This modular design allows for fast prototyping of components as well as easy implementation of complex instrumentation control software.

  7. The ACE multi-user web-based Robotic Observatory Control System

    NASA Astrophysics Data System (ADS)

    Mack, P.

    2003-05-01

    We have developed an observatory control system that can be operated in interactive, remote or robotic modes. In interactive and remote mode the observer typically acquires the first object then creates a script through a window interface to complete observations for the rest of the night. The system closes early in the event of bad weather. In robotic mode observations are submitted ahead of time through a web-based interface. We present observations made with a 1.0-m telescope using these methods.

  8. An observatory control system for the University of Hawai'i 2.2m Telescope

    NASA Astrophysics Data System (ADS)

    McKay, Luke; Erickson, Christopher; Mukensnable, Donn; Stearman, Anthony; Straight, Brad

    2016-07-01

    The University of Hawai'i 2.2m telescope at Maunakea has operated since 1970, and has had several controls upgrades to date. The newest system will operate as a distributed hierarchy of GNU/Linux central server, networked single-board computers, microcontrollers, and a modular motion control processor for the main axes. Rather than just a telescope control system, this new effort is towards a cohesive, modular, and robust whole observatory control system, with design goals of fully robotic unattended operation, high reliability, and ease of maintenance and upgrade.

  9. Attitude Control System Design for the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.

    2005-01-01

    The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.

  10. The TJO-OAdM robotic observatory: OpenROCS and dome control

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Francisco, Xavier; Ribas, Ignasi; Casteels, Kevin; Martín, Jonatan

    2010-07-01

    The Telescope Joan Oró at the Montsec Astronomical Observatory (TJO - OAdM) is a small-class observatory working in completely unattended control. There are key problems to solve when a robotic control is envisaged, both on hardware and software issues. We present the OpenROCS (ROCS stands for Robotic Observatory Control System), an open source platform developed for the robotic control of the TJO - OAdM and similar astronomical observatories. It is a complex software architecture, composed of several applications for hardware control, event handling, environment monitoring, target scheduling, image reduction pipeline, etc. The code is developed in Java, C++, Python and Perl. The software infrastructure used is based on the Internet Communications Engine (Ice), an object-oriented middleware that provides object-oriented remote procedure call, grid computing, and publish/subscribe functionality. We also describe the subsystem in charge of the dome control: several hardware and software elements developed to specially protect the system at this identified single point of failure. It integrates a redundant control and a rain detector signal for alarm triggering and it responds autonomously in case communication with any of the control elements is lost (watchdog functionality). The self-developed control software suite (OpenROCS) and dome control system have proven to be highly reliable.

  11. Development of telescope control system for the 50cm telescope of UC Observatory Santa Martina

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Reveco, Johnny; Vanzi, Leonardo; Fernández, Jose M.; Escarate, Pedro; Suc, Vincent

    2012-09-01

    The main telescope of the UC Observatory Santa Martina is a 50cm optical telescope donated by ESO to Pontificia Universidad Catolica de Chile. During the past years the telescope has been refurbished and used as the main facility for testing and validating new instruments under construction by the center of Astro-Engineering UC. As part of this work, the need to develop a more efficient and flexible control system arises. The new distributed control system has been developed on top of Internet Communication Engine (ICE), a framework developed by Zeroc Inc. This framework features a lightweight but powerful and flexible inter-process communication infrastructure and provides binding to classic and modern programming languages, such as, C/C++, java, c#, ruby-rail, objective c, etc. The result of this work shows ICE as a real alternative for CORBA and other de-facto distribute programming framework. Classical control software architecture has been chosen and comprises an observation control system (OCS), the orchestrator of the observation, which controls the telescope control system (TCS), and detector control system (DCS). The real-time control and monitoring system is deployed and running over ARM based single board computers. Other features such as logging and configuration services have been developed as well. Inter-operation with other main astronomical control frameworks are foreseen in order achieve a smooth integration of instruments when they will be integrated in the main observatories in the north of Chile

  12. Observatory for education and public outreach controlled through the World Wide Web

    NASA Astrophysics Data System (ADS)

    Guzik, T. Gregory; Motl, Patrick M.; Burks, Geoffrey S.; Fisher, Paul; Giammanco, James; Landolt, Arlo U.; Stacy, J. G.; Tohline, Joel E.; Wefel, Katrina

    1998-05-01

    For the last two and a half years the Department of Physics and Astronomy at Louisiana State University has been engaged in a collaborative effort with the Recreation and Park Commission for the Parish of East Baton Rouge and the Baton Rouge Astronomical Society to develop a observatory that can be used for astronomy education from primary school; through graduate studies as well as for recreation and public outreach. The observatory includes a 2,300 square feet facility, a 20-inch diameter Ritchey-Chretien telescope, a black-thinned CCD camera, a computer control system and an internet T1 link. The on site public outreach and education program has been fully active since Fall, 1997 and we are currently in the process of developing a platform- independent system for remotely controlling the observatory over the internet. The initial version of the Java/World Wide Web based software is currently functioning and provides interactive control of the observatory via any Java compatible web browser. The main principles of the remote control system are presented in this paper, along with a discussion of the education and outreach goals of the observatory, details of the facility and hardware, initial measurements of system performance, and a discussion of our future development plans.

  13. Fault Detection and Correction for the Solar Dynamics Observatory Attitude Control System

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Vess, Melissa F.; Kenney, Thomas M.; Maldonado, Manuel D.; Morgenstern, Wendy M.

    2007-01-01

    The Solar Dynamics Observatory is an Explorer-class mission that will launch in early 2009. The spacecraft will operate in a geosynchronous orbit, sending data 24 hours a day to a devoted ground station in White Sands, New Mexico. It will carry a suite of instruments designed to observe the Sun in multiple wavelengths at unprecedented resolution. The Atmospheric Imaging Assembly includes four telescopes with focal plane CCDs that can image the full solar disk in four different visible wavelengths. The Extreme-ultraviolet Variability Experiment will collect time-correlated data on the activity of the Sun's corona. The Helioseismic and Magnetic Imager will enable study of pressure waves moving through the body of the Sun. The attitude control system on Solar Dynamics Observatory is responsible for four main phases of activity. The physical safety of the spacecraft after separation must be guaranteed. Fine attitude determination and control must be sufficient for instrument calibration maneuvers. The mission science mode requires 2-arcsecond control according to error signals provided by guide telescopes on the Atmospheric Imaging Assembly, one of the three instruments to be carried. Lastly, accurate execution of linear and angular momentum changes to the spacecraft must be provided for momentum management and orbit maintenance. In thsp aper, single-fault tolerant fault detection and correction of the Solar Dynamics Observatory attitude control system is described. The attitude control hardware suite for the mission is catalogued, with special attention to redundancy at the hardware level. Four reaction wheels are used where any three are satisfactory. Four pairs of redundant thrusters are employed for orbit change maneuvers and momentum management. Three two-axis gyroscopes provide full redundancy for rate sensing. A digital Sun sensor and two autonomous star trackers provide two-out-of-three redundancy for fine attitude determination. The use of software to maximize

  14. Digital control of the Kuiper Airborne Observatory telescope

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann C.; Snyder, Philip K.

    1989-01-01

    The feasibility of using a digital controller to stabilize a telescope mounted in an airplane is investigated. The telescope is a 30 in. infrared telescope mounted aboard a NASA C-141 aircraft known as the Kuiper Airborne Observatory. Current efforts to refurbish the 14-year-old compensation system have led to considering a digital controller. A typical digital controller is modeled and added into the telescope system model. This model is simulated on a computer to generate the Bode plots and time responses which determine system stability and performance parameters. Important aspects of digital control system hardware are discussed. A summary of the findings shows that a digital control system would result in satisfactory telescope performance.

  15. The PLATO Dome A site-testing observatory: Power generation and control systems

    NASA Astrophysics Data System (ADS)

    Lawrence, J. S.; Ashley, M. C. B.; Hengst, S.; Luong-van, D. M.; Storey, J. W. V.; Yang, H.; Zhou, X.; Zhu, Z.

    2009-06-01

    The atmospheric conditions above Dome A, a currently unmanned location at the highest point on the Antarctic plateau, are uniquely suited to astronomy. For certain types of astronomy Dome A is likely to be the best location on the planet, and this has motivated the development of the Plateau Observatory (PLATO). PLATO was deployed to Dome A in early 2008. It houses a suite of purpose-built site-testing instruments designed to quantify the benefits of Dome A site for astronomy, and science instruments designed to take advantage of the observing conditions. The PLATO power generation and control system is designed to provide continuous power and heat, and a high-reliability command and communications platform for these instruments. PLATO has run and collected data throughout the winter 2008 season completely unattended. Here we present a detailed description of the power generation, power control, thermal management, instrument interface, and communications systems for PLATO, and an overview of the system performance for 2008.

  16. The PLATO Dome A site-testing observatory: power generation and control systems.

    PubMed

    Lawrence, J S; Ashley, M C B; Hengst, S; Luong-Van, D M; Storey, J W V; Yang, H; Zhou, X; Zhu, Z

    2009-06-01

    The atmospheric conditions above Dome A, a currently unmanned location at the highest point on the Antarctic plateau, are uniquely suited to astronomy. For certain types of astronomy Dome A is likely to be the best location on the planet, and this has motivated the development of the Plateau Observatory (PLATO). PLATO was deployed to Dome A in early 2008. It houses a suite of purpose-built site-testing instruments designed to quantify the benefits of Dome A site for astronomy, and science instruments designed to take advantage of the observing conditions. The PLATO power generation and control system is designed to provide continuous power and heat, and a high-reliability command and communications platform for these instruments. PLATO has run and collected data throughout the winter 2008 season completely unattended. Here we present a detailed description of the power generation, power control, thermal management, instrument interface, and communications systems for PLATO, and an overview of the system performance for 2008.

  17. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 5: Specification for EROS operations control center

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The functional, performance, and design requirements for the Operations Control Center (OCC) of the Earth Observatory Satellite (EOS) system are presented. The OCC controls the operations of the EOS satellite to acquire mission data consisting of: (1) thematic mapper data, (2) multispectral scanner data on EOS-A, or High Resolution Pointable Imager data on EOS-B, and (3) data collection system (DCS) data. The various inputs to the OCC are identified. The functional requirements of the OCC are defined. The specific systems and subsystems of the OCC are described and block diagrams are provided.

  18. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  19. Compact vibration isolation and suspension for Australian International Gravitational Observatory: Local control system

    NASA Astrophysics Data System (ADS)

    Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G.

    2009-11-01

    High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.

  20. Compact vibration isolation and suspension for Australian International Gravitational Observatory: local control system.

    PubMed

    Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G

    2009-11-01

    High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.

  1. Colloid Microthruster Feed System Development for Fine Pointing and Drag-Free Control of Multi-Year Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Ziemer, John; Mueller, J.; Spence, D.; Hruby, V.

    2014-01-01

    A new Colloid Microthruster feed system, including a propellant tank and redundant Microvalves, is being developed for fine pointing and drag-free operations of multi-year astronomical observatories under the PCOS SAT program. Almost all Gravitational Wave Observatory (GWO) concepts require microthrusters to maintain a drag-free environment for the inertial sensor instrument to meet the mission science objectives. The current state-of-the-art microthruster in the US is the Busek Colloid Micro-Newton Thruster (CMNT) originally developed under the New Millennium Program for the Space Technology 7 (ST7) and ESA's LISA Pathfinder (LPF) technology demonstration mission. The ST7 CMNT design includes a bellows propellant storage tank that is sized to provide up to 90 days of maximum thrust (30 µN). The new propellant tank is based on a blow-down, metal-diaphragm spherical tank design with enough capacity for a 5-year GWO mission. The new feed system will also include the third generation of Busek’s Microvalve, currently being developed under a NASA Phase II SBIR. The Microvalve is responsible for the picoliter per second control of the propellant from the tank to the thruster head, demanding parts with micron-level tolerances, critical alignments, and challenging acceptance test protocols. This microthruster system could also be considered for replacement of reaction wheels for slewing and fine pointing of other astronomical observatories, including Exo-Planet Observatory concepts. The goal of the PCOS SAT effort is to raise the new system to TRL 5 with performance and environmental testing within the next two years.

  2. Earth Observatory Satellite system definition study. Report no. 7: EOS system definition report. Appendixes A through D

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the systems involved in the operation and support of the Earth Observatory Satellite (EOS) is presented. Among the systems considered are the following: (1) the data management system, (2) observatory to primary ground station communications links, (3) local user system, (4) techniques for recognizing ground control points, (5) the central data processing-implementation concept, and (6) program effectiveness analysis.

  3. JCMT observatory control system

    NASA Astrophysics Data System (ADS)

    Rees, Nicholas P.; Economou, Frossie; Jenness, Tim; Kackley, Russell D.; Walther, Craig A.; Dent, William R. F.; Folger, Martin; Gao, Xiaofeng; Kelly, Dennis; Lightfoot, John F.; Pain, Ian; Hovey, Gary J.; Redman, Russell O.

    2002-12-01

    The JCMT, the world's largest sub-mm telescope, has had essentially the same VAX/VMS based control system since it was commissioned. For the next generation of instrumentation we are implementing a new Unix/VxWorks based system, based on the successful ORAC system that was recently released on UKIRT. The system is now entering the integration and testing phase. This paper gives a broad overview of the system architecture and includes some discussion on the choices made. (Other papers in this conference cover some areas in more detail). The basic philosophy is to control the sub-systems with a small and simple set of commands, but passing detailed XML configuration descriptions along with the commands to give the flexibility required. The XML files can be passed between various layers in the system without interpretation, and so simplify the design enormously. This has all been made possible by the adoption of an Observation Preparation Tool, which essentially serves as an intelligent XML editor.

  4. A Modern Operating System for Near-real-time Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Orcutt, John; Vernon, Frank

    2014-05-01

    The NSF Ocean Observatory Initiative (OOI) provided an opportunity for expanding the capabilities for managing open, near-real-time (latencies of seconds) data from ocean observatories. The sensors deployed in this system largely return data from seafloor, cabled fiber optic cables as well as satellite telemetry. Bandwidth demands range from high-definition movies to the transmission of data via Iridium satellite. The extended Internet also provides an opportunity to not only return data, but to also control the sensors and platforms that comprise the observatory. The data themselves are openly available to any users. In order to provide heightened network security and overall reliability, the connections to and from the sensors/platforms are managed without Layer 3 of the Internet, but instead rely upon message passing using an open protocol termed Advanced Queuing Messaging Protocol (AMQP). The highest bandwidths in the system are in the Regional Scale Network (RSN) off Oregon and Washington and on the continent with highly reliable network connections between observatory components at 10 Gbps. The maintenance of metadata and life cycle histories of sensors and platforms is critical for providing data provenance over the years. The integrated cyberinfrastructure is best thought of as an operating system for the observatory - like the data, the software is also open and can be readily applied to new observatories, for example, in the rapidly evolving Arctic.

  5. Real-time control of the robotic lunar observatory telescope

    USGS Publications Warehouse

    Anderson, J.M.; Becker, K.J.; Kieffer, H.H.; Dodd, D.N.

    1999-01-01

    The US Geological Survey operates an automated observatory dedicated to the radiometry of the Moon with the objective of developing a multispectral, spatially resolved photometric model of the Moon to be used in the calibration of Earth-orbiting spacecraft. Interference filters are used with two imaging instruments to observe the Moon in 32 passbands from 350-2500 nm. Three computers control the telescope mount and instruments with a fourth computer acting as a master system to control all observation activities. Real-time control software has been written to operate the instrumentation and to automate the observing process. The observing software algorithms use information including the positions of objects in the sky, the phase of the Moon, and the times of evening and morning twilight to decide how to observe program objects. The observatory has been operating in a routine mode since late 1995 and is expected to continue through at least 2002 without significant modifications.

  6. Chandra X-Ray Observatory Pointing Control System Performance During Transfer Orbit and Initial On-Orbit Operations

    NASA Technical Reports Server (NTRS)

    Quast, Peter; Tung, Frank; West, Mark; Wider, John

    2000-01-01

    The Chandra X-ray Observatory (CXO, formerly AXAF) is the third of the four NASA great observatories. It was launched from Kennedy Space Flight Center on 23 July 1999 aboard the Space Shuttle Columbia and was successfully inserted in a 330 x 72,000 km orbit by the Inertial Upper Stage (IUS). Through a series of five Integral Propulsion System burns, CXO was placed in a 10,000 x 139,000 km orbit. After initial on-orbit checkout, Chandra's first light images were unveiled to the public on 26 August, 1999. The CXO Pointing Control and Aspect Determination (PCAD) subsystem is designed to perform attitude control and determination functions in support of transfer orbit operations and on-orbit science mission. After a brief description of the PCAD subsystem, the paper highlights the PCAD activities during the transfer orbit and initial on-orbit operations. These activities include: CXO/IUS separation, attitude and gyro bias estimation with earth sensor and sun sensor, attitude control and disturbance torque estimation for delta-v burns, momentum build-up due to gravity gradient and solar pressure, momentum unloading with thrusters, attitude initialization with star measurements, gyro alignment calibration, maneuvering and transition to normal pointing, and PCAD pointing and stability performance.

  7. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  8. Power systems for ocean regional cabled observatories

    NASA Technical Reports Server (NTRS)

    Kojima, Junichi; Asakawa, Kenichi; Howe, Bruce M.; Kirkham, Harold

    2004-01-01

    Development of power systems is the most challenging technical issue in the design of ocean regional cabled observatories. ARENA and NEPTUNE are two ocean regional cabled observatory networks with aims that are at least broadly similar. Yet the two designs are quite different in detail. This paper outlines the both systems and explores the reasons for the divergence of design, and shows that it arose because of differences in the priority of requirements.

  9. The JCMT Observatory Control System

    NASA Astrophysics Data System (ADS)

    Rees, Nick; Economou, Frossie; Jenness, Tim; Kackley, Russell; Walther, Craig; Dent, Bill; Folger, Martin; Gao, Xiaofeng; Kelly, Dennis; Lightfoot, John; Pain, Ian; Hovey, Gary; Willis, Tony; Redman, Russell

    The JCMT, the world's largest sub-mm telescope, has had essentially the same VAX/VMS based control system since it was commissioned. For the next generation of instrumentation we are implementing a new Unix/VxWorks based system, based on the successful ORAC system that was recently released on UKIRT. This paper gives a broad overview of the system architecture and includes some discussion on the choices made. The pros and cons of using XML as an inherent part of the system architecture are also discussed.

  10. Goals and strategies in the global control design of the OAJ Robotic Observatory

    NASA Astrophysics Data System (ADS)

    Yanes-Díaz, A.; Rueda-Teruel, S.; Antón, J. L.; Rueda-Teruel, F.; Moles, M.; Cenarro, A. J.; Marín-Franch, A.; Ederoclite, A.; Gruel, N.; Varela, J.; Cristóbal-Hornillos, D.; Chueca, S.; Díaz-Martín, M. C.; Guillén, L.; Luis-Simoes, R.; Maícas, N.; Lamadrid, J. L.; López-Sainz, A.; Hernández-Fuertes, J.; Valdivielso, L.; Mendes de Oliveira, C.; Penteado, P.; Schoenell, W.; Kanaan, A.

    2012-09-01

    There are many ways to solve the challenging problem of making a high performance robotic observatory from scratch. The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located in the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys. The OAJ control system has been designed from a global point of view including astronomical subsystems as well as infrastructures and other facilities. Three main factors have been considered in the design of a global control system for the robotic OAJ: quality, reliability and efficiency. We propose CIA (Control Integrated Architecture) design and OEE (Overall Equipment Effectiveness) as a key performance indicator in order to improve operation processes, minimizing resources and obtaining high cost reduction whilst maintaining quality requirements. The OAJ subsystems considered for the control integrated architecture are the following: two wide-field telescopes and their instrumentation, active optics subsystems, facilities for sky quality monitoring (seeing, extinction, sky background, sky brightness, cloud distribution, meteorological station), domes and several infrastructure facilities such as water supply, glycol water, water treatment plant, air conditioning, compressed air, LN2 plant, illumination, surveillance, access control, fire suppression, electrical generators, electrical distribution, electrical consumption, communication network, Uninterruptible Power Supply and two main control rooms, one at the OAJ and the other remotely located in Teruel, 40km from the observatory, connected through a microwave radio-link. This paper presents the OAJ strategy in control design to achieve maximum quality efficiency for the observatory processes and operations, giving practical examples of our approach.

  11. Management approach recommendations. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Management analyses and tradeoffs were performed to determine the most cost effective management approach for the Earth Observatory Satellite (EOS) Phase C/D. The basic objectives of the management approach are identified. Some of the subjects considered are as follows: (1) contract startup phase, (2) project management control system, (3) configuration management, (4) quality control and reliability engineering requirements, and (5) the parts procurement program.

  12. Agile development approach for the observatory control software of the DAG 4m telescope

    NASA Astrophysics Data System (ADS)

    Güçsav, B. Bülent; ćoker, Deniz; Yeşilyaprak, Cahit; Keskin, Onur; Zago, Lorenzo; Yerli, Sinan K.

    2016-08-01

    Observatory Control Software for the upcoming 4m infrared telescope of DAG (Eastern Anatolian Observatory in Turkish) is in the beginning of its lifecycle. After the process of elicitation-validation of the initial requirements, we have been focused on preparation of a rapid conceptual design not only to see the big picture of the system but also to clarify the further development methodology. The existing preliminary designs for both software (including TCS and active optics control system) and hardware shall be presented here in brief to exploit the challenges the DAG software team has been facing with. The potential benefits of an agile approach for the development will be discussed depending on the published experience of the community and on the resources available to us.

  13. Gemini Observatory base facility operations: systems engineering process and lessons learned

    NASA Astrophysics Data System (ADS)

    Serio, Andrew; Cordova, Martin; Arriagada, Gustavo; Adamson, Andy; Close, Madeline; Coulson, Dolores; Nitta, Atsuko; Nunez, Arturo

    2016-08-01

    Gemini North Observatory successfully began nighttime remote operations from the Hilo Base Facility control room in November 2015. The implementation of the Gemini North Base Facility Operations (BFO) products was a great learning experience for many of our employees, including the author of this paper, the BFO Systems Engineer. In this paper we focus on the tailored Systems Engineering processes used for the project, the various software tools used in project support, and finally discuss the lessons learned from the Gemini North implementation. This experience and the lessons learned will be used both to aid our implementation of the Gemini South BFO in 2016, and in future technical projects at Gemini Observatory.

  14. Adaptive optics system for the IRSOL solar observatory

    NASA Astrophysics Data System (ADS)

    Ramelli, Renzo; Bucher, Roberto; Rossini, Leopoldo; Bianda, Michele; Balemi, Silvano

    2010-07-01

    We present a low cost adaptive optics system developed for the solar observatory at Istituto Ricerche Solari Locarno (IRSOL), Switzerland. The Shack-Hartmann Wavefront Sensor is based on a Dalsa CCD camera with 256 pixels × 256 pixels working at 1kHz. The wavefront compensation is obtained by a deformable mirror with 37 actuators and a Tip-Tilt mirror. A real time control software has been developed on a RTAI-Linux PC. Scicos/Scilab based software has been realized for an online analysis of the system behavior. The software is completely open source.

  15. Thermal control system of the Exoplanet Characterisation Observatory Payload: design and predictions

    NASA Astrophysics Data System (ADS)

    Morgante, G.; Terenzi, L.; Eccleston, P.; Bradshaw, T.; Crook, M.; Linder, M.; Hunt, T.; Winter, B.; Focardi, M.; Malaguti, G.; Micela, G.; Pace, E.; Tinetti, G.

    2015-12-01

    The Exoplanet Characterisation Observatory (EChO) is a space mission dedicated to investigate exoplanetary atmospheres by undertaking spectroscopy of transiting planets in a wide spectral region from the visible to the mid-InfraRed (IR). The high sensitivity and the long exposures required by the mission need an extremely stable thermo-mechanical platform. The instrument is passively cooled down to approximately 40 K, together with the telescope assembly, by a V-Groove based design that exploits the L2 orbit favourable thermal conditions. The visible and short-IR wavelength detectors are maintained at the operating temperature of 40 K by a dedicated radiator coupled to the cold space. The mid-IR channels, require a lower operating temperature and are cooled by an active refrigerator: a 28 K Neon Joule-Thomson (JT) cold end, fed by a mechanical compressor. Temperature stability is one of the challenging issues of the whole architecture: periodical perturbations must be controlled before they reach the sensitive units of the instrument. An efficient thermal control system is required: the design is based on a combination of passive and active solutions. In this paper we describe the thermal architecture of the payload with the main cryo-chain stages and their temperature control systems. The requirements that drive the design and the trade-offs needed to enable the EChO exciting science in a technically feasible payload design are discussed. Thermal modelling results and preliminary performance predictions in terms of steady state and transient conditions are also reported. This paper is presented on behalf of the EChO Consortium.

  16. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Phil; Feinberg, Lee

    2006-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  17. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Feinberg, Lee

    2007-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  18. Robotic Observatory System Design-Specification Considerations for Achieving Long-Term Sustainable Precision Performance

    NASA Astrophysics Data System (ADS)

    Wray, J. D.

    2003-05-01

    The robotic observatory telescope must point precisely on the target object, and then track autonomously to a fraction of the FWHM of the system PSF for durations of ten to twenty minutes or more. It must retain this precision while continuing to function at rates approaching thousands of observations per night for all its years of useful life. These stringent requirements raise new challenges unique to robotic telescope systems design. Critical design considerations are driven by the applicability of the above requirements to all systems of the robotic observatory, including telescope and instrument systems, telescope-dome enclosure systems, combined electrical and electronics systems, environmental (e.g. seeing) control systems and integrated computer control software systems. Traditional telescope design considerations include the effects of differential thermal strain, elastic flexure, plastic flexure and slack or backlash with respect to focal stability, optical alignment and angular pointing and tracking precision. Robotic observatory design must holistically encapsulate these traditional considerations within the overall objective of maximized long-term sustainable precision performance. This overall objective is accomplished through combining appropriate mechanical and dynamical system characteristics with a full-time real-time telescope mount model feedback computer control system. Important design considerations include: identifying and reducing quasi-zero-backlash; increasing size to increase precision; directly encoding axis shaft rotation; pointing and tracking operation via real-time feedback between precision mount model and axis mounted encoders; use of monolithic construction whenever appropriate for sustainable mechanical integrity; accelerating dome motion to eliminate repetitive shock; ducting internal telescope air to outside dome; and the principal design criteria: maximizing elastic repeatability while minimizing slack, plastic deformation

  19. Solar Dynamics Observatory Guidance, Navigation, and Control System Overview

    NASA Technical Reports Server (NTRS)

    Morgenstern, Wendy M.; Bourkland, Kristin L.; Hsu, Oscar C.; Liu, Kuo-Chia; Mason, Paul A. C.; O'Donnell, James R., Jr.; Russo, Angela M.; Starin, Scott R.; Vess, Melissa F.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was designed and built at the Goddard Space Flight Center, launched from Cape Canaveral on February 11, 2010, and reached its final geosynchronous science orbit on March 16, 2010. The purpose of SDO is to observe the Sun and continuously relay data to a dedicated ground station. SDO remains Sun-pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system (ACS) is a single-fault tolerant design. Its fully redundant attitude sensor complement includes sixteen coarse Sun sensors (CSSs), a digital Sun sensor (DSS), three two-axis inertial reference units (IRUs), and two star trackers (STs). The ACS also makes use of the four guide telescopes included as a part of one of the science instruments. Attitude actuation is performed using four reaction wheels assemblies (RWAs) and eight thrusters, with a single main engine used to provide velocity-change thrust for orbit raising. The attitude control software has five nominal control modes, three wheel-based modes and two thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. This paper details the final overall design of the SDO guidance, navigation, and control (GN&C) system and how it was used in practice during SDO launch, commissioning, and nominal operations. This overview will include the ACS control modes, attitude determination and sensor calibration, the high gain antenna (HGA) calibration, and jitter mitigation operation. The Solar Dynamics Observatory mission is part of the NASA Living With a Star program, which seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft carries three Sun

  20. Performance of the Keck Observatory adaptive-optics system.

    PubMed

    van Dam, Marcos A; Le Mignant, David; Macintosh, Bruce A

    2004-10-10

    The adaptive-optics (AO) system at the W. M. Keck Observatory is characterized. We calculate the error budget of the Keck AO system operating in natural guide star mode with a near-infrared imaging camera. The measurement noise and bandwidth errors are obtained by modeling the control loops and recording residual centroids. Results of sky performance tests are presented: The AO system is shown to deliver images with average Strehl ratios of as much as 0.37 at 1.58 microm when a bright guide star is used and of 0.19 for a magnitude 12 star. The images are consistent with the predicted wave-front error based on our error budget estimates.

  1. A small Internet controllable observatory for research and education at the University of North Dakota

    NASA Astrophysics Data System (ADS)

    Hardersen, P. S.; de Silva, S.; Reddy, V.; Cui, P.; Kumar, S.; Gaffey, M. J.

    2006-06-01

    One of the challenges in astronomy education today is to introduce college students to the real-world practice and science of observational astronomy. Along with a good theoretical background, college students can gain an earlier, deeper understanding of the astronomy profession through direct observational and data reduction experience. However, building and managing a modest observatory is still too costly for many colleges and universities. Fortunately, advances in commercial astronomical hardware and software now allow universities to build and operate small Internet controllable observatories for a modest investment. The advantages of an Internet observatory include: 1) remote operation from a comfortable location, 2) immediate data access, 3) telescope control via a web browser, and 4) allowing both on-campus and distance education students the ability to conduct a variety of observing projects. Internet capabilities vastly expand the number of students who will be able to use the observatory, thus exposing them to astronomy as a science and as a potential career. In September 2005, the University of North Dakota (UND) Department of Space Studies began operating a small, recently renovated Internet controllable observatory. Housed within a roll-off roof 10 miles west of UND, the observatory includes a Meade 16-inch, f/10 Schmidt-Cassegrain telescope, an SBIG STL-6303e CCD with broadband filters, ACP observatory control software, focuser, and associated equipment. The observatory cost \\25,000 to build in 1996; 2005 renovation costs total \\28,000. An observatory operator prepares the telescope for use each night. Through remote operation, the roof is opened and the telescope/CCD power is turned on. The telescope is then aligned and focused before allowing students to access the observatory. Students communicate with the observatory operator via an online chat room and via telephone, if necessary, to answer questions and resolve any problems. Additional

  2. Initial Performance of the Attitude Control and Aspect Determination Subsystems on the Chandra Observatory

    NASA Technical Reports Server (NTRS)

    Cameron, R.; Aldcroft, T.; Podgorski, W. A.; Freeman, M. D.

    2000-01-01

    The aspect determination system of the Chandra X-ray Observatory plays a key role in realizing the full potential of Chandra's X-ray optics and detectors. We review the performance of the spacecraft hardware components and sub-systems, which provide information for both real time control of the attitude and attitude stability of the Chandra Observatory and also for more accurate post-facto attitude reconstruction. These flight components are comprised of the aspect camera (star tracker) and inertial reference units (gyros), plus the fiducial lights and fiducial transfer optics which provide an alignment null reference system for the science instruments and X-ray optics, together with associated thermal and structural components. Key performance measures will be presented for aspect camera focal plane data, gyro performance both during stable pointing and during maneuvers, alignment stability and mechanism repeatability.

  3. Modular Seafloor and Water Column Systems for the Ocean Observatories Initiative Cabled Array

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.; Manalang, D.; Harrington, M.; Tilley, J.; Dosher, J.; Cram, G.; Harkins, G.; McGuire, C.; Waite, P.; McRae, E.; McGinnis, T.; Kenney, M.; Siani, C.; Michel-Hart, N.; Denny, S.; Boget, E.; Kawka, O. E.; Daly, K. L.; Luther, D. S.; Kelley, D. S.; Milcic, M.

    2016-02-01

    Over the past decade, cabled ocean observatories have become an increasingly important way to collect continuous real-time data at remote subsea locations. This has led to the development of a class of subsea systems designed and built specifically to distribute power and bandwidth among sensing instrumentation on the seafloor and throughout the water column. Such systems are typically powered by shore-based infrastructure and involve networks of fiber optic and electrical cabling that provide real-time data access and control of remotely deployed instrumentation. Several subsea node types were developed and/or adapted for cabled use in order to complete the installation of the largest North American scientific cabled observatory in Oct, 2014. The Ocean Observatories Initiative (OOI) Cabled Array, funded by the US National Science Foundation, consists of a core infrastructure that includes 900 km of fiber optic/electrical cables, seven primary nodes, 18 seafloor junction boxes, three mooring-mounted winched profiling systems, and three wire-crawling profiler systems. In aggregate, the installed infrastructure has 200 dedicated scientific instrument ports (of which 120 are currently assigned), and is capable of further expansion. The installed system has a 25-year design life for reliable, sustained monitoring; and all nodes, profilers and instrument packages are ROV-serviceable. Now in it's second year of operation, the systems that comprise the Cabled Array are providing reliable, 24/7 real-time data collection from deployed instrumentation, and offer a modular and scalable class of subsea systems for ocean observing. This presentation will provide an overview of the observatory-class subsystems of the OOI Cabled Array, focusing on the junction boxes, moorings and profilers that power and communicate with deployed instrumentation.

  4. Highly Adjustable Systems: An Architecture for Future Space Observatories

    NASA Astrophysics Data System (ADS)

    Arenberg, Jonathan; Conti, Alberto; Redding, David; Lawrence, Charles R.; Hachkowski, Roman; Laskin, Robert; Steeves, John

    2017-06-01

    Mission costs for ground breaking space astronomical observatories are increasing to the point of unsustainability. We are investigating the use of adjustable or correctable systems as a means to reduce development and therefore mission costs. The poster introduces the promise and possibility of realizing a “net zero CTE” system for the general problem of observatory design and introduces the basic systems architecture we are considering. This poster concludes with an overview of our planned study and demonstrations for proving the value and worth of highly adjustable telescopes and systems ahead of the upcoming decadal survey.

  5. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; VanLew, K.; Melsheimer, T.; Sackett, C.

    1999-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. Construction of the dome and the remote control system has been completed, and the telescope is now on-line and operational over the Internet. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have begun teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  6. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Vanlew, K.; Melsheimer, T.; Melsheimer, L.; Rideout, C.; Patterson, T.

    1997-12-01

    A second observatory of the Telescopes in Education (TIE) project is in the planning stages, with hopes to be in use by fall 1998. The Little Thompson Observatory will be located adjacent to Berthoud High School in northern Colorado. TIE has offered the observatory a Tinsley 18" Cassegrain telescope on a 10-year loan. Local schools and youth organizations will have prioritized access to the telescope until midnight; after that, the telescope will be open to world-wide use by schools via the Internet. The first TIE observatory is a 24" telescope on Mt. Wilson, already booked through July 1998. That telescope has been in use every clear night for the past four years by up to 50 schools per month. Students remotely control the telescope over the Internet, and then receive the images on their local computers. The estimated cost of the Little Thompson Observatory is roughly \\170,000. However, donations of labor and materials have reduced the final price tag closer to \\40,000. Habitat for Humanity is organized to construct the dome, classrooms, and other facilities. Tom and Linda Melsheimer, who developed the remote telescope control system for the University of Denver's Mount Evans Observatory, are donating a similar control system. The formally-trained, all-volunteer staff will be comprised of local residents, teachers and amateur astronomers. Utilities and Internet access will be provided by the Thompson School District.

  7. New control system for the 1.5m and 0.9m telescopes at Sierra Nevada Observatory

    NASA Astrophysics Data System (ADS)

    Costillo, Luis P.; Ramos, J. Luis; Ibáñez, J. Miguel; Aparicio, Beatriz; Herránz, Miguel; García, Antonio J.

    2006-06-01

    The Sierra Nevada Observatory (Granada, Spain) has a number of telescopes. Our study will focus on two Nasmyth telescopes with apertures of 1.5m and 0.9m and an equatorial mount. The system currently installed to control these telescopes is a 1995 centralized VME module. However, given the problems which have arisen due to the number of wires and other complications, we have decided to change this control module. We will control each telescope with a distributed control philosophy, using a serial linear communication bus between independent nodes, although all system capabilities are accessible from a central unit anywhere and at any time via internet. We have divided the tasks and have one node for alpha control, another for delta control, one for the dome, one for the focus and the central unit to interface with a pc. The nodes for alpha, delta and the dome will be used by means of FPGA's in order to efficiently sample the encoders and the control algorithms, and to generate the output for the motors and the servo. The focus will have a microcontroller, and the system is easy to expand in the event of the inclusion of more nodes. After having studied several fieldbus systems, we have opted for the CAN bus, because of its reliability and broadcasting possibilities. In this way, all the important information will be on the bus, and every node will be able to access the information at any time. This document explains the new design made in the IAA for the new consoles of control whose basic characteristics are, the distributed control, the hardware simplify, the cable remove, the safety and maintenance improve and facilitating the observation improving the interface with the user, and finally to prepare the system for the remote observation.

  8. A low-power data acquisition system for geomagnetic observatories and variometer stations

    NASA Astrophysics Data System (ADS)

    Morschhauser, Achim; Haseloff, Jürgen; Bronkalla, Oliver; Müller-Brettschneider, Carsten; Matzka, Jürgen

    2017-09-01

    A modern geomagnetic observatory must provide data of high stability, continuity, and resolution. The INTERMAGNET network has therefore specified quantitative criteria to ensure a high quality standard of geomagnetic observatories. Here, we present a new data acquisition system which was designed to meet these criteria, in particular with respect to 1 Hz data. This system is based on a Raspberry Pi embedded PC and runs a C+ + data acquisition software. As a result, the data acquisition system is modular, cheap, and flexible, and it can be operated in remote areas with limited power supply. In addition, the system is capable of near-real-time data transmission, using a reverse SSH tunnel to work with any network available. The system hardware was successfully tested at the Niemegk observatory for a period of 1 year and subsequently installed at the Tatuoca observatory in Brazil.

  9. Ground System for Solar Dynamics Observatory (SDO) Mission

    NASA Technical Reports Server (NTRS)

    Tann, Hun K.; Silva, Christopher J.; Pages, Raymond J.

    2005-01-01

    NASA s Goddard Space Flight Center (GSFC) has recently completed its Critical Design Review (CDR) of a new dual Ka and S-band ground system for the Solar Dynamics Observatory (SDO) Mission. SDO, the flagship mission under the new Living with a Star Program Office, is one of GSFC s most recent large-scale in-house missions. The observatory is scheduled for launch in August 2008 from the Kennedy Space Center aboard an Atlas-5 expendable launch vehicle. Unique to this mission is an extremely challenging science data capture requirement. The mission is required to capture 99.99% of available science over 95% of all observation opportunities. Due to the continuous, high volume (150 Mbps) science data rate, no on-board storage of science data will be implemented on this mission. With the observatory placed in a geo-synchronous orbit at 36,000 kilometers within view of dedicated ground stations, the ground system will in effect implement a "real-time" science data pipeline with appropriate data accounting, data storage, data distribution, data recovery, and automated system failure detection and correction to keep the science data flowing continuously to three separate Science Operations Centers (SOCs). Data storage rates of approx. 45 Tera-bytes per month are expected. The Mission Operations Center (MOC) will be based at GSFC and is designed to be highly automated. Three SOCs will share in the observatory operations, each operating their own instrument. Remote operations of a multi-antenna ground station in White Sands, New Mexico from the MOC is part of the design baseline.

  10. Status, upgrades, and advances of RTS2: the open source astronomical observatory manager

    NASA Astrophysics Data System (ADS)

    Kubánek, Petr

    2016-07-01

    RTS2 is an open source observatory control system. Being developed from early 2000, it continue to receive new features in last two years. RTS2 is a modulat, network-based distributed control system, featuring telescope drivers with advanced tracking and pointing capabilities, fast camera drivers and high level modules for "business logic" of the observatory, connected to a SQL database. Running on all continents of the planet, it accumulated a lot to control parts or full observatory setups.

  11. A general observatory control software framework design for existing small and mid-size telescopes

    NASA Astrophysics Data System (ADS)

    Ge, Liang; Lu, Xiao-Meng; Jiang, Xiao-Jun

    2015-07-01

    A general framework for observatory control software would help to improve the efficiency of observation and operation of telescopes, and would also be advantageous for remote and joint observations. We describe a general framework for observatory control software, which considers principles of flexibility and inheritance to meet the expectations from observers and technical personnel. This framework includes observation scheduling, device control and data storage. The design is based on a finite state machine that controls the whole process.

  12. An Information Retrieval and Recommendation System for Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Mukund, Nikhil; Thakur, Saurabh; Abraham, Sheelu; Aniyan, A. K.; Mitra, Sanjit; Sajeeth Philip, Ninan; Vaghmare, Kaustubh; Acharjya, D. P.

    2018-03-01

    We present a machine-learning-based information retrieval system for astronomical observatories that tries to address user-defined queries related to an instrument. In the modern instrumentation scenario where heterogeneous systems and talents are simultaneously at work, the ability to supply people with the right information helps speed up the tasks for detector operation, maintenance, and upgradation. The proposed method analyzes existing documented efforts at the site to intelligently group related information to a query and to present it online to the user. The user in response can probe the suggested content and explore previously developed solutions or probable ways to address the present situation optimally. We demonstrate natural language-processing-backed knowledge rediscovery by making use of the open source logbook data from the Laser Interferometric Gravitational Observatory (LIGO). We implement and test a web application that incorporates the above idea for LIGO Livingston, LIGO Hanford, and Virgo observatories.

  13. Evolution of the SOFIA tracking control system

    NASA Astrophysics Data System (ADS)

    Fiebig, Norbert; Jakob, Holger; Pfüller, Enrico; Röser, Hans-Peter; Wiedemann, Manuel; Wolf, Jürgen

    2014-07-01

    The airborne observatory SOFIA (Stratospheric Observatory for Infrared Astronomy) is undergoing a modernization of its tracking system. This included new, highly sensitive tracking cameras, control computers, filter wheels and other equipment, as well as a major redesign of the control software. The experiences along the migration path from an aged 19" VMbus based control system to the application of modern industrial PCs, from VxWorks real-time operating system to embedded Linux and a state of the art software architecture are presented. Further, the concept is presented to operate the new camera also as a scientific instrument, in parallel to tracking.

  14. The Carl Sagan solar and stellar observatories as remote observatories

    NASA Astrophysics Data System (ADS)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  15. University of Hawaii Lure Observatory. [lunar laser ranging system construction

    NASA Technical Reports Server (NTRS)

    Carter, W. E.; Williams, J. D.

    1973-01-01

    The University of Hawaii's Institute for Astronomy is currently constructing a lunar laser ranging observatory at the 3050-meter summit of Mt. Haleakala, Hawaii. The Nd YAG laser system to be employed provides three pulses per second, each pulse being approximately 200 picoseconds in duration. The energy contained in one pulse at 5320 A lies in the range from 250 to 350 millijoules. Details of observatory construction are provided together with transmitter design data and information concerning the lunastat, the feed telescope, the relative pointing system, the receiver, and the event timer system.

  16. Data Distribution System (DDS) and Solar Dynamic Observatory Ground Station (SDOGS) Integration Manager

    NASA Technical Reports Server (NTRS)

    Pham, Kim; Bialas, Thomas

    2012-01-01

    The DDS SDOGS Integration Manager (DSIM) provides translation between native control and status formats for systems within DDS and SDOGS, and the ASIST (Advanced Spacecraft Integration and System Test) control environment in the SDO MOC (Solar Dynamics Observatory Mission Operations Center). This system was created in response for a need to centralize remote monitor and control of SDO Ground Station equipments using ASIST control environment in SDO MOC, and to have configurable table definition for equipment. It provides translation of status and monitoring information from the native systems into ASIST-readable format to display on pages in the MOC. The manager is lightweight, user friendly, and efficient. It allows data trending, correlation, and storing. It allows using ASIST as common interface for remote monitor and control of heterogeneous equipments. It also provides failover capability to back up machines.

  17. The Farid & Moussa Raphael Observatory

    NASA Astrophysics Data System (ADS)

    Hajjar, R.

    2017-06-01

    The Farid & Moussa Raphael Observatory (FMRO) at Notre Dame University Louaize (NDU) is a teaching, research, and outreach facility located at the main campus of the university. It located very close to the Lebanese coast, in an urbanized area. It features a 60-cm Planewave CDK telescope, and instruments that allow for photometric and spetroscopic studies. The observatory currently has one thinned, back-illuminated CCD camera, used as the main imager along with Johnson-Cousin and Sloan photometric filters. It also features two spectrographs, one of which is a fiber fed echelle spectrograph. These are used with a dedicated CCD. The observatory has served for student projects, and summer schools for advanced undergraduate and graduate students. It is also made available for use by the regional and international community. The control system is currently being configured for remote observations. A number of long-term research projects are also being launched at the observatory.

  18. The UNH Earth Systems Observatory: A Regional Application in Support of GEOSS Global-Scale Objectives

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C. J.; Braswell, B.; Fekete, B.; Glidden, S.; Hartmann, H.; Magill, A.; Prusevich, A.; Wollheim, W.; Blaha, D.; Justice, D.; Hurtt, G.; Jacobs, J.; Ollinger, S.; McDowell, W.; Rock, B.; Rubin, F.; Schloss, A.

    2006-12-01

    The Northeast corridor of the US is emblematic of the many changes taking place across the nation's and indeed the world's watersheds. Because ecosystem and watershed change occurs over many scales and is so multifaceted, transferring scientific knowledge to applications as diverse as remediation of local ground water pollution, setting State-wide best practices for non-point source pollution control, enforcing regional carbon sequestration treaties, or creating public/private partnerships for protecting ecosystem services requires a new generation of integrative environmental surveillance systems, information technology, and information transfer to the user community. Geographically complex ecosystem interactions justify moving toward more integrative, regionally-based management strategies to deal with issues affecting land, inland waterways, and coastal waterways. A unified perspective that considers the full continuum of processes which link atmospheric forcings, terrestrial responses, watershed exports along drainage networks, and the final delivery to the coastal zone, nearshore, and off shore waters is required to adequately support the management challenge. A recent inventory of NOAA-supported environmental surveillance systems, IT resources, new sensor technologies, and management-relevant decision support systems shows the community poised to formulate an integrated and operational picture of the environment of New England. This paper presents the conceptual framework and early products of the newly-created UNH Earth Systems Observatory. The goal of the UNH Observatory is to serve as a regionally-focused yet nationally-prominent platform for observation-based, integrative science and management of the New England/Gulf of Maine's land, air, and ocean environmental systems. Development of the UNH Observatory is being guided by the principles set forth under the Global Earth Observation System of Systems and is cast as an end-to-end prototype for GEOSS

  19. Earth Observatory Satellite system definition study. Report no. 7: EOS system definition report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design concept and operational aspects of the Earth Observatory Satellite (EOS) are presented. A table of the planned EOS missions is included to show the purpose of the mission, the instruments involved, and the launch date. The subjects considered in the analysis of the EOS development are: (1) system requirements, (2) design/cost trade methodology, (3) observatory design alternatives, (4) the data management system, (5) the design evaluation and preferred approach, (6) program cost compilation, (7) follow-on mission accommodation, and (8) space shuttle interfaces and utilization. Illustrations and block diagrams of the spacecraft configurations are provided.

  20. The CHANDRA X-Ray Observatory: Thermal Design, Verification, and Early Orbit Experience

    NASA Technical Reports Server (NTRS)

    Boyd, David A.; Freeman, Mark D.; Lynch, Nicolie; Lavois, Anthony R. (Technical Monitor)

    2000-01-01

    The CHANDRA X-ray Observatory (formerly AXAF), one of NASA's "Great Observatories" was launched aboard the Shuttle in July 1999. CHANDRA comprises a grazing-incidence X-ray telescope of unprecedented focal-length, collecting area and angular resolution -- better than two orders of magnitude improvement in imaging performance over any previous soft X-ray (0.1-10 keV) mission. Two focal-plane instruments, one with a 150 K passively-cooled detector, provide celestial X-ray images and spectra. Thermal control of CHANDRA includes active systems for the telescope mirror and environment and the optical bench, and largely passive systems for the focal plans instruments. Performance testing of these thermal control systems required 1-1/2 years at increasing levels of integration, culminating in thermal-balance testing of the fully-configured observatory during the summer of 1998. This paper outlines details of thermal design tradeoffs and methods for both the Observatory and the two focal-plane instruments, the thermal verification philosophy of the Chandra program (what to test and at what level), and summarizes the results of the instrument, optical system and observatory testing.

  1. The High Energy Astronomy Observatory X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Miller, R.; Austin, G.; Koch, D.; Jagoda, N.; Kirchner, T.; Dias, R.

    1978-01-01

    The High Energy Astronomy Observatory-Mission B (HEAO-B) is a satellite observatory for the purpose of performing a detailed X-ray survey of the celestial sphere. Measurements will be made of stellar radiation in the range 0.2 through 20 keV. The primary viewing requirement is to provide final aspect solution and internal alignment information to correlate an observed X-ray image with the celestial sphere to within one-and-one-half arc seconds. The Observatory consists of the HEAO Spacecraft together with the X-ray Telescope. The Spacecraft provides the required attitude control and determination system, data telemetry system, space solar power system, and interface with the launch vehicle. The X-ray Telescope includes a high resolution mirror assembly, optical bench metering structure, X-ray detectors, detector positioning system, detector electronics and aspect sensing system.

  2. Infrared space observatory photometry of circumstellar dust in Vega-type systems

    NASA Technical Reports Server (NTRS)

    Fajardo-Acosta, S. B.; Stencel, R. E.; Backman, D. E.; Thakur, N.

    1998-01-01

    The ISOPHOT (Infrared Space Observatory Photometry) instrument onboard the Infrared Space Observatory (ISO) was used to obtain 3.6-90 micron photometry of Vega-type systems. Photometric data were calibrated with the ISOPHOT fine calibration source 1 (FCS1). Linear regression was used to derive transformations to make comparisons to ground-based and IRAS photometry systems possible. These transformations were applied to the photometry of 14 main-sequence stars. Details of these results are reported on.

  3. Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 2. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Attitude reference systems for use with the Earth Observatory Satellite (EOS) are described. The systems considered are fixed and gimbaled star trackers, star mappers, and digital sun sensors. Covariance analyses were performed to determine performance for the most promising candidate in low altitude and synchronous orbits. The performance of attitude estimators that employ gyroscopes which are periodically updated by a star sensor is established by a single axis covariance analysis. The other systems considered are: (1) the propulsion system design, (2) electric power and electrical integration, (3) thermal control, (4) ground data processing, and (5) the test plan and cost reduction aspects of observatory integration and test.

  4. Operation of U.S. Geological Survey unmanned digital magnetic observatories

    USGS Publications Warehouse

    Wilson, L.R.

    1990-01-01

    The precision and continuity of data recorded by unmanned digital magnetic observatories depend on the type of data acquisition equipment used and operating procedures employed. Three generations of observatory systems used by the U.S. Geological Survey are described. A table listing the frequency of component failures in the current observatory system has been compiled for a 54-month period of operation. The cause of component failure was generally mechanical or due to lightning. The average percentage data loss per month for 13 observatories operating a combined total of 637 months was 9%. Frequency distributions of data loss intervals show the highest frequency of occurrence to be intervals of less than 1 h. Installation of the third generation system will begin in 1988. The configuration of the third generation observatory system will eliminate most of the mechanical problems, and its components should be less susceptible to lightning. A quasi-absolute coil-proton system will be added to obtain baseline control for component variation data twice daily. Observatory data, diagnostics, and magnetic activity indices will be collected at 12-min intervals via satellite at Golden, Colorado. An improvement in the quality and continuity of data obtained with the new system is expected. ?? 1990.

  5. Earth Observatory Satellite system definition study. Report 7: EOS system definition report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Earth Observatory Satellite (EOS) study is summarized to show the modular design of a general purpose spacecraft, a mission peculiar segment which performs the EOS-A mission, an Operations Control Center, a Data Processing Facility, and a design for Low Cost Readout Stations. The study verified the practicality and feasibility of the modularized spacecraft with the capability of supporting many missions in the Earth Observation spectrum. The various subjects considered in the summary are: (1) orbit/launch vehicle tradeoff studies and recommendations, (2) instrument constraints and interfaces, (3) design/cost tradeoff and recommendations, (4) low cost management approach and recommendations, (5) baseline system description and specifications, and (6) space shuttle utilization and interfaces.

  6. Construction/Application of the Internet Observatories in Japan

    NASA Astrophysics Data System (ADS)

    Satoh, T.; Tsubota, Y.; Matsumoto, N.; Takahashi, N.

    2000-05-01

    We have successfully built two Internet Observatories in Japan: one at Noda campus of the Science University of Tokyo and another at Hiyoshi campus of the Keio Senior High School. Both observatories are equipped with a computerized Meade LX-200 telescope (8" tube at the SUT site and 12" at the Keio site) with a CCD video camera inside the sliding-roof type observatory. Each observatory is controlled by two personal computer: one controls almost everything, including the roof, the telescope, and the camera, while another is dedicated to encode the real-time picture from the CCD video camera into the RealVideo format for live broadcasting. A user can operate the observatory through the web-based interface and can enjoy the real-time picture of the objects via the RealPlayer software. The administrator can run a sequence of batch commands with which no human interaction is needed from the beginning to the end of an observation. Although our observatories are primarily for educational purposes, this system can easily be converted to a signal-triggered one which may be very useful to observe transient phenomena, such as afterglows of gamma-ray bursts. The most remarkable feature of our observatories is that it is very inexpensive (it costs only a few tens of grands). We'll report details of the observatories in the poster, and at the same time, will demonstrate operating the observatories using an internet-connected PC from the meeting site. This work has been supported through the funding from the Telecommunicaitons Advancement Foundation for FY 1998 and 1999.

  7. Stratospheric Observatory For Infrared Astronomy (SOFIA). Phase A: System concept description

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Infrared astronomers have made significant discoveries using the NASA/Ames Research Center C-141 Kuiper airborne Observatory (KAO) with its 0.91-meter telescope. The need for a 3-meter class airborne observatory has been established to improve astronomy data gathering capability. The new system envisioned by NASA and the international community of astronomers will be known as the Stratospheric Observatory for Infrared Astronomy (SOFIA). The platform of choice for SOFIA is a modified Boeing 747SP. SOFIA is viewed as a logical progression from the KAO. Potentially, a 3-meter telescope operating at the altitude achievable by the 747SP aircraft can be 11 times more sensitive than the KAO, can have 3.3 times better angular resolution, and will allow observations of compact sources in a volume of space up to 36 times that of the KAO. The KAO has enabled detection of about 15 percent of the far infrared IRAS survey point-sources; SOFIA should be able to detect them all. This document presents the results of in-house ARC and contracted concept definition studies for SOFIA. Using the ARC-based Kuiper Airborne Observatory as a basis for both SOFIA design and operations concepts, the SOFIA system concept has been developed with a view toward demonstrating mission and technical feasibility, and preparing preliminary cost estimates. The reference concept developed is not intended to represent final design, and should be treated accordingly. The most important products of this study, other than demonstration of system feasibility, are the understanding of system trade-offs and the development of confidence in the technology base that exists to move forward with a program leading to implementation of the Stratospheric Observatory for Infrared Astronomy (SOFIA).

  8. Gimbal Control Algorithms for the Global Precipitation Measurement Core Observatory

    NASA Technical Reports Server (NTRS)

    Welter, Gary L.; Liu, Kuo Chia; Blaurock, Carl

    2012-01-01

    There are two gimbaled systems on the Global Precipitation Measurement Core Observatory: two single-degree-of-freedom solar arrays (SAs) and one two-degree-of-freedom high gain antenna (HGA). The guidance, navigation, and control analysis team was presented with the following challenges regarding SA orientation control during periods of normal mission science: (1) maximize solar flux on the SAs during orbit day, subject to battery charging limits, (2) minimize atmospheric drag during orbit night to reduce frequency of orbit maintenance thruster usage, (3) minimize atmospheric drag during orbits for which solar flux is nearly independent of SA orientation, and (4) keep array-induced spacecraft attitude disturbances within allocated tolerances. The team was presented with the following challenges regarding HGA control during mission science periods: (1) while tracking a ground-selected Tracking Data and Relay Satellite (TDRS), keep HGA control error below about 4', (2) keep array-induced spacecraft attitude disturbances small, and (3) minimize transition time between TDRSs subject to constraints imposed by item 2. This paper describes the control algorithms developed to achieve these goals and certain analysis done as part of that work.

  9. System design and specifications. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A design summary of the Earth Observatory Satellite (EOS) is presented. The systems considered in the summary are: (1) the spacecraft structure, (2) electrical power modules, (3) communications and data handling module, (4) attitude determination module, (5) actuation module, and (6) solar array and drive module. The documents which provide the specifications for the systems and the equipment are identified.

  10. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    NASA Astrophysics Data System (ADS)

    Konno, Y.; Kubo, H.; Masuda, S.; Paoletti, R.; Poulios, S.; Rugliancich, A.; Saito, T.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards.

  11. Installation package for Hyde Memorial Observatory, Lincoln, Nebraska

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Installation information for a solar heating system installed in Hyde Memorial Observatory at Lincoln, Nebraska is presented. This package included a system operation and maintenance manual, hardware brochures, schematics, system operating modes, and drawings. This prototype solar heating system consisted of the following subsystems: solar collector, control, and storage.

  12. VST project: distributed control system overview

    NASA Astrophysics Data System (ADS)

    Mancini, Dario; Mazzola, Germana; Molfese, C.; Schipani, Pietro; Brescia, Massimo; Marty, Laurent; Rossi, Emilio

    2003-02-01

    The VLT Survey Telescope (VST) is a co-operative program between the European Southern Observatory (ESO) and the INAF Capodimonte Astronomical Observatory (OAC), Naples, for the study, design, and realization of a 2.6-m wide-field optical imaging telescope to be operated at the Paranal Observatory, Chile. The telescope design, manufacturing and integration are responsibility of OAC. The VST has been specifically designed to carry out stand-alone observations in the UV to I spectral range and to supply target databases for the ESO Very Large Telescope (VLT). The control hardware is based on a large utilization of distributed embedded specialized controllers specifically designed, prototyped and manufactured by the Technology Working Group for VST project. The use of a field bus improves the whole system reliability in terms of high level flexibility, control speed and allow to reduce drastically the plant distribution in the instrument. The paper describes the philosophy and the architecture of the VST control HW with particular reference to the advantages of this distributed solution for the VST project.

  13. Vibration isolation system for the Stratospheric Observatory For Infrared Astronomy (SOFIA)

    NASA Technical Reports Server (NTRS)

    Kaiser, T.; Kunz, N.

    1988-01-01

    The Vibration Isolation System for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is studied. Included are discussions of the various concepts, design goals, concerns, and the proposed configuration for the Vibration Isolation System.

  14. Astronomical Research with the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1997-05-01

    We have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. The MicroObservatory Net consists of five of these telescopes. They are currently being deployed around the world at widely distributed longitudes. Remote access to the MicroObservatories over the Internet has now been implemented. Software for computer control, pointing, focusing, filter selection as well as pattern recognition have all been developed as part of the project. The telescopes can be controlled in real time or in delay mode, from a Macintosh, PC or other computer using Web-based software. The Internet address of the telescopes is http://cfa- www.harvard.edu/cfa/sed/MicroObservatory/MicroObservatory.html. In the real-time mode, individuals have access to all of the telescope control functions without the need for an `on-site' operator. Users can sign up for a specific period of ti me. In the batch mode, users can submit requests for delayed telescope observations. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. The telescopes were designed for classroom instruction, as well as for use by students and amateur astronomers for original scientific research projects. We are currently examining a variety of technical and educational questions about the use of the telescopes including: (1) What are the best approaches to scheduling real-time versus batch mode observations? (2) What criteria should be used for allocating telescope time? (3) With deployment of more than one telescope, is it advantageous for each telescope to be used for just one type of observation, i.e., some for photometric use, others for imaging? And (4) What are the most valuable applications of the MicroObservatories in astronomical research? Support for the MicroObservatory

  15. Design/cost tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of design/cost tradeoff studies conducted during the Earth Observatory Satellite system definition studies are presented. The studies are concerned with the definition of a basic modular spacecraft capable of supporting a variety of operational and/or research and development missions, with the deployment either by conventional launch vehicles or by means of the space shuttle. The three levels investigated during the study are: (1) subsystem tradeoffs, (2) spacecraft tradeoffs, and (3) system tradeoffs. The range of requirements which the modular concept must span is discussed. The mechanical, thermal, power, data and electromagnetic compatibility aspects of modularity are analyzed. Other data are provided for the observatory design concept, the payloads, integration and test, the ground support equipment, and ground data management systems.

  16. Chandra X-Ray Observatory Observations of the Jovian System

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Bhardwaj, A.; Gladstone, R.; Waite, J. H.; Ford, P.; Branduari-Raymont, G.

    2005-01-01

    Chandra X-ray Observatory (CXO) and XMM-Newton observations of x-rays from the Jovian system have answered questions that arose from early observations with the Einstein and Rosat X-ray Observatories, but in the process of vastly increasing our knowledge of x-ray emission from Jupiter and its environs they have also raised new questions and point to new opportunities for future studies. We will review recent x-ray results on the Jovian system, from the point of view of the CXO, and discuss various questions that have arisen in the course of our studies. We will discuss prospects for more observations in the immediate future, and how they might address open questions. Finally we will briefly describe ways in which an imaging x-ray spectrometer in the vicinity of the Jovian system could provide a wealth of data and results concerning Jupiter's x-ray auroral and disk emission, elemental abundance measurements for the Galilean moons, and detailed studies of x-ray emission from the Io Plasma Torus.

  17. Reorganization and Reconfiguration of the Information Management System of Istanbul University Observatory taking the Padova - Asiago Observatory Information Management System as a Model

    NASA Astrophysics Data System (ADS)

    Gulsecen, S.; Saygac, A. T.; Passuello, R.; Rigoni, A.

    1998-01-01

    In this paper we describe the need for a more powerful Information management System (IMS) to be used as a useful aid for astronomers. The main purpose of IMS in astronomical places like observatories and astronomy departments is described and two models are presented: one to be reorganized and reconfigurated (Istanbul University,Faculty of Science, Department of Astronomy and Space Sciences -ASS- IMS) and one to be taken as a good model for the previous (University of Padova, Asiago astrophysical Observatory IMS). Particular attention is given to the implementation of the new IMS of ASS to be done carefully. In order to take success in this, the need for current and future cooperation and support in mentioned.

  18. Space telescope observatory management system preliminary test and verification plan

    NASA Technical Reports Server (NTRS)

    Fritz, J. S.; Kaldenbach, C. F.; Williams, W. B.

    1982-01-01

    The preliminary plan for the Space Telescope Observatory Management System Test and Verification (TAV) is provided. Methodology, test scenarios, test plans and procedure formats, schedules, and the TAV organization are included. Supporting information is provided.

  19. The data acquisition system for the Anglo-Australian Observatory 2-degree field project

    NASA Technical Reports Server (NTRS)

    Shortridge, K.; Farrell, T. J.; Bailey, J.

    1992-01-01

    The Anglo-Australian Observatory (AAO) is building a system that will provide a two-degree field of view at prime focus. A robot positioner will be used to locate up to 400 optical fibers at pre-determined positions in this field. While observations are being made using one set of 400 fibers, the robot will be positioning a second set of fibers in a background field that can be moved in to replace the first when the telescope is moved to a new position. The fibers feed two spectrographs each with a 1024 square CCD detector. The software system being produced to control this involves Vaxes for overall control and data recording, UNIX workstations for fiber configuration calculations and on-line data reduction, and VME systems running VxWorks for real-time control of critical parts such as the positioner robot. The system has to be able to interact with the observatory's present data acquisition systems, which use the ADAM system. As yet, the real-time parts of ADAM have not been ported to Unix, and so we are having to produce a smaller-scale system that is similar but inherently distributed (which ADAM is not). We are using this system as a testbed for ideas that we hope may eventually influence an ADAM II system. The system we are producing is based on a message system that is designed to be able to handle inter-process and inter-processor messages of any length, efficiently, and without ever requiring a task to block (i.e., be unresponsive to 'cancel' messages, enquiry messages), other than when deliberately waiting for external input - all of which will be through such messages. The essential requirement is that a message 'send' operation should never be able to block. The messages will be hierarchical, self-defining, machine-independent data structures. This allows us to provide very simple monitoring of messages for diagnostic purposes, and allows general purpose interface programs to be written without needing to share precise byte by byte message format

  20. Conceptual design for a user-friendly adaptive optics system at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissinger, H.D.; Olivier, S.; Max, C.

    1996-03-08

    In this paper, we present a conceptual design for a general-purpose adaptive optics system, usable with all Cassegrain facility instruments on the 3 meter Shane telescope at the University of California`s Lick Observatory located on Mt. Hamilton near San Jose, California. The overall design goal for this system is to take the sodium-layer laser guide star adaptive optics technology out of the demonstration stage and to build a user-friendly astronomical tool. The emphasis will be on ease of calibration, improved stability and operational simplicity in order to allow the system to be run routinely by observatory staff. A prototype adaptivemore » optics system and a 20 watt sodium-layer laser guide star system have already been built at Lawrence Livermore National Laboratory for use at Lick Observatory. The design presented in this paper is for a next- generation adaptive optics system that extends the capabilities of the prototype system into the visible with more degrees of freedom. When coupled with a laser guide star system that is upgraded to a power matching the new adaptive optics system, the combined system will produce diffraction-limited images for near-IR cameras. Atmospheric correction at wavelengths of 0.6-1 mm will significantly increase the throughput of the most heavily used facility instrument at Lick, the Kast Spectrograph, and will allow it to operate with smaller slit widths and deeper limiting magnitudes. 8 refs., 2 figs.« less

  1. Lessons from the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1998-12-01

    Over the past several years, we have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. Each telescope can be pointed and focused remotely, and filters, field of view and exposure times can be changed easily. The MicroObservatory Net consists of five of these telescopes. They are being deployed around the world at widely distributed longitudes for access to distant night skies during local daytime. Remote access to the MicroObservatories over the Internet has been available to select schools since 1995. The telescopes can be controlled in real time or in delay mode, from any computer using Web-based software. Individuals have access to all of the telescope control functions without the need for an `on-site' operator. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. Images are archived at the Web site, along with sample challenges and a user bulletin board, all of which encourage collaboration between schools. The Internet address of the telescopes is http://mo-www.harvard.edu/MicroObservatory/. The telescopes were designed for classroom instruction by teachers, as well as for use by students and amateur astronomers for original scientific research projects. In this talk, we will review some of the experiences we, students and teachers have had in using the telescopes. Support for the MicroObservatory Net has been provided by the NSF, Apple Computer, Inc. and Kodak, Inc.

  2. The MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used

  3. Orbiting Geophysical Observatory Attitude Control Subsystem Design Survey. NASA/ERC Design Criteria Program, Guidance and Control

    NASA Technical Reports Server (NTRS)

    Mc Kenna, K. J.; Schmeichel, H.

    1968-01-01

    This design survey summarizes the history of the Orbiting Geophysical Observatories' (OGO) Attitude Control Subsystem (ACS) from the proposal phase through current flight experience. Problems encountered in design, fabrication, test, and on orbit are discussed. It is hoped that the experiences of the OGO program related here will aid future designers.

  4. The PALM-3000 high-order adaptive optics system for Palomar Observatory

    NASA Astrophysics Data System (ADS)

    Bouchez, Antonin H.; Dekany, Richard G.; Angione, John R.; Baranec, Christoph; Britton, Matthew C.; Bui, Khanh; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Moore, Anna M.; Roberts, Jennifer E.; Trinh, Thang Q.; Troy, Mitchell; Truong, Tuan N.; Velur, Viswa

    2008-07-01

    Deployed as a multi-user shared facility on the 5.1 meter Hale Telescope at Palomar Observatory, the PALM-3000 highorder upgrade to the successful Palomar Adaptive Optics System will deliver extreme AO correction in the near-infrared, and diffraction-limited images down to visible wavelengths, using both natural and sodium laser guide stars. Wavefront control will be provided by two deformable mirrors, a 3368 active actuator woofer and 349 active actuator tweeter, controlled at up to 3 kHz using an innovative wavefront processor based on a cluster of 17 graphics processing units. A Shack-Hartmann wavefront sensor with selectable pupil sampling will provide high-order wavefront sensing, while an infrared tip/tilt sensor and visible truth wavefront sensor will provide low-order LGS control. Four back-end instruments are planned at first light: the PHARO near-infrared camera/spectrograph, the SWIFT visible light integral field spectrograph, Project 1640, a near-infrared coronagraphic integral field spectrograph, and 888Cam, a high-resolution visible light imager.

  5. Recent advances in the Lesser Antilles observatories Part 2 : WebObs - an integrated web-based system for monitoring and networks management

    NASA Astrophysics Data System (ADS)

    Beauducel, François; Bosson, Alexis; Randriamora, Frédéric; Anténor-Habazac, Christian; Lemarchand, Arnaud; Saurel, Jean-Marie; Nercessian, Alexandre; Bouin, Marie-Paule; de Chabalier, Jean-Bernard; Clouard, Valérie

    2010-05-01

    Seismological and Volcanological observatories have common needs and often common practical problems for multi disciplinary data monitoring applications. In fact, access to integrated data in real-time and estimation of measurements uncertainties are keys for an efficient interpretation, but instruments variety, heterogeneity of data sampling and acquisition systems lead to difficulties that may hinder crisis management. In Guadeloupe observatory, we have developed in the last years an operational system that attempts to answer the questions in the context of a pluri-instrumental observatory. Based on a single computer server, open source scripts (Matlab, Perl, Bash, Nagios) and a Web interface, the system proposes: an extended database for networks management, stations and sensors (maps, station file with log history, technical characteristics, meta-data, photos and associated documents); a web-form interfaces for manual data input/editing and export (like geochemical analysis, some of the deformation measurements, ...); routine data processing with dedicated automatic scripts for each technique, production of validated data outputs, static graphs on preset moving time intervals, and possible e-mail alarms; computers, acquisition processes, stations and individual sensors status automatic check with simple criteria (files update and signal quality), displayed as synthetic pages for technical control. In the special case of seismology, WebObs includes a digital stripchart multichannel continuous seismogram associated with EarthWorm acquisition chain (see companion paper Part 1), event classification database, location scripts, automatic shakemaps and regional catalog with associated hypocenter maps accessed through a user request form. This system leads to a real-time Internet access for integrated monitoring and becomes a strong support for scientists and technicians exchange, and is widely open to interdisciplinary real-time modeling. It has been set up at

  6. James Webb Space Telescope Core 2 Test - Cryogenic Thermal Balance Test of the Observatorys Core Area Thermal Control Hardware

    NASA Technical Reports Server (NTRS)

    Cleveland, Paul; Parrish, Keith; Thomson, Shaun; Marsh, James; Comber, Brian

    2016-01-01

    The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.

  7. LSST camera control system

    NASA Astrophysics Data System (ADS)

    Marshall, Stuart; Thaler, Jon; Schalk, Terry; Huffer, Michael

    2006-06-01

    The LSST Camera Control System (CCS) will manage the activities of the various camera subsystems and coordinate those activities with the LSST Observatory Control System (OCS). The CCS comprises a set of modules (nominally implemented in software) which are each responsible for managing one camera subsystem. Generally, a control module will be a long lived "server" process running on an embedded computer in the subsystem. Multiple control modules may run on a single computer or a module may be implemented in "firmware" on a subsystem. In any case control modules must exchange messages and status data with a master control module (MCM). The main features of this approach are: (1) control is distributed to the local subsystem level; (2) the systems follow a "Master/Slave" strategy; (3) coordination will be achieved by the exchange of messages through the interfaces between the CCS and its subsystems. The interface between the camera data acquisition system and its downstream clients is also presented.

  8. The Fram Strait integrated ocean observatory

    NASA Astrophysics Data System (ADS)

    Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.

    2012-04-01

    A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision

  9. The Allegheny Observatory search for planetary systems

    NASA Technical Reports Server (NTRS)

    Gatewood, George D.

    1989-01-01

    The accomplishments of the observatory's search for planetary systems are summarized. Among these were the construction, implementation, and regular use of the Multichannel Astrometric Photometer (MAP), and the design, fabrication and use of the second largest refractor objective built since 1950. The MAP parallax and planetary observing programs are described. Various developments concerning alternate solid state photodetectors and telescope instrumentation are summarized. The extreme accuracy of the system is described in relation to a study of the position and velocity of the members of the open cluster Upgren 1. The binary star system stringently tests the theory of stellar evolution since it is composed of an evolved giant F5 III and a subgiant F5 IV star. A study that attempts to measure the luminosities, surface temperatures, and masses of these stars is discussed.

  10. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  11. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  12. A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.; hide

    2015-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  13. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; VanLew, K.; Melsheimer, T.; Sackett, C.

    2000-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. The telescope is operational over the Internet, and we are now debugging the software to enable schools to control the telescope from classroom computers and take images. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have completed the first teacher training workshops to allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms. The workshops were accredited by the school district, and received very favorable reviews.

  14. LAMOST CCD camera-control system based on RTS2

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Wang, Zheng; Li, Jian; Cao, Zi-Huang; Dai, Wei; Wei, Shou-Lin; Zhao, Yong-Heng

    2018-05-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.

  15. Virtual Observatory and Colitec Software: Modules, Features, Methods

    NASA Astrophysics Data System (ADS)

    Pohorelov, A. V.; Khlamov, S. V.; Savanevych, V. E.; Briukhovetskyi, A. B.; Vlasenko, V. P.

    In this article we described complex processing system created by the CoLiTec project. This system includes features, user-friendly tools for processing control, results reviewing, integration with online catalogs and a lot of different computational modules that are based on the developed methods. Some of them are described in the article.The main directions of the CoLiTec software development are the Virtual Observatory, software for automated asteroids and comets detection and software for brightness equalization.The CoLiTec software is widely used in a number of observatories in the CIS. It has been used in about 700 000 observations, during which 1560 asteroids, including 5 NEO, 21 Trojan asteroids of Jupiter, 1 Centaur and four comets were discovered.

  16. Improving geomagnetic observatory data in the South Atlantic Anomaly

    NASA Astrophysics Data System (ADS)

    Matzka, Jürgen; Morschhauser, Achim; Brando Soares, Gabriel; Pinheiro, Katia

    2016-04-01

    The Swarm mission clearly proofs the benefit of coordinated geomagnetic measurements from a well-tailored constellation in order to recover as good as possible the contributions of the various geomagnetic field sources. A similar truth applies to geomagnetic observatories. Their scientific value can be maximised by properly arranging the position of individual observatories with respect to the geometry of the external current systems in the ionosphere and magnetosphere, with respect to regions of particular interest for secular variation, and with respect to regions of anomalous electric conductivity in the ground. Here, we report on our plans and recent efforts to upgrade geomagnetic observatories and to recover unpublished data from geomagnetic observatories at low latitudes in the South Atlantic Anomaly. In particular, we target the magnetic equator with the equatorial electrojet and low latitudes to characterise the Sq- and ring current. The observatory network that we present allows also to study the longitudinal structure of these external current systems. The South Atlantic Anomaly region is very interesting due to its secular variation. We will show newly recovered data and comparisons with existing data sets. On the technical side, we introduce low-power data loggers. In addition, we use mobile phone data transfer, which is rapidly evolving in the region and allows timely data access and quality control at remote sites that previously were not connected to the internet.

  17. Solar heating for an observatory--Lincoln, Nebraska

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report describes solar-energy system for 50 seat observatory that provides 60 percent of space heating needs. System includes 9 flat-plate collectors, rock storage bin, blowers, controls, ducting, and auxiliary natural-gas furnace; it has five operation modes. Net energy savings were 11.31 million Btu for 12 months, or equivalent of 1.9 barrels of oil. Report appendixes list performance factor definitions, performance equations, and average area weather conditions.

  18. Design of Instrument Control Software for Solar Vector Magnetograph at Udaipur Solar Observatory

    NASA Astrophysics Data System (ADS)

    Gosain, Sanjay; Venkatakrishnan, P.; Venugopalan, K.

    2004-04-01

    A magnetograph is an instrument which makes measurement of solar magnetic field by measuring Zeeman induced polarization in solar spectral lines. In a typical filter based magnetograph there are three main modules namely, polarimeter, narrow-band spectrometer (filter), and imager(CCD camera). For a successful operation of magnetograph it is essential that these modules work in synchronization with each other. Here, we describe the design of instrument control system implemented for the Solar Vector Magnetograph under development at Udaipur Solar Observatory. The control software is written in Visual Basic and exploits the Component Object Model (COM) components for a fast and flexible application development. The user can interact with the instrument modules through a Graphical User Interface (GUI) and can program the sequence of magnetograph operations. The integration of Interactive Data Language (IDL) ActiveX components in the interface provides a powerful tool for online visualization, analysis and processing of images.

  19. Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.

  20. Remote Operations of Laser Guide Star Systems: Gemini Observatory.

    NASA Astrophysics Data System (ADS)

    Oram, Richard J.; Fesquet, Vincent; Wyman, Robert; D'Orgeville, Celine

    2011-03-01

    The Gemini North telescope, equipped with a 14W laser, has been providing Laser Guide Star Adaptive Optics (LGS AO) regular science queue observations for worldwide astronomers since February 2007. The new 55W laser system for MCAO was installed on the Gemini South telescope in May 2010. In this paper, we comment on how Gemini Observatory developed regular remote operation of the Laser Guide Star Facility and high-power solid-state laser as routine normal operations. Fully remote operation of the LGSF from the Hilo base facility HBF was initially trialed and then optimized and became the standard operating procedure (SOP) for LGS operation in December 2008. From an engineering perspective remote operation demands stable, well characterized and base-lined equipment sets. In the effort to produce consistent, stable and controlled laser parameters (power, wavelength and beam quality) we completed a failure mode effect analysis of the laser system and sub systems that initiated a campaign of hardware upgrades and procedural improvements to the routine maintenance operations. Finally, we provide an overview of normal operation procedures during LGS runs and present a snapshot of data accumulated over several years that describes the overall LGS AO observing efficiency at the Gemini North telescope.

  1. Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.

    2012-09-01

    Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.

  2. Initial results from the Lick Observatory Laser Guide Star Adaptive Optics System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S.S.; An, J.; Avicola, K.

    1995-11-08

    A prototype adaptive optics system has been installed and tested on the 3 m Shane telescope at Lick Observatory. The adaptive optics system performance, using bright natural guide stars, is consistent with expectations based on theory. A sodium-layer laser guide star system has also been installed and tested on the Shane telescope. Operating at 15 W, the laser system produces a 9th magnitude guide star with seeing-limited size at 589 nm. Using the laser guide star, the adaptive optics system has reduced the wavefront phase variance on scales above 50 cm by a factor of 4. These results represent themore » first continuous wavefront phase correction using a sodium-layer laser guide star. Assuming tip-tilt is removed using a natural guide star, the measured control loop performance should produce images with a Strehl ratio of 0.4 at 2.2 {mu}m in 1 arc second seeing. Additional calibration procedures must be implemented in order to achieve these results with the prototype Lick adaptive optics system.« less

  3. MMS Observatory TV Results Contamination Summary

    NASA Technical Reports Server (NTRS)

    Rosecrans, Glenn; Brieda, Lubos; Errigo, Therese

    2014-01-01

    The Magnetospheric Multiscale (MMS) mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earth's magnetosphere. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. In this paper, we report on the extensive thermal vacuum testing campaign. The testing was performed at the Naval Research Laboratory utilizing the "Big Blue" vacuum chamber. A total of ten thermal vacuum tests were performed, including two chamber certifications, three dry runs, and five tests of the individual MMS observatories. During the test, the observatories were enclosed in a thermal enclosure known as the "hamster cage". The enclosure allowed for a detailed thermal control of various observatory zone, but at the same time, imposed additional contamination and system performance requirements. The environment inside the enclosure and the vacuum chamber was actively monitored by several QCMs, RGA, and up to 18 ion gauges. Each spacecraft underwent a bakeout phase, which was followed by 4 thermal cycles. Unique aspects of the TV campaign included slow pump downs with a partial represses, thruster firings, Helium identification, and monitoring pressure spikes with ion gauges. Selected data from these TV tests is presented along with lessons learned.

  4. Enabling Remote and Automated Operations at The Red Buttes Observatory

    NASA Astrophysics Data System (ADS)

    Ellis, Tyler G.; Jang-Condell, Hannah; Kasper, David; Yeigh, Rex R.

    2016-01-01

    The Red Buttes Observatory (RBO) is a 60 centimeter Cassegrain telescope located ten miles south of Laramie, Wyoming. The size and proximity of the telescope comfortably make the site ideal for remote and automated observations. This task required development of confidence in control systems for the dome, telescope, and camera. Python and WinSCP script routines were created for the management of science images and weather. These scripts control the observatory via the ASCOM standard libraries and allow autonomous operation after initiation.The automation tasks were completed primarily to rejuvenate an aging and underutilized observatory with hopes to contribute to an international exoplanet hunting team with other interests in potentially hazardous asteroid detection. RBO is owned and operated solely by the University of Wyoming. The updates and proprietor status have encouraged the development of an undergraduate astronomical methods course including hands-on experience with a research telescope, a rarity in bachelor programs for astrophysics.

  5. Contamination control requirements implementation for the James Webb Space Telescope (JWST), part 2: spacecraft, sunshield, observatory, and launch

    NASA Astrophysics Data System (ADS)

    Wooldridge, Eve M.; Schweiss, Andrea; Henderson-Nelson, Kelly; Woronowicz, Michael; Patel, Jignasha; Macias, Matthew; McGregor, R. Daniel; Farmer, Greg; Schmeitzky, Olivier; Jensen, Peter; Rumler, Peter; Romero, Beatriz; Breton, Jacques

    2014-09-01

    This paper will continue from Part 1 of JWST contamination control implementation. In addition to optics, instruments, and thermal vacuum testing, JWST also requires contamination control for a spacecraft that must be vented carefully in order to maintain solar array and thermal radiator thermal properties; a tennis court-sized sunshield made with 1-2 mil Kapton™ layers that must be manufactured and maintained clean; an observatory that must be integrated, stowed and transported to South America; and a rocket that typically launches commercial payloads without contamination sensitivity. An overview of plans developed to implement contamination control for the JWST spacecraft, sunshield, observatory and launch vehicle will be presented.

  6. Design, Observing and Data Systems, and Final Installation of the NEPTUNE Canada Regional Cabled Ocean Observatory

    NASA Astrophysics Data System (ADS)

    Barnes, C. R.; Best, M. M.; Johnson, F. R.; Phibbs, P.; Pirenne, B.

    2009-05-01

    /climate dynamics, including acidification and nutrient fluxes; deep-sea ecosystems dynamics; and engineering and computer science research. NC's software system interfaces between users and cabled observatory and responds to a three-fold mandate: acquire data from various instruments/sensors underwater; provide lifetime storage and redistribution capabilities for all data; and allow authorized users to remotely and interactively control experiments. Data Management and Archiving System (DMAS) is being developed in-house, with adoption of Service-Oriented Architecture (SOA) and using Web Services to expose the functionality of DMAS' various components. An internal messaging bus allows various functional components to interact through the publish and subscribe paradigm, using Java programming language. DMAS is developing a modern environment for users: data access, data processing and experimentation control within a Web 2.0 environment. This will allow users, on top of data and instrumentation access, to perform data visualization and analysis on-line with either default or custom processing code, as well as simultaneously interacting with each other. These social networking aspects will be within NC's new Oceans 2.0 environment. The observatory is designed to be expandable in its footprint, nodes and instruments and provides a magnificent facility for testing prototypes of new technologies monitored and demonstrated in real-time. NC and ONC invite new scientific and industrial participation, experiments, instrumentation and data services.

  7. Trajectory Design and Control for the Compton Gamma Ray Observatory Re-Entry

    NASA Technical Reports Server (NTRS)

    Hoge, Susan; Vaughn, Frank J., Jr.

    2001-01-01

    The Compton Gamma Ray Observatory (CGRO) controlled re-entry operation was successfully conducted in June of 2000. The surviving parts of the spacecraft landed in the Pacific Ocean within the nominal impact target zone. The design of the maneuvers to control the trajectory to accomplish this re-entry presented several challenges. These challenges included the timing and duration of the maneuvers, propellant management, post-maneuver state determination, collision avoidance with other spacecraft, accounting for the break-up of the spacecraft into several pieces with a wide range of ballistic coefficients, and ensuring that the impact footprint would remain within the desired impact target zone in the event of contingencies. This paper presents the initial re-entry trajectory design and traces the evolution of that design into the maneuver sequence used for the re-entry. The paper also discusses the spacecraft systems and operational constraints imposed on the trajectory design and the required modifications to the initial design based on those constraints. Data from the reentry operation are also presented.

  8. TMT approach to observatory software development process

    NASA Astrophysics Data System (ADS)

    Buur, Hanne; Subramaniam, Annapurni; Gillies, Kim; Dumas, Christophe; Bhatia, Ravinder

    2016-07-01

    The purpose of the Observatory Software System (OSW) is to integrate all software and hardware components of the Thirty Meter Telescope (TMT) to enable observations and data capture; thus it is a complex software system that is defined by four principal software subsystems: Common Software (CSW), Executive Software (ESW), Data Management System (DMS) and Science Operations Support System (SOSS), all of which have interdependencies with the observatory control systems and data acquisition systems. Therefore, the software development process and plan must consider dependencies to other subsystems, manage architecture, interfaces and design, manage software scope and complexity, and standardize and optimize use of resources and tools. Additionally, the TMT Observatory Software will largely be developed in India through TMT's workshare relationship with the India TMT Coordination Centre (ITCC) and use of Indian software industry vendors, which adds complexity and challenges to the software development process, communication and coordination of activities and priorities as well as measuring performance and managing quality and risk. The software project management challenge for the TMT OSW is thus a multi-faceted technical, managerial, communications and interpersonal relations challenge. The approach TMT is using to manage this multifaceted challenge is a combination of establishing an effective geographically distributed software team (Integrated Product Team) with strong project management and technical leadership provided by the TMT Project Office (PO) and the ITCC partner to manage plans, process, performance, risk and quality, and to facilitate effective communications; establishing an effective cross-functional software management team composed of stakeholders, OSW leadership and ITCC leadership to manage dependencies and software release plans, technical complexities and change to approved interfaces, architecture, design and tool set, and to facilitate

  9. Current Status of Carl Sagan Observatory in Mexico

    NASA Astrophysics Data System (ADS)

    Sanchez-Ibarra, A.

    The current status of Observatory "Carl Sagan" (OCS) of University of Sonora is presented. This project was born in 1996 focused to build a small solar-stellar observatory completely operated by remote control. The observatory will be at "Cerro Azul", a 2480 m peak in one of the best regions in the world for astronomical observation, at the Sonora-Arizona desert. The OCS, with three 16 cm solar telescopes and a 55 cm stellar telescope is one of the cheapest observatories, valuated in US200,000 Added to its scientific goals to study solar coronal holes and Supernovae Type 1A, the OCS has a strong educative and cultural program in Astronomy to all levels. At the end of 2001, we started the Program "Constelacion", to build small planetariums through all the countries with a cost of only US80,000. Also, the webcast system for transmission of the solar observations from the prototype OCS at the campus, was expanded to webcast educational programs in Astronomy since July of this year, including courses and diplomats for Latin American people. All of these advances are exposed here.

  10. International Ultraviolet Explorer Observatory operations

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This volume contains the final report for the International Ultraviolet Explorer IUE Observatory Operations contract. The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to translate competitively selected observing programs into IUE observations, to reduce these observations into meaningful scientific data, and then to present these data to the Guest Observer in a form amenable to the pursuit of scientific research. The IUE Observatory is the key to this objective since it is the central control and support facility for all science operations functions within the IUE Project. In carrying out the operation of this facility, a number of complex functions were provided beginning with telescope scheduling and operation, proceeding to data processing, and ending with data distribution and scientific data analysis. In support of these critical-path functions, a number of other significant activities were also provided, including scientific instrument calibration, systems analysis, and software support. Routine activities have been summarized briefly whenever possible.

  11. Compton Gamma Ray Observatory: Lessons Learned in Propulsion

    NASA Technical Reports Server (NTRS)

    Dressler, G. A.; Joseph, G. W.; Behrens, H. W.; Asato, D. I.; Carlson, R. A.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Compton Gamma Ray Observatory was the second of NASA's Great Observatories. At 17 1/2 tons. it was the heaviest astrophysical payload ever flown at the time of its launch on April 5, 1991 aboard the Space Shuttle. During initial, on-orbit priming of the spacecraft's monopropellant hydrazine propulsion system, a severe waterhammer transient was experienced. At that time, anomalous telemetry readings were received from on-board propulsion system instrumentation. This led to ground analyses and laboratory investigations as to the root cause of the waterhammer, potential damage to system integrity and functionality, and risks for switching from the primary (A-side) propulsion system to the redundant (B-side) system. The switchover to B-side was ultimately performed successfully and the spacecraft completed its basic and extended missions in this configuration. Nine years later, following a critical control gyroscope failure, Compton was safely deorbited and re-entered the Earth's atmosphere on June 4, 2000. Additional risk assessments concerning viability of A- and B-sides were necessary to provide confidence in attitude and delta-V authority and reliability to manage the precisely controlled reentry. This paper summarizes the design and operation of the propulsion system used on the spacecraft and provides "lessons learned" from the system engineering investigations into the propellant loading procedures, the initial priming anomaly, mission operations, and the commanded re-entry following the gyro failure.

  12. Automatic Rotational Sky Quality Meter (R-SQM) Design and Software for Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Dogan, E.; Ozbaldan, E. E.; Shameoni, Niaei M.; Yesilyaprak, C.

    2016-12-01

    We have presented the new design of Sky Quality Meter (SQM) device that is an automatic rotational model of sky quality meter (R-SQM) carried out by DAG (Eastern Anatolia Observatory) Technical Team. R-SQM is required for determining the long-term changes of sky quality of an astronomical observatory and consists of four SQM devices mounted on a rotating shaft with different angles for scanning all sky. This system is controlled by a Raspberry Pi control card and a step motor with its driver and a special software.

  13. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix D: EOS configuration design data. Part 2: Data management system configuration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Earth Observatory Satellite (EOS) data management system (DMS) is discussed. The DMS is composed of several subsystems or system elements which have basic purposes and are connected together so that the DMS can support the EOS program by providing the following: (1) payload data acquisition and recording, (2) data processing and product generation, (3) spacecraft and processing management and control, and (4) data user services. The configuration and purposes of the primary or high-data rate system and the secondary or local user system are explained. Diagrams of the systems are provided to support the systems analysis.

  14. Kuiper Airborne Observatory's Telescope Stabilization System: Disturbance Sensitivity Reduction Via Velocity Loop Feedback

    NASA Technical Reports Server (NTRS)

    Lawrence, David P.; Tsui, K. C.; Tucker, John; Mancini, Ronald E. (Technical Monitor)

    1995-01-01

    In July of 1994 the Kuiper Airborne Observatory's (KAO) Telescope Stabilization System (TSS) was upgraded to meet performance goals necessary to view the Shoemaker-Levy 9 comet collision with Jupiter. The KAO is a modified C-141 Aircraft supporting a 36 inch Infrared telescope used to gather and analyze astronomical data. Before the upgrade, the TSS exhibited approximately a 10 arc-second resolution pointing accuracy. The majority of the inaccuracy was attributable to aircraft vibration and wind buffeting entering through the aircraft's telescope door opening; in other words, the TSS was overly sensitive to external disturbances. Because of power limitations and noise requirements, improving the pointing accuracy of the telescope required more sophistication than simply raising the bandwidth as some classical control strategies might suggest. Instead, relationships were developed between the disturbance sensitivity and closed loop transfer functions. These relationships suggested that employing velocity feedback along with an increase in current loop gain would dramatically improve the pointing resolution of the TSS by decreasing the control system's sensitivity to external disturbances. With the implementation of some classical control techniques and the above philosophy, the KAO's TSS's resolution was improved to approximately 2-3 arc-seconds.

  15. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 1: Baseline system description

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A system baseline design oriented to the requirements of the next generation of Earth Observatory Satellite missions is presented. The first mission (EOS-A) is envisioned as a two-fold mission which (1) provides a continuum of data of the type being supplied by ERTS for the emerging operational applications and also (2) expands the research and development activities for future instrumentation and analysis techniques. The baseline system specifically satisfies the requirements of this first mission. However, EOS-A is expected to be the first of a series of earth observation missions. Thus the baseline design has been developed so as to accommodate these latter missions effectively as the transition is made from conventional, expendable launch vehicles and spacecraft to the Shuttle Space Transportation System era. Further, a subset of alternative missions requirements including Seasat, SEOS, SMM and MSS-5 have been analyzed to verify that the spacecraft design to serve a multi-mission role is economically sound. A key feature of the baseline system design is the concept of a modular observatory system whose elements are compatible with varying levels of launch vehicle capability. The design configuration can be used with either the Delta or Titan launch vehicles and will adapt readily to the space shuttle when that system becomes available in the early 1980's.

  16. The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2003-01-01

    A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.

  17. Astrometrical observations of Pluto-Charon system with the automated telescopes of Pulkovo observatory

    NASA Astrophysics Data System (ADS)

    Slesarenko, V. Yu.; Bashakova, E. A.; Devyatkin, A. V.

    2016-03-01

    The space probe "New Horizons" was launched on 19th of January 2006 in order to study Pluto and its moons. Spacecraft performed close fly-by to Pluto on 14th of July 2015 and obtained the most detailed images of Pluto and its moon until this moment. At the same time, observation obtained by the ground-based telescopes may also be helpful for the research of such distant system. Thereby, the Laboratory of observational astrometry of Pulkovo Observatory of RAS made a decision to reprocess observations obtained during last decade. More than 350 positional observations of Pluto-Charon system were carried out with the mirror astrograph ZA-320M at Pulkovo and Maksutov telescope MTM-500M near Kislovodsk. These observations were processed by means of software system APEX-II developed in Pulkovo observatory and numerical simulations were performed to calculate the differences between positions of photocenter and barycenter of Pluto-Charon system.

  18. Solar Dynamics Observatory (SDO) HGAS Induced Jitter

    NASA Technical Reports Server (NTRS)

    Liu, Alice; Blaurock, Carl; Liu, Kuo-Chia; Mule, Peter

    2008-01-01

    This paper presents the results of a comprehensive assessment of High Gain Antenna System induced jitter on the Solar Dynamics Observatory. The jitter prediction is created using a coupled model of the structural dynamics, optical response, control systems, and stepper motor actuator electromechanical dynamics. The paper gives an overview of the model components, presents the verification processes used to evaluate the models, describes validation and calibration tests and model-to-measurement comparison results, and presents the jitter analysis methodology and results.

  19. New Opportunities for Cabled Ocean Observatories

    NASA Astrophysics Data System (ADS)

    Duennebier, F. K.; Butler, R.; Karl, D. M.; Roger, L. B.

    2002-12-01

    With the decommissioning of transoceanic telecommunications cables as they become obsolete or uneconomical, there is an opportunity to use these systems for ocean observatories. Two coaxial cables, TPC-1 and HAW-2 are currently in use for observatories, and another, ANZCAN, is scheduled to be used beginning in 2004 to provide a cabled observatory at Station ALOHA, north of Oahu. The ALOHA observatory will provide several Mb/s data rates and about 1 kW of power to experiments installed at Station ALOHA. Sensors can be installed either by wet mateable connection to a junction box on the ocean floor using an ROV, or by acoustic data link to the system. In either case real-time data will be provided to users over the Internet. A Small Experiment Module, to be first installed at the Hawaii-2 Observatory, and later at Station ALOHA, will provide relatively cheap and uncomplicated access to the observatories for relatively simple sensors. Within the next few years, the first electro-optical cables installed in the 1980's will be decommissioned and could be available for scientific use. These cables could provide long "extension cords" (thousands of km) with very high bandwidth and reasonable power to several observatories in remote locations in the ocean. While they could be used in-place, a more exciting scenario is to use cable ships to pick up sections of cable and move them to locations of higher scientific interest. While such moves would not be cheap, the costs would rival the cost of installation and maintenance of a buoyed observatory, with far more bandwidth and power available for science use.

  20. A High-Speed Optical Modem Communication System for CORK Seafloor Observatories

    NASA Astrophysics Data System (ADS)

    Farr, N.; Tivey, M.; Ware, J.; Pontbriand, C.; Pelletier, L. P.

    2014-12-01

    High-speed communications underwater is an increasing requirement for data intensive seafloor sensors. Acoustic modems provide dependable long-range communications underwater, but data rates are limited to <57Kbps. Free-water optical modems (OMs) offer high data rate, 10Mbps communications over a range of 200 m - a distance for ROVs, AUVs or wire-lowered packages to communicate without the need to directly plug-in or retrieve the instrument. Over the past 4 years, we have demonstrated the functionality and utility of OM technology using a CORK borehole observatory as a test case. A CORK represents all of the basic components required for a seafloor observatory: a stable environment for long-term continuous measurements of earth and ocean phenomena, access to a unique environment below the seafloor and a standard communication interface. The CORK-OM features a high-bandwidth, low-latency optical system based on LED emitters and PMT receivers and an acoustic command and control system. OM tests established a communication link from 20 to 200 meters range at rates of 1, 5 and 10 Mbps with no bit errors. The seafloor OM was plugged into the CORK's existing underwater wet mateable connector and provided additional power to the CORK to boost the data rate to 1 Hz from the normal 1 minute sample period. To communicate with the seafloor CORK-OM, a number of different modalities were used. One method was an OM mounted to a CTD frame on a lowered wire from a ship with an SDSL link over the conducting wire. Other methods utilized OMs mounted to both ROV Jason and submersible Alvin. We deployed OMs at two CORKs in 2012 in the northeast pacific at sites 857D and 1025C. The CORKs were visited in 2013 by a vessel of opportunity to download data and were put into sleep mode. The CORKs were revisited in 2014, woken up and successfully interrogated for data. ALVIN retrieved the CORK-OMs for corrosion, biofouling and battery performance assessment. We also performed tests of a next

  1. Synthesis of a combined system for precise stabilization of the Spektr-UF observatory: II

    NASA Astrophysics Data System (ADS)

    Bychkov, I. V.; Voronov, V. A.; Druzhinin, E. I.; Kozlov, R. I.; Ul'yanov, S. A.; Belyaev, B. B.; Telepnev, P. P.; Ul'yashin, A. I.

    2014-03-01

    The paper presents the second part of the results of search studies for the development of a combined system of high-precision stabilization of the optical telescope for the designed Spectr-UF international observatory [1]. A new modification of the strict method of the synthesis of nonlinear discrete-continuous stabilization systems with uncertainties is described, which is based on the minimization of the guaranteed accuracy estimate calculated using vector Lyapunov functions. Using this method, the synthesis of the feedback parameters in the mode of precise inertial stabilization of the optical telescope axis is performed taking the design nonrigidity, quantization of signals over time and level, and errors of orientation meters, as well as the errors and limitation of control moments of executive engine-flywheels into account. The results of numerical experiments that demonstrate the quality of the synthesized system are presented.

  2. A Technical Overview and Description of SOFIA (Stratospheric Observatory for Infrared Astronomy)

    NASA Technical Reports Server (NTRS)

    Kunz, Nans

    2003-01-01

    This paper provides a technical overview of SOFIA, a unique airborne observatory, from an engineering perspective. It will do this by describing several of the systems of this observatory that are common with mountain top ground based observatories but mostly emphasize those more unique features and systems that are required to facilitate world class astronomy from a highly modified Boeing 747-SP flying at Mach 0.84 in the Stratosphere. This paper provides a technical overview of SOFIA by reviewing each of the performance specifications (the level one requirements for development) and describing some of the technical advancements for the telescope as well as the platform required to achieve these performance specifications. The technical advancements involved include mirror technologies, control system features, the telescope suspension system, and the aircraft open port cavity with associated cavity door that opens in flight and tracks the telescope elevation angle. For background this paper will provide a brief programmatic overview of the SOFIA project including the joint project arrangement between the US and Germany (NASA and DLR). Additionally, this paper will describe the up to date status of the development of SOFIA as the Observatory nears the date of the first test flight in the summer of 2004.

  3. Studying the Light Pollution around Urban Observatories: Columbus State University’s WestRock Observatory

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Brendon Andrew; Johnson, Michael

    2017-01-01

    Light pollution plays an ever increasing role in the operations of observatories across the world. This is especially true in urban environments like Columbus, GA, where Columbus State University’s WestRock Observatory is located. Light pollution’s effects on an observatory include high background levels, which results in a lower signal to noise ratio. Overall, this will limit what the telescope can detect, and therefore limit the capabilities of the observatory as a whole.Light pollution has been mapped in Columbus before using VIIRS DNB composites. However, this approach did not provide the detailed resolution required to narrow down the problem areas around the vicinity of the observatory. The purpose of this study is to assess the current state of light pollution surrounding the WestRock observatory by measuring and mapping the brightness of the sky due to light pollution using light meters and geographic information system (GIS) software.Compared to VIIRS data this study allows for an improved spatial resolution and a direct measurement of the sky background. This assessment will enable future studies to compare their results to the baseline established here, ensuring that any changes to the way the outdoors are illuminated and their effects can be accurately measured, and counterbalanced.

  4. NASA Extends Chandra X-ray Observatory Contract with the Smithsonian Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    2002-07-01

    NASA NASA has extended its contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass. to August 2003 to provide science and operational support for the Chandra X- ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract is an 11-month period of performance extension to the Chandra X-ray Center contract, with an estimated value of 50.75 million. Total contract value is now 298.2 million. The contract extension resulted from the delay of the launch of the Chandra X-ray Observatory from August 1998 to July 1999. The revised period of performance will continue the contract through Aug. 31, 2003, which is 48 months beyond operational checkout of the observatory. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes both the observatory operations and the science data processing and general observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and distributing by satellite the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and the processing and delivery of the resulting scientific data. Each year, there are on the order of 200 to 250 observing proposals selected out of about 800 submitted, with a total amount of observing time about 20 million seconds. X-ray astronomy can only be performed from space because Earth's atmosphere blocks X-rays from reaching the surface. The Chandra Observatory travels one-third of the way to the Moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg-shaped, orbit is 200 times higher than that of its visible-light- gathering sister, the Hubble Space Telescope. NASA

  5. International Virtual Observatory System for Water Resources Information

    NASA Astrophysics Data System (ADS)

    Leinenweber, Lewis; Bermudez, Luis

    2013-04-01

    Sharing, accessing, and integrating hydrologic and climatic data have been identified as a critical need for some time. The current state of data portals, standards, technologies, activities, and expertise can be leverage to develop an initial operational capability for a virtual observatory system. This system will allow to link observations data with stream networks and models, and to solve semantic inconsistencies among communities. Prototyping a virtual observatory system is an inter-disciplinary, inter-agency and international endeavor. The Open Geospatial Consortium (OGC) within the OGC Interoperability Program provides the process and expertise to run such collaborative effort. The OGC serves as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The project coordinated by OGC that is advancing an international virtual observatory system for water resources information is called Climatology-Hydrology Information Sharing Pilot, Phase 1 (CHISP-1). It includes observations and forecasts in the U.S. and Canada levering current networks and capabilities. It is designed to support the following use cases: 1) Hydrologic modeling for historical and near-future stream flow and groundwater conditions. Requires the integration of trans-boundary stream flow and groundwater well data, as well as national river networks (US NHD and Canada NHN) from multiple agencies. Emphasis will be on time series data and real-time flood monitoring. 2) Modeling and assessment of nutrient load into the lakes. Requires accessing water-quality data from multiple agencies and integrating with stream flow information for calculating loads. Emphasis on discrete sampled water quality observations, linking those to specific NHD stream reaches and catchments, and additional metadata for sampled data. The key objectives of these use cases are: 1) To link

  6. In Brief: Deep-sea observatory

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  7. Affordable Earth Observatories for Developing Countries

    NASA Astrophysics Data System (ADS)

    Meurer, R. H.

    Traditionally high cost has been the principal impediment to developing nations desiring to pursue space programs. More particularly, the benefits derivable from a space system have been less than adequate to justify the investment required. Chief among the causes has been the inability of the system to produce results with sufficient direct economic value to the peoples of their countries. Over the past 15 years, however, "the Microspace Revolution" has resulted in dramatic reductions in the cost of space systems, while at the same time technology has improved to provide greater capabilities in the smallest micro- and nano-class1 satellites. Because of these advances, it behooves developing nations to reevaluate space as an option for their national development. This paper summarizes two new micro-satellite concepts - NanoObservatoryTM and MicroObservatoryTM that offer the prom- ise of a dedicated Earth remote sensing capability at costs comparable to or less than simply buying data from the best known large systems, Landsat and SPOT. Each system is defined both by its observation capabilities and technical parameters of the system's design. Moreover, the systems are characterized in terms of the other potential benefits to developing economies, i.e., education of a technical workforce or applications of Earth imagery in solving national needs. Comparisons are provided with more traditional Earth observing satellites. NanoObservatoryTM is principally intended to serve as a developmental system to build general technical expertise space technology and Earth observation. MicroObservatoryTM takes the next step by focusing on a more sophisticated optical imag- ing camera while keeping the spacecraft systems simple and affordable. For both programs, AeroAstro is working with non- profit institutions to develop a corresponding program of technical participation with the nations that elect to pursue such programs. Dependent upon current capabilities, this might include

  8. Operating a wide-area remote observing system for the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory D.; Kibrick, Robert I.; Goodrich, Robert W.; Lyke, James E.

    2008-07-01

    For over a decade, the W. M. Keck Observatory's two 10-meter telescopes have been operated remotely from its Waimea headquarters. Over the last 6 years, WMKO remote observing has expanded to allow teams at dedicated sites in California to observe either in collaboration with colleagues in Waimea or entirely from the U.S. mainland. Once an experimental effort, the Observatory's mainland observing capability is now fully operational, supported on all science instruments (except the interferometer) and regularly used by astronomers at eight mainland sites. Establishing a convenient and secure observing capability from those sites required careful planning to ensure that they are properly equipped and configured. It also entailed a significant investment in hardware and software, including both custom scripts to simplify launching the instrument interface at remote sites and automated routers employing ISDN backup lines to ensure continuation of observing during Internet outages. Observers often wait until shortly before their runs to request use of the mainland facilities. Scheduling these requests and ensuring proper system operation prior to observing requires close coordination between personnel at WMKO and the mainland sites. An established protocol for approving requests and carrying out pre-run checkout has proven useful in ensuring success. The Observatory anticipates enhancing and expanding its remote observing system. Future plans include deploying dedicated summit computers for running VNC server software, implementing a web-based tracking system for mainland-based observing requests, expanding the system to additional mainland sites, and converting to full-time VNC operation for all instruments.

  9. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 2: EOS-A system specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives of the Earth Observatory Satellite (EOS) program are defined. The system specifications for the satellite payload are examined. The broad objectives of the EOS-A program are as follows: (1) to develop space-borne sensors for the measurement of land resources, (2) to evolve spacecraft systems and subsystems which will permit earth observation with greater accuracy, coverage, spatial resolution, and continuity than existing systems, (3) to develop improved information processing, extraction, display, and distribution systems, and (4) to use space transportation systems for resupply and retrieval of the EOS.

  10. Robotic Software for the Thacher Observatory

    NASA Astrophysics Data System (ADS)

    Lawrence, George; Luebbers, Julien; Eastman, Jason D.; Johnson, John A.; Swift, Jonathan

    2018-06-01

    The Thacher Observatory—a research and educational facility located in Ojai, CA—uses a 0.7 meter telescope to conduct photometric research on a variety of targets including eclipsing binaries, exoplanet transits, and supernovae. Currently, observations are automated using commercial software. In order to expand the flexibility for specialized scientific observations and to increase the educational value of the facility on campus, we are adapting and implementing the custom observatory control software and queue scheduling developed for the Miniature Exoplanet Radial Velocity Array (MINERVA) to the Thacher Observatory. We present the design and implementation of this new software as well as its demonstrated functionality on the Thacher Observatory.

  11. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    , a unique instrument capable of measuring stellar radial velocities with an unsurpassed accuracy better than 1 m/s, making it a very powerful tool for the discovery of extra-solar planets. In addition, astronomers have also access to the 2.2-m ESO/MPG telescope with its Wide Field Imager camera. A new control room, the RITZ (Remote Integrated Telescope Zentrum), allows operating all three ESO telescopes at La Silla from a single place. The La Silla Observatory is also the first world-class observatory to have been granted certification for the International Organization for Standardization (ISO) 9001 Quality Management System. Moreover, the infrastructure of La Silla is still used by many of the ESO member states for targeted projects such as the Swiss 1.2-m Euler telescope and the robotic telescope specialized in the follow-up of gamma-ray bursts detected by satellites, the Italian REM (Rapid Eye Mount). In addition, La Silla is in charge of the APEX (Atacama Pathfinder Experiment) 12-m sub-millimetre telescope which will soon start routine observations at Chajnantor, the site of the future Atacama Large Millimeter Array (ALMA). The APEX project is a collaboration between the Max Planck Society in Germany, Onsala Observatory in Sweden and ESO. ESO also operates Paranal, home of the Very Large Telescope (VLT) and the VLT Interferometer (VLTI). Antu, the first 8.2-m Unit Telescope of the VLT, saw First Light in May 1998, starting what has become a revolution in European astronomy. Since then, the three other Unit Telescopes - Kueyen, Melipal and Yepun - have been successfully put into operation with an impressive suite of the most advanced astronomical instruments. The interferometric mode of the VLT (VLTI) is also operational and fully integrated in the VLT data flow system. In the VLTI mode, one state-of-the-art instrument is already available and another will follow soon. With its remarkable resolution and unsurpassed surface area, the VLT is at the forefront of

  12. Design of a Lunar Farside Observatory

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design of a mantendable lunar farside observatory and science base is presented. A farside observatory will allow high accuracy astronomical observations, as well as the opportunity to perform geological and low gravity studies on the Moon. The requirements of the observatory and its support facilities are determined, and a preliminary timeline for the project development is presented. The primary areas of investigation include observatory equipment, communications, habitation, and surface operations. Each area was investigated to determine the available options, and each option was evaluated to determine the advantages and disadvantages. The options selected for incorporation into the design of the farside base are presented. The observatory equipment deemed most suitable for placement on the lunar farside consist of large optical and radio arrays and seismic equipment. A communications system consisting of a temporary satellite about the L sub 2 libration point and followed by a satellite at the stable L sub 5 libration point was selected. A space station common module was found to be the most practical option for housing the astronauts at the base. Finally, a support system based upon robotic construction vehicles and the use of lunar materials was determined to be a necessary component of the base.

  13. Instrument constraints and interface specifications. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The equipment specifications for the thematic mapper and high resolution pointable imager for use on the Earth Observatory Satellite (EOS) are presented. The interface requirements of the systems are defined. The interface requirements are extracted from the equipment specifications and are intended as a summary to be used by the system and spacecraft designer. The appropriate documentation from which the specifications of the equipment are established are identified.

  14. Nobeyama Radio Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nobeyama Radio Observatory has telescopes at millimeter and submillimeter wavelengths. It was established in 1982 as an observatory of Tokyo Astronomical Observatory (NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN since 1987), and operates the 45 m telescope, Nobeyama Millimeter Array, and Radioheliograph. High-resolution images of star forming regions and molecular clouds have revealed many aspects of...

  15. Earth Observatory Satellite system definition study. Report no. 4: Management approach recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A management approach for the Earth Observatory Satellite (EOS) which will meet the challenge of a constrained cost environment is presented. Areas of consideration are contracting techniques, test philosophy, reliability and quality assurance requirements, commonality options, and documentation and control requirements. The various functional areas which were examined for cost reduction possibilities are identified. The recommended management approach is developed to show the primary and alternative methods.

  16. Current Status of an Implementation of a System Monitoring for Seamless Auxiliary Data at the Geodetic Observatory Wettzell

    NASA Astrophysics Data System (ADS)

    Neidhardt, Alexander; Kirschbauer, Katharina; Plötz, Christian; Schönberger, Matthias; Böer, Armin; Wettzell VLBI Team

    2016-12-01

    The first test implementation of an auxiliary data archive is tested at the Geodetic Observatory Wetttzell. It is software which follows on the Wettzell SysMon, extending the database and data sensors with the functionalities of a professional monitoring environment, named Zabbix. Some extensions to the remote control server on the NASA Field System PC enable the inclusion of data from external antennas. The presentation demonstrates the implementation and discusses the current possibilities to encourage other antennas to join the auxiliary archive.

  17. MDM Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    MDM Observatory was founded by the University of Michigan, Dartmouth College and the Massachusetts Institute of Technology. Current operating partners include Michigan, Dartmouth, MIT, Ohio State University and Columbia University. The observatory is located on the southwest ridge of the KITT PEAK NATIONAL OBSERVATORY near Tucson, Arizona. It operates the 2.4 m Hiltner Telescope and the 1.3 m McG...

  18. WIYN Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Located at Kitt Peak in Arizona. The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, Yale University and the National Optical Astronomy Observatories (NOAO). Most of the capital costs of the observatory were provided by these universities, while NOAO, which operates the other telescopes of the KITT PEAK NATIONAL OBS...

  19. Private Observatories in South Africa

    NASA Astrophysics Data System (ADS)

    Rijsdijk, C.

    2016-12-01

    Descriptions of private observatories in South Africa, written by their owners. Positions, equipment descriptions and observing programmes are given. Included are: Klein Karoo Observatory (B. Monard), Cederberg Observatory (various), Centurion Planetary and Lunar Observatory (C. Foster), Le Marischel Observatory (L. Ferreira), Sterkastaaing Observatory (M. Streicher), Henley on Klip (B. Fraser), Archer Observatory (B. Dumas), Overbeek Observatory (A. Overbeek), Overberg Observatory (A. van Staden), St Cyprian's School Observatory, Fisherhaven Small Telescope Observatory (J. Retief), COSPAR 0433 (G. Roberts), COSPAR 0434 (I. Roberts), Weltevreden Karoo Observatory (D. Bullis), Winobs (M. Shafer)

  20. Current and Future Capabilities of the 74-inch Telescope of Kottamia Astronomical Observatory in Egypt

    NASA Astrophysics Data System (ADS)

    Azzam, Y. A.; Ali, G. B.; Ismail, H. A.; Haroon, A.; Selim, I.

    In this paper, we are going to introduce the Kottamia Astronomical Observatory, KAO, to the astronomical community. The current status of the telescope together with the available instrumentations is described. An upgrade stage including a new optical system and a computer controlling of both the telescope and dome are achieved. The specifications of a set of CCD cameras for direct imaging and spectroscopy are given. A grating spectrograph is recently gifted to KAO from Okayama Astrophysical Observatory, OAO, of the National Astronomical Observatories in Japan. This spectrograph is successfully tested and installed at the F/18 Cassegrain focus of the KAO 74" telescope.

  1. Space-shuttle interfaces/utilization. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The economic aspects of space shuttle application to a representative Earth Observatory Satellite (EOS) operational mission in the various candidate Shuttle modes of launch, retrieval, and resupply are discussed. System maintenance of the same mission capability using a conventional launch vehicle is also considered. The studies are based on application of sophisticated Monte Carlo mission simulation program developed originally for studies of in-space servicing of a military satellite system. The program has been modified to permit evaluation of space shuttle application to low altitude EOS missions in all three modes. The conclusions generated by the EOS system study are developed.

  2. The stellar and solar tracking system of the Geneva Observatory gondola

    NASA Technical Reports Server (NTRS)

    Huguenin, D.

    1974-01-01

    Sun and star trackers have been added to the latest version of the Geneva Observatory gondola. They perform an image motion compensation with an accuracy of plus or minus 1 minute of arc. The structure is held in the vertical position by gravity; the azimuth is controlled by a torque motor in the suspension bearing using solar or geomagnetic references. The image motion compensation is performed by a flat mirror, located in front of the telescope, controlled by pitch and yaw servo-loops. Offset pointing is possible within the solar disc and in a 3 degree by 3 degree stellar field. A T.V. camera facilitates the star identification and acquisition.

  3. NASA X-Ray Observatory Completes Tests Under Harsh Simulated Space Conditions

    NASA Astrophysics Data System (ADS)

    1998-07-01

    NASA's most powerful X-ray observatory has successfully completed a month-long series of tests in the extreme heat, cold, and airless conditions it will encounter in space during its five-year mission to shed new light on some of the darkest mysteries of the universe. The Advanced X-ray Astrophysics Facility was put through the rigorous testing as it was alternately heated and cooled in a special vacuum chamber at TRW Space and Electronics Group in Redondo Beach, Calif., NASA's prime contractor for the observatory. "Successful completion of thermal vacuum testing marks a significant step in readying the observatory for launch aboard the Space Shuttle in January," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "The observatory is a complex, highly sophisticated, precision instrument," explained Wojtalik. "We are pleased with the outcome of the testing, and are very proud of the tremendous team of NASA and contractor technicians, engineers and scientists that came together and worked hard to meet this challenging task." Testing began in May after the observatory was raised into the 60-foot thermal vacuum chamber at TRW. Testing was completed on June 20. During the tests the Advanced X-ray Astrophysics Facility was exposed to 232 degree heat and 195 degree below zero Fahrenheit cold. During four temperature cycles, all elements of the observatory - the spacecraft, telescope, and science instruments - were checked out. Computer commands directing the observatory to perform certain functions were sent from test consoles at TRW to all Advanced X-ray Astrophysics Facility components. A team of contractor and NASA engineers and scientists monitored and evaluated the results. Commands were also sent from, and test data monitored at, the Advanced X-ray Astrophysics Facility Operations Control Center in Cambridge, Mass., as part of the test series. The observatory will be managed and controlled from

  4. The Busot Observatory: towards a robotic autonomous telescope

    NASA Astrophysics Data System (ADS)

    García-Lozano, R.; Rodes, J. J.; Torrejón, J. M.; Bernabéu, G.; Berná, J. Á.

    2016-12-01

    We describe the Busot observatory, our project of a fully robotic autonomous telescope. This astronomical observatory, which obtained the Minor Planet Centre code MPC-J02 in 2009, includes a 14 inch MEADE LX200GPS telescope, a 2 m dome, a ST8-XME CCD camera from SBIG, with an AO-8 adaptive optics system, and a filter wheel equipped with UBVRI system. We are also implementing a spectrograph SGS ST-8 for the telescope. Currently, we are involved in long term studies of variable sources such as X-ray binaries systems, and variable stars. In this work we also present the discovery of W UMa systems and its orbital periods derived from the photometry light curve obtained at Busot Observatory.

  5. Taking the Observatory to the Astronomer

    NASA Astrophysics Data System (ADS)

    Bisque, T. M.

    1997-05-01

    Since 1992, Software Bisque's Remote Astronomy Software has been used by the Mt. Wilson Institute to allow interactive control of a 24" telescope and digital camera via modem. Software Bisque now introduces a comparable, relatively low-cost observatory system that allows powerful, yet "user-friendly" telescope and CCD camera control via the Internet. Utilizing software developed for the Windows 95/NT operating systems, the system offers point-and-click access to comprehensive celestial databases, extremely accurate telescope pointing, rapid download of digital CCD images by one or many users and flexible image processing software for data reduction and analysis. Our presentation will describe how the power of the personal computer has been leveraged to provide professional-level tools to the amateur astronomer, and include a description of this system's software and hardware components. The system software includes TheSky Astronomy Software?, CCDSoft CCD Astronomy Software?, TPoint Telescope Pointing Analysis System? software, Orchestrate? and, optionally, the RealSky CDs. The system hardware includes the Paramount GT-1100? Robotic Telescope Mount, as well as third party CCD cameras, focusers and optical tube assemblies.

  6. COSMOS: Carnegie Observatories System for MultiObject Spectroscopy

    NASA Astrophysics Data System (ADS)

    Oemler, A.; Clardy, K.; Kelson, D.; Walth, G.; Villanueva, E.

    2017-05-01

    COSMOS (Carnegie Observatories System for MultiObject Spectroscopy) reduces multislit spectra obtained with the IMACS and LDSS3 spectrographs on the Magellan Telescopes. It can be used for the quick-look analysis of data at the telescope as well as for pipeline reduction of large data sets. COSMOS is based on a precise optical model of the spectrographs, which allows (after alignment and calibration) an accurate prediction of the location of spectra features. This eliminates the line search procedure which is fundamental to many spectral reduction programs, and allows a robust data pipeline to be run in an almost fully automatic mode, allowing large amounts of data to be reduced with minimal intervention.

  7. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    NASA Astrophysics Data System (ADS)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  8. Connecting an Ocean-Bottom Broadband Seismometer to a Seafloor Cabled Observatory: A Prototype System in Monterey Bay

    NASA Astrophysics Data System (ADS)

    McGill, P.; Neuhauser, D.; Romanowicz, B.

    2008-12-01

    The Monterey Ocean-Bottom Broadband (MOBB) seismic station was installed in April 2003, 40 km offshore from the central coast of California at a seafloor depth of 1000 m. It comprises a three-component broadband seismometer system (Guralp CMG-1T), installed in a hollow PVC caisson and buried under the seafloor; a current meter; and a differential pressure gauge. The station has been operating continuously since installation with no connection to the shore. Three times each year, the station is serviced with the aid of a Remotely Operated Vehicle (ROV) to change the batteries and retrieve the seismic data. In February 2009, the MOBB system will be connected to the Monterey Accelerated Research System (MARS) seafloor cabled observatory. The NSF-funded MARS observatory comprises a 52 km electro-optical cable that extends from a shore facility in Moss Landing out to a seafloor node in Monterey Bay. Once installation is completed in November 2008, the node will provide power and data to as many as eight science experiments through underwater electrical connectors. The MOBB system is located 3 km from the MARS node, and the two will be connected with an extension cable installed by an ROV with the aid of a cable-laying toolsled. The electronics module in the MOBB system is being refurbished to support the connection to the MARS observatory. The low-power autonomous data logger has been replaced with a PC/104 computer stack running embedded Linux. This new computer will run an Object Ring Buffer (ORB), which will collect data from the various MOBB sensors and forward it to another ORB running on a computer at the MARS shore station. There, the data will be archived and then forwarded to a third ORB running at the UC Berkeley Seismological Laboratory. Timing will be synchronized among MOBB's multiple acquisition systems using NTP, GPS clock emulation, and a precise timing signal from the MARS cable. The connection to the MARS observatory will provide real-time access to

  9. Sofia Observatory Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Temi, Pasquale; Miller, Walter; Dunham, Edward; McLean, Ian; Wolf, Jurgen; Becklin, Eric; Bida, Tom; Brewster, Rick; Casey, Sean; Collins, Peter; hide

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration (SCAI) flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument configuration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. SCAI activities included in-flight partial Science Instrument commissioning prior to the use of the instruments as measuring engines. This paper reports on the data collected during the SCAI flights and presents current SOFIA Observatory performance and characterization.

  10. RTS2: a powerful robotic observatory manager

    NASA Astrophysics Data System (ADS)

    Kubánek, Petr; Jelínek, Martin; Vítek, Stanislav; de Ugarte Postigo, Antonio; Nekola, Martin; French, John

    2006-06-01

    RTS2, or Remote Telescope System, 2nd Version, is an integrated package for remote telescope control under the Linux operating system. It is designed to run in fully autonomous mode, picking targets from a database table, storing image meta data to the database, processing images and storing their WCS coordinates in the database and offering Virtual-Observatory enabled access to them. It is currently running on various telescope setups world-wide. For control of devices from various manufacturers we developed an abstract device layer, enabling control of all possible combinations of mounts, CCDs, photometers, roof and cupola controllers. We describe the evolution of RTS2 from Python-based RTS to C and later C++ based RTS2, focusing on the problems we faced during development. The internal structure of RTS2, focusing on object layering, which is used to uniformly control various devices and provides uniform reporting layer, is also discussed.

  11. Initial Performance of the Keck AO Wavefront Controller System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, E M; Acton, D S; An, J R

    2001-03-01

    The wavefront controller for the Keck Observatory AO system consists of two separate real-time control loops: a tip-tilt control loop to remove tilt from the incoming wavefront, and a deformable mirror control loop to remove higher-order aberrations. In this paper, we describe these control loops and analyze their performance using diagnostic data acquired during the integration and testing of the AO system on the telescope. Disturbance rejection curves for the controllers are calculated from the experimental data and compared to theory. The residual wavefront errors due to control loop bandwidth are also calculated from the data, and possible improvements tomore » the controller performance are discussed.« less

  12. Earth Observatory Satellite system definition study. Report 2: Instrument constraints and interfaces

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The instrument constraints and interface specifications for the Earth Observatory Satellite (EOS) are discussed. The Land Use Classification Mission using a 7 band Thematic Mapper and a 4 band High Resolution Pointable Imager is stressed. The mission and performance of the instruments were reviewed and expanded to reflect the instrument as a part of the total remote sensing system. A preliminary EOS interface handbook is provided to describe the mission and system, to specify the spacecraft interfaces to potential instrument contractors, and to describe the instrument interface data required by the system integration contractor.

  13. Distributed Observatory Management

    NASA Astrophysics Data System (ADS)

    Godin, M. A.; Bellingham, J. G.

    2006-12-01

    posted to the COOP tool on a daily basis, and updated with announcements on schedule, system status, voting results from previous day, ocean, atmosphere, hardware, adaptive sampling and coordinated control and forecast. The collection of standardized data files was used to generate daily plots of observed and predicted currents, temperature, and salinity. Team members were able to participate from any internet-accessible location using common Internet browsers, and any team member could add to the day's summary, point out trends and discuss observations, and make an adaptation proposal. If a team member submitted a proposal, team-wide discussion and voting followed. All interactions were archived and left publicly accessible so that future experiments could be made more systematic with increased automation. The need for collaboration and data handling tools is important for future ocean observatories, which will require 24-hour per day, 7-day a week interactions over many years. As demonstrated in the ASAP experiment, the COOP tool and associated data handling tools allowed scientists to coherently and collaboratively manage an ocean observatory, without being co-located at the observatory. Lessons learned from operating these collaborative tools during the ASAP experiment provide an important foundation for creating even more capable portals.

  14. Results from an Integrated Optical/Acoustic Communication System Installed at CORK 857D: Implications for Future Seafloor Observatories

    NASA Astrophysics Data System (ADS)

    Tivey, M.; Farr, N.; Ware, J.; Pontbriand, C.

    2011-12-01

    A CORK (Circulation Obviation Retrofit Kit) borehole represents all of the basic components required for a seafloor observatory: a stable environment for long-term continuous measurements of earth and ocean phenomena, access to a unique environment below the seafloor under controlled conditions (e.g. hydrologically sealed), and a standard interface for communication. Typically, however, due to power constraints and a limited frequency of data download opportunities, data sampling has been limited to rates on the order of several minutes. For full seismic wave sampling, at least 1 Hz or better is required. While some CORK systems are now being connected to an underwater cable to provide continuous power and real-time data (cf. Neptune network in the Northeast Pacific), there will be locations where cabled observatories are not viable. Another mode of communication is required to enable both high data rate communication and access for data download via more conventional vessels and not limited to those with ROV or submersibles. We here report on technology to enable high data rate download and transfer of data and information using underwater optical communications, which can be accomplished from a surface vessel of opportunity or, in the future, by autonomous underwater vehicle. In 2010, we successfully deployed and tested an underwater optical communication system that provides high data rate communications over a range of 100 meters from a deep sea CORK borehole observatory located in the northeast Pacific at IODP Hole 857D. The CORK is instrumented with a thermistor string and pressure sensors that record downhole formation pressures and temperatures within oceanic basement and is pressure sealed from the overlying water column. The seafloor Optical Telemetry System (OTS) was plugged into the CORK's existing underwater matable connector to provide an optical and acoustic communication interface and additional data storage and battery power for the CORK to sample

  15. Ocean Observatories and the Integrated Ocean Observing System, IOOS: Developing the Synergy

    NASA Astrophysics Data System (ADS)

    Altalo, M. G.

    2006-05-01

    The National Office for Integrated and Sustained Ocean Observations is responsible for the planning, coordination and development of the U.S. Integrated Ocean Observing System, IOOS, which is both the U.S. contribution to GOOS as well as the ocean component of GEOSS. The IOOS is comprised of global observations as well as regional coastal observations coordinated so as to provide environmental information to optimize societal management decisions including disaster resilience, public health, marine transport, national security, climate and weather impact, and natural resource and ecosystem management. Data comes from distributed sensor systems comprising Federal and state monitoring efforts as well as regional enhancements, which are managed through data management and communications (DMAC) protocols. At present, 11 regional associations oversee the development of the observing System components in their region and are the primary interface with the user community. The ocean observatories are key elements of this National architecture and provide the infrastructure necessary to test new technologies, platforms, methods, models, and practices which, when validated, can transition into the operational components of the IOOS. This allows the IOOS to remain "state of the art" through incorporation of research at all phases. Both the observatories as well as the IOOS will contribute to the enhanced understanding of the ocean and coastal system so as to transform science results into societal solutions.

  16. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Gurman, J. B.; Hourclé, J. A.; Bogart, R. S.; Tian, K.; Hill, F.; Suàrez-Sola, I.; Zarro, D. M.; Davey, A. R.; Martens, P. C.; Yoshimura, K.; Reardon, K. M.

    2006-12-01

    The Virtual Solar Observatory (VSO) has survived its infancy and provides metadata search and data identification for measurements from 45 instrument data sets held at 12 online archives, as well as flare and coronal mass ejection (CME) event lists. Like any toddler, the VSO is good at getting into anything and everything, and is now extending its grasp to more data sets, new missions, and new access methods using its application programming interface (API). We discuss and demonstrate recent changes, including developments for STEREO and SDO, and an IDL-callable interface for the VSO API. We urge the heliophysics community to help civilize this obstreperous youngster by providing input on ways to make the VSO even more useful for system science research in its role as part of the growing cluster of Heliophysics Virtual Observatories.

  17. Observatories and Telescopes of Modern Times

    NASA Astrophysics Data System (ADS)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  18. Geodetic Observatory Wettzell - 20-m Radio Telescope and Twin Telescope

    NASA Technical Reports Server (NTRS)

    Neidhardt, Alexander; Kronschnabl, Gerhard; Schatz, Raimund

    2013-01-01

    In the year 2012, the 20-m radio telescope at the Geodetic Observatory Wettzell, Germany again contributed very successfully to the International VLBI Service for Geodesy and Astrometry observing program. Technical changes, developments, improvements, and upgrades were made to increase the reliability of the entire VLBI observing system. In parallel, the new Twin radio telescope Wettzell (TTW) got the first feedhorn, while the construction of the HF-receiving and the controlling system was continued.

  19. How To Cover NASA's Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    1999-07-01

    during the mission. NASA Television The launch and early activation of the Chandra X-ray Observatory will be carried live on NASA Television, available through the GE2 satellite system, which is located on Transponder 9C, at 85 degrees west longitude, frequency 3880.0 MHz, audio 6.8 MHz. Around-the-clock, up-to-the minute commentary, television and daily briefings on Chandra's status will originate from the Chandra Operations Control Center in Cambridge, Mass., during Shuttle Mission STS-93. Internet Information Up-to-date, comprehensive information on the Chandra X-ray Observatory is available to news media on the Internet at: http://chandra.harvard.edu The latest status reports, news releases, photos, fact sheets and background archives, as well as links to other Chandra-related sites, are available at this address. Live Shots - Television Back-hauls Television station news departments may conduct live, or live-to-tape interviews via the NASA satellite with Chandra program managers, scientists and control team members prior to, during, and following the launch of Chandra. For additional information or to arrange interviews, broadcasters may contact Dave Drachlis at (256) 544-0031. Interviews Members of the Chandra development, operations, and science teams are available to the news media for interviews upon request. NASA TV on the web

  20. The TJO-OAdM Robotic Observatory: the scheduler

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Casteels, Kevin; Ribas, Ignasi; Francisco, Xavier

    2010-07-01

    The Joan Oró Telescope at the Montsec Astronomical Observatory (TJO - OAdM) is a small-class observatory working under completely unattended control, due to the isolation of the site. Robotic operation is mandatory for its routine use. The level of robotization of an observatory is given by its reliability in responding to environment changes and by the required human interaction due to possible alarms. These two points establish a level of human attendance to ensure low risk at any time. But there is another key point when deciding how the system performs as a robot: the capability to adapt the scheduled observation to actual conditions. The scheduler represents a fundamental element to fully achieve an intelligent response at any time. Its main task is the mid- and short-term time optimization and it has a direct effect on the scientific return achieved by the observatory. We present a description of the scheduler developed for the TJO - OAdM, which is separated in two parts. Firstly, a pre-scheduler that makes a temporary selection of objects from the available projects according to their possibility of observation. This process is carried out before the beginning of the night following different selection criteria. Secondly, a dynamic scheduler that is executed any time a target observation is complete and a new one must be scheduled. The latter enables the selection of the best target in real time according to actual environment conditions and the set of priorities.

  1. Benthic long-term Observatories based on Lander Technology

    NASA Astrophysics Data System (ADS)

    Linke, P.; Pfannkuche, O.; Sommer, S.; Gubsch, S.; Gust, G.

    2003-04-01

    Landers are autonomous carrier systems for a wide range of scientific applications. The GEOMAR Lander System is based on a tripod-shaped platform for various scientific payloads to monitor, measure and experiment at the deep sea floor. These landers can be deployed using hybrid fibre optical or coaxial cables with a special launching device or in the conventional free falling mode. The launcher enables accurate positioning on meter scale, soft deployment and rapid disconnection of lander and launcher by an electric release. The bi-directional video and data telemetry provides on line video transmission, power supply and surface control of various relay functions. Within the collaborative project LOTUS novel long-term observatories have been developed and integrated into the GEOMAR Lander System. An overview of the recent developments is presented. Two new observatories are presented in detail to study the temporal variability of physico-chemical and biogeochemical mechanisms, flux- and turnover rates related to the decomposition and formation of near surface gas hydrates embedded in their original sedimentary matrix. With the Biogeochemical Observatory, BIGO, the temporal variability of the biologically facilitated methane turnover in the sediment and fluxes across the sediment water interface is studied in two mesocosms. Inside the mesocosms the oxygen content can be maintained by a chemostat. The in situ flow regime is measured outside the mesocosms and is reproduced within the chamber with an intelligent stirring system. This approach represents a major step in the development of benthic chambers from stationary to dynamic systems. The Fluid-Flux Observatory (FLUFO) measures the different types of fluid fluxes at the benthic boundary layer of sediments overlying near surface gas hydrates and monitors relevant environmental parameters as temperature, pressure and near bottom currents. FLUFO consists of two chamber units. Both units separate the gas phase from the

  2. Cyberinfrastructure (CI) for Interactive Ocean Observatories: LOOKING Ahead

    NASA Astrophysics Data System (ADS)

    Orcutt, J.; Abbott, M.; Bellingham, J.; Chave, A.; Delaney, J.; Johnson, R.; Lazowska, E.; Moline, M.; Smarr, L.

    2004-12-01

    Investments in next-generation facilities to achieve a permanent, interactive telepresence throughout remote or hostile environments can empower a broad spectrum of autonomous sensornet facilities through the NSF Major Research Equipment and Facililties Construction Ocean Observatories Initiative (OOI). These systems must involve powerful suites of generic cyberinfrastructure tools designed to optimize access and benefits to a large academic and public user base. Many future research and educational efforts focused throughout the ocean basins, especially within heavily populated coastal regions, will be empowered by these new systems. Our project LOOKING (Laboratory for the Ocean Observatory Knowledge Integration Grid) is developing prototype CI for the OOI to achieve these goals. In the case of ocean observatory networks, it is essential to establish powerful network infrastructures linking the wet or subsea portion, with a host of shore station facilities. These components in turn must seamlessly communicate with an ensemble of data repositories, and relevant computer and visualization resources designed to serve a widely diverse ocean science community with real time, broadband access to all observatory system data, products, and metadata. This infrastructure must be secure, reliable, and resilient. It must meet the potentially ambitious latency, bandwidth, and performance requirements demanded by a set of evolving autonomous sensor platforms over a period of decades. This Grid environment must seamlessly interconnect all relevant national and international research and education nets accessible through high speed, next generation communication networks. The primary components of LOOKING are remote services that fulfill the CI needs of the ocean observatory community. These services arise from overarching science and education requirements: 1) Instrument Services operate at the sensor end of an ocean observatory, and are dominantly but not exclusively wet. 2

  3. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-05-01

    This photograph shows the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  4. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1996-12-16

    This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  5. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-12-16

    This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSCF was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  6. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-05-01

    This photograph shows the Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  7. Okayama Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Okayama Astrophysical Observatory (OAO) is a branch Observatory of the NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN. Its main facilities are 188 cm and 91 cm telescopes, equipped with newly built instruments with CCD/IR cameras (e.g. OASIS). OAO accepts nearly 300 astronomers a year, according to the observation program scheduled by the committee....

  8. Science Enabled by Ocean Observatory Acoustics

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lee, C.; Gobat, J.; Freitag, L.; Miller, J. H.; Committee, I.

    2004-12-01

    Ocean observatories have the potential to examine the physical, chemical, biological, and geological parameters and processes of the ocean at time and space scales previously unexplored. Acoustics provides an efficient and cost-effective means by which these parameters and processes can be measured and information can be communicated. Integrated acoustics systems providing navigation and communications for mobile platforms and conducting acoustical measurements in support of science objectives are critical and essential elements of the ocean observatories presently in the planning and implementation stages. The ORION Workshop (Puerto Rico, 4-8 January 2004) developed science themes that can be addressed utilizing ocean observatory infrastructure. The use of acoustics to sense the 3-d/volumetric ocean environment on all temporal and spatial scales was discussed in many ORION working groups. Science themes that are related to acoustics and measurements using acoustics are reviewed and tabulated, as are the related and sometimes competing requirements for passive listening, acoustic navigation and acoustic communication around observatories. Sound in the sea, brought from observatories to universities and schools via the internet, will also be a major education and outreach mechanism.

  9. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 2: Ground system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Ground System requirements for the Land Resources Management (LRM) type-A and type-B missions of the Earth Observatory Satellite (EOS) program are presented. Specifications for the Thematic Mapper data processing are provided (LRM A mission). The specifications also cover the R and D instruments (Thematic Mapper and High Resolution Pointable Imager) data processing for the LRM type-B mission.

  10. Sierra Stars Observatory Network: An Accessible Global Network

    NASA Astrophysics Data System (ADS)

    Williams, Richard; Beshore, Edward

    2011-03-01

    The Sierra Stars Observatory Network (SSON) is a unique partnership among professional observatories that provides its users with affordable high-quality calibrated image data. SSON comprises observatories in the Northern and Southern Hemisphere and is in the process of expanding to a truly global network capable of covering the entire sky 24 hours a day in the near future. The goal of SSON is to serve the needs of science-based projects and programs. Colleges, universities, institutions, and individuals use SSON for their education and research projects. The mission of SSON is to promote and expand the use of its facilities among the thousands of colleges and schools worldwide that do not have access to professional-quality automated observatory systems to use for astronomy education and research. With appropriate leadership and guidance educators can use SSON to help teach astronomy and do meaningful scientific projects. The relatively small cost of using SSON for this type of work makes it affordable and accessible for educators to start using immediately. Remote observatory services like SSON need to evolve to better support education and research initiatives of colleges, institutions and individual investigators. To meet these needs, SSON is developing a sophisticated interactive scheduling system to integrate among the nodes of the observatory network. This will enable more dynamic observations, including immediate priority interrupts, acquiring moving objects using ephemeris data, and more.

  11. International Arctic Systems for Observing the Atmosphere (IASOA): 2007 Observatory Upgrades in Canada, Greenland, Russia and the United States

    NASA Astrophysics Data System (ADS)

    Darby, L. S.; Uttal, T.; Burkhart, J.; Drummond, J.

    2007-12-01

    International Arctic Systems for Observing the Atmosphere (IASOA) is a dynamic organization developed to enhance Arctic atmospheric research by fostering collaborations among researchers during the International Polar Year (IPY) and beyond. The member stations are Abisko, Sweden; Alert and Eureka, Canada; Barrow, USA; Cherskii and Tiksi Russia; Ny-Ålesund, Norway; Pallas and Sodankylä, Finland; and Summit, Greenland. All of these observatories operate year-round, with at least minimal staffing in the winter months, are intensive and permanent. Presently, measurement and building upgrades are occurring at the Tiksi, Eureka, Summit and Barrow observatories. A new weather station building has been completed in Tiksi and is currently available for installation of instruments. A second Clean Air Facility (CAF) that will be suitable for aerosol, chemistry, pollutant, greenhouse gases, fluxes and radiation measurements is expected to be completed in the spring of 2008. Real- time continuous measurement instruments for the measurement of ozone and black carbon, and flasks for carbon cycle gas measurements for the new Tiksi station are awaiting shipping from Boulder, CO. At the Eureka site many instruments including a flux tower, several CIMELs for the Aeronet Network, and a Baseline Surface Radiation Network (BSRN) station were installed in the summer of 2007. With IPY funding the level of technical support at the site has been increased to provide more reliable data collection and transmission. The Summit, Greenland observatory has recently released a strategic plan highlighting climate sensitive year- round observations, innovative research platforms and operational plans to increase renewable energy to maintain the pristine platform. Summit also has a new multi-channel GC/MS for continuous measurement of trace halocarbon and CFC gas concentrations. All NOAA instruments have been moved from the Science trench to a new atmospheric watch observatory building. NOAA is now

  12. The Malaysian Robotic Solar Observatory (P29)

    NASA Astrophysics Data System (ADS)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  13. Artificial intelligence for the CTA Observatory scheduler

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro

    2014-08-01

    The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint

  14. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.

  15. From field to cloud: a collaborative software tool to manage hydrological observatories

    NASA Astrophysics Data System (ADS)

    Kraft, Philipp; Weber, Chris P.; Windhorst, David; Breuer, Lutz

    2017-04-01

    Managing data collection, assessment, storage, and analysis in hydrological observatories is challenging: Many processes can only be detected when long-term time series are being analysed, but temporary staff like postgraduates perform the measurements. Naturally the students focus on the data needed for their project and do not particularly care about the long-term availability of the data. Data providing new process insights gets often lost in unmaintainable spreadsheets with no clear distinction between raw, error controlled and derived data. Data warehouse systems, like the one developed by the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI) and strict data management guide lines by funding institutions, intend to mediate this effect. However, data warehouse structures are optimized for write once / read often use and require rigorous quality control and metadata description prior to the upload. Our experience shows a risk for data loss at this stage: Data collected at the end of a project is not reviewed and never enters the database and gets lost with the expiring position. As a solution to this kind of problems, we suggest to enter observation early, if possible online, and perform the review process in the system. We are presenting a new collaborative tool for managing hydrological observatories in a standardized and well documented manner directly from the point of data production, the field. Beside the observation data the system stores the observatory management tasks to ensure regular sampling or sensor maintenance. A second benefit of logging management actions together with observations, is the possibility to interpret side effects of sampling or maintenance actions on measurements. In difference to data warehouse systems, the users do data quality control and sensor calibration directly in the online system. The raw data is not changed but augmented by calibration equations and faulty data points are not deleted but

  16. Modular Mount Control System for Telescopes

    NASA Astrophysics Data System (ADS)

    Mooney, J.; Cleis, R.; Kyono, T.; Edwards, M.

    The Space Observatory Control Kit (SpOCK) is the hardware, computers and software used to run small and large telescopes in the RDS division of the Air Force Research Laboratories (AFRL). The system is used to track earth satellites, celestial objects, terrestrial objects and aerial objects. The system will track general targets when provided with state vectors in one of five coordinate systems. Client-toserver and server-to-gimbals communication occurs via human-readable s-expressions that may be evaluated by the computer language called Racket. Software verification is achieved by scripts that exercise these expressions by sending them to the server, and receiving the expressions that the server evaluates. This paper describes the adaptation of a modular mount control system developed primarily for LEO satellite imaging on large and small portable AFRL telescopes with a goal of orbit determination and the generation of satellite metrics.

  17. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Sackett, C.

    1999-05-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building and dome has been completed, and first light is planned for spring 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have received an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  18. Observatory Bibliographies as Research Tools

    NASA Astrophysics Data System (ADS)

    Rots, Arnold H.; Winkelman, S. L.

    2013-01-01

    Traditionally, observatory bibliographies were maintained to provide insight in how successful a observatory is as measured by its prominence in the (refereed) literature. When we set up the bibliographic database for the Chandra X-ray Observatory (http://cxc.harvard.edu/cgi-gen/cda/bibliography) as part of the Chandra Data Archive ((http://cxc.harvard.edu/cda/), very early in the mission, our objective was to make it primarily a useful tool for our user community. To achieve this we are: (1) casting a very wide net in collecting Chandra-related publications; (2) including for each literature reference in the database a wealth of metadata that is useful for the users; and (3) providing specific links between the articles and the datasets in the archive that they use. As a result our users are able to browse the literature and the data archive simultaneously. As an added bonus, the rich metadata content and data links have also allowed us to assemble more meaningful statistics about the scientific efficacy of the observatory. In all this we collaborate closely with the Astrophysics Data System (ADS). Among the plans for future enhancement are the inclusion of press releases and the Chandra image gallery, linking with ADS semantic searching tools, full-text metadata mining, and linking with other observatories' bibliographies. This work is supported by NASA contract NAS8-03060 (CXC) and depends critically on the services provided by the ADS.

  19. The Ultimate Private Observatory

    NASA Astrophysics Data System (ADS)

    Aymond, J.

    2009-03-01

    An amateur astronomer from Washington Parish, Southeast Louisiana, USA has designed and built an amazing observatory. It is not only an astronomical observatory, but a home theater, and tornado shelter designed to take a direct hit from an F5 tornado. The facility is fully equipped and automated, with a hydraulically driven roof that weighs 20,571 lbs., which lifts up, then rolls away to the end of the tracks. This leaves the user sitting inside of four 14-foot high walls open to the night sky. It has two premium quality telescopes for viewing deep space and objects inside the solar system. The chair that the observer sits on is also hydraulically driven.

  20. McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    McDonald Observatory, located in West Texas near Fort Davis, is the astronomical observatory of the University of Texas at Austin. Discoveries at McDonald Observatory include water vapor on Mars, the abundance of rare-earth chemical elements in stars, the discovery of planets circling around nearby stars and the use of the measurements of rapid oscillations in the brightness of white dwarf stars ...

  1. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  2. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  3. Haystack Observatory Technology Development Center

    NASA Technical Reports Server (NTRS)

    Beaudoin, Chris; Corey, Brian; Niell, Arthur; Cappallo, Roger; Whitney, Alan

    2013-01-01

    Technology development at MIT Haystack Observatory were focused on four areas in 2012: VGOS developments at GGAO; Digital backend developments and workshop; RFI compatibility at VLBI stations; Mark 6 VLBI data system development.

  4. Lessons Learned During the Refurbishment and Testing of an Observatory After Long-Term Storage

    NASA Technical Reports Server (NTRS)

    Hawk, John; Peabody, Sharon; Stavely, Richard

    2015-01-01

    Thermal Fluids Analysis Workshop (TFAWS) 2015, Silver Spring, MD NCTS 21070-15. This paper addresses the lessons learned during the refurbishment and testing of the thermal control system for a spacecraft which was placed into long-term storage. The DSCOVR (Deep Space Climate Observatory) Observatory (formerly known as Triana) was originally scheduled to launch on the Space Shuttle in 2002. With the Triana spacecraft nearly complete, the mission was canceled and the satellite was abruptly put into storage in 2001. In 2008 the observatory was removed from storage to begin refurbishment and testing. Problems arose associated with hardware that was not currently manufactured, coatings degradation, and a significant lack of documentation. Also addressed is the conversion of the thermal and geometric math models for use with updated thermal analysis software tools.

  5. Environmental effects on lunar astronomical observatories

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Taylor, G. Jeffrey; Wetzel, John P.

    1992-01-01

    The Moon offers a stable platform with excellent seeing conditions for astronomical observations. Some troublesome aspects of the lunar environment will need to be overcome to realize the full potential of the Moon as an observatory site. Mitigation of negative effects of vacuum, thermal radiation, dust, and micrometeorite impact is feasible with careful engineering and operational planning. Shields against impact, dust, and solar radiation need to be developed. Means of restoring degraded surfaces are probably essential for optical and thermal control surfaces deployed in long-lifetime lunar facilities. Precursor missions should be planned to validate and enhance the understanding of the lunar environment (e.g., dust behavior without and with human presence) and to determine environmental effects on surfaces and components. Precursor missions should generate data useful in establishing keepout zones around observatory facilities where rocket launches and landings, mining, and vehicular traffic could be detrimental to observatory operation.

  6. Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antiči'C, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Del Peral, L.; Del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lahurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'Canovi'C, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargascárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-04-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.

  7. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, P.; /Lisbon, IST; Aglietta, M.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  8. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  9. Creation of an instrument maintenance program at W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Hill, G. M.; Kwok, S. H.; Mader, J. A.; Wirth, G. D.; Dahm, S. E.; Goodrich, R. W.

    2014-08-01

    Until a few years ago, the W. M. Keck Observatory (WMKO) did not have a systematic program of instrument maintenance at a level appropriate for a world-leading observatory. We describe the creation of such a program within the context of WMKO's lean operations model which posed challenges but also guided the design of the system and resulted in some unique and notable capabilities. These capabilities and the flexibility of the system have led to its adoption across the Observatory for virtually all PM's. The success of the Observatory in implementing the program and its impact on instrument reliability are presented. Lessons learned are reviewed and strategic implications discussed.

  10. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Rideout, C.; Vanlew, K.

    1998-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction is nearly completed and first light is planned for fall 1998. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. That telescope has been in use for the past four years by up to 50 schools per month. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have applied for an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  11. Geoelectric monitoring at the Boulder magnetic observatory

    USGS Publications Warehouse

    Blum, Cletus; White, Tim; Sauter, Edward A.; Stewart, Duff; Bedrosian, Paul A.; Love, Jeffrey J.

    2017-01-01

    Despite its importance to a range of applied and fundamental studies, and obvious parallels to a robust network of magnetic-field observatories, long-term geoelectric field monitoring is rarely performed. The installation of a new geoelectric monitoring system at the Boulder magnetic observatory of the US Geological Survey is summarized. Data from the system are expected, among other things, to be used for testing and validating algorithms for mapping North American geoelectric fields. An example time series of recorded electric and magnetic fields during a modest magnetic storm is presented. Based on our experience, we additionally present operational aspects of a successful geoelectric field monitoring system.

  12. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-01-01

    This photograph shows the High Energy Astronomy Observatory (HEAO)-1 being assembled at TRW Systems of Redondo Beach, California. The HEAO was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit.

  13. Comparison of solar photovoltaic and nuclear reactor power systems for a human-tended lunar observatory

    NASA Technical Reports Server (NTRS)

    Hickman, J. M.; Bloomfield, H. S.

    1989-01-01

    Photovoltaic and nuclear surface power systems were examined at the 20 to 100 kW power level range for use at a human-tended lunar astronomical observatory, and estimates of the power system masses were made. One system, consisting of an SP-100 thermoelectric nuclear power supply integrated with a lunar lander, is recommended for further study due to its low system mass, potential for modular growth, and applicability to other surface power missions, particularly in the Martian system.

  14. Comparison of solar photovoltaic and nuclear reactor power systems for a human-tended lunar observatory

    NASA Technical Reports Server (NTRS)

    Hickman, J. M.; Bloomfield, H. S.

    1989-01-01

    Photovoltaic and nuclear surface power systems were examined at the 20 to 100 kW power level range for use at a human-tended lunar astronomical observatory, andestimates of the power system masses were made. One system, consisting of an SP-100 thermoelectric nuclear power supply integrated with a lunar lander, is recommended for further study due to its low system mass, potential for modular growth, and applicability to other surface power missions, particularly in the Martian system.

  15. The University of Florida's next-generation cryogenic infrared focal plane array controller system

    NASA Astrophysics Data System (ADS)

    Raines, Steven N.; Boreman, Glenn D.; Eikenberry, Stephen S.; Bandyopadhyay, Reba M.; Quijano, Ismael

    2008-07-01

    The Infrared Instrumentation Group at the University of Florida has substantial experience building IR focal plane array (FPA) controllers and seamlessly integrating them into the instruments that it builds for 8-meter class observatories, including writing device drivers for UNIX-based computer systems. We report on a design study to investigate implementing an ASIC from Teledyne Imaging Systems (TIS) into our IR FPA controller while simultaneously replacing TIS's interface card with one that eliminates the requirement for a Windows-OS computer within the instrument's control system.

  16. First Light of the Renovated Thacher Observatory

    NASA Astrophysics Data System (ADS)

    O'Neill, Katie; Yin, Yao; Edwards, Nick; Swift, Jonathan

    2017-01-01

    The Thacher Observatory, originally a collaboration between UCLA (P.I. G. Abell), Caltech, Pomona College, and the Thacher School, was built in the early 1960s. The goal of the facility was to serve as a training ground for undergraduate and graduate students in Los Angeles area colleges and also to provide hands-on technical training and experience for Thacher students. It was the birthplace of the Summer Science Program which continues today at other campuses. The observatory has now been fully renovated and modernized with a new, 0.7m telescope and dome that can be controlled remotely and in an automated manner. Science programs involving accurate and precise photometry have been initiated, and we project that we will be presenting the first scientific results of the renovated observatory at this meeting.

  17. A Remotely Operated Observatory for Minor Planet Photometry

    NASA Astrophysics Data System (ADS)

    Ditteon, Richard

    2008-05-01

    In October of 2007 Rose-Hulman Institute of Technology in Terre Haute, Indiana began operating the Oakley Southern Sky Observatory (E09) located near Siding Spring Observatory in New South Wales, Australia. The observatory houses a 0.5-m, f/8.4 Ritchey-Chretien telescope mounted on a Paramount ME, German equatorial mount. Attached to the telescope is an STL-1001E CCD camera which has 1024 by 1024, 24 µm pixels, a two-stage thermoelectric cooler, and built in color filter wheel with BVRI and clear filters. Image scale is 1.2 arcseconds per pixel. A cloud sensor is used to monitor sky conditions. The observatory has a roll-off roof with limit switches to detect when the roof is fully open and fully closed. In addition, a switch has been added to the mount to detect when the telescope is parked and that it is safe to open or close the roof. All of the hardware is controlled by a custom program which reads a simple text file containing the sequence of images and targets to be collected each night. The text file is loaded onto the control computer once each day, then the software waits until sunset to determine if the sky is clear. When conditions are favorable, power is turned on, the roof opens, twilight flats, dark and bias frames are recorded, and when it is fully dark data frames are recorded. Images are transferred via the Internet back to Rose-Hulman by another program running in the background. The observatory closes itself before dawn or if it gets cloudy. Currently we are using the observatory for photometry of minor planets. Students are responsible for selecting targets, processing the returned images, determining the period and light curve of each minor planet and writing a paper for publication. Recent results will be presented.

  18. A framework for comparative analysis of health systems: experiences from the Asia Pacific Observatory on Health Systems and Policies.

    PubMed

    Healy, Judith Mary; Tang, Shenglan; Patcharanarumol, Walaiporn; Annear, Peter Leslie

    2018-04-01

    Drawing on published work from the Asia Pacific Observatory on Health Systems and Policies, this paper presents a framework for undertaking comparative studies on the health systems of countries. Organized under seven types of research approaches, such as national case-studies using a common format, this framework is illustrated using studies of low- and middle-income countries published by the Asia Pacific Observatory. Such studies are important contributions, since much of the health systems research literature comes from high-income countries. No one research approach, however, can adequately analyse a health system, let alone produce a nuanced comparison of different countries. Multiple comparative studies offer a better understanding, as a health system is a complex entity to describe and analyse. Appreciation of context and culture is crucial: what works in one country may not do so in another. Further, a single research method, such as performance indicators, or a study of a particular health system function or component, produces only a partial picture. Applying a comparative framework of several study approaches helps to inform and explain progress against health system targets, to identify differences among countries, and to assess policies and programmes. Multi-method comparative research produces policy-relevant learning that can assist countries to achieve Sustainable Development Goal 3: ensure healthy lives and promoting well-being for all at all ages by 2030.

  19. Remote observing with the Nickel Telescope at Lick Observatory

    NASA Astrophysics Data System (ADS)

    Grigsby, Bryant; Chloros, Konstantinos; Gates, John; Deich, William T. S.; Gates, Elinor; Kibrick, Robert

    2008-07-01

    We describe a project to enable remote observing on the Nickel 1-meter Telescope at Lick Observatory. The purpose was to increase the subscription rate and create more economical means for graduate- and undergraduate students to observe with this telescope. The Nickel Telescope resides in a 125 year old dome on Mount Hamilton. Remote observers may work from any of the University of California (UC) remote observing facilities that have been created to support remote work at both Keck Observatory and Lick Observatory. The project included hardware and software upgrades to enable computer control of all equipment that must be operated by the astronomer; a remote observing architecture that is closely modeled on UCO/Lick's work to implement remote observing between UC campuses and Keck Observatory; new policies to ensure safety of Observatory staff and equipment, while ensuring that the telescope subsystems would be suitably configured for remote use; and new software to enforce the safety-related policies. The results increased the subscription rate from a few nights per month to nearly full subscription, and has spurred the installation of remote observing sites at more UC campuses. Thanks to the increased automation and computer control, local observing has also benefitted and is more efficient. Remote observing is now being implemented for the Shane 3- meter telescope.

  20. Gamma Ray Observatory (GRO) dynamics simulator requirements and mathematical specifications, revision 1

    NASA Technical Reports Server (NTRS)

    Harman, R.; Blejer, D.

    1990-01-01

    The requirements and mathematical specifications for the Gamma Ray Observatory (GRO) Dynamics Simulator are presented. The complete simulator system, which consists of the profie subsystem, simulation control and input/output subsystem, truth model subsystem, onboard computer model subsystem, and postprocessor, is described. The simulator will be used to evaluate and test the attitude determination and control models to be used on board GRO under conditions that simulate the expected in-flight environment.

  1. WNCC Observatory

    NASA Astrophysics Data System (ADS)

    Snyder, L. F.

    2003-05-01

    Western Nevada Community College (WNCC), located in Carson City, Nevada, is a small two year college with only 6,000 students. Associate degrees and Cer- tificates of Achievement are awarded. The college was built and started classes in 1971 and about 12 years ago the chair of the physics department along with a few in administration had dreams of building a small observatory for education. Around that time a local foundation, Nevada Gaming Foundation for Education Excellence, was looking for a beneficiary in the education field to receive a grant. They decided an observatory at the college met their criteria. Grants to the foundation instigated by Senators, businesses, and Casinos and donations from the local public now total $1.3 million. This paper will explain the different facets of building the observatory, the planning, construction, telescopes and equipment decisions and how we think it will operate for the public, education and research. The organization of local volunteers to operate and maintain the observatory and the planned re- search will be explained.

  2. Graphical User Interface for an Observing Control System for the UK Infrared Telescope

    NASA Astrophysics Data System (ADS)

    Tan, M.; Bridger, A.; Wright, G. S.; Adamson, A. J.; Currie, M. J.; Economou, F.

    A Graphical user interface for the observing control system of UK Infrared Telescope has been developed as a part of the ORAC (Observatory Reduction and Acquisition Control) Project. We analyzed and designed the system using the Unified Modelling Language (UML) with the CASE tool Rational Rose 98. The system has been implemented in a modular way with Java packages using Swing and RMI. This system is component-based with pluggability. Object orientation concepts and UML notations have been applied throughout the development.

  3. ``Route of astronomical observatories'' project: Classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2016-10-01

    Observatories offer a good possibility for serial transnational applications. For example one can choose groups like baroque or neoclassical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments or made by famous firms. I will discuss what has been achieved and show examples, like the route of astronomical observatories, the transition from classical astronomy to modern astrophysics. I will also discuss why the implementation of the World Heritage & Astronomy initiative is difficult and why there are problems to nominate observatories for election in the national tentative lists.

  4. An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei

    2016-01-01

    For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.

  5. The Aula Espazio Gela Observatory: A tool for Solar System Education and Outreach

    NASA Astrophysics Data System (ADS)

    Rojas, J. F.; Perez-Hoyos, S.; Hueso, R.; Mendikoa, I.; Sanchez-Lavega, A.

    2011-10-01

    We present a summary of the activities undertaken over the first year of operations of the "Aula Espazio Gela Observatory", with teaching and astronomy outreach purposes. The observatory belongs to the Universidad del País Vasco and is a fundamental part of the "Master en Ciencia y Tecnología Espacial" (Space Science and Technology master). It is an urban observatory with the dome located on the roof of the School of Engineering at the Universidad del Pais Vasco in Bilbao (Spain).

  6. Update on optical design of adaptive optics system at Lick Observatory

    NASA Astrophysics Data System (ADS)

    Bauman, Brian J.; Gavel, Donald T.; Waltjen, Kenneth E.; Freeze, Gary J.; Hurd, Randall L.; Gates, Elinor L.; Max, Claire E.; Olivier, Scot S.; Pennington, Deanna M.

    2002-02-01

    In 1999, we presented our plan to upgrade the adaptive optics (AO) system on the Lick Observatory Shane telescope (3m) from a prototype instrument pressed into field service to a facility instrument. This paper updates the progress of that plan and details several important improvements in the alignment and calibration of the AO bench. The paper also includes a discussion of the problems seen in the original design of the tip/tilt (t/t) sensor used in laser guide star mode, and how these problems were corrected with excellent results.

  7. Update on Optical Design of Adaptive Optics System at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, B J; Gavel, D T; Waltjen, K E

    2001-07-31

    In 1999, we presented our plan to upgrade the adaptive optics (AO) system on the Lick Observatory Shane telescope (3m) from a prototype instrument pressed into field service to a facility instrument. This paper updates the progress of that plan and details several important improvements in the alignment and calibration of the AO bench. The paper also includes a discussion of the problems seen in the original design of the tip/tilt (t/t) sensor used in laser guide star mode, and how these problems were corrected with excellent results.

  8. The IceCube Neutrino Observatory: instrumentation and online systems

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auer, R.; Auffenberg, J.; Axani, S.; Baccus, J.; Bai, X.; Barnet, S.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Bendfelt, T.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Boersma, D.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Burreson, C.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Descamps, F.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Edwards, W. R.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Frère, M.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glowacki, D.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Gustafsson, L.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Haugen, J.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Heller, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hulth, P. O.; Hultqvist, K.; In, S.; Inaba, M.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, A.; Jones, B. J. P.; Joseph, J.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kitamura, N.; Kittler, T.; Klein, S. R.; Kleinfelder, S.; Kleist, M.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Laundrie, A.; Lennarz, D.; Leich, H.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Ludwig, J.; Lünemann, J.; Mackenzie, C.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H.; Maunu, R.; McNally, F.; McParland, C. P.; Meade, P.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Minor, R. H.; Montaruli, T.; Moulai, M.; Murray, T.; Nahnhauer, R.; Naumann, U.; Neer, G.; Newcomb, M.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Patton, S.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pettersen, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Roucelle, C.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sandstrom, P.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schukraft, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Solarz, M.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sulanke, K.-H.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Thollander, L.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Wahl, D.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Wharton, D.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wisniewski, P.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2017-03-01

    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.

  9. High Energy Astronomy Observatory, Mission C, Phase A. Volume 2: Preliminary analyses and conceptual design

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis and conceptual design of a baseline mission and spacecraft are presented. Aspects of the HEAO-C discussed include: baseline experiments with X-ray observations of space, analysis of mission requirements, observatory design, structural analysis, thermal control, attitude sensing and control system, communication and data handling, and space shuttle launch and retrieval of HEAO-C.

  10. 21st Century Lightning Protection for High Altitude Observatories

    NASA Astrophysics Data System (ADS)

    Kithil, Richard

    2013-05-01

    One of the first recorded lightning insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times lightning has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to lightning outages to data acquisition computers and connected cabling. The University of Arizona has reported "lightning strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where lightning protection for personnel, electrical systems, associated electronics and data are critical. Designstage lightning protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories lightning protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered lightning protection subsystems in a carefully planned methodology which is specific to each site.

  11. A Green Robotic Observatory for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  12. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  13. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.

  14. Data processing system for the intensity monitoring spectrometer flown on the Orbiting Geophysical Observatory-F (OGO-F) satellite

    NASA Technical Reports Server (NTRS)

    Cronin, A. G.; Delaney, J. R.

    1973-01-01

    The system is discussed which was developed to process digitized telemetry data from the intensity monitoring spectrometer flown on the Orbiting Geophysical Observatory (OGO-F) Satellite. Functional descriptions and operating instructions are included for each program in the system.

  15. The Ocean Observatories Initiative: A new initiative for sea floor observatory research in the United States

    NASA Astrophysics Data System (ADS)

    Clark, H. L.; Isern, A. R.

    2003-04-01

    The Division of Ocean Sciences of the American National Science Foundation (NSF) plans to initiate construction of an integrated observatory network that will provide the oceanographic research and education communities with a new mode of access to the ocean. This observatory system will have three elements: 1) a regional cabled network consisting of interconnected sites on the seafloor spanning several geological and oceanographic features and processes, 2) several relocatable deep-sea buoys that could also be deployed in harsh environments such as the Southern Ocean, and 3) new construction or enhancements to existing facilities leading to an expanded network of coastal observatories. The primary infrastructure for all components of the Ocean Observatories Initiative (OOI) consists of an array of seafloor junction boxes connected to cables running along the seafloor to individual instruments or instrument clusters. These junction boxes include undersea connectors that provide not only the power and two-way communication needed to support seafloor instrumentation, but also the capability to exchange instrumentation in situ when necessary for conducting new experiments or for repairing existing instruments. Depending upon proximity to the coast and other engineering requirements, the junction box will be either terminated by a long dedicated fiber-optic cable to shore, or by a shorter cable to a surface buoy that is capable of two-way communications with a shore station. The scientific problems driving the need for an ocean observing system are broad in scope and encompass nearly every area of ocean science including: ecological characterizations; role of the ocean in climate; fluids, chemistry, and life in the oceanic crust; dynamics of the oceanic lithosphere and imaging of the earth’s interior; seafloor spreading and subduction; organic carbon fluxes; turbulent mixing and biophysical interaction; and coastal ocean processes. Thirty years ago, NSF leadership

  16. Open Technologies at Athabasca University's Geospace Observatories

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Schofield, I. S.

    2012-12-01

    Athabasca University Geophysical Observatories feature two auroral observation sites situated in the subauroral zone of western Canada, separated by approximately 25 km. These sites are both on high-speed internet and ideal for observing phenomena detectable from this latitude, which include noctilucent clouds, meteors, and magnetic and optical aspects of the aurora. General aspects of use of Linux in observatory management are described, with emphasis on recent imaging projects involving control of high resolution digital SLR cameras at low cadence, and inexpensive white light analog video cameras at 30 Hz. Linux shell scripts are extensively used, with image capture controlled by gphoto2, the ivtv-utils package, x264 video coding library, and ffmpeg. Imagemagick allows processing of images in an automated fashion. Image archives and movies are created and can be correlated with magnetic data. Much of the magnetic data stream also uses GMT (Generic Mapping Tools) within shell scripts for display. Additionally, SPASE metadata are generated for most of the magnetic data, thus allowing users of our AUTUMN magnetic data repository to perform SPASE queries on the dataset. Visualization products from our twin observatories will be presented.

  17. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 3: General purpose spacecraft segment and module specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications for the Earth Observatory Satellite (EOS) general purpose aircraft segment are presented. The satellite is designed to provide attitude stabilization, electrical power, and a communications data handling subsystem which can support various mission peculiar subsystems. The various specifications considered include the following: (1) structures subsystem, (2) thermal control subsystem, (3) communications and data handling subsystem module, (4) attitude control subsystem module, (5) power subsystem module, and (6) electrical integration subsystem.

  18. Earth Observatory Satellite (EOS) Definition Phase Report, Volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    System definition studies were conducted of the Earth Observatory Satellite (EOS). The studies show that the concept of an Earth Observatory Satellite in a near-earth, sun-synchronous orbit would make a unique contribution to the goals of a coordinated program for acquisition of data for environmental research with applications to earth resource inventory and management. The technical details for the proposed development of sensors, spacecraft, and a ground data processing system are presented.

  19. Solar Dynamics Observatory Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R., Jr.; Kristin, D.; Bourkland, L.; Hsu, Oscar C.; Liu, Kuo-Chia; Mason, Paul A. C.; Morgenstern, Wendy M.; Russo, Angela M.; Starin, Scott R.; Vess, Melissa F.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010. Over the next three months, the spacecraft was raised from its launch orbit into its final geosynchronous orbit and its systems and instruments were tested and calibrated in preparation for its desired ten year science mission studying the Sun. A great deal of activity during this time involved the spacecraft attitude control system (ACS); testing control modes, calibrating sensors and actuators, and using the ACS to help commission the spacecraft instruments and to control the propulsion system as the spacecraft was maneuvered into its final orbit. This paper will discuss the chronology of the SDO launch and commissioning, showing the ACS analysis work performed to diagnose propellant slosh transient and attitude oscillation anomalies that were seen during commissioning, and to determine how to overcome them. The simulations and tests devised to demonstrate correct operation of all onboard ACS modes and the activities in support of instrument calibration will be discussed and the final maneuver plan performed to bring SDO on station will be shown. In addition to detailing these commissioning and anomaly resolution activities, the unique set of tests performed to characterize SDO's on-orbit jitter performance will be discussed.

  20. Shuttle Astronauts Visit NASA's X-Ray Observatory Operations Control Center in Cambridge to Coordinate Plans for Launch

    NASA Astrophysics Data System (ADS)

    1998-06-01

    CAMBRIDGE, MASS.-- June 25, 1998 Eileen Collins, the first U.S. woman commanderof a Space Shuttle mission and her fellow astronauts for NASA s STS-93 mission toured the Operations Control Center (OCC) for the Advanced X-ray Astrophysics Facility (AXAF) today. AXAF is scheduled for launch on January 26, 1999 aboard the Space Shuttle Columbia. They met with the staff of the OCC and discussed how the status of the observatory will be monitored while in the shuttle bay and during deployment. "We are honored to have this historic shuttle crew visit us and familiarize themselves with the OCC," said Harvey Tananbaum, director of the AXAF Science Center, which operates the OCC for the Smithsonian Astrophysical Observatory through a contract with NASA's Marshall Space Flight Center. "It is appropriate that a pathbreaking shuttle mission will deploy the premier X-ray observatory of this century." AXAF is the third of NASA s Great Observatories along with the Hubble Space Telescope and the Compton Gamma Ray Observatory. It will observe in greater detail than ever before the hot, violent regions of the universe that cannot be seen with optical telescopes. Exploding stars, black holes and vast clouds of gas in galaxy clusters are among the fascinating objects that AXAF is designed to study. The satellite is currently in the final stages of testing at TRW Space and Electronics Group,the prime contractor, in Redondo Beach, California. In late August it will be flown aboard a specially-outfitted Air Force C-5 aircraft to Kennedy Space Center in Florida where it will be integrated with a Boeing booster and then installed in the Shuttle bay. The shuttle crew that will take AXAF into space includes Collins (Col., USAF), Jeffrey Ashby (Cmdr., USN), pilot; Steven Hawley, Ph.D., mission specialist; Catherine Cady Coleman, Ph.D. (Major, USAF), mission specialist; and Michel Tognini (Col., French Air Force), mission specialist. While visiting the OCC the crew learned how critical data

  1. The Landscape Evolution Observatory: a large-scale controllable infrastructure to study coupled Earth-surface processes

    USGS Publications Warehouse

    Pangle, Luke A.; DeLong, Stephen B.; Abramson, Nate; Adams, John; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Dietrich, William E.; Dontsova, Katerina; Durcik, Matej; Espeleta, Javier; Ferré, T.P.A.; Ferriere, Regis; Henderson, Whitney; Hunt, Edward A.; Huxman, Travis E.; Millar, David; Murphy, Brendan; Niu, Guo-Yue; Pavao-Zuckerman, Mitch; Pelletier, Jon D.; Rasmussen, Craig; Ruiz, Joaquin; Saleska, Scott; Schaap, Marcel; Sibayan, Michael; Troch, Peter A.; Tuller, Markus; van Haren, Joost; Zeng, Xubin

    2015-01-01

    Zero-order drainage basins, and their constituent hillslopes, are the fundamental geomorphic unit comprising much of Earth's uplands. The convergent topography of these landscapes generates spatially variable substrate and moisture content, facilitating biological diversity and influencing how the landscape filters precipitation and sequesters atmospheric carbon dioxide. In light of these significant ecosystem services, refining our understanding of how these functions are affected by landscape evolution, weather variability, and long-term climate change is imperative. In this paper we introduce the Landscape Evolution Observatory (LEO): a large-scale controllable infrastructure consisting of three replicated artificial landscapes (each 330 m2 surface area) within the climate-controlled Biosphere 2 facility in Arizona, USA. At LEO, experimental manipulation of rainfall, air temperature, relative humidity, and wind speed are possible at unprecedented scale. The Landscape Evolution Observatory was designed as a community resource to advance understanding of how topography, physical and chemical properties of soil, and biological communities coevolve, and how this coevolution affects water, carbon, and energy cycles at multiple spatial scales. With well-defined boundary conditions and an extensive network of sensors and samplers, LEO enables an iterative scientific approach that includes numerical model development and virtual experimentation, physical experimentation, data analysis, and model refinement. We plan to engage the broader scientific community through public dissemination of data from LEO, collaborative experimental design, and community-based model development.

  2. Identification of binary and multiple systems in TGAS using the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Jiménez-Esteban, F.; Solano, E.

    2018-04-01

    Binary and multiple stars have long provided an effective method of testing stellar formation and evolution theories. In particular, wide binary systems with separations > 20,000 au are particularly challenging as their physical separations are beyond the typical size of a collapsing cloud core (5,000 - 10,000 au). We present here a preliminary work in which we make use of the TGAS catalogue and Virtual Observatory tools and services (Aladin, TOPCAT, STILTS, VOSA, VizieR) to identify binary and multiple star candidate systems. The catalogue will be available from the Spanish VO portal (http://svo.cab.inta-csic.es) in the coming months.

  3. New developments in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Fitzgerald, Michael P.; Johnson, James; Larkin, James E.; Lewis, Hilton A.; Martin, Christopher; Matthews, Keith Y.; Prochaska, J. X.; Wizinowich, Peter

    2014-07-01

    The W. M. Keck Observatory continues to develop new capabilities in support of our science driven strategic plan which emphasizes leadership in key areas of observational astronomy. This leadership is a key component of the scientific productivity of our observing community and depends on our ability to develop new instrumentation, upgrades to existing instrumentation, and upgrades to supporting infrastructure at the observatory. In this paper we describe the as measured performance of projects completed in 2014 and the expected performance of projects currently in the development or construction phases. Projects reaching completion in 2014 include a near-IR tip/tilt sensor for the Keck I adaptive optics system, a new center launch system for the Keck II laser guide star facility, and NIRES, a near-IR Echelle spectrograph for the Keck II telescope. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, a deployable tertiary mirror for the Keck I telescope, upgrades to the spectrograph detector and the imager of the OSIRIS instrument, and an upgrade to the telescope control systems on both Keck telescopes.

  4. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  5. Trajectory Design and Control for the Compton Gamma Ray Observatory Re-Entry

    NASA Technical Reports Server (NTRS)

    Hoge, Susan; Vaughn, Frank; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    The Compton Gamma Ray Observatory (CGRO) controlled re-entry operation was successfully conducted in June of 2000. The surviving parts of the spacecraft landed in the Pacific Ocean within the predicted footprint. The design of the maneuvers to control the trajectory to accomplish this re-entry presented several challenges. These challenges included timing and duration of the maneuvers, fuel management, post maneuver position knowledge, collision avoidance with other spacecraft, accounting for the break-up of the spacecraft into several pieces with a wide range of ballistic coefficients, and ensuring that the impact footprint would remain within the desired landing area in the event of contingencies. This paper presents the initial re-entry trajectory design and the evolution of the design into the maneuver sequence used for the re-entry. The paper discusses the constraints on the trajectory design, the modifications made to the initial design and the reasons behind these modifications. Data from the re-entry operation are presented.

  6. Status of the James Webb Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2013-01-01

    The James Webb Space Telescope (JWST) is the largest cryogenic, space telescope ever built, and will address a broad range of scientific goals from first light in the universe and re-ionization, to characterization of the atmospheres of extrasolar planets. Recently, significant progress has been made in the construction of the observatory with the completion of all 21 flight mirrors that comprise the telescope's optical chain, and the start of flight instrument deliveries to the Goddard Space Flight Center. In this paper we discuss the design of the observatory, and focus on the recent milestone achievements in each of the major observatory sub-systems.

  7. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This image is an observation of Quasar 3C 273 by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. It reveals the presence of a new source (upper left) with a red shift that indicates that it is about 10 billion light years away. Quasars are mysterious, bright, star-like objects apparently located at the very edge of the visible universe. Although no bigger than our solar system, they radiate as much visible light as a thousand galaxies. Quasars also emit radio signals and were previously recognized as x-ray sources. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2 was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center.

  8. The Cherenkov Telescope Array Observatory: top level use cases

    NASA Astrophysics Data System (ADS)

    Bulgarelli, A.; Kosack, K.; Hinton, J.; Tosti, G.; Schwanke, U.; Schwarz, J.; Colomé, P.; Conforti, V.; Khelifi, B.; Goullon, J.; Ong, R.; Markoff, S.; Contreras, J. L.; Lucarelli, F.; Antonelli, L. A.; Bigongiari, C.; Boisson, C.; Bosnjak, Z.; Brau-Nogué, S.; Carosi, A.; Chen, A.; Cotter, G.; Covino, S.; Daniel, M.; De Cesare, G.; de Ona Wilhelmi, E.; Della Volpe, M.; Di Pierro, F.; Fioretti, V.; Füßling, M.; Garczarczyk, M.; Gaug, M.; Glicenstein, J. F.; Goldoni, P.; Götz, D.; Grandi, P.; Heller, M.; Hermann, G.; Inoue, S.; Knödlseder, J.; Lenain, J.-P.; Lindfors, E.; Lombardi, S.; Luque-Escamilla, P.; Maier, G.; Marisaldi, M.; Mundell, C.; Neyroud, N.; Noda, K.; O'Brien, P.; Petrucci, P. O.; Martí Ribas, J.; Ribó, M.; Rodriguez, J.; Romano, P.; Schmid, J.; Serre, N.; Sol, H.; Schussler, F.; Stamerra, A.; Stolarczyk, T.; Vandenbrouck, J.; Vercellone, S.; Vergani, S.; Zech, A.; Zoli, A.

    2016-08-01

    Today the scientific community is facing an increasing complexity of the scientific projects, from both a technological and a management point of view. The reason for this is in the advance of science itself, where new experiments with unprecedented levels of accuracy, precision and coverage (time and spatial) are realised. Astronomy is one of the fields of the physical sciences where a strong interaction between the scientists, the instrument and software developers is necessary to achieve the goals of any Big Science Project. The Cherenkov Telescope Array (CTA) will be the largest ground-based very high-energy gamma-ray observatory of the next decades. To achieve the full potential of the CTA Observatory, the system must be put into place to enable users to operate the telescopes productively. The software will cover all stages of the CTA system, from the preparation of the observing proposals to the final data reduction, and must also fit into the overall system. Scientists, engineers, operators and others will use the system to operate the Observatory, hence they should be involved in the design process from the beginning. We have organised a workgroup and a workflow for the definition of the CTA Top Level Use Cases in the context of the Requirement Management activities of the CTA Observatory. Scientists, instrument and software developers are collaborating and sharing information to provide a common and general understanding of the Observatory from a functional point of view. Scientists that will use the CTA Observatory will provide mainly Science Driven Use Cases, whereas software engineers will subsequently provide more detailed Use Cases, comments and feedbacks. The main purposes are to define observing modes and strategies, and to provide a framework for the flow down of the Use Cases and requirements to check missing requirements and the already developed Use-Case models at CTA sub-system level. Use Cases will also provide the basis for the definition of

  9. The Boulder magnetic observatory

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.; Pedrie, Kolby L.; Blum, Cletus C.

    2015-08-14

    The Boulder magnetic observatory has, since 1963, been operated by the Geomagnetism Program of the U.S. Geological Survey in accordance with Bureau and national priorities. Data from the observatory are used for a wide variety of scientific purposes, both pure and applied. The observatory also supports developmental projects within the Geomagnetism Program and collaborative projects with allied geophysical agencies.

  10. HETDEX tracker control system design and implementation

    NASA Astrophysics Data System (ADS)

    Beno, Joseph H.; Hayes, Richard; Leck, Ron; Penney, Charles; Soukup, Ian

    2012-09-01

    To enable the Hobby-Eberly Telescope Dark Energy Experiment, The University of Texas at Austin Center for Electromechanics and McDonald Observatory developed a precision tracker and control system - an 18,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 13 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). Due to this complexity, demanding accuracy requirements, and stringent safety requirements, two independent control systems were developed. First, a versatile and easily configurable centralized control system that links with modeling and simulation tools during the hardware and software design process was deemed essential for normal operation including motion control. A second, parallel, control system, the Hardware Fault Controller (HFC) provides independent monitoring and fault control through a dedicated microcontroller to force a safe, controlled shutdown of the entire system in the event a fault is detected. Motion controls were developed in a Matlab-Simulink simulation environment, and coupled with dSPACE controller hardware. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of operational control software, the HFC, algorithms, tuning, debugging, testing, and lessons learned.

  11. The Role of Project Science in the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Weisskopf, Martin C.

    2006-01-01

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.

  12. High Energy Astronomy Observatory, Mission C, Phase A. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Technical data, and experiment and spacecraft alternatives are presented in support of the HEAO-C, whose primary objective is a detailed study of the more interesting high energy sources, using grazing incidence X-ray telescopes and a spacecraft pointing accuracy of + or - 1 arc minute. The analyses presented cover the mission analysis and launch vehicle; thermal control trade studies and supporting analyses; attitude sensing and control analyses; electrical systems; and reliability analysis. The alternate experiments which were considered are listed, and the advantages and disadvantages of several alternate observatory configurations are assessed.

  13. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  14. The Virtual Observatory: I

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2014-11-01

    The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.

  15. Is the work flow model a suitable candidate for an observatory supervisory control infrastructure?

    NASA Astrophysics Data System (ADS)

    Daly, Philip N.; Schumacher, Germán.

    2016-08-01

    This paper reports on the early investigation of using the work flow model for observatory infrastructure software. We researched several work ow engines and identified 3 for further detailed, study: Bonita BPM, Activiti and Taverna. We discuss the business process model and how it relates to observatory operations and identify a path finder exercise to further evaluate the applicability of these paradigms.

  16. Earth Observatory Satellite system definition study. Report 3: Design cost trade-off studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the design and cost tradeoff aspects of the Earth Observatory Satellite (EOS) development is presented. The design/cost factors that affect a series of mission/system level concepts are discussed. The subjects considered are as follows: (1) spacecraft subsystem cost tradeoffs, (2) ground system cost tradeoffs, and (3) program cost summary. Tables of data are provided to summarize the results of the analyses. Illustrations of the various spacecraft configurations are included.

  17. Photometric calibration of T40 telescope system at Ankara University Kreiken Observatory (AUKR)

    NASA Astrophysics Data System (ADS)

    Karakuş, O.; Ekmekçi, F.

    2017-07-01

    We aim to present the photometric calibration of T40 telescope system at Ankara University Kreiken Observatory(AUKR) in the Johnson BVRI bands system through CCD observations of selected Landolt stars on the clearest 11 nights. Ten more stars with a magnitude of V< 11 were also observed in order to check up on standard transformation coefficients. Using these coefficients, we present standard brightness and color magnitudes for these 10 selected stars. These standard brightness values of these 10 stars are also compared with the previously published ones. It is clearly seen that the calibration results are sufficiently reliable.

  18. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  19. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory

    NASA Technical Reports Server (NTRS)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  20. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-01-01

    Managed by the Marshall Space Flight Center and built by TRW, the second High Energy Astronomy Observatory was launched November 13, 1978. The observatory carried the largest X-ray telescope ever built and was renamed the Einstein Observatory after achieving orbit.

  1. Solar Dynamics Observatory Artist Concept

    NASA Image and Video Library

    2010-02-11

    The Solar Dynamics Observatory SDO spacecraft, shown above the Earth as it faces toward the Sun. SDO is designed to study the influence of the Sun on the Earth and the inner solar system by studying the solar atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA18169

  2. Providing Undergraduate Research Opportunities Through the World Rivers Observatory Collaborative Network

    NASA Astrophysics Data System (ADS)

    Gillies, S. L.; Marsh, S. J.; Janmaat, A.; Peucker-Ehrenbrink, B.; Voss, B.; Holmes, R. M.

    2013-12-01

    Successful research collaboration exists between the University of the Fraser Valley (UFV), a primarily undergraduate-serving university located on the Fraser River in British Columbia, and the World Rivers Observatory that is coordinated through the Woods Hole Oceanographic Institution (WHOI) and the Woods Hole Research Center (WHRC). The World Rivers Observatory coordinates time-series sampling of 15 large rivers, with particular focus on the large Arctic rivers, the Ganges-Brahmaputra, Congo, Fraser, Yangtze (Changjiang), Amazon, and Mackenzie River systems. The success of this international observatory critically depends on the participation of local collaborators, such as UFV, that are necessary in order to collect temporally resolved data from these rivers. Several faculty members and undergraduate students from the Biology and Geography Departments of UFV received on-site training from the lead-PIs of the Global Rivers Observatory. To share information and ensure good quality control of sampling methods, WHOI and WHRC hosted two international workshops at Woods Hole for collaborators. For the past four years, faculty and students from UFV have been collecting a variety of bi-monthly water samples from the Fraser River for the World Rivers Observatory. UFV undergraduate students who become involved learn proper sampling techniques and are given the opportunity to design and conduct their own research. Students have collected, analyzed and presented data from this project at regional, national, and international scientific meetings. UFV undergraduate students have also been hosted by WHOI and WHRC as guest students to work on independent research projects. While at WHOI and WHRC, students are able to conduct research using state-of-the-art specialized research facilities not available at UFV.

  3. The Penllergare Observatory

    NASA Astrophysics Data System (ADS)

    Birks, J. L.

    2005-12-01

    This rather picturesque and historically important Victorian observatory was built by the wealthy John Dillwyn Llewelyn near to his mansion, some four miles north-west of Swansea, Wales. He had many scientific interests, in addition to astronomy, and was a notable pioneer of photography in Wales. Together with his eldest daughter, Thereza, (who married the grandson of the fifth Astronomer Royal, Nevil Maskelyne), he took some early photographs of the Moon from this site. This paper describes the construction of the observatory, and some of those primarily involved with it. Despite its having undergone restoration work in 1982, the state of the observatory is again the cause for much concern.

  4. Computer Vision for the Solar Dynamics Observatory (SDO)

    NASA Astrophysics Data System (ADS)

    Martens, P. C. H.; Attrill, G. D. R.; Davey, A. R.; Engell, A.; Farid, S.; Grigis, P. C.; Kasper, J.; Korreck, K.; Saar, S. H.; Savcheva, A.; Su, Y.; Testa, P.; Wills-Davey, M.; Bernasconi, P. N.; Raouafi, N.-E.; Delouille, V. A.; Hochedez, J. F.; Cirtain, J. W.; Deforest, C. E.; Angryk, R. A.; de Moortel, I.; Wiegelmann, T.; Georgoulis, M. K.; McAteer, R. T. J.; Timmons, R. P.

    2012-01-01

    processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO).

  5. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  6. Research at Appalachian State University's Dark Sky Observatory

    NASA Astrophysics Data System (ADS)

    Caton, D. B.

    2003-12-01

    Astronomical research at Appalachian State University centers around the interests of the three observational astronomers on the faculty, and primarily involves observational work at our Dark Sky Observatory (DSO). ASU is a member of the 16-campus University of North Carolina system, and is a comprehensive university with about 13,000 students. Besides the usual constraint found in such a setting (teaching loads of 9-12 hours/semester), we face the challenges of maintaining a significant observatory facility in an era of shrinking state budgets. The DSO facility is 20 miles from campus, adding additional problems. This scenario differs from those of the other panelists, who are at private institutions and/or use shared facilities. The character of students at ASU also adds constraints--many have to hold part-time jobs that limit their participation in the very research that could contribute significantly to their success. Particularly, their need to leave for the summer for gainful employment at the very time that faculty have the most time for research is a loss for all concerned. In spite of these challenges, we have a long record of maintaining research programs in eclipsing binary star photometry, stellar spectroscopy and QSO/AGN monitoring. Undergraduate students are involved in all aspects of the work, from becoming competent at solo observing to publication of the results and presentation of papers and posters at meetings. Graduate students in our Masters in Applied Physics program (emphasis on instrumentation), have constructed instruments and control systems for the observatory. Most of what we have achieved would have been impossible without the support of the National Science Foundation. We have been fortunate to acquire funds under the Division of Undergraduate Education's ILI program and the Research at Undergraduate Institutions program. Among other things, this support provided our main telescope, CCD cameras, and some student stipends.

  7. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph B.

    2007-01-01

    The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."

  8. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    Like the Crab Nebula, the Vela Supernova Remnant has a radio pulsar at its center. In this image taken by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory, the pulsar appears as a point source surrounded by weak and diffused emissions of x-rays. HEAO-2's computer processing system was able to record and display the total number of x-ray photons (a tiny bundle of radiant energy used as the fundamental unit of electromagnetic radiation) on a scale along the margin of the picture. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  9. Optimizing real-time Web-based user interfaces for observatories

    NASA Astrophysics Data System (ADS)

    Gibson, J. Duane; Pickering, Timothy E.; Porter, Dallan; Schaller, Skip

    2008-08-01

    In using common HTML/Ajax approaches for web-based data presentation and telescope control user interfaces at the MMT Observatory (MMTO), we rapidly were confronted with web browser performance issues. Much of the operational data at the MMTO is highly dynamic and is constantly changing during normal operations. Status of telescope subsystems must be displayed with minimal latency to telescope operators and other users. A major motivation of migrating toward web-based applications at the MMTO is to provide easy access to current and past observatory subsystem data for a wide variety of users on their favorite operating system through a familiar interface, their web browser. Performance issues, especially for user interfaces that control telescope subsystems, led to investigations of more efficient use of HTML/Ajax and web server technologies as well as other web-based technologies, such as Java and Flash/Flex. The results presented here focus on techniques for optimizing HTML/Ajax web applications with near real-time data display. This study indicates that direct modification of the contents or "nodeValue" attribute of text nodes is the most efficient method of updating data values displayed on a web page. Other optimization techniques are discussed for web-based applications that display highly dynamic data.

  10. NASA's Great Observatories: Paper Model.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

  11. Everyday astronomy @ Sydney Observatory

    NASA Astrophysics Data System (ADS)

    Parello, S. L.

    2008-06-01

    Catering to a broad range of audiences, including many non-English speaking visitors, Sydney Observatory offers everything from school programmes to public sessions, day care activities to night observing, personal interactions to web-based outreach. With a history of nearly 150 years of watching the heavens, Sydney Observatory is now engaged in sharing the wonder with everybody in traditional and innovative ways. Along with time-honoured tours of the sky through two main telescopes, as well as a small planetarium, Sydney Observatory also boasts a 3D theatre, and offers programmes 363 days a year - rain or shine, day and night. Additionally, our website neversleeps, with a blog, YouTube videos, and night sky watching podcasts. And for good measure, a sprinkling of special events such as the incomparable Festival of the Stars, for which most of northern Sydney turns out their lights. Sydney Observatory is the oldest working observatory in Australia, and we're thrilled to be looking forward to our 150th Anniversary next year in anticipation of the International Year of Astronomy immediately thereafter.

  12. A framework for cross-observatory volcanological database management

    NASA Astrophysics Data System (ADS)

    Aliotta, Marco Antonio; Amore, Mauro; Cannavò, Flavio; Cassisi, Carmelo; D'Agostino, Marcello; Dolce, Mario; Mastrolia, Andrea; Mangiagli, Salvatore; Messina, Giuseppe; Montalto, Placido; Fabio Pisciotta, Antonino; Prestifilippo, Michele; Rossi, Massimo; Scarpato, Giovanni; Torrisi, Orazio

    2017-04-01

    In the last years, it has been clearly shown how the multiparametric approach is the winning strategy to investigate the complex dynamics of the volcanic systems. This involves the use of different sensor networks, each one dedicated to the acquisition of particular data useful for research and monitoring. The increasing interest devoted to the study of volcanological phenomena led the constitution of different research organizations or observatories, also relative to the same volcanoes, which acquire large amounts of data from sensor networks for the multiparametric monitoring. At INGV we developed a framework, hereinafter called TSDSystem (Time Series Database System), which allows to acquire data streams from several geophysical and geochemical permanent sensor networks (also represented by different data sources such as ASCII, ODBC, URL etc.), located on the main volcanic areas of Southern Italy, and relate them within a relational database management system. Furthermore, spatial data related to different dataset are managed using a GIS module for sharing and visualization purpose. The standardization provides the ability to perform operations, such as query and visualization, of many measures synchronizing them using a common space and time scale. In order to share data between INGV observatories, and also with Civil Protection, whose activity is related on the same volcanic districts, we designed a "Master View" system that, starting from the implementation of a number of instances of the TSDSystem framework (one for each observatory), makes possible the joint interrogation of data, both temporal and spatial, on instances located in different observatories, through the use of web services technology (RESTful, SOAP). Similarly, it provides metadata for equipment using standard schemas (such as FDSN StationXML). The "Master View" is also responsible for managing the data policy through a "who owns what" system, which allows you to associate viewing/download of

  13. Invited Review Article: The Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel A.

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  14. Invited review article: The Chandra X-ray Observatory.

    PubMed

    Schwartz, Daniel A

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  15. Establishing Long-term Observations of Gas Hydrate Systems: Results from Ocean Networks Canada's NEPTUNE Observatory

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Riedel, M.; Roemer, M.; Heesemann, M.; Chun, J. H.; Moran, K.; Spence, G.; Thomsen, L.

    2016-12-01

    The key for a scientific understanding of natural environments and the determination of baselines is the long-term monitoring of environmental factors. For seafloor environments including gas hydrate systems, cabled ocean observatories are important platforms for the remote acquisition of a comprehensive suite of datasets. This is particularly critical for those datasets that are difficult to acquire with autonomous, battery-powered systems, such as cameras or high-bandwidth sonar because cable connections provide continuous power and communication from shore to the seafloor. Ocean Networks Canada is operating the NEPTUNE cabled undersea observatory in the Northeast Pacific with two nodes at gas hydrate sites, Barkley Canyon and Clayoquot Slope. With up to seven years of continuous data from these locations we are now beginning to understand the dynamics of the natural systems and are able to classify the variations within the gas hydrate system. For example, the long-term monitoring of gas vent activity has allowed us to classify phases of low, intermittent and high activity that seem to reoccur periodically. Or, by recording the speeds of bacterial mat growth or detecting periods of increased productivity of flora and fauna at hydrates sites we can start to classify benthic activity and relate that to outside environmental parameters. This will eventually allow us to do enhanced environmental monitoring, establish baselines, and potentially detect anthropogenic variations or events for example during gas hydrate production.

  16. Recent Science and Engineering Results with the Laser Guidestar Adaptive Optics System at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, D T; Gates, E; Max, C

    2002-10-17

    The Lick Observatory laser guide star adaptive optics system has undergone continual improvement and testing as it is being integrated as a facility science instrument on the Shane 3 meter telescope. Both Natural Guide Star (NGS) and Laser Guide Star (LGS) modes are now used in science observing programs. We report on system performance results as derived from data taken on both science and engineering nights and also describe the newly developed on-line techniques for seeing and system performance characterization. We also describe the future enhancements to the Lick system that will enable additional science goals such as long-exposure spectroscopy.

  17. Yazoo River Basin (Lower Mississippi River) Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Cheng, A.; Davidson, G.; Altinakar, M.; Holt, R.

    2004-12-01

    The proposed Yazoo River Basin Hydrologic Observatory consists of the 34,000 square km Yazoo River watershed in northwestern Mississippi and a 320 km segment of the Mississippi River separated from the watershed by a manmade levee. Discharge from the basin flows from the Yazoo River into the Mississippi River north of Vicksburg, MS. Major streams within the basin include the Yazoo, Tallahatchie, Yalobusha, Coldwater, Yocona, and Big Sunflower Rivers. Four large flood control reservoirs (Arkabutla, Enid, Sardis, and Grenada) and two national forests (Delta and Holly Springs) are also located within the basin. The watershed is divided between upland forested hills and intensively cultivated lowlands. The lowland area, locally known as the "Delta", lies on the ancestral floodplain of the Mississippi River. Flooding by the Mississippi River was once a common event, but is now limited by the levee system. Abundant wetlands occupy abandoned stream channels throughout the Delta. The Yazoo River Basin has many unique features that make it an attractive site for an Hydrologic Observatory. Example features and issues of scientific interest include: 1) Extensive system of levees which have altered recharge to the regional aquifer, shifted population centers, and created backwater flooding areas. 2) Abundant wetlands with a century-long history of response to agricultural sediment and chemical fluxes. 3) Erosion of upland streams, and stream sediment loads that are the highest in the nation. 4) Groundwater mining in spite of abundant precipitation due to a regional surface clay layer that limits infiltration. 5) A history of agricultural Best Management Practices enabling evaluation of the effectiveness of such measures. 6) Large scale catfish farming with heavy reliance on groundwater. 7) Near enough to the Gulf coast to be impacted by hurricane events. 8) Already existing network of monitoring stations for stream flow, sediment-load, and weather, including complete coverage

  18. NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission

    NASA Technical Reports Server (NTRS)

    Ruffa, John A.; Ward, David K.; Bartusek, LIsa M.; Bay, Michael; Gonzales, Peter J.; Pesnell, William D.

    2012-01-01

    The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO's on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.

  19. NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission

    NASA Technical Reports Server (NTRS)

    Ruffa, John A.; Ward, David K.; Bartusek, Lisa M.; Bay, Michael; Gonzales, Peter J.; Pesnell, William D.

    2012-01-01

    The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO s on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.

  20. Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Young, E.; Marcum, P.; Krabbe, A.

    2010-12-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  1. LAGO: The Latin American giant observatory

    NASA Astrophysics Data System (ADS)

    Sidelnik, Iván; Asorey, Hernán; LAGO Collaboration

    2017-12-01

    The Latin American Giant Observatory (LAGO) is an extended cosmic ray observatory composed of a network of water-Cherenkov detectors (WCD) spanning over different sites located at significantly different altitudes (from sea level up to more than 5000 m a.s.l.) and latitudes across Latin America, covering a wide range of geomagnetic rigidity cut-offs and atmospheric absorption/reaction levels. The LAGO WCD is simple and robust, and incorporates several integrated devices to allow time synchronization, autonomous operation, on board data analysis, as well as remote control and automated data transfer. This detection network is designed to make detailed measurements of the temporal evolution of the radiation flux coming from outer space at ground level. LAGO is mainly oriented to perform basic research in three areas: high energy phenomena, space weather and atmospheric radiation at ground level. It is an observatory designed, built and operated by the LAGO Collaboration, a non-centralized collaborative union of more than 30 institutions from ten countries. In this paper we describe the scientific and academic goals of the LAGO project - illustrating its present status with some recent results - and outline its future perspectives.

  2. A conceptual approach to a citizens' observatory--supporting community-based environmental governance.

    PubMed

    Liu, Hai-Ying; Kobernus, Mike; Broday, David; Bartonova, Alena

    2014-12-12

    In recent years there has been a trend to view the Citizens' Observatory as an increasingly essential tool that provides an approach for better observing, understanding, protecting and enhancing our environment. However, there is no consensus on how to develop such a system, nor is there any agreement on what a Citizens' Observatory is and what results it could produce. The increase in the prevalence of Citizens' Observatories globally has been mirrored by an increase in the number of variables that are monitored, the number of monitoring locations and the types of participating citizens. This calls for a more integrated approach to handle the emerging complexities involved in this field, but before this can be achieved, it is essential to establish a common foundation for Citizens' Observatories and their usage. There are many aspects to a Citizens' Observatory. One view is that its essence is a process that involves environmental monitoring, information gathering, data management and analysis, assessment and reporting systems. Hence, it requires the development of novel monitoring technologies and of advanced data management strategies to capture, analyse and survey the data, thus facilitating their exploitation for policy and society. Practically, there are many challenges in implementing the Citizens' Observatory approach, such as ensuring effective citizens' participation, dealing with data privacy, accounting for ethical and security requirements, and taking into account data standards, quality and reliability. These concerns all need to be addressed in a concerted way to provide a stable, reliable and scalable Citizens' Observatory programme. On the other hand, the Citizens' Observatory approach carries the promise of increasing the public's awareness to risks in their environment, which has a corollary economic value, and enhancing data acquisition at low or no cost. In this paper, we first propose a conceptual framework for a Citizens' Observatory

  3. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Redmond, Jay; Kodak, Charles

    2001-01-01

    This report summarizes the technical parameters and the technical staff of the Very Long Base Interferometry (VLBI) system at the fundamental station Goddard Geophysical and Astronomical Observatory (GGAO). It also gives an overview about the VLBI activities during the previous year. The outlook lists the outstanding tasks to improve the performance of GGAO.

  4. Operational support and service concepts for observatories

    NASA Astrophysics Data System (ADS)

    Emde, Peter; Chapus, Pierre

    2014-08-01

    The operational support and service for observatories aim at the provision, the preservation and the increase of the availability and performance of the entire structural, mechanical, drive and control systems of telescopes and the related infrastructure. The operational support and service levels range from the basic service with inspections, preventive maintenance, remote diagnostics and spare parts supply over the availability service with telephone hotline, online and on-site support, condition monitoring and spare parts logistics to the extended service with operations and site and facility management. For the level of improvements and lifecycle management support they consist of expert assessments and studies, refurbishments and upgrades including the related engineering and project management activities.

  5. Reliability culture at La Silla Paranal Observatory

    NASA Astrophysics Data System (ADS)

    Gonzalez, Sergio

    2010-07-01

    The Maintenance Department at the La Silla - Paranal Observatory has been an important base to keep the operations of the observatory at a good level of reliability and availability. Several strategies have been implemented and improved in order to cover these requirements and keep the system and equipment working properly when it is required. For that reason, one of the latest improvements has been the introduction of the concept of reliability, which implies that we don't simply speak about reliability concepts. It involves much more than that. It involves the use of technologies, data collecting, data analysis, decision making, committees concentrated in analysis of failure modes and how they can be eliminated, aligning the results with the requirements of our internal partners and establishing steps to achieve success. Some of these steps have already been implemented: data collection, use of technologies, analysis of data, development of priority tools, committees dedicated to analyze data and people dedicated to reliability analysis. This has permitted us to optimize our process, analyze where we can improve, avoid functional failures, reduce the failures range in several systems and subsystems; all this has had a positive impact in terms of results for our Observatory. All these tools are part of the reliability culture that allows our system to operate with a high level of reliability and availability.

  6. Operation of the Uinta Basin Seismological Observatory.

    DTIC Science & Technology

    The report describes the operations of the Uinta Basin Seismological Observatory (UBSO) from 1 April 1969 through 30 June 1969. Also discussed is the maintenance of the UBSO digital data acquisition system. (Author)

  7. Investigating Near Space Interaction Regions: Developing a Remote Observatory

    NASA Astrophysics Data System (ADS)

    Gallant, M.; Mierkiewicz, E. J.; Oliversen, R. J.; Jaehnig, K.; Percival, J.; Harlander, J.; Englert, C. R.; Kallio, R.; Roesler, F. L.; Nossal, S. M.; Gardner, D.; Rosborough, S.

    2016-12-01

    The Investigating Near Space Interaction Regions (INSpIRe) effort will (1) establish an adaptable research station capable of contributing to terrestrial and planetary aeronomy; (2) integrate two state-of-the-art second generation Fabry-Perot (FP) and Spatial Heteorodyne Spectrometers (SHS) into a remotely operable configuration; (3) deploy this instrumentation to a clear-air site, establishing a stable, well-calibrated observatory; (4) embark on a series of observations designed to contribute to three major areas of geocoronal research: geocoronal physics, structure/coupling, and variability. This poster describes the development of the INSpIRe remote observatory. Based at Embry-Riddle Aeronautical University (ERAU), initiative INSpIRe provides a platform to encourage the next generation of researchers to apply knowledge gained in the classroom to real-world science and engineering. Students at ERAU contribute to the INSpIRe effort's hardware and software needs. Mechanical/optical systems are in design to bring light to any of four instruments. Control software is in development to allow remote users to control everything from dome and optical system operations to calibration and data collection. In April 2016, we also installed and tested our first science instrument in the INSpIRe trailer, the Redline DASH Demonstration Instrument (REDDI). REDDI uses Doppler Asymmetric Spatial Heterodyne (DASH) spectroscopy, and its deployment as part of INSpIRe is a collaborative research effort between the Naval Research Lab, St Cloud State University, and ERAU. Similar to a stepped Michelson device, REDDI measures oxygen (630.0 nm) winds from the thermosphere. REDDI is currently mounted in a temporary location under INSpIRe's main siderostat until its entrance optical system can be modified. First light tests produced good signal-to-noise fringes in ten minute integrations, indicating that we will soon be able to measure thermospheric winds from our Daytona Beach testing site

  8. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  9. Operation of the Uinta Basin Seismological Observatory.

    DTIC Science & Technology

    The report describes the operations of the Uinta Basin Seismological Observatory (UBSO) from 1 January through 31 March 1969. Also discussed are the maintenance and testing of the UBSO digital data acquisition system. (Author)

  10. Comprehension and retrieval of failure cases in airborne observatories

    NASA Technical Reports Server (NTRS)

    Alvarado, Sergio J.; Mock, Kenrick J.

    1995-01-01

    This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.

  11. Comprehension and retrieval of failure cases in airborne observatories

    NASA Astrophysics Data System (ADS)

    Alvarado, Sergio J.; Mock, Kenrick J.

    1995-05-01

    This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.

  12. An Astrometric Observation of Binary Star System WDS 15559-0210 at the Great Basin Observatory

    NASA Astrophysics Data System (ADS)

    Musegades, Lila; Niebuhr, Cole; Graham, Mackenzie; Poore, Andrew; Freed, Rachel; Kenney, John; Genet, Russell

    2018-04-01

    Researchers at Concordia University Irvine measured the position angle and separation of the double star system WDS 15559-0210 using a SBIG STX-16803 CCD camera on the PlaneWave 0.7-m CDK 700 telescope at the Great Basin Observatory. Images of the binary star system were measured using AstroImageJ software. Twenty observations of WDS 15559-0210 were measured and analyzed. The calculated mean resulted in a position angle of 345.95° and a separation of 5.94". These measurements were consistent with the previous values for this binary system listed in the Washington Double Star Catalog.

  13. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    NASA Astrophysics Data System (ADS)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    The advantages of astronomical observations made above Earth's atmosphere have long been understood: free access to spectral regions inaccessible from Earth (e.g., UV) or affected by the atmosphere's content (e.g., IR). Most robotic, space-based telescopes maintain large angular separation between the Sun and an observational target in order to avoid accidental damage to instruments from the Sun. For most astronomical targets, this possibility is easily avoided by waiting until objects are visible away from the Sun. For the Solar System objects inside Earth's orbit, this is never the case. Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. Commercial suborbital spacecraft are largely expected to go to ~100 km altitude above Earth, providing a limited amount of time for astronomical observations. The unique scientific advantage to these observations is the ability to point close to the Sun: if a suborbital spacecraft accidentally turns too close to the Sun and fries an instrument, it is easy to land the spacecraft and repair the hardware for the next flight. Objects uniquely observed during the short observing window include inner-Earth asteroids, Mercury, Venus, and Sun-grazing comets. Both open-FOV and target-specific observations are possible. Despite many space probes to the inner Solar System, scientific questions remain. These include inner-Earth asteroid size and bulk density informing Solar System evolution studies and efforts to develop methods of mitigation against imminent impactors to Earth; chemistry and dynamics of Venus' atmosphere addressing physical phenomena such as greenhouse effect, atmospheric super-rotation and global resurfacing on Venus. With the Atsa Suborbital Observatory, we combine the strengths of both ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with both in-house facility

  14. Current Status of a NASA High-Altitude Balloon-Based Observatory for Planetary Science

    NASA Technical Reports Server (NTRS)

    Varga, Denise M.; Dischner, Zach

    2015-01-01

    Recent studies have shown that progress can be made on over 20% of the key questions called out in the current Planetary Science Decadal Survey by a high-altitude balloon-borne observatory. Therefore, NASA has been assessing concepts for a gondola-based observatory that would achieve the greatest possible science return in a low-risk and cost-effective manner. This paper addresses results from the 2014 Balloon Observation Platform for Planetary Science (BOPPS) mission, namely successes in the design and performance of the Fine Pointing System. The paper also addresses technical challenges facing the new Gondola for High Altitude Planetary Science (GHAPS) reusable platform, including thermal control for the Optical Telescope Assembly, power generation and management, and weight-saving considerations that the team will be assessing in 2015 and beyond.

  15. The role of geomagnetic observatory data during the Swarm mission

    NASA Astrophysics Data System (ADS)

    Ridley, Victoria; Macmillan, Susan; Beggan, Ciaran

    2014-05-01

    The scientific use of Swarm magnetic data and Swarm-derived products is greatly enhanced through combination with observatory data and indices. The strength of observatory data is their long-term accuracy, with great care being taken to ensure temperature control and correction, platform stability and magnetic cleanliness at each site. Observatory data are being distributed with Swarm data as an auxiliary product. We describe the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. Existing collaborations, such as INTERMAGNET and the World Data Centres for Geomagnetism, are proving invaluable for this. We also discuss how observatory measurements are being used to ground-truth Swarm data as part of the Calibration/Validation effort. Recent efforts to improve the coverage and timeliness of observatory data have been encouraged and now over 60 INTERMAGNET observatories and several other high-quality observatories are providing close-to-definitive data within 3 months of measurement. During the Calibration/Validation period these data are gathered and homogenised on a regular basis by BGS. We then identify measurements collected during overhead passes of the Swarm satellites. For each pass, we remove an estimate of the main field from both the data collected at altitude and that collected on the ground. Both sets of data are then normalised relative to the data variance during all passes in the Calibration/Validation period. The absolute differences of the two sets of normalised data can be used as a metric of satellite data quality relative to observatory data quality. This can be examined by universal time, local time, disturbance level and geomagnetic latitude, for example. A preliminary study of CHAMP data, using definitive minute mean observatory data, has shown how this approach can provide a baseline for detecting abnormalities at all

  16. Launch and Commissioning of the Deep Space Climate Observatory

    NASA Technical Reports Server (NTRS)

    Frey, Nicholas P.; Davis, Edward P.

    2016-01-01

    The Deep Space Climate Observatory (DSCOVR), formerly known as Triana, successfully launched on February 11th, 2015. To date, each of the five space-craft attitude control system (ACS) modes have been operating as expected and meeting all guidance, navigation, and control (GN&C) requirements, although since launch, several anomalies were encountered. While unplanned, these anomalies have proven to be invaluable in developing a deeper understanding of the ACS, and drove the design of three alterations to the ACS task of the flight software (FSW). An overview of the GN&C subsystem hardware, including re-furbishment, and ACS architecture are introduced, followed by a chronological discussion of key events, flight performance, as well as anomalies encountered by the GN&C team.

  17. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-11-13

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  18. Automated Visual Event Detection, Tracking, and Data Management System for Cabled- Observatory Video

    NASA Astrophysics Data System (ADS)

    Edgington, D. R.; Cline, D. E.; Schlining, B.; Raymond, E.

    2008-12-01

    Ocean observatories and underwater video surveys have the potential to unlock important discoveries with new and existing camera systems. Yet the burden of video management and analysis often requires reducing the amount of video recorded through time-lapse video or similar methods. It's unknown how many digitized video data sets exist in the oceanographic community, but we suspect that many remain under analyzed due to lack of good tools or human resources to analyze the video. To help address this problem, the Automated Visual Event Detection (AVED) software and The Video Annotation and Reference System (VARS) have been under development at MBARI. For detecting interesting events in the video, the AVED software has been developed over the last 5 years. AVED is based on a neuromorphic-selective attention algorithm, modeled on the human vision system. Frames are decomposed into specific feature maps that are combined into a unique saliency map. This saliency map is then scanned to determine the most salient locations. The candidate salient locations are then segmented from the scene using algorithms suitable for the low, non-uniform light and marine snow typical of deep underwater video. For managing the AVED descriptions of the video, the VARS system provides an interface and database for describing, viewing, and cataloging the video. VARS was developed by the MBARI for annotating deep-sea video data and is currently being used to describe over 3000 dives by our remotely operated vehicles (ROV), making it well suited to this deepwater observatory application with only a few modifications. To meet the compute and data intensive job of video processing, a distributed heterogeneous network of computers is managed using the Condor workload management system. This system manages data storage, video transcoding, and AVED processing. Looking to the future, we see high-speed networks and Grid technology as an important element in addressing the problem of processing and

  19. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  20. Tri-axial square Helmholtz coil system at the Alibag Magnetic Observatory: upgraded to a magnetic sensor calibration facility

    NASA Astrophysics Data System (ADS)

    Mahavarkar, Prasanna; John, Jacob; Dhapre, Vijay; Dongre, Varun; Labde, Sachin

    2018-04-01

    A tri-axial square Helmholtz coil system for the study of palaeomagnetic studies, manufactured by GEOFYZIKA (former Czechoslovakia), was successfully commissioned at the Alibag Magnetic Observatory (IAGA code: ABG) in the year 1985. This system was used for a few years, after which the system encountered technical problems with the control unit. Rectification of the unit could not be undertaken, as the information document related to this system was not available, and as a result the system had been lying in an unused state for a long time, until 2015, when the system was recommissioned and upgraded to a test facility for calibrating the magnetometer sensors. We have upgraded the system with a constant current source and a data-logging unit. Both of these units have been designed and developed in the institute laboratory. Also, re-measurements of the existing system have been made thoroughly. The upgraded system is semi-automatic, enabling non-specialists to operate it after a brief period of instruction. This facility is now widely used at the parent institute and external institutions to calibrate magnetometers and it also serves as a national facility. Here the design of this system with the calibration results for the space-borne fluxgate magnetometers is presented.

  1. An integrated optical/acoustic communication system for seafloor observatories: A field test of high data rate communications at CORK 857D

    NASA Astrophysics Data System (ADS)

    Tivey, M.; Farr, N.; Ware, J.; Pontbriand, C.

    2010-12-01

    We report the successful deployment and testing of an underwater optical communication system that provides high data rate communications over a range of 100 meters from a deep sea borehole observatory located in the northeast Pacific. Optical underwater communications offers many advantages over acoustic or underwater wet mateable connections (UWMC). UMWCs requires periodic visits from a submersible or ROV to plug in and download data. Typically, these vehicles cannot perform any other tasks during these download periods - their time on station is limited, restricting the amount of data that can be downloaded. To eliminate the need for UWMCs requires the use of remote communication techniques such as acoustics or optical communications. Optical communications is capable of high data rates up to 10 mega bits per sec (Mbps) compared to acoustic data rates of 57 Kbps. We have developed an integrated optical/acoustic telemetry system (OTS) that uses an acoustic command system to control a high bandwidth, low latency optical communication system. In July 2010, we used the deep submersible ALVIN to install the Optical Telemetry System (OTS) at CORK 857D. The CORK is instrumented with a thermistor string and pressure sensors that record downhole formation pressures and temperatures within oceanic basement that is pressure sealed from the overlying water column. The seafloor OTS was plugged into the CORK’s existing UWMC to provide an optical and acoustic communication interface and additional data storage and battery power for the CORK to sample at 1 Hz data-rate, an increase over the normal 15 sec data sample rate. Using a CTD-mounted OTS lowered by wire from a surface ship, we established an optical communication link at 100 meters range at rates of 1, 5 and 10 Mbps with no bit errors. Tests were also done to establish the optical range of various data rates and the optical power of the system. After a week, we repeated the CTD-OTS experiment and downloaded 20 Mbytes

  2. Griffith Observatory: Hollywood's Celestial Theater

    NASA Astrophysics Data System (ADS)

    Margolis, Emily A.; Dr. Stuart W. Leslie

    2018-01-01

    The Griffith Observatory, perched atop the Hollywood Hills, is perhaps the most recognizable observatory in the world. Since opening in 1935, this Los Angeles icon has brought millions of visitors closer to the heavens. Through an analysis of planning documentation, internal newsletters, media coverage, programming and exhibition design, I demonstrate how the Observatory’s Southern California location shaped its form and function. The astronomical community at nearby Mt. Wilson Observatory and Caltech informed the selection of instrumentation and programming, especially for presentations with the Observatory’s Zeiss Planetarium, the second installed in the United States. Meanwhile the Observatory staff called upon some of Hollywood’s best artists, model makers, and scriptwriters to translate the latest astronomical discoveries into spectacular audiovisual experiences, which were enhanced with Space Age technological displays on loan from Southern California’s aerospace companies. The influences of these three communities- professional astronomy, entertainment, and aerospace- persist today and continue to make Griffith Observatory one of the premiere sites of public astronomy in the country.

  3. Design and implementation of a software package to control a network of robotic observatories

    NASA Astrophysics Data System (ADS)

    Tuparev, G.; Nicolova, I.; Zlatanov, B.; Mihova, D.; Popova, I.; Hessman, F. V.

    2006-09-01

    We present a description of a reusable software package able to control a large, heterogeneous network of fully and semi-robotic observatories initially developed to run the MONET network of two 1.2 m telescopes. Special attention is given to the design of a robust, long-term observation scheduler which also allows the trading of observation time and facilities within various networks. The handling of the ``Phase I&II" project-development process, the time-accounting between complex organizational structures, and usability issues for making the package accessible not only to professional astronomers, but also to amateurs and high-school students is discussed. A simple RTML-based solution to link multiple networks is demonstrated.

  4. Improved performance of the laser guide star adaptive optics system at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, J R; Avicola, K; Bauman, B J

    1999-07-20

    Results of experiments with the laser guide star adaptive optics system on the 3-meter Shane telescope at Lick Observatory have demonstrated a factor of 4 performance improvement over previous results. Stellar images recorded at a wavelength of 2 {micro}m were corrected to over 40% of the theoretical diffraction-limited peak intensity. For the previous two years, this sodium-layer laser guide star system has corrected stellar images at this wavelength to {approx}10% of the theoretical peak intensity limit. After a campaign to improve the beam quality of the laser system, and to improve calibration accuracy and stability of the adaptive optics systemmore » using new techniques for phase retrieval and phase-shifting diffraction interferometry, the system performance has been substantially increased. The next step will be to use the Lick system for astronomical science observations, and to demonstrate this level of performance with the new system being installed on the 10-meter Keck II telescope.« less

  5. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  6. Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Khosroshahi, H. G.; Danesh, A.; Molaeinezhad, A.

    2016-09-01

    The Iranian National Observatory is under construction at an altitude of 3600m at Gargash summit 300km southern Tehran. The site selection was concluded in 2007 and the site monitoring activities have begun since then, which indicates a high quality of the site with a median seeing of 0.7 arcsec through the year. One of the major observing facilities of the observatory is a 3.4m Alt-Az Ritchey-Chretien optical telescope which is currently under design. This f/11 telescope will be equipped with high resolution medium-wide field imaging cameras as well as medium and high resolution spectrographs. In this review, I will give an overview of astronomy research and education in Iran. Then I will go through the past and present activities of the Iranian National Observatory project including the site quality, telescope specifications and instrument capabilities.

  7. Development of the Software for 30 inch Telescope Control System at KHAO

    NASA Astrophysics Data System (ADS)

    Mun, B.-S.; Kim, S.-J.; Jang, M.; Min, S.-W.; Seol, K.-H.; Moon, K.-S.

    2006-12-01

    Even though 30inch optical telescope at Kyung Hee Astronomy Observatory has been used to produce a series of scientific achievements since its first light in 1992, numerous difficulties in the operation of the telescope have hindered the precise observations needed for further researches. Since the currently used PC-TCS (Personal Computer based Telescope Control system) software based on ISA-bus type is outdated, it doesn't have a user friendly interface and make it impossible to scale. Also accumulated errors which are generated by discordance from input and output signals into a motion controller required new control system. Thus we have improved the telescope control system by updating software and modifying mechanical parts. We applied a new BLDC (brushless DC) servo motor system to the mechanical parts of the telescope and developed a control software using Visual Basic 6.0. As a result, we could achieve a high accuracy in controlling of the telescope and use the userfriendly GUI (Graphic User Interface).

  8. Design and Implementation of the PALM-3000 Real-Time Control System

    NASA Technical Reports Server (NTRS)

    Truong, Tuan N.; Bouchez, Antonin H.; Burruss, Rick S.; Dekany, Richard G.; Guiwits, Stephen R.; Roberts, Jennifer E.; Shelton, Jean C.; Troy, Mitchell

    2012-01-01

    This paper reflects, from a computational perspective, on the experience gathered in designing and implementing realtime control of the PALM-3000 adaptive optics system currently in operation at the Palomar Observatory. We review the algorithms that serve as functional requirements driving the architecture developed, and describe key design issues and solutions that contributed to the system's low compute-latency. Additionally, we describe an implementation of dense matrix-vector-multiplication for wavefront reconstruction that exceeds 95% of the maximum sustained achievable bandwidth on NVIDIA Geforce 8800GTX GPU.

  9. Requirements management for Gemini Observatory: a small organization with big development projects

    NASA Astrophysics Data System (ADS)

    Close, Madeline; Serio, Andrew; Cordova, Martin; Hardie, Kayla

    2016-08-01

    Gemini Observatory is an astronomical observatory operating two premier 8m-class telescopes, one in each hemisphere. As an operational facility, a majority of Gemini's resources are spent on operations however the observatory undertakes major development projects as well. Current projects include new facility science instruments, an operational paradigm shift to full remote operations, and new operations tools for planning, configuration and change control. Three years ago, Gemini determined that a specialized requirements management tool was needed. Over the next year, the Gemini Systems Engineering Group investigated several tools, selected one for a trial period and configured it for use. Configuration activities including definition of systems engineering processes, development of a requirements framework, and assignment of project roles to tool roles. Test projects were implemented in the tool. At the conclusion of the trial, the group determined that the Gemini could meet its requirements management needs without use of a specialized requirements management tool, and the group identified a number of lessons learned which are described in the last major section of this paper. These lessons learned include how to conduct an organizational needs analysis prior to pursuing a tool; caveats concerning tool criteria and the selection process; the prerequisites and sequence of activities necessary to achieve an optimum configuration of the tool; the need for adequate staff resources and staff training; and a special note regarding organizations in transition and archiving of requirements.

  10. NASA Names Premier X-Ray Observatory and Schedules Launch

    NASA Astrophysics Data System (ADS)

    1998-12-01

    NASA's Advanced X-ray Astrophysics Facility has been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel laureate, Subrahmanyan Chandrasekhar. The telescope is scheduled to be launched no earlier than April 8, 1999 aboard the Space Shuttle Columbia mission STS-93, commanded by astronaut Eileen Collins. Chandrasekhar, known to the world as Chandra, which means "moon" or "luminous" in Sanskrit, was a popular entry in a recent NASA contest to name the spacecraft. The contest drew more than six thousand entries from fifty states and sixty-one countries. The co-winners were a tenth grade student in Laclede, Idaho, and a high school teacher in Camarillo, CA. The Chandra X-ray Observatory Center (CXC), operated by the Smithsonian Astrophysical Observatory, will control science and flight operations of the Chandra X-ray Observatory for NASA from Cambridge, Mass. "Chandra is a highly appropriate name," said Harvey Tananbaum, Director of the CXC. "Throughout his life Chandra worked tirelessly and with great precision to further our understanding of the universe. These same qualities characterize the many individuals who have devoted much of their careers to building this premier X-ray observatory." "Chandra probably thought longer and deeper about our universe than anyone since Einstein," said Martin Rees, Great Britain's Astronomer Royal. "Chandrasekhar made fundamental contributions to the theory of black holes and other phenomena that the Chandra X-ray Observatory will study. His life and work exemplify the excellence that we can hope to achieve with this great observatory," said NASA Administrator Dan Goldin. Widely regarded as one of the foremost astrophysicists of the 20th century, Chandrasekhar won the Nobel Prize in 1983 for his theoretical studies of physical processes important to the structure and evolution of stars. He and his wife immigrated from India to the U.S. in 1935. Chandrasekhar served on the faculty of the University of

  11. Future Astronomical Observatories on the Moon

    NASA Technical Reports Server (NTRS)

    Burns, Jack O. (Editor); Mendell, Wendell W. (Editor)

    1988-01-01

    Papers at a workshop which consider the topic astronomical observations from a lunar base are presented. In part 1, the rationale for performing astronomy on the Moon is established and economic factors are considered. Part 2 includes concepts for individual lunar based telescopes at the shortest X-ray and gamma ray wavelengths, for high energy cosmic rays, and at optical and infrared wavelengths. Lunar radio frequency telescopes are considered in part 3, and engineering considerations for lunar base observatories are discussed in part 4. Throughout, advantages and disadvantages of lunar basing compared to terrestrial and orbital basing of observatories are weighted. The participants concluded that the Moon is very possibly the best location within the inner solar system from which to perform front-line astronomical research.

  12. Lowell Observatory's Discovery Channel Telescope: Telescope and Systems Specifications and Commissioning Status

    NASA Astrophysics Data System (ADS)

    Levine, Stephen; Hall, J. C.

    2012-01-01

    Lowell Observatory's 4.3-meter Discovery Channel Telescope is in the process of being commissioned now. The telescope is located 40 miles southeast of Flagstaff,AZ at an elevation of 7,800 feet. On sky testing of the major subsystems began in early fall 2011, with commissioning work leading up to first light in late spring of 2012. We present a review of the design specifications of the telescope and its major subsystems. This is followed by a discussion of the commissioning time-line, and current status and performance of the telescope, and optics (including the active optics support system for the primary mirror).

  13. NASA Awards Chandra X-Ray Observatory Follow-On Contract

    NASA Astrophysics Data System (ADS)

    2003-08-01

    blocks X-rays from reaching the surface. The Chandra Observatory travels one-third of the way to the moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg- shaped, orbit is 200 times higher than that of its visible- light-gathering sister, the Hubble Space Telescope. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. For information about NASA on the Internet, visit: http://www.nasa.gov For information about the Chandra X-ray Observatory on the Internet, visit: http://chandra.harvard.edu and http://chandra.nasa.gov

  14. Observatory data and the Swarm mission

    NASA Astrophysics Data System (ADS)

    Macmillan, S.; Olsen, N.

    2013-11-01

    The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth's core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those that may use higher cadence 1-second and 1-minute data from observatories.

  15. A robotic observatory in the city

    NASA Astrophysics Data System (ADS)

    Ruch, Gerald T.; Johnston, Martin E.

    2012-05-01

    The University of St. Thomas (UST) Observatory is an educational facility integrated into UST's undergraduate curriculum as well as the curriculum of several local schools. Three characteristics combine to make the observatory unique. First, the telescope is tied directly to the support structure of a four-story parking ramp instead of an isolated pier. Second, the facility can be operated remotely over an Internet connection and is capable of performing observations without a human operator. Third, the facility is located on campus in the heart of a metropolitan area where light pollution is severe. Our tests indicate that, despite the lack of an isolated pier, vibrations from the ramp do not degrade the image quality at the telescope. The remote capability facilitates long and frequent observing sessions and allows others to use the facility without traveling to UST. Even with the high background due to city lights, the sensitivity and photometric accuracy of the system are sufficient to fulfill our pedagogical goals and to perform a variety of scientific investigations. In this paper, we outline our educational mission, provide a detailed description of the observatory, and discuss its performance characteristics.

  16. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  17. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1995-01-14

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  18. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  19. New Capabilities of One-Meter Schmidt Telescope of the Byurakan Astrophysical Observatory after modernization

    NASA Astrophysics Data System (ADS)

    Movsessian, T. A.; Dodonov, S. N.; Gabrielyan, V. V.; Kotov, S. S.; Gevorgyan, M. H.

    2017-12-01

    Within the framework of cooperation between Byurakan Astrophysical Observatory and Special Astrophysical Observatory during 2013-2015 y the 1-m Schmidt telescope of the Byurakan Astrophysical was upgraded. We completely redesigned the control system of the telescope: we replaced the actuating mechanisms, developed telescope control software, and made the guiding system. In the Special Astrophysical Observatory, the 4k×4k Apogee (USA) liquid-cooled CCD was reworked and prepared. Detector was mounted in the focus of the telescope and provides 1-degree field of view with pixel-size of 0.868, and RON 11e-. The detector is equipped with a turret with 5 holes for filters. The 20 intermediate-band filters (FWHM= 250A) uniformly covering the 4000&-9000Å wavelength range, five broadband filters (u, g, r, i, z SDSS), and three narrow-band filters. During the first year of test operation of the 1-m telescope we performed pilot observations within the framework of three programs: search for young stellar objects, AGN evolution, and stellar composition of galaxy disks. We confirmed the possibility of efficiently selecting of young objects using observations performed in narrow-band Hα and [S II] filters and the intermediate-band 7500Å filter. Three-hours long exposures with SDSS g, r, and i band filters allow us to reach the surface brightness level of 28m from square arcsecond when investigating the stellar content of galaxy disks for a sample of nine galaxies. We used observations performed with the 1-m telescope in five broadband (SDSS u, g, r, i, and z) and 15 intermediate-band filters (4000-7500Å) to construct a sample of quasar candidates with 0.5Observatory of the Russian Academy of Sciences confirmed the quasar nature of 28 objects.

  20. Low-frequency Radio Observatory on the Lunar Surface (LROLS)

    NASA Astrophysics Data System (ADS)

    MacDowall, Robert; Network for Exploration and Space Science (NESS)

    2018-06-01

    A radio observatory on the lunar surface will provide the capability to image solar radio bursts and other sources. Radio burst imaging will improve understanding of radio burst mechanisms, particle acceleration, and space weather. Low-frequency observations (less than ~20 MHz) must be made from space, because lower frequencies are blocked by Earth’s ionosphere. Solar radio observations do not mandate an observatory on the farside of the Moon, although such a location would permit study of less intense solar bursts because the Moon occults the terrestrial radio frequency interference. The components of the lunar radio observatory array are: the antenna system consisting of 10 – 100 antennas distributed over a square kilometer or more; the system to transfer the radio signals from the antennas to the central processing unit; electronics to digitize the signals and possibly to calculate correlations; storage for the data until it is down-linked to Earth. Such transmission requires amplification and a high-gain antenna system or possibly laser comm. For observatories on the lunar farside a satellite or other intermediate transfer system is required to direct the signal to Earth. On the ground, the aperture synthesis analysis is completed to display the radio image as a function of time. Other requirements for lunar surface systems include the power supply, utilizing solar arrays with batteries to maintain the system at adequate thermal levels during the lunar night. An alternative would be a radioisotope thermoelectric generator requiring less mass. The individual antennas might be designed with their own solar arrays and electronics to transmit data to the central processing unit, but surviving lunar night would be a challenge. Harnesses for power and data transfer from the central processing unit to the antennas are an alternative, but a harness-based system complicates deployment. The concept of placing the antennas and harnesses on rolls of polyimide and

  1. Scientific Workflows and the Sensor Web for Virtual Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Simonis, I.; Vahed, A.

    2008-12-01

    Virtual observatories mature from their original domain and become common practice for earth observation research and policy building. The term Virtual Observatory originally came from the astronomical research community. Here, virtual observatories provide universal access to the available astronomical data archives of space and ground-based observatories. Further on, as those virtual observatories aim at integrating heterogeneous ressources provided by a number of participating organizations, the virtual observatory acts as a coordinating entity that strives for common data analysis techniques and tools based on common standards. The Sensor Web is on its way to become one of the major virtual observatories outside of the astronomical research community. Like the original observatory that consists of a number of telescopes, each observing a specific part of the wave spectrum and with a collection of astronomical instruments, the Sensor Web provides a multi-eyes perspective on the current, past, as well as future situation of our planet and its surrounding spheres. The current view of the Sensor Web is that of a single worldwide collaborative, coherent, consistent and consolidated sensor data collection, fusion and distribution system. The Sensor Web can perform as an extensive monitoring and sensing system that provides timely, comprehensive, continuous and multi-mode observations. This technology is key to monitoring and understanding our natural environment, including key areas such as climate change, biodiversity, or natural disasters on local, regional, and global scales. The Sensor Web concept has been well established with ongoing global research and deployment of Sensor Web middleware and standards and represents the foundation layer of systems like the Global Earth Observation System of Systems (GEOSS). The Sensor Web consists of a huge variety of physical and virtual sensors as well as observational data, made available on the Internet at standardized

  2. The Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Odell, C. R.

    1979-01-01

    A convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists is presented. An attempt is made to provide enough detail so that a professional scientist, observer or theorist, can plan how the observatory may be used to further his observing programs or to test theoretical models.

  3. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Anna Michalak, an Orbiting Carbon Observatory science team member from the University of Michigan, Ann Arbor, speaks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  4. NanTroSEIZE observatories: Installation of a long-term borehole monitoring systems offshore the Kii Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Saffer, D. M.; Davis, E. E.; Araki, E.; Kinoshita, M.; Lauer, R. M.; Wheat, C. G.; Kitada, K.; Kimura, T.; Toczko, S.; Eguchi, N. O.; Science Parties, E.

    2010-12-01

    The IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a multi-expedition drilling program designed to investigate fault mechanics, fault slip behavior, and strain accumulation along subduction megathrusts, through coring, logging, and long-term monitoring experiments. One key objective is the development and installation of a borehole observatory network extending from locations above the outer, presumably aseismic accretionary wedge to the seismogenic and interseismically locked plate interface, to record seismicity and slip transients, monitor strain accumulation, document hydraulic transients associated with deformation events, and quantify in situ pore fluid pressure and temperature. As part of recent NanTroSEIZE operations, borehole instruments have been developed for deployment at two sites: (1) Site C0010, which penetrates a major out-of-sequence thrust fault termed the “megasplay” at ca. 400 mbsf, and (2) Site C0002 in the Kumano forearc basin at a location that overlies both the updip edge of the inferred interseismically locked portion of the plate interface, and clusters of very low frequency thrust and reverse earthquakes located within the accretionary prism and potentially on the megasplay fault. In 2009, Site C0010 was drilled and cased with screens to access the megasplay fault, and a simple pore pressure and temperature monitoring system (a ”smartplug”) was installed. The simple observatory unit includes pressure and temperature sensors and a data logging package mounted beneath a mechanically set retrievable casing packer, and includes two pressure sensors, one in hydraulic communication with the formation through the casing screens below the packer, and the other to the open borehole above the packer to record hydrostatic reference pressure and ocean loading signals. Temperatures are recorded within the instrument package using a platinum thermometer and by a self-contained miniature temperature logger (MTL). In fall 2010

  5. Cherenkov Telescope Array: the next-generation gamma ray observatory

    NASA Astrophysics Data System (ADS)

    Ebr, Jan

    2017-08-01

    The Cherenkov Telescope Array (CTA) is a project to build the next generation ground-based observatory for gamma-ray astronomy at very-high energies in the range from 20 GeV to 300 TeV, which will both surpass the sensitivity of existing instruments in their energy domains and extend the limits of the observed energy spectrum. It will probe some of the most energetic processes in the Universe and provide insight into topics such as the acceleration of charged cosmic rays and their role in galaxy evolution, processes in relativistic jets, wind and explosions and the nature and distribution of dark matter. The CTA Observatory will consist of more than a hundred imaging atmospheric Cherenkov telescopes (IACT) of three different size classes, installed at two premier astronomical locations, one in each hemisphere. It is foreseen that the telescopes will use a variety of optical designs including parabolic primary mirrors, variations of the Davies-Cotton design and two-mirror setups such as the Schwarzschild-Couder telescope, and several camera designs, using both photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) for detection of the nanosecond-scale Cherenkov flashes. Each telescope will feature a precise but lightweight and agile mount, allowing even the largest telescopes to change targets within 20 seconds, with systems of sensors and actuators actively controlling the shape of the reflecting surfaces. As an integral part, the Observatory will feature extensive calibration facilities, closely monitoring both the detectors themselves and the surrounding atmosphere. Several telescope prototypes already exist and the installation works at the northern site have started.

  6. The design of 1-wire net meteorological observatory for 2.4 m telescope

    NASA Astrophysics Data System (ADS)

    Zhu, Gao-Feng; Wei, Ka-Ning; Fan, Yu-Feng; Xu, Jun; Qin, Wei

    2005-03-01

    The weather is an important factor to affect astronomical observations. The 2.4 m telescope can not work in Robotic Mode without the weather data input. Therefore it is necessary to build a meteorological observatory near the 2.4 m telescope. In this article, the design of the 1-wire net meteorological observatory, which includes hardware and software systems, is introduced. The hardware system is made up of some kinds of sensors and ADC. A suited power station system is also designed. The software system is based on Windows XP operating system and MySQL data management system, and a prototype system of browse/server model is developed by JAVA and JSP. After being tested, the meteorological observatory can register the immediate data of weather, such as raining, snowing, and wind speed. At last, the data will be stored for feature use. The product and the design can work well for the 2.4 m telescope.

  7. The Solar Connections Observatory for Planetary Environments

    NASA Astrophysics Data System (ADS)

    Oliversen, R. J.; Harris, W. M.

    2002-05-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative studies of planetary, cometary, and local interstellar medium (LISM) interaction with the Sun and solar variability. Through such studies, we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the STP, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap, we propose a mission to study the solar interaction with bodies throughout our solar system and the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/UV telescope operating from a heliocentric, Earth-trailing orbit that provides high observing efficiency, sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high resolution (R>105) H Ly-α emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. The other planets and comets will be monitored in long duration campaigns centered, when possible, on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using the combination of SCOPE observations and models including MHD, general circulation, and radiative transfer, we will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.

  8. The Solar Connections Observatory for Planetary Environments

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J.; Harris, Walter M.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets, comets, and local interstellar medium (LISM) interact with the Sun and respond to solar variability. Through such a study we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the terrestrial ITM, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap we propose a mission to study {\\it all) of the solar interacting bodies in our planetary system out to the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/FUV telescope operating from a remote, driftaway orbit that provides sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high (R>10$^{5}$ resolution H Ly-$\\alpha$ emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. From its remote vantage point SCOPE will be able to observe auroral emission to and beyond the rotational pole. The other planets and comets will be monitored in long duration campaigns centered when possible on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the

  9. INTERMAGNET and magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, Arnaud

    2012-01-01

    A magnetic observatory is a specially designed ground-based facility that supports time-series measurement of the Earth’s magnetic field. Observatory data record a superposition of time-dependent signals related to a fantastic diversity of physical processes in the Earth’s core, mantle, lithosphere, ocean, ionosphere, magnetosphere, and, even, the Sun and solar wind.

  10. Astronomical Archive at Tartu Observatory

    NASA Astrophysics Data System (ADS)

    Annuk, K.

    2007-10-01

    Archiving astronomical data is important task not only at large observatories but also at small observatories. Here we describe the astronomical archive at Tartu Observatory. The archive consists of old photographic plate images, photographic spectrograms, CCD direct--images and CCD spectroscopic data. The photographic plate digitizing project was started in 2005. An on-line database (based on MySQL) was created. The database includes CCD data as well photographic data. A PHP-MySQL interface was written for access to all data.

  11. WFIRST Observatory Performance

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The WFIRST observatory will be a powerful and flexible wide-field near-infrared facility. The planned surveys will provide data applicable to an enormous variety of astrophysical science. This presentation will provide a description of the observatory and its performance characteristics. This will include a discussion of the point spread function, signal-to-noise budgets for representative observing scenarios and the corresponding limiting sensitivity. Emphasis will be given to providing prospective Guest Observers with information needed to begin thinking about new observing programs.

  12. Archive interoperability in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Genova, Françoise

    2003-02-01

    Main goals of Virtual Observatory projects are to build interoperability between astronomical on-line services, observatory archives, databases and results published in journals, and to develop tools permitting the best scientific usage from the very large data sets stored in observatory archives and produced by large surveys. The different Virtual Observatory projects collaborate to define common exchange standards, which are the key for a truly International Virtual Observatory: for instance their first common milestone has been a standard allowing exchange of tabular data, called VOTable. The Interoperability Work Area of the European Astrophysical Virtual Observatory project aims at networking European archives, by building a prototype using the CDS VizieR and Aladin tools, and at defining basic rules to help archive providers in interoperability implementation. The prototype is accessible for scientific usage, to get user feedback (and science results!) at an early stage of the project. ISO archive participates very actively to this endeavour, and more generally to information networking. The on-going inclusion of the ISO log in SIMBAD will allow higher level links for users.

  13. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric E.; Casey, Sean C.; Davidson, Jacqueline A.; Savage, Maureen L.

    1998-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter IR airborne telescope in a Boeing 747-SP is now in its second year. The Universities Space Research Association , teamed with Raytheon E-Systems and United Airlines, is developing and will operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies led by MAN. Work on the aircraft and the preliminary mirror has started. First science flights will begin in 2001 with 20 percent of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, US science instrument complement, and operations concept for the SOFIA observatory, with an emphasis on the science community's participation are discussed.

  14. What the Heliophysics System Observatory is teaching us about future constellations

    NASA Astrophysics Data System (ADS)

    Angelopoulos, V.

    2017-12-01

    Owing to the benign space weather during the recent solar cycle numerous Heliophysics missions have outlived their original purpose and have exceeded expectations in terms of science return. The simultaneous availability of several multi-spacecraft fleets also offers conjunction opportunities that compounds their science yield. It allows the Heliophysics System, a vast region of Sun-Earth interactions, to be peered through the colletive eyes of a fortuitous grand Observatory. The success of this Heliophysics/Geospace System Observatory (H/GSO) has been partly due to fuel resources available on THEMIS, allowing it to reconfigure its orbit lines of apsides, apogees and mean anomalies to optimize conjunctions with the rest of the H/GSO. The other part of the success has been a mandatory open data policy, the accessibility of the data though common data formats, unified analysis tools (e.g. SPEDAS) and distributed data repositories. Future constellations are motivated by the recent science lessons learned: Tight connections between dayside and nightside processes, evidenced by fortuitous conjunctions of ground and space-based assets, suggest that regional activations drive classical global modes of circulation. Like regional tornadoes and hurricanes synthesize global atmospheric weather that cannot be studied with 5 weather stations alone, one per continent, so do dayside reconnection, and nightside injections require more than a handful of point measurements. Like atmospheric weather, space weather too requires networks of stations built to meet a minimum set of requirements to "play together" and build on each other over time. Like Argo's >3000 buoys have revolutionized research, modeling and prediction by global circulation models, "space buoys" can study space weather fronts and double-up as monitors and inputs to space weather models, increasing fidelity and advance warning. Reconfigurability can allow versatility as the scientific targets adjust to the knowledge

  15. Sydney Observatory and astronomy teaching in the 90s

    NASA Astrophysics Data System (ADS)

    Lomb, N.

    1996-05-01

    Computers and the Internet have created a revolution in the way astronomy can be communicated to the public. At Sydney Observatory we make full use of these recent developments. In our lecture room a variety of sophisticated computer programs can show, with the help of a projection TV system, the appearance and motion of the sky at any place, date or time. The latest HST images obtained from the Internet can be shown, as can images taken through our own Meade 16 inch telescope. This recently installed computer-controlled telescope with its accurate pointing is an ideal instrument for a light-polluted site such as ours.

  16. A Wide-field Camera and Fully Remote Operations at the Wyoming Infrared Observatory

    NASA Astrophysics Data System (ADS)

    Findlay, Joseph R.; Kobulnicky, Henry A.; Weger, James S.; Bucher, Gerald A.; Perry, Marvin C.; Myers, Adam D.; Pierce, Michael J.; Vogel, Conrad

    2016-11-01

    Upgrades at the 2.3 meter Wyoming Infrared Observatory telescope have provided the capability for fully remote operations by a single operator from the University of Wyoming campus. A line-of-sight 300 Megabit s-1 11 GHz radio link provides high-speed internet for data transfer and remote operations that include several realtime video feeds. Uninterruptable power is ensured by a 10 kVA battery supply for critical systems and a 55 kW autostart diesel generator capable of running the entire observatory for up to a week. The construction of a new four-element prime-focus corrector with fused-silica elements allows imaging over a 40‧ field of view with a new 40962 UV-sensitive prime-focus camera and filter wheel. A new telescope control system facilitates the remote operations model and provides 20″ rms pointing over the usable sky. Taken together, these improvements pave the way for a new generation of sky surveys supporting space-based missions and flexible-cadence observations advancing emerging astrophysical priorities such as planet detection, quasar variability, and long-term time-domain campaigns.

  17. The Successful Deployment of a New Sub-Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Lado Insua, T.; Moran, K.; Kulin, I.; Farrington, S.; Newman, J. B.; Riedel, M.; Iturrino, G. J.; Masterson, W. A.; Furman, C. R.; Klaus, A.; Storms, M.; Attryde, J.; Hetmaniak, C.; Huey, D.

    2013-12-01

    The Simple Cabled Instrument for Measuring Parameters In-Situ (SCIMPI) is a new ocean observatory instrument designed to study dynamic processes in the sub-seafloor. The first SCIMPI prototype comprises nine modules that collect time series measurements of temperature, pressure and electrical resistivity of sediments at pre-selected depths below seafloor. These modules are joined in an array by flexible cables. Floats are attached to the cables of the system to keep the cabling taught against the weight of a sinker bar at the bottom of the string. The system was designed for deployment through drillpipe using D/V JOIDES Resolution. SCIMPI is designed for sediments that will collapse around the observatory after deployment. After five years in development, SCIMPI was successfully deployed within the NEPTUNE Canada observatory in May 2013. The IODP Expedition 341S took place on the Cascadia Margin. The deployment Site U1416 is within an active gas hydrate vent field. Spacing of SCIMPI modules was tailored to measure parameters in the accreted sediment and above and below the Bottom Simulating Reflector (BSR). The location of the modules was dimensioned based on a multivariate analysis of physical properties derived from IODP boreholes located nearby. Members of the SCIMPI team, science party, technical support, crew and participants of the School of Rock assembled the instrument on deck during the days leading up to the deployment. During deployment, SCIMPI was connected to the Multi-Function-Telemetry-Module (from LDEO) and was lowered through drillpipe on the wireline logging cable. SCIMPI communicated data to a shipboard computer until its release, providing assurance that measurements were active on all sensors. The observatory was released with the Electronic Release System (ERS) and the drillpipe was pulled out of the borehole. A camera system was used to check on the installation immediately after deployment. An Ocean Networks Canada expedition revisited the

  18. Early Science Results from SOFIA, the Worlds Largest Airborne Observatory

    NASA Astrophysics Data System (ADS)

    De Buizer, J.

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the largest flying observatory ever built, consisting of a 2.7-meter diameter telescope embedded in a modified Boeing 747-SP aircraft. SOFIA is a joint project between NASA and the German Aerospace Center Deutsches Zentrum fur Luft und-Raumfahrt. By flying at altitudes up to 45000 feet, the observatory gets above 99.9% of the infrared-absorbing water vapor in the Earth's atmosphere. This opens up an almost uninterrupted wavelength range from 0.3-1600 microns that is in large part obscured from ground based observatories. Since its 'Initial Science Flight' in December 2010, SOFIA has flown several dozen science flights, and has observed a wide array of objects from Solar System bodies, to stellar nurseries, to distant galaxies. This talk will review some of the exciting new science results from these first flights which were made by three instruments: the mid-infrared camera FORCAST, the far-infrared heterodyne spectrometer GREAT, and the optical occultation photometer HIPO.

  19. An astronomical observatory for Peru

    NASA Astrophysics Data System (ADS)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  20. NASA's SOFIA airborne observatory lands at Edwards AFB after being flown from Waco, Texas to NASA Dryden for systems installation, integration and flight test

    NASA Image and Video Library

    2007-05-31

    NASA's SOFIA airborne observatory lands at Edwards AFB after being flown from Waco, Texas to NASA Dryden for systems installation, integration and flight test. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  1. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    NASA Astrophysics Data System (ADS)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  2. Global TIE: Developing a Virtual Network of Robotic Observatories for K-12 Education

    NASA Astrophysics Data System (ADS)

    Mayo, L. A.; Clark, G.

    2001-11-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible to schools all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA-sponsored Telescopes In Education (TIE, http://tie.jpl.nasa.gov) project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. Global TIE provides unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns essentially unused observatory facilities into valuable, state-of-the-art teaching centers. This presentation describes the Global TIE Observatory data and organizational systems and details the

  3. The data acquisition system of the Latin American Giant Observatory (LAGO)

    NASA Astrophysics Data System (ADS)

    Sofo Haro, M.; Arnaldi, L. H.; Alvarez, W.; Alvarez, C.; Araujo, C.; Areso, O.; Arnaldi, H.; Asorey, H.; Audelo, M.; Barros, H.; Bertou, X.; Bonnett, M.; Calderon, R.; Calderon, M.; Campos-Fauth, A.; Carramiñana, A.; Carrasco, E.; Carrera, E.; Cazar, D.; Cifuentes, E.; Cogollo, D.; Conde, R.; Cotzomi, J.; Dasso, S.; De Castro, A.; De La Torre, J.; De León, R.; Estupiñan, A.; Galindo, A.; Garcia, L.; Gómez Berisso, M.; González, M.; Guevara, W.; Gulisano, A. M.; Hernández, H.; Jaimes, A.; López, J.; Mantilla, C.; Martín, R.; Martinez-Mendez, A.; Martínez, O.; Martins, E.; Masías-Meza, J. J.; Mayo-García, R.; Melo, T.; Mendoza, J.; Miranda, P.; Montes, E.; Morales, E.; Morales, I.; Moreno, E.; Murrugarra, C.; Nina, C.; Núñez, L. A.; Núñez-Castiñeyra, A.; Otiniano, L.; Peña-Rodríguez, J.; Perenguez, J.; Pérez, H.; Perez, Y.; Perez, G.; Pinilla-Velandia, S.; Ponce, E.; Quishpe, R.; Quispe, F.; Reyes, K.; Rivera, H.; Rodriguez, J.; Rodríguez-Pascual, M.; Romero, M.; Rubio-Montero, A. J.; Salazar, H.; Salinas, J.; Sarmiento-Cano, C.; Sidelnik, I.; Haro, M. Sofo; Suárez-Durán, M.; Subieta, M.; Tello, J.; Ticona, R.; Torres, I.; Torres-Niño, L.; Truyenque, J.; Valencia-Otero, M.; Vargas, S.; Vásquez, N.; Villasenor, L.; Zamalloa, M.; Zavala, L.

    2016-06-01

    LAGO is an extended cosmic ray observatory composed of water-Cherenkov detectors (WCD) placed throughout Latin America. It is dedicated to the study of various issues related to astrophysics, space weather and atmospheric physics at the regional scale. In this paper we present the design and implementation of the front-end electronics and the data acquisition system for readout of the WCDs of LAGO. The system consists of preamplifiers and a digital board sending data to a computer via an USB interface. The analog signals are acquired from three independent channels at a maximum rate of ~1.2×105 pulses per second and a sampling rate of 40 MHz. To avoid false trigger due to baseline fluctuations, we present in this work a baseline correction algorithm that makes it possible to use WCDs to study variations of the environmental radiation. A data logging software has been designed to format the received data. It also enables an easy access to the data for an off-line analysis, together with the operational conditions and environmental information. The system is currently used at different sites of LAGO.

  4. NASA's newly painted Stratospheric Observatory for Infrared Astronomy 747SP is pushed back from L-3 Communications' Integrated Systems hangar in Waco, Texas

    NASA Image and Video Library

    2006-09-25

    NASA's freshly painted Stratospheric Observatory for Infrared Astronomy (SOFIA) 747SP aircraft sits outside a hangar at L-3 Communications Integrated Systems' facility in Waco, Texas. The observatory, which features a German-built 100-inch (2.5 meter) diameter infrared telescope weighing 20 tons, is approaching the flight test phase as part of a joint program by NASA and DLR Deutsches Zentrum fuer Luft- und Raumfahrt (German Aerospace Center). SOFIA's science and mission operations are being planned jointly by Universities Space Research Association (USRA) and the Deutsches SOFIA Institut (DSI). Once operational, SOFIA will be the world's primary infrared observatory during a mission lasting up to 20 years, as well as an outstanding laboratory for developing and testing instrumentation and detector technology.

  5. Summary of the NASA Science Instrument, Observatories and Sensor Systems (SIOSS) Technology Assessment Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology Assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assessed the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. This needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper summarizes the SIOSS findings and recommendations.

  6. Daily variation characteristics at polar geomagnetic observatories

    NASA Astrophysics Data System (ADS)

    Lepidi, S.; Cafarella, L.; Pietrolungo, M.; Di Mauro, D.

    2011-08-01

    This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French-Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D'Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.

  7. Observatories of Sawai Jai Singh II

    NASA Astrophysics Data System (ADS)

    Johnson-Roehr, Susan N.

    Sawai Jai Singh II, Maharaja of Amber and Jaipur, constructed five observatories in the second quarter of the eighteenth century in the north Indian cities of Shahjahanabad (Delhi), Jaipur, Ujjain, Mathura, and Varanasi. Believing the accuracy of his naked-eye observations would improve with larger, more stable instruments, Jai Singh reengineered common brass instruments using stone construction methods. His applied ingenuity led to the invention of several outsize masonry instruments, the majority of which were used to determine the coordinates of celestial objects with reference to the local horizon. During Jai Singh's lifetime, the observatories were used to make observations in order to update existing ephemerides such as the Zīj-i Ulugh Begī. Jai Singh established communications with European astronomers through a number of Jesuits living and working in India. In addition to dispatching ambassadorial parties to Portugal, he invited French and Bavarian Jesuits to visit and make use of the observatories in Shahjahanabad and Jaipur. The observatories were abandoned after Jai Singh's death in 1743 CE. The Mathura observatory was disassembled completely before 1857. The instruments at the remaining observatories were restored extensively during the nineteenth and twentieth centuries.

  8. Optimizing fixed observational assets in a coastal observatory

    NASA Astrophysics Data System (ADS)

    Frolov, Sergey; Baptista, António; Wilkin, Michael

    2008-11-01

    Proliferation of coastal observatories necessitates an objective approach to managing of observational assets. In this article, we used our experience in the coastal observatory for the Columbia River estuary and plume to identify and address common problems in managing of fixed observational assets, such as salinity, temperature, and water level sensors attached to pilings and moorings. Specifically, we addressed the following problems: assessing the quality of an existing array, adding stations to an existing array, removing stations from an existing array, validating an array design, and targeting of an array toward data assimilation or monitoring. Our analysis was based on a combination of methods from oceanographic and statistical literature, mainly on the statistical machinery of the best linear unbiased estimator. The key information required for our analysis was the covariance structure for a field of interest, which was computed from the output of assimilated and non-assimilated models of the Columbia River estuary and plume. The network optimization experiments in the Columbia River estuary and plume proved to be successful, largely withstanding the scrutiny of sensitivity and validation studies, and hence providing valuable insight into optimization and operation of the existing observational network. Our success in the Columbia River estuary and plume suggest that algorithms for optimal placement of sensors are reaching maturity and are likely to play a significant role in the design of emerging ocean observatories, such as the United State's ocean observation initiative (OOI) and integrated ocean observing system (IOOS) observatories, and smaller regional observatories.

  9. The Pierre Auger Cosmic Ray Observatory

    DOE PAGES

    Aab, Alexander

    2015-07-08

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km 2 overlooked by 24 air fluorescence telescopes. Additionally, three high elevation fluorescence telescopes overlook a 23.5 km 2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operationmore » since completion in 2008 and has recorded data from an exposure exceeding 40,000 km 2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.« less

  10. Nikolaev (Mykolayiv) Astronomical Observatory as the Object of the Ukrainian Tentative List WH UNESCO

    NASA Astrophysics Data System (ADS)

    Pinigin, Gennadiy; Pozhalova, Zhanna

    2012-09-01

    Nikolaev Astronomical Observatory (NAO), one of the oldest scientific institutions of the South-Eastern Europe, was founded as a naval observatory in 1821 for providing the needs of the Russian Black Sea Navy. It is a historical and astronomical complex with a reserved territory of total area 7.1 hectares, situated in the central part of Mykolaiv city, Ukraine. The beginning of scientific research at the Observatory is connected with the activity of Karl Knorre, its first director. From 1912 up to 1991, NAO was one of the Southern departments of Pulkovo Observatory with the main purpose to spread the system of absolute catalogs to the Southern hemisphere and to carry out regular observations of the Solar system bodies. Since 1992 NAO has become an independent leading institution of Ukraine in the field of positional astronomy, dynamics of Solar system bodies, research of near-Earth space, astronomical instrumentation. In 2007, it was inscribed in the Tentative UNESCO List of WH (#5116). The most significant part of the complex is the Main building, which was built in the style of Classicism in 1821--1829 (the monument of architecture #535 in the state registry). Also, the astronomical pavilions (1875, 1913, 1955, etc.) and instruments were preserved. Among them three Repsold instruments: meridian circle (1834), portable circle (1868) and vertical circle (1897). The unique astronomical and navigational devices, the collection of astronomical clocks are present in the observatory museum and the paper archive since the foundation of observatory is preserved.

  11. Byurakan Astrophysical Observatory as Cultural Centre

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.

    2017-07-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts. Keywords: Byurakan Astrophysical Observatory, architecture, botanic garden, tourism, Cultural Astronomy.

  12. Standard UBV Observations at the Çanakkale University Observatory (ÇUO)

    NASA Astrophysics Data System (ADS)

    Bakis, Hicran; Bakis, Volkan; Demircan, Osman; Budding, Edwin

    2005-07-01

    By using standard and comparison star observations carried out at different times of the year, at Çanakkale Onsekiz Mart University Observatory, we obtained the atmospheric extinction coefficients at the observatory. We also obtained transformation coefficients and zero-point constants for the transformation to the standard Johnson UBV system, of observations in the local system carried out with the SSP5A photometer and T40 telescope. The transmission curves and the mean wavelengths of the UBV filters as measured in the laboratory appear not much different from those of the standard Johnson system and found inside the transmission curve of the standard mean atmosphere.

  13. ESO's First Observatory Celebrates 40th Anniversary

    NASA Astrophysics Data System (ADS)

    2009-03-01

    ESO's La Silla Observatory, which is celebrating its 40th anniversary, became the largest astronomical observatory of its time. It led Europe to the frontline of astronomical research, and is still one of the most scientifically productive in ground-based astronomy. ESO PR Photo 12a/09 La Silla Aerial View ESO PR Photo 12b/09 The ESO New Technology Telescope ESO PR Photo 12c/09 SEST on La Silla ESO PR Photo 12d/09 Looking for the best site ESO PR Video 12a/09 ESOcast 5 With about 300 refereed publications attributable to the work of the observatory per year, La Silla remains at the forefront of astronomy. It has led to an enormous number of scientific discoveries, including several "firsts". The HARPS spectrograph is the world's foremost exoplanet hunter. It detected the system around Gliese 581, which contains what may be the first known rocky planet in a habitable zone, outside the Solar System (ESO 22/07). Several telescopes at La Silla played a crucial role in discovering that the expansion of the Universe is accelerating (ESO 21/98) and in linking gamma-ray bursts -- the most energetic explosions in the Universe since the Big Bang - with the explosions of massive stars (ESO 15/98). Since 1987, the ESO La Silla Observatory has also played an important role in the study and follow-up of the nearest supernova, SN 1987A (ESO 08/07). "The La Silla Observatory continues to offer the astronomical community exceptional capabilities," says ESO Director General, Tim de Zeeuw. "It was ESO's first presence in Chile and as such, it triggered a very long and fruitful collaboration with this country and its scientific community." The La Silla Observatory is located at the edge of the Chilean Atacama Desert, one of the driest and loneliest areas of the world. Like other observatories in this geographical area, La Silla is located far from sources of polluting light and, as the Paranal Observatory that houses the Very Large Telescope, it has one of the darkest and clearest

  14. The Lowell Observatory Predoctoral Scholar Program

    NASA Astrophysics Data System (ADS)

    Prato, Lisa A.

    2017-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its ninth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. The Observatory's new 4.3 meter Discovery Channel Telescope is now operating at full science capacity. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2017 are due by May 1, 2017; alternate application dates will be considered on an individual basis.

  15. Abilities of Celestial Observations in Astronomical Observatory of Physics Institute in Opole

    NASA Astrophysics Data System (ADS)

    Godłowski, W.; Szpanko, M.

    2010-12-01

    We present possibilities of astronomical investigation in Astronomical Observatory in Opole. Our observatory uses two telescopes: Celestron CGE-1400 XLT (35 cm) and Meade LX200 (30 cm) with spectrograph and CCD Camera. Main topic of our observational investigation is connected with observations of variable stars, minor bodies of the solar system, blazers and the Sun.

  16. Robotic Spectroscopy at the Dark Sky Observatory

    NASA Astrophysics Data System (ADS)

    Rosenberg, Daniel E.; Gray, Richard O.; Mashburn, Jonathan; Swenson, Aaron W.; McGahee, Courtney E.; Briley, Michael M.

    2018-06-01

    Spectroscopic observations using the classification-resolution Gray-Miller spectrograph attached to the Dark Sky Observatory 32 inch telescope (Appalachian State University, North Carolina) have been automated with a robotic script called the “Robotic Spectroscopist” (RS). RS runs autonomously during the night and controls all operations related to spectroscopic observing. At the heart of RS are a number of algorithms that first select and center the target star in the field of an imaging camera and then on the spectrograph slit. RS monitors the observatory weather station, and suspends operations and closes the dome when weather conditions warrant, and can reopen and resume observations when the weather improves. RS selects targets from a list using a queue-observing protocol based on observer-assigned priorities, but also uses target-selection criteria based on weather conditions, especially seeing. At the end of the night RS transfers the data files to the main campus, where they are reduced with an automatic pipeline. Our experience has shown that RS is more efficient and consistent than a human observer, and produces data sets that are ideal for automatic reduction. RS should be adaptable for use at other similar observatories, and so we are making the code freely available to the astronomical community.

  17. An international network of magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  18. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  19. A steering law for a roof-type configuration for a single-gimbal control moment gyro system

    NASA Technical Reports Server (NTRS)

    Yoshikawa, T.

    1974-01-01

    Single-Gimbal Control Moment Gyro (SGCMG) systems have been investigated for attitude control of the Large Space Telescope (LST) and the High Energy Astronomy Observatory (HEAO). However, various proposed steering laws for the SGCMG systems thus far have some defects because of singular states of the system. In this report, a steering law for a roof-type SGCMG system is proposed which is based on a new momentum distribution scheme that makes all the singular states unstable. This momentum distribution scheme is formulated by a treatment of the system as a sampled-data system. From analytical considerations, it is shown that this steering law gives control performance which is satisfactory for practical applications. Results of the preliminary computer simulation entirely support this premise.

  20. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  1. Aerodynamic and Acoustic Flight Test Results for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Cliatt, Larry James; Frederick, Michael A.; Smith, Mark S.

    2013-01-01

    As part of the Stratospheric Observatory for Infrared Astronomy (SOFIA) program, a 747SP airplane was modified to carry a 2.5 meter telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the airplanes operating envelope for astronomical observations, planned to be performed between the altitudes of 39,000 feet and 45,000 feet. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight test results in the areas of cavity acoustics, stability and control, and air data.

  2. The SOFIA Mission Control System Software

    NASA Astrophysics Data System (ADS)

    Heiligman, G. M.; Brock, D. R.; Culp, S. D.; Decker, P. H.; Estrada, J. C.; Graybeal, J. B.; Nichols, D. M.; Paluzzi, P. R.; Sharer, P. J.; Pampell, R. J.; Papke, B. L.; Salovich, R. D.; Schlappe, S. B.; Spriestersbach, K. K.; Webb, G. L.

    1999-05-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) will be delivered with a computerized mission control system (MCS). The MCS communicates with the aircraft's flight management system and coordinates the operations of the telescope assembly, mission-specific subsystems, and the science instruments. The software for the MCS must be reliable and flexible. It must be easily usable by many teams of observers with widely differing needs, and it must support non-intrusive access for education and public outreach. The technology must be appropriate for SOFIA's 20-year lifetime. The MCS software development process is an object-oriented, use case driven approach. The process is iterative: delivery will be phased over four "builds"; each build will be the result of many iterations; and each iteration will include analysis, design, implementation, and test activities. The team is geographically distributed, coordinating its work via Web pages, teleconferences, T.120 remote collaboration, and CVS (for Internet-enabled configuration management). The MCS software architectural design is derived in part from other observatories' experience. Some important features of the MCS are: * distributed computing over several UNIX and VxWorks computers * fast throughput of time-critical data * use of third-party components, such as the Adaptive Communications Environment (ACE) and the Common Object Request Broker Architecture (CORBA) * extensive configurability via stored, editable configuration files * use of several computer languages so developers have "the right tool for the job". C++, Java, scripting languages, Interactive Data Language (from Research Systems, Int'l.), XML, and HTML will all be used in the final deliverables. This paper reports on work in progress, with the final product scheduled for delivery in 2001. This work was performed for Universities Space Research Association for NASA under contract NAS2-97001.

  3. The European Virtual Observatory EURO-VO | Euro-VO

    Science.gov Websites

    : VOTECH EuroVO-DCA EuroVO-AIDA EuroVO-ICE The European Virtual Observatory EURO-VO The Virtual Observatory news Workshop on Virtual Observatory Tools and their Applications, Krakow, Poland June 16-18, organized present the Astronomical Virtual Observatory at the Copernicus (European Earth Observation Programme) Big

  4. Mechanical Overview of the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; McClelland, Ryan S.

    2009-01-01

    The International X-ray Observatory (IXO) is a new collaboration between NASA, ESA, and JAXA which is under study for launch in 2020. IXO will be a large 6600 kilogram Great Observatory-class mission which will build upon the legacies of the Chandra and XMM-Newton X-ray observatories. It combines elements from NASA's Constellation-X program and ESA's XEUS program. The observatory will have a 20-25 meter focal length, which necessitates the use of a deployable instrument module. Currently the project is actively trading configurations and layouts of the various instruments and spacecraft components. This paper will provide a snapshot of the latest observatory configuration under consideration and summarize the observatory from the mechanical engineering perspective.

  5. Current Technology Development Efforts on the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Robinson, David

    2011-01-01

    The International X-ray Observatory (IXO) is a collaboration between NASA, ESA, and JAXA which is under study for launch in 2021. IXO will be a large 6600 kilogram Great Observatory-class mission which will build upon the legacies of the Chandra and XMM-Newton X-ray observatories. There is an extensive ongoing effort to raise the technology readiness level of the X-ray mirror from TRL 3 to TRL 6 in the next decade. Improvements have recently been made in the area of positioning and bonding mirrors on the nanometer scale and developing metals and composites with a matching coefficient of thermal expansion to the glass X-ray mirrors. On the mission systems side, the NASA reference design has been through a preliminary coupled loads analysis and a STOP analysis of the flight mirror assembly has been initiated. An impact study was performed comparing launching IXO on an Ariane 5 or a U.S. EELV. This paper will provide a snapshot of NASA's current observatory configuration and summarize the progress of these various technology and design efforts.

  6. Re-development of the Mount Evans Womble Observatory

    NASA Astrophysics Data System (ADS)

    Stencel, Robert E.

    2017-01-01

    Mount Evans in the Colorado Front Range hosts one of the highest altitude observatories in the USA, at an elevation of 14,148 ft (4,312 m). The observatory is operated under a Forest Service use permit, recently renewed for another 30 years. At times, observing conditions (seeing, water vapor column, etc.) can be as good as anywhere. The existing twin 0.72 m f/21 R-C telescopes are solar powered and internet connected. However, jet stream winds in 2012 destroyed the 15 year old, 22.5 ft diameter Ash dome. The replacement, custom dome design/install was rushed, and suffers from a number of flaws. Given that, plus the aging telescope and operating system, we are planning, and seeking partners and investor funds, to re-develop the facility. Facets of this may include replacing the twin apertures with a single full-aperture telescope for remote operations and sky monitoring, replacing the flawed dome with an innovative dome design, renewable power upgrades, and outreach programs for the many thousands of mountain visitors seasonally. As elsewhere, we are grappling with increases in atmospheric water vapor and out-of-control regional light pollution growth, but believe that the site continues to hold great potential. Interested parties are invited to contact the first author for further information. Website: http://www.du.edu/~rstencel/MtEvans .

  7. 110th Anniversary of the Engelhardt Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.

    2012-09-01

    The Engelhardt Astronomical Observatory (EAO) was founded in September 21, 1901. The history of creation of the Engelhard Astronomical Observatory was begun in 1897 with transfer a complimentary to the Kazan University of the unique astronomical equipment of the private observatory in Dresden by known astronomer Vasily Pavlovichem Engelgardt. Having stopped astronomical activity owing to advanced years and illnesses Engelgardt has decided to offer all tools and library of the Astronomical observatory of the Kazan University. Vasily Pavlovich has put the first condition of the donation that his tools have been established as soon as possible and on them supervision are started. In 1898 the decree of Emperor had been allocated means and the ground for construction of the Astronomical observatory is allocated. There is the main historical telescope of the Engelhard Astronomical Observatory the 12-inch refractor which was constructed by English master Grubbom in 1875. The unique tool of the Engelhard Astronomical Observatory is unique in the world now a working telescope heliometer. It's one of the first heliometers, left workshops Repsolda. It has been made in 1874 and established in Engelgardt observatory in 1908 in especially for him the constructed round pavilion in diameter of 3.6 m. Today the Engelhard Astronomical Observatory is the only thing scientifically - educational and cultural - the cognitive astronomical center, located on territory from Moscow up to the most east border of Russia. Currently, the observatory is preparing to enter the protected UNESCO World Heritage List.

  8. Ten Years of Observatory Science from Saanich Inlet on the VENUS Cabled Ocean Observatory

    NASA Astrophysics Data System (ADS)

    Dewey, R. K.; Tunnicliffe, V.; Macoun, P.; Round, A.

    2016-02-01

    The Saanich Inlet array of the VENUS cabled ocean observatory, maintained and operated by Ocean Networks Canada, was installed in February 2006, and in 2016 will have supported ten years of comprehensive interactive science. Representing the first in the present generation of cabled observing technologies, this coastal array has provided continuous high power and broadband communications to a variety of instrument platforms, hundreds of sensors, and enabled dozens of short, medium, and long-term studies. Saanich Inlet is a protected fjord with limited tidal action, resulting in an extremely productive environment, with strong seasonal chemical variations driven by episodic deep water renewal events and oxygen reduction processes. The breadth of the research has included microbial and benthic community dynamics, biogeochemical cycles, forensics, quantifying inter-annual variations, benthic-pelagic coupling, sensor testing, plankton dynamics, and bio-turbulence. Observatory measurements include core water properties (CTD & O2) and water-column echo-sounder records, as well as experiment-oriented deployments utilizing cameras, Gliders, Dopplers, hydrophones, and a variety of biogeochemical sensors. With a recently installed Buoy Profiler System for monitoring the entire water column, community plans continue with a dedicated Redox experiment through the 2016-17 seasons. Highlights from the dozens of research papers and theses will be presented to demonstrate the achievements enabled by a comprehensive coastal cabled observing system.

  9. Unesco's Global Ethics Observatory

    PubMed Central

    Have, H ten; Ang, T W

    2007-01-01

    The Global Ethics Observatory, launched by the United Nations Educational, Scientific, and Cultural Organization in December 2005, is a system of databases in the ethics of science and technology. It presents data on experts in ethics, on institutions (university departments and centres, commissions, councils and review boards, and societies and associations) and on teaching programmes in ethics. It has a global coverage and will be available in six major languages. Its aim is to facilitate the establishment of ethical infrastructures and international cooperation all around the world. PMID:17209103

  10. Kitt Peak National Observatory | ast.noao.edu

    Science.gov Websites

    National Observatory (KPNO), part of the National Optical Astronomy Observatory (NOAO), supports the most diverse collection of astronomical observatories on Earth for nighttime optical and infrared astronomy and NOAO is the national center for ground-based nighttime astronomy in the United States and is operated

  11. The Virtual Observatory: Retrospective and Prospectus

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2010-12-01

    At the ADASS XV in San Lorenzo de El Escorial, Spain, in October 2005, I gave an overview of the accomplishments of the Virtual Observatory initiatives and discussed the imminent transition from development to operations. That transition remains on the horizon for the US Virtual Observatory, and VO projects worldwide have encountered various programmatic challenges. The successes of the Virtual Observatory are many, but thus far are primarily of a technical nature. We have developed a data discovery and data access infrastructure that has been taken up by data centers and observatories around the world. We have web-based interfaces, downloadable toolkits and applications, a security and restricted access capability, standard vocabularies, a sophisticated messaging and alert system for transient events, and the ability for applications to exchange messages and work together seamlessly. This has been accomplished through a strong collaboration between astronomers and information technology specialists. We have been less successful engaging the astronomical researcher. Relatively few papers have been published based on VO-enabled research, and many astronomers remain unfamiliar with the capabilities of the VO despite active training and tutorial programs hosted by several of the major VO projects. As we (finally!) enter the operational phase of the VO, we need to focus on areas that have contributed to the limited take-up of the VO amongst active scientists, such as ease of use, reliability, and consistency. We need to routinely test VO services for aliveness and adherence to standards, working with data providers to fix errors and otherwise removing non-compliant services from those seen by end-users. Technical developments will need to be motivated and prioritized based on scientific utility. We need to continue to embrace new technology and employ it in a context that focuses on research productivity.

  12. Worldwide R&D of Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cui, C. Z.; Zhao, Y. H.

    2008-07-01

    Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in the late 1990s to meet the challenges brought up with data avalanche in astronomy. In the paper, current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects are reviewed, a brief introduction of Chinese Virtual Observatory is given.

  13. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-07-01

    A crew member of the STS-93 mission took this photograph of the Chandra X-Ray Observatory, still attached to the Inertial Upper Stage (IUS), backdropped against the darkness of space not long after its release from Orbiter Columbia. Two firings of an attached IUS rocket placed the Observatory into its working orbit. The primary duty of the crew of this mission was to deploy the 50,162-pound Observatory, the world's most powerful x-ray telescope.

  14. Reengineering observatory operations for the time domain

    NASA Astrophysics Data System (ADS)

    Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.

    2014-07-01

    Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.

  15. Orbiting astronomical observatory-Copernicus. [scientific results

    NASA Technical Reports Server (NTRS)

    York, D. G.

    1973-01-01

    Of the three observatories planned in NASA's OAO program, one, OAO-3, is still in orbit and producing scientifically useful data. The prime experiment is the Princeton telescope spectrometer. Following a brief history of the OAO program, a description is given of the Princeton telescope with its 80-cm primary mirror, and of the spectrometer, which yields a resolution of up to 0.05 A. The spacecraft guidance system is also described. This system initially points the observatory to within a few arc minutes of the target, places the 0.3-arc sec slit on the star in less than 3 minutes, and holds on the star for up to 50 minutes with errors less than 0.05 arc sec. The main scientific results are described under the following categories: (1) the widespread presence of molecular hydrogen; (2) the search for other molecules, including detection of CO; (3) the nature of the interstellar medium as inferred from the detection of various atomic lines; (4) the study of chromospheres in late type stars; and (5) the study of mass loss in binaries and single stars.

  16. A Regional Groundwater Observatory to Enhance Analysis and Management of Water Resources

    NASA Astrophysics Data System (ADS)

    Yoder, A. M.; Maples, S.; Hatch, N. R.; Fogg, G. E.

    2017-12-01

    Timely, effective management of groundwater often does not happen because timely information on the state of the groundwater system is seldom available. A groundwater observatory for monitoring real-time groundwater level fluctuations is being developed in the American-Cosumnes groundwater system of Sacramento County, California. The observatory records the consequences of complex interplay between pumpage, recharge, drought, and floods in the context of a heterogeneous stratigraphic framework that has been extensively characterized with more than 1,100 well logs. Preliminary results show increases in recharge caused by removal of flood control levees to allow more frequent floodplain inundation as well as consequences of the 2012-16 drought followed by the wet winter of 2016-17. Comparison of recharge rates pre- and post-levee breach restoration show significant increases in recharge, despite the presence of fine-grained floodplain soils. Estimated total recharge corresponded closely with the frequency and magnitude of flood events in any given water year. The lowest value calculated for estimated recharge was from 2012-2013, 490 +/- 220 ac-ft (0.65 +/- 0.29 ac-ft per acre). The highest estimated recharge value calculated was for the 2015-2016 water year and was 3180 +/- 1430 ac-ft (2.83 +/- 1.27 ac-ft per acre). These preliminary numbers will be updated with more comprehensive estimates based on a full analysis of the 2016-17 data. The increase in data transfer efficiency afforded by the observatory can be widely used by the many parties reliant on Central Valley groundwater and can serve as a model for real-time data collection in support of California's Sustainable Groundwater Management Act, passed in 2014.

  17. Early German plans for southern observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    2002-07-01

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century, Heidelberg and Potsdam astronomers proposed a southern observatory. Then Göttingen astronomers suggested building an observatory in Windhoek for photographing the sky and measuring the solar constant. In 1910 Karl Schwarzschild (1873-1916), after a visit to observatories in the United States, pointed out the usefulness of an observatory in South West Africa, in a climate superior to that in Germany, giving German astronomers access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhoek to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963.

  18. A National Solar Digital Observatory

    NASA Astrophysics Data System (ADS)

    Hill, F.

    2000-05-01

    The continuing development of the Internet as a research tool, combined with an improving funding climate, has sparked new interest in the development of Internet-linked astronomical data bases and analysis tools. Here I outline a concept for a National Solar Digital Observatory (NSDO), a set of data archives and analysis tools distributed in physical location at sites which already host such systems. A central web site would be implemented from which a user could search all of the component archives, select and download data, and perform analyses. Example components include NSO's Digital Library containing its synoptic and GONG data, and the forthcoming SOLIS archive. Several other archives, in various stages of development, also exist. Potential analysis tools include content-based searches, visualized programming tools, and graphics routines. The existence of an NSDO would greatly facilitate solar physics research, as a user would no longer need to have detailed knowledge of all solar archive sites. It would also improve public outreach efforts. The National Solar Observatory is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation.

  19. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2003-12-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Our program is also accredited by Colorado State University.

  20. Detection of early landscape evolution through controlled experimentation, data analysis, and numerical modeling at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Troch, Peter A.; Pangle, Luke; Niu, Guo-Yue; Dontsova, Katerina; Barron-Gafford, Greg; van Haren, Joost; Pavao-Zuckerman, Mitch

    2014-05-01

    The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Embedded solution and gas samplers allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers to study water movement at very high spatial resolutions. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. The rain systems are capable of creating long-term steady state conditions or running complex simulations. The precipitation water supply storage system is flexibly designed to facilitate addition of tracers at constant or time-varying rates for any of the three hillslopes. This presentation will discuss detection of early landscape evolution in terms of hydrological, geochemical and microbial processes through controlled experimentation, data analysis, and numerical modeling during the commissioning phase of the first hillslope at LEO.

  1. Upgrade of the HET segment control system, utilizing state-of-the-art, decentralized and embedded system controllers

    NASA Astrophysics Data System (ADS)

    Häuser, Marco; Richter, Josef; Kriel, Herman; Turbyfill, Amanda; Buetow, Brent; Ward, Michael

    2016-07-01

    Together with the ongoing major instrument upgrade of the Hobby-Eberly Telescope (HET) we present the planned upgrade of the HET Segment Control System (SCS) to SCS2. Because HET's primary mirror is segmented into 91 individual 1-meter hexagonal mirrors, the SCS is essential to maintain the mirror alignment throughout an entire night of observations. SCS2 will complete tip, tilt and piston corrections of each mirror segment at a significantly higher rate than the original SCS. The new motion control hardware will further increase the system's reliability. The initial optical measurements of this array are performed by the Mirror Alignment Recovery System (MARS) and the HET Extra Focal Instrument (HEFI). Once the segments are optically aligned, the inductive edge sensors give sub-micron precise feedback of each segment's positions relative to its adjacent segments. These sensors are part of the Segment Alignment Maintenance System (SAMS) and are responsible for providing information about positional changes due to external influences, such as steep temperature changes and mechanical stress, and for making compensatory calculations while tracking the telescope on sky. SCS2 will use the optical alignment systems and SAMS inputs to command corrections of every segment in a closed loop. The correction period will be roughly 30 seconds, mostly due to the measurement and averaging process of the SAMS algorithm. The segment actuators will be controlled by the custom developed HET Segment MOtion COntroller (SMOCO). It is a direct descendant of University Observatory Munich's embedded, CAN-based system and instrument control tool-kit. To preserve the existing HET hardware layout, each SMOCO will control two adjacent mirror segments. Unlike the original SCS motor controllers, SMOCO is able to drive all six axes of its two segments at the same time. SCS2 will continue to allow for sub-arcsecond precision in tip and tilt as well as sub-micro meter precision in piston. These

  2. Multiple-etalon systems for the Advanced Technology Solar Telescope

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael

    2003-01-01

    Multiple etalon systems are discussed that meet the science requirements for a narrow-passband imaging system for the 4-meter National Solar Observatory (NSO)/Advance Technology Solar Telescope (ATST). A multiple etalon system can provide an imaging interferometer that works in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. Specific dual and triple etalon configurations are described that provide a spectrographic passband of 2.0-3.5 micron and reduce parasitic light levels to 10(exp -4) as required for precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like (Telecentric Etalon SOlar Spectrometer) triple etalon system provides a spectral purity of 10(exp -5). The triple designs have the advantage of reducing the finesse requirement on each etalon; allow the use of more stable blocking filters, and have very high spectral purity. A dual-etalon double-pass (Cavallini-like) system can provide a competing configuration. Such a dual-etalon design can provide high contrast. The selection of the final focal plane instrument will depend on a trade-off between an ideal instrument and practical reality. The trade study will include the number of etalons, their aperture sizes, complexities of the optical train, number of blocking filters, configuration of the electronic control system, computer interfaces, temperature controllers, etalon controllers, and their associated feedback electronics. The heritage of single and multiple etalon systems comes from their use in several observatories, including the Marshall Space Flight Center (MSFC) Solar Observatory, Sacramento Peak Observatory (NSO), and Kiepenheuer-Institut fur Sonnenphysik (KIS, Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will benefit from the experience gained at these

  3. The Orbiting Carbon Observatory: NASA's first dedicated carbon dioxide mission

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    2008-10-01

    The Orbiting Carbon Observatory is scheduled for launch from Vandenberg Air Force Base in California in January 2009. This Earth System Science Pathfinder (ESSP) mission carries and points a single instrument that incorporates 3 high-resolution grating spectrometers designed to measure the absorption of reflected sunlight by near-infrared carbon dioxide (CO2) and molecular oxygen bands. These spectra will be analyzed to retrieve estimates of the column-averaged CO2 dry air mole fraction, XCO2. Pre-flight qualification and calibration tests completed in early 2008 indicate that the instrument will provide high quality XCO2 data. The instrument was integrated into the spacecraft, and the completed Observatory was qualified and tested during the spring and summer of 2008, in preparation for delivery to the launch site in the fall of this year. The Observatory will initially be launched into a 635 km altitude, near-polar orbit. The on-board propulsion system will then raise the orbit to 705 km and insert OCO into the Earth Observing System Afternoon Constellation (A-Train). The first routine science observations are expected about 45 days after launch. Calibrated spectral radiances will be archived starting about 6 months later. An exploratory XCO2 product will be validated and then archived starting about 3 months after that.

  4. The BOOTES-5 telescope at San Pedro Martir National Astronomical Observatory, Mexico

    NASA Astrophysics Data System (ADS)

    Hiriart, D.; Valdez, J.; Martínez, B.; García, B.; Cordova, A.; Colorado, E.; Guisa, G.; Ochoa, J. L.; Nuñez, J. M.; Ceseña, U.; Cunniffe, R.; Murphy, D.; Lee, W.; Park, Il H.; Castro-Tirado, A. J.

    2016-12-01

    BOOTES-5 is the fifth robotic observatory of the international network of robotic telescopes BOOTES (Burst Observer and Optical Transient Exploring Optical System). It is located at the National Astronomical Observatory at Sierra San Pedro Martir, Baja California, Mexico. It was dedicated on November 26, 2015 and it is in the process of testing. Its main scientific objective is the observation and monitoring of the optic counterparts of gamma-ray bursts as quickly as possible once they have been detected from space or other ground-based observatories. BOOTES-5 fue nombrado Telescopio Javier Gorosabel en memoria del astrónomo español Javier Gorosabel Urkia.

  5. Stratospheric Observatory for Infrared Astronomy (SOPHIA) Mirror Coating Facility

    NASA Astrophysics Data System (ADS)

    Austin, Ed

    The joint US and German project, Stratospheric Observatory for Infrared Astronomy (SOFIA), to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP began late last year. Universities Space Research Association (USRA), teamed with Raytheon E-Systems and United Airlines, was selected by NASA to develop and operate SOPHIA. The 2.5 meter telescope will be designed and built by a consortium of German companies. The observatory is expected to operate for over 29 years with the first science flights beginning in 2001. The SOPHIA Observatory will fly at and above 12.5 km, where the telescope will collect radiation in the wavelength range from 0.3 micrometers to a 1.6 millimeters. Universities Space Research Association (USRA) with support from NASA is currently evaluating methods of recoating the primary mirror in preparation for procurement of mirror coating equipment. The decision analysis technique, decision criteria and telescope specifications will be discussed.

  6. SOFIA - Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  7. Framework for Informed Policy Making Using Data from National Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Wee, B.; Taylor, J. R.; Poinsatte, J.

    2012-12-01

    Large-scale environmental changes pose challenges that straddle environmental, economic, and social boundaries. As we design and implement climate adaptation strategies at the Federal, state, local, and tribal levels, accessible and usable data are essential for implementing actions that are informed by the best available information. Data-intensive science has been heralded as an enabler for scientific breakthroughs powered by advanced computing capabilities and interoperable data systems. Those same capabilities can be applied to data and information systems that facilitate the transformation of data into highly processed products. At the interface of scientifically informed public policy and data intensive science lies the potential for producers of credible, integrated, multi-scalar environmental data like the National Ecological Observatory Network (NEON) and its partners to capitalize on data and informatics interoperability initiatives that enable the integration of environmental data from across credible data sources. NSF's large-scale environmental observatories such as NEON and the Ocean Observatories Initiative (OOI) are designed to provide high-quality, long-term environmental data for research. These data are also meant to be repurposed for operational needs that like risk management, vulnerability assessments, resource management, and others. The proposed USDA Agriculture Research Service (ARS) Long Term Agro-ecosystem Research (LTAR) network is another example of such an environmental observatory that will produce credible data for environmental / agricultural forecasting and informing policy. To facilitate data fusion across observatories, there is a growing call for observation systems to more closely coordinate and standardize how variables are measured. Together with observation standards, cyberinfrastructure standards enable the proliferation of an ecosystem of applications that utilize diverse, high-quality, credible data. Interoperability

  8. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-08-01

    This picture is of an Atlas/Centaur launch vehicle, carrying the High Energy Astronomy Observatory (HEAO)-1, on Launch Complex 36 at the Air Force Eastern Test Range prior to launch on August 12, 1977. The Kennedy Space Center managed the launch operations that included a pre-aunch checkout, launch, and flight, up through the observatory separation in orbit.

  9. One-meter Schmidt telescope of the Byurakan Astrophysical Observatory: New capabilities

    NASA Astrophysics Data System (ADS)

    Dodonov, S. N.; Kotov, S. S.; Movsesyan, T. A.; Gevorkyan, M.

    2017-10-01

    In 2013-2015 the Laboratory of spectroscopy and photometry of extragalactic objects (LS-PEO) of the Special Astrophysical Observatory together with Armenian specialists upgraded the 1-m Schmidt telescope of the Byurakan Astrophysical Observatory of the National Academy of Sciences of Armenia. We completely redesigned the control system of the telescope: we replaced the actuating mechanisms, developed telescope control software, and made the guiding system. We reworked and prepared a 4k × 4k Apogee (USA) liquid-cooled CCD with RON 11.1 e -, a pixel size of 0.″868, and field of view of about 1□°, and in October 2015 mounted it in the focus of the telescope. The detector is equipped with a turret bearing 20 intermediate-band filters ( FWHM = 250 Å) uniformly covering the 4000-9000 Å wavelength range, five broadband filters ( u, g, r, i, z SDSS), and three narrow-band filters (5000 Å, 6560 Å and 6760 Å, FWHM = 100 Å). During the first year of test operation of the 1-m telescope we performed pilot observations within the framework of three programs: search for young stellar objects, AGNevolution, and stellar composition of galaxy disks.We confirmed the possibility of efficiently selecting of young objects using observations performed in narrow-band H α and [SII] filters and the intermediate-band 7500 Å filter. Three-hours long exposures with SDSS g-, r-, and i-band filters allow us to reach the surface brightness level of 28m/□″ when investigating the stellar content of galaxy disks for a sample of nine galaxies. We used observations performed with the 1-m telescope in five broadband (SDSS u, g, r, i, and z) and 15 intermediate-band filters (4000-7500 Å) to construct a sample of quasar candidates with 0.5 < z < 5 (330 objects) in about one-sq. degree SA68 field complete down to R AB = 23m. Spectroscopic observations of 29 objects (19.m5 < R < 22m) carried out at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of

  10. Global TIE Observatories: Real Time Observational Astronomy Through a Robotic Telescope Network

    NASA Astrophysics Data System (ADS)

    Clark, G.; Mayo, L. A.

    2001-12-01

    activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. This presentation describes the Global TIE Observatory data and organizational systems and details the technology, partnerships, operational capabilities, science applications, and learning opportunities that this powerful virtual observatory network will provide.

  11. The U.S. NSF Ocean Observatories Initiative: A Modern Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Orcutt, John; Vernon, Frank; Peach, Cheryl; Arrott, Matthew; Graybeal, John; Farcas, Claudiu; Farcas, Emilia; Krueger, Ingolf; Meisinger, Michael; Chave, Alan

    2010-05-01

    The NSF Ocean Observatories Initiative (OOI) began a five-year construction period in October 2009. The Consortium on Ocean Leadership (COL) manages the overall program with Implementing Organizations for Coastal/Global Scale Nodes (CGSN) at Woods Hole, Oregon State and Scripps; the Regional Cabled Network (RCN) at U of Washington and Cyberinfrastructure (CI) at UCSD and more than ten subcontractors. The NSF has made a commitment to support the observatory operations and maintenance for a 30-year period; a minimal period of time to measure physical, chemical and biological data over a length of time possibly sufficient to measure secular changes associated with climate and geodesy. The CI component is a substantial departure from previous approaches to data distribution and management. These innovations include the availability of data in near-real-time with latencies of seconds, open access to all data, analysis of the data stream for detection and modeling, use of the derived knowledge to modify the network with minimal or no human interaction and maintenance of data provenance through time as new versions of the data are created through QA/QC processes. The network architecture is designed to be scalable so that addition of new sensors is straightforward and inexpensive with costs increasing linearly at worst. Rather than building new computer infrastructure (disk farms and computer clusters), we are presently exploiting Amazon's Extensible Computing Cloud (EC2) and Simple Storage System (S3) to reduce long-term commitments to hardware and maintenance in order to minimize operations and maintenance costs. The OOI CI is actively partnering with other organizations (e.g. NOAA's IOOS) to integrate existing data systems using many of the same technologies to improve broad access to existing and planned observing systems, including those that provide critical climate data. Because seasonal and annual variability of most measureable parameters is so large, the

  12. FLARE: The Far Side Lunar Research Expedition. A design of a far side lunar observatory

    NASA Technical Reports Server (NTRS)

    Bishop, David W.; Chakrabarty, Rudhmala P.; Hannula, Dawn M.; Hargus, William A., Jr.; Melendrez, A. Dean; Niemann, Christopher J.; Neuenschwander, Amy L.; Padgett, Brett D.; Patel, Sanjiv R.; Wiesehuegel, Leland J.

    1991-01-01

    This document outlines the design completed by members of Lone Star Aerospace, Inc. (L.S.A.) of a lunar observatory on the far side of the Moon. Such a base would not only establish a long term human presence on the Moon, but would also allow more accurate astronomical data to be obtained. A lunar observatory is more desirable than an Earth based observatory for the following reasons: instrument weight is reduced due to the Moon's weaker gravity; near vacuum conditions exist on the Moon; the Moon has slow rotation to reveal the entire sky; and the lunar surface is stable for long baseline instruments. All the conditions listed above are favorable for astronomical data recording. The technical aspects investigated in the completion of this project included site selection, mission scenario, scientific instruments, communication and power systems, habitation and transportation, cargo spacecraft design, thermal systems, robotic systems, and trajectory analysis. The site selection group focused its efforts on finding a suitable location for the observatory. Hertzsprung, a large equatorial crater on the eastern limb, was chosen as the base site.

  13. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-04-15

    This photograph captures the installation of the Chandra X-Ray Observatory, formerly Advanced X-Ray Astrophysics Facility (AXAF), Advanced Charged-Coupled Device (CCD) Imaging Spectrometer (ACIS) into the Vacuum Chamber at the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The AXAF was renamed Chandra X-Ray Observatory (CXO) in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The ACIS is one of two focal plane instruments. As the name suggests, this instrument is an array of CCDs similar to those used in a camcorder. This instrument will be especially useful because it can make x-ray images and measure the energies of incoming x-rays. It is the instrument of choice for studying the temperature variation across x-ray sources, such as vast clouds of hot-gas intergalactic space. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  14. Automation of the Lowell Observatory 0.8-m Telescope

    NASA Astrophysics Data System (ADS)

    Buie, M. W.

    2001-11-01

    In the past year I have converted the Lowell Observatory 0.8-m telescope from a classically scheduled and operated telescope to an automated facility. The new setup uses an existing CCD camera and the existing telescope control system. The key steps in the conversion were writing a new CCD control and data acquisition module plus writing communication and queue control software. The previous CCD control program was written for DOS and much of the code was reused for this project. The entire control system runs under Linux and consists of four daemons: MOVE, PCCD, CMDR, and PCTL. The MOVE daemon is a process that communciates with the telescope control system via an RS232 port, keeping track of its state and forwarding commands from other processes to the telescope. The PCCD daemon controls the CCD camera and collects data. The CMDR daemon maintains a FIFO queue of commands to be executed during the night. The PCTL daemon receives notification from any other deamon of execution failures and sends an error code to the on-duty observer via a numeric pager. This system runs through the night much as you would traditionally operate a telescope. However, this system permits queuing up all the commands for a night and they execute one after another in sequence. Additional commands are needed to replace the normal human interaction during observing (ie., target acquisition, field registration, focusing). Also, numerous temporal synchronization commands are required so that observations happen at the right time. The system was used for this year's photometric monitoring of Pluto and Triton and is in general use for 2/3 of time on the telescope. Pluto observations were collected on 30 nights out of a potential pool of 90 nights. Detailed system design and capabilites plus sample observations will be presented. Also, a live demonstration will be provided if the weather is good. This work was supported by NASA Grant NAG5-4210 and the NSF REU Program grant to NAU.

  15. Making Kew Observatory: the Royal Society, the British Association and the politics of early Victorian science.

    PubMed

    Macdonald, Lee T

    2015-09-01

    Built in 1769 as a private observatory for King George III, Kew Observatory was taken over in 1842 by the British Association for the Advancement of Science (BAAS). It was then quickly transformed into what some claimed to be a 'physical observatory' of the sort proposed by John Herschel - an observatory that gathered data in a wide range of physical sciences, including geomagnetism and meteorology, rather than just astronomy. Yet this article argues that the institution which emerged in the 1840s was different in many ways from that envisaged by Herschel. It uses a chronological framework to show how, at every stage, the geophysicist and Royal Artillery officer Edward Sabine manipulated the project towards his own agenda: an independent observatory through which he could control the geomagnetic and meteorological research, including the ongoing 'Magnetic Crusade'. The political machinations surrounding Kew Observatory, within the Royal Society and the BAAS, may help to illuminate the complex politics of science in early Victorian Britain, particularly the role of 'scientific servicemen' such as Sabine. Both the diversity of activities at Kew and the complexity of the observatory's origins make its study important in the context of the growing field of the 'observatory sciences'.

  16. Byurakan Astrophysical Observatory as Cultural Centre

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.

    2016-12-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts.

  17. NASA's Stratospheric Observatory for Infrared Astronomy 747SP shows off its new blue-and-white livery at L-3 Communications' Integrated Systems in Waco, Texas

    NASA Image and Video Library

    2006-09-25

    NASA's freshly painted Stratospheric Observatory for Infrared Astronomy (SOFIA) 747SP is shown at L-3 Communications Integrated Systems' facility in Waco, Texas, where major modifications and installation was performed. The observatory, which features a German-built 100-inch (2.5 meter) diameter infrared telescope weighing 20 tons, is approaching the flight test phase as part of a joint program by NASA and DLR Deutsches Zentrum fuer Luft- und Raumfahrt (German Aerospace Center). SOFIA's science and mission operations are being planned jointly by Universities Space Research Association (USRA) and the Deutsches SOFIA Institut (DSI). Once operational, SOFIA will be the world's primary infrared observatory during a mission lasting up to 20 years, as well as an outstanding laboratory for developing and testing instrumentation and detector technology.

  18. The Ocean Observatories Initiative: Data, Data and More Data

    NASA Astrophysics Data System (ADS)

    Crowley, M. F.; Vardaro, M.; Belabbassi, L.; Smith, M. J.; Garzio, L. M.; Knuth, F.; Glenn, S. M.; Schofield, O.; Lichtenwalner, C. S.; Kerfoot, J.

    2016-02-01

    The Ocean Observatories Initiative (OOI), a project funded by the National Science Foundation (NSF) and managed by the Consortium for Ocean Leadership, is a networked infrastructure of science-driven sensor systems that measure the physical, chemical, geological, and biological variables in the ocean and seafloor on coastal, regional, and global scales. OOI long term research arrays have been installed off the Washington coast (Cabled), Massachusetts and Oregon coasts (Coastal) and off Alaska, Greenland, Chile and Argentina (Global). Woods Hole Oceanographic Institution and Oregon State University are responsible for the coastal and global moorings and their autonomous vehicles. The University of Washington is responsible for cabled seafloor systems and moorings. Rutgers University operates the Cyberinfrastructure (CI) portion of the OOI, which acquires, processes and distributes data to the scientists, researchers, educators and the public. It also provides observatory mission command and control, data assessment and distribution, and long-term data management. This talk will present an overview of the OOI infrastructure and its three primary websites which include: 1) An OOI overview website offering technical information on the infrastructure ranging from instruments to science goals, news, deployment updates, and information on the proposal process, 2) The Education and Public Engagement website where students can view and analyze exactly the same data that scientists have access to at exactly the same time, but with simple visualization tools and compartmentalized lessons that lead them through complex science questions, and 3) The primary data access website and machine to machine interface where anyone can plot or download data from the over 700 instruments within the OOI Network.

  19. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix C: EOS program requirements document

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the requirements for the Earth Observatory Satellite (EOS) system specifications is presented. The analysis consists of requirements obtained from existing documentation and those derived from functional analysis. The requirements follow the hierarchy of program, mission, system, and subsystem. The code for designating specific requirements is explained. Among the subjects considered are the following: (1) the traffic model, (2) space shuttle related performance, (3) booster related performance, (4) the data collection system, (5) spacecraft structural tests, and (6) the ground support requirements.

  20. Using the Critical Zone Observatory Network to Put Geology into Environmental Science

    NASA Astrophysics Data System (ADS)

    Brantley, S. L.

    2017-12-01

    The use of observatories to study the environment in the U.S.A. arguably began in 1910. Since then, many environmental observatories were set up to study impacts of land use change. At that time, observatories did not emphasize geological structure. Around 2004, scientists in the U.S.A. began to emphasize the need to study the Earth's surface as one integrated system that includes the geological underpinnings. In 2007, the Geosciences Directorate within the U.S. National Science Foundation established the Critical Zone Observatory (CZO) program. Today the CZO network has grown to 9 observatories, and 45 countries now host such observatories. A CZO is an observatory that promotes the study of the entire layer of Earth's surface from vegetation canopy to groundwater as one entity. The observatories are somewhat similar to other NSF-funded observatories such as Long Term Ecological Research (LTER) sites but they differ in that they emphasize the history of the landscape and how it mediates today's fluxes. LTERs largely focus on ecological science. The concepts of CZ science and CZOs - developed by the Geosciences Directorate - have been extraordinarily impactful: we now have deeper understanding of how surficial processes respond to tectonic, climatic, and anthropogenic drivers. One reason CZOs succeed is that they host scientists who make measurements in one place that cross timescales from that of the meteorologist to the geologist. The NSF Geosciences Directorate has thus promoted insights showing that many of the unexplained mysteries of "catchment science" or "ecosystem science" can be explained by the underlying geological story of a site. The scientific challenges of this endeavor are dwarfed, however, by cultural challenges. Specifically, while both CZOs and observatories such as LTERs struggle to publish many types of data from different disciplines in a continually changing cyber-world, only CZO scientists find they must repeatedly explain why such

  1. A control system of a mini survey facility for photometric monitoring

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hironori; Yanagisawa, Kenshi; Izumiura, Hideyuki; Shimizu, Yasuhiro; Hanaue, Takumi; Ita, Yoshifusa; Ichikawa, Takashi; Komiyama, Takahiro

    2016-08-01

    We have built a control system for a mini survey facility dedicated to photometric monitoring of nearby bright (K<5) stars in the near-infrared region. The facility comprises a 4-m-diameter rotating dome and a small (30-mm aperture) wide-field (5 × 5 sq. deg. field of view) infrared (1.0-2.5 microns) camera on an equatorial fork mount, as well as power sources and other associated equipment. All the components other than the camera are controlled by microcomputerbased I/O boards that were developed in-house and are in many of the open-use instruments in our observatory. We present the specifications and configuration of the facility hardware, as well as the structure of its control software.

  2. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    Information Centre Garching, Germany Tel.: +49-89-3200-6306 or +49-173-38-72-621 email: lars@eso.org Ray Footman The ASTROGRID Consortium/University of Edinburgh United Kingdom Tel.: +44-131-650-2249 email: r.footman@ed.ac.uk Philippe Chauvin Terapix/CDS CNRS, Delegation Paris A, IAP/INSU France Tel.: +33 1 44 96 43 36 email: philippe.chauvin@cnrs-dir.fr Agnes Villanueva University of Strasbourg France Tel.: +33 3 90 24 11 35 email: agnes.villanueva@adm-ulp.u-strasbg.fr Ian Morison University of Manchester/Jodrell Bank Observatory United Kingdom Tel.: +44 1477 572610 email: im@jb.man.ac.uk Appendix: Introduction to Europe's Astrophysical Virtual Observatory (AVO) The Digital Data Revolution Over the past thirty years, astronomers have moved from photographic and analogue techniques towards the use of high-speed, digital instruments connected to specialised telescopes to study the Universe. Whether these instruments are onboard spacecraft or located at terrestrial observatories, the data they produce are stored digitally on computer systems for later analysis. Two Challenges This data revolution has created two challenges for astronomers. Firstly, as the capability of digital detector systems has advanced, the volume of digital data that astronomical facilities are producing has expanded greatly. The rate of growth of the volume of stored data far exceeds the rate of increase in the performance of computer systems or storage devices. Secondly, astronomers have realised that many important insights into the deepest secrets in the Universe can come from combining information obtained at many wavelengths into a consistent and comprehensive physical picture . However, because the datasets from different parts of the spectrum come from different observatories using different instruments, the data are not easily combined. To unite data from different observatories, bridges must be built between digital archives to allow them to share data and "interoperate" - an important and

  3. Designing an End-to-End System for Data Storage, Analysis, and Visualization for an Urban Environmental Observatory

    NASA Astrophysics Data System (ADS)

    McGuire, M. P.; Welty, C.; Gangopadhyay, A.; Karabatis, G.; Chen, Z.

    2006-05-01

    The urban environment is formed by complex interactions between natural and human dominated systems, the study of which requires the collection and analysis of very large datasets that span many disciplines. Recent advances in sensor technology and automated data collection have improved the ability to monitor urban environmental systems and are making the idea of an urban environmental observatory a reality. This in turn has created a number of potential challenges in data management and analysis. We present the design of an end-to-end system to store, analyze, and visualize data from a prototype urban environmental observatory based at the Baltimore Ecosystem Study, a National Science Foundation Long Term Ecological Research site (BES LTER). We first present an object-relational design of an operational database to store high resolution spatial datasets as well as data from sensor networks, archived data from the BES LTER, data from external sources such as USGS NWIS, EPA Storet, and metadata. The second component of the system design includes a spatiotemporal data warehouse consisting of a data staging plan and a multidimensional data model designed for the spatiotemporal analysis of monitoring data. The system design also includes applications for multi-resolution exploratory data analysis, multi-resolution data mining, and spatiotemporal visualization based on the spatiotemporal data warehouse. Also the system design includes interfaces with water quality models such as HSPF, SWMM, and SWAT, and applications for real-time sensor network visualization, data discovery, data download, QA/QC, and backup and recovery, all of which are based on the operational database. The system design includes both internet and workstation-based interfaces. Finally we present the design of a laboratory for spatiotemporal analysis and visualization as well as real-time monitoring of the sensor network.

  4. In-situ Eh sensor measurement and calibration: application to seafloor observatories

    NASA Astrophysics Data System (ADS)

    Ding, K.; Seyfried, W. E.; Tan, C.

    2013-12-01

    Eh measurement is often used with manned submersible and AUV assets as an effective way to detect and locate seafloor hydrothermal activity. Eh can be fundamentally and sensitively linked to dissolved H 2 , which, in turn, serves as a key constraint on subseafloor redox reactions. Moreover, Eh is now being increasingly relied on for event detection and process monitoring efforts intrinsic to cabled seafloor observatories. Due to seawater interaction with electrochemical components fundamental to the operation of the Eh sensor, however, the quality and reliability of the measurements are often compromised by signal drift, especially when the sensor is used for long term deployment. To solve this problem, a calibration protocol was developed and added to our previously constructed pH 'calibrator'. Thus, the integrated electrochemical system now permits the combined in-situ measurement and calibration of pH and Eh of seafloor hydrothermal fluids. Key aspects of the design for this calibration system are: (1) the sensing electrodes can be kept preserved in fluid of known pH, Eh and NaCl concentration prior to use, thereby preventing deterioration of electrode response characteristics by chemical and biological activity; (2) the system consists of valves and pumps for flow control, and therefore can be operated remotely with power from the seafloor cabled observatory, or as a stand-alone device, using battery power for shorter-term deployments. In both cases, standardization with on-board fluids of known redox, pH, and NaCl activity can be activated at any time, providing enhanced reliability (3) the current development is aimed at deep sea environments, cold seeps, and hydrothermal diffuse flow fluids at the temperatures up to 100°C and depths up to 4500 m. The in-situ operation is especially well-suited for use with cabled observatory for real time intervention and event response owing to enabled power supply and two way communications. Field tests have been

  5. Chandra X-Ray Observatory (CXO) on Orbit Animation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is an on-orbit animation of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the remnants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  6. A future large-aperture UVOIR space observatory: reference designs

    NASA Astrophysics Data System (ADS)

    Rioux, Norman; Thronson, Harley; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-09-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  7. A Future Large-Aperture UVOIR Space Observatory: Reference Designs

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Rioux, Norman; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-01-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  8. The Little Thompson Observatory's Astronomy Education Programs

    NASA Astrophysics Data System (ADS)

    Schweitzer, Andrea E.

    2007-12-01

    The Little Thompson Observatory is a community-built E/PO observatory and is a member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. Annually we have approximately 5,000 visitors, which is roughly equal to the population of the small town of Berthoud, CO. This past year, we have used the funding from our NASA ROSS E/PO grant to expand our teacher workshop programs, and included the baseball-sized meteorite that landed in Berthoud three years ago. Our teacher programs have involved scientists from the Southwest Research Institute and from Fiske Planetarium at CU-Boulder. We thank the NASA ROSS E/PO program for providing this funding! We also held a Colorado Project ASTRO-GEO workshop, and the observatory continues to make high-school astronomy courses available to students from the surrounding school districts. Statewide, this year we helped support the development and construction of three new educational observatories in Colorado, located in Estes Park, Keystone, and Gunnison. The LTO is grateful to have received the recently-retired 24-inch telescope from Mount Wilson Observatory as part of the TIE program. To provide a new home for this historic telescope, we have doubled the size of the observatory and are building a second dome (all with volunteer labor). During 2008 we plan to build a custom pier and refurbish the telescope.

  9. NASA and Japanese X-ray observatories Clarify Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Recent observations from NASA and Japanese X-ray observatories have helped clarify one of the long-standing mysteries in astronomy -- the origin of cosmic rays. This image from Japan's Suzaku X-ray observatory shows RXJ1713.7-3946. This supernova remnant is the gaseous remnant of a massive star that exploded. The remnant is about 1,600 years old. The contour lines show where gamma-ray intensity is highest, as measured by the High Energy Stereoscopic System (HESS) in Namibia.

  10. Astronomical virtual observatory and the place and role of Bulgarian one

    NASA Astrophysics Data System (ADS)

    Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen

    2009-07-01

    Virtual observatory could be defined as a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that combine existing databases from ground-based and orbiting observatories, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies has been compiled from observations in a variety of wavelengths-optical, radio, infrared, gamma ray, X-ray and more. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. During the autumn of the 2001 (26.09.2001) six organizations from Europe put the establishment of the Astronomical Virtual Observatory (AVO)-ESO, ESA, Astrogrid, CDS, CNRS, Jodrell Bank (Dolensky et al., 2003). Its aims have been outlined as follows: - To provide comparative analysis of large sets of multiwavelength data; - To reuse data collected by a single source; - To provide uniform access to data; - To make data available to less-advantaged communities; - To be an educational tool. The Virtual observatory includes: - Tools that make it easy to locate and retrieve data from catalogues, archives, and databases worldwide; - Tools for data analysis, simulation, and visualization; - Tools to compare observations with results obtained from models, simulations and theory; - Interoperability: services that can be used regardless of the clients computing platform, operating system and software capabilities; - Access to data in near real-time, archived data and historical data; - Additional information - documentation, user-guides, reports

  11. Twenty Years of Precise Radial Velocities at Keck and Lick Observatories

    NASA Astrophysics Data System (ADS)

    Wright, J. T.

    2015-10-01

    The precise radial velocity survey at Keck Observatory began over 20 years ago. Its survey of thousands of stars now has the time baseline to be sensitive to planets with decade-long orbits, including Jupiter analogs. I present several newly-finished orbital solutions for long-period giant planets. Although hot Jupiters are generally ``lonely'' (i.e. they are not part of multiplanet systems), those that are not appear to often have giant companions at 5 AU or beyond. I present two of the highest period-ratios among planets in a two-planet system, and some of the longest orbital periods ever measured for exoplanets. In many cases, combining Keck radial velocities from those from other long-term surveys at Lick Observatory, McDonald Observatory, HARPS, and, of course, OHP spectrographs, produces superior orbital fits, constraining both period and eccentricity better than could be possible with any single set alone. Stellar magnetic activity cycles can masquerade as long-period planets. In most cases this effect is very small, but a loud minority of stars, including, apparently, HD 154345, show very strong RV-activity correlations.

  12. The Astrophysical Multimessenger Observatory Network (AMON)

    NASA Technical Reports Server (NTRS)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; hide

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  13. Early German Plans for a Southern Observatory

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century the Heidelberg astronomer Max Wolf (1863-1932) proposed a southern observatory. In 1907 Hermann Carl Vogel (1841-1907), director of the Astrophysical Observatory Potsdam, suggested a southern station in Spain. His ideas for building an observatory in Windhuk for photographing the sky and measuring the solar constant were taken over by the Göttingen astronomers. In 1910 Karl Schwarzschild (1873-1916), after having visited the observatories in America, pointed out the usefulness of an observatory in South West Africa, where it would have better weather than in Germany and also give access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhuk to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963, as is well described by Blaauw (1991). Blaauw, Adriaan: ESO's Early History. The European Southern Observatory from Concept to Reality. Garching bei München: ESO 1991.

  14. The Virtual Solar Observatory: Still a Small Box

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Bogart, R. S.; Davey, A. R.; Dimitoglou, G.; Hill, F.; Hourcle, J. A.; Martens, P. C.; Surez-Sola, I.; Tian, K. Q.; Wampler, S.

    2005-01-01

    Two and a half years after a design study began, and a year and a half after development commenced, version 1.0 of the Virtual Solar Observatory (VSO) was released at the 2004 Fall AGU meeting. Although internal elements of the VSO have changed, the basic design has remained the same, reflecting the team's belief in the importance of a simple, robust mechanism for registering data provider holdings, initiating queries at the appropriate provider sites, aggregating the responses, allowing the user to iterate before making a final selection, and enabling the delivery of data directly from the providers. In order to make the VSO transparent, lightweight, and portable, the developers employed XML for the registry, SOAP for communication between a VSO instance and data services, and HTML for the graphic user interface (GUI's). We discuss the internal data model, the API, and user responses to various trial GUI's as typical design issues for any virtual observatory. We also discuss the role of the "small box" of data search, identification, and delivery services provided by the VSO in the larger, Sun-Solar System Connection virtual observatory (VxO) scheme.

  15. The Cline Observatory at Guilford Technical Community College

    NASA Astrophysics Data System (ADS)

    English, T.; Martin, A.; Herrick, D.; Cline, D.

    2003-12-01

    The Cline Observatory at the Jamestown, NC campus of Guilford Technical Community College (GTCC) was dedicated in 1997. It is the only such facility in the community college systems of the Carolinas. GTCC employs two astronomy faculty and offers multiple sections of introductory courses. The facility utilizes a 16-inch Meade LX-200 under a 6-meter dome, along with accessories for digital imaging and basic spectroscopic studies. An outside observing pad with permanent piers allows smaller instruments to be set up for sessions. In addition to supporting introductory and basic observational astronomy classes, the observatory provides regular outreach programs to serve a variety of constituencies. Public viewings are held once a week; school and community groups schedule visits throughout the year; special lectures bring the latest astronomical topics to the public; and annual conferences are hosted for regional amateur astronomers and for faculty/students from NC academic/research institutions. Volunteer support staff for such programs has been developed through partnership with the local astronomy club and through training via the observational astronomy course. Our courses and outreach programs have been very popular and successful, and the observatory now serves as a focal point of GTCC's public image.

  16. Chandra X-Ray Observatory High Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical 'telescope' portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  17. Overview of the Chandra X-Ray Observatory Facility

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Chandra X-Ray Observatory (originally called the Advanced X-Ray Astrophysics Facility - AXAF) is the X-Ray component of NASA's "Great Observatory" Program. Chandra is a NASA facility that provides scientific data to the international astronomical community in response to scientific proposals for its use. The Observatory is the product of the efforts of many organizations in the United States and Europe. The Great Observatories also include the Hubble Space Telescope for space-based observations of astronomical objects primarily in the visible portion of the electromagnetic spectrum, the now defunct Compton Gamma- Ray Observatory that was designed to observe gamma-ray emission from astronomical objects, and the soon-to-be-launched Space Infrared Telescope Facility (SIRTF). The Chandra X-Ray Observatory (hereafter CXO) is sensitive to X-rays in the energy range from below 0.1 to above 10.0 keV corresponding to wavelengths from 12 to 0.12 nanometers. The relationship among the various parts of the electromagnetic spectrum, sorted by characteristic temperature and the corresponding wavelength, is illustrated. The German physicist Wilhelm Roentgen discovered what he thought was a new form of radiation in 1895. He called it X-radiation to summarize its properties. The radiation had the ability to pass through many materials that easily absorb visible light and to free electrons from atoms. We now know that X-rays are nothing more than light (electromagnetic radiation) but at high energies. Light has been given many names: radio waves, microwaves, infrared, visible, ultraviolet, X-ray and gamma radiation are all different forms. Radio waves are composed of low energy particles of light (photons). Optical photons - the only photons perceived by the human eye - are a million times more energetic than the typical radio photon, whereas the energies of X-ray photons range from hundreds to thousands of times higher than that of optical photons. Very low temperature systems

  18. Citizen Observatories: A Standards Based Architecture

    NASA Astrophysics Data System (ADS)

    Simonis, Ingo

    2015-04-01

    A number of large-scale research projects are currently under way exploring the various components of citizen observatories, e.g. CITI-SENSE (http://www.citi-sense.eu), Citclops (http://citclops.eu), COBWEB (http://cobwebproject.eu), OMNISCIENTIS (http://www.omniscientis.eu), and WeSenseIt (http://www.wesenseit.eu). Common to all projects is the motivation to develop a platform enabling effective participation by citizens in environmental projects, while considering important aspects such as security, privacy, long-term storage and availability, accessibility of raw and processed data and its proper integration into catalogues and international exchange and collaboration systems such as GEOSS or INSPIRE. This paper describes the software architecture implemented for setting up crowdsourcing campaigns using standardized components, interfaces, security features, and distribution capabilities. It illustrates the Citizen Observatory Toolkit, a software suite that allows defining crowdsourcing campaigns, to invite registered and unregistered participants to participate in crowdsourcing campaigns, and to analyze, process, and visualize raw and quality enhanced crowd sourcing data and derived products. The Citizen Observatory Toolkit is not a single software product. Instead, it is a framework of components that are built using internationally adopted standards wherever possible (e.g. OGC standards from Sensor Web Enablement, GeoPackage, and Web Mapping and Processing Services, as well as security and metadata/cataloguing standards), defines profiles of those standards where necessary (e.g. SWE O&M profile, SensorML profile), and implements design decisions based on the motivation to maximize interoperability and reusability of all components. The toolkit contains tools to set up, manage and maintain crowdsourcing campaigns, allows building on-demand apps optimized for the specific sampling focus, supports offline and online sampling modes using modern cell phones with

  19. SARA South Observatory: A Fully Automated Boller & Chivens 0.6-m Telescope at C.T.I.O.

    NASA Astrophysics Data System (ADS)

    Mack, Peter; KanniahPadmanaban, S. Y.; Kaitchuck, R.; Borstad, A.; Luzier, N.

    2010-05-01

    The SARA South Observatory is the re-birth of the Lowell 24-inch telescope located on the south-east ridge of Cerro Tololo, Chile. Installed in 1968 this Boller & Chivens telescope fell into disuse for almost 20 years. The telescope and observatory have undergone a major restoration. A new dome with a wide slit has been fully automated with an ACE SmartDome controller featuring autonomous closure. The telescope was completely gutted, repainted, and virtually every electronic component and wire replaced. Modern infrastructure, such as USB, Ethernet and video ports have been incorporated into the telescope tube saddle boxes. Absolute encoders have been placed on the Hour Angle and declination axes with a resolution of less than 0.7 arc seconds. The secondary mirror is also equipped with an absolute encoder and temperature sensor to allow for fully automated focus. New mirror coatings, automated mirror covers, a new 150mm refractor, and new instrumentation have been deployed. An integrated X-stage guider and dual filter wheel containing 18 filters is used for direct imaging. The guider camera can be easily removed and a standard 2-inch eyepiece used for occasional viewing by VIP's at C.T.I.O. A 12 megapixel all-sky camera produces color images every 30 seconds showing details in the Milky Way and Magellanic Clouds. Two low light level cameras are deployed; one on the finder and one at the top of the telescope showing a 30° field. Other auxiliary equipment, including daytime color video cameras, weather station and remotely controllable power outlets permit complete control and servicing of the system. The SARA Consortium (www.saraobservatory.org), a collection of ten eastern universities, also operates a 0.9-m telescope at the Kitt Peak National Observatory using an almost identical set of instruments with the same ACE control system. This project was funded by the SARA Consortium.

  20. An innovative telescope control system architecture for SST-GATE telescopes at the CTA Observatory

    NASA Astrophysics Data System (ADS)

    Fasola, Gilles; Mignot, Shan; Laporte, Philippe; Abchiche, Abdel; Buchholtz, Gilles; Jégouzo, Isabelle

    2014-07-01

    SST-GATE (Small Size Telescope - GAmma-ray Telescope Elements) is a 4-metre telescope designed as a prototype for the Small Size Telescopes (SST) of the Cherenkov Telescope Array (CTA), a major facility for the very high energy gamma-ray astronomy of the next three decades. In this 100-telescope array there will be 70 SSTs, involving a design with an industrial view aiming at long-term service, low maintenance effort and reduced costs. More than a prototype, SST-GATE is also a fully functional telescope that shall be usable by scientists and students at the Observatoire de Meudon for 30 years. The Telescope Control System (TCS) is designed to work either as an element of a large array driven by an array controller or in a stand-alone mode with a remote workstation. Hence it is built to be autonomous with versatile interfacing; as an example, pointing and tracking —the main functions of the telescope— are managed onboard, including astronomical transformations, geometrical transformations (e.g. telescope bending model) and drive control. The core hardware is a CompactRIO (cRIO) featuring a real-time operating system and an FPGA. In this paper, we present an overview of the current status of the TCS. We especially focus on three items: the pointing computation implemented in the FPGA of the cRIO —using CORDIC algorithms— since it enables an optimisation of the hardware resources; data flow management based on OPCUA with its specific implementation on the cRIO; and the use of an EtherCAT field-bus for its ability to provide real-time data exchanges with the sensors and actuators distributed throughout the telescope.

  1. Sensor system development for the WSO-UV (World Space Observatory-Ultraviolet) space-based astronomical telescope

    NASA Astrophysics Data System (ADS)

    Hayes-Thakore, Chris; Spark, Stephen; Pool, Peter; Walker, Andrew; Clapp, Matthew; Waltham, Nick; Shugarov, Andrey

    2015-10-01

    As part of a strategy to provide increasingly complex systems to customers, e2v is currently developing the sensor solution for focal plane array for the WSO-UV (World Space Observatory - Ultraviolet) programme, a Russian led 170 cm space astronomical telescope. This is a fully integrated sensor system for the detection of UV light across 3 channels: 2 high resolution spectrometers covering wavelengths of 115 - 176 nm and 174 - 310 nm and a Long-Slit Spectrometer covering 115 nm - 310 nm. This paper will describe the systematic approach and technical solution that has been developed based on e2v's long heritage, CCD experience and expertise. It will show how this approach is consistent with the key performance requirements and the overall environment requirements that the delivered system will experience through ground test, integration, storage and flight.

  2. Terrestrial Planet Finder Coronagraph Observatory summary

    NASA Technical Reports Server (NTRS)

    Ford, Virginia; Levine-Westa, Marie; Kissila, Andy; Kwacka, Eug; Hoa, Tim; Dumonta, Phil; Lismana, Doug; Fehera, Peter; Cafferty, Terry

    2005-01-01

    Creating an optical space telescope observatory capable of detecting and characterizing light from extra-solar terrestrial planets poses technical challenges related to extreme wavefront stability. The Terrestrial Planet Finder Coronagraph design team has been developing an observatory based on trade studies, modeling and analysis that has guided us towards design choices to enable this challenging mission. This paper will describe the current flight baseline design of the observatory and the trade studies that have been performed. The modeling and analysis of this design will be described including predicted performance and the tasks yet to be done.

  3. Project on Chinese Virtual Solar Observatory

    NASA Astrophysics Data System (ADS)

    Lin, Gang-Hua

    2004-09-01

    With going deep into research of solar physics, development of observational instrument and accumulation of obervation data, it urges people to think such things: using data which is observed in different times, places, bands and history data to seek answers of a plenty science problems. In the meanwhile, researcher can easily search the data and analyze data. This is why the project of the virtual solar observatory gained active replies and operation from observatories, institutes and universities in the world. In this article, how we face to the development of the virtual solar observatory and our preliminary project on CVSO are discussed.

  4. The Orbiting Carbon Observatory: NASA's First Dedicated Carbon Dioxide Mission

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    2008-01-01

    The Orbiting Carbon Observatory is scheduled for launch from Vandenberg Air Force Base in California in January 2009. This Earth System Science Pathfinder (ESSP) mission carries and points a single instrument that incorporates 3 high-resolution grating spectrometers designed to measure the absorption of reflected sunlight by near-infrared carbon dioxide (CO2) and molecular oxygen bands. These spectra will be analyzed to retrieve estimates of the column-averaged CO2 dry air mole fraction, X(sub CO2). Pre-flight qualification and calibration tests completed in early 2008 indicate that the instrument will provide high quality X(sub CO2) data. The instrument was integrated into the spacecraft, and the completed Observatory was qualified and tested during the spring and summer of 2008, in preparation for delivery to the launch site in the fall of this year. The Observatory will initially be launched into a 635 km altitude, near-polar orbit. The on-board propulsion system will then raise the orbit to 705 km and insert OCO into the Earth Observing System Afternoon Constellation (A-Train). The first routine science observations are expected about 45 days after launch. Calibrated spectral radiances will be archived starting about 6 months later. An exploratory X(sub CO2) product will be validated and then archived starting about 3 months after that.

  5. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.; Sackett, C.

    2001-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools in Colorado to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. We are honored that a committee of teachers and administrators from the Thompson School district have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Also in the past year, our training materials have been shared with NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  6. Initial Performance of the Aspect System on the Chandra Observatory: Post-Facto Aspect Reconstruction

    NASA Technical Reports Server (NTRS)

    Aldcroft, T.; Karovska, M.; Cresitello-Dittmar, M.; Cameron, R.

    2000-01-01

    The aspect system of the Chandra Observatory plays a key role in realizing the full potential of Chandra's x-ray optics and detectors. To achieve the highest spatial and spectral resolution (for grating observations), an accurate post-facto time history of the spacecraft attitude and internal alignment is needed. The CXC has developed a suite of tools which process sensor data from the aspect camera assembly and gyroscopes, and produce the spacecraft aspect solution. In this poster, the design of the aspect pipeline software is briefly described, followed by details of aspect system performance during the first eight months of flight. The two key metrics of aspect performance are: image reconstruction accuracy, which measures the x-ray image blurring introduced by aspect; and celestial location, which is the accuracy of detected source positions in absolute sky coordinates.

  7. The Cincinnati Observatory as a Research Instrument for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Abel, Nicholas; Regas, Dean; Flateau, Davin C.; Larrabee, Cliff

    2016-06-01

    The Cincinnati Observatory, founded in 1842, was the first public observatory in the Western Hemisphere. The history of Cincinnati is closely intertwined with the history of the Observatory, and with the history of science in the United States. Previous directors of the Observatory helped to create the National Weather Service, the Minor Planet Center, and the first astronomical journal in the U.S. The Cincinnati Observatory was internationally known in the late 19th century, with Jules Verne mentioning the Cincinnati Observatory in two of his books, and the Observatory now stands as a National Historic Landmark.No longer a research instrument, the Observatory is now a tool for promoting astronomy education to the general public. However, with the 11" and 16" refracting telescopes, the Observatory telescopes are very capable of collecting data to fuel undergraduate research projects. In this poster, we will discuss the history of the Observatory, types of student research projects capable with the Cincinnati Observatory, future plans, and preliminary results. The overall goal of this project is to produce a steady supply of undergraduate students collecting, analyzing, and interpreting data, and thereby introduce them to the techniques and methodology of an astronomer at an early stage of their academic career.

  8. Developments of next generation of seafloor observatories in MARsite project

    NASA Astrophysics Data System (ADS)

    Italiano, Francesco; Favali, Paolo; Zaffuto, Alfonso; Zora, Marco; D'Anca, Fabio

    2015-04-01

    The development of new generation of autonomous sea-floor observatories is among the aims of the EC supersite project MARsite (MARMARA Supersite; FP7 EC-funded project, grant n° 308417). An approach based on multiparameter seafloor observatories is considered of basic importance to better understand the role of the fluids in an active tectonic system and their behaviour during the development of the seismogenesis. To continuously collect geochemical and geophysical data from the immediate vicinity of the submerged North Anatolian Fault Zone (NAFZ) is one of the possibilities to contribute to the seismic hazard minimization of the Marmara area. The planning of next generation of seafloor observatories for geo-hazard monitoring is a task in one of the MARsite Work Packages (WP8). The activity is carried out combining together either the experience got after years of investigating fluids and their interactions with the seafloor and tectonic structures and the long-term experience on the development and management of permanent seafloor observatories in the main frame of the EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org) Research Infrastructure. The new generation of seafloor observatories have to support the observation of both slow and quick variations, thus allow collecting low and high-frequency signals besides the storage of long-term dataset and/or enable the near-real-time mode data transmission. Improvements of some the seafloor equipments have been done so far within MARsite project in terms of the amount of contemporary active instruments, their interlink with "smart sensor" capacities (threshold detection, triggering), quality of the collected data and power consumption reduction. In order to power the multiparameter sensors the digitizer and the microprocessor, an electronic board named PMS (Power Management System) with multi-master, multi-slave, single-ended, serial bus Inter-Integrated Circuit (I²C) interface

  9. The Little Thompson Observatory's Astronomy Education Programs

    NASA Astrophysics Data System (ADS)

    Schweitzer, Andrea E.

    2008-05-01

    The Little Thompson Observatory is a community-built E/PO observatory and is a member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. Annually we have approximately 5,000 visitors, which is roughly equal to the population of the small town of Berthoud, CO. In spring 2008, we offered a special training session to boost participation in the GLOBE at Night international observing program. During 2005-2007 we used the funding from our NASA ROSS E/PO grant to expand our teacher workshop programs, and included the baseball-sized meteorite that landed in Berthoud four years ago. Our teacher programs are ongoing, and include scientists from the Southwest Research Institute and from Fiske Planetarium at CU-Boulder. We thank the NASA ROSS E/PO program for providing this funding! Statewide, we are a founding member of Colorado Project ASTRO-GEO, and the observatory offers high-school astronomy courses to students from the surrounding school districts. We continue to support the development and construction of three new educational observatories in Colorado, located in Estes Park, Keystone and Gunnison. The LTO is grateful to have received the retired 24-inch telescope from Mount Wilson Observatory as part of the TIE program. To provide a new home for this historic telescope, we have doubled the size of the observatory and are building a second dome (almost all construction done with volunteer labor). During 2008 we will be building a custom pier and refurbishing the telescope.

  10. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  11. The Exoplanet Microlensing Survey by the Proposed WFIRST Observatory

    NASA Technical Reports Server (NTRS)

    Barry, Richard; Kruk, Jeffrey; Anderson, Jay; Beaulieu, Jean-Philippe; Bennett, David P.; Catanzarite, Joseph; Cheng, Ed; Gaudi, Scott; Gehrels, Neil; Kane, Stephen; hide

    2012-01-01

    The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010 listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the . coming decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing. measure the expansion history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be selected through a guest observer program. A Science Definition Team has been established to assist NASA in the development of a Design Reference Mission that accomplishes this diverse array of science programs with a single observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet detection. The observatory. with science goals that are complimentary to the Kepler exoplanet transit mission, is designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the masses for most detected exoplanets down to 0.1 Earth masses.

  12. Ghana's experience in the establishment of a national digital seismic network observatory

    NASA Astrophysics Data System (ADS)

    Ahulu, Sylvanus; Danuor, Sylvester Kojo

    2015-07-01

    The Government of Ghana has established a National Digital Seismic Network Observatory in Ghana with the aim of monitoring events such as earthquakes, blasts from mining and quarrying, nuclear tests, etc. The Digital Observatory was commissioned on 19 December 2012, and was dedicated to Geosciences in Ghana. Previously Ghana did not have any operational, digital seismic network acquisition system with the capability of monitoring and analysing data for planning and research purposes. The Ghana Geological Survey has been monitoring seismic events with an analogue system which was not efficient and does not deliver real-time data. Hence, the importance of setting up the National Digital Seismic Network System which would enable the Geological Survey to constantly monitor, manage and coordinate both natural and man-made seismic activities in the country and around the globe, to some extent on real-time basis. The Network System is made up of six remote digital stations that transmit data via satellite to the central observatory. Sensors used are 3× Trillium Compact and 3× Trillium 120PA with Trident digitizers. The department has also acquired strong motion equipment: Titan accelerometers with Taurus digitizers from Nanometrics. Three of each of these instruments have been installed at the Akosombo and Kpong hydrodams, and also at the Weija water supply dam. These instruments are used to monitor dams. The peak ground acceleration (PGA) values established from the analysed data from the accelerometers will be used to retrofit or carry out maintenance work of the dam structures to avoid collapse. Apart from these, the observatory also assesses and analyses seismic waveforms relevant to its needs from the Global Seismographic Network (GSN) system operated by the US Geological Survey. The Ghana Geological Survey, through its Seismic Network Observatory makes data available to its stakeholder institutions for earthquake disaster mitigation; reports on all aspects of

  13. Control System and Tests for the 13.2-m RAEGE Antenna at Yebes

    NASA Astrophysics Data System (ADS)

    de Vicente, P.; Bolaño, R.; Barbas, L.

    2014-12-01

    The RAEGE network is being deployed. The antenna at the Yebes Observatory is the first one in the network, and its construction finished in October 2013. During the construction phase, the remote control system for the antenna and the receivers was developed, and during the commisioning time the software was tested by MT-Mechatronics. As a result, both the control system from MT-Mechatronics and the remote control system by the IGN-CDT were debugged. We have tested the basic functionality of the antenna operated as a single dish telescope. First light at S, X, and Ka band was achieved on February 10^{th}. Afterwards a pointing model for the whole sky was determined, together with an optimum focus position as a function of elevation. Commisioning is not finished yet, and the antenna will be totally delivered to the IGN-CDT in the next weeks. VLBI equipment will be installed within three months, and VLBI observations are foreseen by the end of 2014. In this paper, we provide an overview of the control system and of the main results achieved.

  14. Solar Terrestrial Relations Observatory Spacecraft Artist Concept

    NASA Image and Video Library

    2011-06-01

    An artist conception of one of NASA Solar Terrestrial Relations Observatory STEREO spacecraft. The two observatories currently lie on either side of the sun, providing views of the entire sun simultaneously.

  15. Aerodynamic and Acoustic Flight Test Results and Results for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Smith, Mark S.; Cliatt, Larry J.; Frederick, Michael A.

    2014-01-01

    As part of the Stratospheric Observatory for Infrared Astronomy program, a 747SP airplane was modified to carry a 2.5-m telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the operating envelope of the airplane for astronomical observations, planned to be performed between the altitudes of 35,000 ft and 45,000 ft. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight-test results in the areas of cavity acoustics, stability and control, and air data.

  16. The University of Montana's Blue Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Friend, D. B.

    2004-12-01

    The University of Montana's Department of Physics and Astronomy runs the state of Montana's only professional astronomical observatory. The Observatory, located on nearby Blue Mountain, houses a 16 inch Boller and Chivens Cassegrain reflector (purchased in 1970), in an Ash dome. The Observatory sits just below the summit ridge, at an elevation of approximately 6300 feet. Our instrumentation includes an Op-Tec SSP-5A photoelectric photometer and an SBIG ST-9E CCD camera. We have the only undergraduate astronomy major in the state (technically a physics major with an astronomy option), so our Observatory is an important component of our students' education. Students have recently carried out observing projects on the photometry of variable stars and color photometry of open clusters and OB associations. In my poster I will show some of the data collected by students in their observing projects. The Observatory is also used for public open houses during the summer months, and these have become very popular: at times we have had 300 visitors in a single night.

  17. Orbiting Astronomical Observatory-C (OAO-C): Press kit

    NASA Technical Reports Server (NTRS)

    Allaway, H. G.

    1972-01-01

    Mission planning for the Orbiting Astronomical Observatory-C (OAO-C) is presented. The characteristics of the observatory and its capabilities are described. The following experiments are discussed: (1) Princeton Experiment Package, (2) X-ray experiment, and (3) guest investigator program. Results of the OAO-2 observatory are presented. A tabulation of flight events is included.

  18. Real-time Data Access From Remote Observatories

    NASA Astrophysics Data System (ADS)

    Detrick, D. L.; Lutz, L. F.; Etter, J. E.; Rosenberg, T. J.; Weatherwax, A. T.

    2006-12-01

    Real-time access to solar-terrestrial data is becoming increasingly important, not only because it is now possible to acquire and access data rapidly via the internet, but also because of the need for timely publication of real-time data for analysis and modeling efforts. Currently, engineering-scaled summary data are available routinely on a daily basis from many observatories, but only when the observatories have continuous, or at least daily network access. Increasingly, the upgrading of remote data acquisition hardware makes it possible to provide data in real-time, and it is becoming normal to expect timely access to data products. The NSF- supported PENGUIn/AGO constellation of autonomous Antarctic research observatories has provided real-time data since December, 2002, when Iridium satellite modems were installed at three sites. The Iridium telecommunications links are maintained continuously, transferring data between the remote observatories and a U.S.-based data acquisition site. The time-limiting factor with this scenario is now the delay in completing a data record before transmission, which can be as short as minutes depending on the sampling rate. The single-channel data throughput of the current systems is 20-MB/day (megabytes per day), but planned installations will be capable of operating with multiple modem channels. The data records are currently posted immediately to a web site accessible by anonymous FTP client software, for use by the instruments' principal investigators, and survey plots of selected signals are published daily. The web publication facilities are being upgraded, in order to allow other interested researchers rapid access to engineering-scaled data products, in several common formats, as well as providing interactive plotting capabilities. The web site will provide access to data from other collaborating observatories (including South Pole and McMurdo Stations), as well as ancillary data accessible from public sites (e.g., Kp

  19. Planetary research at Lowell Observatory

    NASA Technical Reports Server (NTRS)

    Baum, William A.

    1988-01-01

    Scientific goals include a better determination of the basic physical characteristics of cometary nuclei, a more complete understanding of the complex processes in the comae, a survey of abundances and gas/dust ratios in a large number of comets, and measurement of primordial (12)C/(13)C and (14)N/(15)N ratios. The program also includes the observation of Pluto-Charon mutual eclipses to derive dimensions. Reduction and analysis of extensive narrowband photometry of Comet Halley from Cerro Tololo Inter-American Observatory, Perth Observatory, Lowell Observatory, and Mauna Kea Observatory were completed. It was shown that the 7.4-day periodicity in the activity of Comet Halley was present from late February through at least early June 1986, but there is no conclusive evidence of periodic variability in the preperihelion data. Greatly improved NH scalelengths and lifetimes were derived from the Halley data which lead to the conclusion that the abundance of NH in comets is much higher than previously believed. Simultaneous optical and thermal infrared observations were obtained of Comet P/Temple 2 using the MKO 2.2 m telescope and the NASA IRTF. Preliminary analysis of these observations shows that the comet's nucleus is highly elongated, very dark, and quite red.

  20. In-orbit performance of the LISA Pathfinder drag-free and attitude control system

    NASA Astrophysics Data System (ADS)

    Schleicher, A.; Ziegler, T.; Schubert, R.; Brandt, N.; Bergner, P.; Johann, U.; Fichter, W.; Grzymisch, J.

    2018-04-01

    LISA Pathfinder is a technology demonstrator mission that was funded by the European Space Agency and that was launched on December 3, 2015. LISA Pathfinder has been conducting experiments to demonstrate key technologies for the gravitational wave observatory LISA in its operational orbit at the L1 Lagrange point of the Earth-Sun system until final switch off on July 18, 2017. These key technologies include the inertial sensors, the optical metrology system, a set of µ-propulsion cold gas thrusters and in particular the high performance drag-free and attitude control system (DFACS) that controls the spacecraft in 15 degrees of freedom during its science phase. The main goal of the DFACS is to shield the two test masses inside the inertial sensors from all external disturbances to achieve a residual differential acceleration between the two test masses of less than 3 × 10-14 m/s2/√Hz over the frequency bandwidth of 1-30 mHz. This paper focuses on two important aspects of the DFACS that has been in use on LISA Pathfinder: the DFACS Accelerometer mode and the main DFACS Science mode. The Accelerometer mode is used to capture the test masses after release into free flight from the mechanical grabbing mechanism. The main DFACS Science Mode is used for the actual drag-free science operation. The DFACS control system has very strong interfaces with the LISA Technology Package payload which is a key aspect to master the design, development, and analysis of the DFACS. Linear as well as non-linear control methods are applied. The paper provides pre-flight predictions for the performance of both control modes and compares these predictions to the performance that is currently achieved in-orbit. Some results are also discussed for the mode transitions up to science mode, but the focus of the paper is on the Accelerometer mode performance and on the performance of the Science mode in steady state. Based on the achieved results, some lessons learnt are formulated to extend

  1. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1982-01-01

    This artist's conception depicts the High Energy Astronomy Observatory (HEAO)-1 in orbit. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit. The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. Hardware support for the imaging instruments was provided by American Science and Engineeing. The HEAO spacecraft were built by TRW, Inc. under project management of the Marshall Space Flight Center.

  2. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2002-12-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." In addition, this past summer our program became an accredited course by Colorado State University. Our next project is to partner with the Discovery Center Science Museum and Colorado State University to provide additional teacher education programs. Our training materials have also been shared with TIE/Mt. Wilson, NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  3. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2003-05-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." In addition, this past summer our program became an accredited course by Colorado State University. Our next project is to partner with the Discovery Center Science Museum and Colorado State University to provide additional teacher education programs. Our training materials have also been shared with TIE/Mt. Wilson, NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  4. TUM Critical Zone Observatory, Germany

    NASA Astrophysics Data System (ADS)

    Völkel, Jörg; Eden, Marie

    2014-05-01

    Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.

  5. Gravity research at Cottrell observatory

    NASA Technical Reports Server (NTRS)

    Tuman, V. S.; Anderson, J. D.; Lau, E. L.

    1977-01-01

    The Cottrell gravity research observatory and work in progress are described. Equipment in place and equipment to be installed, the cryogenic gravity meter (CGM), concrete pads to support the vertical seismometer, CGM, and guest experiments, techniques of data analysis, and improvements needed in the CGM are discussed. Harmonic earth eigenvibrations with multipole moments are examined and their compatibility with a fictitious black hole binary system (of which the primary central mass is assigned a value one million solar masses) located 400 light-years away is shown by calculations.

  6. Earth Observatory Satellite system definition study. Report no. 2: Instrument constraints and interface specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The instruments to be flown on the Earth Observatory Satellite (EOS) system are defined. The instruments will be used to support the Land Resources Management (LRM) mission of the EOS. Program planning information and suggested acquisition activities for obtaining the instruments are presented. The subjects considered are as follows: (1) the performance and interface of the Thematic Mapper (TM) and the High Resolution Pointing Imager (HRPI), (2) procedure for interfacing the TM and HRPI with the EOS satellite, (3) a space vehicle integration plan suggesting the steps and sequence of events required to carry out the interface activities, and (4) suggested agreements between the contractors for providing timely and equitable solution of problems at minimum cost.

  7. The CEOS Recovery Observatory Pilot

    NASA Astrophysics Data System (ADS)

    Hosford, S.; Proy, C.; Giros, A.; Eddy, A.; Petiteville, I.; Ishida, C.; Gaetani, F.; Frye, S.; Zoffoli, S.; Danzeglocke, J.

    2015-04-01

    Over the course of the last decade, large populations living in vulnerable areas have led to record damages and substantial loss of life in mega-disasters ranging from the deadly Indian Ocean tsunami of 2004 and Haiti earthquake of 2010; the catastrophic flood damages of Hurricane Katrina in 2005 and the Tohoku tsunami of 2011, and the astonishing extent of the environmental impact of the Deepwater Horizon explosion in 2009. These major catastrophes have widespread and long-lasting impacts with subsequent recovery and reconstruction costing billions of euros and lasting years. While satellite imagery is used on an ad hoc basis after many disasters to support damage assessment, there is currently no standard practice or system to coordinate acquisition of data and facilitate access for early recovery planning and recovery tracking and monitoring. CEOS led the creation of a Recovery Observatory Oversight Team, which brings together major recovery stakeholders such as the UNDP and the World Bank/Global Facility for Disaster Reduction and Recovery, value-adding providers and leading space agencies. The principal aims of the Observatory are to: 1. Demonstrate the utility of a wide range of earth observation data to facilitate the recovery and reconstruction phase following a major catastrophic event; 2. Provide a concrete case to focus efforts in identifying and resolving technical and organizational obstacles to facilitating the visibility and access to a relevant set of EO data; and 3. Develop dialogue and establish institutional relationships with the Recovery phase user community to best target data and information requirements; The paper presented here will describe the work conducted in preparing for the triggering of a Recovery Observatory including support to rapid assessments and Post Disaster Needs Assessments by the EO community.

  8. Implementation and on-sky results of an optimal wavefront controller for the MMT NGS adaptive optics system

    NASA Astrophysics Data System (ADS)

    Powell, Keith B.; Vaitheeswaran, Vidhya

    2010-07-01

    The MMT observatory has recently implemented and tested an optimal wavefront controller for the NGS adaptive optics system. Open loop atmospheric data collected at the telescope is used as the input to a MATLAB based analytical model. The model uses nonlinear constrained minimization to determine controller gains and optimize the system performance. The real-time controller performing the adaptive optics close loop operation is implemented on a dedicated high performance PC based quad core server. The controller algorithm is written in C and uses the GNU scientific library for linear algebra. Tests at the MMT confirmed the optimal controller significantly reduced the residual RMS wavefront compared with the previous controller. Significant reductions in image FWHM and increased peak intensities were obtained in J, H and K-bands. The optimal PID controller is now operating as the baseline wavefront controller for the MMT NGS-AO system.

  9. Addressing the social dimensions of citizen observatories: The Ground Truth 2.0 socio-technical approach for sustainable implementation of citizen observatories

    NASA Astrophysics Data System (ADS)

    Wehn, Uta; Joshi, Somya; Pfeiffer, Ellen; Anema, Kim; Gharesifard, Mohammad; Momani, Abeer

    2017-04-01

    Owing to ICT-enabled citizen observatories, citizens can take on new roles in environmental monitoring, decision making and co-operative planning, and environmental stewardship. And yet implementing advanced citizen observatories for data collection, knowledge exchange and interactions to support policy objectives is neither always easy nor successful, given the required commitment, trust, and data reliability concerns. Many efforts are facing problems with the uptake and sustained engagement by citizens, limited scalability, unclear long-term sustainability and limited actual impact on governance processes. Similarly, to sustain the engagement of decision makers in citizen observatories, mechanisms are required from the start of the initiative in order to have them invest in and, hence, commit to and own the entire process. In order to implement sustainable citizen observatories, these social dimensions therefore need to be soundly managed. We provide empirical evidence of how the social dimensions of citizen observatories are being addressed in the Ground Truth 2.0 project, drawing on a range of relevant social science approaches. This project combines the social dimensions of citizen observatories with enabling technologies - via a socio-technical approach - so that their customisation and deployment is tailored to the envisaged societal and economic impacts of the observatories. The projects consists of the demonstration and validation of six scaled up citizen observatories in real operational conditions both in the EU and in Africa, with a specific focus on flora and fauna as well as water availability and water quality for land and natural resources management. The demonstration cases (4 EU and 2 African) cover the full 'spectrum' of citizen-sensed data usage and citizen engagement, and therefore allow testing and validation of the socio-technical concept for citizen observatories under a range of conditions.

  10. The Paris Observatory has 350 years

    NASA Astrophysics Data System (ADS)

    Lequeux, James

    2017-01-01

    The Paris Observatory is the oldest astronomical observatory that has worked without interruption since its foundation to the present day. The building due to Claude Perrault is still in existence with few modifications, but of course other buildings have been added all along the centuries for housing new instruments and laboratories. In particular, a large dome has been built on the terrace in 1847, with a 38-cm diameter telescope completed in 1857: both are still visible. The main initial purpose of the Observatory was to determine longitudes. This was achieved by Jean-Dominique Cassini using the eclipses of the satellites of Jupiter: a much better map of France was the produced using this method, which unfortunately does not work at sea. Incidentally, the observation of these eclipses led to the discovery in 1676 of the finite velocity of light by Cassini and Rømer. Cassini also discovered the differential rotation of Jupiter and four satellites of Saturn. Then, geodesy was to be the main activity of the Observatory for more than a century, culminating in the famous Cassini map of France completed around 1790. During the first half of the 19th century, under François Arago, the Observatory was at the centre of French physics, which then developed very rapidly. Arago initiated astrophysics in 1810 by showing that the Sun and stars are made of incandescent gas. In 1854, the new director, Urbain Le Verrier, put emphasis on astrometry and celestial mechanics, discovering in particular the anomalous advance of the perihelion of Mercury, which was later to be a proof of General Relativity. In 1858, Leon Foucault built the first modern reflecting telescopes with their silvered glass mirror. Le Verrier created on his side modern meteorology, including some primitive forecasts. The following period was not so bright, due to the enormous project of the Carte du Ciel, which took much of the forces of the Observatory for half a century with little scientific return. In

  11. Operations of and Future Plans for the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, : J.; Abreu, P.; Aglietta, M.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Augermore » Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.« less

  12. An Overview of the Performance and Scientific Results From the Chandra X-Ray Observatory (CXO)

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Brinkman, B.; Canizares, C.; Garmine, G.; Murray, S.; VanSpeybroeck, L. P.; Six, N. Frank (Technical Monitor)

    2001-01-01

    The Chandra X-Ray Observatory (CXO), the x-ray component of NASA's Great Observatories, was launched on 1999, July 23 by the Space Shuttle Columbia. After satellite systems activation, the first x-rays focused by the telescope were observed on 1999, August 12. Beginning with the initial observation it was clear that the telescope had survived the launch environment and was operating as expected. Despite an initial surprise due to the discovery that the telescope was far more efficient for concentrating CCD-damaging low-energy protons than had been anticipated, the observatory is performing well and is returning superb scientific data. Together with other space observatories, most notably XMM-Newton, it is clear that we have entered a new era of discovery in high-energy astrophysics.

  13. Long-lived space observatories for astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Becklin, Eric E.; Beckwith, Steven V. W.; Cowie, Lennox L.; Dupree, Andrea K.; Elliot, James L.; Gallagher, John S.; Helfand, David J.; Jenkins, Edward F.; Johnston, Kenneth J.

    1987-01-01

    NASA's plan to build and launch a fleet of long-lived space observatories that include the Hubble Space Telescope (HST), the Gamma Ray Observatory (GRO), the Advanced X Ray Astrophysics Observatory (AXAF), and the Space Infrared Telescope Facility (SIRTF) are discussed. These facilities are expected to have a profound impact on the sciences of astronomy and astrophysics. The long-lived observatories will provide new insights about astronomical and astrophysical problems that range from the presence of planets orbiting nearby stars to the large-scale distribution and evolution of matter in the universe. An important concern to NASA and the scientific community is the operation and maintenance cost of the four observatories described above. The HST cost about $1.3 billion (1984 dollars) to build and is estimated to require $160 million (1986 dollars) a year to operate and maintain. If HST is operated for 20 years, the accumulated costs will be considerably more than those required for its construction. Therefore, it is essential to plan carefully for observatory operations and maintenance before a long-lived facility is constructed. The primary goal of this report is to help NASA develop guidelines for the operations and management of these future observatories so as to achieve the best possible scientific results for the resources available. Eight recommendations are given.

  14. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 6: Specification for EOS Central Data Processing Facility (CDPF)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications and functions of the Central Data Processing (CDPF) Facility which supports the Earth Observatory Satellite (EOS) are discussed. The CDPF will receive the EOS sensor data and spacecraft data through the Spaceflight Tracking and Data Network (STDN) and the Operations Control Center (OCC). The CDPF will process the data and produce high density digital tapes, computer compatible tapes, film and paper print images, and other data products. The specific aspects of data inputs and data processing are identified. A block diagram of the CDPF to show the data flow and interfaces of the subsystems is provided.

  15. Multiple Etalon Systems for the Advanced Technology Solar Telescope

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael; Six, N. Frank (Technical Monitor)

    2002-01-01

    Multiple etalons systems are discussed that meet the 4-meter NSO/Advance Technology Solar Telescope (http://www.nso.edu/ATST/index.html) instrument and science requirements for a narrow bandpass imaging system. A multiple etalon system can provide an imaging interferometer working in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, and a wide-band and broad-band high-resolution imager. Specific dual and triple etalon configurations will be described that provides spectrographic passband of 2.0-3.5nm and reduces parasitic light levels to 1/10000 as required by precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like triple etalon system provides for spectral purity of 100 thousandths. The triple designs have the advantage of reducing the finesse requirement on each etalon, allowing much more stable blocking filters, and can have very high spectral purity. A dual-etalon double-pass Cavallini-like configuration can provide a competing configuration. This design can provide high contrast with only a double etalon. The selection of the final focal plan instrument will depend on a trade-off of the ideal instrument versus reality, the number of etalons, the aperture of etalons, the number of blocking filters the electronic control system and computer interfaces, the temperature control and controllers for the etalons and the electronics. The use of existing experience should provide significant cost savings. The heritage of use of etalons and multiple etalon systems in solar physics come from a number of observatories, which includes MSFC Solar Observatory (NASA), Sac Peak Observatory (NSO), and Kiepenheuer Institute for Solar Physics (Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will reply on the existing experience from these observatories.

  16. Extra Solar Planetary Imaging Coronagraph and Science Requirements for the James Webb Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2004-01-01

    1) Extra solar planetary imaging coronagraph. Direct detection and characterization of Jovian planets, and other gas giants, in orbit around nearby stars is a necessary precursor to Terrestrial Planet Finder 0 in order to estimate the probability of Terrestrial planets in our stellar neighborhood. Ground based indirect methods are biased towards large close in Jovian planets in solar systems unlikely io harbor Earthlike planets. Thus to estimate the relative abundances of terrestrial planets and to determine optimal observing strategies for TPF a pathfinder mission would be desired. The Extra-Solar Planetary Imaging Coronagraph (EPIC) is such a pathfinder mission. Upto 83 stellar systems are accessible with a 1.5 meter unobscured telescope and coronagraph combination located at the Earth-Sun L2 point. Incorporating radiometric and angular resolution considerations show that Jovians could be directly detected (5 sigma) in the 0.5 - 1.0 micron band outside of an inner working distance of 5/D with integration times of -10 - 100 hours per observation. The primary considerations for a planet imager are optical wavefront quality due to manufacturing, alignment, structural and thermal considerations. pointing stability and control, and manufacturability of coronagraphic masks and stops to increase the planetary-to- stellar contrast and mitigate against straylight. Previously proposed coronagraphic concepts are driven to extreme tolerances. however. we have developed and studied a mission, telescope and coronagraphic detection concept, which is achievable in the time frame of a Discovery class NASA mission. 2) Science requirements for the James Webb Space Telescope observatory. The James Webb Space Observatory (JWST) is an infrared observatory, which will be launched in 201 1 to an orbit at L2. JWST is a segmented, 18 mirror segment telescope with a diameter of 6.5 meters, and a clear aperture of 25 mA2. The telescope is designed to conduct imaging and spectroscopic

  17. The First Astronomical Observatory in Cluj-Napoca

    NASA Astrophysics Data System (ADS)

    Szenkovits, Ferenc

    2008-09-01

    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.

  18. SOFIA: Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the great astronomical observatories both space and land based that are now operational. It shows the history of the development of SOFIA, from its conception in 1986 through the contract awards in 1996 and through the planned first flight in 2007. The major components of the observatory are shown and there is a comparison of the SOFIA with the Kuiper Airborne Observatory (KAO), which is the direct predecessor to SOFIA. The development of the aft ramp of the KAO was developed as a result of the wind tunnel tests performed for SOFIA development. Further slides show the airborne observatory layout and the telescope's optical layout. Included are also vies of the 2.5 Meter effective aperture, and the major telescope's components. The presentations reviews the technical challenges encountered during the development of SOFIA. There are also slides that review the wind tunnel tests, and CFD modeling performed during the development of SOFIA. Closing views show many views of the airplane, and views of SOFIA.

  19. The Chandra X-Ray Observatory and its Role for the Study of Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2010-01-01

    NASA's Chandra X-Ray Observatory was launched in July of 1999. Featuring a 1000cm2-class X-ray telescope with sub-arcsecond angular resolution, the Observatory has observed targets from the solar system including the earth s moon, comets, and planets to the most distant galaxy clusters and active galactic nuclei. Capable of performing moderate energy resolution image-resolved spectroscopy using its CCD detectors, and high-resolution grating spectroscopy, the Observatory has produced, and continues to produce, valuable data and insights into the emission mechanisms of the ionized plasmas in which the X-rays originate. We present a brief overview of the Observatory to provide insight as to how to use it for your investigations. We also present an, admittedly brief and biased, overview of some of the results of investigations performed with Chandra that may be of interest to this audience.

  20. Hardware design for the Autonomous Visibility Monitoring (AVM) observatory

    NASA Technical Reports Server (NTRS)

    Cowles, K.

    1993-01-01

    The hardware for the three Autonomous Visibility Monitoring (AVM) observatories was redesigned. Changes in hardware design include electronics components, weather sensors, and the telescope drive system. Operation of the new hardware is discussed, as well as some of its features. The redesign will allow reliable automated operation.

  1. Gemini Observatory |

    Science.gov Websites

    Now Open Operations View All Observing databases offline May 30 Status of Gemini North eNewscast View Gemini Observatory Strategic Vision PDF Gemini North with open wind vents and observing slit at sunset . Gemini South with star-trails of the South Celestial Pole overhead. Gemini Science Meeting Open For

  2. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  3. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-01-01

    Both of the High Energy Astronomy Observatory (HEAO) 2/Einstein Observatory imaging devices were used to observe the Great Nebula in Andromeda, M31. This image is a wide field x-ray view of the center region of M31 by the HEAO-2's Imaging Proportional Counter. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  4. Visits to La Plata Observatory

    NASA Astrophysics Data System (ADS)

    Feinstein, A.

    1985-03-01

    La Plata Observatory will welcome visitors to ESO-La Silla that are willing to make a stop at Buenos Aires on their trip to Chile or on their way back. There is a nice guesthouse at the Observatory that can be used, for a couple of days or so, by astronomers interested in visiting the Observatory and delivering talks on their research work to the Argentine colleagues. No payments can, however, be made at present. La Plata is at 60 km from Buenos Aires. In the same area lie the Instituto de Astronomia y Fisica dei Espacio (IAFE), in Buenos Aires proper, and the Instituto Argentino de Radioastronomia (IAR). about 40 km from Buenos Aires on the way to La Plata. Those interested should contacl: Sr Decano Prof. Cesar A. Mondinalli, or Dr Alejandro Feinstein, Observatorio Astron6mico, Paseo dei Bosque, 1900 La Plata, Argentina. Telex: 31216 CESLA AR.

  5. Hydrologic Observatories: Design, Operation, and the Neuse Basin Prototype

    NASA Astrophysics Data System (ADS)

    Reckhow, K.; Band, L.

    2003-12-01

    Hydrologic observatories are conceived as major research facilities that will be available to the full hydrologic community, to facilitate comprehensive, cross-disciplinary and multi-scale measurements necessary to address the current and next generation of critical science and management issues. A network of hydrologic observatories is proposed that both develop national comparable, multidisciplinary data sets and provide study areas to allow scientists, through their own creativity, to make scientific breakthroughs that would be impossible without the proposed observatories. The core objective of an observatory is to improve predictive understanding of the flow paths, fluxes, and residence times of water, sediment and nutrients (the "core data") across a range of spatial and temporal scales across `interfaces'. To assess attainment of this objective, a benchmark will be established in the first year, and evaluated periodically. The benchmark should provide an estimate of prediction uncertainty at points in the stream across scale; the general principle is that predictive understanding must be demonstrated internal to the catchment as well as its outlet. The core data will be needed for practically any hydrologic study, yet absence of these data has been a barrier to larger scale studies in the past. However, advancement of hydrologic science facilitated by the network of hydrologic observatories is expected to focus on a set of science drivers, drawn from the major scientific questions posed by the set of NRC reports and refined into CUAHSI themes. These hypotheses will be tested at all observatories and will be used in the design to ensure the sufficiency of the data set. To make the observatories a national (and international) resource, a key aspect of the operation is the support of remote PI's. This support will include a resident staff of scientists and technicians on the order of 10 FTE's, availability of dormitory, laboratory, workshop space for all

  6. Norwegian Ocean Observatory Network (NOON)

    NASA Astrophysics Data System (ADS)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  7. Toward a global multi-scale heliophysics observatory

    NASA Astrophysics Data System (ADS)

    Semeter, J. L.

    2017-12-01

    We live within the only known stellar-planetary system that supports life. What we learn about this system is not only relevant to human society and its expanding reach beyond Earth's surface, but also to our understanding of the origins and evolution of life in the universe. Heliophysics is focused on solar-terrestrial interactions mediated by the magnetic and plasma environment surrounding the planet. A defining feature of energy flow through this environment is interaction across physical scales. A solar disturbance aimed at Earth can excite geospace variability on scales ranging from thousands of kilometers (e.g., global convection, region 1 and 2 currents, electrojet intensifications) to 10's of meters (e.g., equatorial spread-F, dispersive Alfven waves, plasma instabilities). Most "geospace observatory" concepts are focused on a single modality (e.g., HF/UHF radar, magnetometer, optical) providing a limited parameter set over a particular spatiotemporal resolution. Data assimilation methods have been developed to couple heterogeneous and distributed observations, but resolution has typically been prescribed a-priori and according to physical assumptions. This paper develops a conceptual framework for the next generation multi-scale heliophysics observatory, capable of revealing and quantifying the complete spectrum of cross-scale interactions occurring globally within the geospace system. The envisioned concept leverages existing assets, enlists citizen scientists, and exploits low-cost access to the geospace environment. Examples are presented where distributed multi-scale observations have resulted in substantial new insight into the inner workings of our stellar-planetary system.

  8. Designing Hydrologic Observatories as a Community Resource

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Duncan, J. M.

    2004-12-01

    CUAHSI convened a workshop in August 2004 to explore what makes a successful hydrologic observatory. Because of their high cost, only a small number of observatories will be operated, at least initially. (CUAHSI has recommended a pilot network of 5 observatories to develop operational experience and an eventual network of approximately 15 sites.) Because hydrologic scientists can work "in their backyard" (unlike oceanographers or astronomers), hydrologic observatories must offer significant advantages over current methods of field work to successfully attract researchers. Twenty-four teams of scientists submitted "prospectuses" of potential locations for hydrologic observatories for consideration by network attendees. These documents (available at http://www.cuahsi.org) were marketing documents to the workshop participants, who voted for a hypothetical network of 5 observatories from the 24 proposed sites. This network formed the basis for a day of discussions on necessary attributes of core data and how to form a network of observatories from a collection of sites that are designed and implemented individually. Key findings included: 1) Core data must be balanced among disciplines. Although the hydrologic cycle is an organizing principle for the design of HOs, physical data cannot dominate the core data; chemical and biological data, although more expensive to collect, must be given equal footing. 2) New data collection must strategically leverage existing data. Resources are always limited, so that a successful HO must carefully target gaps in existing data, as determined by an explicitly stated conceptual model, and fill them rather than designing an independent study. 3) Site logistics must support remote researchers. Significant resources will be necessary for on-site staff to handle housing, transportation, permitting and other needs. 4) Network-level hypotheses are required early in the implementation of HOs. A network will only emerge around hypotheses

  9. Summary of interference measurements at selected radio observatories

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C.

    1990-01-01

    Results are presented from a series of RF interference (RFI) observations conducted during 1989 and 1990 at selected radio astronomy observatories in order to choose a site for the SETI, where the local and orbital RFI would be as benign as possible for observations of weak electromagnetic signals. These observatories included the DSS13 at Goldstone (California), the Arecibo Observatory (Puerto Rico), the Algonquin Radio Observatory in Ottawa (Canada), the Ohio State University Radio Observatory in Columbus (Ohio), and the NRAO in Green Bank (West Virginia). The observations characterize the RFI environment at these sites from 1 to 10 GHz, using radio astronomy antennas, feeds, and receivers; SETI signal processors; and stand-alone equipment built specifically for this purpose. The results served as part of the basis for the selection (by the NASA SETI Microwave Observing Project) of NRAO as the site of choice for SETI observations.

  10. The Great Observatories All-Sky LIRG Survey: Herschel Image Atlas and Aperture Photometry

    NASA Astrophysics Data System (ADS)

    Chu, Jason K.; Sanders, D. B.; Larson, K. L.; Mazzarella, J. M.; Howell, J. H.; Díaz-Santos, T.; Xu, K. C.; Paladini, R.; Schulz, B.; Shupe, D.; Appleton, P.; Armus, L.; Billot, N.; Chan, B. H. P.; Evans, A. S.; Fadda, D.; Frayer, D. T.; Haan, S.; Ishida, C. M.; Iwasawa, K.; Kim, D.-C.; Lord, S.; Murphy, E.; Petric, A.; Privon, G. C.; Surace, J. A.; Treister, E.

    2017-04-01

    Far-infrared images and photometry are presented for 201 Luminous and Ultraluminous Infrared Galaxies [LIRGs: log ({L}{IR}/{L}⊙ )=11.00{--}11.99, ULIRGs: log ({L}{IR}/{L}⊙ )=12.00{--}12.99], in the Great Observatories All-Sky LIRG Survey (GOALS), based on observations with the Herschel Space Observatory Photodetector Array Camera and Spectrometer (PACS) and the Spectral and Photometric Imaging Receiver (SPIRE) instruments. The image atlas displays each GOALS target in the three PACS bands (70, 100, and 160 μm) and the three SPIRE bands (250, 350, and 500 μm), optimized to reveal structures at both high and low surface brightness levels, with images scaled to simplify comparison of structures in the same physical areas of ˜100 × 100 kpc2. Flux densities of companion galaxies in merging systems are provided where possible, depending on their angular separation and the spatial resolution in each passband, along with integrated system fluxes (sum of components). This data set constitutes the imaging and photometric component of the GOALS Herschel OT1 observing program, and is complementary to atlases presented for the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory. Collectively, these data will enable a wide range of detailed studies of active galactic nucleus and starburst activity within the most luminous infrared galaxies in the local universe. Based on Herschel Space Observatory observations. Herschel is an ESA space observatory with science instruments provided by the European-led Principal Investigator consortia, and important participation from NASA.

  11. Observatories on the moon

    NASA Astrophysics Data System (ADS)

    Burns, J. O.; Duric, N.; Taylor, G. J.; Johnson, S. W.

    1990-03-01

    It is suggested that the moon could be a haven for astronomy with observatories on its surface yielding extraordinarily detailed views of the heavens and open new windows to study the universe. The near absence of an atmosphere, the seismic stability of its surface, the low levels of interference from light and radio waves and the abundance of raw materials make the moon an ideal site for constructing advanced astronomical observatories. Due to increased interest in the U.S. in the moon as a scientific platform, planning has begun for a permanent lunar base and for astronomical observatories that might be built on the moon in the 21st century. Three specific projects are discussed: (1) the Very Low Frequency Array (VLFA), which would consist of about 200 dipole antennas, each resembling a TV reception antenna about one meter in length; (2) the Lunar Optical-UV-IR Synthesis Array (LOUISA), which will improve on the resolution of the largest ground-based telescope by a factor of 100,000; and (3) a moon-earth radio interferometer, which would have a resolution of about one-hundredth-thousandth of an arc second at a frequency of 10 GHz.

  12. The many transformations of the University of Illinois Observatory Annex

    NASA Astrophysics Data System (ADS)

    Svec, Michael

    2018-04-01

    The University of Illinois Observatory acquired a second-hand 30-inch Brashear reflector in 1912 with the intent of dedicating it to photoelectric photometry. A small observatory annex was built adjacent to the main observatory. This smaller observatory and its telescope underwent multiple transitions and instrument changes over the next 70 years, reflecting the research interests of Joel Stebbins and Robert H. Baker. The story of this observatory telescope illustrates changes in astronomical instrumentation and research over the course of the twentieth century.

  13. ISS images for Observatory protection

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2015-08-01

    Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.

  14. Monitoring service for the Gran Telescopio Canarias control system

    NASA Astrophysics Data System (ADS)

    Huertas, Manuel; Molgo, Jordi; Macías, Rosa; Ramos, Francisco

    2016-07-01

    The Monitoring Service collects, persists and propagates the Telescope and Instrument telemetry, for the Gran Telescopio CANARIAS (GTC), an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). A new version of the Monitoring Service has been developed in order to improve performance, provide high availability, guarantee fault tolerance and scalability to cope with high volume of data. The architecture is based on a distributed in-memory data store with a Product/Consumer pattern design. The producer generates the data samples. The consumers either persists the samples to a database for further analysis or propagates them to the consoles in the control room to monitorize the state of the whole system.

  15. Matera Laser Ranging Observatory (MLRO): An overview

    NASA Technical Reports Server (NTRS)

    Varghese, Thomas K.; Decker, Winfield M.; Crooks, Henry A.; Bianco, Giuseppe

    1993-01-01

    The Agenzia Spaziale Italiana (ASI) is currently under negotiation with the Bendix Field Engineering Corporation (BFEC) of the Allied Signal Aerospace Company (ASAC) to build a state-of-the-art laser ranging observatory for the Centro di Geodesia Spaziale, in Matera, Italy. The contract calls for the delivery of a system based on a 1.5 meter afocal Cassegrain astronomical quality telescope with multiple ports to support a variety of experiments for the future, with primary emphasis on laser ranging. Three focal planes, viz. Cassegrain, Coude, and Nasmyth will be available for these experiments. The open telescope system will be protected from dust and turbulence using a specialized dome which will be part of the building facilities to be provided by ASI. The fixed observatory facility will be partitioned into four areas for locating the following: laser, transmit/receive optics, telescope/dome enclosure, and the operations console. The optical tables and mount rest on a common concrete pad for added mechanical stability. Provisions will be in place for minimizing the effects of EMI, for obtaining maximum cleanliness for high power laser and transmit optics, and for providing an ergonomic environment fitting to a state-of-the-art multipurpose laboratory. The system is currently designed to be highly modular and adaptable for scaling or changes in technology. It is conceived to be a highly automated system with superior performance specifications to any currently operational system. Provisions are also made to adapt and accommodate changes that are of significance during the course of design and integration.

  16. SUMO: operation and maintenance management web tool for astronomical observatories

    NASA Astrophysics Data System (ADS)

    Mujica-Alvarez, Emma; Pérez-Calpena, Ana; García-Vargas, María. Luisa

    2014-08-01

    SUMO is an Operation and Maintenance Management web tool, which allows managing the operation and maintenance activities and resources required for the exploitation of a complex facility. SUMO main capabilities are: information repository, assets and stock control, tasks scheduler, executed tasks archive, configuration and anomalies control and notification and users management. The information needed to operate and maintain the system must be initially stored at the tool database. SUMO shall automatically schedule the periodical tasks and facilitates the searching and programming of the non-periodical tasks. Tasks planning can be visualized in different formats and dynamically edited to be adjusted to the available resources, anomalies, dates and other constrains that can arise during daily operation. SUMO shall provide warnings to the users notifying potential conflicts related to the required personal availability or the spare stock for the scheduled tasks. To conclude, SUMO has been designed as a tool to help during the operation management of a scientific facility, and in particular an astronomical observatory. This is done by controlling all operating parameters: personal, assets, spare and supply stocks, tasks and time constrains.

  17. Science Objectives and Design of the European Seas Observatory NETwork (ESONET)

    NASA Astrophysics Data System (ADS)

    Ruhl, H.; Géli, L.; Karstensen, J.; Colaço, A.; Lampitt, R.; Greinert, J.; Phannkuche, O.; Auffret, Y.

    2009-04-01

    important feedbacks of potential ecological change be on biogeochemical cycles? What are the factors that control the distribution and abundance of marine life and what will the influence of anthropogenic change be? We will outline a set of science objectives and observation parameters to be collected at all ESONET sites, as well as a set of rather specific objectives and thus parameters that might only be measured at some sites. We will also present the preliminary module specifications now being considered by ESONET. In a practical sense the observatory design has been divided into those that will be included in a so called ‘generic' module and those that will be part of science-specific modules. Outlining preliminary module specifications is required to move forward with studies of observatory design and operation. These specifications are importantly provisional and can be updated as science needs and feasibility change. A functional cleavage not only comes between aspects that are considered generic or specific, but also the settings in which those systems will be used. For example, some modules will be on the seabed and some will be moored in the water column. In order to address many of the questions posed above ESONET users will require other supporting data from other programs from local to international levels. Examples of these other data sources include satellite oceanographic data, climatic data, air-sea interface data, and the known distribution and abundances of marine fauna. Thus the connection of ESONET to other programs is integral to its success. The development of ESONET provides a substantial opportunity for ocean science to evolve in Europe. Furthermore, ESONET and several other developing ocean observatory programs are integrating into larger science frameworks including the Global Earth Observation System of Systems (GEOSS) and Global Monitoring of Environment and Security (GMES) programs. It is only in a greater integrated framework that the full

  18. Earth Observatory Satellite system definition study. Report 1: Orbit/launch vehicle trade-off studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A summary of the constraints and requirements on the Earth Observatory Satellite (EOS-A) orbit and launch vehicle analysis is presented. The propulsion system (hydrazine) and the launch vehicle (Delta 2910) selected for EOS-A are examined. The rationale for the selection of the recommended orbital altitude of 418 nautical miles is explained. The original analysis was based on the EOS-A mission with the Thematic Mapper and the High Resolution Pointable Imager. The impact of the revised mission model is analyzed to show how the new mission model affects the previously defined propulsion system, launch vehicle, and orbit. A table is provided to show all aspects of the EOS multiple mission concepts. The subjects considered include the following: (1) mission orbit analysis, (2) spacecraft parametric performance analysis, (3) launch system performance analysis, and (4) orbits/launch vehicle selection.

  19. FixO3: Advancement towards Open Ocean Observatory Data Management Harmonisation

    NASA Astrophysics Data System (ADS)

    Behnken, Andree; Pagnani, Maureen; Huber, Robert; Lampitt, Richard

    2015-04-01

    efforts are central to FixO3. As a result of the procedural and technological harmonisation efforts undertaken in the project, the FixO3 network of observatories is accumulating unique, quality controlled data sets that will develop into a legacy repository of openly accessible oceanographic data.

  20. Arecibo Observatory support of the US international cometary Explorer mission encounter at comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Gordon, D. D.; Ward, M. T.

    1986-01-01

    The Arecibo Observatory in Puerto Rico participated in the support of the U.S. International Cometary Explorer (ICE) mission when the ICE spacecraft passed through the tail of comet Giacobini-Zinner on September 11, 1985. The Arecibo Observatory is a research facility of the National Astronomy and Ionosphere Center (NAIC) operated by Cornell University under contract to the National Science Foundation (NSF). Coverage of the encounter involved the use of the observatory's 305-m (1000-ft) radio reflector antenna and RF and data system equipment fabricated or modified specifically for support of the ICE mission. The successful implementation, testing, and operation of this temporary receive, record, and data relay capability resulted from a cooperative effort by personnel at the Arecibo Observatory, the Goddard Space Flight Center, and the Jet Propulsion Laboratory.

  1. Donald Menzel: His Founding and Funding of Solar Observatories.

    NASA Astrophysics Data System (ADS)

    Welther, B. L.

    2002-12-01

    In January 1961 Donald Menzel wrote to his cousin, M. H. Bruckman, "I am proudest of the observatories that I have built in the West." The first of those facilities, a solar observatory, was founded in 1940 in Colorado and later came to be known as the High Altitude Observatory. The second one, also a solar observatory, was founded a dozen years later at Sacramento Peak in New Mexico. The third facility, however, established at Fort Davis, Texas, was the Harvard Radio Astronomy Observatory. Although Menzel was primarily a theoretical astrophysicist, renowned for his studies of the solar chromosphere, he was also an entrepreneur who had a talent for developing observatories and coping with numerous setbacks in funding and staffing. Where many others would have failed, Menzel succeeded in mentoring colleagues and finding sources of financial support. This paper will draw primarily on letters and other materials in the Harvard University Archives.

  2. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Figueroa, Ricardo

    2013-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  3. The Virtual Astronomical Observatory: Re-engineering access to astronomical data

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.; Berriman, G. B.; Lazio, T. J. W.; Emery Bunn, S.; Evans, J.; McGlynn, T. A.; Plante, R.

    2015-06-01

    The US Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the US coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within the US National Virtual Observatory, and summarizes its main accomplishments. These accomplishments include the development of both scripting toolkits that allow scientists to incorporate VO data directly into their reduction and analysis environments and high-level science applications for data discovery, integration, analysis, and catalog cross-comparison. Working with the international community, and based on the experience from the software development, the VAO was a major contributor to international standards within the International Virtual Observatory Alliance. The VAO also demonstrated how an operational virtual observatory could be deployed, providing a robust operational environment in which VO services worldwide were routinely checked for aliveness and compliance with international standards. Finally, the VAO engaged in community outreach, developing a comprehensive web site with on-line tutorials, announcements, links to both US and internationally developed tools and services, and exhibits and hands-on training at annual meetings of the American Astronomical Society and through summer schools and community days. All digital products of the VAO Project, including software, documentation, and tutorials, are stored in a repository for community access. The enduring legacy of the VAO is an increasing expectation that new telescopes and facilities incorporate VO capabilities during the design of their data management systems.

  4. First Results of the Near Real-Time Imaging Reconstruction System at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Yang, G.; Denker, C.; Wang, H.

    2003-05-01

    The Near Real-Time Imaging Reconstruction system (RTIR) at Big Bear Solar Observatory (BBSO) is designed to obtain high spatial resolution solar images at a cadence of 1 minute utilizing the power of parallel processing. With this system, we can compute near diffraction-limited images without saving huge amounts of data that are involved in the speckle masking reconstruction algorithm. It enables us to monitor active regions and give fast response to the solar activity. In this poster we present the first results of our new 32-CPU Beowulf cluster system. The images are 1024 x 1024 and the field of view (FOV) is 80'' x 80''. Our target is an active region with complex magnetic configuration. We focus on pores and small spots in the active region with the goal of better understanding the formation of penumbra structure. In addition we expect to study evolution of active regions during solar flares.

  5. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    This supernova in the constellation Cassiopeia was observed by Tycho Brahe in 1572. In this x-ray image from the High Energy Astronomy Observatory (HEAO-2/Einstein Observatory produced by nearly a day of exposure time, the center region appears filled with emissions that can be resolved into patches or knots of material. However, no central pulsar or other collapsed object can be seen. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  6. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This is an x-ray image of the Crab Nebula taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The image is demonstrated by a pulsar, which appears as a bright point due to its pulsed x-ray emissions. The strongest region of diffused emissions comes from just northwest of the pulsar, and corresponds closely to the region of brightest visible-light emission. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  7. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1975-01-01

    The family of High Energy Astronomy Observatory (HEAO) instruments consisted of three unmarned scientific observatories capable of detecting the x-rays emitted by the celestial bodies with high sensitivity and high resolution. The celestial gamma-ray and cosmic-ray fluxes were also collected and studied to learn more about the mysteries of the universe. High-Energy rays cannot be studied by Earth-based observatories because of the obscuring effects of the atmosphere that prevent the rays from reaching the Earth's surface. They had been observed initially by sounding rockets and balloons, and by small satellites that do not possess the needed instrumentation capabilities required for high data resolution and sensitivity. The HEAO carried the instrumentation necessary for this capability. In this photograph, an artist's concept of three HEAO spacecraft is shown: HEAO-1, launched on August 12, 1977; HEAO-2, launched on November 13, 1978; and HEAO-3, launched on September 20. 1979.

  8. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This image is an x-ray view of Eta Carinae Nebula showing bright stars taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The Eta Carinae Nebula is a large and complex cloud of gas, crisscrossed with dark lanes of dust, some 6,500 light years from Earth. Buried deep in this cloud are many bright young stars and a very peculiar variable star. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  9. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    This x-ray photograph of the Supernova remnant Cassiopeia A, taken with the High Energy Astronomy Observatory (HEAO) 2/Einstein Observatory, shows that the regions with fast moving knots of material in the expanding shell are bright and clear. A faint x-ray halo, just outside the bright shell, is interpreted as a shock wave moving ahead of the expanding debris. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  10. NEPTUNE: an under-sea plate scale observatory

    NASA Technical Reports Server (NTRS)

    Beauchamp, P. M.; Heath, G. R.; Maffei, A.; Chave, A.; Howe, B.; Wilcock, W.; Delaney, J.; Kirkham, H.

    2002-01-01

    The NEPTUNE project will establish a linked array of undersea observatories on the Juan de Fuca tectonic plate. This observatory will provide a new kind of research platform for real-time, long-term, plate-scale studies in the ocean and Earth sciences.

  11. Ten years of the Spanish Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Solano, E.

    2015-05-01

    The main objective of the Virtual Observatory (VO) is to guarantee an easy and efficient access and analysis of the information hosted in astronomical archives. The Spanish Virtual Observatory (SVO) is a project that was born in 2004 with the goal of promoting and coordinating the VO-related activities at national level. SVO is also the national contact point for the international VO initiatives, in particular the International Virtual Observatory Alliance (IVOA) and the Euro-VO project. The project, led by Centro de Astrobiología (INTA-CSIC), is structured around four major topics: a) VO compliance of astronomical archives, b) VO-science, c) VO- and data mining-tools, and d) Education and outreach. In this paper I will describe the most important results obtained by the Spanish Virtual Observatory in its first ten years of life as well as the future lines of work.

  12. On-orbit evaluation of the control system/structural mode interactions on OSO-8

    NASA Technical Reports Server (NTRS)

    Slafer, L. I.

    1980-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. This paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments. The test results have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system, and also verified the approach taken to vehicle and servo ground testing.

  13. The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: a hypotheses driven observatory

    NASA Astrophysics Data System (ADS)

    Blöschl, G.; Blaschke, A. P.; Broer, M.; Bucher, C.; Carr, G.; Chen, X.; Eder, A.; Exner-Kittridge, M.; Farnleitner, A.; Flores-Orozco, A.; Haas, P.; Hogan, P.; Kazemi Amiri, A.; Oismüller, M.; Parajka, J.; Silasari, R.; Stadler, P.; Strauß, P.; Vreugdenhil, M.; Wagner, W.; Zessner, M.

    2015-07-01

    Hydrological observatories bear a lot of resemblance to the more traditional research catchment concept but tend to differ in providing more long term facilities that transcend the lifetime of individual projects, are more strongly geared towards performing interdisciplinary research, and are often designed as networks to assist in performing collaborative science. This paper illustrates how the experimental and monitoring setup of an observatory, the 66 ha Hydrological Open Air Laboratory (HOAL) in Petzenkirchen, Lower Austria, has been established in a way that allows meaningful hypothesis testing. The overarching science questions guided site selection, identifying dissertation topics and the base monitoring. The specific hypotheses guided the dedicated monitoring and sampling, individual experiments, and repeated experiments with controlled boundary conditions. The purpose of the HOAL is to advance the understanding of water related flow and transport processes involving sediments, nutrients and microbes in small catchments. The HOAL catchment is ideally suited for this purpose, because it features a range of different runoff generation processes (surface runoff, springs, tile drains, wetlands), the nutrient inputs are known, and it is convenient from a logistic point of view as all instruments can be connected to the power grid and a high speed glassfibre Local Area Network. The multitude of runoff generation mechanisms in the catchment provide a genuine laboratory where hypotheses of flow and transport can be tested, either by controlled experiments or by contrasting sub-regions of different characteristics. This diversity also ensures that the HOAL is representative of a range of catchments around the world and the specific process findings from the HOAL are applicable to a variety of agricultural catchment settings. The HOAL is operated jointly by the Vienna University of Technology and the Federal Agency for Water Management and takes advantage of the

  14. Software architecture of the Magdalena Ridge Observatory Interferometer

    NASA Astrophysics Data System (ADS)

    Farris, Allen; Klinglesmith, Dan; Seamons, John; Torres, Nicolas; Buscher, David; Young, John

    2010-07-01

    Merging software from 36 independent work packages into a coherent, unified software system with a lifespan of twenty years is the challenge faced by the Magdalena Ridge Observatory Interferometer (MROI). We solve this problem by using standardized interface software automatically generated from simple highlevel descriptions of these systems, relying only on Linux, GNU, and POSIX without complex software such as CORBA. This approach, based on gigabit Ethernet with a TCP/IP protocol, provides the flexibility to integrate and manage diverse, independent systems using a centralized supervisory system that provides a database manager, data collectors, fault handling, and an operator interface.

  15. Enabling Virtual Access to Latin-American Southern Observatories

    NASA Astrophysics Data System (ADS)

    Filippi, G.

    2010-12-01

    EVALSO (Enabling Virtual Access to Latin-American Southern Observatories) is an international consortium of nine astronomical organisations and research network operators, part-funded under the European Commission FP7, to create and exploit high-speed bandwidth connections to South American observatories. A brief description of the project is presented. The EVALSO Consortium inaugurated a fibre link between the Paranal Observatory and international networks on 4 November 2010 capable of 10 Gigabit per second.

  16. Establishing Regular Measurements of Halocarbons at Taunus Observatory

    NASA Astrophysics Data System (ADS)

    Schuck, Tanja; Lefrancois, Fides; Gallmann, Franziska; Engel, Andreas

    2017-04-01

    In late 2013 an ongoing whole air flask collection program has been started at the Taunus Observatory (TO) in central Germany. Being a rural site in close vicinity to the densely populated Rhein-Main area with the city of Frankfurt, Taunus Observatory allows to assess local and regional emissions but owed to its altitude of 825m also regularly experiences background conditions. With its large caption area halocarbon measurements at the site have the potential to improve the data base for estimation of regional and total European halogenated greenhouse gas emissions. At current, flask samples are collected weekly for analysis using a GC-MS system at Frankfurt University employing a quadrupole as well as a time-of-flight (TOF) mass spectrometer. The TOF instrument yields full scan mass information and allows for retrospective analysis of so far undetected non-target species. For quality assurance additional samples are collected approximately bi-weekly at the Mace Head Atmospheric Research Station (MHD) analyzed in Frankfurt following the same measurement procedure. Thus the TO time series can be linked to both, the in-situ AGAGE measurements and the NOAA flask sampling program at MHD. In 2017 it is planned to supplement the current flask sampling by employing an in-situ GC-MS system at the site, thus increasing the measurement frequency. We will present the timeseries of selected halocarbons recorded at Taunus Observatory. While there is good agreement of baseline mixing ratios between TO and MHD, measurements at TO are regularly influenced by elevated halocarbon mixing ratios. An analysis of HYSPLIT trajectories for the existing time series revealed significant differences in halocarbon mixing ranges depending on air mass origin.

  17. Development of Armenian-Georgian Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg; Kochiashvili, Nino; Astsatryan, Hrach; Harutyunian, Haik; Magakyan, Tigran; Chargeishvili, Ketevan; Natsvlishvili, Rezo; Kukhianidze, Vasil; Ramishvili, Giorgi; Sargsyan, Lusine; Sinamyan, Parandzem; Kochiashvili, Ia; Mikayelyan, Gor

    2009-10-01

    The Armenian-Georgian Virtual Observatory (ArGVO) project is the first initiative in the world to create a regional VO infrastructure based on national VO projects and regional Grid. The Byurakan and Abastumani Astrophysical Observatories are scientific partners since 1946, after establishment of the Byurakan observatory . The Armenian VO project (ArVO) is being developed since 2005 and is a part of the International Virtual Observatory Alliance (IVOA). It is based on the Digitized First Byurakan Survey (DFBS, the digitized version of famous Markarian survey) and other Armenian archival data. Similarly, the Georgian VO will be created to serve as a research environment to utilize the digitized Georgian plate archives. Therefore, one of the main goals for creation of the regional VO is the digitization of large amounts of plates preserved at the plate stacks of these two observatories. The total amount of plates is more than 100,000 units. Observational programs of high importance have been selected and some 3000 plates will be digitized during the next two years; the priority is being defined by the usefulness of the material for future science projects, like search for new objects, optical identifications of radio, IR, and X-ray sources, study of variability and proper motions, etc. Having the digitized material in VO standards, a VO database through the regional Grid infrastructure will be active. This partnership is being carried out in the framework of the ISTC project A-1606 "Development of Armenian-Georgian Grid Infrastructure and Applications in the Fields of High Energy Physics, Astrophysics and Quantum Physics".

  18. An Integrated Cyberenvironment for Event-Driven Environmental Observatory Research and Education

    NASA Astrophysics Data System (ADS)

    Myers, J.; Minsker, B.; Butler, R.

    2006-12-01

    National environmental observatories will soon provide large-scale data from diverse sensor networks and community models. While much attention is focused on piping data from sensors to archives and users, truly integrating these resources into the everyday research activities of scientists and engineers across the community, and enabling their results and innovations to be brought back into the observatory, also critical to long-term success of the observatories, is often neglected. This talk will give an overview of the Environmental Cyberinfrastructure Demonstrator (ECID) Cyberenvironment for observatory-centric environmental research and education, under development at the National Center for Supercomputing Applications (NCSA), which is designed to address these issues. Cyberenvironments incorporate collaboratory and grid technologies, web services, and other cyberinfrastructure into an overall framework that balances needs for efficient coordination and the ability to innovate. They are designed to support the full scientific lifecycle both in terms of individual experiments moving from data to workflows to publication and at the macro level where new discoveries lead to additional data, models, tools, and conceptual frameworks that augment and evolve community-scale systems such as observatories. The ECID cyberenvironment currently integrates five major components a collaborative portal, workflow engine, event manager, metadata repository, and social network personalization capabilities - that have novel features inspired by the Cyberenvironment concept and enabling powerful environmental research scenarios. A summary of these components and the overall cyberenvironment will be given in this talk, while other posters will give details on several of the components. The summary will be presented within the context of environmental use case scenarios created in collaboration with researchers from the WATERS (WATer and Environmental Research Systems) Network, a

  19. New developments in Seafloor observatory technologies: the SED Module developed in the MONSOON project

    NASA Astrophysics Data System (ADS)

    Italiano, Francesco; Caruso, Cinzia; Corbo, Andrea; Lazzaro, Gianluca; Nigrelli, Alessandra; Sprovieri, Mario; Oliveri, Elvira; Bagnato, Emanuela; Favali, Paolo

    2015-04-01

    In the main frame of the wide range of scientific and technological activities developed by EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org) Research Infrastructure. The MONSOON project (MONitoraggio SOttOmariNo for environmental and energetic purposes) is a FESR (i.e. European funds for social development) funded project by "Regione Siciliana" (industrial call). The final target of the project is to build up a prototype of a seafloor observatory named SED (Submarine Energy Device),.for which specific technological developments in terms of power consumption reduction, new data logger and new sensors have been planned. The SED observatory is planned to operate down to a water depth of 2000m in an extreme marine environment, with the presence of hydrothermal vents. SED is designed to operate as "stand-alone" or near-real-time observatory when connected to a buoy. The final version of the prototype it is planned to be released in June-July 2015 after tests completion. All the components of the observatory have been planned and laboratory-tested by the INGV and CNR public Research Institutions, while the executive plan and the manufacturing has been carried out by the industrial partnership (Eurobuilding SpA, Hitec2000 srl and Innova SpA). All the partners are going to take care of the tests in a real environment. The selected test site is located in the Aeolian islands where the shallow hydrothermal system off the coasts of the Panarea island provided an easy-to access extreme submarine environment with temperatures up to 140°C, pH less than 3 and electrical conductivity double of the normal sea-water. In this hostile environment we tested all the materials planned to be used to manufacture the different parts of the observatory, as well as all the sensors including those off-the-shelf and those planned within the MONSOON project: probes for acoustic signals, dissolved CO2 data, optical fibre-based temperature and pressure The

  20. Biogeochemical Controls on Microbial CO2 and CH4 Production in Polygonal Soils From the Barrow Environmental Observatory

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Roy Chowdhury, T.; Herndon, E.; Gu, B.; Liang, L.; Wullschleger, S. D.

    2014-12-01

    Organic matter buried in Arctic soils and permafrost will become accessible to increased microbial degradation as the ground warms due to climate change. The rates of organic matter degradation and the proportion of CH4 and CO2 greenhouse gasses released in a potential warming feedback cycle depend on the microbial response to warming, organic carbon structure and availability, the pore-water quantity and geochemistry, and available electron acceptors. Significant amounts of iron(II) ions in organic and mineral soils of the active layer in low-centered ice wedge polygons indicate anoxic conditions in most soil horizons. To adapt and improve the representation of these Arctic subsurface processes in terrestrial ecosystem models for the NGEE Arctic project, we examined soil organic matter transformations from elevated and subsided areas of low- and high-centered polygons from interstitial tundra on the Barrow Environmental Observatory (Barrow, AK). Using microcosm incubations at fixed temperatures and controlled thawing systems for frozen soil cores, we investigated the microbiological processes and rates of soil organic matter degradation and greenhouse gas production under anoxic conditions, at ecologically relevant temperatures of -2, +4 or +8 °C. In contrast to the low-centered polygon incubations representing in situ water-saturated conditions, microcosms with unsaturated high-centered polygon samples displayed lower carbon mineralization as either CH4 or CO2. Substantial differences in CH4 and CO2 response curves from different microtopographic samples separate the thermodynamic controls on biological activity from the kinetic controls of microbial growth and migration that together determine the temperature response for greenhouse gas emissions in a warming Arctic.

  1. In-orbit evaluation of the control system/structural mode interactions of the OSO-8 spacecraft

    NASA Technical Reports Server (NTRS)

    Slafer, L. I.

    1979-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. The paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments, and have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system.

  2. On Overview of the Performance and Scientific Results from the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Brinkman, B.; Canizares, C.; Garmire, G.; Murray, S.; VanSpeybroeck, L. P.

    2002-01-01

    The Chandra X-Ray Observatory (CXO) was launched on 1999 July 23 by the Columbia Space Shuttle. The first X-rays focused by the telescope were seen on 1999 August 12 after the satellite systems were activated. Beginning with the first observation, it was clear that the telescope was not damaged by the launch environment and was operating as planned. After the early surprise due to the discovery that the telescope concentrated CCD-damaging low-energy protons far more efficiently than had been expected, the observatory is performing optimally and is returning excellent scientific data. Together with other space observatories, especially XMM-Newton, it is obvious that we have entered a new era of discovery in high-energy astrophysics.

  3. A Dedicated Space Observatory For Time-domain Solar System Science

    NASA Astrophysics Data System (ADS)

    Wong, Michael H.; Ádámkovics, M.; Benecchi, S.; Bjoraker, G.; Clarke, J. T.; de Pater, I.; Hendrix, A. R.; Marchis, F.; McGrath, M.; Noll, K.; Rages, K. A.; Retherford, K.; Smith, E. H.; Strange, N. J.

    2009-09-01

    Time-variable phenomena with scales ranging from minutes to decades have led to a large fraction of recent advances in many aspects of solar system science. We present the scientific motivation for a dedicated space observatory for solar system science. This facility will ideally conduct repeated imaging and spectroscopic observations over a period of 10 years or more. It will execute a selection of long-term projects with interleaved scheduling, resulting in the acquisition of data sets with consistent calibration, long baselines, and optimized sampling intervals. A sparse aperture telescope would be an ideal configuration for the mission, trading decreased sensitivity for reduced payload mass, while preserving spatial resolution. Ultraviolet capability is essential, especially once the Hubble Space Telescope retires. Specific investigations will include volcanism and cryovolcanism (on targets including Io, Titan, Venus, Mars, and Enceladus); zonal flow, vortices, and storm evolution on the giant planets; seasonal cycles in planetary atmospheres; mutual events and orbit determination of multiple small solar system bodies; auroral activity and solar wind interactions; and cometary evolution. The mission will produce a wealth of data products--such as multi-year time-lapse movies of planetary atmospheres--with significant education and public outreach potential. Existing and planned ground- and space-based facilities are not suitable for these time-domain optimized planetary dynamics studies for numerous reasons, including: oversubscription by astrophysical users, field-of-regard limitations, sensitive detector saturation limits that preclude bright planetary targets, and limited mission duration. The abstract author list is a preliminary group of scientists who have shown interest in prior presentations on this topic; interested parties may contact the lead author by 1 September to sign the associated Planetary Science Decadal Survey white paper or by 1 October to

  4. Software development for a gamma-ray burst rapid-response observatory in the US Virgin Islands.

    NASA Astrophysics Data System (ADS)

    Davis, K. A.; Giblin, T. W.; Neff, J. E.; Hakkila, J.; Hartmann, D.

    2004-12-01

    The site is situated near the crest of Crown Mountain on the island of St. Thomas in the US Virgin Islands. The observing site is strategically located 65 W longitude, placing it as the most eastern GRB-dedicated observing site in the western hemisphere. The observatory has a 0.5 m robotic telescope and a Marconi 4240 2048 by 2048 CCD with BVRI filters. The field of view is identical to that of the XRT onboard Swift, 19 by 19 arc minutes. The telescope is operated through the Talon telescope control software. The observatory is notified of a burst trigger through the GRB Coordinates Network (GCN). This GCN notification is received through a socket connection to the control computer on site. A Perl script passes this information to the Talon software, which automatically interrupts concurrent observations and inserts a new GRB observing schedule. Once the observations are made the resulting images are then analyzed in IRAF. A source extraction is necessary to identify known sources and the optical transient. The system is being calibrated for automatic GRB response and is expected to be ready to follow up Swift observations. This work has been supported by NSF and NASA-EPSCoR.

  5. Project Solaris, a Global Network of Autonomous Observatories: Design, Commissioning, and First Science Results

    NASA Astrophysics Data System (ADS)

    Kozłowski, S. K.; Sybilski, P. W.; Konacki, M.; Pawłaszek, R. K.; Ratajczak, M.; Hełminiak, K. G.; Litwicki, M.

    2017-10-01

    We present the design and commissioning of Project Solaris, a global network of autonomous observatories. Solaris is a Polish scientific undertaking aimed at the detection and characterization of circumbinary exoplanets and eclipsing binary stars. To accomplish this, a network of four fully autonomous observatories has been deployed in the Southern Hemisphere: Solaris-1 and Solaris-2 in the South African Astronomical Observatory in South Africa; Solaris-3 in Siding Spring Observatory in Australia; and Solaris-4 in Complejo Astronomico El Leoncito in Argentina. The four stations are nearly identical and are equipped with 0.5-m Ritchey-Crétien (f/15) or Cassegrain (f/9, Solaris-3) optics and high-grade 2 K × 2 K CCD cameras with Johnson and Sloan filter sets. We present the design and implementation of low-level security; data logging and notification systems; weather monitoring components; all-sky vision system, surveillance system; and distributed temperature and humidity sensors. We describe dedicated grounding and lighting protection system design and robust fiber data transfer interfaces in electrically demanding conditions. We discuss the outcomes of our design, as well as the resulting software engineering requirements. We describe our system’s engineering approach to achieve the required level of autonomy, the architecture of the custom high-level industry-grade software that has been designed and implemented specifically for the use of the network. We present the actual status of the project and first photometric results; these include data and models of already studied systems for benchmarking purposes (Wasp-4b, Wasp-64b, and Wasp-98b transits, PG 1663-018, an eclipsing binary with a pulsator) as well J024946-3825.6, an interesting low-mass binary system for which a complete model is provided for the first time.

  6. Portable coastal observatories

    USGS Publications Warehouse

    Frye, Daniel; Butman, Bradford; Johnson, Mark; von der Heydt, Keith; Lerner, Steven

    2000-01-01

    Ocean observational science is in the midst of a paradigm shift from an expeditionary science centered on short research cruises and deployments of internally recording instruments to a sustained observational science where the ocean is monitored on a regular basis, much the way the atmosphere is monitored. While satellite remote sensing is one key way of meeting the challenge of real-time monitoring of large ocean regions, new technologies are required for in situ observations to measure conditions below the ocean surface and to measure ocean characteristics not observable from space. One method of making sustained observations in the coastal ocean is to install a fiber optic cable from shore to the area of interest. This approach has the advantage of providing power to offshore instruments and essentially unlimited bandwidth for data. The LEO-15 observatory offshore of New Jersey (yon Alt et al., 1997) and the planned Katama observatory offshore of Martha's Vineyard (Edson et al., 2000) use this approach. These sites, along with other cabled sites, will play an important role in coastal ocean science in the next decade. Cabled observatories, however, have two drawbacks that limit the number of sites that are likely to be installed. First, the cable and the cable installation are expensive and the shore station needed at the cable terminus is often in an environmentally sensitive area where competing interests must be resolved. Second, cabled sites are inherently limited geographically to sites within reach of the cable, so it is difficult to cover large areas of the coastal ocean.

  7. The Lowell Observatory Predoctoral Scholar Program

    NASA Astrophysics Data System (ADS)

    Prato, Lisa; Nofi, Larissa

    2018-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its tenth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. Strong collaborations, the new Ph.D. program at Northern Arizona University, and cooperative links across the greater Flagstaff astronomical community create a powerful multi-institutional locus in northern Arizona. Lowell Observatory's new 4.3 meter Discovery Channel Telescope is operating at full science capacity and boasts some of the most cutting-edge and exciting capabilities available in optical/infrared astronomy. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2018 are due by May 1, 2018; alternate application dates will be considered on an individual basis.

  8. Acoustic communications for cabled seafloor observatories

    NASA Astrophysics Data System (ADS)

    Freitag, L.; Stojanovic, M.

    2003-04-01

    Cabled seafloor observatories will provide scientists with a continuous presence in both deep and shallow water. In the deep ocean, connecting sensors to seafloor nodes for power and data transfer will require cables and a highly-capable ROV, both of which are potentially expensive. For many applications where very high bandwidth is not required, and where a sensor is already designed to operate on battery power, the use of acoustic links should be considered. Acoustic links are particularly useful for large numbers of low-bandwidth sensors scattered over tens of square kilometers. Sensors used to monitor the chemistry and biology of vent fields are one example. Another important use for acoustic communication is monitoring of AUVs performing pre-programmed or adaptive sampling missions. A high data rate acoustic link with an AUV allows the observer on shore to direct the vehicle in real-time, providing for dynamic event response. Thus both fixed and mobile sensors motivate the development of observatory infrastructure that provides power-efficient, high bandwidth acoustic communication. A proposed system design that can provide the wireless infrastructure, and further examples of its use in networks such as NEPTUNE, are presented.

  9. Detecting Extrasolar Planets With Millimeter-Wave Observatories

    NASA Astrophysics Data System (ADS)

    1996-01-01

    Do nearby stars have planetary systems like our own? How do such systems evolve? How common are such systems? Proposed radio observatories operating at millimeter wavelengths could start answering these questions within the next 6-10 years, according to scientists at the National Radio Astronomy Observatory (NRAO). Bryan Butler, Robert Brown, Richard Simon, Al Wootten and Darrel Emerson, all of NRAO, presented their findings today to the American Astronomical Society meeting in San Antonio, TX. Detecting planets circling other stars is a particularly difficult task, and only a few such planets have been discovered so far. In order to answer fundamental questions about planetary systems and their origin, scientists need to find and study many more extrasolar planets. According to the NRAO scientists, millimeter-wavelength observatories could provide valuable information about extrasolar planetary systems at all stages of their evolution. "With instruments planned by 2005, we could detect planets the size of Jupiter around a solar-type star out to a distance of 100 light-years," said Robert Brown, Associate Director of NRAO. "That means," he added, "that we could survey approximately 2,000 stars of different types to learn if they have planets this size." Millimeter waves occupy the portion of the electromagnetic spectrum between radio microwaves and infrared waves. Telescopes for observing at millimeter wavelengths utilize advanced electronic equipment similar to that used in radio telescopes observing at longer wavelengths. Millimeter-wave observatories offer a number of advantages in the search for extrasolar planets. Planned multi-antenna millimeter-wave telescopes can provide much higher resolving power, or ability to see fine detail, than current optical or infrared telescopes. Millimeter-wave observations would not be degraded by interference from the "zodiacal light" reflected by interplanetary dust, either in the extrasolar system or our own solar system

  10. AUGO II: a comprehensive subauroral zone observatory

    NASA Astrophysics Data System (ADS)

    Schofield, I. S.; Connors, M. G.

    2010-12-01

    A new geophysical observatory dedicated to the study of the aurora borealis will be built 25 km southwest of the town of Athabasca, Alberta, Canada. It is anticipated to see first light in the winter of 2010/2011 and be fully operational in the fall of 2011. Based on the highly successful Athabasca University Geophysical Observatory (AUGO), opened in 2002 at the Athabasca University campus in Athabasca, Alberta, AUGO II will have expanded observational capacity featuring up to eight climate-controlled domed optical observation suites for instrumentation, on-site accommodation for up to six researchers, and most importantly, dark skies free of light pollution from urban development. AUGO II will share the same advantages as its predecessor, one being its location in central Alberta, allowing routine study of the subauroral zone, auroral oval studies during active times, and very rarely of the polar cap. Like the original AUGO, AUGO II will be in close proximity to major highways, be connected to a high bandwidth network, and be within two hour driving distance to the city of Edmonton and its international airport. Opportunities are open for guest researchers in space physics to conduct auroral studies at this new, state-of-the-art research facility through the installation of remotely controlled instruments and/or campaigns. An innovative program of instrument development will accompany the new observatory’s enhanced infrastructure with a focus on magnetics and H-beta meridian scanning photometry.

  11. Social Media Programs at the National Optical Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Sparks, Robert T.; Walker, Constance Elaine; Pompea, Stephen M.

    2015-08-01

    Observatories and other science research organizations want to share their research and activities with the public. The last several years, social media has become and increasingly important venue for communicating information about observatory activities, research and education and public outreach.The National Optical Astronomy Observatory (NOAO) uses a wide variety of social media to communicate with different audiences. NOAO is active on social media platforms including Facebook, Twitter, Google+ and Pinterest. Our social media accounts include those for the National Optical Astronomy Observatory, Cerro Tololo Inter-American Observatory, Kitt Peak National Observatory and our dark skies conservation program Globe at Night.Our social media programs have a variety of audiences. NOAO uses social media to announce and promote NOAO sponsored meetings, observatory news and proposal deadlines to the professional astronomical community. Social media accounts are used to disseminate NOAO press releases, images from the observatory and other science using data from NOAO telescopes.Social media is important in our Education and Public Outreach programs (EPO). Globe at Night has very active facebook and twitter accounts encouraging people to become involved in preserving dark skies. Social media plays a role in recruiting teachers for professional development workshops such as Project Astro.NOAO produces monthly podcasts for the 365 Days of Astronomy podcast featuring interviews with NOAO astronomers. Each podcast highlights the science of an NOAO astronomer, an NOAO operated telescope or instrument, or an NOAO program. A separate series of podcasts is produced for NOAO’s Dark Skies Education programs. All the podcasts are archived at 365daysofastronomy.org.

  12. ADDOSS: Autonomously Deployed Deep-ocean Seismic System - Communications Gateway for Ocean Observatories

    NASA Astrophysics Data System (ADS)

    Laske, Gabi; Berger, Jon; Orcutt, John; Babcock, Jeff

    2014-05-01

    We describe an autonomously deployable, communications gateway designed to provide long-term and near real-time data from ocean observatories. The key features of this new system are its abilities to telemeter sensor data from the seafloor to shore without cables or moorings, and to be deployed without a ship, thereby greatly reducing life-cycle costs. The free-floating surface communications gateway utilizes a Liquid Robotics wave glider comprising a surfboard-sized float towed by a tethered, submerged glider, which converts wave motion into thrust. For navigation, the wave glider is equipped with a small computer, a GPS receiver, a rudder, solar panels and batteries, and an Iridium satellite modem. Acoustic communications connect the subsea instruments and the surface gateway while communications between the gateway and land are provided by the Iridium satellite constellation. Wave gliders have demonstrated trans-oceanic range and long-term station keeping capabilities. The acoustics communications package is mounted in a shallow tow body which utilizes a WHOI micro modem and a Benthos low frequency, directional transducer. A matching modem and transducer is mounted on the ocean bottom package. Tests of the surface gateway in 4350 m of water demonstrated an acoustic efficiency of approximately 396 bits/J. For example, it has the ability to send 4 channels of compressed, 1 sample per second data from the ocean bottom to the gateway with an average power draw of approximately 0.15 W and a latency of less than 3 minutes. This gateway is used to send near real-time data from a broadband ocean bottom seismic observatory, first during short week-to-months long test deployments but will ultimately be designed for a two-year operational life. Such data from presently unobserved oceanic areas are critical for both national and international agencies in monitoring and characterizing earthquakes, tsunamis, and nuclear explosions. We present initial results from a two short

  13. Initiative for the creation of an integrated infrastructure of European Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Puglisi, G.; Bachelery, P.; Ferreira, T. J. L.; Vogfjörd, K. S.

    2012-04-01

    Active volcanic areas in Europe constitute a direct threat to millions of European citizens. The recent Eyjafjallajökull eruption also demonstrated that indirect effects of volcanic activity can present a threat to the economy and the lives of hundreds of million of people living in the whole continental area even in the case of activity of volcanoes with sporadic eruptions. Furthermore, due to the wide political distribution of the European territories, major activities of "European" volcanoes may have a worldwide impact (e.g. on the North Atlantic Ocean, West Indies included, and the Indian Ocean). Our ability to understand volcanic unrest and forecast eruptions depends on the capability of both the monitoring systems to effectively detect the signals generated by the magma rising and on the scientific knowledge necessary to unambiguously interpret these signals. Monitoring of volcanoes is the main focus of volcano observatories, which are Research Infrastructures in the ESFRI vision, because they represent the basic resource for researches in volcanology. In addition, their facilities are needed for the design, implementation and testing of new monitoring techniques. Volcano observatories produce a large amount of monitoring data and represent extraordinary and multidisciplinary laboratories for carrying out innovative joint research. The current distribution of volcano observatories in Europe and their technological state of the art is heterogeneous because of different types of volcanoes, different social requirements, operational structures and scientific background in the different volcanic areas, so that, in some active volcanic areas, observatories are lacking or poorly instrumented. Moreover, as the recent crisis of the ash in the skies over Europe confirms, the assessment of the volcanic hazard cannot be limited to the immediate areas surrounding active volcanoes. The whole European Community would therefore benefit from the creation of a network of

  14. FixO3 : Early progress towards Open Ocean observatory Data Management Harmonisation

    NASA Astrophysics Data System (ADS)

    Pagnani, Maureen; Huber, Robert; Lampitt, Richard

    2014-05-01

    . The data management efforts are central to FixO3. Combined with the procedural and technological harmonisation, tackled in separate work packages, the FixO3 network of observatories will efficiently and cost effectively provide a consistent resource of quality controlled accessible oceanographic data The project website www.fixo3.eu is being developed as both a data showcase and single distribution point, and with database driven tools will enable the sharing of information between the observatories in the most smart and cost effective way. The network of knowledge built throughout the project will become a legacy resource that will ensure access to the unique ensemble data sets only achievable at these key observatories.

  15. The Cosmic Ray Observatory Project in Nebraska and Public Outreach for the Pierre Auger Observatory in Argentina

    NASA Astrophysics Data System (ADS)

    Snow, Gregory

    2005-04-01

    The Cosmic Ray Observatory Project (CROP) is a statewide education and research experiment involving Nebraska high school students, teachers, and college undergraduates in the study of extensive cosmic-ray air showers. A network of high school teams construct, install, and operate school-based detectors in coordination with University of Nebraska physics professors and graduate students. The detector system at each school is an array of scintillation counters recycled from the Chicago Air Shower Array in weather-proof enclosures on the school roof, with a GPS receiver providing a time stamp for cosmic-ray events. The detectors are connected to triggering electronics and a data-acquisition PC inside the building. Students share data via the Internet to search for time coincidences with other sites. CROP has enlisted 26 schools in its first 5 years of operation with the aim of expanding to the 314 high schools in the state over the next several years. The presenter also serves as the Task Leader for Education and Outreach for the Pierre Auger Cosmic Ray Observatory, and selected public outreach activities related to the experiment will be described.

  16. Building a pipeline of talent for operating radio observatories

    NASA Astrophysics Data System (ADS)

    Wingate, Lory M.

    2016-07-01

    The National Radio Astronomy Observatory's (NRAO) National and International Non-Traditional Exchange (NINE) Program teaches concepts of project management and systems engineering in a focused, nine-week, continuous effort that includes a hands-on build project with the objective of constructing and verifying the performance of a student-level basic radio instrument. The combination of using a project management (PM)/systems engineering (SE) methodical approach based on internationally recognized standards in completing this build is to demonstrate clearly to the learner the positive net effects of following methodical approaches to achieving optimal results. It also exposes the learner to basic radio science theory. An additional simple research project is used to impress upon the learner both the methodical approach, and to provide a basic understanding of the functional area of interest to the learner. This program is designed to teach sustainable skills throughout the full spectrum of activities associated with constructing, operating and maintaining radio astronomy observatories. NINE Program learners thereby return to their host sites and implement the program in their own location as a NINE Hub. This requires forming a committed relationship (through a formal Letter of Agreement), establishing a site location, and developing a program that takes into consideration the needs of the community they represent. The anticipated outcome of this program is worldwide partnerships with fast growing radio astronomy communities designed to facilitate the exchange of staff and the mentoring of under-represented1 groups of learners, thereby developing a strong pipeline of global talent to construct, operate and maintain radio astronomy observatories.

  17. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-01-01

    This photograph is of the High Energy Astronomy Observatory (HEAO)-2 telescope being evaluated by engineers in the clean room of the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). The MSFC was heavily engaged in the technical and scientific aspects, testing and calibration, of the HEAO-2 telescope The HEAO-2 was the first imaging and largest x-ray telescope built to date. The X-Ray Calibration Facility was built in 1976 for testing MSFC's HEAO-2. The facility is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produced a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performance in space is predicted. The original facility contained a 1,000-foot long by 3-foot diameter vacuum tube (for the x-ray path) cornecting an x-ray generator and an instrument test chamber. Recently, the facility was upgraded to evaluate the optical elements of NASA's Hubble Space Telescope, Chandra X-Ray Observatory and Compton Gamma-Ray Observatory.

  18. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-06-01

    This photograph is of the High Energy Astronomy Observatory (HEAO)-2 telescope being checked by engineers in the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). The MSFC was heavily engaged in the technical and scientific aspects, testing and calibration, of the HEAO-2 telescope. The HEAO-2 was the first imaging and largest x-ray telescope built to date. The X-Ray Calibration Facility was built in 1976 for testing MSFC's HEAO-2. The facility is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produced a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performance in space is predicted. The original facility contained a 1,000-foot long by 3-foot diameter vacuum tube (for the x-ray path) cornecting an x-ray generator and an instrument test chamber. Recently, the facility was upgraded to evaluate the optical elements of NASA's Hubble Space Telescope, Chandra X-Ray Observatory and Compton Gamma-Ray Observatory.

  19. The Aosta Valley Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Carbognani, A.

    2011-06-01

    OAVdA stands for Astronomical Observatory of the Autonomous Region of the Aosta Valley (Italy). The centre is located in the northwestern Italian Alps, near the border with France and Switzerland (Lat: 45° 47' 22" N, Long: 7° 28' 42" E), at 1675 m above sea level in the Saint-Barthélemy Valley and is managed by the "Fondazione Clément Fillietroz", with funding from local administrations. OAVdA was opened in 2003 as a centre for the popularization of astronomy but, since 2006, the main activity has been scientific research, as a consequence of an official cooperation agreement established with the Italian National Institute for Astrophysics (INAF). In 2009, a planetarium was built near the observatory with a 10-meter dome and 67 seats, which is currently used for educational astronomy. In the year 2009 about 15,200 people visited OAVdA and the planetarium. The staff in 2010 was made up of 12 people, including a scientific team of 5 physicists and astronomers on ESF (European Social Fund) grants and permanently residing at the observatory.

  20. Enhancements to a Superconducting Quantum Interference Device (SQUID) Multiplexer Readout and Control System

    NASA Technical Reports Server (NTRS)

    Forgione, J.; Benford, D. J.; Buchanan, E. D.; Moseley, S. H.; Rebar, J.; Shafer, R. A.

    2004-01-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA s Goddard Space Flight Center acquired a Mark 111 system and subsequently designed upgrades to suit our and our collaborators purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided hooks in the Mark III system to allow readout of signals from outside the Mark 111 system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.