Sample records for observatory eso chile

  1. Relations Between Chile and ESO

    NASA Astrophysics Data System (ADS)

    1994-06-01

    As announced in an earlier Press Release (PR 08/94 of 6 May 1994), a high-ranking ESO delegation visited Santiago de Chile during the week of 24 - 28 May 1994 to discuss various important matters of mutual interest with the Chilean Government. It consisted of Dr. Peter Creola (President of ESO Council), Dr. Catherine Cesarsky (Vice-President of ESO Council), Dr. Henrik Grage (Former Vice-President of ESO Council) and Professor Riccardo Giacconi (ESO Director General), the latter accompanied by his advisers. THE SUPPLEMENTARY TREATY BETWEEN CHILE AND ESO Following a meeting with the ambassadors to Chile of the eight ESO member countries, the ESO delegation was received by the Chilean Minister of Foreign Affairs, Mr. Carlos Figueroa, and members of his staff. The ESO delegation was pleased to receive assurances that the present Chilean Government, like its predecessors, will continue to honour all contractual agreements, in particular the privileges and immunities of this Organisation, which were laid down in the Treaty between ESO and Chile that was signed by the parties in 1963 and ratified the following year. The discussions covered some aspects of the proposed Supplementary Treaty which has been under preparation during the past year. This included in particular the desire of the Chilean side to further increase the percentage of guaranteed time for Chilean astronomers at the future ESO Very Large Telescope (VLT) and also the rules governing the installation by ESO member countries of additional telescopes at the ESO observatories in Chile. ESO invited a Chilean delegation to visit the ESO Headquarters in Garching (Germany) later this year for the final adjustment of the text of the Supplementary Treaty, after which it should be possible to proceed rapidly with the signing and ratification by the Chilean Parliament and the ESO Council. THE SITUATION AROUND PARANAL The ESO delegation expressed its deep concern to the Chilean Government about the continuing legal

  2. Eso's Situation in Chile

    NASA Astrophysics Data System (ADS)

    1995-02-01

    ESO, the European Southern Observatory, in reply to questions raised by the international media, as well as an ongoing debate about the so-called "Paranal case" in Chilean newspapers, would like to make a number of related observations concerning its status and continued operation in that country [1]. THE ESO OBSERVATORY SITES IN CHILE The European Southern Observatory, an international organisation established and supported by eight European countries, has been operating more than 30 years in the Republic of Chile. Here ESO maintains one of the world's prime astronomical observatories on the La Silla mountain in the southern part of the Atacama desert. This location is in the Fourth Chilean Region, some 600 km north of Santiago de Chile. In order to protect the La Silla site against dust and light pollution from possible future mining industries, roads and settlements, ESO early acquired the territory around this site. It totals about 825 sq. km and has effectively contributed to the preservation of its continued, excellent "astronomical" quality. Each year, more than 500 astronomers from European countries, Chile and elsewhere profit from this when they come to La Silla to observe with one or more of the 15 telescopes now located there. In 1987, the ESO Council [2] decided to embark upon one of the most prestigious and technologically advanced projects ever conceived in astronomy, the Very Large Telescope (VLT). It will consist of four interconnected 8.2-metre telescopes and will become the largest optical telescope in the world when it is ready. It is safe to predict that many exciting discoveries will be made with this instrument, and it will undoubtedly play a very important role in our exploration of the distant universe and its many mysteries during the coming decades. THE VLT AND PARANAL In order to find the best site for the VLT, ESO performed a thorough investigation of many possible mountain tops, both near La Silla and in Northern Chile. They showed

  3. President of Czech Republic visits ESO's Paranal Observatory

    NASA Astrophysics Data System (ADS)

    2011-04-01

    On 6 April 2011, the ESO Paranal Observatory was honoured with a visit from the President of the Czech Republic, Václav Klaus, and his wife Livia Klausová, who also took the opportunity to admire Cerro Armazones, the future site of the planned E-ELT. The distinguished visitor was shown the technical installations at the observatory, and was present when the dome of one of the four 8.2-metre Unit Telescopes of ESO's Very Large Telescope opened for a night's observing at Cerro Paranal, the world's most advanced visible-light observatory. "I'm delighted to welcome President Klaus to the Paranal Observatory and to show him first-hand the world-leading astronomical facility that ESO has designed, has built, and operates for European astronomy," said ESO's Director General, Tim de Zeeuw. President Klaus replied, "I am very impressed by the remarkable technology that ESO has built here in the heart of the desert. Czech astronomers are already making good use of these facilities and we look forward to having Czech industry and its scientific community contribute to the future E-ELT." From the VLT platform, the President had the opportunity to admire Cerro Armazones as well as other spectacular views of Chile's Atacama Desert surrounding Paranal. Adjacent to Cerro Paranal, Armazones has been chosen as the site for the future E-ELT (see eso1018). ESO is seeking approval from its governing bodies by the end of 2011 for the go-ahead for the 1-billion euro E-ELT. Construction is expected to begin in 2012 and the start of operations is planned for early in the next decade. President Klaus was accompanied by the Minister of Foreign Affairs of the Czech Republic, Karel Schwarzenberg, the Czech Ambassador in Chile, Zdenek Kubánek, dignitaries of the government, and a Czech industrial delegation. The group was hosted at Paranal by the ESO Director General, Tim de Zeeuw, the ESO Representative in Chile, Massimo Tarenghi, the Director of Operations, Andreas Kaufer, and Jan Palous

  4. ESO Delegation to Visit Chile: the Chile-Eso Treaty and Paranal

    NASA Astrophysics Data System (ADS)

    1994-05-01

    The ESO Council, in its extraordinary session on 28 April 1994, among other matters discussed the relations with the Republic of Chile and the situation around Paranal mountain [1], the designated site for the ESO Very Large Telescope (VLT). Council decided to send a high ranking delegation to Santiago de Chile to discuss with Chilean authorities the pending problems, including the finalisation of the new Treaty between the Republic of Chile and ESO and the legal aspects of the Paranal location. The ESO delegation will consist of Dr. Peter Creola (President of ESO Council), Dr. Catherine Cesarsky (Vice-President of ESO Council), Dr. Henrik Grage (Former Vice-President of ESO Council) and Professor Riccardo Giacconi (ESO Director General), the latter accompanied by his advisers. The delegation will arrive in Chile during the second half of May 1994. The ESO delegation will meet with the Chilean Minister of Foreign Affairs, Mr. Carlos Figueroa, and the Secretary of State in the Ministry of Foreign Affairs, Mr. Jose Miguel Insulza. Other meetings at high level are being planned. The delegation will report about these discussions to the ESO Council during its ordinary session on 7 - 8 June 1994. FOUR PARANAL PHOTOS AVAILABLE A series of four photos which show the current status of the work at Paranal has been prepared. Photographic colour prints for use by the media can be requested from the ESO Information and Photographic Service (please remember to indicate the identification numbers). [1] See ESO Press Release 07/94 of 21 April 1994. PHOTO CAPTIONS ESO PR PHOTO 08/94-1: CERRO PARANAL This aerial photo of the Paranal mountain, the designated site for the ESO Very Large Telescope (VLT), was obtained on 22 March 1994. Paranal is situated in the driest part of the Chilean Atacama desert, approx. 130 km south of the city of Antofagasta, and about 12 km from the Pacific Ocean. In this view towards the West, the ocean is seen in the background. The altitude is 2650 metres

  5. ESO and Chile: 10 Years of Productive Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    2006-06-01

    ESO and the Government of Chile launched today the book "10 Years Exploring the Universe", written by the beneficiaries of the ESO-Chile Joint Committee. This annual fund provides grants for individual Chilean scientists, research infrastructures, scientific congresses, workshops for science teachers and astronomy outreach programmes for the public. In a ceremony held in Santiago on 19 June 2006, the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) and the Chilean Ministry of Foreign Affairs marked the 10th Anniversary of the Supplementary Agreement, which granted to Chilean astronomers up to 10 percent of the total observing time on ESO telescopes. This agreement also established an annual fund for the development of astronomy, managed by the so-called "ESO-Chile Joint Committee". ESO PR Photo 21/06 ESO PR Photo 21/06 Ten Years ESO-Chile Agreement Ceremony The celebration event was hosted by ESO Director General, Dr. Catherine Cesarsky, and the Director of Special Policy for the Chilean Ministry of Foreign Affairs, Ambassador Luis Winter. "ESO's commitment is, and always will be, to promote astronomy and scientific knowledge in the country hosting our observatories", said ESO Director General, Dr. Catherine Cesarsky. "We hope Chile and Europe will continue with great achievements in this fascinating joint adventure, the exploration of the universe." On behalf of the Government of Chile, Ambassador Luis Winter outlined the historical importance of the Supplementary Agreement, ratified by the Chilean Congress in 1996. "Such is the magnitude of ESO-Chile Joint Committee that, only in 2005, this annual fund represented 8 percent of all financing sources for Chilean astronomy, including those from Government and universities", Ambassador Winter said. The ESO Representative and Head of Science in Chile, Dr. Felix Mirabel, and the appointed Chilean astronomer for the ESO-Chile Joint Committee, Dr. Leonardo Bronfman, also took part in the

  6. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  7. Dutch Minister of Science Visits ESO Facilities in Chile

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Mrs. Maria van der Hoeven, the Dutch Minister of Education, Culture and Science, who travelled to the Republic of Chile, arrived at the ESO Paranal Observatory on Friday afternoon, May 13, 2005. The Minister was accompanied, among others, by the Dutch Ambassador to Chile, Mr. Hinkinus Nijenhuis, and Mr. Cornelis van Bochove, the Dutch Director of Science. The distinguished visitors were able to acquaint themselves with one of the foremost European research facilities, the ESO Very Large Telescope (VLT), during an overnight stay at this remote site, and later, with the next major world facility in sub-millimetre and millimetre astronomy, the Atacama Large Millimeter Array (ALMA). At Paranal, the guests were welcomed by the ESO Director General, Dr. Catherine Cesarsky; the ESO Council President, Prof. Piet van der Kruit; the ESO Representative in Chile, Prof. Felix Mirabel; the Director of the La Silla Paranal Observatory, Dr. Jason Spyromilio; by one of the Dutch members of the ESO Council, Prof. Tim de Zeeuw; by the renowned astrophysicist from Leiden, Prof. Ewine van Dishoek, as well as by ESO staff members. The visitors were shown the various high-tech installations at the observatory, including many of the large, front-line VLT astronomical instruments that have been built in collaboration between ESO and European research institutes. Explanations were given by ESO astronomers and engineers and the Minister gained a good impression of the wide range of exciting research programmes that are carried out with the VLT. Having enjoyed the spectacular sunset over the Pacific Ocean from the Paranal deck, the Minister visited the VLT Control Room from where the four 8.2-m Unit Telescopes and the VLT Interferometer (VLTI) are operated. Here, the Minister was invited to follow an observing sequence at the console of the Kueyen (UT2) and Melipal (UT3) telescopes. "I was very impressed, not just by the technology and the science, but most of all by all the people involved

  8. ESO's First Observatory Celebrates 40th Anniversary

    NASA Astrophysics Data System (ADS)

    2009-03-01

    ESO's La Silla Observatory, which is celebrating its 40th anniversary, became the largest astronomical observatory of its time. It led Europe to the frontline of astronomical research, and is still one of the most scientifically productive in ground-based astronomy. ESO PR Photo 12a/09 La Silla Aerial View ESO PR Photo 12b/09 The ESO New Technology Telescope ESO PR Photo 12c/09 SEST on La Silla ESO PR Photo 12d/09 Looking for the best site ESO PR Video 12a/09 ESOcast 5 With about 300 refereed publications attributable to the work of the observatory per year, La Silla remains at the forefront of astronomy. It has led to an enormous number of scientific discoveries, including several "firsts". The HARPS spectrograph is the world's foremost exoplanet hunter. It detected the system around Gliese 581, which contains what may be the first known rocky planet in a habitable zone, outside the Solar System (ESO 22/07). Several telescopes at La Silla played a crucial role in discovering that the expansion of the Universe is accelerating (ESO 21/98) and in linking gamma-ray bursts -- the most energetic explosions in the Universe since the Big Bang - with the explosions of massive stars (ESO 15/98). Since 1987, the ESO La Silla Observatory has also played an important role in the study and follow-up of the nearest supernova, SN 1987A (ESO 08/07). "The La Silla Observatory continues to offer the astronomical community exceptional capabilities," says ESO Director General, Tim de Zeeuw. "It was ESO's first presence in Chile and as such, it triggered a very long and fruitful collaboration with this country and its scientific community." The La Silla Observatory is located at the edge of the Chilean Atacama Desert, one of the driest and loneliest areas of the world. Like other observatories in this geographical area, La Silla is located far from sources of polluting light and, as the Paranal Observatory that houses the Very Large Telescope, it has one of the darkest and clearest

  9. Core network infrastructure supporting the VLT at ESO Paranal in Chile

    NASA Astrophysics Data System (ADS)

    Reay, Harold

    2000-06-01

    In October 1997 a number of projects were started at ESO's Paranal Observatory at Cerro Paranal in Chile to upgrade the communications infrastructure in place at the time. The planned upgrades were to internal systems such as computer data networks and telephone installations and also data links connecting Paranal to other ESO sites. This paper details the installation work carried out on the Paranal Core Network (PCN) during the period of October 1997 to December 1999. These installations were to provide both short term solutions to the requirement for reliable high bandwidth network connectivity between Paranal and ESO HQ in Garching, Germany in time for UTI (Antu) first light and perhaps more importantly, to provide the core systems necessary for a site moving towards operational status. This paper explains the reasons for using particular cable types, network topology, and fiber backbone design and implementation. We explain why it was decided to install the PCN in two distinct stages and how equipment used in temporary installations was re-used in the Very Large Telescope networks. Finally we describe the tools used to monitor network and satellite link performance and will discuss whether network backbone bandwidth meets the expected utilization and how this bandwidth can easily be increased in the future should there be a requirement.

  10. A new mix of power for the ESO installations in Chile: greener, more reliable, cheaper

    NASA Astrophysics Data System (ADS)

    Filippi, G.; Tamai, R.; Kalaitzoglou, D.; Wild, W.; Delorme, A.; Rioseco, D.

    2016-07-01

    The highest sky quality demands for astronomical research impose to locate observatories often in areas not easily reached by the existing power infrastructures. At the same time, availability and cost of power is a primary factor for sustainable operations. Power may also be a potential source for CO2 pollution. As part of its green initiatives, ESO is in the process of replacing the power sources for its own, La Silla and Paranal-Armazones, and shared, ALMA, installations in Chile in order to provide them with more reliable, affordable, and smaller CO2 footprint power solutions. The connectivity to the Chilean interconnected power systems (grid) which is to extensively use Non-Conventional Renewable Energy (NCRE) as well as the use of less polluting fuels wherever self-generation cannot be avoided are key building blocks for the solutions selected for every site. In addition, considerations such as the environmental impact and - if required - the partnership with other entities have also to be taken into account. After years of preparatory work to which the Chilean Authorities provided great help and support, ESO has now launched an articulated program to upgrade the existing agreements/facilities in i) the La Silla Observatory, from free to regulated grid client status due to an agreement with a Solar Farm private initiative, in ii) the Paranal-Armazones Observatory, from local generation using liquefied petroleum gas (LPG) to connection to the grid which is to extensively use NCRE, and last but not least, in iii) the ALMA Observatory where ESO participates together with North American and East Asian partners, from replacing the LPG as fuel for the turbine local generation system with the use of less polluting natural gas (NG) supplied by a pipe connection to eliminate the pollution caused by the LPG trucks (currently 1 LPG truck from the VIII region, Bio Bio, to the II region, ALMA and back every day, for a total of 3000km). The technologies used and the status

  11. UK Announces Intention to Join ESO

    NASA Astrophysics Data System (ADS)

    2000-11-01

    (Atacama Large Millimeter Array) in Chile and the very large optical/infrared telescopes now undergoing conceptual studies. ESO membership will give UK astronomers access to the suite of four world-class 8.2-meter VLT Unit Telescopes at the Paranal Observatory (Chile), as well as other state-of-the-art facilities at ESO's other observatory at La Silla. Through PPARC the UK already participates in joint collaborative European science programmes such as CERN and the European Space Agency (ESA), which have already proved their value on the world scale. Joining ESO will consolidate this policy, strengthen ESO and enhance the future vigour of European astronomy. Statements Commenting on the funding announcement, Prof. Ian Halliday , PPARC's CEO, said that " this new funding will ensure our physicists and astronomers remain at the forefront of international research - leading in discoveries that push back the frontiers of knowledge - and the UK economy will also benefit through the provision of highly trained people and the resulting advances in IT and commercial spin-offs ". Prof. Mike Edmunds , UCW Cardiff, and Chairman of the UK Astronomy Review Panel which recently set out a programme of opportunities and priorities for the next 10 - 20 years added that " this is excellent news for UK science and lays the foundation for cutting edge research over the next ten years. British astronomers will be delighted by the Government's rapid and positive response to their case. " Speaking on behalf of the ESO Organisation and the community of more than 2500 astronomers in the ESO member states [2], the ESO Director General, Dr. Catherine Cesarsky , declared: "When ESO was created in 1962, the UK decided not to join, because of access to other facilities in the Southern Hemisphere. But now ESO has developed into one of the world's main astronomical organisations, with top technology and operating the VLT at Paranal, the largest and most efficient optical/infrared telescope facility in the

  12. ESO Council Decides to Continue VLT Project at Paranal

    NASA Astrophysics Data System (ADS)

    1994-08-01

    The Council [1] of the European Southern Observatory has met in extraordinary session at the ESO Headquarters in Garching near Munich on August 8 and 9, 1994. The main agenda items were concerned with the recent developments around ESO's relations with the host state, the Republic of Chile, as well as the status of the organisation's main project, the 16-metre equivalent Very Large Telescope (VLT) which will become the world's largest optical telescope. Council had decided to hold this special meeting [2] because of various uncertainties that have arisen in connection with the implementation of the VLT Project at Cerro Paranal, approx. 130 kilometres south of Antofagasta, capital of the II Region in Chile. Following continued consultations at different levels within the ESO member states and after careful consideration of all aspects of the current situation - including various supportive actions by the Chilean Government as well as the incessive attacks against this international organisation from certain sides reported in the media in that country - Council took the important decision to continue the construction of the VLT Observatory at Paranal, while at the same time requesting the ESO Management to pursue the ongoing studies of alternative solutions. THE COUNCIL DECISIONS In particular, the ESO Council took note of recent positive developments which have occurred since the May 1994 round of discussions with the Chilean authorities in Santiago. The confirmation of ESO's immunities as an International Organization in Chile, contained in a number of important statements and documents, is considered a significant step by the Chilean Government to insure to ESO the unhindered erection and later operation of the VLT on Paranal. Under these circumstances and in order to maintain progress on the VLT project, the ESO Council authorized the ESO Management to continue the on-site work at Paranal. Council also took note of the desire expressed by the Chilean Government

  13. Brazil to Join the European Southern Observatory

    NASA Astrophysics Data System (ADS)

    2010-12-01

    The Federative Republic of Brazil has yesterday signed the formal accession agreement paving the way for it to become a Member State of the European Southern Observatory (ESO). Following government ratification Brazil will become the fifteenth Member State and the first from outside Europe. On 29 December 2010, at a ceremony in Brasilia, the Brazilian Minister of Science and Technology, Sergio Machado Rezende and the ESO Director General, Tim de Zeeuw signed the formal accession agreement aiming to make Brazil a Member State of the European Southern Observatory. Brazil will become the fifteen Member State and the first from outside Europe. Since the agreement means accession to an international convention, the agreement must now be submitted to the Brazilian Parliament for ratification [1]. The signing of the agreement followed the unanimous approval by the ESO Council during an extraordinary meeting on 21 December 2010. "Joining ESO will give new impetus to the development of science, technology and innovation in Brazil as part of the considerable efforts our government is making to keep the country advancing in these strategic areas," says Rezende. The European Southern Observatory has a long history of successful involvement with South America, ever since Chile was selected as the best site for its observatories in 1963. Until now, however, no non-European country has joined ESO as a Member State. "The membership of Brazil will give the vibrant Brazilian astronomical community full access to the most productive observatory in the world and open up opportunities for Brazilian high-tech industry to contribute to the European Extremely Large Telescope project. It will also bring new resources and skills to the organisation at the right time for them to make a major contribution to this exciting project," adds ESO Director General, Tim de Zeeuw. The European Extremely Large Telescope (E-ELT) telescope design phase was recently completed and a major review was

  14. ESO's Hidden Treasures Brought to Light

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Adam Kiil. 19. NGC 2467 - number 2 by Josh Barrington. 20. Haffner 18 and 19 by Javier Fuentes. Igor Chekalin, winner of the trip to Paranal, says: "It was a great experience and pleasure to work with such amazing data. As an amateur astrophotographer, this was the most difficult processing and post-processing job I have ever done. My participation in the Hidden Treasures competition gave me a range of challenges, from installing new software to studying techniques and even operating systems that I did not know before." The success of the ESO's Hidden Treasures 2010 competition and the enthusiasm of the skilled participants made it easy to decide to run a follow-up to the competition. Stay tuned and check www.eso.org for news about ESO's Hidden Treasures 2011. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  15. ESO Reflex: a graphical workflow engine for data reduction

    NASA Astrophysics Data System (ADS)

    Hook, Richard; Ullgrén, Marko; Romaniello, Martino; Maisala, Sami; Oittinen, Tero; Solin, Otto; Savolainen, Ville; Järveläinen, Pekka; Tyynelä, Jani; Péron, Michèle; Ballester, Pascal; Gabasch, Armin; Izzo, Carlo

    ESO Reflex is a prototype software tool that provides a novel approach to astronomical data reduction by integrating a modern graphical workflow system (Taverna) with existing legacy data reduction algorithms. Most of the raw data produced by instruments at the ESO Very Large Telescope (VLT) in Chile are reduced using recipes. These are compiled C applications following an ESO standard and utilising routines provided by the Common Pipeline Library (CPL). Currently these are run in batch mode as part of the data flow system to generate the input to the ESO/VLT quality control process and are also exported for use offline. ESO Reflex can invoke CPL-based recipes in a flexible way through a general purpose graphical interface. ESO Reflex is based on the Taverna system that was originally developed within the UK life-sciences community. Workflows have been created so far for three VLT/VLTI instruments, and the GUI allows the user to make changes to these or create workflows of their own. Python scripts or IDL procedures can be easily brought into workflows and a variety of visualisation and display options, including custom product inspection and validation steps, are available. Taverna is intended for use with web services and experiments using ESO Reflex to access Virtual Observatory web services have been successfully performed. ESO Reflex is the main product developed by Sampo, a project led by ESO and conducted by a software development team from Finland as an in-kind contribution to joining ESO. The goal was to look into the needs of the ESO community in the area of data reduction environments and to create pilot software products that illustrate critical steps along the road to a new system. Sampo concluded early in 2008. This contribution will describe ESO Reflex and show several examples of its use both locally and using Virtual Observatory remote web services. ESO Reflex is expected to be released to the community in early 2009.

  16. ESO Advanced Data Products for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Retzlaff, J.; Delmotte, N.; Rite, C.; Rosati, P.; Slijkhuis, R.; Vandame, B.

    2006-07-01

    Advanced Data Products, that is, completely reduced, fully characterized science-ready data sets, play a crucial role for the success of the Virtual Observatory as a whole. We report on on-going work at ESO towards the creation and publication of Advanced Data Products in compliance with present VO standards on resource metadata. The new deep NIR multi-color mosaic of the GOODS/CDF-S region is used to showcase different aspects of the entire process: data reduction employing our MVM-based reduction pipeline, calibration and data characterization procedures, standardization of metadata content, and, finally, a prospect of the scientific potential illustrated by new results on deep galaxy number counts.

  17. Positions of Asteroids Obtained with the GPO Telescope at ESO, Chile and with the Kvistaberg Schmidt Telescope

    NASA Astrophysics Data System (ADS)

    Lagerkvist, C.-I.; Olofsson, K.; From, A.; Hammarback, G.; Magnusson, P.; Morell, O.

    1985-01-01

    In this paper we present 101 positions of asteroids obtained during Augnst 1982 with the GPO astrograph at ESO, Chile and with the Kvistaberg Schmidt telescope during September 1979 and February 1981.

  18. Observing facilities at the European Southern Observatory (ESO) in Chile for cometary observations

    NASA Technical Reports Server (NTRS)

    Schnur, G. F. O.; Kohoutek, L.; Rahe, J.

    1981-01-01

    The (ESO) is located on the mountain La Silla (geographical coordinates: 4h42m55s10 west, -29 deg 15' 25".8 south, 2400 m elevation. The size of the telescopes ranges from a 40 cm Astrograph to the 3.6 m Richey-Chretien telescope. Future telescopes are discussed: a 2.2 m RC-Telescope which will be identical with the German 2.2 m telescope on Calor Alto in SE-Spain, and a 3.5 m telescope, the New Technology Telescope. In addition to these telescopes, a great number of auxiliary instrumentation are operational. Because ESO has to serve all requests of the visiting astronomers these instruments are designed for very different applications. The telescopes and auxiliary instruments that are especially suited for cometary observations are discussed. The dicussion is divided into three parts: photography, photometry-polarimetry and spectroscopy.

  19. Reaching New Heights in Astronomy - ESO Long Term Perspectives

    NASA Astrophysics Data System (ADS)

    de Zeeuw, T.

    2016-12-01

    A comprehensive description of ESO in the current global astronomical context, and its plans for the next decade and beyond, are presented. This survey covers all aspects of the Organisation, including the optical-infrared programme at the La Silla Paranal Observatory, the submillimetre facilities ALMA and APEX, the construction of the 39-metre European Extremely Large Telescope and the science operation of these facilities. An extension of the current optical/infrared/submillimetre facilities into multi-messenger astronomy has been made with the decision to host the southern Cherenkov Telescope Array at Paranal. The structure of the Organisation is presented and the further development of the staff is described within the scope of the long-range financial planning. The role of Chile is highlighted and expansion of the number of Member States beyond the current 15 is discussed. The strengths of the ESO model, together with challenges as well as possible new opportunities and initiatives, are examined and a strategy for the future of ESO is outlined.

  20. Promoting Dark Sky Protection in Chile: the Gabriel Mistral IDA Dark Sky Sanctuary and Other AURA Initiatives

    NASA Astrophysics Data System (ADS)

    Smith, R. Chris; Smith, Malcolm; Pompea, Stephen; Sanhueza, Pedro; AURA-Chile EPO Team

    2018-01-01

    For over 20 years, AURA has been leading efforts promoting the protection of dark skies in northern Chile. Efforts began in the early 1990s at AURA's Cerro Tololo Inter-American Observatory (CTIO), working in collaboration with other international observatories in Chile including Las Campanas Observatory (LCO) and the European Southern Observatory (ESO). CTIO also partnered with local communities, for example supporting Vicuña's effort to establish the first municipal observatory in Chile. Today we have developed a multifaceted effort of dark sky protection, including proactive government relations at national and local levels, a strong educational and public outreach program, and a program of highlighting international recognition of the dark skies through the IDA Dark Sky Places program. Work on international recognition has included the declaration of the Gabriel Mistral IDA Dark Sky Sanctuary, the first such IDA sanctuary in the world.

  1. Implementing an Education and Outreach Program for the Gemini Observatory in Chile.

    NASA Astrophysics Data System (ADS)

    Garcia, M. A.

    2006-08-01

    Beginning in 2001, the Gemini Observatory began the development of an innovative and aggressive education and outreach program at its Southern Hemisphere site in northern Chile. A principal focus of this effort is centered on local education and outreach to communities surrounding the observatory and its base facility in La Serena Chile. Programs are now established with local schools using two portable StarLab planetaria, an internet-based teacher exchange called StarTeachers and multiple partnerships with local educational institutions. Other elements include a CD-ROM-based virtual tour that allows students, teachers and the public to experience the observatory's sites in Chile and Hawaii. This virtual environment allows interaction using a variety of immersive scenarios such as a simulated observation using real data from Gemini. Pilot projects like "Live from Gemini" are currently being developed which use internet videoconferencing technologies to bring the observatory's facilities into classrooms at universities and remote institutions. Lessons learned from the implementation of these and other programs will be introduced and the challenges of developing educational programming in a developing country will be shared.

  2. ESO Successfully Tests Automation of Telescope Operations

    NASA Astrophysics Data System (ADS)

    1997-02-01

    referred to as the VLT Data Flow System , now being perfected by the ESO Data Management Division for use on ESO's Very Large Telescope project. First tests at the NTT On February 5, a team of software engineers and astronomers from ESO used a first version of the new VLT Data Flow System to perform observations on ESO's New Technology Telescope (NTT) at the La Silla Observatory in Chile. A computer file containing a complete description of an observation (for instance, object position in the sky, filtres and exposure time, and other relevant information) prepared in advance by an astronomer was transferred via the satellite link from the ESO Headquarters in Germany to the NTT computers at La Silla and executed on the control system of the telescope. The telescope then moved to the correct position in the sky, the camera was activated and a few minutes later, a processed image a distant galaxy appeared on the screen in front of the observers. The image was saved in an automatic archive system that writes the astronomical data on CD-ROM. The entire process took place automatically and demonstrated that this system is capable of taking high quality data from the sky at the best possible time and delivering the results to the astronomer, efficiently and in the most convenient form. Further developments This is the first time that a ground-based telescope has been operated under the new system. This successful initial test bodes well for the start-up of the VLT. During 1997, ESO will further develop the data flow system in preparation for the beginning of commissioning of the first VLT 8.2-metre unit, less then 12 months from now. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  3. EVALSO: A New High-speed Data Link to Chilean Observatories

    NASA Astrophysics Data System (ADS)

    2010-11-01

    Stretching 100 kilometres through Chile's harsh Atacama Desert, a newly inaugurated data cable is creating new opportunities at ESO's Paranal Observatory and the Observatorio Cerro Armazones. Connecting these facilities to the main Latin American scientific data backbone completes the last gap in the high-speed link between the observatories and Europe. This new cable is part of the EVALSO (Enabling Virtual Access to Latin American Southern Observatories) project [1], a European Commission FP7 [2] co-funded programme co-ordinated by the University of Trieste that includes ESO, Observatorio Cerro Armazones (OCA, part of Ruhr-Universität Bochum), the Chilean academic network REUNA and other organisations. As well as the cable itself, the EVALSO project involves buying capacity on existing infrastructure to complete a high-bandwidth connection from the Paranal area to ESO's headquarters near Munich, Germany. Project co-ordinator Fernando Liello said: "This project has been an excellent collaboration between the consortium members. As well as giving a fast connection to the two observatories, it brings wider benefits to the academic communities both in Europe and Latin America." The sites of Paranal and Armazones are ideal for astronomical observation due to their high altitude, clear skies and remoteness from light pollution. But their location means they are far from any pre-existing communications infrastructure, which until now has left them dependent on a microwave link to send scientific data back to a base station near Antofagasta. Telescopes at ESO's Paranal observatory produce well over 100 gigabytes of data per night, equivalent to more than 20 DVDs, even after compressing the files. While the existing link is sufficient to carry the data from the current generation of instruments at the Very Large Telescope (VLT), it does not have the bandwidth to handle data from the VISTA telescope (Visible and Infrared Survey Telescope for Astronomy, see eso0949), or for

  4. Awesome Universe: an exhibition with images that showcase celestial objects as seen by ESO's observatories and associated activities

    NASA Astrophysics Data System (ADS)

    Marin-Farrona, A. M.

    2015-05-01

    In September 2013, an ESO exhibition was shown in Santander: ``Awesome Universe -- the Cosmos through the eyes of the European Southern Observatory". Around the exhibition, were proposed several activities: guide tours for children, younger and adults, workshops, film projections... In this way, the exhibition was visited by more than two thousand persons. We must keep in mind that Santander is a small city and its population does not usually take part in outreach activity. With this contribution, we want to teach the way in which it is possible to take advantage of science exhibitions. It made possible to show stunning images that showcase celestial objects as seen by ESO's observatories to the great majority of Santander population, and to awaken their interest in or enthusiasm for science.

  5. German Foreign Minister Visits Paranal Observatory

    NASA Astrophysics Data System (ADS)

    2002-03-01

    During his current tour of countries in South America, the Honourable Foreign Minister of Germany, Mr. Joschka Fischer, stopped over at the ESO Paranal Observatory Wednesday night (March 6 - 7, 2002). Arriving in Antofagasta, capital of the II Chilean region, the Foreign Minister and his suite was met by local Chilean officials, headed by Mr. Jorge Molina, Intendente of the Region, as well as His Excellency, the German Ambassador to Chile, Mr. Georg CS Dick and others. In the afternoon of March 6, the Foreign Minister, accompanied by a distinguished delegation from the German Federal Parliament as well as by businessmen from Germany, travelled to Paranal, site of the world's largest optical/infrared astronomical facility, the ESO Very Large Telescope (VLT). The delegation was welcomed by the Observatory Director, Dr. Roberto Gilmozzi, the VLT Programme Manager, Professor Massimo Tarenghi, the ESO Representative in Chile, Mr. Daniel Hofstadt and ESO staff members, and also by Mr. Reinhard Junker, Deputy Director General (European Co-operation) at the German Ministry for Education and Research. The visitors were shown the various high-tech installations at this remote desert site, some of which have been constructed by German firms. Moreover, most of the large, front-line VLT astronomical instruments have been built in collaboration between ESO and European research institutes, several of these in Germany. One of the latest arrivals to Paranal, the CONICA camera (cf. ESO PR 25/01 ), was built under an ESO contract by the Max-Planck-Institutes for Astronomy (MPIA, in Heidelberg) and Extraterrestrial Physics (MPE, in Garching). The guests had the opportunity to enjoy the spectacular sunset over the Pacific Ocean from the terrace of the new Residencia building ( Photos 05/02 ). At the beginning of the night, the Minister was invited to the Control Room for the VLT Interferometer (VLTI) from where this unique new facility ( ESO PR 23/01 ) is now being thoroughly tested

  6. ESO takes the public on an astronomical journey "Around the World in 80 Telescopes"

    NASA Astrophysics Data System (ADS)

    2009-03-01

    A live 24-hour free public video webcast, "Around the World in 80 Telescopes", will take place from 3 April 09:00 UT/GMT to 4 April 09:00 UT/GMT, chasing day and night around the globe to let viewers "visit" some of the most advanced astronomical telescopes on and off the planet. The webcast, organised by ESO for the International Year of Astronomy 2009 (IYA2009), is the first time that so many large observatories have been linked together for a public event. ESO PR Photo 13a/09 Map of Participating Observatories ESO PR Photo 13b/09 100 Hours of Astronomy logo Viewers will see new images of the cosmos, find out what observatories in their home countries or on the other side of the planet are discovering, send in questions and messages, and discover what astronomers are doing right now. Participating telescopes include those at observatories in Chile such as ESO's Very Large Telescope and La Silla, the Hawaii-based telescopes Gemini North and Keck, the Anglo-Australian Telescope, telescopes in the Canary Islands, the Southern African Large Telescope, space-based telescopes such as the NASA/ESA Hubble Space Telescope, ESA XMM-Newton and Integral, and many more. "Around the World in 80 Telescopes" will take viewers to every continent, including Antarctica! The webcast production will be hosted at ESO's headquarters near Munich, Germany, with live internet streaming by Ustream.tv. Anyone with a web browser supporting Adobe Flash will be able to follow the show, free of charge, from the website www.100hoursofastronomy.org and be a part of the project by sending messages and questions. The video player can be freely embedded on other websites. TV stations, web portals and science centres can also use the high quality feed. Representatives of the media who wish to report from the "front-line" and interview the team should get in touch. "Around the World in 80 Telescopes" is a major component of the 100 Hours of Astronomy (100HA), a Cornerstone project of the International

  7. Report on the 2009 ESO Fellows Symposium

    NASA Astrophysics Data System (ADS)

    Emsellem, Eric; West, Michael; Leibundgut, Bruno

    2009-09-01

    The fourth ESO Fellows Symposium took place in Garching from 8-10 June 2009. This year's symposium brought together 28 ESO Fellows from Chile and Germany to meet their colleagues from across the ocean, discuss their research and provide feedback on ESO's Fellowship programme. This year's symposium also included training workshops to enhance the practical skills of ESO Fellows in today's competitive job market.

  8. Finland to Join ESO

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Finland will become the eleventh member state of the European Southern Observatory. In a ceremony at the ESO Headquarters in Garching on 9 February 2004, an Agreement to this effect was signed by the Finnish Minister of Education and Science, Ms. Tuula Haatainen and the ESO Director General, Dr. Catherine Cesarsky, in the presence of other high officials from Finland and the ESO member states.

  9. ESO Highlights in 2008

    NASA Astrophysics Data System (ADS)

    2009-01-01

    As is now the tradition, the European Southern Observatory looks back at the exciting moments of last year. 2008 was in several aspects an exceptionally good year. Over the year, ESO's telescopes provided data for more than 700 scientific publications in refereed journals, making ESO the most productive ground-based observatory in the world. ESO PR Highlights 2008 ESO PR Photo 01a/09 The image above is a clickable map. These are only some of the press releases issued by ESO in 2008. For a full listing, please go to ESO 2008 page. Austria signed the agreement to join the other 13 ESO member states (ESO 11/08 and 20/08), while the year marked the 10th anniversary of first light for ESO's "perfect science machine", the Very Large Telescope (ESO 16/08 and 17/08). The ALMA project, for which ESO is the European partner, had a major milestone in December, as the observatory was equipped with its first antenna (ESO 49/08). Also the Atacama Pathfinder Experiment (APEX) telescope impressed this year with some very impressive and publicly visible results. Highlights came in many fields: Astronomers for instance used the Very Large Telescope (VLT) to discover and image a probable giant planet long sought around the star Beta Pictoris (ESO 42/08). This is now the eighth extrasolar planet to have been imaged since the VLT imaged the first extrasolar planet in 2004 (three of eight were imaged with VLT). The VLT also enabled three students to confirm the nature of a unique planet (ESO 45/08). This extraordinary find, which turned up during their research project, is a planet about five times as massive as Jupiter. This is the first planet discovered orbiting a fast-rotating hot star. The world's foremost planet-hunting instrument, HARPS, located at ESO's La Silla observatory, scored a new first, finding a system of three super-Earths around a star (ESO 19/08). Based on the complete HARPS sample, astronomers now think that one Sun-like star out of three harbours short orbit, low

  10. ESO Director General to Become President of AUI

    NASA Astrophysics Data System (ADS)

    1998-11-01

    The appointment of Professor Riccardo Giacconi , Director General of the European Southern Observatory (ESO) since January 1, 1993, to the Presidency of Associated Universities, Inc. ( AUI ) in the USA, has been jointly announced by Professor Paul C. Martin, Chair of AUI's Board of Trustees and Mr. Henrik Grage, President of the ESO Council. Professor Giacconi will assume this new position at the end of his term at ESO as of July 1, 1999. AUI is a not-for-profit science management corporation that operates the National Radio Astronomy Observatory ( NRAO) under a Cooperative Agreement with the National Science Foundation (NSF). Corporate headquarters are located in Washington, D.C. The President is its chief executive officer. Nine northeastern universities joined in founding AUI in 1946: Columbia University, Cornell University, Harvard University, The Johns Hopkins University, Massachusetts Institute of Technology, the University of Pennsylvania, Princeton University, the University of Rochester, and Yale University. Over the years, AUI has taken on a broad national character with a diversified Board of Trustees from universities and other institutions across the United States. ESO is an intergovernmental organization, at present with the following member countries: Belgium, Denmark, France, Germany, Italy, The Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO was founded in 1962 to establish and operate an astronomical observatory in the southern hemisphere and to promote and organize co-operation in astronomical research in Europe. While the ESO Headquarters are situated in Europe, the observing facilities are located in Chile (South America). The organization's main administrative and technical departments are located at the ESO Headquarters, in Garching near Munich, Germany. They include a number of highly specialized facilities, e.g. the optical, infrared, detector and instrumentation laboratories, all

  11. ESO Demonstration Project with the NRAO 12-m Antenna

    NASA Astrophysics Data System (ADS)

    Heald, R.; Karban, R.

    2000-03-01

    During the months of September through November 1999, an ALMA joint demonstration project between the European Southern Observatory (ESO) and the National Radio Astronomy Observatory (NRAO) was carried out in Socorro/New Mexico. During this period, Robert Karban (ESO) and Ron Heald (NRAO) worked together on the ESO Demonstration Project. The project integrated ESO software and existing NRAO software (a prototype for the future ALMA control software) to control the motion of the Kitt Peak 12-m antenna. ESO software from the VLT provided the operator interface and coordinate transformation software, while Pat Wallace's TPOINT provided the pointing- model software.

  12. Visits to La Plata Observatory

    NASA Astrophysics Data System (ADS)

    Feinstein, A.

    1985-03-01

    La Plata Observatory will welcome visitors to ESO-La Silla that are willing to make a stop at Buenos Aires on their trip to Chile or on their way back. There is a nice guesthouse at the Observatory that can be used, for a couple of days or so, by astronomers interested in visiting the Observatory and delivering talks on their research work to the Argentine colleagues. No payments can, however, be made at present. La Plata is at 60 km from Buenos Aires. In the same area lie the Instituto de Astronomia y Fisica dei Espacio (IAFE), in Buenos Aires proper, and the Instituto Argentino de Radioastronomia (IAR). about 40 km from Buenos Aires on the way to La Plata. Those interested should contacl: Sr Decano Prof. Cesar A. Mondinalli, or Dr Alejandro Feinstein, Observatorio Astron6mico, Paseo dei Bosque, 1900 La Plata, Argentina. Telex: 31216 CESLA AR.

  13. ESO Telescope Designer Raymond Wilson Wins Prestigious Kavli Award for Astrophysics

    NASA Astrophysics Data System (ADS)

    2010-06-01

    with four individual telescopes with 17.5 cm thick 8.2-metre mirrors. Active optics has contributed towards making the VLT the world's most successful ground-based observatory and will be an integral part of ESO's European Extremely Large Telescope (E-ELT) project. Active optics technology is also part of the twin 10-metre Keck telescopes, the Subaru telescope's 8.2-metre mirror and the two 8.1-metre Gemini telescopes. Co-prize winners Jerry Nelson and Roger Angel respectively pioneered the use of segmentation in telescope primary mirrors - as used on the Keck telescopes, and the development of lightweight mirrors with short focal ratios. A webcast from Oslo, Norway, announcing the prize winners is available at www.kavlifoundation.org and www.kavliprize.no. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  14. Protection of Existing and Potential Astronomical Sites in Chile - an Update.

    NASA Astrophysics Data System (ADS)

    Smith, M. G.; Sanhueza, P.; Norman, D.; Schwarz, H.; Orellana, D.

    2002-12-01

    The IAU's Working Group on Controlling Light Pollution (iauwg) has declared Mauna Kea and a wide strip of Northern Chile between Antofagasta and Chajnanator as top priorities for its efforts to protect existing and potential sites in the Northern and Southern hemispheres respectively. This report provides an update on the iauwg's co-ordinated efforts to protect areas around the major international optical observatories in Chile, as well as the "Chilean Special Zone" (CSZ) mentioned above. This zone is of current and potential interest for the installation of extremely large optical telescopes and includes the ALMA radio-astronomy site. The CSZ is potentially vulnerable to adverse effects of mining in the region. Progess has been made in demonstrating to local mining interests within the CSZ the economic advantages of quality lighting. Educational and outreach activities to a variety of target audiences are building on legislation covering dark skies - itself part of work by the Chilean government to protect the natural heritage of Chile. Substantial good will was generated by an international, bilingual conference held last March in Chile. Just in the region around AURA's Observatory in Chile (Gemini South, CTIO and SOAR), a portable planetarium has been used to reach out to over 600 teachers and 65,000 pupils in the RedLaSer schools network within the last three years. This has attracted the direct interest of Chile's Ministry of Education. Videoconferencing over Internet2 is being used for educational purposes between Chile and various sites in the US. The NSF- initiated Mamalluca municipal observatory now receives more visitors than all the international observatories in Chile combined and is the focus of an expanding local industry of astronomical eco-tourism. Most of this work was supported by funding from, or via, the US NSF through CTIO and Gemini, and from ESO, OCIW, CONAMA and the IDA.

  15. Britain Approaches ESO about Installation of Major New Telescope at Paranal

    NASA Astrophysics Data System (ADS)

    2000-02-01

    The Executive Board of the UK Visible and Infrared Survey Telescope (VISTA) project announced today [1] that it is aiming at the installation of a new and powerful astronomical telescope at the ESO Paranal Observatory (Chile). This 4-metre telescope is a specialised wide-angle facility equipped with powerful cameras and efficient detectors that will enable it to obtain deep images of large sky areas in short time. These survey observations will be made in several wavebands in the optical and, in particular, the near-infrared region of the electromagnetic spectrum. VISTA will become the largest and most effective telescope of its type when it enters into operation in 2004. It is a project of a consortium of 18 UK universities [2]. Construction is expected to start in spring 2000. Funding of the project was announced in May 1999, as one of the first allocations from the "Joint Infrastructure Fund (JIF)", an initiative of the UK Government's Department of Trade and Industry, the Wellcome Trust, and the Higher Education Funding Council for England. ESO's Director General, Dr. Catherine Cesarsky , is very pleased with this decision. She received a mandate from the ESO Council in December 1999 to negotiate a contract with the UK Particle Physics and Astronomy Research Council (PPARC) , acting on behalf of the VISTA Executive Board, for the installation of VISTA at Paranal and now looks forward to settle the associated legal and operational details with her British counterparts at good pace. "The installation of VISTA at Paranal will be of great benefit to all European astronomers", she says. "The placement of a survey telescope of this size next to ESO's VLT, the world's largest optical telescope, opens a plethora of exciting opportunities for joint research projects. Deep observations with VISTA, especially in infrared wavebands, will provide a most valuable, first census of large regions of space. This will most certainly lead to the discoveries of many new and

  16. ESO telbib: Linking In and Reaching Out

    NASA Astrophysics Data System (ADS)

    Grothkopf, U.; Meakins, S.

    2015-04-01

    Measuring an observatory's research output is an integral part of its science operations. Like many other observatories, ESO tracks scholarly papers that use observational data from ESO facilities and uses state-of-the-art tools to create, maintain, and further develop the Telescope Bibliography database (telbib). While telbib started out as a stand-alone tool mostly used to compile lists of papers, it has by now developed into a multi-faceted, interlinked system. The core of the telbib database is links between scientific papers and observational data generated by the La Silla Paranal Observatory residing in the ESO archive. This functionality has also been deployed for ALMA data. In addition, telbib reaches out to several other systems, including ESO press releases, the NASA ADS Abstract Service, databases at the CDS Strasbourg, and impact scores at Altmetric.com. We illustrate these features to show how the interconnected telbib system enhances the content of the database as well as the user experience.

  17. Finland to Join ESO

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Finland will become the eleventh member state of the European Southern Observatory (ESO) [1]. Today, during a ceremony at the ESO Headquarters in Garching (Germany), a corresponding Agreement was signed by the Finnish Minister of Education and Science, Ms. Tuula Haatainen and the ESO Director General, Dr. Catherine Cesarsky, in the presence of other high officials from Finland and the ESO member states (see Video Clip 02/04 below). Following subsequent ratification by the Finnish Parliament of the ESO Convention and the associated protocols [2], it is foreseen that Finland will formally join ESO on July 1, 2004. Uniting European Astronomy ESO PR Photo 03/04 ESO PR Photo 03/04 Caption : Signing of the Finland-ESO Agreement on February 9, 2004, at the ESO Headquarters in Garching (Germany). At the table, the ESO Director General, Dr. Catherine Cesarsky, and the Finnish Minister of Education and Science, Ms. Tuula Haatainen . [Preview - JPEG: 400 x 499 pix - 52k] [Normal - JPEG: 800 x 997 pix - 720k] [Full Res - JPEG: 2126 x 2649 pix - 2.9M] The Finnish Minister of Education and Science, Ms. Tuula Haatainen, began her speech with these words: "On behalf of Finland, I am happy and proud that we are now joining the European Southern Observatory, one of the most successful megaprojects of European science. ESO is an excellent example of the potential of European cooperation in science, and along with the ALMA project, more and more of global cooperation as well." She also mentioned that besides science ESO offers many technological challenges and opportunities. And she added: "In Finland we will try to promote also technological and industrial cooperation with ESO, and we hope that the ESO side will help us to create good working relations. I am confident that Finland's membership in ESO will be beneficial to both sides." Dr. Catherine Cesarsky, ESO Director General, warmly welcomed the Finnish intention to join ESO. "With the accession of their country to ESO, Finnish

  18. Professor Tim de Zeeuw Takes Up Duty as New ESO Director General

    NASA Astrophysics Data System (ADS)

    2007-09-01

    On 1 September, Tim de Zeeuw became the new ESO Director General, succeeding Catherine Cesarsky. In his first day in office, he kindly agreed to answer a few questions. ESO PR Photo 38/07 ESO PR Video 38/07 Watch the Video! How would you describe the current period for astronomy? Tim de Zeeuw: We are in an extremely exciting time for astronomy and I think this is understood worldwide and not just by astronomers. The technology is now available to look not only at the farthest objects in the Universe, where the light left a long time ago, allowing us to see how the Universe evolved and developed, but we can even detect signatures of planets around other stars, and that answers an age-old question which is a fundamental question in all of science, and really excites the general public. How do you see the role of ESO in this context? Tim de Zeeuw: ESO has a very important role in the context of European and worldwide astronomy because it is one of the leading organisations for ground-based astronomy. You may even say it is the pre-eminent organisation. Therefore, we have both an opportunity and a responsibility to lead the further developments in astronomy. Where do you see ESO developing in the coming years? Tim de Zeeuw: I see three main goals for ESO in the coming years. The first one is to get the best possible science out of the Very Large Telescope, the interferometer and the survey telescopes, all of them on Paranal. The second is to build ALMA, the new observatory at 5 000 metres in the high Andes. Together with our North American and East Asian partners, we need to deliver this on budget and on time, and prepare the European astronomers for leading the science. The third main goal is to design a world-leading Extremely Large Telescope (ELT), which may have a main mirror with a diameter larger than 40 metres and will enable wonderful science. And of course, we don't only want to design it, we also want to construct it. And what about La Silla? Tim de Zeeuw: La

  19. E-ELT Site Chosen - World's Biggest Eye on the Sky to be Located on Armazones, Chile

    NASA Astrophysics Data System (ADS)

    2010-04-01

    parameters had to be taken into account as well, such as the costs of construction and operations, and the operational and scientific synergy with other major facilities (VLT/VLTI, VISTA, VST, ALMA and SKA etc). In March 2010, the ESO Council was provided with a preliminary report with the main conclusions from the E-ELT Site Selection Advisory Committee [1]. These conclusions confirmed that all the sites examined in the final shortlist (Armazones, Ventarrones, Tolonchar and Vizcachas in Chile, and La Palma in Spain) have very good conditions for astronomical observing, each one with its particular strengths. The technical report concluded that Cerro Armazones, near Paranal, stands out as the clearly preferred site, because it has the best balance of sky quality for all the factors considered and can be operated in an integrated fashion with ESO's Paranal Observatory. Cerro Armazones and Paranal share the same ideal conditions for astronomical observations. In particular, over 320 nights are clear per year. Taking into account the very clear recommendation of the Site Selection Advisory Committee and all other relevant aspects, especially the scientific quality of the site, Council has now endorsed the choice of Cerro Armazones as the E-ELT baseline site [2]. "Adding the transformational scientific capabilities of the E-ELT to the already tremendously powerful integrated VLT observatory guarantees the long-term future of Paranal as the most advanced optical/infrared observatory in the world and further strengthens ESO's position as the world-leading organisation for ground-based astronomy," says de Zeeuw. In anticipation of the choice of Cerro Armazones as the future site of the E-ELT and to facilitate and support the project, the Chilean Government has agreed to donate to ESO a substantial tract of land contiguous to ESO's Paranal property and containing Armazones in order to ensure the continued protection of the site against all adverse influences, in particular light

  20. Thirty-Seven Years of Service with ESO!

    NASA Astrophysics Data System (ADS)

    Breysacher, J.

    2002-12-01

    On December 1st, 2002, after thirty- seven years of service, first in Chile and then in Garching, Ms. Christa Euler will leave ESO to enjoy a welldeserved retirement. Among the current staff, she is probably the only person who started her career at ESO just four years after the Organization was founded.

  1. ESO and NSF Sign Agreement on ALMA

    NASA Astrophysics Data System (ADS)

    2003-02-01

    Green Light for World's Most Powerful Radio Observatory On February 25, 2003, the European Southern Observatory (ESO) and the US National Science Foundation (NSF) are signing a historic agreement to construct and operate the world's largest and most powerful radio telescope, operating at millimeter and sub-millimeter wavelength. The Director General of ESO, Dr. Catherine Cesarsky, and the Director of the NSF, Dr. Rita Colwell, act for their respective organizations. Known as the Atacama Large Millimeter Array (ALMA), the future facility will encompass sixty-four interconnected 12-meter antennae at a unique, high-altitude site at Chajnantor in the Atacama region of northern Chile. ALMA is a joint project between Europe and North America. In Europe, ESO is leading on behalf of its ten member countries and Spain. In North America, the NSF also acts for the National Research Council of Canada and executes the project through the National Radio Astronomy Observatory (NRAO) operated by Associated Universities, Inc. (AUI). The conclusion of the ESO-NSF Agreement now gives the final green light for the ALMA project. The total cost of approximately 650 million Euro (or US Dollars) is shared equally between the two partners. Dr. Cesarsky is excited: "This agreement signifies the start of a great project of contemporary astronomy and astrophysics. Representing Europe, and in collaboration with many laboratories and institutes on this continent, we together look forward towards wonderful research projects. With ALMA we may learn how the earliest galaxies in the Universe really looked like, to mention but one of the many eagerly awaited opportunities with this marvellous facility". "With this agreement, we usher in a new age of research in astronomy" says Dr. Colwell. "By working together in this truly global partnership, the international astronomy community will be able to ensure the research capabilities needed to meet the long-term demands of our scientific enterprise, and

  2. Integration of the instrument control electronics for the ESPRESSO spectrograph at ESO-VLT

    NASA Astrophysics Data System (ADS)

    Baldini, V.; Calderone, G.; Cirami, R.; Coretti, I.; Cristiani, S.; Di Marcantonio, P.; Mégevand, D.; Riva, M.; Santin, P.

    2016-07-01

    ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations of the ESO - Very Large Telescope site, is now in its integration phase. The large number of functions of this complex instrument are fully controlled by a Beckhoff PLC based control electronics architecture. Four small and one large cabinets host the main electronic parts to control all the sensors, motorized stages and other analogue and digital functions of ESPRESSO. The Instrument Control Electronics (ICE) is built following the latest ESO standards and requirements. Two main PLC CPUs are used and are programmed through the TwinCAT Beckhoff dedicated software. The assembly, integration and verification phase of ESPRESSO, due to its distributed nature and different geographical locations of the consortium partners, is quite challenging. After the preliminary assembling and test of the electronic components at the Astronomical Observatory of Trieste and the test of some electronics and software parts at ESO (Garching), the complete system for the control of the four Front End Unit (FEU) arms of ESPRESSO has been fully assembled and tested in Merate (Italy) at the beginning of 2016. After these first tests, the system will be located at the Geneva Observatory (Switzerland) until the Preliminary Acceptance Europe (PAE) and finally shipped to Chile for the commissioning. This paper describes the integration strategy of the ICE workpackage of ESPRESSO, the hardware and software tests that have been performed, with an overall view of the experience gained during these project's phases.

  3. ESO & NOT photometric monitoring of the Cloverleaf quasar

    NASA Astrophysics Data System (ADS)

    Ostensen, R.; Remy, M.; Lindblad, P. O.; Refsdal, S.; Stabell, R.; Surdej, J.; Barthel, P. D.; Emanuelsen, P. I.; Festin, L.; Gosset, E.; Hainaut, O.; Hakala, P.; Hjelm, M.; Hjorth, J.; Hutsemekers, D.; Jablonski, M.; Kaas, A. A.; Kristen, H.; Larsson, S.; Magain, P.; Pettersson, B.; Pospieszalska-Surdej, A.; Smette, A.; Teuber, J.; Thomsen, B.; van Drom, E.

    1997-12-01

    The Cloverleaf quasar, H1413+117, has been photometrically monitored at ESO (La Silla, Chile) and with the NOT (La Palma, Spain) during the period 1987--1994. All good quality CCD frames have been successfully analysed using two independent methods (i.e. an automatic image decomposition technique and an interactive CLEAN algorithm). The photometric results from the two methods are found to be very similar, and they show that the four lensed QSO images vary significantly in brightness (by up to 0.45 mag), nearly in parallel. The lightcurve of the $D$ component presents some slight departures from the general trend which are very likely caused by micro-lensing effects. Upper limits, at the 99% confidence level, of 150 days on the absolute value for the time delays between the photometric lightcurves of this quadruply imaged variable QSO, are derived. This is unfortunately too large to constrain the lens model but there is little doubt that a better sampling of the lightcurves should allow to accurately derive these time delays. Pending a direct detection of the lensing galaxy (position and redshift), this system thus constitutes another good candidate for a direct and independent determination of the Hubble parameter. Based on observations collected at the European Southern Observatory (La Silla, Chile) and with the Nordic Optical Telescope (La Palma, Spain). Table 1. Logbook for the ESO and NOT observations together with photometric results for the Cloverleaf quasar. This long table can be accessed on the WWW at the URL address: http://vela.astro.ulg.ac.be/grav_lens/glp_homepage.html}

  4. ESO Helps Antofagasta Region after the Earthquake

    NASA Astrophysics Data System (ADS)

    2007-11-01

    On November 14 at 12:41 local time, a major earthquake with magnitude 7.7 on the Richter scale affected the north of Chile. The epicentre was located 35 km from the city of Tocopilla and 170 km of Antofagasta. Two persons died and tens were injured, while buildings were damaged in several cities. In the Maria Elena-Tocopilla area, several thousand homes were destroyed or damaged. In an act of solidarity with the local community and its authorities, ESO immediately announced a donation of 30 millions Chilean pesos (around 40,000 euros) to Antofagasta's Regional Government to support reconstruction in the Region II. ESO and its staff have been shocked by the earthquake and its impact on local communities, especially on the people of Tocopilla. The ESO Representation in Chile formally contacted the regional authorities to explore with them possible ways to collaborate in this difficult moment. In addition, many of ESO staff are personally cooperating with the victims, under the coordination of Cruz Roja, the organisation currently in charge of implementing individual efforts.

  5. ESO unveils an amazing, interactive, 360-degree panoramic view of the entire night sky

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The first of three images of ESO's GigaGalaxy Zoom project - a new magnificent 800-million-pixel panorama of the entire sky as seen from ESO's observing sites in Chile - has just been released online. The project allows stargazers to explore and experience the Universe as it is seen with the unaided eye from the darkest and best viewing locations in the world. This 360-degree panoramic image, covering the entire celestial sphere, reveals the cosmic landscape that surrounds our tiny blue planet. This gorgeous starscape serves as the first of three extremely high-resolution images featured in the GigaGalaxy Zoom project, launched by ESO within the framework of the International Year of Astronomy 2009 (IYA2009). GigaGalaxy Zoom features a web tool that allows users to take a breathtaking dive into our Milky Way. With this tool users can learn more about many different and exciting objects in the image, such as multicoloured nebulae and exploding stars, just by clicking on them. In this way, the project seeks to link the sky we can all see with the deep, "hidden" cosmos that astronomers study on a daily basis. The wonderful quality of the images is a testament to the splendour of the night sky at ESO's sites in Chile, which are the most productive astronomical observatories in the world. The plane of our Milky Way Galaxy, which we see edge-on from our perspective on Earth, cuts a luminous swath across the image. The projection used in GigaGalaxy Zoom place the viewer in front of our Galaxy with the Galactic Plane running horizontally through the image - almost as if we were looking at the Milky Way from the outside. From this vantage point, the general components of our spiral galaxy come clearly into view, including its disc, marbled with both dark and glowing nebulae, which harbours bright, young stars, as well as the Galaxy's central bulge and its satellite galaxies. The painstaking production of this image came about as a collaboration between ESO, the renowned

  6. Finland Becomes Eleventh ESO Member State

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Finland has become the eleventh member state of the European Southern Observatory (ESO) [1]. The formal accession procedure was carried through as planned and has now been completed. Following the signing of the corresponding Agreement earlier this year (ESO PR 02/04), acceptance by the Finnish Parliament and ratification by the Finnish President of the Agreement as well as the ESO Convention and the associated protocols in June [2] and the deposit of the instruments of accession today, Finland has now officially joined ESO. ESO warmly welcomes the new member country and its scientific community that is renowned for their expertise in many frontline areas. The related opportunities will contribute to strenghtening of pioneering research with the powerful facilities at ESO's observatories, to the benefit of Astronomy and Astrophysics as well as European science in general. ESO also looks forward to collaboration with the Finnish high-tech industry. For Finland, the membership in ESO is motivated by scientific and technological objectives as well as by the objective of improving the public understanding of science. The Finnish Government is committed to increasing the public research funding in order to improve the quality, impact and internationalisation of research. Membership in ESO offers unique facilities for astronomical research which would not otherwise be available for Finnish astronomers. Finland is also very interested in taking part in technological development projects in fields like ICT, optics and instrumentation. For young scientists and engineers, ESO is a challenging, international working and learning environment. Finland has already taken part in the educational programmes of ESO, and as a member this activity will be broadened and intensified. In Finland there are also several science journalists and a large community of amateur astronomers who will be very happy to take part in ESO's outreach activities.

  7. ESO PR Highlights in 2007

    NASA Astrophysics Data System (ADS)

    2008-01-01

    circular cluster of stars (ESO 12/07), hunting galaxies (ESO 40/07), discovering teenage galaxies (ESO 52/07), and finding the first known triplet of supermassive black holes (ESO 02/07). On the instrumentation side, the VLT has been equipped with a new 'eye' to study the Universe in the near-infrared, Hawk-I (ESO 36/07), while the Laser Guide Star used at the VLT to create an artificial star appears to fulfil all its promises (ESO 27/07 and 33/07). Successful tests were also done of a crucial technology for Extremely Large Telescopes (ESO 19/07). The VLT Rapid Response Mode showed it unique capabilities in the study of gamma-ray bursts (ESO 17/07), as did the REM, a robotic telescope at La Silla, that allowed astronomers to measure for the first time the speed of matter ejected in these tremendous explosions (ESO 26/07). The world's largest bolometer camera for submillimetre astronomy, LABOCA, is now in service at the 12-m APEX telescope (ESO 35/07), while the construction of ALMA moves forwards. Two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object (ESO 10/07), the ALMA Operations Support Facility is almost completed (ESO 13/07), and the ALMA transporters were shipped to Chile (ESO 32/07 and 45/07). ESO is also present on the educational front with, for example, its annual international contest for students, Catch a Star (ESO 21/07 and 46/07). In April 2007, ESO organised with its partners the second EIROforum Science on Stage festival, a unique event, showcasing the very best of today's science education and to which participated the European Commissioner for Science and Research, Janez Potočnik. The Commissioner also visited the Paranal observatory (ESO 48/07) and took part in the observation of a beautiful galaxy (ESO 49/07). This was not the only nice image coming out from ESO telescopes. A rather amazing Cosmic Bird - or a gigantic Tinker Bell - was photographed (ESO 55/07), as well as a Purple Rose

  8. Protecting the Local Dark-Sky Areas around the International Observatories in Chile.

    NASA Astrophysics Data System (ADS)

    Smith, M. G.

    2001-12-01

    This report covers efforts by IAU Commission 50's new Working Group on Light Pollution to slow or halt the spread of incipient light pollution near the VLT, the Magellan 6.5m telescopes, Gemini South, SOAR, Blanco and many smaller telescopes in Chile. An effort has just begun to protect the ALMA site in Northern Chile from RFI. Such work includes extensive outreach programs to the local population, schools and industry as well as to local, regional and national levels of government in Chile. The group is working internationally with such organizations as the IDA; one member has recently led the production of "The first world atlas of the artificial night-sky brightness". These efforts have resulted in the first national-level environmental legislation covering dark skies as part of a government effort to protect the environment. Chilean manufacturers are now producing competitive, full-cut-off, street lighting designed specifically to comply with the new legislation. The Chilean national tourism agency is supporting "Astronomical Tourism" based on the dark, clear skies of Chile. An international conference on Controlling Light Pollution and RFI will be held in La Serena, Chile on 5-7 March, 2002, backed up by a parallel meeting of Chilean amateur astronomers. Much work remains to be done. Most of this work is supported by funding from the US National Science Foundation through CTIO, and from ESO, OCIW and CONAMA.

  9. Obituary: ESO Astronomer, Alphonse Florsch (Zeekoegat 1962)

    NASA Astrophysics Data System (ADS)

    Swanepoel, Eric

    2015-10-01

    In June 1962 Alphonse Florsch, his wife Marguerite and their two sons Bruno (7) and Nicolas (5), came from France to work at the European Southern Observatory (ESO) at Zeekoegat (Florsch 2005-2006). This was during the time of site testing to find the best location for ESO.

  10. Portugal to Accede to ESO

    NASA Astrophysics Data System (ADS)

    2000-06-01

    The Republic of Portugal will become the ninth member state of the European Southern Observatory (ESO) [1]. Today, during a ceremony at the ESO Headquarters in Garching (Germany), a corresponding Agreement was signed by the Portuguese Minister of Science and Technology, José Mariano Gago and the ESO Director General, Catherine Cesarsky , in the presence of other high officials from Portugal and the ESO member states (see Video Clip 05/00 below). Following subsequent ratification by the Portuguese Parliament of the ESO Convention and the associated protocols [2], it is foreseen that Portugal will formally join this organisation on January 1, 2001. Uniting European Astronomy ESO PR Photo 16/00 ESO PR Photo 16/00 [Preview - JPEG: 400 x 405 pix - 160k] [Normal - JPEG: 800 x 809 pix - 408k] Caption : Signing of the Portugal-ESO Agreement on June 27, 2000, at the ESO Headquarters in Garching (Germany). At the table, the ESO Director General, Catherine Cesarsky , and the Portuguese Minister of Science and Technology, José Mariano Gago . In his speech, the Portuguese Minister of Science and Technology, José Mariano Gago , stated that "the accession of Portugal to ESO is the result of a joint effort by ESO and Portugal during the last ten years. It was made possible by the rapid Portuguese scientific development and by the growth and internationalisation of its scientific community." He continued: "Portugal is fully committed to European scientific and technological development. We will devote our best efforts to the success of ESO". Catherine Cesarsky , ESO Director General since 1999, warmly welcomed the Portuguese intention to join ESO. "With the accession of their country to ESO, Portuguese astronomers will have great opportunities for working on research programmes at the frontiers of modern astrophysics." "This is indeed a good time to join ESO", she added. "The four 8.2-m VLT Unit Telescopes with their many first-class instruments are nearly ready, and the VLT

  11. ESO PR Highlights in 2000

    NASA Astrophysics Data System (ADS)

    2001-01-01

    At the beginning of the new millennium, ESO and its staff are facing the future with confidence. The four 8.2-m Unit Telescopes of the Very Large Telescope (VLT) are in great shape and the VLT Interferometer (VLTI) will soon have "first fringes". The intercontinental ALMA project is progressing well and concepts for extremely large optical/infrared telescopes are being studied. They can also look back at a fruitful and rewarding past year. Perhaps the most important, single development has been the rapid transition of the Very Large Telescope (VLT). From being a "high-tech project under construction" it has now become a highly proficient, world-class astronomical observatory. This trend is clearly reflected in ESO's Press Releases , as more and more front-line scientific results emerge from rich data obtained at this very efficient facility. There were also exciting news from several of the instruments at La Silla. At the same time, the ESO community may soon grow, as steps towards membership are being taken by various European countries. Throughout 2000, a total of 54 PR communications were made, with a large number of Press Photos and Video Clips, cf. the 2000 PR Index. Some of the ESO PR highlights may be accessed directly via the clickable image on the present page. ESO PR Photo 01/01 is also available in a larger (non-clickable) version [ JPEG: 566 x 566 pix - 112k]. It may be reproduced, if credit is given to the European Southern Observatory.

  12. TCS and peripheral robotization and upgrade on the ESO 1-meter telescope at La Silla Observatory

    NASA Astrophysics Data System (ADS)

    Ropert, S.; Suc, V.; Jordán, A.; Tala, M.; Liedtke, P.; Royo, S.

    2016-07-01

    In this work we describe the robotization and upgrade of the ESO 1m telescope located at La Silla Observatory. The ESO 1m telescope was the first telescope installed in La Silla, in 1966. It now hosts as a main instrument the FIber Dual EchellE Optical Spectrograph (FIDEOS), a high resolution spectrograph designed for precise Radial Velocity (RV) measurements on bright stars. In order to meet this project's requirements, the Telescope Control System (TCS) and some of its mechanical peripherals needed to be upgraded. The TCS was also upgraded into a modern and robust software running on a group of single board computers interacting together as a network with the CoolObs TCS developed by ObsTech. One of the particularities of the CoolObs TCS is that it allows to fuse the input signals of 2 encoders per axis in order to achieve high precision and resolution of the tracking with moderate cost encoders. One encoder is installed on axis at the telescope and the other on axis at the motor. The TCS was also integrated with the FIDEOS instrument system so that all the system can be controlled through the same remote user interface. Our modern TCS unit allows the user to run observations remotely through a secured internet web interface, minimizing the need of an on-site observer and opening a new age in robotic astronomy for the ESO 1m telescope.

  13. Closing the Loop for ALMA - Three antennas working in unison open new bright year for revolutionary observatory

    NASA Astrophysics Data System (ADS)

    2010-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) has passed a key milestone crucial for the high quality images that will be the trademark of this revolutionary new tool for astronomy. Astronomers and engineers have, for the first time, successfully linked three of the observatory's antennas at the 5000-metre elevation observing site in northern Chile. Having three antennas observing in unison paves the way for precise images of the cool Universe at unprecedented resolution, by providing the missing link to correct errors that arise when only two antennas are used. On 20 November 2009 the third antenna for the ALMA observatory was successfully installed at the Array Operations Site, the observatory's "high site" on the Chajnantor plateau, at an altitude of 5000 metres in the Chilean Andes. Later, after a series of technical tests, astronomers and engineers observed the first signals from an astronomical source making use of all three 12-metre diameter antennas linked together, and are now working around the clock to establish the stability and readiness of the system. "The first signal using just two ALMA antennas, observed in October, can be compared to a baby's first babblings," says Leonardo Testi, the European Project Scientist for ALMA at ESO. "Observing with a third antenna represents the moment when the baby says its very first, meaningful word - not yet a full sentence, but overwhelmingly exciting! The linking of three antennas is indeed the first actual step towards our goal of achieving precise and sharp images at submillimetre wavelengths." The successful linking of the antenna trio was a key test of the full electronic and software system now being installed at ALMA, and its success anticipates the future capabilities of the observatory. When complete, ALMA will have at least 66 high-tech antennas operating together as an "interferometer", working as a single, huge telescope probing the sky in the millimetre and submillimetre wavelengths of light

  14. ESO's early history, 1953 - 1975. V. Earliest developments in Chile; 24 March 1966: the road on La Silla dedicated.

    NASA Astrophysics Data System (ADS)

    Blaauw, A.

    1989-12-01

    While - as described in the previous article - in Europe Directorate and Council established ESO's administrative basis, and the first telescopes were built or acquired under the guidance of the Instrumentation Committee, work in Chile proceeded equally energetically. Under the leadership of Andre Muller, since January 1, 1964 Superintendent for Chile, a great variety of tasks had to be taken up: building up staff for administration and construction, organizing office facilities, setting up temporary camps as basis for the activities on and around La Silla, learning to know the Chilean world of government and Drovincial authorities-and of contractors, etc. A challenging but demanding assignment! For it is one thing to build up an organization in one's own country with its well-known legal structure and social traditions - but another one to do so in a foreign country with unfamiliar language, different customs and different rules.

  15. Monitoring the northern Chile megathrust with the Integrated Plate boundary Observatory Chile (IPOC)

    NASA Astrophysics Data System (ADS)

    Schurr, Bernd; Asch, Günter; Cailleau, Beatrice; Diaz, Guillermo Chong; Barrientos, Sergio; Vilotte, Jean-Pierre; Oncken, Onno

    2010-05-01

    The oceanic Nazca plate subducts beneath the continental South American plate by recurrent rupture of large segments of its interface. The resulting earthquakes are among the largest and most frequent on Earth. Along the Chilean and southern Peruvian margin, all sizeable segments have ruptured at least once in the past 150 years for which there exist historic and/or instrumental records. The one segment that is most mature for re-rupture stretches for more than 500 km along the northernmost Chilean coast between roughly -23° and -18° latitude. It last broke in 1877 in a magnitude ~8.5 earthquake, triggering a major Tsunami. From the historical record, it has been known to have a recurrence cycle of approximately 110 years. The adjoining segments to the south and north broke rather recently in 1995 and 2001 in M>8 earthquakes and an M 7.7 earthquake intruded into the southern part of the seismic gap in 2007 between Antofagasto and Tocopilla. This makes northern Chile a unique natural laboratory to observe a subduction megathrust at various stages of its seismic cycle. For that purpose, installation of long-term observatories started in 2006 in a close cooperation of the Universidad de Chile (Santiago, Chile), the Universidad Catolica del Norte (Antofagasta, Chile), the Institut de Physique du Globe de Paris (France), and the GFZ German research Centre for Geosciences (Germany). Currently we are operating 17 modern seismological stations equipped with STS-2 broadband seismometers and accelerometers (EPI sensor). At least two more stations will be installed in the near future. Continuous GPS, tilt, creep, climate and magnetotellurics measurements are complementing the seismological part. A majority of the sites provide data near real-time. We will present results of seismic monitoring including analysis of the 2007 M7.7 Tocopilla earthquake sequence that was recorded during the installation stage of the observatory. We relocated the mainshock and about a one

  16. First Giant Mirror for the ESO VLT Ready at REOSC

    NASA Astrophysics Data System (ADS)

    1995-11-01

    with a replacement value of about 20 million DEM, was transported from Mainz to Saint Pierre du Perray in July 1993. The shaping and polishing phases lasted two years and were completed in October 1995. After one month's hard work, dedicated to optical and mechanical verifications by ESO and REOSC, the mirror's various characteristics have now been found to be in accordance with the contract specifications. Following the technical acceptance, the first mirror was re-installed in its transport container on November 13, 1995. It will thereafter be formally handed over to ESO during a ceremony at REOSC on Tuesday, November 21, 1995. The mirror will be stored at the REOSC facility until its future departure to ESO's VLT Observatory on Cerro Paranal, a 2650 m high summit in the Andean Cordillera in northern Chile. Here it will be installed in the first VLT unit telescope, soon after the assembly of the mechanical parts has been completed. Future Plans at REOSC The polishing of the second VLT mirror, as well as the grinding of the third mirror which was transported from Mainz to Saint Pierre du Perray at the beginning of October 1995, have already started. The transport of the fourth blank will take place in March 1996. With the construction, in a subsequent phase, of a workshop of more than 6000 square metres and mostly dedicated to space and astronomy, the SFIM group will have invested more than 50 million French Francs at the Saint Pierre du Perray site alone. The group is also involved in the contract related to the actuator support system; this is a clear indication of its determination to maintain its position within this scientific-technological market. In addition to the ESO VLT mirrors, REOSC will also polish the two 8.2-metre diameter mirrors of the Gemini programme of the Association of Universities for Research in Astronomy (AURA) in the United States. This important work was entrusted REOSC, following an international call for tenders, in which also US firms

  17. ESO Receives Computerworld Honors Program 21st Century Achievement Award in Science Category

    NASA Astrophysics Data System (ADS)

    2005-06-01

    In a ceremony held in Washington, D.C. (USA) on June 6, 2005, ESO, the European Organisation for Astronomical Research in the southern Hemisphere, received the coveted 21st Century Achievement Award from the Computerworld Honors Program for its visionary use of information technology in the Science category. Sybase, a main database server vendor and member of the Chairmen's Committee, nominated ESO's Data Flow System in recognition of its contributions to the global information technology revolution and its positive impact on society. The citations reads: "ESO has revolutionized the operations of ground-based astronomical observatories with a new end-to-end data flow system, designed to improve the transmission and management of astronomical observations and data over transcontinental distances." This year's awards, in 10 categories, were presented at a gala event at the National Building Museum, attended by over 250 guests, including leaders of the information technology industry, former award recipients, judges, scholars, and diplomats representing many of the 54 countries from which the 17-year-old program's laureates have come. "The Computerworld Honors Program 21st Century Achievement Awards are presented to companies from around the world whose visionary use of information technology promotes positive social, economic and educational change," said Bob Carrigan, president and CEO of Computerworld and chairman of the Chairmen's Committee of the Computerworld Honors Program. "The recipients of these awards are the true heroes of the information age and have been appropriately recognized by the leading IT industry chairmen as true revolutionaries in their fields." ESO PR Photo 18/05 ESO PR Photo 18/05 ESO Receives the Award in the Science Category [Preview - JPEG: 400 x 496 pix - 53k] [Normal - JPEG: 800 x 992 pix - 470k] [Full Res - JPEG: 1250 x 1550 pix - 1.1M] Caption: ESO PR Photo 18/05: Receiving the Computerworld 21st Century Achievement Award for Science

  18. The Cerro Tololo Inter-American Observatory Summer Student Programs in La Serena, Chile

    NASA Astrophysics Data System (ADS)

    Kaleida, Catherine C.; Smith, C.; Van Der Bliek, N. S.; James, D.

    2014-01-01

    The Cerro Tololo Inter-American Observatory (CTIO) offers positions for U.S. and Chilean student interns during the Chilean summer months of January-March (northern winter semester) at the CTIO offices in La Serena, Chile. CTIO is part of the National Optical Astronomy Observatory (NOAO) of the United States, focused on the development of astronomy in the southern hemisphere. Six undergraduate research assistantships are offered for U.S. physics and astronomy undergraduate students through the NSF-funded Research Experiences for Undergraduates (REU) program. The CTIO-funded Prácticas de Investigación en Astronomía (PIA) program is run concurrently with the REU program, and offers two research assistantships for Chilean undergraduate or 1st or 2nd year masters students, also at the CTIO offices in La Serena, Chile. The CTIO REU and PIA programs provide exceptional opportunities for students considering a career in astronomy to engage in substantive research activities with scientists working at the forefront of contemporary astrophysics. Student participants work on specific research projects in close collaboration with members of the CTIO scientific and technical staff, such as galaxy clusters, gravitational lensing, supernovae, planetary nebulae, stellar populations, star clusters, star formation, variable stars and interstellar medium. The CTIO REU and PIA programs emphasize observational techniques and provide opportunities for direct observational experience using CTIO's state-of-the-art telescopes and instrumentation. The programs run for 10 weeks, from mid-January to the end of March. A two-night observing run on Cerro Tololo and a field trip to another observatory in Chile are included for students of both programs. These positions are full time, and those selected will receive a modest stipend and subsidized housing on the grounds of the offices of CTIO in La Serena, as well as travel costs to and from La Serena. In addition, the students have the

  19. The Gaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities

    NASA Astrophysics Data System (ADS)

    Jackson, R. J.; Jeffries, R. D.; Lewis, J.; Koposov, S. E.; Sacco, G. G.; Randich, S.; Gilmore, G.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J. E.; Feltzing, S.; Ferguson, A. M. N.; Micela, G.; Neguerela, I.; Prusti, T.; Rix, H.-W.; Vallenari, A.; Alfaro, E. J.; Allende Prieto, C.; Babusiaux, C.; Bensby, T.; Blomme, R.; Bragaglia, A.; Flaccomio, E.; Francois, P.; Hambly, N.; Irwin, M.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Van Eck, S.; Walton, N.; Bayo, A.; Bergemann, M.; Carraro, G.; Costado, M. T.; Damiani, F.; Edvardsson, B.; Franciosini, E.; Frasca, A.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lind, K.; Magrini, L.; Marconi, G.; Martayan, C.; Masseron, T.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2015-08-01

    Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims: A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (vsini) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods: We present an analysis to empirically quantify the size and distribution of uncertainties in RV and vsini using spectra from repeated exposures of the same stars. Results: We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and vsini, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student's t-distributions than by normal distributions. Conclusions: Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the vsini precision for stars in young clusters, as a function of S/N, vsini and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 km s-1, dependent on instrumental configuration. Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia- ESO Large Public Survey (188.B-3002).Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A75

  20. ESO Council Visits First VLT Unit Telescope Structure in Milan

    NASA Astrophysics Data System (ADS)

    1995-12-01

    ), Luigi Guiffrida (SOIMI), Gianpietro Marchiori (EIE) and Prof. Massimo Tarenghi (ESO), describing the very successful implementation of this major VLT contract that was awarded by ESO in September 1991 [2]. All speakers praised the good collaboration between ESO and its industrial partners and Prof. Riccardo Giacconi , Director General of ESO, expressed his satisfaction `with the splendid performance of the ESO-Industry team which was bringing us close to the realisation of the premier telescope array in optical ground-based astronomy in the world'. The participants were also pleased to listen to several of the Italian engineers present who commented on the very positive experience of being personally involved in the world's largest telescope project. The VLT telescope structures incorporate many new technological concepts. Thanks to these and careful planning of the many components and their integration, it has been possible to achieve, among others, light weight construction, high mechanical stiffness, good thermal equilibrium with the ambient air (of importance for the seeing during the observations), low electromagnetic emissitivity (i.e. low interference with the sensitive astronomical instruments) and easy maintainability. Of particular interest is also the giant, direct drive system with a diameter of 9 metres and the sophisticated, innovative laser encoder system. In this way, there is no direct contact between the moving parts and the friction during the rotation is kept at an absolute minimum. The Next Steps The ESO VLT project is now entering into a decisive phase and the next years will see an increasing number of telescope parts and instruments from the scientific and industrial laboratories of Europe converging towards the VLT observatory at Cerro Paranal in Chile. It is gratifying that, despite its high degree of complexity and incorporation of a substantial number of new technologies, the project is within schedule and budget. There will be several

  1. United Kingdom to Join ESO on July 1, 2002

    NASA Astrophysics Data System (ADS)

    2001-12-01

    ESO and PPARC Councils Endorse Terms of Accession [1] The Councils of the European Southern Observatory (ESO) and the UK Particle Physics and Astronomy Research Council (PPARC) , at their respective meetings on December 3 and 5, 2001, have endorsed the terms for UK membership of ESO, as recently agreed by their Negotiating Teams. All members of the Councils - the governing bodies of the two organisations - welcomed the positive spirit in which the extensive negotiations had been conducted and expressed great satisfaction at the successful outcome of a complex process. The formal procedure of accession will now commence in the UK and is expected to be achieved in good time to allow accession from July 2002. The European Southern Observatory is the main European organisation for astronomy and the United Kingdom will become its tenth member state [2]. ESO operates two major observatories in the Chilean Atacama desert where the conditions for astronomical observations are second-to-none on earth and it has recently put into operation the world's foremost optical/infrared telescope, the Very Large Telescope (VLT) at Paranal. With UK membership, British astronomers will join their European colleagues in preparing new projects now being planned on a global scale. They will also be able to pursue their research on some of the most powerful astronomical instruments available. The ESO Director General, Dr. Catherine Cesarsky , is "delighted that we have come this far after the lengthy negotiations needed to prepare properly the admission of another major European country to our organisation. When ESO was created nearly 40 years ago, the UK was planning for its own facilities in the southern hemisphere, in collaboration with Australia, and decided not to join. However, the impressive scientific and technological advances since then and ESOs emergence as a prime player on the European research scene have convinced our UK colleagues of the great advantages of presenting a

  2. Participant Perspectives on the ESO Astronomy Camp Programme

    NASA Astrophysics Data System (ADS)

    Olivotto, C.; Cenadelli, D.; Gamal, M.; Grossmann, D.; Teller, L. A. I.; Marta, A. S.; Matoni, C. L.; Taillard, A.

    2015-09-01

    This article describes the experience of attending the European Southern Observatory (ESO) Astronomy Camp from the perspective of its participants - students aged between 16 and 18 years old from around the world. The students shared a week together during the winter of 2014 in the Alpine village of Saint-Barthelemy, Italy. The camp was organised by ESO in collaboration with Sterrenlab and the Astronomical Observatory of the Autonomous Region of the Aosta Valley and offered a rich programme of astronomy and leisure activities. This article focuses on the concept of astronomy camps, and their role as a unique tool to complement formal classroom education, rather than on the astronomy activities and the scientific programme. Thus, it is not an academic review of the implemented methodologies, but rather a reflection on the overall experience. The article was brought together from collaborative accounts by some of the participants who were asked to reflect on the experience. The participants who contributed to this article represent the diversity of the ESO Astronomy Camp's alumni community.

  3. Czech Republic to Become Member of ESO

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Albert Einstein stayed in the famous city for periods of time. The Czech capital also played host to the General Assembly of the International Astronomical Union, first in 1967 and, more recently, in August 2006. Astronomy in the Czech Republic is shared between the Astronomical Institute of the Academy of Sciences and several leading universities, in Prague, Brno and Opava, among others. The Astronomical Institute operates the Ondrejov Observatory, with a 2-m optical telescope and a 10-m radio telescope. Czech astronomers are very active in many fields of this science, such as solar and stellar physics, and the study of interstellar matter, galaxies and planetary systems. Created in 1962, ESO, which quite fittingly means 'ace' in the Czech language, provides state-of-the-art research facilities to European astronomers and astrophysicists. ESO's activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member-state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced technologies, furthering European co-operation and carrying out European educational programmes. Whilst the Headquarters are located in Garching near Munich, Germany, ESO operates three observational sites in the Chilean Atacama desert. The Very Large Telescope (VLT) is located on Paranal, a 2 600m high mountain south of Antofagasta. At La Silla, 600 km north of Santiago de Chile at 2 400m altitude, ESO operates several medium-sized optical telescopes. The third site is the 5 000m high Llano de Chajnantor, near San Pedro de Atacama. Here a new submillimetre telescope (APEX) is in operation, and a giant array of 12-m submillimetre antennas (ALMA) is under development. Over 1 600 proposals are made each year for the use of the ESO telescopes.

  4. U.S. and European ALMA Partners Sign Agreement Green Light for World's Most Powerful Radio Observatory

    NASA Astrophysics Data System (ADS)

    2003-02-01

    Dr. Rita Colwell, director of the U.S. National Science Foundation (NSF), and Dr. Catherine Cesarsky, director general of the European Southern Observatory (ESO), today signed a historic agreement jointly to construct and operate ALMA, the Atacama Large Millimeter Array, the world's largest and most powerful radio telescope operating at millimeter and sub-millimeter wavelengths. "With this agreement, we usher in a new age of research in astronomy," said Dr. Colwell. "By working together in this truly global partnership, the international astronomy community will be able to ensure the research capabilities needed to meet the long-term demands of our scientific enterprise, and we will be able to study and understand our Universe in ways that have previously been beyond our vision." ALMA Array Artist's Conception of ALMA Array in Compact Configuration (Click on Image for Larger Version) Other Images Available: Artist's conception of the antennas for the Atacama Large Millimeter Array Moonrise over ALMA test equipment near Cerro Chajnantor, Chile VertexRSI antenna at the VLA test site Dr. Cesarsky also commented, "This agreement signifies the start of a great project of contemporary astronomy and astrophysics. Representing Europe, and in collaboration with many laboratories and institutes on this continent, we together look forward toward wonderful research projects. With ALMA, we may learn how the earliest galaxies in the Universe really looked like, to mention but one of the many eagerly awaited opportunities with this marvelous facility." When complete in 2011, ALMA will be an array of 64, 12-meter radio antennas that will work together as one telescope to study millimeter and sub-millimeter wavelength light from space. These wavelengths of the electromagnetic spectrum, which cross the critical boundary between infrared and microwave radiation, hold the key to understanding such processes as planet and star formation, the formation of early galaxies and galaxy

  5. VirGO: A Visual Browser for the ESO Science Archive Facility

    NASA Astrophysics Data System (ADS)

    Chéreau, F.

    2008-08-01

    VirGO is the next generation Visual Browser for the ESO Science Archive Facility developed by the Virtual Observatory (VO) Systems Department. It is a plug-in for the popular open source software Stellarium adding capabilities for browsing professional astronomical data. VirGO gives astronomers the possibility to easily discover and select data from millions of observations in a new visual and intuitive way. Its main feature is to perform real-time access and graphical display of a large number of observations by showing instrumental footprints and image previews, and to allow their selection and filtering for subsequent download from the ESO SAF web interface. It also allows the loading of external FITS files or VOTables, the superimposition of Digitized Sky Survey (DSS) background images, and the visualization of the sky in a `real life' mode as seen from the main ESO sites. All data interfaces are based on Virtual Observatory standards which allow access to images and spectra from external data centers, and interaction with the ESO SAF web interface or any other VO applications supporting the PLASTIC messaging system. The main website for VirGO is at http://archive.eso.org/cms/virgo.

  6. Deep Sky Diving with the ESO New Technology Telescope

    NASA Astrophysics Data System (ADS)

    1998-01-01

    Preparations for future cosmological observations with the VLT Within a few months, the first 8.2-meter Unit Telescope of the ESO Very Large Telescope (VLT) array will open its eye towards the sky above the Atacama desert. As documented by recent Press Photos from ESO, the construction work at the Paranal VLT Observatory is proceeding rapidly. Virtually all of the telescope components, including the giant Zerodur mirror (cf. ESO PR Photos 35a-l/97 ), are now on the mountain. While the integration of the telescope and its many optical, mechanical and electronic components continues, astronomers in the ESO member countries and at ESO are now busy defining the observing programmes that will be carried out with the new telescope, soon after it enters into operation. In this context, new and exciting observations have recently been obtained with the 3.5-m New Technology Telescope at the ESO La Silla Observatory, 600 km to the south of Paranal. How to record the faintest and most remote astronomical objects With its very large mirror surface (and correspondingly great light collecting power), as well as an unsurpassed optical quality, the VLT will be able to look exceedingly far out into the Universe, well beyond current horizons. The best technique to record the faintest possible light and thus the most remote celestial objects, is to combine large numbers of exposures of the same field with slightly different telescope pointing. This increases the total number of photons recorded and by imaging the stars and galaxies on different areas (pixels) of the detector, the signal-to-noise ratio and hence the visibility of the faintest objects is improved. The famous Hubble Deep Field Images were obtained in this way by combining over 300 single exposures and they show myriads of faint galaxies in the distant realms of the Universe. The NTT as test bench for the VLT ESO is in the fortunate situation of possessing a `prototype' model of the Very Large Telescope, the 3.5-m New

  7. Site Protection Efforts at the AURA Observatory in Chile

    NASA Astrophysics Data System (ADS)

    Smith, R. Chris; Smith, Malcolm G.; Sanhueza, Pedro

    2015-08-01

    The AURA Observatory (AURA-O) was the first of the major international observatories to be established in northern Chile to exploit the optimal astronomical conditions available there. The site was originally established in 1962 to host the Cerro Tololo Inter-American Observatory (CTIO). It now hosts more than 20 operational telescopes, including some of the leading U.S. and international astronomical facilities in the southern hemisphere, such as the Blanco 4m telescope on Cerro Tololo and the Gemini-South and SOAR telescopes on Cerro Pachón. Construction of the next generation facility, the Large Synoptic Survey Telescope (LSST), has recently begun on Cerro Pachón, while additional smaller telescopes continue to be added to the complement on Cerro Tololo.While the site has become a major platform for international astronomical facilities over the last 50 years, development in the region has led to an ever-increasing threat of light pollution around the site. AURA-O has worked closely with local, regional, and national authorities and institutions (in particular with the Chilean Ministries of Environment and Foreign Relations) in an effort to protect the site so that future generations of telescopes, as well as future generations of Chileans, can benefit from the dark skies in the region. We will summarize our efforts over the past 15 years to highlight the importance of dark sky protection through education and public outreach as well as through more recent promotion of IDA certifications in the region and support for the World Heritage initiatives described by others in this conference.

  8. VirGO: A Visual Browser for the ESO Science Archive Facility

    NASA Astrophysics Data System (ADS)

    Hatziminaoglou, Evanthia; Chéreau, Fabien

    2009-03-01

    VirGO is the next generation Visual Browser for the ESO Science Archive Facility (SAF) developed in the Virtual Observatory Project Office. VirGO enables astronomers to discover and select data easily from millions of observations in a visual and intuitive way. It allows real-time access and the graphical display of a large number of observations by showing instrumental footprints and image previews, as well as their selection and filtering for subsequent download from the ESO SAF web interface. It also permits the loading of external FITS files or VOTables, as well as the superposition of Digitized Sky Survey images to be used as background. All data interfaces are based on Virtual Observatory (VO) standards that allow access to images and spectra from external data centres, and interaction with the ESO SAF web interface or any other VO applications.

  9. VirGO: A Visual Browser for the ESO Science Archive Facility

    NASA Astrophysics Data System (ADS)

    Chéreau, Fabien

    2012-04-01

    VirGO is the next generation Visual Browser for the ESO Science Archive Facility developed by the Virtual Observatory (VO) Systems Department. It is a plug-in for the popular open source software Stellarium adding capabilities for browsing professional astronomical data. VirGO gives astronomers the possibility to easily discover and select data from millions of observations in a new visual and intuitive way. Its main feature is to perform real-time access and graphical display of a large number of observations by showing instrumental footprints and image previews, and to allow their selection and filtering for subsequent download from the ESO SAF web interface. It also allows the loading of external FITS files or VOTables, the superimposition of Digitized Sky Survey (DSS) background images, and the visualization of the sky in a `real life' mode as seen from the main ESO sites. All data interfaces are based on Virtual Observatory standards which allow access to images and spectra from external data centers, and interaction with the ESO SAF web interface or any other VO applications supporting the PLASTIC messaging system.

  10. ESO PR Highlights in 2005

    NASA Astrophysics Data System (ADS)

    2006-01-01

    2005 was the year of Physics. It was thus also in part the year of astronomy and this is clearly illustrated by the numerous breakthroughs that were achieved, in particular using ESO's telescopes. One of the highlights was without any doubt the confirmation of the first image of an exoplanet , around the star 2M1207 (see ESO PR 12/05). ESO's telescopes also found a Neptune-mass exoplanet around a small star ( PR 30/05) - a discovery that proves crucial in the census of other planetary systems, and imaged a tiny companion in the close vicinity of the star GQ Lupi, a very young object still surrounded by a disc, with an age between 100,000 and 2 million years ( PR 09/05). Moreover, using a new high-contrast adaptive optics camera on the VLT, the NACO Simultaneous Differential Imager, or NACO SDI, astronomers were able for the first time to image a companion 120 times fainter than its star , very near the star AB Doradus A. This companion appears to be almost twice as heavy as theory predicts it to be ( PR 02/05). ESO's telescopes proved very useful in helping to solve a 30-year old puzzle . Astronomers have for the first time observed the visible light from a short gamma-ray burst (GRB). Using the 1.5m Danish telescope at La Silla (Chile), they showed that these short, intense bursts of gamma-ray emission most likely originate from the violent collision of two merging neutron stars ( PR 26/05). Additional evidence came from witnessing another event with the VLT ( PR 32/05). Also in this field, astronomers found the farthest known gamma-ray burst with ESO's VLT, observing an object with a redshift 6.3, i.e. that is seen when the Universe was less than 900 million years old ( PR 22/05). On July 4, NASA's Deep Impact spacecraft plunged onto Comet 9P/Tempel 1 with the aim to create a crater and expose pristine material from beneath the surface. For two days before and six days after, all major ESO telescopes have been observing the comet, in a coordinated fashion and in

  11. Austria Declares Intent To Join ESO

    NASA Astrophysics Data System (ADS)

    2008-04-01

    At a press conference today at the University of Vienna's Observatory, the Austrian Science Minister Johannes Hahn announced the decision by the Austrian Government to seek membership of ESO from 1 July this year. ESO PR Photo 11/08 ESO PR Photo 11/08 Announcing Austria's Intent to Join ESO Said Minister Hahn: "With membership of ESO, Austria's scientists will receive direct access to the world's leading infrastructure in astronomy. This strengthens Austria as a place for research and provides an opportunity for young researchers to continue their work from here. With this move, Austria takes an important step in the reinforcement of Europe's science and research infrastructure." The decision constitutes a major breakthrough for Austrian scientists who have argued for membership of ESO for many years. Seeking membership in ESO also marks a step towards the further development of the European Research and Innovation Area, an important element of Europe's so-called Lisbon Strategy. "ESO welcomes the Austrian bid to join our organisation. I salute the Austrian Government for taking this important step and look forward to working closely with our Austrian friends and colleagues in the years to come," commented the ESO Director General, Tim de Zeeuw. For Austrian astronomers, ESO membership means not only unrestricted access to ESO's world-leading observational facilities including the world's most advanced optical telescope, the Very Large Telescope, and full participation in the quasi-global ALMA project, but also the possibility to participate on a par with their European colleagues in the future projects of ESO, including the realisation of ESO's Extremely Large Telescope project (E-ELT), which is currently in the design phase. All these projects require some of the most advanced technologies in key areas such as optics, detectors, lightweight structures, etc. Austrian participation in ESO opens the door for Austrian industry and major research institutes of the

  12. Production of Previews and Advanced Data Products for the ESO Science Archive

    NASA Astrophysics Data System (ADS)

    Rité, C.; Slijkhuis, R.; Rosati, P.; Delmotte, N.; Rino, B.; Chéreau, F.; Malapert, J.-C.

    2008-08-01

    We present a project being carried out by the Virtual Observatory Systems Department/Advanced Data Products group in order to populate the ESO Science Archive Facility with image previews and advanced data products. The main goal is to provide users of the ESO Science Archive Facility with the possibility of viewing pre-processed images associated with instruments like WFI, ISAAC and SOFI before actually retrieving the data for full processing. The image processing is done by using the ESO/MVM image reduction software developed at ESO, to produce astrometrically calibrated FITS images, ranging from simple previews of single archive images, to fully stacked mosaics. These data products can be accessed via the ESO Science Archive Query Form and also be viewed with the browser VirGO {http://archive.eso.org/cms/virgo}.

  13. The International Plate Boundary Observatory Chile (IPOC) in the northern Chile seismic gap

    NASA Astrophysics Data System (ADS)

    Schurr, B.; Asch, A.; Sodoudi, F.; Manzanares, A.; Ritter, O.; Klotz, J.; Chong-Diaz, G.; Barrientos, S.; Villotte, J.-P.; Oncken, O.

    2009-04-01

    Fast convergence between the oceanic Nazca and the continental South American plate is accommodated by recurrent rupture of large segments of the two plates' interface. The resulting earthquakes are among the largest and, for their sizes, most frequent on Earth. Along the Chilean and southern Peruvian margin, all segments have ruptured at least once in the past 150 years for which there exist historic and/or instrumental records. The one segment that is most mature for re-rupture stretches for more than 500 km along the northernmost Chilean coast between roughly -23° and -18° latitude. It last broke in 1877 in a magnitude ~8.8 earthquake, triggering a major Tsunami. From the historical record, it has been known to have a recurrence cycle of approximately 110 years. The adjoining segments to the north and south broke rather recently in 1995 and 2001 in M>8 earthquakes and an M 7.7 earthquake encroached the southern part of the gap in 2007. The IPOC project intends to investigate this segment of the Nazca-South American plate boundary, on which a strong to devastating earthquake is expected to occur within the next years, by monitoring at a variety of time-scales deformation, seismicity, and magnetotelluric fields in the subduction zone at the closing stages of the interseismic cycle before and possibly during occurrence of a big earthquake. For that purpose, installation of long-term observatories in Northern Chile started in 2006 in a close cooperation of the Universidad de Chile (Santiago, Chile), the Universidad Catolica del Norte (Antofagasta, Chile), the Institut de Physique du Globe de Paris (Paris, France), and the German Research Centre for Geosciences (GFZ, Potsdam, Germany). Currently we are operating 14 modern seismological stations equipped with STS-2 broadband seismometers and accelerometers (EPI sensor). At least two more stations will be installed in the near future. To cope with the high resolution and dynamic of the sensors and data acquisition

  14. ESO PR Highlights in 2004

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Last year proved again a wonderful one for astronomy in general and for ESO in particular. Certainly the most important astronomical event for a large public was the unique Transit of Venus : on June 8, 2004, Venus - the Earth's sister planet - passed in front of the Sun. This rare event - the last one occurred in 1882 - attracted the attention of millions of people all over the world. ESO in cooperation with several other institutes and with support from the European Commission organised through the whole year the Venus Transit 2004 (VT-2004) public education programme that successfully exposed the broad public to a number of fundamental issues at the crucial interface between society and basic science. The web site experienced a record 55 million webhits during a period of 8 hours around the transit. The programme also re-enacted the historical determination of the distance to the Sun (the "Astronomical Unit") by collecting 4550 timings of the four contacts made by more than 1500 participating group of observers and combining them in a calculation of the AU. This resulted in an astonishing accurate value of the Astronomical Unit. More details are available at the VT-2004 website, whose wealth of information will certainly make it a useful tool until the next transit in 2012! For ESO also, 2004 proved a very special year. Finland officially joined as eleventh member state and in December, the Chilean President, Ricardo Lagos, visited the Paranal Observatory. Last year was also the Fifth anniversary of the Very Large Telescope, ESO's flagship facility, as on April 1, 1999 the first 8.2-m VLT Unit Telescope, Antu (UT1), was "handed over" to the astronomers. On this occasion, ESO released several products, including a selection of the best astronomical images taken with the VLT, the VLT Top 20. But there is no doubt that the numerous high quality images published last year are all contenders to top the charts of best astronomical pictures. The year 2004 also saw many

  15. Three Good Reasons for Celebrating at the ESO/ST-ECF Science Archive Facility

    NASA Astrophysics Data System (ADS)

    2000-12-01

    Great Demand for Data from New "Virtual Observatory" Summary Due to a happy coincidence, the ESO/ST-ECF Science Archive Facility is celebrating three different milestones at the same time: * its 10th anniversary since the establishment in 1991 * the 10,000th request for data , and * the signing-up of active user number 2000 . This Archive contains over 8 Terabytes (1 Terabyte = 1 million million bytes) of valuable observational data from the NASA/ESA Hubble Space Telescope (HST), the ESO Very Large Telescope (VLT) and other ESO telescopes . Its success paves the way for the establishment of "Virtual Observatories" from which first-class data can be obtained by astronomers all over the world. This greatly enhances the opportunities for more (young) scientists to participate in front-line research. PR Photo 34/00 : Front-page of a new brochure, describing the ESO/ST-ECF Science Archive Facility. Just 10 years ago, on the 1st of January 1991, the ESO/ST-ECF (European Southern Observatory/Space Telescope-European Coordinating Facility) Science Archive Facility opened. It has since served the astronomical community with gigabyte after gigabyte of high-quality astronomical data from some of the world's leading telescopes. The Archive, which is located in Garching, just outside Munich (Germany), contains data from the 2.4-m NASA/ESA Hubble Space Telescope , as well as from several ESO telescopes: the four 8.2-m Unit Telescopes of the Very Large Telescope (VLT) at the Paranal Observatory , and the 3.5-m New Technology Telescope (NTT) , the 3.6-m telescope and the MPG/ESO 2.2-m telescope at La Silla. The Archive is a continuously developing project - in terms of amounts of data stored, the number of users and in particular because of the current dramatic development of innovative techniques for data handling and storage. In the year 2000 more than 2 Terabytes (2000 Gigabytes) of data were distributed to users worldwide. The archiving of VLT data has been described in ESO PR

  16. VizieR Online Data Catalog: Light curves of WASP-52 (Mancini+, 2017)

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Southworth, J.; Raia, G.; Tregloan-Reed, J.; Molliere, P.; Bozza, V.; Bretton, M.; Bruni, I.; Ciceri, S.; D'Ago, G.; Dominik, M.; Hinse, T. C.; Hundertmark, M.; Jorgensen, U. G.; Korhonen, H.; Rabus, M.; Rahvar, S.; Starkey, D.; Calchi Novati, S.; Figuera Jaimes, R.; Henning, T.; Juncher, D.; Haugbolle, T.; Kains, N.; Popovas, A.; Schmidt, R. W.; Skottfelt, J.; Snodgrass, C.; Surdej, J.; Wertz, O.

    2018-03-01

    Light curves of transit events of the extrasolar planet WASP-52b. One of the datasets was obtained using the Cassini 1.52m Telescope (Gunn r) at the Astronomical Observatory of Bologna in Loiano (Italy). Three of the datasets were obtained using the Zeiss 1.23m telescope (Cousins R and Cousins I) at the German-Spanish Astronomical Centre at Calar Alto (Spain). Four of the datasets were obtained using the MPG 2.2m telescope (Sloan g, Sloan r, Sloan i, Sloan z) at the ESO Observatory in La Silla (Chile). Four of the datasets were obtained using the 1.54m Danish Telescope at the ESO Observatory in La Silla (Chile). (2 data files).

  17. The possible astronomical function of the El Molle stone circle at the ESO Observatory La Silla. II: The updated measurement campaign

    NASA Astrophysics Data System (ADS)

    Bernardi, Gabriella; Vecchiato, Alberto; Bucciarelli, Beatrice

    2014-07-01

    This paper reviews and updates the accounts of a previous article discussing the possible astronomical significance of a peculiar, man-made circular stone structure, located close to the European Southern Observatory in La Silla, Chile, and attributed to the El Molle culture. Thanks to further, higher-accuracy measurements in situ, we can confirm some of the original hypotheses and dismiss others, upholding the main tenets of the original work.

  18. Possible astronomical meanings of some El Molle relics near the ESO Observatory at La Silla

    NASA Astrophysics Data System (ADS)

    Bernardi, Gabriella; Vecchiato, Alberto; Bucciarelli, Beatrice

    2012-07-01

    This paper describes a peculiar, man-made circular stone structure, associated with the ancient rock engravings that are around the site of La Silla in Chile close to the European Southern Observatory, and are attributed to the El Molle Culture. Three stones of the circle, different from all the others, were likely to pinpoint the alignment of three bright stars close to the horizon, as seen from a specific vantage point inside the structure. The El Molle was the only period in which this alignment occurred significantly close to the horizon, moreover it was only in this epoch that it could also be associated with the transition from the warm to the cold season, a period of the year which was quite important for a society that supported itself by herding and farming.

  19. Bavarian Prime Minister to Visit la Silla

    NASA Astrophysics Data System (ADS)

    1997-03-01

    The Bavarian Prime Minister, Dr. Edmund Stoiber , is currently visiting a number of countries in South America. He is accompanied by a high-ranking delegation of representatives of Bavarian politics and industry. During this trip, the Bavarian delegation will visit the Republic of Chile, arriving in Santiago de Chile on Sunday, March 9, 1997. On the same day, Dr. Stoiber and most other members of the delegation, on the invitation of the Director General of ESO, Professor Riccardo Giacconi, will visit the ESO La Silla Observatory , located in an isolated area in the Atacama desert some 600 km north of the Chilean capital. ESO, the European Organisation for Astronomy, with Headquarters in Garching near Munich in Bavaria, welcomes this opportunity to present its high-tech research facilities to Dr. Stoiber and leaders of the Bavarian industry. During the visit, the delegation will learn about the various front-line research projects, now being carried out by astronomers from Germany and other ESO member countries with the large telescopes at La Silla. There will also be a presentation of the ESO VLT project , which will become the world's largest optical astronomical telescope, when it is ready a few years from now. The delegation will be met by the Director of the La Silla Observatory, Dr. Jorge Melnick and his scientific-technical staff which includes several members of German nationality. Also present will be ESO's Head of Administration, Dr. Norbert König (Garching) and the General Manager of ESO in Chile, Mr. Daniel Hofstadt. More information about this visit and the ESO facilities is available from the ESO Education and Public Relations Department (Tel.: +49-89-32006-276; Fax.: +49-89-3202362; email: ips@eso.org; Web: http://www.eso.org../../../epr/ ). Diese Pressemitteilung ist auch in einer Deutschen Fassung vorhanden. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press

  20. The First School for Young Astronomers Organized by ESO and the Astronomical Council of the USSR Acadeny of Sciences

    NASA Astrophysics Data System (ADS)

    D'Odorico, S.

    1987-12-01

    The first international school for young astronomers organized jointly by ESO and the Astronomical Council of the USSR Academy of Sciences took place from the 22nd to the 29th of September at the Byurakan Astrophysical Observatory of the Academy of Sciences of Armenia and was dedicated to "Observations with Large Telescopes". It was appropriately closed with a oneday visit to the Special Astrophysical Observatory at Zelenchukskaja, in northern Caucasus, home of the 6-m telescope, the largest in the world. The lecturers came from ESO and from the Soviet Union; the 45 participants were from ESO member states, from Bulgaria, Czechoslovakia, the German Democratic Republic, Poland, Spain and the USSR. After the welcome addresses by Academician V.A. Ambartsumian and by E. Ye Khachikian, Chairman of the Local Organizing Committee, the school was opened by M. Tarenghi of ESO who spoke on the characteristics of existing ESO telescopes and on the innovative features of the ESO 3.5-m New Technology Telescope, to be erected at La Silla next year. H. A. Abrahamian and J.A. Stepanian of the Byurakan Observatory presented the Byurakan 2.6-m telescope and the 1-m Schmidt respectively, illustrating the scientific programmes carried out in the recent past and presently at these two facilities.

  1. Southern Fireworks above ESO Telescopes

    NASA Astrophysics Data System (ADS)

    1999-05-01

    - the PLANET observers turned their telescope and quickly obtained a series of CCD images in visual light of the sky region where the gamma-ray burst was detected, then shipped them off electronically to their Dutch colleagues [3]. Comparing the new photos with earlier ones in the digital sky archive, Vreeswijk, Galama and Rol almost immediately discovered a new, relatively bright visual source in the region of the gamma-ray burst, which they proposed as the optical counterpart of the burst, cf. their dedicated webpage at http://www.astro.uva.nl/~titus/grb990510/. The team then placed a message on the international Gamma-Ray Burster web-noteboard ( GCN Circular 310), thereby alerting their colleagues all over the world. One hour later, the narrow-field instruments on BeppoSax identified a new X-Ray source at the same location ( GCN Circular 311), thus confirming the optical identification. All in all, a remarkable synergy of human and satellite resources! Observations of GRB 990510 at ESO Vreeswijk, Galama and Rol, in collaboration with Nicola Masetti, Eliana Palazzi and Elena Pian of the BeppoSAX GRB optical follow-up team (led by Filippo Frontera ) and the Huntsville optical follow-up team (led by Chryssa Kouveliotou ), also contacted the European Southern Observatory (ESO). Astronomers at this Organization's observatories in Chile were quick to exploit this opportunity and crucial data were soon obtained with several of the main telescopes at La Silla and Paranal, less than 14 hours after the first detection of this event by the satellite. ESO PR Photo 22a/99 ESO PR Photo 22a/99 [Preview - JPEG: 211 x 400 pix - 72k] [Normal - JPEG: 422 x 800 pix - 212k] [High-Res - JPEG: 1582 x 3000 pix - 2.6M] ESO PR Photo 22b/99 ESO PR Photo 22b/99 [Preview - JPEG: 400 x 437 pix - 297k] [Normal - JPEG: 800 x 873 pix - 1.1M] [High-Res - JPEG: 2300 x 2509 pix - 5.9M] Caption to PR Photo 22a/99 : This wide-field photo was obtained with the Wide-Field Imager (WFI) at the MPG/ESO 2.2-m

  2. Unveiling the nature of INTEGRAL objects through optical spectroscopy. VI. A multi-observatory identification campaign

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Mason, E.; Morelli, L.; Cellone, S. A.; McBride, V. A.; Palazzi, E.; Bassani, L.; Bazzano, A.; Bird, A. J.; Charles, P. A.; Dean, A. J.; Galaz, G.; Gehrels, N.; Landi, R.; Malizia, A.; Minniti, D.; Panessa, F.; Romero, G. E.; Stephen, J. B.; Ubertini, P.; Walter, R.

    2008-04-01

    Using 8 telescopes in the northern and southern hemispheres, plus archival data from two on-line sky surveys, we performed a systematic optical spectroscopic study of 39 putative counterparts of unidentified or poorly studied INTEGRAL sources in order to determine or at least better assess their nature. This was implemented within the framework of our campaign to reveal the nature of newly-discovered and/or unidentified sources detected by INTEGRAL. Our results show that 29 of these objects are active galactic nuclei (13 of which are of Seyfert 1 type, 15 are Seyfert 2 galaxies and one is possibly a BL Lac object) with redshifts between 0.011 and 0.316, 7 are X-ray binaries (5 with high-mass companions and 2 with low-mass secondaries), one is a magnetic cataclysmic variable, one is a symbiotic star and one is possibly an active star. Thus, the large majority (74%) of the identifications in this sample belongs to the AGN class. When possible, the main physical parameters for these hard X-ray sources were also computed using the multiwavelength information available in the literature. These identifications further underscore the importance of INTEGRAL in studying the hard X-ray spectra of all classes of X-ray emitting objects, and the effectiveness of a strategy of multi-catalogue cross-correlation plus optical spectroscopy to securely pinpoint the actual nature of still unidentified hard X-ray sources. Based on observations collected at the following observatories: ESO (La Silla, Chile), partly under program 079.A-0171(A); Astronomical Observatory of Bologna in Loiano (Italy); Astronomical Observatory of Asiago (Italy); Cerro Tololo Interamerican Observatory (Chile); Complejo Astronómico El Leoncito (San Juan, Argentina); South African Astronomical Observatory (Sutherland, South Africa); Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (Canary Islands, Spain); Anglo-Australian Observatory (Siding Spring, Australia); Apache Point

  3. Early German Plans for a Southern Observatory

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century the Heidelberg astronomer Max Wolf (1863-1932) proposed a southern observatory. In 1907 Hermann Carl Vogel (1841-1907), director of the Astrophysical Observatory Potsdam, suggested a southern station in Spain. His ideas for building an observatory in Windhuk for photographing the sky and measuring the solar constant were taken over by the Göttingen astronomers. In 1910 Karl Schwarzschild (1873-1916), after having visited the observatories in America, pointed out the usefulness of an observatory in South West Africa, where it would have better weather than in Germany and also give access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhuk to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963, as is well described by Blaauw (1991). Blaauw, Adriaan: ESO's Early History. The European Southern Observatory from Concept to Reality. Garching bei München: ESO 1991.

  4. A green observatory in the Chilean Atacama desert

    NASA Astrophysics Data System (ADS)

    Ramolla, Michael; Westhues, Christian; Hackstein, Moritz; Haas, Martin; Hodapp, Klaus; Lemke, Roland; Barr Domínguez, Angie; Chini, Rolf; Murphy, Miguel

    2016-08-01

    Since 2007, the Ruhr-Universität Bochum (RUB) in Germany and Universidad Católica del Norte (UCN) in Chile jointly operate the Universitätssternwarte der Ruhr-Universität Bochum (USB), which is located in direct neighborhood of the future E-ELT of ESO. It is the only observatory powered exclusively by solar panels and wind turbines. Excess power is stored in batteries that allow uninterrupted operation even in windless nights. The scientific equipment consists of three robotic optical telescopes with apertures ranging from 15 cm (RoBoTT) over 25 cm (BESTII) to 40 cm (BMT) and one 80 cm (IRIS) infra-red telescope. The optical telescopes are equipped with Johnson and Sloan broad band filters together with a large number of narrow and intermediate bands. In the infrared, J,H and K filters are available, accompanied by several narrow bands near the K band wavelength. The second Nasmyth focus in the 80 cm telescope feeds a high resolution echelle spectrograph similar to the FEROS instrument of ESO. This variety of instruments has evolved from different collaborations, i.e. with the University of Hawaii (IfA) in the USA, which provided the near-infrared-camera of the IRIS telescope, or with the Deutsches Zentrum für Luft- und Raumfahrt (DLR) in Germany, which provided the BESTII telescope. The highly automatized processes on all telescopes enable a single person to run the whole facility, providing the high cost efficiency required for an university observatory. The excellent site conditions allow projects that require daily observations of astronomical objects over epochs of several months or years. Here we report on such studies of young stellar objects from the Bochum Galactic Disk Survey, the multiplicity of stars, quasar variability or the hunt for exo-planets.

  5. ESO Signs Largest-Ever European Industrial Contract For Ground-Based Astronomy Project ALMA

    NASA Astrophysics Data System (ADS)

    2005-12-01

    coordinating consortiums in charge of complex, high-performance ground systems." ALMA is an international astronomy facility. It is a partnership between Europe, North America and Japan, in cooperation with the Republic of Chile. The European contribution is funded by ESO and Spain, with the construction and operations being managed by ESO. A matching contribution is being made by the USA and Canada, who will also provide 25 antennas. Japan will provide additional antennas, thus making this a truly worldwide endeavour. ALMA will be located on the 5,000m high Llano de Chajnantor site in the Atacama Desert of Northern Chile. ALMA will consist of a giant array of 12-m antennas separated by baselines of up to 18 km and is expected to start partial operation by 2010-2011. The excellent site, the most sensitive receivers developed so far, and the large number of antennas will allow ALMA to have a sensitivity that is many times better than any other comparable instrument. "ALMA will bring to sub-millimetre astronomy the aperture synthesis techniques of radio astronomy, enabling precision imaging to be done on sub-arcsecond angular scales, and will nicely complement the ESO VLT/VLTI observatory", said Dr. Hans Rykaczewski, the ALMA European Project Manager. Millimetre-wave astronomy is the study of the universe in the spectral region between what is traditionally considered radio waves and infrared radiation. In this realm, ALMA will study the evolution of galaxies, including very early stages, gather crucial data on the formation of stars, proto-planetary discs, and planets, and provide new insights on the familiar objects of our own solar system. A prototype antenna had already been built by Alcatel Alenia Space and European Industrial Engineering and thoroughly tested along with prototypes antennas from Vertex/LSI and Mitsubishi at the ALMA Antenna Test Facility located at the Very Large Array site in Socorro, New Mexico. For more information on the ALMA project, please go to http://www.eso.org/projects/alma/.

  6. Report on the ''2017 ESO Calibration Workshop: The Second-Generation VLT Instruments and Friends''

    NASA Astrophysics Data System (ADS)

    Smette, A.; Kerber, F.; Kaufer, A.

    2017-03-01

    The participants at the 2017 ESO Calibration Workshop shared their experiences and the challenges encountered in calibrating VLT second-generation instruments and the upgraded first-generation instruments, and discussed improvements in the characterisation of the atmosphere and data reduction. A small group of ESO participants held a follow-up retreat and identified possible game changers in the future operations of the La Silla Paranal Observatory: feedback on the proposals is encouraged.

  7. CERN, ESA and ESO Launch "Physics On Stage"

    NASA Astrophysics Data System (ADS)

    2000-03-01

    and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO La Silla observatory (Chile) is one of the largest and best-equipped in the world. ESO's Very Large Telescope Array (VLT) is under construction at Cerro Paranal (Chile). When completed in 2001, the VLT will be the largest optical telescope in the world. Useful Physics On Stage addresses "Physics on Stage" webaddress: http://www.estec.esa.nl/outreach/pos International Steering Committee (ISC) Clovis de Matos (Executive Coordinator) ESA/ESTEC European Space Research and Technology Centre Office for Educational Outreach Activities Keplerlaan 1 Postbus 299 NL-2200 AG Noordwijk The Netherlands email: cdematos@estec.esa.nl Telephone: +31-71-565- 5518 Fax: +31-71-565 5590

  8. Blockbuster starring ESO Paranal opens tomorrow

    NASA Astrophysics Data System (ADS)

    2008-10-01

    The 22nd James Bond adventure is due for release tomorrow, 31 October 2008, in the UK and a week later in the rest of the world. A key location in the movie is the Residencia, the hotel for astronomers and staff at ESO's Paranal Observatory. Blockbuster starring ESO Paranal opens tomorrow ESO PR Photo 38/08 The James Bond "Quantum of Solace" filmmakers Quantum of Solace is the latest film in one of most successful movie franchises -- that of renowned 007 Agent James Bond of the British Secret Service MI6. The agent "on Her Majesty's secret service" is once again played by Daniel Craig. Key scenes of the movie were filmed at Paranal, the home of ESO's Very Large Telescope, and the most advanced optical telescope in the world. Usually occupied by no more than 100 astronomers, engineers and technicians, Paranal welcomed the 300-strong film crew for several days of shooting at the end of March 2008. The crew travelled from their hotel base in Antofagasta for up to two hours each morning to reach the filming locations. "We are delighted to have a movie like this filmed at Paranal and it was extremely good to see how careful the crew were with the surroundings and how mindful they were of the fact that they were in an operating, working observatory", says Tim de Zeeuw, ESO Director General. "Paranal is a unique observatory in a unique setting and it is no real surprise that it plays a major part in a James Bond movie", he adds. The filmmakers were mostly interested in filming exterior scenes at the Paranal Residencia, the accommodation for staff operating the Very Large Telescope. In the movie, the Residencia is supposedly the "Perla de Las Dunas", a unique hotel in the desert. Cerro Paranal is a 2600 m high mountain in the Chilean Atacama Desert, perhaps the driest on Earth. The high altitude site and extreme dryness make excellent conditions for astronomical observations. To make it possible for people to live and work here, a hotel, or Residencia, was built at the

  9. NASA and ESA astronauts visit ESO. Hubble repair team meets European astronomers in Garching.

    NASA Astrophysics Data System (ADS)

    1994-02-01

    On Wednesday, February 16, 1994, seven NASA and ESA astronauts and their spouses will spend a day at the Headquarters of the European Southern Observatory. They are the members of the STS-61 crew that successfully repaired the Hubble Space Telescope during a Space Shuttle mission in December 1993. This will be the only stop in Germany during their current tour of various European countries. ESO houses the Space Telescope European Coordinating Facility (ST/ECF), a joint venture by the European Space Agency and ESO. This group of astronomers and computer specialists provide all services needed by European astronomers for observations with the Space Telescope. Currently, the European share is about 20 of the total time available at this telescope. During this visit, a Press Conference will be held on Wednesday, February 16, 11:45 - 12:30 at the ESO Headquarters Karl-Schwarzschild-Strasse 2 D-85748 Garching bei Munchen. Please note that participation in this Press Conference is by invitation only. Media representatives may obtain invitations from Mrs. E. Volk, ESO Information Service at this address (Tel.: +49-89-32006276; Fax.: +49-89-3202362), until Friday, February 11, 1994. After the Press Conference, between 12:30 - 14:00, a light refreshment will be served at the ESO Headquarters to all participants. >From 14:00 - 15:30, the astronauts will meet with students and teachers from the many scientific institutes in Garching in the course of an open presentation at the large lecture hall of the Physics Department of the Technical University. It is a 10 minute walk from ESO to the hall. Later the same day, the astronauts will be back at ESO for a private discussion of various space astronomy issues with their astronomer colleagues, many of whom are users of the Hubble Space Telescope, as well as ground-based telescopes at the ESO La Silla Observatory and elsewhere. The astronauts continue to Switzerland in the evening.

  10. ESO

    Science.gov Websites

    2009 100 Hours of Astronomy The Eye 3D IMAX® 3D Film Hidden Universe Open House Day 2011 Open House and Jupiter - 1994 Comet Hale Bopp - 1994 Astronomy Communication Seminars Outreach Education Educational Material Science in School ESO Astronomy Camp 2017 ESO Astronomy Camp 2016 ESO Astronomy Camp 2015

  11. Development of telescope control system for the 50cm telescope of UC Observatory Santa Martina

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Reveco, Johnny; Vanzi, Leonardo; Fernández, Jose M.; Escarate, Pedro; Suc, Vincent

    2012-09-01

    The main telescope of the UC Observatory Santa Martina is a 50cm optical telescope donated by ESO to Pontificia Universidad Catolica de Chile. During the past years the telescope has been refurbished and used as the main facility for testing and validating new instruments under construction by the center of Astro-Engineering UC. As part of this work, the need to develop a more efficient and flexible control system arises. The new distributed control system has been developed on top of Internet Communication Engine (ICE), a framework developed by Zeroc Inc. This framework features a lightweight but powerful and flexible inter-process communication infrastructure and provides binding to classic and modern programming languages, such as, C/C++, java, c#, ruby-rail, objective c, etc. The result of this work shows ICE as a real alternative for CORBA and other de-facto distribute programming framework. Classical control software architecture has been chosen and comprises an observation control system (OCS), the orchestrator of the observation, which controls the telescope control system (TCS), and detector control system (DCS). The real-time control and monitoring system is deployed and running over ARM based single board computers. Other features such as logging and configuration services have been developed as well. Inter-operation with other main astronomical control frameworks are foreseen in order achieve a smooth integration of instruments when they will be integrated in the main observatories in the north of Chile

  12. The Gaia-ESO Survey: open clusters in Gaia-DR1 . A way forward to stellar age calibration

    NASA Astrophysics Data System (ADS)

    Randich, S.; Tognelli, E.; Jackson, R.; Jeffries, R. D.; Degl'Innocenti, S.; Pancino, E.; Re Fiorentin, P.; Spagna, A.; Sacco, G.; Bragaglia, A.; Magrini, L.; Prada Moroni, P. G.; Alfaro, E.; Franciosini, E.; Morbidelli, L.; Roccatagliata, V.; Bouy, H.; Bravi, L.; Jiménez-Esteban, F. M.; Jordi, C.; Zari, E.; Tautvaišiene, G.; Drazdauskas, A.; Mikolaitis, S.; Gilmore, G.; Feltzing, S.; Vallenari, A.; Bensby, T.; Koposov, S.; Korn, A.; Lanzafame, A.; Smiljanic, R.; Bayo, A.; Carraro, G.; Costado, M. T.; Heiter, U.; Hourihane, A.; Jofré, P.; Lewis, J.; Monaco, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2018-05-01

    and demonstrates the potential of combining Gaia and ground-based spectroscopic datasets. Based on observations collected with the FLAMES instrument at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-ESO Large Public Spectroscopic Survey (188.B-3002, 193.B-0936).Additional tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A99

  13. The Challenges in Metadata Management: 20+ Years of ESO Data

    NASA Astrophysics Data System (ADS)

    Vera, I.; Da Rocha, C.; Dobrzycki, A.; Micol, A.; Vuong, M.

    2015-09-01

    The European Southern Observatory Science Archive Facility has been in operations for more than 20 years. It contains data produced by ESO telescopes as well as the metadata needed for characterizing and distributing those data. This metadata is used to build the different archive services provided by the Archive. Over these years, services have been added, modified or even decommissioned creating a cocktail of new, evolved and legacy data systems. The challenge for the Archive is to harmonize the differences of those data systems to provide the community with a homogeneous experience when using ESO data. In this paper, we present ESO experience in three particular challenging areas. First discussion is dedicated to the problem of metadata quality over the time, second discusses how to integrate obsolete data models on the current services and finally we will present the challenges of ever growing databases. We describe our experience dealing with those issues and the solutions adopted to mitigate them.

  14. Ghosts of Milky Way's past: the globular cluster ESO 37-1 (E 3)

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, R.; de la Fuente Marcos, C.; Moni Bidin, C.; Ortolani, S.; Carraro, G.

    2015-09-01

    Paranal Observatory, under the program 078.D-0186 and includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile (program ID CHILE-2015A-029).Figure 6 and Appendix A are available in electronic form at http://www.aanda.orgTables of the individual photometric measurements are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A13

  15. The Gaia-ESO Survey Astrophysical Calibration

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Gaia-ESO Survey Consortium

    2016-05-01

    The Gaia-ESO Survey is a wide field spectroscopic survey recently started with the FLAMES@VLT in Cerro Paranal, Chile. It will produce radial velocities more accurate than Gaia's for faint stars (down to V ≃ 18), and astrophysical parameters and abundances for approximately 100 000 stars, belonging to all Galactic populations. 300 nights were assigned in 5 years (with the last year subject to approval after a detailed report). In particular, to connect with other ongoing and planned spectroscopic surveys, a detailed calibration program — for the astrophysical parameters derivation — is planned, including well known clusters, Gaia benchmark stars, and special equatorial calibration fields designed for wide field/multifiber spectrographs.

  16. Dynamical Mass of the O-Type Supergiant in Zeta Orionis A

    DTIC Science & Technology

    2013-01-01

    A. Hummel1, Th. Rivinius2, M.-F. Nieva3,4, O. Stahl5, G. van Belle6, and R. T. Zavala7 1 European Southern Observatory, Karl - Schwarzschild -Str. 2...85748 Garching, Germany e-mail: chummel@eso.org 2 European Southern Observatory, Casilla 19001, Santiago 19, Chile 3 Dr. Karl Remeis–Sternwarte & ECAP

  17. REOSC Delivers the Best Astronomical Mirror in the World to ESO

    NASA Astrophysics Data System (ADS)

    1999-12-01

    On December 14, 1999, REOSC , the Optical Department of the SAGEM Group , finished the polishing of the fourth 8.2-m main mirror for the Very Large Telescope (VLT) of the European Southern Observatory. The mirror was today delivered to ESO at a ceremony at the REOSC factory in Saint Pierre du Perray, just south of Paris. The precision of the form of the mirror that was achieved during the polishing process is 8.5 nanometer (1 nanometer = 1 millionth of a millimetre) over the optical surface. This exceptional value corresponds to an optical resolution (theoretical image sharpness) of 0.03 arcseconds in the visible spectrum. This corresponds to distinguishing two objects separated by only 15 cm at a distance of 1000 km and will allow to detect astronomical objects that are 10,000 million times fainter than what can be perceived with the unaided eye. This impressive measure of quality, achieved by the REOSC teams during much painstaking work, implies that this VLT mirror is the most accurate in the world. In fact, all four 8.2-m VLT main mirrors polished by REOSC are well within the very strict specifications set by ESO, but this is the best of them all. The celebration today is the successful highlight of a contract initiated more than ten years ago, during which REOSC has perfected new polishing and control techniques - innovations improved and developed in a unique workshop dedicated to these giant mirrors. These methods and means are directly applicable to the new generations of segmented mirrors that are now being developed for astronomy and space observations. They are, in this sense, at the foremost front of optical technology. REOSC, the Optical Department of the SAGEM Group , is specialised in the study and realisation of high-precision optics for astronomy, space, defence, science and industry. For earlier information about the work on the VLT mirrors, cf. ESO Press Release 15/95 (13 November 1995). The SAGEM Group is a French high-technology group. It

  18. Surface Layer turbulence profiling with the SL-SLODAR and LUSCI at ESO Paranal Observatory

    NASA Astrophysics Data System (ADS)

    Lombardi, G.; Sarazin, M.; Char, F.; González Ávila, C.; Navarrete, J.; Tokovinin, A.; Wilson, R. W.; Butterley, T.

    2014-10-01

    In the context of the Surface Layer investigation at ESO Paranal Observatory, a Surface Layer Slope Detection And Ranging (SL-SLODAR) instrument prototype has been used at Paranal during 2012, while Lunar Scintillometer (LuSci) measurements campaigns are being carried out since 2008. Simultaneous Surface Layer profiling data from the two instruments are analysed in order to compare the two instruments to enforce their reliability and finely characterize the Paranal Surface Layer profile. BETA is the slope of the turbulence power spectrum delivered by the SL-SLODAR. It is intended purely as a diagnostic tool to indicate whether the Cn2 profile can be trusted. When BETA is significantly less than 3.667 (Kolmogorov law value) this generally indicates that the wind speed is low and the data sets are too short to fully sample the low frequency components of the turbulence. Around the Kolmogorov value, the integrals form the SL-SLODAR and LuSci are pretty much the same. This is valid also in the first 20 m above ground only (SL). Both instruments agree very well when the wind speed on the Paranal platform is higher than 3 m/s. This last result suggests that wind speed higher than 3 m/s allow to have more reliable turbulence profile measurements from both instruments for further analyses of the Surface Layer. Furthermore, the disagreement of the two instruments in connection with wind speed lower than 3 m/s also suggests that the wind speed is a critical parameter to be taken into account before the treatment of the data.

  19. Protecting Dark Skies in Chile

    NASA Astrophysics Data System (ADS)

    Smith, R. Chris; Sanhueza, Pedro; Phillips, Mark

    2018-01-01

    Current projections indicate that Chile will host approximately 70% of the astronomical collecting area on Earth by 2030, augmenting the enormous area of ALMA with that of three next-generation optical telescopes: LSST, GMTO, and E-ELT. These cutting-edge facilities represent billions of dollars of investment in the astronomical facilities hosted in Chile. The Chilean government, Chilean astronomical community, and the international observatories in Chile have recognized that these investments are threatened by light pollution, and have formed a strong collaboration to work at managing the threats. We will provide an update on the work being done in Chile, ranging from training municipalities about new lighting regulations to exploring international recognition of the dark sky sites of Northern Chile.

  20. André B. Muller (25.9.1918-1.4.2006)

    NASA Astrophysics Data System (ADS)

    West, R. M.

    2006-06-01

    With great sadness, we have learned about the death of André Muller on 1 April, at the age of 87. Living in retirement in his native Holland since 1983, he was one of ESOs true pioneers, an outstanding representative of the select group of European astronomers who succeeded in steering ESO through the difficult initial phases. André was close-ly associated with the entire process, from the first site monitoring programmes in South Africa to the subsequent search in Chile, the decision in favour of the La Silla site, as well as the management of ESOs early activities in Chile, includ-ing the construction of the headquarters and observatory and the installation of the first generation of ESO telescopes. Few persons, if any, have been so inti-mately connected to the setting-up of ESOs facilities and it would be impossible to list in detail all of the services André performed for the organisation with such great expertise and zeal during his long career.

  1. 40+ Years of Instrumentation for the La Silla Paranal Observatory

    NASA Astrophysics Data System (ADS)

    D'Odorico, S.

    2018-03-01

    As ESO Period 100 comes to a close, I look back at the development of ESO's instrumentation programme over more than 40 years. Instrumentation and detector activities were initially started by a small group of designers, engineers, technicians and astronomers while ESO was still at CERN in Geneva in the late 1970s. They have since led to the development of a successful suite of optical and infrared instruments for the La Silla Paranal Observatory, as testified by the continuous growth in the number of proposals for observing time and in the publications based on data from ESO telescopes. The instrumentation programme evolved significantly with the VLT and most instruments were developed by national institutes in close cooperation with ESO. This policy was a cornerstone of the VLT programme from the beginning and a key to its success.

  2. International Summer School on Astronomy and Space Science in Chile, first experience.

    NASA Astrophysics Data System (ADS)

    Stepanova, M.; Arellano-Baeza, A. A.

    I International Summer School on Astronomy and Space Science took place in the Elqui Valley Chile January 15-29 2005 Eighty 12-17 year old students from Chile Russia Venezuela and Bulgaria obtained a valuable experience to work together with outstanding scientists from Chile and Russia and with Russian cosmonaut Alexander Balandine They also had opportunity to visit the main astronomical observatories and to participate in workshops dedicated to the telescope and satellite design and remote sensing This activity was supported by numerous institutions in Chile including the Ministry of Education the European Southern Observatory Chilean Space Agency Chilean Air Force Latin American Association of Space Geophysics the principal Chilean universities and the First Lady Mrs Luisa Duran

  3. Press Meeting 20 January 2003: First Light for Europe's Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Imagine you are an astronomer with instant, fingertip access to all existing observations of a given object and the opportunity to sift through them at will. In just a few moments, you can have information on all kinds about objects out of catalogues all over the world, including observations taken at different times. Over the next two years this scenario will become reality as Europe's Astrophysical Virtual Observatory (AVO) develops. Established only a year ago (cf. ESO PR 26/01), the AVO already offers astronomers a unique, prototype research tool that will lead the way to many outstanding new discoveries. Journalists are invited to a live demonstration of the capabilities of this exciting new initiative in astronomy. The demonstration will take place at the Jodrell Bank Observatory in Manchester, in the United Kingdom, on 20 January 2003, starting at 11:00. Sophisticated AVO tools will help scientists find the most distant supernovae - objects that reveal the cosmological makeup of our Universe. The tools are also helping astronomers measure the rate of birth of stars in extremely red and distant galaxies. Journalists will also have the opportunity to discuss the project with leading astronomers from across Europe. The new AVO website has been launched today, explaining the progress being made in this European Commission-funded project: URL: http://www.euro-vo.org/ To register your intention to attend the AVO First Light Demonstration, please provide your name and affiliation by January 13, 2003, to: Ian Morison, Jodrell Bank Observatory (full contact details below). Information on getting to the event is included on the webpage above. Programme for the AVO First Light Demonstration 11:00 Welcome, Phil Diamond (University of Manchester/Jodrell Bank Observatory) 11:05 Short introduction to Virtual Observatories, Piero Benvenuti (ESA/ST-ECF) 11:15 Q&A 11:20 Short introduction to the Astrophysical Virtual Observatory, Peter Quinn (ESO) 11:30 Q&A 11:35 Screening of

  4. The ESO Educational Office Reaches Out towards Europe's Teachers

    NASA Astrophysics Data System (ADS)

    2001-12-01

    ESA/ESO Astronomy Exercises Provide a Taste of Real Astronomy [1] Summary The European Southern Observatory (ESO) has been involved in many Europe-wide educational projects during the past years, in particular within European Science Weeks sponsored by the European Commission (EC). In order to further enhance the significant educational potential inherent in the numerous scientific endeavours now carried out by Europe's astronomers with ESO front-line telescope facilities, it has been decided to set up an Educational Office within the ESO EPR Department. It will from now on work closely with astronomy-oriented teachers, in particular at the high-school level , providing support, inspiration and new materials. Much of this interaction will happen via the European Association for Astronomy Education (EAAE) In this context, and in collaboration with the European Space Agency (ESA) , the first instalments of the "ESA/ESO Astronomy Exercise Series" have just been published, on the web ( http://www.astroex.org ) and in print (6 booklets totalling 100 pages; provided free-of-charge to teachers on request). They allow 16-19 year old students to gain exciting hands-on experience in astronomy, making realistic calculations with data obtained from observations by some of the world's best telescopes, the NASA/ESA Hubble Space Telescope (HST) and ESO's Very Large Telescope (VLT) . PR Photo 36/01 : The "ESA/ESO Astronomy Exercise Series" . Educational projects at ESO The European Southern Observatory (ESO) , through its Education and Public Relations Department (EPR) , has long been involved in educational activities, in particular by means of Europe-wide projects during successive European Science Weeks , with support from the European Commission (EC) . A most visible outcome has been the creation of the trailblazing European Association for Astronomy Education (EAAE) - this was first discussed at an international meeting at the ESO Headquarters in November 1994 with the

  5. A 12 μm ISOCAM survey of the ESO-Sculptor field. Data reduction and analysis

    NASA Astrophysics Data System (ADS)

    Seymour, N.; Rocca-Volmerange, B.; de Lapparent, V.

    2007-12-01

    We present a detailed reduction of a mid-infrared 12 μm (LW10 filter) ISOCAM open time observation performed on the ESO-Sculptor Survey field (Arnouts et al. 1997, A&AS, 124, 163). A complete catalogue of 142 sources (120 galaxies and 22 stars), detected with high significance (equivalent to 5σ), is presented above an integrated flux density of 0.24 {mJy}. Star/galaxy separation is performed by a detailed study of colour-colour diagrams. The catalogue is complete to 1 {mJy} and, below this flux density, the incompleteness is corrected using two independent methods. The first method uses stars and the second uses optical counterparts of the ISOCAM galaxies; these methods yield consistent results. We also apply an empirical flux density calibration using stars in the field. For each star, the 12 μm flux density is derived by fitting optical colours from a multi-band χ2 to stellar templates (BaSel-2.0) and using empirical optical-IR colour-colour relations. This article is a companion analysis to our 2007 paper (Rocca-Volmerange et al. 2007, A&A, 475, 801) where the 12 μ m faint galaxy counts are presented and analysed per galaxy type with the evolutionary code PÉGASE.3. Based on observations collected at the European Southern Observatory (ESO), La Silla, Chile, and on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA. Full Table [see full textsee full textsee full textsee full textsee full textsee full text] is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/475/791

  6. Spain to Join ESO

    NASA Astrophysics Data System (ADS)

    2006-02-01

    Today, during a ceremony in Madrid, an agreement was signed by the Spanish Minister of Education and Science, Mrs. María Jesús San Segundo, and the ESO Director General, Dr. Catherine Cesarsky, affirming their commitment to securing Spanish membership of ESO. ESO PR Photo 05a/06 ESO PR Photo 05a/06 Signature Event in Madrid Following approval by the Spanish Council of Ministers and the ratification by the Spanish Parliament of the ESO Convention and the associated protocols, Spain intends to become ESO's 12th member state on 1 July 2006. "Since long Spain was aware that entering ESO was a logical decision and it was even necessary for a country like Spain because Spain is ranked 8th in astrophysical research", said Mrs. María Jesús San Segundo. "The large scientific installations are not only necessary for research in different fields but are also partners and customers for hi-tech companies, helping to increase the funding of R&D." "Spanish Astronomy has made tremendous strides forward and we are delighted to welcome Spain as a new member of ESO. We very much look forward to working together with our excellent Spanish colleagues," said Dr. Cesarsky. "For ESO, the Spanish accession means that we can draw on the scientific and technological competences, some of them unique in Europe, that have been developed in Spain and, of course, for Europe the Spanish membership of ESO is an important milestone in the construction of the European Research Area." ESO PR Photo 05b/06 ESO PR Photo 05b/06 Signature Event in Madrid Indeed, Spain is an important member of the European astronomical community and has developed impressively over the last three decades, reaching maturity with major contributions in virtually all subjects of astronomy. In addition, Spain hosts, operates or owns a number of competitive facilities dedicated to foster astronomical research, among which the Observatorio del Roque de los Muchachos at La Palma, certainly the premier optical

  7. Public surveys at ESO

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda; Delmotte, Nausicaa; Hilker, Michael; Hussain, Gaitee; Mascetti, Laura; Micol, Alberto; Petr-Gotzens, Monika; Rejkuba, Marina; Retzlaff, Jörg; Mieske, Steffen; Szeifert, Thomas; Ivison, Rob; Leibundgut, Bruno; Romaniello, Martino

    2016-07-01

    ESO has a strong mandate to survey the Southern Sky. In this article, we describe the ESO telescopes and instruments that are currently used for ESO Public Surveys, and the future plans of the community with the new wide-field-spectroscopic instruments. We summarize the ESO policies governing the management of these projects on behalf of the community. The on-going ESO Public Surveys and their science goals, their status of completion, and the new projects selected during the second ESO VISTA call in 2015/2016 are discussed. We then present the impact of these projects in terms of current numbers of refereed publications and the scientific data products published through the ESO Science Archive Facility by the survey teams, including the independent access and scientific use of the published survey data products by the astronomical community.

  8. N° 15-2000: ESA, CERN and ESO launch "Physics on Stage"

    NASA Astrophysics Data System (ADS)

    2000-03-01

    communicating the outcome of the exciting research programmes carried out at the ESO observatories to a wide audience and in particular to Europe's youth. I warmly welcome the broad international collaboration within "Physics on Stage". I am confident that working together with the European Union and our sister organisations ESA and CERN, as well as teachers' organisations and dedicated individuals in all member countries, this innovative education programme will make a most important contribution towards raising the interest in fundamental research in Europe." About ESA, CERN, and ESO The European Space Agency (ESA) is an international/intergovernmental organisation made of 15 member states: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. ESA provides and promotes, for peaceful purposes only, co-operation among its member states in space research, technology and their applications. With ESA, Europe shapes and shares space for people, companies and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO observatory La Silla in Chile is one of the largest and best-equipped observatories in the world. ESO's Very Large Telescope Array (VLT), an array of giant telescopes, is under construction at Cerro Paranal in the Chilean Atacama Desert. When completed in 2001, the VLT will be the largest and best optical telescope in the world. The CERN, European Organisation for Nuclear Research, has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece

  9. Design of a Teacher Professional Development Program for International Collaborative Astronomy Research in Chile

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Seguel, J.; Sparks, R.; Opazo, L.; Walker, C. E.

    2011-12-01

    We have designed (but not yet implemented) a program where five US teachers will team with five Chilean teachers to conduct high-quality astronomical research in Chile that can be brought back to their classrooms and shared with their students. This project will introduce US teachers to four research projects at the Observatorio Cruz del Sur, one the largest municipal observatories in South America. The program would operate over the course of a year or more, with a month of observing and conducting research in Chile. The observatory is located in the small town of Combarbalá (Limari Province, IV Región de Coquimbo) in a region rich in archeological, historical, and cultural heritage. Teachers will use high-sensitivity digital detectors to take data through telescopes and with cameras as part of four research projects- light pollution research, digital photography of dark large areas of the sky using wide angle cameras, asteroid photometry, and exoplanet photometric studies. The project partners the National Optical Astronomy Observatory (Tucson, Arizona and La Serena, Chile), the Municipality of the town of Combarbalá, the National Observatory of Chile/University of Chile, and REUNA, an internet communication alliance that serves Chilean universities and observatories. Since the US teachers will have their astronomy classes running while they are in Chile, the teachers will be communicating with their classes on a regular basis. The teachers will also be providing long-term access to southern sky data for other teachers and students in the US while establishing the basis for long-term collaborative research. We expect the program to establish long-term international research collaborations among US and Chilean teachers and students.

  10. GROND followup of ASASSN-17gu/AT2017eip

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Wan; Chen, Tau

    2017-05-01

    We observed the field of ASASSN-17gu/AT2017eip (Stone et al, ATel #10431) simultaneously in g'r'i'z'JHK with GROND (Greiner et al. 2008, PASP 120, 405) mounted at the 2.2m MPG telescope at the ESO La Silla Observatory (Chile).

  11. A Nearby Galactic Exemplar

    NASA Astrophysics Data System (ADS)

    2010-09-01

    ESO has released a spectacular new image of NGC 300, a spiral galaxy similar to the Milky Way, and located in the nearby Sculptor Group of galaxies. Taken with the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile, this 50-hour exposure reveals the structure of the galaxy in exquisite detail. NGC 300 lies about six million light-years away and appears to be about two thirds the size of the full Moon on the sky. Originally discovered from Australia by the Scottish astronomer James Dunlop early in the nineteenth century, NGC 300 is one of the closest and most prominent spiral galaxies in the southern skies and is bright enough to be seen easily in binoculars. It lies in the inconspicuous constellation of Sculptor, which has few bright stars, but is home to a collection of nearby galaxies that form the Sculptor Group [1]. Other members that have been imaged by ESO telescopes include NGC 55 (eso0914), NGC 253 (eso1025, eso0902) and NGC 7793 (eso0914). Many galaxies have at least some slight peculiarity, but NGC 300 seems to be remarkably normal. This makes it an ideal specimen for astronomers studying the structure and content of spiral galaxies such as our own. This picture from the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile was assembled from many individual images taken through a large set of different filters with a total exposure time close to 50 hours. The data was acquired over many observing nights, spanning several years. The main purpose of this extensive observational campaign was to take an unusually thorough census of the stars in the galaxy, counting both the number and varieties of the stars, and marking regions, or even individual stars, that warrant deeper and more focussed investigation. But such a rich data collection will also have many other uses for years to come. By observing the galaxy with filters that isolate the light coming specifically from hydrogen and oxygen, the many star-forming regions along NGC 300's

  12. Brilliant Star in a Colourful Neighbourhood

    NASA Astrophysics Data System (ADS)

    2010-07-01

    A spectacular new image from ESO's Wide Field Imager at the La Silla Observatory in Chile shows the brilliant and unusual star WR 22 and its colourful surroundings. WR 22 is a very hot and bright star that is shedding its atmosphere into space at a rate many millions of times faster than the Sun. It lies in the outer part of the dramatic Carina Nebula from which it formed. Very massive stars live fast and die young. Some of these stellar beacons have such intense radiation passing through their thick atmospheres late in their lives that they shed material into space many millions of times more quickly than relatively sedate stars such as the Sun. These rare, very hot and massive objects are known as Wolf-Rayet stars [1], after the two French astronomers who first identified them in the mid-nineteenth century, and one of the most massive ones yet measured is known as WR 22. It appears at the centre of this picture, which was created from images taken through red, green and blue filters with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. WR 22 is a member of a double star system and has been measured to have a mass at least 70 times that of the Sun. WR 22 lies in the southern constellation of Carina, the keel of Jason's ship Argo in Greek mythology. Although the star lies over 5000 light-years from the Earth it is so bright that it can just be faintly seen with the unaided eye under good conditions. WR 22 is one of many exceptionally brilliant stars associated with the beautiful Carina Nebula (also known as NGC 3372) and the outer part of this huge region of star formation in the southern Milky Way forms the colourful backdrop to this image. The subtle colours of the rich background tapestry are a result of the interactions between the intense ultraviolet radiation coming from hot massive stars, including WR 22, and the vast gas clouds, mostly hydrogen, from which they formed. The central part of this enormous complex

  13. The MATISSE analysis of large spectral datasets from the ESO Archive

    NASA Astrophysics Data System (ADS)

    Worley, C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Vernisse, Y.; Ordenovic, C.; Bijaoui, A.

    2010-12-01

    The automated stellar classification algorithm, MATISSE, has been developed at the Observatoire de la Côte d'Azur (OCA) in order to determine stellar temperatures, gravities and chemical abundances for large datasets of stellar spectra. The Gaia Data Processing and Analysis Consortium (DPAC) has selected MATISSE as one of the key programmes to be used in the analysis of the Gaia Radial Velocity Spectrometer (RVS) spectra. MATISSE is currently being used to analyse large datasets of spectra from the ESO archive with the primary goal of producing advanced data products to be made available in the ESO database via the Virtual Observatory. This is also an invaluable opportunity to identify and address issues that can be encountered with the analysis large samples of real spectra prior to the launch of Gaia in 2012. The analysis of the archived spectra of the FEROS spectrograph is currently underway and preliminary results are presented.

  14. Philippe Busquin Visits Paranal

    NASA Astrophysics Data System (ADS)

    2003-07-01

    The European Commissioner for Research, Mr. Philippe Busquin, who is currently visiting the Republic of Chile, arrived at the ESO Paranal Observatory on Tuesday afternoon, July 29, 2003. The Commissioner was accompanied, among others, by the EU Ambassador to Chile, Mr. Wolfgang Plasa, and Ms. Christina Lazo, Executive Director of the Chilean Science and Technology Agency (CONICYT). The distinguished visitors were able to acquaint themselves with one of the foremost European research facilities, the ESO Very Large Telescope (VLT), during an overnight stay at this remote site. Arriving after the long flight from Europe in Antofagasta, capital of the II Chilean region, the Commissioner continued along the desert road to Paranal, some 130 km south of Antofasta and site of the world's largest and most efficient optical/infrared astronomical telescope facility. The high guests were welcomed by the ESO Director General, Dr. Catherine Cesarsky, and the ESO Representative in Chile, Mr. Daniel Hofstadt, as well as ESO staff members of many nationalities. The visitors were shown the various high-tech installations at the observatory, including many of the large, front-line VLT astronomical instruments that have been built in collaboration between ESO and European research institutes. Explanations were given by ESO astronomers and engineers and the Commissioner gained a good impression of the wide range of exciting research programmes that are carried out with the VLT. Having enjoyed the spectacular sunset over the Pacific Ocean from the KUEYEN telescope, one of the four 8.2-m telescopes that form the VLT array, the Commissioner visited the VLT Control Room from where the four 8.2-m Unit Telescopes and the VLT Interferometer (VLTI) are operated. Here, the Commissioner was invited to follow an observing sequence at the console of the KUEYEN telescope. " This is a tribute to the human genius ", commented the Commissioner. " It is an extraordinary contribution to the development

  15. TNO Photometry and Spectroscopy at ESO and Calar Alto

    NASA Astrophysics Data System (ADS)

    Boehnhardt, H.; Sekiguchi, T.; Vair, M.; Hainaut, O.; Delahodde, C.; West, R. M.; Tozzi, G. P.; Barrera, L.; Birkle, K.; Watanabe, J.; Meech, K.

    New photometry and spectroscopy of Transneptunian objects (TNO) has been obtained at ESO (VLT+FORS1, NTT+SOFI) and the Calar Alto (3.5m+MOSCA) observatory. BVRI photometry of more than 10 objects confirms the general colour-colour distribution of TNOs found previously. Quasi-simultaneous spectroscopy in the visible wavelength range of 5 TNOs did not reveal any spectral signature apart from the spetral gradients which are in agreement with the broadband colours. JHK filter photometry of 3 objects indicates that the reddening may only occur in the near-IR at least in some cases. Using new observations from the ESO VLT the lightcurve, colours and spectrum of 1996TO66 are investigated: the rotation period of 6.25h is confirmed, also the change in the lightcurve between 1997 and 1998 which indicates an exceptional behaviour in this object (temporary cometary activity ?). The 1999 photometry and spectroscopy in the visible revealed solar colours, no reddening and no spectral features. V-R colour changes over the rotation phase are not found. This works is done in colaboration with:

  16. ESO 306-17

    NASA Image and Video Library

    2017-12-08

    View a video clip zoom in on galaxy ESO 306-17 here: www.flickr.com/photos/gsfc/4409589832/ This image from the Advanced Camera for Surveys aboard the NASA/ESA Hubble Space Telescope highlights the large and bright elliptical galaxy called ESO 306-17 in the southern sky. In this image, it appears that ESO 306-17 is surrounded by other galaxies but the bright galaxies at bottom left are thought to be in the foreground, not at the same distance in the sky. In reality, ESO 306-17 lies fairly abandoned in an enormous sea of dark matter and hot gas. Researchers are also using this image to search for nearby ultra-compact dwarf galaxies. Ultra-compact dwarfs are mini versions of dwarf galaxies that have been left with only their core due to interaction with larger, more powerful galaxies. Most ultra-compact dwarfs discovered to date are located near giant elliptical galaxies in large clusters of galaxies, so it will be interesting to see if researchers find similar objects in fossil groups. Credit: NASA, ESA and Michael West (ESO)

  17. Report on the ''ESO Python Boot Camp — Pilot Version''

    NASA Astrophysics Data System (ADS)

    Dias, B.; Milli, J.

    2017-03-01

    The Python programming language is becoming very popular within the astronomical community. Python is a high-level language with multiple applications including database management, handling FITS images and tables, statistical analysis, and more advanced topics. Python is a very powerful tool both for astronomical publications and for observatory operations. Since the best way to learn a new programming language is through practice, we therefore organised a two-day hands-on workshop to share expertise among ESO colleagues. We report here the outcome and feedback from this pilot event.

  18. The GalileoMobile starts its South American voyage - Astronomy education goes on tour through the Andes Mountains

    NASA Astrophysics Data System (ADS)

    2009-10-01

    Today marks the beginning of the GalileoMobile Project, a two-month expedition to bring the wonder and excitement of astronomy to young people in Chile, Bolivia and Peru. Supported by ESO and partners, a group of astronomers and educators will travel through a region of the Andes Mountains aboard the GalileoMobile, offering astronomical activities, such as workshops for students and star parties for the general public. Professional filmmakers on the trip will produce a multilingual documentary capturing the thrill of discovery through science, culture and travel. The GalileoMobile is a Special Project of the International Year of Astronomy 2009 (IYA2009), which is a global celebration commemorating the first use of a telescope to view the Universe by the Italian astronomer Galileo four hundred years ago. The project will promote basic science education through astronomy by visiting schools and communities that have limited access to outreach programmes. The GalileoMobile will provide these underserved groups with hands-on activities and educational material from international partners. The van is fully equipped to offer unique sky-observing opportunities for young students and other locals, with star parties at night and solar observations during the day. The team will use various tools including IYA2009's handy Galileoscopes, which will be donated to the schools after the visits. By stimulating curiosity, critical thinking and a sense of wonder and discovery for the Universe and our planet, the GalileoMobile Project aims to encourage interest in astronomy and science, and exchange culturally different visions of the cosmos. Spearheading the initiative is a group of enthusiastic Latin American and European PhD students from the European Southern Observatory, the Max Planck Society, the University Observatory Munich, and the Stockholm University Observatory. This itinerant educational programme is intended to reach about 20 000 people during eight weeks in October

  19. The Virtual Observatory: I

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2014-11-01

    The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.

  20. ESO Large Program on physical studies of Trans-Neptunian objects and Centaurs: Final results of the visible spectrophotometric observations

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Doressoundiram, A.; Tozzi, G. P.; Barucci, M. A.; Boehnhardt, H.; de Bergh, C.; Delsanti, A.; Davies, J.; Dotto, E.

    2004-07-01

    coming from the Large Program and those available in literature. Based on observations obtained at the VLT Observatory Cerro Paranal of European Southern Observatory, ESO, Chile, in the framework of programs 167.C-0340(G), 071.C-0500.

  1. Extending ORAC-DR for Offline Processing of ESO, INGRID, and Classic Cam data

    NASA Astrophysics Data System (ADS)

    Currie, M. J.

    2004-07-01

    ORAC-DR--a flexible reduction pipeline---was originally developed by the Joint Astronomy Centre for real-time inspection of reduced data at its telescopes. Starlink is extending ORAC-DR to process at home institutions data from other observatories, notably ESO, whose instruments make no provision for ORAC-DR. I outline the problems encountered and solutions implemented or proposed to apply ORAC-DR to the infra-red instruments ISAAC, NACO, INGRID, and Classic~Cam.

  2. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    Vast Databanks at the Astronomers' Fingertips Summary A new European initiative called the Astrophysical Virtual Observatory (AVO) is being launched to provide astronomers with a breathtaking potential for new discoveries. It will enable them to seamlessly combine the data from both ground- and space-based telescopes which are making observations of the Universe across the whole range of wavelengths - from high-energy gamma rays through the ultraviolet and visible to the infrared and radio. The aim of the Astrophysical Virtual Observatory (AVO) project, which started on 15 November 2001, is to allow astronomers instant access to the vast databanks now being built up by the world's observatories and which are forming what is, in effect, a "digital sky" . Using the AVO, astronomers will, for example, be able to retrieve the elusive traces of the passage of an asteroid as it passes near the Earth and so enable them to predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded so adding invaluable data to the study of the evolution of stars. Background information on the Astrophysical Virtual Observatory is available in the Appendix. PR Photo 34a/01 : The Astrophysical Virtual Observatory - an artist's impression. The rapidly accumulating database ESO PR Photo 34a/01 ESO PR Photo 34a/01 [Preview - JPEG: 400 x 345 pix - 90k] [Normal - JPEG: 800 x 689 pix - 656k] [Hi-Res - JPEG: 3000 x 2582 pix - 4.3M] ESO PR Photo 34a/01 shows an artist's impression of the Astrophysical Virtual Observatory . Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data - corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being

  3. Growth of Astronomy Education in Chile: a late but successful story

    NASA Astrophysics Data System (ADS)

    Quintana, Hernán

    2017-06-01

    The first present international observatories were stablished in Chile by 1963, at a time when local astronomy was devoted to traditional Fundamental Astronomy research, as in most other Latin-american countries. For over 35 years little was achieved in the way of effectively developing a healthy university teaching in the field, in spite of initiatives started and helped in the mid-sixties by some astronomers at CTIO or ESO. Up to 1998, when a second try to start a university degree, this time at U. Católica, was unexpectedly successful, the number of Chileans astronomers had remained constant or slightly decreased. The number started to grow significantly when the new degree attracted the keen interest of students, reaching the potential widely recognized since a long time. Today some 13 universities have astronomy courses or degrees and the number of students and post-docs are in the hundreds.The series of events and university policies originally prevailing in the country, and the changes that allowed the new state of affairs, will be reviewed and described. This will include the barriers and difficulties encountered, and the ways devised to overcome these.

  4. BOOK REVIEW: Geheimnisvolles Universum - Europas Astronomen entschleiern das Weltall

    NASA Astrophysics Data System (ADS)

    Duerbeck, H. W.; Lorenzen, D. H.

    2002-12-01

    formation, stellar death and dust formation, as well as with the Universe, its beginnings and contents (focussing on quasars and SN Ia); like the previous chapters, they contain many quotations of astronomers involved in these types of research (I suppose they are taken from interviews); these blocks, each composed of three chapters, are separated by a more technical part, two chapters dealing with interferometry and adaptive optics. The last third of the book is then dedicated almost exclusively to ESO's "prehistory", and here the reviewer starts to frown. This is a very extensive report on Juergen Stock's early site testing work for US astronomers, first for Gerard Kuiper and the University of Texas, and then for the Association of Universities for Research in Astronomy (AURA), to find an suitable place for a projected telescope and then for the AURA southern observatory, with page-long excerpts from his notebooks (or the printed "Stock reports"). It also deals with Stock's later activities in Chile and Venezuela. Finally, there are a few pages on the foundation of ESO and the choice of a Chilean site, as well as another few pages on future projects of ESO. The decision of ESO to go to Chile is treated very briefly, much shorter than in Blaauw's 1991 book "ESO's Early History"; the reasons for the early focussing on a site in South Africa, and the relatively quick jump on the "Chilean bandwagon" remain quite obscure. Compared to that, the 25 pages of "Stock reports" written to help the decision making of the site of the AURA observatory, contain a lot of not-too-relevant details like prices and names of horses and mules employed in Stock's site testing survey. It is fun reading, but does not penetrate under the surface, and the author's somewhat desperate attempt to join together the ends of the threat, "also the VLT is a consequence of Juergen Stock's activities in Chile", appears not very convincing. I do not want at all to diminish Stock's immense work that made Chile

  5. ESO imaging survey: optical deep public survey

    NASA Astrophysics Data System (ADS)

    Mignano, A.; Miralles, J.-M.; da Costa, L.; Olsen, L. F.; Prandoni, I.; Arnouts, S.; Benoist, C.; Madejsky, R.; Slijkhuis, R.; Zaggia, S.

    2007-02-01

    This paper presents new five passbands (UBVRI) optical wide-field imaging data accumulated as part of the DEEP Public Survey (DPS) carried out as a public survey by the ESO Imaging Survey (EIS) project. Out of the 3 square degrees originally proposed, the survey covers 2.75 square degrees, in at least one band (normally R), and 1.00 square degrees in five passbands. The median seeing, as measured in the final stacked images, is 0.97 arcsec, ranging from 0.75 arcsec to 2.0 arcsec. The median limiting magnitudes (AB system, 2´´ aperture, 5σ detection limit) are UAB=25.65, BAB=25.54, VAB=25.18, RAB = 24.8 and IAB =24.12 mag, consistent with those proposed in the original survey design. The paper describes the observations and data reduction using the EIS Data Reduction System and its associated EIS/MVM library. The quality of the individual images were inspected, bad images discarded and the remaining used to produce final image stacks in each passband, from which sources have been extracted. Finally, the scientific quality of these final images and associated catalogs was assessed qualitatively by visual inspection and quantitatively by comparison of statistical measures derived from these data with those of other authors as well as model predictions, and from direct comparison with the results obtained from the reduction of the same dataset using an independent (hands-on) software system. Finally to illustrate one application of this survey, the results of a preliminary effort to identify sub-mJy radio sources are reported. To the limiting magnitude reached in the R and I passbands the success rate ranges from 66 to 81% (depending on the fields). These data are publicly available at CDS. Based on observations carried out at the European Southern Observatory, La Silla, Chile under program Nos. 164.O-0561, 169.A-0725, and 267.A-5729. Appendices A, B and C are only available in electronic form at http://www.aanda.org

  6. ASASSN-18gq: Discovery of A Low-Luminosity Transient Towards Very Nearby ( 3.4 Mpc) Galaxy ESO 325- G?011

    NASA Astrophysics Data System (ADS)

    Nicholls, B.; Brimacombe, J.; Vallely, P.; Dong, Subo; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.

    2018-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered a new transient source, most likely a supernova, in the low surface brightness galaxy ESO 325- G?011.

  7. "Clouds" above Paranal.

    NASA Astrophysics Data System (ADS)

    1994-04-01

    said treaty, i.e., the Convention concluded between ESO and the Government of Chile in 1963. As this is usual in the relations between International Organisations and their host states, this treaty has been further developed during the years. And as this typically occurs between subjects of international law, related changes have been confirmed by the exchange of diplomatic notes. In an exchange of notes which took place during 1983/1984, the Government of Chile and ESO agreed in particular that ESO's privileges and immunities which derive from the 1963 Convention shall also apply to all future astronomical observatories which ESO would install in Chile with the agreement of the Government. The Republic of Chile has donated to ESO the Paranal site for the very purpose to erect on Cerro Paranal the Very Large Telescope. The Government thus granted the site to ESO in order to enable the Organisation to fulfill its official purposes in Chile. Consequently, the grant of the land took place within the framework of the existing treaty relations between the Republic of Chile and ESO. In the event that there would be a dispute between these two subjects of international law on any aspect of the matter, Article X of the Convention would apply which provides for dispute settlement by way of international arbitration. For these reasons ESO could not be involved in the legal dispute pending between the Government of Chile and the Latorre family before the Chilean courts. ESO feels that this dispute constitutes an internal Chilean matter. For the same reasons, ESO has requested the Supreme Court of Chile to apply and enforce in this dispute the Organisation's jurisdictional immunity and the exemption of its possessions from any public, even judicial, interference, as ESO is entitled under the applicable treaty provisions. ESO notes with satisfaction that the Supreme Court of Chile has recently issued a decision which recognizes the Organisation's privileges and immunities. However

  8. New Method for Data Treatment Developed at ESO

    NASA Astrophysics Data System (ADS)

    1996-08-01

    requirements, however, are never fulfilled in practice. One way around this obstacle is to observe a sufficient number of reference sources, the properties of which are supposed to bracket the properties of the targets. Likewise, repeated observations must be made whenever the observing conditions change. This way one hopes to obtain estimates of the instrumental and atmospheric signatures at the time of the observation of the target by means of interpolation. Until now, this empirical calibration process was the only one available. Unfortunately, it demands a lot of the valuable telescope time just for repeated observations of the reference sources, significantly diminishing the time available for observations of the scientifically important objects. Moreover, every time the instrument is even slightly changed or some condition is altered, a new calibration procedure must be carried through. Maximizing observational efficiency In just over one year from now, ESO will begin to operate the largest optical telescope ever built, the Very Large Telescope (VLT) at the new Paranal Observatory in Chile. Because of its enormous light-collecting area and superior optical quality, the VLT is destined to make a break-through in ground-based observational astronomy. The demand by astronomers for observing time at this unique facility is overwhelming. Even with the unsurpassed number of clear nights at Paranal, each available minute will be extremely precious and everything must be done to ensure that no time will be lost to unnecessary actions. This is a major challenge to the scientists. For instance, how long a time should an exposure last to ensure an optimum of new knowledge about the object observed? In addition, how much time should be spent to define in sufficient detail the `signatures' of the atmosphere, the telescope and the instruments which must be removed from the `raw' data before the resulting `clean' data can be interpreted in a trustworthy way? In short, how can the

  9. Gaia-ESO Survey: Global properties of clusters Trumpler 14 and 16 in the Carina nebula ⋆⋆

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Klutsch, A.; Jeffries, R. D.; Randich, S.; Prisinzano, L.; Maíz Apellániz, J.; Micela, G.; Kalari, V.; Frasca, A.; Zwitter, T.; Bonito, R.; Gilmore, G.; Flaccomio, E.; Francois, P.; Koposov, S.; Lanzafame, A. C.; Sacco, G. G.; Bayo, A.; Carraro, G.; Casey, A. R.; Alfaro, E. J.; Costado, M. T.; Donati, P.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Magrini, L.; Monaco, L.; Morbidelli, L.; Worley, C. C.; Vink, J. S.; Zaggia, S.

    2017-07-01

    Aims: We present the first extensive spectroscopic study of the global population in star clusters Trumpler 16, Trumpler 14, and Collinder 232 in the Carina nebula, using data from the Gaia-ESO Survey, down to solar-mass stars. Methods: In addition to the standard homogeneous survey data reduction, a special processing was applied here because of the bright nebulosity surrounding Carina stars. Results: We find about 400 good candidate members ranging from OB types down to slightly subsolar masses. About 100 heavily reddened early-type Carina members found here were previously unrecognized or poorly classified, including two candidate O stars and several candidate Herbig Ae/Be stars. Their large brightness makes them useful tracers of the obscured Carina population. The spectroscopically derived temperatures for nearly 300 low-mass members enables the inference of individual extinction values and the study of the relative placement of stars along the line of sight. Conclusions: We find a complex spatial structure with definite clustering of low-mass members around the most massive stars and spatially variable extinction. By combining the new data with existing X-ray data, we obtain a more complete picture of the three-dimensional spatial structure of the Carina clusters and of their connection to bright and dark nebulosity and UV sources. The identification of tens of background giants also enables us to determine the total optical depth of the Carina nebula along many sightlines. We are also able to put constraints on the star formation history of the region with Trumpler 14 stars found to be systematically younger than stars in other subclusters. We find a large percentage of fast-rotating stars among Carina solar-mass members, which provide new constraints on the rotational evolution of pre-main-sequence stars in this mass range. Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-ESO

  10. The Orion Nebula: Still Full of Surprises

    NASA Astrophysics Data System (ADS)

    2011-01-01

    This ethereal-looking image of the Orion Nebula was captured using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory, Chile. This nebula is much more than just a pretty face, offering astronomers a close-up view of a massive star-forming region to help advance our understanding of stellar birth and evolution. The data used for this image were selected by Igor Chekalin (Russia), who participated in ESO's Hidden Treasures 2010 astrophotography competition. Igor's composition of the Orion Nebula was the seventh highest ranked entry in the competition, although another of Igor's images was the eventual overall winner. The Orion Nebula, also known as Messier 42, is one of the most easily recognisable and best-studied celestial objects. It is a huge complex of gas and dust where massive stars are forming and is the closest such region to the Earth. The glowing gas is so bright that it can be seen with the unaided eye and is a fascinating sight through a telescope. Despite its familiarity and closeness there is still much to learn about this stellar nursery. It was only in 2007, for instance, that the nebula was shown to be closer to us than previously thought: 1350 light-years, rather than about 1500 light-years. Astronomers have used the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile to observe the stars within Messier 42. They found that the faint red dwarfs in the star cluster associated with the glowing gas radiate much more light than had previously been thought, giving us further insights into this famous object and the stars that it hosts. The data collected for this science project, with no original intention to make a colour image, have now been reused to create the richly detailed picture of Messier 42 shown here. The image is a composite of several exposures taken through a total of five different filters. Light that passed through a red filter as well as light from a filter that

  11. Near-InfraRed Planet Searcher to Join HARPS on the ESO 3.6-metre Telescope

    NASA Astrophysics Data System (ADS)

    Bouchy, F.; Doyon, R.; Artigau, É.; Melo, C.; Hernandez, O.; Wildi, F.; Delfosse, X.; Lovis, C.; Figueira, P.; Canto Martins, B. L..; González Hernández, J. I..; Thibault, S.; Reshetov, V.; Pepe, F.; Santos, N. C.; de Medeiros, J. R..; Rebolo, R.; Abreu, M.; Adibekyan, V. Z.; Bandy, T.; Benz, W.; Blind, N.; Bohlender, D.; Boisse, I.; Bovay, S.; Broeg, C.; Brousseau, D.; Cabral, A.; Chazelas, B.; Cloutier, R.; Coelho, J.; Conod, U.; Cumming, A.; Delabre, B.; Genolet, L.; Hagelberg, J.; Jayawardhana, R.; Käufl, H.-U.; Lafrenière, D.; de Castro Leão, I..; Malo, L.; de Medeiros Martins, A..; Matthews, J. M.; Metchev, S.; Oshagh, M.; Ouellet, M.; Parro, V. C.; Rasilla Piñeiro, J. L..; Santos, P.; Sarajlic, M.; Segovia, A.; Sordet, M.; Udry, S.; Valencia, D.; Vallée, P.; Venn, K.; Wade, G. A.; Saddlemyer, L.

    2017-09-01

    The Near-InfraRed Planet Searcher (NIRPS) is a new ultra-stable infrared (YJH) spectrograph that will be installed on ESO's 3.6-metre Telescope in La Silla, Chile. Aiming to achieve a precision of 1 m s-1, NIRPS is designed to find rocky planets orbiting M dwarfs, and will operate together with the High Accuracy Radial velocity Planet Searcher (HARPS), also on the 3.6-metre Telescope. In this article we describe the NIRPS science cases and present its main technical characteristics.

  12. ESO's VLT Helps ESA's Rosetta Spacecraft Prepare to Ride on a Cosmic Bullet

    NASA Astrophysics Data System (ADS)

    2002-02-01

    , but the very real task of ESA's Rosetta spacecraft. New observations with the ESO Very Large Telescope (VLT) provide vital information about Comet Wirtanen - Rosetta's target - to help ESA reduce uncertainties in the mission, one of the most difficult ever to be performed. Every 5.5 years Comet Wirtanen completes an orbit around the Sun. Wirtanen has been seen during several apparitions since its discovery in 1948, but only recently have astronomers obtained detailed observations that have allowed them to estimate the comet's size and behaviour, cf. ESO PR Photos 27a-b/99. The most recent of these observations was performed in December 2001 with the ESO VLT at the Paranal Observatory in Northern Chile, cf. PR Photos 06a-b/02 , reproduced here. As a result of these observations ESA will be able to refine plans for its Rosetta mission. Good news for Rosetta Rosetta will be launched next year and it will reach Comet Wirtanen in 2011. By that time the comet will be nearly as far from the Sun as Jupiter, charging headlong towards the inner Solar System at speeds of up to 135,000 km/h. To get there and to be able to match the comet's orbit, Rosetta will need to be accelerated by several planetary swing-bys, after which the spacecraft - following a series of difficult manoeuvres - will get close to the comet, enter into orbit around it and release a lander from a height of about 1 km. The VLT observations were planned specifically to investigate the 'activity' of Wirtanen at about the same solar distance as at the time of the landing manoeuvres . Because of this timing requirement, they had to be carried out at a certain moment - unfortunately, when the comet was low in the twilight evening sky and descending rapidly towards the western horizon. However, even though the exposures therefore had to be quite short, the VLT with its superb light-gathering capability and opto-mechanical perfection was still able to produce excellent images of this rather faint, moving object

  13. The Gaia-ESO Survey: dynamics of ionized and neutral gas in the Lagoon nebula (M 8)

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Bonito, R.; Prisinzano, L.; Zwitter, T.; Bayo, A.; Kalari, V.; Jiménez-Esteban, F. M.; Costado, M. T.; Jofré, P.; Randich, S.; Flaccomio, E.; Lanzafame, A. C.; Lardo, C.; Morbidelli, L.; Zaggia, S.

    2017-08-01

    collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-ESO Large Public Survey (program 188.B-3002).Full Tables A.1 and A.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A135

  14. ESO PR Highlights in 2006

    NASA Astrophysics Data System (ADS)

    2007-01-01

    more energetic gamma-ray bursts. But not all the explosions are associated with supernovae, and a new kind of explosion is indeed suggested by the observation of a new mysterious category of gamma-ray bursts (PR 49/06). The Atacama Pathfinder Experiment (APEX) 12-m sub-millimetre telescope lived up to the ambitions of the scientists by providing access to the 'Cold Universe' with unprecedented sensitivity and image quality. As a demonstration, no less than 26 articles based on early science with APEX were published in a special issue of the research journal Astronomy & Astrophysics (PR 24/06). This year ESO and Chile celebrated ten years of collaboration: a cooperation that led not only to breakthrough discoveries, but also to a growth of astronomy and related sciences in the South American country (PR 21/06). ESO published many images last year as well, including two huge ones, made with the Wide Field Imager: one, made of about 300 million pixels, shows an 'empty field' (PR 14/06), while the other, a 256 million pixel mosaic, depicts in amazing detail the Tarantula Nebula (PR 50/06). These and other images can be accessed through the clickable map, including amazing images of galaxies and of a finally identified flying object (PR 48/06).

  15. Obituary: Jürgen Stock 1923-2004

    NASA Astrophysics Data System (ADS)

    Lorenzen, D. H.

    2004-09-01

    On April 19, 2004 Jürgen Stock passed away at the age of 80. Jürgen Stock was never on the payroll of ESO, but he had tremendous impact on the early years of the organisation. In 1951 Stock did his PhD in Hamburg - his supervisor was Otto Heckmann, who later became the first Director General of ESO. After some years in Cleveland - and with a one year interval at Boyden Observatory, South Africa - Stock was asked by Gerard Kuiper to do a site test in Chile. The University of Chicago looked for a mountain in the Santiago area to put up a 1.5-m-telescope in the southern hemisphere. Stock accepted and took off for Chile within days. The trip, that was supposed to last a few weeks, lasted more than three years. "As a result, the world's largest collection of astronomical instruments is now in Chile", recalled Jürgen Stock four decades later.

  16. ESO-Hα 574 and Par-Lup 3-4 jets: Exploring the spectral, kinematical, and physical properties

    NASA Astrophysics Data System (ADS)

    Whelan, E. T.; Bonito, R.; Antoniucci, S.; Alcalá, J. M.; Giannini, T.; Nisini, B.; Bacciotti, F.; Podio, L.; Stelzer, B.; Comerón, F.

    2014-05-01

    accurate. Overall the accuracy of earlier measurements of Ṁout/Ṁacc is refined and Ṁout/Ṁacc = 0.5 (+1.0)(- 0.2) and 0.3 (+0.6)(- 0.1) for the ESO-Hα 574 red and blue jets, respectively, and 0.05 (+0.10)(- 0.02) for both the Par-Lup 3-4 red and blue jets. While the value for the total (two-sided) Ṁout/Ṁacc in ESO-Hα 574 lies outside the range predicted by magneto-centrifugal jet launching models, the errors are large and the effects of veiling and scattering on extinction measurements, and therefore the estimate of Ṁacc, should also be considered. ESO-Hα 574 is an excellent case study for understanding the impact of an edge-on accretion disk on the observed stellar emission. The improvements in the derivation of Ṁout/Ṁacc means that this ratio for Par-Lup 3-4 now lies within the range predicted by leading models, as compared to earlier measurements for very low mass stars. Par-Lup 3-4 is one of a small number of brown dwarfs and very low mass stars which launch jets. Therefore, this result is important in the context of understanding how Ṁout/Ṁacc and, thus, jet launching mechanisms for the lowest mass jet drivingsources, compare to the case of the well-studied low mass stars. Based on Observations collected with X-Shooter and UVES at the Very Large Telescope on Cerro Paranal (Chile), operated by the European Southern Observatory (ESO). Program ID's: 085.C-0238(A) and 078.C-0429(A).Appendix A is available in electronic form at http://www.aanda.org

  17. VizieR Online Data Catalog: Stellar mass of brightest cluster galaxies (Bellstedt+, 2016)

    NASA Astrophysics Data System (ADS)

    Bellstedt, S.; Lidman, C.; Muzzin, A.; Franx, M.; Guatelli, S.; Hill, A. R.; Hoekstra, H.; Kurinsky, N.; Labbe, I.; Marchesini, D.; Marsan, Z. C.; Safavi-Naeini, M.; Sifon, C.; Stefanon, M.; van de Sande, J.; van Dokkum, P.; Weigel, C.

    2017-11-01

    We utilize a sample of 98 newly imaged galaxy clusters from the RELICS (REd Lens Infrared Cluster Survey) survey within this study. The data were collected during six observing runs on three instruments over a period spanning from 2013 October to 2015 March. The instruments utilized were the SofI2 camera on the New Technology Telescope at the European Southern Observatory (ESO) La Silla Observatory in Chile, WHIRC3 on the WIYN telescope at the Kitt Peak National Observatory and LIRIS4 on the William Herschel Telescope (WHT) in La Palma, Spain. (2 data files).

  18. Expedition Atacama - project AMOS in Chile

    NASA Astrophysics Data System (ADS)

    Tóth, J.; Kaniansky, S.

    2016-01-01

    The Slovak Video Meteor Network operates since 2009 (Tóth et al., 2011). It currently consists of four semi-automated all-sky video cameras, developed at the Astronomical Observatory in Modra, Comenius University in Bratislava, Slovakia. Two new generations of AMOS (All-sky Meteor Orbit System) cameras operate fully automatically at the Canary Islands, Tenerife and La Palma, since March 2015 (Tóth et al., 2015). As a logical step, we plan to cover the southern hemisphere from Chile. We present observational experiences in meteor astronomy from the Atacama Desert and other astronomical sites in Chile. This summary of the observations lists meteor spectra records (26) between Nov.5-13, 2015 mostly Taurid meteors, single and double station meteors as well as the first light from the permanent AMOS stations in Chile.

  19. The Growth of the User Community of the La Silla Paranal Observatory Science Archive

    NASA Astrophysics Data System (ADS)

    Romaniello, M.; Arnaboldi, M.; Da Rocha, C.; De Breuck, C.; Delmotte, N.; Dobrzycki, A.; Fourniol, N.; Freudling, W.; Mascetti, L.; Micol, A.; Retzlaff, J.; Sterzik, M.; Sequeiros, I. V.; De Breuck, M. V.

    2016-03-01

    The archive of the La Silla Paranal Observatory has grown steadily into a powerful science resource for the ESO astronomical community. Established in 1998, the Science Archive Facility (SAF) stores both the raw data generated by all ESO instruments and selected processed (science-ready) data. The growth of the SAF user community is analysed through access and publication statistics. Statistics are presented for archival users, who do not contribute to observing proposals, and contrasted with regular and archival users, who are successful in competing for observing time. Archival data from the SAF contribute to about one paper out of four that use data from ESO facilities. This study reveals that the blend of users constitutes a mixture of the traditional ESO community making novel use of the data and of a new community being built around the SAF.

  20. Early German plans for southern observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    2002-07-01

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century, Heidelberg and Potsdam astronomers proposed a southern observatory. Then Göttingen astronomers suggested building an observatory in Windhoek for photographing the sky and measuring the solar constant. In 1910 Karl Schwarzschild (1873-1916), after a visit to observatories in the United States, pointed out the usefulness of an observatory in South West Africa, in a climate superior to that in Germany, giving German astronomers access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhoek to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963.

  1. Spain to Join ESO

    NASA Astrophysics Data System (ADS)

    2006-03-01

    On 13 February, at a ceremony in Madrid, an agreement was signed by the Spanish Minister of Education and Science, Mrs. María Jesús San Segundo, and the ESO Director General, Dr. Catherine Cesarsky, affirming their commitment to securing Spanish membership of ESO.

  2. ESO and Fokker Space Sign Contract about VLTI Delay Line

    NASA Astrophysics Data System (ADS)

    1998-03-01

    The European Southern Observatory is building the world's largest optical telescope, the Very Large Telescope (VLT) , at the ESO Paranal Observatory in Chile. The VLT consists of four 8.2-m unit telescopes and several smaller, moveable Auxiliary Telescopes. When coupled as the giant VLT Interferometer (VLTI) , they will together provide the sharpest images ever obtained by any optical telescope. It will in principle be able to see an astronaut on the surface of the Moon, 400,000 km away. The VLTI Delay Lines Fokker Space (Leiden, The Netherlands) has been awarded a contract for the delivery of the Delay Line of the VLTI. This is a mechanical-optical system that will compensate the optical path differences of the light beams from the individual telescopes. Such a system is necessary to ensure that the light from all telescopes arrive in the same phase at the focal point of the interferometer. Otherwise, the very sharp interferometric images cannot be obtained. ESO PR Photo 08/98 [JPEG, 102k] Schematic representation of the VLTI Delay Line, showing the retro-reflector on its moving base. For more details, please consult the technical explanation below. This highly accurate system will be developed in close co-operation with the Dutch institute TNO-TPD (Netherlands Organization for Applied Scientific Research - Institute of Applied Physics) . The most innovative feature of the Delay Line is the new control strategy, a two-stage control system, based on linear motor technology, combined with high accuracy piezo-electric control elements. This enables the system to position the so-called cat's eye reflector system with an accuracy of only a few nanometers (millionth of a millimetre (nm)) over a stroke length of 60 metres. Within radio astronomy, interferometric techniques have been applied by Dutch astronomers since many years. They will now be able to contribute with their extensive knowledge of such systems to the next generation of astronomical interferometric

  3. Tim de Zeeuw to Become the Next Director General of ESO

    NASA Astrophysics Data System (ADS)

    2007-01-01

    The ESO Council has just appointed Tim de Zeeuw, 50, as the next Director General of ESO, effective as of 1 September 2007, when the current Director General, Catherine Cesarsky will complete her mandate. ESO PR Photo 02/07 ESO PR Photo 03/07 Professor Tim de Zeeuw "ESO is Europe's flagship organisation for ground-based astronomy," said, Richard Wade, President of the ESO Council. "The ESO Council is very pleased that Professor de Zeeuw has accepted the task as its next Director General. He has played a key role over the last few years in developing a strategic vision for ESO, and I have every confidence that he will now lead the organisation in the realisation of that exciting vision." Tim de Zeeuw has an excellent record, both as a highly respected scientist and as a leader of an internationally recognised science institute in the Netherlands. He is Scientific Director of the Leiden Observatory, a research institute in the College of Mathematics and Natural Sciences of Leiden University. Tim de Zeeuw also has considerable experience as regards science policy issues. Catherine Cesarsky, ESO's current Director General commented: "Over the recent years, ESO has developed considerably with more activities and new member states, and with its ambitious project portfolio, ESO is clearly facing an exciting future. I shall be delighted to pass the baton to Tim de Zeeuw, who as a recent Council member is very familiar with our Organisation." "It is a great honour and an exciting challenge to lead this world-class organisation in the years to come in support of one of the most dynamic areas of science today," said de Zeeuw. "I look forward to overseeing the continued upgrading of the Very Large Telescope with the second-generation instrumentation and the completion of the ALMA project, and in particular to help developing the future European Extremely Large Telescope." Tim de Zeeuw's main research interests embrace the formation, structure and dynamics of galaxies

  4. The AMBRE Project: Stellar parameterisation of the ESO:UVES archived spectra

    NASA Astrophysics Data System (ADS)

    Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.

    2016-06-01

    Context. The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA) that has been established to determine the stellar atmospheric parameters for the archived spectra of four ESO spectrographs. Aims: The analysis of the UVES archived spectra for their stellar parameters was completed in the third phase of the AMBRE Project. From the complete ESO:UVES archive dataset that was received covering the period 2000 to 2010, 51 921 spectra for the six standard setups were analysed. These correspond to approximately 8014 distinct targets (that comprise stellar and non-stellar objects) by radial coordinate search. Methods: The AMBRE analysis pipeline integrates spectral normalisation, cleaning and radial velocity correction procedures in order that the UVES spectra can then be analysed automatically with the stellar parameterisation algorithm MATISSE to obtain the stellar atmospheric parameters. The synthetic grid against which the MATISSE analysis is carried out is currently constrained to parameters of FGKM stars only. Results: Stellar atmospheric parameters are reported for 12 403 of the 51 921 UVES archived spectra analysed in AMBRE:UVES. This equates to ~23.9% of the sample and ~3708 stars. Effective temperature, surface gravity, metallicity, and alpha element to iron ratio abundances are provided for 10 212 spectra (~19.7%), while effective temperature at least is provided for the remaining 2191 spectra. Radial velocities are reported for 36 881 (~71.0%) of the analysed archive spectra. While parameters were determined for 32 306 (62.2%) spectra these parameters were not considered reliable (and thus not reported to ESO) for reasons such as very low S/N, too poor radial velocity determination, spectral features too broad for analysis, and technical issues from the reduction. Similarly the parameters of a further 7212 spectra (13.9%) were also not reported to ESO based on quality criteria and error

  5. The Trilogy is Complete - GigaGalaxy Zoom Phase 3

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The third image of ESO's GigaGalaxy Zoom project has just been released online, completing this eye-opening dive into our galactic home in outstanding fashion. The latest image follows on from views, released over the last two weeks, of the sky as seen with the unaided eye and through an amateur telescope. This third instalment provides another breathtaking vista of an astronomical object, this time a 370-million-pixel view of the Lagoon Nebula of the quality and depth needed by professional astronomers in their quest to understand our Universe. The newly released image extends across a field of view of more than one and a half square degree - an area eight times larger than that of the full Moon - and was obtained with the Wide Field Imager attached to the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. This 67-million-pixel camera has already created several of ESO's iconic pictures. The intriguing object depicted here - the Lagoon Nebula - is located four to five thousand light-years away towards the constellation of Sagittarius (the Archer). The nebula is a giant interstellar cloud, 100 light-years across, where stars are forming. The scattered dark patches seen all over the nebula are huge clouds of gas and dust that are collapsing under their own weight and which will soon give birth to clusters of young, glowing stars. Some of the smallest clouds are known as "globules" and the most prominent ones have been catalogued by the astronomer Edward Emerson Barnard. The Lagoon Nebula hosts the young open stellar cluster known as NGC 6530. This is home for 50 to 100 stars and twinkles in the lower left portion of the nebula. Observations suggest that the cluster is slightly in front of the nebula itself, though still enshrouded by dust, as revealed by reddening of the starlight, an effect that occurs when small dust particles scatter light. The name of the Lagoon Nebula derives from the wide lagoon-shaped dark lane located in the middle of the

  6. A Picture-perfect Pure-disc Galaxy

    NASA Astrophysics Data System (ADS)

    2011-02-01

    The bright galaxy NGC 3621, captured here using the Wide Field Imager on the 2.2-metre telescope at ESO's La Silla Observatory in Chile, appears to be a fine example of a classical spiral. But it is in fact rather unusual: it does not have a central bulge and is therefore described as a pure-disc galaxy. NGC 3621 is a spiral galaxy about 22 million light-years away in the constellation of Hydra (The Sea Snake). It is comparatively bright and can be seen well in moderate-sized telescopes. This picture was taken using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. The data were selected from the ESO archive by Joe DePasquale as part of the Hidden Treasures competition [1]. Joe's picture of NGC 3621 was ranked fifth in the competition. This galaxy has a flat pancake shape, indicating that it hasn't yet come face to face with another galaxy as such a galactic collision would have disturbed the thin disc of stars, creating a small bulge in its centre. Most astronomers think that galaxies grow by merging with other galaxies, in a process called hierarchical galaxy formation. Over time, this should create large bulges in the centres of spirals. Recent research, however, has suggested that bulgeless, or pure-disc, spiral galaxies like NGC 3621 are actually fairly common. This galaxy is of further interest to astronomers because its relative proximity allows them to study a wide range of astronomical objects within it, including stellar nurseries, dust clouds, and pulsating stars called Cepheid variables, which astronomers use as distance markers in the Universe [2]. In the late 1990s, NGC 3621 was one of 18 galaxies selected for a Key Project of the Hubble Space Telescope: to observe Cepheid variables and measure the rate of expansion of the Universe to a higher accuracy than had been possible before. In the successful project, 69 Cepheid variables were observed in this galaxy alone. Multiple monochrome images taken through

  7. The Dusty Disc of NGC 247

    NASA Astrophysics Data System (ADS)

    2011-03-01

    This image of NGC 247, taken by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile, reveals the fine details of this highly inclined spiral galaxy and its rich backdrop. Astronomers say this highly tilted orientation, when viewed from Earth, explains why the distance to this prominent galaxy was previously overestimated. The spiral galaxy NGC 247 is one of the closest spiral galaxies of the southern sky. In this new view from the Wide Field Imager on the MPG/ESO 2.2-metre telescope in Chile large numbers of the galaxy's component stars are clearly resolved and many glowing pink clouds of hydrogen, marking regions of active star formation, can be made out in the loose and ragged spiral arms. NGC 247 is part of the Sculptor Group, a collection of galaxies associated with the Sculptor Galaxy (NGC 253, also shown in eso0902 and eso1025). This is the nearest group of galaxies to our Local Group, which includes the Milky Way, but putting a precise value on such celestial distances is inherently difficult. To measure the distance from the Earth to a nearby galaxy, astronomers have to rely on a type of variable star called a Cepheid to act as a distance marker. Cepheids are very luminous stars, whose brightness varies at regular intervals. The time taken for the star to brighten and fade can be plugged into a simple mathematical relation that gives its intrinsic brightness. When compared with the measured brightness this gives the distance. However, this method isn't foolproof, as astronomers think this period-luminosity relationship depends on the composition of the Cepheid. Another problem arises from the fact that some of the light from a Cepheid may be absorbed by dust en route to Earth, making it appear fainter, and therefore further away than it really is. This is a particular problem for NGC 247 with its highly inclined orientation, as the line of sight to the Cepheids passes through the galaxy's dusty disc. However, a

  8. Celestial Fireworks from Dying Stars

    NASA Astrophysics Data System (ADS)

    2011-04-01

    This image of the nebula NGC 3582, which was captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile, shows giant loops of gas bearing a striking resemblance to solar prominences. These loops are thought to have been ejected by dying stars, but new stars are also being born within this stellar nursery. These energetic youngsters emit intense ultraviolet radiation that makes the gas in the nebula glow, producing the fiery display shown here. NGC 3582 is part of a large star-forming region in the Milky Way, called RCW 57. It lies close to the central plane of the Milky Way in the southern constellation of Carina (The Keel of Jason's ship, the Argo). John Herschel first saw this complex region of glowing gas and dark dust clouds in 1834, during his stay in South Africa. Some of the stars forming in regions like NGC 3582 are much heavier than the Sun. These monster stars emit energy at prodigious rates and have very short lives that end in explosions as supernovae. The material ejected from these dramatic events creates bubbles in the surrounding gas and dust. This is the probable cause of the loops visible in this picture. This image was taken through multiple filters. From the Wide Field Imager, data taken through a red filter are shown in green and red, and data taken through a filter that isolates the red glow characteristic of hydrogen are also shown in red. Additional infrared data from the Digitized Sky Survey are shown in blue. The image was processed by ESO using the observational data identified by Joe DePasquale, from the United States [1], who participated in ESO's Hidden Treasures 2010 astrophotography competition [2]. The competition was organised by ESO in October-November 2010, for everyone who enjoys making beautiful images of the night sky using astronomical data obtained using professional telescopes. Notes [1] Joe searched through ESO's archive and identified datasets that he used to compose his

  9. Jupiter's Spot Seen Glowing - Scientists Get First Look at Weather Inside the Solar System's Biggest Storm

    NASA Astrophysics Data System (ADS)

    2010-03-01

    New ground-breaking thermal images obtained with ESO's Very Large Telescope and other powerful ground-based telescopes show swirls of warmer air and cooler regions never seen before within Jupiter's Great Red Spot, enabling scientists to make the first detailed interior weather map of the giant storm system linking its temperature, winds, pressure and composition with its colour. "This is our first detailed look inside the biggest storm of the Solar System," says Glenn Orton, who led the team of astronomers that made the study. "We once thought the Great Red Spot was a plain old oval without much structure, but these new results show that it is, in fact, extremely complicated." The observations reveal that the reddest colour of the Great Red Spot corresponds to a warm core within the otherwise cold storm system, and images show dark lanes at the edge of the storm where gases are descending into the deeper regions of the planet. The observations, detailed in a paper appearing in the journal Icarus, give scientists a sense of the circulation patterns within the solar system's best-known storm system. Sky gazers have been observing the Great Red Spot in one form or another for hundreds of years, with continuous observations of its current shape dating back to the 19th century. The spot, which is a cold region averaging about -160 degrees Celsius, is so wide that about three Earths could fit inside its boundaries. The thermal images were mostly obtained with the VISIR [1] instrument attached to ESO's Very Large Telescope in Chile, with additional data coming from the Gemini South telescope in Chile and the National Astronomical Observatory of Japan's Subaru Telescope in Hawaii. The images have provided an unprecedented level of resolution and extended the coverage provided by NASA's Galileo spacecraft in the late 1990s. Together with observations of the deep cloud structure by the 3-metre NASA Infrared Telescope Facility in Hawaii, the level of thermal detail observed

  10. ALMA On the Move - ESO Awards Important Contract for the ALMA Project

    NASA Astrophysics Data System (ADS)

    2005-12-01

    Only two weeks after awarding its largest-ever contract for the procurement of antennas for the Atacama Large Millimeter Array project (ALMA), ESO has signed a contract with Scheuerle Fahrzeugfabrik GmbH, a world-leader in the design and production of custom-built heavy-duty transporters, for the provision of two antenna transporting vehicles. These vehicles are of crucial importance for ALMA. ESO PR Photo 41a/05 ESO PR Photo 41a/05 The ALMA Transporter (Artist's Impression) [Preview - JPEG: 400 x 756 pix - 234k] [Normal - JPEG: 800 x 1512 pix - 700k] [Full Res - JPEG: 1768 x 3265 pix - 2.3M] Caption: Each of the ALMA transporters will be 10 m wide, 4.5 m high and 16 m long. "The timely awarding of this contract is most important to ensure that science operations can commence as planned," said ESO Director General Catherine Cesarsky. "This contract thus marks a further step towards the realization of the ALMA project." "These vehicles will operate in a most unusual environment and must live up to very strict demands regarding performance, reliability and safety. Meeting these requirements is a challenge for us, and we are proud to have been selected by ESO for this task," commented Hans-Jörg Habernegg, President of Scheuerle GmbH. ESO PR Photo 41b/05 ESO PR Photo 41b/05 Signing the Contract [Preview - JPEG: 400 x 572 pix - 234k] [Normal - JPEG: 800 x 1143 pix - 700k] [HiRes - JPEG: 4368 x 3056 pix - 2.3M] Caption: (left to right) Mr Thomas Riek, Vice-President of Scheuerle GmbH, Dr Catherine Cesarsky, ESO Director General and Mr Hans-Jörg Habernegg, President of Scheuerle GmbH. When completed on the high-altitude Chajnantor site in Chile, ALMA is expected to comprise more than 60 antennas, which can be placed in different locations on the plateau but which work together as one giant telescope. Changing the relative positions of the antennas and thus also the configuration of the array allows for different observing modes, comparable to using a zoom lens, offering

  11. A Swarm of Ancient Stars

    NASA Astrophysics Data System (ADS)

    2010-12-01

    We know of about 150 of the rich collections of old stars called globular clusters that orbit our galaxy, the Milky Way. This sharp new image of Messier 107, captured by the Wide Field Imager on the 2.2-metre telescope at ESO's La Silla Observatory in Chile, displays the structure of one such globular cluster in exquisite detail. Studying these stellar swarms has revealed much about the history of our galaxy and how stars evolve. The globular cluster Messier 107, also known as NGC 6171, is a compact and ancient family of stars that lies about 21 000 light-years away. Messier 107 is a bustling metropolis: thousands of stars in globular clusters like this one are concentrated into a space that is only about twenty times the distance between our Sun and its nearest stellar neighbour, Alpha Centauri, across. A significant number of these stars have already evolved into red giants, one of the last stages of a star's life, and have a yellowish colour in this image. Globular clusters are among the oldest objects in the Universe. And since the stars within a globular cluster formed from the same cloud of interstellar matter at roughly the same time - typically over 10 billion years ago - they are all low-mass stars, as lightweights burn their hydrogen fuel supply much more slowly than stellar behemoths. Globular clusters formed during the earliest stages in the formation of their host galaxies and therefore studying these objects can give significant insights into how galaxies, and their component stars, evolve. Messier 107 has undergone intensive observations, being one of the 160 stellar fields that was selected for the Pre-FLAMES Survey - a preliminary survey conducted between 1999 and 2002 using the 2.2-metre telescope at ESO's La Silla Observatory in Chile, to find suitable stars for follow-up observations with the VLT's spectroscopic instrument FLAMES [1]. Using FLAMES, it is possible to observe up to 130 targets at the same time, making it particularly well suited

  12. Open House at the ESO Headquarters

    NASA Astrophysics Data System (ADS)

    Madsen, C.

    2006-12-01

    On 15 October, the ESO Headquarters opened its doors to the public as part of the All-Campus Open House organised in connection with the inauguration of the extension of the underground line U6 from Munich to the Garching campus. The day was blessed with clear skies and plenty of sunshine, and a large number of citizens took advantage of the opportunity to visit the campus. The estimated number of visitors at ESO was close to 3000 people, a record number. Another record was set by the number of ESO staff who, in anticipation of the high num-ber of guests, volunteered to spend their Sunday at work to explain what ESO is doing and why it is important.

  13. The AMBRE project: Parameterisation of FGK-type stars from the ESO:HARPS archived spectra

    NASA Astrophysics Data System (ADS)

    De Pascale, M.; Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.

    2014-10-01

    Context. The AMBRE project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA). It has been established to determine the stellar atmospheric parameters of the archived spectra of four ESO spectrographs. Aims: The analysis of the ESO:HARPS archived spectra for the determination of their atmospheric parameters (effective temperature, surface gravity, global metallicities, and abundance of α-elements over iron) is presented. The sample being analysed (AMBRE:HARPS) covers the period from 2003 to 2010 and is comprised of 126 688 scientific spectra corresponding to ~17 218 different stars. Methods: For the analysis of the AMBRE:HARPS spectral sample, the automated pipeline developed for the analysis of the AMBRE:FEROS archived spectra has been adapted to the characteristics of the HARPS spectra. Within the pipeline, the stellar parameters are determined by the MATISSE algorithm, which has been developed at OCA for the analysis of large samples of stellar spectra in the framework of galactic archaeology. In the present application, MATISSE uses the AMBRE grid of synthetic spectra, which covers FGKM-type stars for a range of gravities and metallicities. Results: We first determined the radial velocity and its associated error for the ~15% of the AMBRE:HARPS spectra, for which this velocity had not been derived by the ESO:HARPS reduction pipeline. The stellar atmospheric parameters and the associated chemical index [α/Fe] with their associated errors have then been estimated for all the spectra of the AMBRE:HARPS archived sample. Based on key quality criteria, we accepted and delivered the parameterisation of 93 116 (74% of the total sample) spectra to ESO. These spectra correspond to ~10 706 stars; each are observed between one and several hundred times. This automatic parameterisation of the AMBRE:HARPS spectra shows that the large majority of these stars are cool main-sequence dwarfs with metallicities

  14. Clear New View of a Classic Spiral

    NASA Astrophysics Data System (ADS)

    2010-05-01

    ESO is releasing a beautiful image of the nearby galaxy Messier 83 taken by the HAWK-I instrument on ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The picture shows the galaxy in infrared light and demonstrates the impressive power of the camera to create one of the sharpest and most detailed pictures of Messier 83 ever taken from the ground. The galaxy Messier 83 (eso0825) is located about 15 million light-years away in the constellation of Hydra (the Sea Serpent). It spans over 40 000 light-years, only 40 percent the size of the Milky Way, but in many ways is quite similar to our home galaxy, both in its spiral shape and the presence of a bar of stars across its centre. Messier 83 is famous among astronomers for its many supernovae: vast explosions that end the lives of some stars. Over the last century, six supernovae have been observed in Messier 83 - a record number that is matched by only one other galaxy. Even without supernovae, Messier 83 is one of the brightest nearby galaxies, visible using just binoculars. Messier 83 has been observed in the infrared part of the spectrum using HAWK-I [1], a powerful camera on ESO's Very Large Telescope (VLT). When viewed in infrared light most of the obscuring dust that hides much of Messier 83 becomes transparent. The brightly lit gas around hot young stars in the spiral arms is also less prominent in infrared pictures. As a result much more of the structure of the galaxy and the vast hordes of its constituent stars can be seen. This clear view is important for astronomers looking for clusters of young stars, especially those hidden in dusty regions of the galaxy. Studying such star clusters was one of the main scientific goals of these observations [2]. When compared to earlier images, the acute vision of HAWK-I reveals far more stars within the galaxy. The combination of the huge mirror of the VLT, the large field of view and great sensitivity of the camera, and the superb observing conditions

  15. ESO Reflex: A Graphical Workflow Engine for Data Reduction

    NASA Astrophysics Data System (ADS)

    Hook, R.; Romaniello, M.; Péron, M.; Ballester, P.; Gabasch, A.; Izzo, C.; Ullgrén, M.; Maisala, S.; Oittinen, T.; Solin, O.; Savolainen, V.; Järveläinen, P.; Tyynelä, J.

    2008-08-01

    Sampo {http://www.eso.org/sampo} (Hook et al. 2005) is a project led by ESO and conducted by a software development team from Finland as an in-kind contribution to joining ESO. The goal is to assess the needs of the ESO community in the area of data reduction environments and to create pilot software products that illustrate critical steps along the road to a new system. Those prototypes will not only be used to validate concepts and understand requirements but will also be tools of immediate value for the community. Most of the raw data produced by ESO instruments can be reduced using CPL {http://www.eso.org/cpl} recipes: compiled C programs following an ESO standard and utilizing routines provided by the Common Pipeline Library. Currently reduction recipes are run in batch mode as part of the data flow system to generate the input to the ESO VLT/VLTI quality control process and are also made public for external users. Sampo has developed a prototype application called ESO Reflex {http://www.eso.org/sampo/reflex/} that integrates a graphical user interface and existing data reduction algorithms. ESO Reflex can invoke CPL-based recipes in a flexible way through a dedicated interface. ESO Reflex is based on the graphical workflow engine Taverna {http://taverna.sourceforge.net} that was originally developed by the UK eScience community, mostly for work in the life sciences. Workflows have been created so far for three VLT/VLTI instrument modes ( VIMOS/IFU {http://www.eso.org/instruments/vimos/}, FORS spectroscopy {http://www.eso.org/instruments/fors/} and AMBER {http://www.eso.org/instruments/amber/}), and the easy-to-use GUI allows the user to make changes to these or create workflows of their own. Python scripts and IDL procedures can be easily brought into workflows and a variety of visualisation and display options, including custom product inspection and validation steps, are available.

  16. Live Webcasts from CERN and ESO for European Science and Technology Week

    NASA Astrophysics Data System (ADS)

    2002-10-01

    ) - 2002 . See also ESO Press Release 08/02. This project revolves around a web-based competition and is centred on astronomy. It is specifically conceived to stimulate the interest of young people in various aspects of this well-known field of science, but will also be of interest to the broad public. Three hundred groups of up to four persons (e.g., three students and one teacher) have selected an astronomical object of their choice - a bright star, a distant galaxy, a beautiful comet, a planet or a moon in the solar system, or some other celestial body. They come from 25 countries. Until tomorrow, November 1, 2002, they have to deliver a comprehensive report about their chosen object. All reports have to conform with certain rules and are judged by a jury. Those fulfilling the criteria (explained at the Catch A Star! website) will participate in a lottery with exciting prizes, the first prize being a free trip in early 2003 for the members of the group to the ESO Paranal Observatory in Chile, the site of the ESO Very Large Telescope (VLT) . The lottery drawing will take place at the end of the European Week of Science and Technology, on November 8th, 2002, beginning at 13:00 hrs CET (12:00 UT) . This event will be broadcast by webcast and the outcome will be displayed via a dedicated webpage. All accepted reports (that fulfill the criteria) will be published on the Catch A Star! website soon thereafter.

  17. Close to the Sky

    NASA Astrophysics Data System (ADS)

    2007-11-01

    Today, a new ALMA outreach and educational book was publicly presented to city officials of San Pedro de Atacama in Chile, as part of the celebrations of the anniversary of the Andean village. ESO PR Photo 50a/07 ESO PR Photo 50a/07 A Useful Tool for Schools Entitled "Close to the sky: Biological heritage in the ALMA area", and edited in English and Spanish by ESO in Chile, the book collects unique on-site observations of the flora and fauna of the ALMA region performed by experts commissioned to investigate it and to provide key initiatives to protect it. "I thank the ALMA project for providing us a book that will surely be a good support for the education of children and youngsters of San Pedro de Atacama. Thanks to this publication, we expect our rich flora and fauna to be better known. I invite teachers and students to take advantage of this educational resource, which will be available in our schools", commented Ms. Sandra Berna, the Mayor of San Pedro de Atacama, who was given the book by representatives of the ALMA global collaboration project. Copies of the book 'Close to the sky' will be donated to all schools in the area, as a contribution to the education of students and young people in northern Chile. "From the very beginning of the project, ALMA construction has had a firm commitment to environment and local culture, protecting unique flora and fauna species and preserving old estancias belonging to the Likan Antai culture," said Jacques Lassalle, who represented ALMA at the hand-over. "Animals like the llama, the fox or the condor do not only live in the region where ALMA is now being built, but they are also key elements of the ancient Andean constellations. In this sense they are part of the same sky that will be explored by ALMA in the near future." ESO PR Photo 50c/07 ESO PR Photo 50c/07 Presentation of the ALMA book The ALMA Project is a giant, international observatory currently under construction on the high-altitude Chajnantor site in Chile

  18. Using ESO Reflex with Web Services

    NASA Astrophysics Data System (ADS)

    Järveläinen, P.; Savolainen, V.; Oittinen, T.; Maisala, S.; Ullgrén, M. Hook, R.

    2008-08-01

    ESO Reflex is a prototype graphical workflow system, based on Taverna, and primarily intended to be a flexible way of running ESO data reduction recipes along with other legacy applications and user-written tools. ESO Reflex can also readily use the Taverna Web Services features that are based on the Apache Axis SOAP implementation. Taverna is a general purpose Web Service client, and requires no programming to use such services. However, Taverna also has some restrictions: for example, no numerical types such integers. In addition the preferred binding style is document/literal wrapped, but most astronomical services publish the Axis default WSDL using RPC/encoded style. Despite these minor limitations we have created simple but very promising test VO workflow using the Sesame name resolver service at CDS Strasbourg, the Hubble SIAP server at the Multi-Mission Archive at Space Telescope (MAST) and the WESIX image cataloging and catalogue cross-referencing service at the University of Pittsburgh. ESO Reflex can also pass files and URIs via the PLASTIC protocol to visualisation tools and has its own viewer for VOTables. We picked these three Web Services to try to set up a realistic and useful ESO Reflex workflow. They also demonstrate ESO Reflex abilities to use many kind of Web Services because each of them requires a different interface. We describe each of these services in turn and comment on how it was used

  19. VST project: distributed control system overview

    NASA Astrophysics Data System (ADS)

    Mancini, Dario; Mazzola, Germana; Molfese, C.; Schipani, Pietro; Brescia, Massimo; Marty, Laurent; Rossi, Emilio

    2003-02-01

    The VLT Survey Telescope (VST) is a co-operative program between the European Southern Observatory (ESO) and the INAF Capodimonte Astronomical Observatory (OAC), Naples, for the study, design, and realization of a 2.6-m wide-field optical imaging telescope to be operated at the Paranal Observatory, Chile. The telescope design, manufacturing and integration are responsibility of OAC. The VST has been specifically designed to carry out stand-alone observations in the UV to I spectral range and to supply target databases for the ESO Very Large Telescope (VLT). The control hardware is based on a large utilization of distributed embedded specialized controllers specifically designed, prototyped and manufactured by the Technology Working Group for VST project. The use of a field bus improves the whole system reliability in terms of high level flexibility, control speed and allow to reduce drastically the plant distribution in the instrument. The paper describes the philosophy and the architecture of the VST control HW with particular reference to the advantages of this distributed solution for the VST project.

  20. Signing of ESO-Poland Accession Agreement

    NASA Astrophysics Data System (ADS)

    2014-12-01

    An agreement was signed by Professor Lena Kolarska-Bobińska, the Polish Minister of Science and Higher Education, and the ESO Director General Tim de Zeeuw in Warsaw on 28 October 2014 that will lead to the country joining ESO. The signing of the agreement followed its unanimous approval by the ESO Council during an extraordinary meeting on 8 October 2014. Poland will be welcomed as a new Member State, following subsequent ratification of the accession agreement by the Polish Parliament. Tim de Zeeuw’s speech at this ceremony is reproduced below.

  1. System analysis tools for an ELT at ESO

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Koch, Franz

    2006-06-01

    Engineering of complex, large scale systems like the ELT designs currently investigated and developed in Europe and Northern America require powerful and sophisticated tools within specific technical disciplines such as mechanics, optics and control engineering. However, even analyzing a certain component of the telescope like the telescope structure necessitates a system approach to evaluate the structural effects onto the optical performance. This paper shows several software tools developed by the European Southern Observatory (ESO) which focus onto the system approach in the analyses: Using modal results of a finite element analysis the SMI-toolbox allows an easy generation of structural models with different sizes and levels of accuracy for the control design and closed-loop simulations. The optical modeling code BeamWarrior was developed by ESO and Astrium GmbH, Germany) especially for integrated modeling and interfering with a structural model. Within BeamWarrior displacements and deformations can be applied in an arbitrary coordinate system, and hence also in the global coordinates of the FE model avoiding error prone transformations. In addition to this, a sparse state space model object was developed for Matlab to gain in computational efficiency and reduced memory requirements due to the sparsity pattern of both the structural models and the control architecture. As one result these tools allow building an integrated model in order to reliably simulate interactions, cross-coupling effects, system responses, and to evaluate global performance. In order to evaluate disturbance effects on the optical performance in openloop more efficiently, an optical evaluation toolbox was built in the FE software ANSYS which performs Zernike decomposition and best-fit computation of the deformations directly in the FE analysis.

  2. The Gaia-ESO Survey: Calibration strategy

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Lardo, C.; Altavilla, G.; Marinoni, S.; Ragaini, S.; Cocozza, G.; Bellazzini, M.; Sabbi, E.; Zoccali, M.; Donati, P.; Heiter, U.; Koposov, S. E.; Blomme, R.; Morel, T.; Símon-Díaz, S.; Lobel, A.; Soubiran, C.; Montalban, J.; Valentini, M.; Casey, A. R.; Blanco-Cuaresma, S.; Jofré, P.; Worley, C. C.; Magrini, L.; Hourihane, A.; François, P.; Feltzing, S.; Gilmore, G.; Randich, S.; Asplund, M.; Bonifacio, P.; Drew, J. E.; Jeffries, R. D.; Micela, G.; Vallenari, A.; Alfaro, E. J.; Allende Prieto, C.; Babusiaux, C.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Hambly, N.; Korn, A. J.; Lanzafame, A. C.; Smiljanic, R.; Van Eck, S.; Walton, N. A.; Bayo, A.; Carraro, G.; Costado, M. T.; Damiani, F.; Edvardsson, B.; Franciosini, E.; Frasca, A.; Lewis, J.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Zaggia, S.; Koch, A.

    2017-02-01

    The Gaia-ESO survey (GES) is now in its fifth and last year of observations and has produced tens of thousands of high-quality spectra of stars in all Milky Way components. This paper presents the strategy behind the selection of astrophysical calibration targets, ensuring that all GES results on radial velocities, atmospheric parameters, and chemical abundance ratios will be both internally consistent and easily comparable with other literature results, especially from other large spectroscopic surveys and from Gaia. The calibration of GES is particularly delicate because of (I) the large space of parameters covered by its targets, ranging from dwarfs to giants, from O to M stars; these targets have a large wide of metallicities and also include fast rotators, emission line objects, and stars affected by veiling; (II) the variety of observing setups, with different wavelength ranges and resolution; and (III) the choice of analyzing the data with many different state-of-the-art methods, each stronger in a different region of the parameter space, which ensures a better understanding of systematic uncertainties. An overview of the GES calibration and homogenization strategy is also given, along with some examples of the usage and results of calibrators in GES iDR4, which is the fourth internal GES data release and will form the basis of the next GES public data release. The agreement between GES iDR4 recommended values and reference values for the calibrating objects are very satisfactory. The average offsets and spreads are generally compatible with the GES measurement errors, which in iDR4 data already meet the requirements set by the main GES scientific goals. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 188.B-3002 and 193.B-0936.Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  3. Precision stellar radial velocity measurements with FIDEOS at the ESO 1-m telescope of La Silla

    NASA Astrophysics Data System (ADS)

    Vanzi, L.; Zapata, A.; Flores, M.; Brahm, R.; Tala Pinto, M.; Rukdee, S.; Jones, M.; Ropert, S.; Shen, T.; Ramirez, S.; Suc, V.; Jordán, A.; Espinoza, N.

    2018-07-01

    We present results from the commissioning and early science programs of FIbre Dual Echelle Optical Spectrograph (FIDEOS), the new high-resolution echelle spectrograph developed at the Centre of Astro Engineering of Pontificia Universidad Catolica de Chile, and recently installed at the ESO 1-m telescope of La Silla. The instrument provides spectral resolution R ˜ 43 000 in the visible spectral range 420-800 nm, reaching a limiting magnitude of 11 in V band. Precision in the measurement of radial velocity is guaranteed by light feeding with an octagonal optical fibre, suitable mechanical isolation, thermal stabilization, and simultaneous wavelength calibration. Currently the instrument reaches radial velocity stability of ˜8 m s-1 over several consecutive nights of observation.

  4. Photometric calibration of NGS/POSS and ESO/SRC plates using the NOAO PDS measuring engine. I - Stellar photometry

    NASA Technical Reports Server (NTRS)

    Cutri, Roc M.; Low, Frank J.; Marvel, Kevin B.

    1992-01-01

    The PDS/Monet measuring engine at the National Optical Astronomy Observatory was used to obtain photometry of nearly 10,000 stars on the NGS/POSS and 2000 stars on the ESO/SRC Survey glass plates. These measurements have been used to show that global transformation functions exist that allow calibration of stellar photometry from any blue or red plate to equivalent Johnson B and Cousins R photoelectric magnitudes. The four transformation functions appropriate for the POSS O and E and ESO/SRC J and R plates were characterized, and it was found that, within the measurement uncertainties, they vary from plate to plate only by photometric zero-point offsets. A method is described to correct for the zero-point shifts and to obtain calibrated B and R photometry of stellar sources to an average accuracy of 0.3-0.4 mag within the range R between values of 8 and 19.5 for red plates in both surveys, B between values of 9 and 20.5 on POSS blue plates, and B between values of 10 and 20.5 on ESO/SRC blue plates. This calibration procedure makes it possible to obtain rapid photometry of very large numbers of stellar sources.

  5. Astronomical virtual observatory and the place and role of Bulgarian one

    NASA Astrophysics Data System (ADS)

    Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen

    2009-07-01

    Virtual observatory could be defined as a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that combine existing databases from ground-based and orbiting observatories, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies has been compiled from observations in a variety of wavelengths-optical, radio, infrared, gamma ray, X-ray and more. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. During the autumn of the 2001 (26.09.2001) six organizations from Europe put the establishment of the Astronomical Virtual Observatory (AVO)-ESO, ESA, Astrogrid, CDS, CNRS, Jodrell Bank (Dolensky et al., 2003). Its aims have been outlined as follows: - To provide comparative analysis of large sets of multiwavelength data; - To reuse data collected by a single source; - To provide uniform access to data; - To make data available to less-advantaged communities; - To be an educational tool. The Virtual observatory includes: - Tools that make it easy to locate and retrieve data from catalogues, archives, and databases worldwide; - Tools for data analysis, simulation, and visualization; - Tools to compare observations with results obtained from models, simulations and theory; - Interoperability: services that can be used regardless of the clients computing platform, operating system and software capabilities; - Access to data in near real-time, archived data and historical data; - Additional information - documentation, user-guides, reports

  6. Spectrum of Th-Ar Hollow Cathode Lamps

    National Institute of Standards and Technology Data Gateway

    SRD 161 NIST Spectrum of Th-Ar Hollow Cathode Lamps (Web, free access)   This atlas presents observations of the infra-red (IR) spectrum of a low current Th-Ar hollow cathode lamp with the 2-m Fourier transform spectrometer (FTS) at NIST. These observations establish more than 2400 lines that are suitable for use as wavelength standards in the range 691 nm to 5804 nm. The observations were made in collaboration with the European Southern Observatory (ESO), in order to provide calibration reference data for new high-resolution Echelle spectrographs, such as the Cryogenic High-Resolution IR Echelle Spectrograph ([CRIRES]), ESO's new IR spectrograph at the Very Large Telescope in Chile.

  7. Obsolescence of electronics at the VLT

    NASA Astrophysics Data System (ADS)

    Hüdepohl, Gerhard; Haddad, Juan-Pablo; Lucuix, Christian

    2016-07-01

    The ESO Very Large Telescope Observatory (VLT) at Cerro Paranal in Chile had its first light in 1998. Most of the telescopes' electronics components were chosen and designed in the mid 1990s and are now around 20 years old. As a consequence we are confronted with increasing failure rates due to aging and lack of spare parts, since many of the components are no longer available on the market. The lifetime of large telescopes is generally much beyond 25 years. Therefore the obsolescence of electronics components and modules becomes an issue sooner or later and forces the operations teams to upgrade the systems to new technology in order to avoid that the telescope becomes inoperable. Technology upgrade is a time and money consuming process, which in many cases is not straightforward and has various types of complications. This paper shows the strategy, analysis, approach, timeline, complications and progress in obsolescence driven electronics upgrades at the ESO Very Large Telescope (VLT) at the Paranal Observatory.

  8. Pricing Employee Stock Options (ESOs) with Random Lattice

    NASA Astrophysics Data System (ADS)

    Chendra, E.; Chin, L.; Sukmana, A.

    2018-04-01

    Employee Stock Options (ESOs) are stock options granted by companies to their employees. Unlike standard options that can be traded by typical institutional or individual investors, employees cannot sell or transfer their ESOs to other investors. The sale restrictions may induce the ESO’s holder to exercise them earlier. In much cited paper, Hull and White propose a binomial lattice in valuing ESOs which assumes that employees will exercise voluntarily their ESOs if the stock price reaches a horizontal psychological barrier. Due to nonlinearity errors, the numerical pricing results oscillate significantly so they may lead to large pricing errors. In this paper, we use the random lattice method to price the Hull-White ESOs model. This method can reduce the nonlinearity error by aligning a layer of nodes of the random lattice with a psychological barrier.

  9. The 2015 Chile-U.S. Astronomy Education Outreach Summit in Chile

    NASA Astrophysics Data System (ADS)

    Preston, Sandra Lee; Arnett, Dinah; Hardy, Eduardo; Cabezón, Sergio; Spuck, Tim; Fields, Mary Sue; Smith, R. Chris

    2015-08-01

    The first Chile-U.S. Astronomy Education Outreach Summit occurred March 22-28, 2015. The Summit was organized and supported by the U.S. Embassy in Chile, Associated Universities Inc., Association of Universities for Research in Astronomy, the Carnegie Institution for Science, the Image of Chile Foundation, the National Science Foundation, and La Comisión Nacional de Investigación Científica y Tecnológica. The Summit brought together a team of leading experts and officials from Chile and the U.S. to share best practices in astronomy education and outreach. In addition, Summit participants discussed enhancing existing partnerships, and building new collaborations between U.S. Observatories and astronomy education outreach leaders in Chile.The Summit was an exciting and intense week of work and travel. Discussions opened in Santiago on March 22 with a variety of astronomy education and public outreach work sessions, a public forum, and on March 23 the U.S. Embassy sponsored a Star Party. On Tuesday, March 24, the Summit moved to San Pedro de Atacama, where activities included work sessions, a visit to the Atacama Large Millimeter/Submillimeter Array telescope facilities, and a second public forum. From San Pedro, the team traveled to La Serena for additional work sessions, visits to Gemini and Cerro Tololo, a third public forum, and the closing session. At each stop, authorities and the broader community were invited to participate and provide valuable input on the current state, and the future, of astronomy education and public outreach.Following the Summit a core working committee has continued meeting to draft a “roadmap document” based on findings from the Summit. This document will help to identify potential gaps in astronomy outreach efforts, and how the U.S. facilities and Chilean institutions might work together strategically to address these needs. The first draft of this “roadmap document” will be made available for comment in both Spanish and

  10. ESO Astronomers Detect a Galaxy at the Edge of the Universe

    NASA Astrophysics Data System (ADS)

    1995-09-01

    Starlight from the Depths of Time Four European astronomers [1] have taken advantage of the superb imaging quality of the ESO 3.5-metre New Technology Telescope (NTT) at the La Silla observatory, to detect a galaxy at an extremely large distance. They conclude that its redshift [2] is z = 4.4; thus, this galaxy is by far the most remote ever detected. In fact, it has taken its light about 90 percent of the age of the Universe to reach us, and we now observe this early object as it appeared, only 1 - 2 billion years [3] after the Universe was created in the Big Bang. Still, the galaxy contains a considerable amount of elements that must have been produced in stars. This proves that stars were formed in normal galaxies, already before this very early epoch. Galaxies in the Very Early Universe Astronomical observations during the past decade indicate that the age of the Universe is probably somewhere between 13 and 17 billion years. It is expected that further studies at the limit of available telescopes during the next years will make it possible to determine this fundamental parameter more accurately. But whatever the actual age, one of the central questions which must answered in order to understand the evolution of the Universe is the time of formation of the first stars and galaxies; its determination is accordingly a prime goal of current cosmological observations. This early process was crucial for the distribution of matter now observed, but how long after the Big Bang did it actually happen? We do not know yet. In order to cast more light on this important question, we must look back to this very early epoch by detecting and measuring objects at the largest possible distances, i.e. at the highest redshifts. However, this is extremely difficult because of the faintness of such objects and so far, progress in this fundamental research field has been slow. An Enriched Hydrogen Cloud at z = 4.4 In 1994, the ESO team obtained a high-resolution, detailed spectrum

  11. The Gaia-ESO Survey: A globular cluster escapee in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Lind, K.; Koposov, S. E.; Battistini, C.; Marino, A. F.; Ruchti, G.; Serenelli, A.; Worley, C. C.; Alves-Brito, A.; Asplund, M.; Barklem, P. S.; Bensby, T.; Bergemann, M.; Blanco-Cuaresma, S.; Bragaglia, A.; Edvardsson, B.; Feltzing, S.; Gruyters, P.; Heiter, U.; Jofre, P.; Korn, A. J.; Nordlander, T.; Ryde, N.; Soubiran, C.; Gilmore, G.; Randich, S.; Ferguson, A. M. N.; Jeffries, R. D.; Vallenari, A.; Allende Prieto, C.; Pancino, E.; Recio-Blanco, A.; Romano, D.; Smiljanic, R.; Bellazzini, M.; Damiani, F.; Hill, V.; de Laverny, P.; Jackson, R. J.; Lardo, C.; Zaggia, S.

    2015-03-01

    A small fraction of the halo field is made up of stars that share the light element (Z ≤ 13) anomalies characteristic of second generation globular cluster (GC) stars. The ejected stars shed light on the formation of the Galactic halo by tracing the dynamical history of the clusters, which are believed to have once been more massive. Some of these ejected stars are expected to show strong Al enhancement at the expense of shortage of Mg, but until now no such star has been found. We search for outliers in the Mg and Al abundances of the few hundreds of halo field stars observed in the first eighteen months of the Gaia-ESO public spectroscopic survey. One halo star at the base of the red giant branch, here referred to as 22593757-4648029 is found to have [ Mg/Fe ] = -0.36 ± 0.04 and [ Al/Fe ] = 0.99 ± 0.08, which is compatible with the most extreme ratios detected in GCs so far. We compare the orbit of 22593757-4648029 to GCs of similar metallicity andfind it unlikely that this star has been tidally stripped with low ejection velocity from any of the clusters. However, both chemical and kinematic arguments render it plausible that the star has been ejected at high velocity from the anomalous GC ω Centauri within the last few billion years. We cannot rule out other progenitor GCs, because some may have disrupted fully, and the abundance and orbital data are inadequate for many of those that are still intact. Based on data acquired by the Gaia-ESO Survey, programme ID 188.B-3002. Observations were made with ESO Telescopes at the La Silla Paranal Observatory.Appendix A is available in electronic form at http://www.aanda.org

  12. Some non-atlas work at ESO Sky Atlas Laboratory.

    NASA Astrophysics Data System (ADS)

    Madsen, C.

    The ESO Sky Atlas Laboratory (SAL) was set up in 1972 with the aim of producing the ESO Quick Blue Survey and later the joint ESO/SERC Survey of the Southern Sky. With the establishment of a Scientific Group, it became apparent that ESO had additional photographic needs, the fullfilment of which was also entrusted to SAL. Thus, in the course of the years, the "Photographic Section" evolved as a subdivision of the Sky Atlas Laboratory.

  13. ESO Welcomes Finland as Eleventh Member State

    NASA Astrophysics Data System (ADS)

    Cesarsky, C.

    2004-09-01

    In early July, Finland joined ESO as the eleventh member state, following the completion of the formal accession procedure. Before this event, however, Finland and ESO had been in contact for a long time. Under an agreement with Sweden, Finnish astronomers had for quite a while enjoyed access to the SEST at La Silla. Finland had also been a very active participant in ESO's educational activities since they began in 1993. It became clear, that science and technology, as well as education, were priority areas for the Finnish government.

  14. Protection of Northern Chile as an ICOMOS/IAU ``Window to the Universe''

    NASA Astrophysics Data System (ADS)

    Smith, Malcolm G.

    2015-03-01

    Over the last two decades, La Serena's population has increased by about 70 percent. A site description of the AURA Observatory in Chile as a ``Window to the Universe`` is now available on the recently-launched UNESCO-IAU Astronomical Heritage Web Portal, www.astronomicalheritage.net This can serve as an example of possible material for the Chilean authorities, should they wish to propose the dark skies over much of northern Chile for protection as a World Scientific Heritage site. Some of the steps involved are discussed briefly here.

  15. School students "Catch a Star"!

    NASA Astrophysics Data System (ADS)

    2007-04-01

    School students from across Europe and beyond have won prizes in an astronomy competition, including the trip of a lifetime to one of the world's most powerful astronomical observatories, on a mountaintop in Chile. ESO, the European Organisation for Astronomical Research in the Southern Hemisphere, together with the European Association for Astronomy Education (EAAE), has just announced the winners of the 2007 "Catch a Star!" competition. ESO PR Photo 21/07 "Catch a Star!" is an international astronomy competition for school students, in which students are invited to 'become astronomers' and explore the Universe. The competition includes two categories for written projects on astronomical themes, to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. For the artistically minded, "Catch a Star!" also includes an astronomy-themed artwork competition. Students from 22 countries submitted hundreds of written projects and pieces of artwork. "The standard of entries was most impressive, and made the jury's task of choosing winners both enjoyable and difficult! We hope that everyone, whether or not they won a prize, had fun taking part, and learnt some exciting things about our Universe", said Douglas Pierce-Price, Education Officer at ESO. The top prize, of a week-long trip to Chile to visit the ESO Very Large Telescope (VLT) on Paranal, was won by students Jan Mestan and Jan Kotek from Gymnazium Pisek in the Czech Republic, together with their teacher Marek Tyle. Their report on "Research and Observation of the Solar Eclipse" told how they had studied solar eclipses, and involved their fellow students in observations of an eclipse from their school in 2006. The team will travel to Chile and visit the ESO VLT - one of the world's most powerful optical/infrared telescopes - where they will meet astronomers and be present during a night of observations on the 2600m high Paranal mountaintop. "It's fantastic that we will see the

  16. The big comet crash of 1994. Intensive observational campaign at ESO

    NASA Astrophysics Data System (ADS)

    1994-01-01

    -based radio telescopes, as well as from several spacecraft, including Ulysses, now en route towards its first pass below the Sun. There may also be changes in the plasma torus that girdles Jupiter near the orbit of the volcanic moon Io, and some cometary dust particles may collect in Jupiter's faint ring. All in all, this spectacular event offers a unique opportunity to study Jupiter and its atmosphere. It may also provide a first ``look'' into its hitherto unobservable inner regions. Nobody knows for sure, how dramatic the effects of the impacts will actually be, but unless we are prepared to observe them, we may lose a great chance that is unlikely to come back in many years, if ever. WHICH PREPARATIONS HAVE BEEN MADE AT ESO ? In November of last year, a group of 25 cometary and planetary specialists from Europe and the U.S.A. met at ESO to discuss possible observations from the ESO La Silla observatory in connection with the cometary impacts at Jupiter. In a resulting report, they emphazised that ESO is in a particularly advantageous situation in this respect, because the excellent site of this observatory is located in the south and Jupiter will be 12 degrees south of the celestial equator at the time of the event and therefore well observable from here; the time available from observatories in the northern hemisphere will be much more restricted. Moreover, many different observing techniques are available at La Silla; this provides optimal conditions for effective coordination of the various programmes, in particular what concerns imaging and spectral observations in the infrared and submillimetre wavebands. A joint request for a coordinated observing programme was submitted by the group to the ESO Observing Programmes Committee. During its meeting at the end of November 1993, this committee reacted very positively and a substantial number of observing nights at the major telescopes at La Silla was granted at the time of the impacts in July 1994. The total amount of

  17. Catch a Star 2008!

    NASA Astrophysics Data System (ADS)

    2007-10-01

    ESO and the European Association for Astronomy Education have just launched the 2008 edition of 'Catch a Star', their international astronomy competition for school students. Now in its sixth year, the competition offers students the chance to win a once-in-a-lifetime trip to ESO's flagship observatory in Chile, as well as many other prizes. CAS logo The competition includes separate categories - 'Catch a Star Researchers' and 'Catch a Star Adventurers' - to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. In teams, students investigate an astronomical topic of their choice and write a report about it. An important part of the project for 'Catch a Star Researchers' is to think about how ESO's telescopes such as the Very Large Telescope (VLT) or future telescopes such as the Atacama Large Millimeter/submillimeter Array (ALMA) and the European Extremely Large Telescope (E-ELT) could contribute to investigations of the topic. Students may also include practical activities such as observations or experiments. For the artistically minded, 'Catch a Star' also offers an artwork competition, 'Catch a Star Artists'. Last year, hundreds of students from across Europe and beyond took part in 'Catch a Star', submitting astronomical projects and artwork. "'Catch a Star' gets students thinking about the wonders of the Universe and the science of astronomy, with a chance of winning great prizes. It's easy to take part, whether by writing about astronomy or creating astronomically inspired artwork," said Douglas Pierce-Price, Education Officer at ESO. As well as the top prize - a trip to ESO's Very Large Telescope in Chile - visits to observatories in Austria and Spain, and many other prizes, can also be won. 'Catch a Star Researchers' winners will be chosen by an international jury, and 'Catch a Star Adventurers' will be awarded further prizes by lottery. Entries for 'Catch a Star Artists' will be displayed on the web and winners

  18. ESO Science Outreach Network in Poland during 2011-2013

    NASA Astrophysics Data System (ADS)

    Czart, Krzysztof

    2014-12-01

    ESON Poland works since 2010. One of the main tasks of the ESO Science Outreach Network (ESON) is translation of various materials at ESO website, as well as contacts with journalists. We support also science festivals, conferences, contests, exhibitions, astronomy camps and workshops and other educational and outreach activities. During 2011-2013 we supported events like ESO Astronomy Camp 2013, ESO Industry Days in Warsaw, Warsaw Science Festival, Torun Festival of Science and Art, international astronomy olympiad held in Poland and many others. Among big tasks there was also translation of over 60 ESOcast movies.

  19. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    need for virtual observatories has also been recognised by other astronomical communities. The National Science Foundation in the USA has awarded $10 million (EUR 11.4 m) for a National Virtual Observatory (NVO). The AVO project team has formed a close alliance with the NVO and both teams have representatives on each other's committees. It is clear to the NVO and AVO communities that there are no intrinsic boundaries to the virtual observatory concept and that all astronomers should be working towards a truly global virtual observatory that will enable new science to be carried out on the wealth of astronomical data held in the growing number of first-class international astronomical archives. AVO involves six partner organisations led by the European Southern Observatory (ESO) in Munich. The other partner organisations are the European Space Agency (ESA), the United Kingdom's ASTROGRID consortium, the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS) at the University Louis Pasteur in Strasbourg, the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris and the Jodrell Bank Observatory at the University of Manchester. Note for editors A 13-minute background video (broadcast PAL) is available from ESO PR and the Hubble European Space Agency Information Centre (addresses below). It will also be transmitted via satellite on Wednesday 12 December 2001 from 12:00 to 12:15 CET on the ESA TV Service: http://television.esa.int

  20. Exploring remote operation for ALMA Observatory

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Ovando, Nicolás.; Velez, Gaston; Fuica, Soledad; Schemrl, Anton; Robles, Andres; Ibsen, Jorge; Filippi, Giorgio; Pietriga, Emmanuel

    2014-08-01

    The Atacama Large Millimeter /submillimeter Array (ALMA) will be a unique research instrument composed of at least 66 reconfigurable high-precision antennas, located at the Chajnantor plain in the Chilean Andes at an elevation of 5000 m. The observatory has another office located in Santiago of Chile, 1600 km from the Chajnantor plain. In the Atacama desert, the wonderful observing conditions imply precarious living conditions and extremely high operation costs: i.e: flight tickets, hospitality, infrastructure, water, electricity, etc. It is clear that a purely remote operational model is impossible, but we believe that a mixture of remote and local operation scheme would be beneficial to the observatory, not only in reducing the cost but also in increasing the observatory overall efficiency. This paper describes the challenges and experience gained in such experimental proof of the concept. The experiment was performed over the existing 100 Mbps bandwidth, which connects both sites through a third party telecommunication infrastructure. During the experiment, all of the existent capacities of the observing software were validated successfully, although room for improvement was clearly detected. Network virtualization, MPLS configuration, L2TPv3 tunneling, NFS adjustment, operational workstations design are part of the experiment.

  1. THE NARROW X-RAY TAIL AND DOUBLE Hα TAILS OF ESO 137-002 IN A3627

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.; Lin, X. B.; Kong, X.

    2013-11-10

    We present the analysis of a deep Chandra observation of a ∼2 L{sub *} late-type galaxy, ESO 137-002, in the closest rich cluster A3627. The Chandra data reveal a long (∼>40 kpc) and narrow tail with a nearly constant width (∼3 kpc) to the southeast of the galaxy, and a leading edge ∼1.5 kpc from the galaxy center on the upstream side of the tail. The tail is most likely caused by the nearly edge-on stripping of ESO 137-002's interstellar medium (ISM) by ram pressure, compared to the nearly face-on stripping of ESO 137-001 discussed in our previous work. Spectralmore » analysis of individual regions along the tail shows that the gas throughout it has a rather constant temperature, ∼1 keV, very close to the temperature of the tails of ESO 137-001, if the same atomic database is used. The derived gas abundance is low (∼0.2 solar with the single-kT model), an indication of the multiphase nature of the gas in the tail. The mass of the X-ray tail is only a small fraction (<5%) of the initial ISM mass of the galaxy, suggesting that the stripping is most likely at an early stage. However, with any of the single-kT, double-kT, and multi-kT models we tried, the tail is always 'over-pressured' relative to the surrounding intracluster medium (ICM), which could be due to the uncertainties in the abundance, thermal versus non-thermal X-ray emission, or magnetic support in the ICM. The Hα data from the Southern Observatory for Astrophysical Research show a ∼21 kpc tail spatially coincident with the X-ray tail, as well as a secondary tail (∼12 kpc long) to the east of the main tail diverging at an angle of ∼23° and starting at a distance of ∼7.5 kpc from the nucleus. At the position of the secondary Hα tail, the X-ray emission is also enhanced at the ∼2σ level. We compare the tails of ESO 137-001 and ESO 137-002, and also compare the tails to simulations. Both the similarities and differences of the tails pose challenges to the simulations. Several

  2. Searching for solar siblings among the HARPS data

    NASA Astrophysics Data System (ADS)

    Batista, S. F. A.; Adibekyan, V. Zh.; Sousa, S. G.; Santos, N. C.; Delgado Mena, E.; Hakobyan, A. A.

    2014-04-01

    The search for solar siblings has been particularly fruitful in the past few years. At present, there are four plausible candidates reported in the literature: HIP21158, HIP87382, HIP47399, and HIP92831. In this study we conduct a search for solar siblings among the HARPS high-resolution FGK dwarfs sample, which includes precise chemical abundances and kinematics for 1111 stars. Using a new approach based on chemical abundance trends with condensation temperature, kinematics, and ages we found one (additional) potential solar sibling candidate: HIP97507. Based on observations collected at the La Silla Paranal Observatory, ESO (Chile) with the HARPS spectrograph at the 3.6-m telescope (ESO runs ID 72.C-0488, 082.C-0212, and 085.C-0063).

  3. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    NASA Astrophysics Data System (ADS)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  4. R Coronae Australis: A Cosmic Watercolour

    NASA Astrophysics Data System (ADS)

    2010-06-01

    This magnificent view of the region around the star R Coronae Australis was created from images taken with the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile. R Coronae Australis lies at the heart of a nearby star-forming region and is surrounded by a delicate bluish reflection nebula embedded in a huge dust cloud. The image reveals surprising new details in this dramatic area of sky. The star R Coronae Australis lies in one of the nearest and most spectacular star-forming regions. This portrait was taken by the Wide Field Imager (WFI) on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. The image is a combination of twelve separate pictures taken through red, green and blue filters. This image shows a section of sky that spans roughly the width of the full Moon. This is equivalent to about four light-years at the distance of the nebula, which is located some 420 light-years away in the small constellation of Corona Australis (the Southern Crown). The complex is named after the star R Coronae Australis, which lies at the centre of the image. It is one of several stars in this region that belong to the class of very young stars that vary in brightness and are still surrounded by the clouds of gas and dust from which they formed. The intense radiation given off by these hot young stars interacts with the gas surrounding them and is either reflected or re-emitted at a different wavelength. These complex processes, determined by the physics of the interstellar medium and the properties of the stars, are responsible for the magnificent colours of nebulae. The light blue nebulosity seen in this picture is mostly due to the reflection of starlight off small dust particles. The young stars in the R Coronae Australis complex are similar in mass to the Sun and do not emit enough ultraviolet light to ionise a substantial fraction of the surrounding hydrogen. This means that the cloud does not glow with the characteristic red colour seen in

  5. HATS-43b, HATS-44b, HATS-45b, and HATS-46b: Four Short-period Transiting Giant Planets in the Neptune–Jupiter Mass Range

    NASA Astrophysics Data System (ADS)

    Brahm, R.; Hartman, J. D.; Jordán, A.; Bakos, G. Á.; Espinoza, N.; Rabus, M.; Bhatti, W.; Penev, K.; Sarkis, P.; Suc, V.; Csubry, Z.; Bayliss, D.; Bento, J.; Zhou, G.; Mancini, L.; Henning, T.; Ciceri, S.; de Val-Borro, M.; Shectman, S.; Crane, J. D.; Arriagada, P.; Butler, P.; Teske, J.; Thompson, I.; Osip, D.; Díaz, M.; Schmidt, B.; Lázár, J.; Papp, I.; Sári, P.

    2018-03-01

    We report the discovery of four short-period extrasolar planets transiting moderately bright stars from photometric measurements of the HATSouth network coupled to additional spectroscopic and photometric follow-up observations. While the planet masses range from 0.26 to 0.90 {M}{{J}}, the radii are all approximately a Jupiter radii, resulting in a wide range of bulk densities. The orbital period of the planets ranges from 2.7 days to 4.7 days, with HATS-43b having an orbit that appears to be marginally non-circular (e = 0.173 ± 0.089). HATS-44 is notable for having a high metallicity ([{Fe}/{{H}}] = 0.320 ± 0.071). The host stars spectral types range from late F to early K, and all of them are moderately bright (13.3 < V < 14.4), allowing the execution of future detailed follow-up observations. HATS-43b and HATS-46b, with expected transmission signals of 2350 ppm and 1500 ppm, respectively, are particularly well suited targets for atmospheric characterization via transmission spectroscopy. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. This paper includes data gathered with the MPG 2.2 m and ESO 3.6 m telescopes at the ESO Observatory in La Silla. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  6. The ESO Survey of Non-Publishing Programmes

    NASA Astrophysics Data System (ADS)

    Patat, F.; Boffin, H. M. J.; Bordelon, D.; Grothkopf, U.; Meakins, S.; Mieske, S.; Rejkuba, M.

    2017-12-01

    One of the classic ways to measure the success of a scientific facility is the publication return, which is defined as the refereed papers produced per unit of allocated resources (for example, telescope time or proposals). The recent studies by Sterzik et al. (2015, 2016) have shown that 30–50 % of the programmes allocated time at ESO do not produce a refereed publication. While this may be inherent to the scientific process, this finding prompted further investigation. For this purpose, ESO conducted a Survey of Non-Publishing Programmes (SNPP) within the activities of the Time Allocation Working Group, similar to the monitoring campaign that was recently implemented at ALMA (Stoehr et al., 2016). The SNPP targeted 1278 programmes scheduled between ESO Periods 78 and 90 (October 2006 to March 2013) that had not published a refereed paper as of April 2016. The poll was launched on 6 May 2016, remained open for four weeks, and returned 965 valid responses. This article summarises and discusses the results of this survey, the first of its kind at ESO.

  7. A Roof for ALMA

    NASA Astrophysics Data System (ADS)

    2007-03-01

    On 10 March, an official ceremony took place on the 2,900m high site of the Atacama Large Millimeter/submillimeter Array (ALMA) Operations Support Facility, from where the ALMA antennas will be remotely controlled. The ceremony marked the completion of the structural works, while the building itself will be finished by the end of the year. This will become the operational centre of one of the most important ground-based astronomical facilities on Earth. ESO PR Photo 13a/07 ESO PR Photo 13a/07 Cutting the Red Ribbon The ceremony, known as 'Tijerales' in Chile, is the equivalent to the 'roof-topping ceremony' that takes place worldwide, in one form or another, to celebrate reaching the highest level of a construction. It this case, the construction is the unique ALMA Operations Support Facility (OSF), located near the town of San Pedro de Atacama. "The end of this first stage represents an historic moment for ALMA," said Hans Rykaczewski, the European ALMA Project Manager. "Once completed in December 2007, this monumental building of 7,000 square metres will be one of the largest and most important astronomical operation centres in the world." ALMA, located at an elevation of 5,000m in the Atacama Desert of northern Chile, will provide astronomers with the world's most advanced tool for exploring the Universe at millimetre and submillimetre wavelengths. ALMA will detect fainter objects and be able to produce much higher-quality images at these wavelengths than any previous telescope system. The OSF buildings are designed to suit the requirements of this exceptional observatory in a remote, desert location. The facility, which will host about 100 people during operations, consists of three main buildings: the technical building, hosting the control centre of the observatory, the antenna assembly building, including four antenna foundations for testing and maintenance purposes, and the warehouse building, including mechanical workshops. Further secondary buildings are

  8. CoRoT 101186644: A transiting low-mass dense M-dwarf on an eccentric 20.7-day period orbit around a late F-star. Discovered in the CoRoT lightcurves

    NASA Astrophysics Data System (ADS)

    Tal-Or, L.; Mazeh, T.; Alonso, R.; Bouchy, F.; Cabrera, J.; Deeg, H. J.; Deleuil, M.; Faigler, S.; Fridlund, M.; Hébrard, G.; Moutou, C.; Santerne, A.; Tingley, B.

    2013-05-01

    We present the study of the CoRoT transiting planet candidate 101186644, also named LRc01_E1_4780. Analysis of the CoRoT lightcurve and the HARPS spectroscopic follow-up observations of this faint (mV = 16) candidate revealed an eclipsing binary composed of a late F-type primary (Teff = 6090 ± 200 K) and a low-mass, dense late M-dwarf secondary on an eccentric (e = 0.4) orbit with a period of ~20.7 days. The M-dwarf has a mass of 0.096 ± 0.011 M⊙, and a radius of 0.104-0.006+0.026 R⊙, which possibly makes it the smallest and densest late M-dwarf reported so far. Unlike the claim that theoretical models predict radii that are 5-15% smaller than measured for low-mass stars, this one seems to have a radius that is consistent and might even be below the radius predicted by theoretical models. Based on observations made with the 1-m telescope at the Wise Observatory, Israel, the Swiss 1.2-m Leonhard Euler telescope at La Silla Observatory, Chile, the IAC-80 telescope at the Observatory del Teide, Canarias, Spain, and the 3.6-m telescope at La Silla Observatory (ESO), Chile (program 184.C-0639).

  9. Atoms-for-Peace: A Galactic Collision in Action

    NASA Astrophysics Data System (ADS)

    2010-11-01

    European Southern Observatory astronomers have produced a spectacular new image of the famous Atoms-for-Peace galaxy (NGC 7252). This galactic pile-up, formed by the collision of two galaxies, provides an excellent opportunity for astronomers to study how mergers affect the evolution of the Universe. Atoms-for-Peace is the curious name given to a pair of interacting and merging galaxies that lie around 220 million light-years away in the constellation of Aquarius. It is also known as NGC 7252 and Arp 226 and is just bright enough to be seen by amateur astronomers as a very faint small fuzzy blob. This very deep image was produced by ESO's Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. A galaxy collision is one of the most important processes influencing how our Universe evolves, and studying them reveals important clues about galactic ancestry. Luckily, such collisions are long drawn-out events that last hundreds of millions of years, giving astronomers plenty of time to observe them. This picture of Atoms-for-Peace represents a snapshot of its collision, with the chaos in full flow, set against a rich backdrop of distant galaxies. The results of the intricate interplay of gravitational interactions can be seen in the shapes of the tails made from streams of stars, gas and dust. The image also shows the incredible shells that formed as gas and stars were ripped out of the colliding galaxies and wrapped around their joint core. While much material was ejected into space, other regions were compressed, sparking bursts of star formation. The result was the formation of hundreds of very young star clusters, around 50 to 500 million years old, which are speculated to be the progenitors of globular clusters. Atoms-for-Peace may be a harbinger of our own galaxy's fate. Astronomers predict that in three or four billion years the Milky Way and the Andromeda Galaxy will collide, much as has happened with Atoms-for-Peace. But don

  10. Vaccination with NY-ESO-1 overlapping peptides mixed with Picibanil OK-432 and montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen.

    PubMed

    Wada, Hisashi; Isobe, Midori; Kakimi, Kazuhiro; Mizote, Yu; Eikawa, Shingo; Sato, Eiichi; Takigawa, Nagio; Kiura, Katsuyuki; Tsuji, Kazuhide; Iwatsuki, Keiji; Yamasaki, Makoto; Miyata, Hiroshi; Matsushita, Hirokazu; Udono, Heiichiro; Seto, Yasuyuki; Yamada, Kazuhiro; Nishikawa, Hiroyoshi; Pan, Linda; Venhaus, Ralph; Oka, Mikio; Doki, Yuichiro; Nakayama, Eiichi

    2014-01-01

    We conducted a clinical trial of an NY-ESO-1 cancer vaccine using 4 synthetic overlapping long peptides (OLP; peptides #1, 79-108; #2, 100-129; #3, 121-150; and #4, 142-173) that include a highly immunogenic region of the NY-ESO-1 molecule. Nine patients were immunized with 0.25 mg each of three 30-mer and a 32-mer long NY-ESO-1 OLP mixed with 0.2 KE Picibanil OK-432 and 1.25 mL Montanide ISA-51. The primary endpoints of this study were safety and NY-ESO-1 immune responses. Five to 18 injections of the NY-ESO-1 OLP vaccine were well tolerated. Vaccine-related adverse events observed were fever and injection site reaction (grade 1 and 2). Two patients showed stable disease after vaccination. An NY-ESO-1-specific humoral immune response was observed in all patients and an antibody against peptide #3 (121-150) was detected firstly and strongly after vaccination. NY-ESO-1 CD4 and CD8 T-cell responses were elicited in these patients and their epitopes were identified. Using a multifunctional cytokine assay, the number of single or double cytokine-producing cells was increased in NY-ESO-1-specific CD4 and CD8 T cells after vaccination. Multiple cytokine-producing cells were observed in PD-1 (-) and PD-1 (+) CD4 T cells. In conclusion, our study indicated that the NY-ESO-1 OLP vaccine mixed with Picibanil OK-432 and Montanide ISA-51 was well tolerated and elicited NY-ESO-1-specific humoral and CD4 and CD8 T-cell responses in immunized patients.

  11. On the Trail of a Cosmic Cat

    NASA Astrophysics Data System (ADS)

    2010-01-01

    Imager (WFI) instrument at the 2.2-metre MPG/ESO telescope at the La Silla Observatory in Chile, combining images taken through blue, green and red filters, as well as a special filter designed to let through the light of glowing hydrogen. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  12. NGC 4945: The Milky Way's not-so-distant Cousin

    NASA Astrophysics Data System (ADS)

    2009-09-01

    ESO has released a striking new image of a nearby galaxy that many astronomers think closely resembles our own Milky Way. Though the galaxy is seen edge-on, observations of NGC 4945 suggest that this hive of stars is a spiral galaxy much like our own, with swirling, luminous arms and a bar-shaped central region. These resemblances aside, NGC 4945 has a brighter centre that likely harbours a supermassive black hole, which is devouring reams of matter and blasting energy out into space. As NGC 4945 is only about 13 million light-years away in the constellation of Centaurus (the Centaur), a modest telescope is sufficient for skygazers to spot this remarkable galaxy. NGC 4945's designation comes from its entry number in the New General Catalogue compiled by the Danish-Irish astronomer John Louis Emil Dreyer in the 1880s. James Dunlop, a Scottish astronomer, is credited with originally discovering NGC 4945 in 1826 from Australia. Today's new portrait of NGC 4945 comes courtesy of the Wide Field Imager (WFI) instrument at the 2.2-metre MPG/ESO telescope at the La Silla Observatory in Chile. NGC 4945 appears cigar-shaped from our perspective on Earth, but the galaxy is actually a disc many times wider than it is thick, with bands of stars and glowing gas spiralling around its centre. With the use of special optical filters to isolate the colour of light emitted by heated gases such as hydrogen, the image displays sharp contrasts in NGC 4945 that indicate areas of star formation. Other observations have revealed that NGC 4945 has an active galactic nucleus, meaning its central bulge emits far more energy than calmer galaxies like the Milky Way. Scientists classify NGC 4945 as a Seyfert galaxy after the American astronomer Carl K. Seyfert, who wrote a study in 1943 describing the odd light signatures emanating from some galactic cores. Since then, astronomers have come to suspect that supermassive black holes cause the turmoil in the centre of Seyfert galaxies. Black holes

  13. Overview of ESO Large Single Dish Study

    NASA Astrophysics Data System (ADS)

    Testi, Leonardo

    2018-01-01

    In this talk I will briefly summarize the motivation, methodology and outcome of the ESO Submm Single Dish Strategy WG. The WG was established by the ESO Director for Science and completed its work at the end of 2015. I will summarize the status of the report recommendations, which, among other things, led to the organization of the AtLAST workshop.

  14. VISTA Views the Sculptor Galaxy

    NASA Astrophysics Data System (ADS)

    2010-06-01

    A spectacular new image of the Sculptor Galaxy (NGC 253) has been taken with the ESO VISTA telescope at the Paranal Observatory in Chile as part of one of its first major observational campaigns. By observing in infrared light VISTA's view is less affected by dust and reveals a myriad of cooler stars as well as a prominent bar of stars across the central region. The VISTA image provides much new information on the history and development of the galaxy. The Sculptor Galaxy (NGC 253) lies in the constellation of the same name and is one of the brightest galaxies in the sky. It is prominent enough to be seen with good binoculars and was discovered by Caroline Herschel from England in 1783. NGC 253 is a spiral galaxy that lies about 13 million light-years away. It is the brightest member of a small collection of galaxies called the Sculptor Group, one of the closest such groupings to our own Local Group of galaxies. Part of its visual prominence comes from its status as a starburst galaxy, one in the throes of rapid star formation. NGC 253 is also very dusty, which obscures the view of many parts of the galaxy (eso0902). Seen from Earth, the galaxy is almost edge on, with the spiral arms clearly visible in the outer parts, along with a bright core at its centre. VISTA, the Visible and Infrared Survey Telescope for Astronomy, the latest addition to ESO's Paranal Observatory in the Chilean Atacama Desert, is the world's largest survey telescope. After being handed over to ESO at the end of 2009 (eso0949) the telescope was used for two detailed studies of small sections of the sky before it embarked on the much larger surveys that are now in progress. One of these "mini surveys" was a detailed study of NGC 253 and its environment. As VISTA works at infrared wavelengths it can see right through most of the dust that is such a prominent feature of the Sculptor Galaxy when viewed in visible light. Huge numbers of cooler stars that are barely detectable with visible

  15. ESO science data product standard for 1D spectral products

    NASA Astrophysics Data System (ADS)

    Micol, Alberto; Arnaboldi, Magda; Delmotte, Nausicaa A. R.; Mascetti, Laura; Retzlaff, Joerg

    2016-07-01

    The ESO Phase 3 process allows the upload, validation, storage, and publication of reduced data through the ESO Science Archive Facility. Since its introduction, 2 million data products have been archived and published; 80% of them are one-dimensional extracted and calibrated spectra. Central to Phase3 is the ESO science data product standard that defines metadata and data format of any product. This contribution describes the ESO data standard for 1d-spectra, its adoption by the reduction pipelines of selected instrument modes for in-house generation of reduced spectra, the enhanced archive legacy value. Archive usage statistics are provided.

  16. A 3000 TNOs Survey Project at ESO La Silla

    NASA Astrophysics Data System (ADS)

    Boehnhardt, H.; Hainaut, O.

    We propose a wide-shallow TNO search to be done with the Wide Field Imager (WFI) instrument at the 2.2m MPG/ESO telescope in La Silla/Chile. The WFI is a half-deg camera equipped with an 8kx8k CCD (0.24 arcsec/pixel). The telescope can support excellent seeing quality down to 0.5arcsec FWHM. A TNO search pilot project was run with the 2.2m+WFI in 1999: images with just 1.6sdeg sky coverage and typically 24mag limiting brightness revealed 6 new TNOs when processed with our new automatic detection program MOVIE. The project is now continued on a somewhat larger scale in order to find more TNOs and to fine-tune the operational environment for a full automatic on-line detection, astrometry and photometry of the objects at the telescope. The future goal is to perform - with the 2.2m+WFI and in an international colaboration - an even larger TNO survey over a major part of the sky (typically 2000sdeg in and out of Ecliptic) down to 24mag. Follow-up astrometry and photometry of the expected more than 3000 discovered objects will secure their orbital and physical characterisation for synoptic dynamical and taxonomic studies of the Transneptunian population.

  17. The Potential of ESO for Asteroseismology

    NASA Astrophysics Data System (ADS)

    Aerts, Conny

    2017-08-01

    The research field of asteroseismology is currently undergoing its first revolution. We start with a brief history of how this field of stellar physics evolved from dream to reality, including ESO's role in it. Subsequently, we highlight how asteroseismology can serve various topics in astrophysics and focus on the current status. We discuss recent findings on the rotation and chemical mixing inside stars. Finally, we look at the perspectives of the second and third revolution in this area and highlight how ESO can play an optimal role in it.

  18. Calbuco’s plume over Chile

    NASA Image and Video Library

    2015-04-29

    The natural color image below, acquired on April 25 by the Advanced Land Imager on NASA’s Earth Observing-1 satellite, shows Calbuco’s plume rising above the cloud deck over Chile. Read more here: earthobservatory.nasa.gov/IOTD/view.php?id=85791&eocn... Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Europe's Astronomy Teachers Meet at ESO

    NASA Astrophysics Data System (ADS)

    1994-12-01

    , Germany; Secretary) and M. Winther (Sonderborg, Denmark). ESO has pledged to support the aims and ideals of the EAAE. Notes (1) See also ESO Press Release 15/94 of November 15, 1994. (2) For further information about the EAAE, please contact: Dr. D.P. Simopoulos, Eugenides Foundation, 387, Sygrou Avenue, P.O. Box 79103, Paleo Faliro, GR-17564 Athens, Greece. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  20. Koha@ESO Reloaded

    NASA Astrophysics Data System (ADS)

    Meakins, S.; Grothkopf, U.

    2015-04-01

    What happened to the ESO library's plan to use the open source software Koha as their new library system? After an intensive migration process, we finally went online in June 2012. We want to share some of our experiences, point out advantages and disadvantages of an open source system and show some highlights of Koha, especially the flexibility the system offers.

  1. Ambitious Survey Spots Stellar Nurseries

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers scanning the skies as part of ESO's VISTA Magellanic Cloud survey have now obtained a spectacular picture of the Tarantula Nebula in our neighbouring galaxy, the Large Magellanic Cloud. This panoramic near-infrared view captures the nebula itself in great detail as well as the rich surrounding area of sky. The image was obtained at the start of a very ambitious survey of our neighbouring galaxies, the Magellanic Clouds, and their environment. The leader of the survey team, Maria-Rosa Cioni (University of Hertfordshire, UK) explains: "This view is of one of the most important regions of star formation in the local Universe - the spectacular 30 Doradus star-forming region, also called the Tarantula Nebula. At its core is a large cluster of stars called RMC 136, in which some of the most massive stars known are located." ESO's VISTA telescope [1] is a new survey telescope at the Paranal Observatory in Chile (eso0949). VISTA is equipped with a huge camera that detects light in the near-infrared part of the spectrum, revealing a wealth of detail about astronomical objects that gives us insight into the inner workings of astronomical phenomena. Near-infrared light has a longer wavelength than visible light and so we cannot see it directly for ourselves, but it can pass through much of the dust that would normally obscure our view. This makes it particularly useful for studying objects such as young stars that are still enshrouded in the gas and dust clouds from which they formed. Another powerful aspect of VISTA is the large area of the sky that its camera can capture in each shot. This image is the latest view from the VISTA Magellanic Cloud Survey (VMC). The project will scan a vast area - 184 square degrees of the sky (corresponding to almost one thousand times the apparent area of the full Moon) including our neighbouring galaxies the Large and Small Magellanic Clouds. The end result will be a detailed study of the star formation history and three

  2. A Cosmic Zoo in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    2010-06-01

    Astronomers often turn their telescopes to the Large Magellanic Cloud (LMC), one of the closest galaxies to our own Milky Way, in their quest to understand the Universe. In this spectacular new image from the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile, a celestial menagerie of different objects and phenomena in part of the LMC is on display, ranging from vast globular clusters to the remains left by brilliant supernovae explosions. This fascinating observation provides data for a wide variety of research projects unravelling the life and death of stars and the evolution of galaxies. The Large Magellanic Cloud (LMC) is only about 160 000 light-years from our own Milky Way - very close on a cosmic scale. This proximity makes it a very important target as it can be studied in far more detail than more distant systems. The LMC lies in the constellation of Dorado (the Swordfish), deep in the southern sky and well placed for observations from ESO's observatories in Chile. It is one of the galaxies forming the Local Group surrounding the Milky Way [1]. Though enormous on a human scale, the LMC is less than one tenth the mass of our home galaxy and spans just 14 000 light-years compared to about 100 000 light-years for the Milky Way. Astronomers refer to it as an irregular dwarf galaxy [2]. Its irregularity, combined with its prominent central bar of stars suggests to astronomers that tidal interactions with the Milky Way and fellow Local Group galaxy, the Small Magellanic Cloud, could have distorted its shape from a classic barred spiral into its modern, more chaotic form. This image is a mosaic of four pictures from the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. The image covers a region of sky more than four times as large as the full Moon. The huge field of view of this camera makes it possible to see a very wide range of objects in the LMC in a single picture, although only a small part of the entire

  3. VISTA Captures Celestial Cat's Hidden Secrets

    NASA Astrophysics Data System (ADS)

    2010-04-01

    The Cat's Paw Nebula, NGC 6334, is a huge stellar nursery, the birthplace of hundreds of massive stars. In a magnificent new ESO image taken with the Visible and Infrared Survey Telescope for Astronomy (VISTA) at the Paranal Observatory in Chile, the glowing gas and dust clouds obscuring the view are penetrated by infrared light and some of the Cat's hidden young stars are revealed. Towards the heart of the Milky Way, 5500 light-years from Earth in the constellation of Scorpius (the Scorpion), the Cat's Paw Nebula stretches across 50 light-years. In visible light, gas and dust are illuminated by hot young stars, creating strange reddish shapes that give the object its nickname. A recent image by ESO's Wide Field Imager (WFI) at the La Silla Observatory (eso1003) captured this visible light view in great detail. NGC 6334 is one of the most active nurseries of massive stars in our galaxy. VISTA, the latest addition to ESO's Paranal Observatory in the Chilean Atacama Desert, is the world's largest survey telescope (eso0949). It works at infrared wavelengths, seeing right through much of the dust that is such a beautiful but distracting aspect of the nebula, and revealing objects hidden from the sight of visible light telescopes. Visible light tends to be scattered and absorbed by interstellar dust, but the dust is nearly transparent to infrared light. VISTA has a main mirror that is 4.1 metres across and it is equipped with the largest infrared camera on any telescope. It shares the spectacular viewing conditions with ESO's Very Large Telescope (VLT), which is located on the nearby summit. With this powerful instrument at their command, astronomers were keen to see the birth pains of the big young stars in the Cat's Paw Nebula, some nearly ten times the mass of the Sun. The view in the infrared is strikingly different from that in visible light. With the dust obscuring the view far less, they can learn much more about how these stars form and develop in their first

  4. Status of Women at ESO: a Pilot Study on ESO Staff Gender Distribution

    NASA Astrophysics Data System (ADS)

    Primas, F.

    2007-06-01

    Equal career opportunities require working conditions that make it possible to reconcile family needs and career development. This article describes the goals and main findings of a pilot investigation that has recently been ­carried out at ESO focusing on gender balance issues.

  5. The Superwind Galaxy NGC 4666

    NASA Astrophysics Data System (ADS)

    2010-09-01

    The galaxy NGC 4666 takes pride of place at the centre of this new image, made in visible light with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. NGC 4666 is a remarkable galaxy with very vigorous star formation and an unusual "superwind" of out-flowing gas. It had previously been observed in X-rays by the ESA XMM-Newton space telescope, and the image presented here was taken to allow further study of other objects detected in the earlier X-ray observations. The prominent galaxy NGC 4666 in the centre of the picture is a starburst galaxy, about 80 million light-years from Earth, in which particularly intense star formation is taking place. The starburst is thought to be caused by gravitational interactions between NGC 4666 and its neighbouring galaxies, including NGC 4668, visible to the lower left. These interactions often spark vigorous star-formation in the galaxies involved. A combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast flow of gas from the galaxy into space - a so-called "superwind". The superwind is huge in scale, coming from the bright central region of the galaxy and extending for tens of thousands of light-years. As the superwind gas is very hot it emits radiation mostly as X-rays and in the radio part of the spectrum and cannot be seen in visible light images such as the one presented here. This image was made as part of a follow-up to observations made with the ESA XMM-Newton space telescope in X-rays. NGC 4666 was the target of the original XMM-Newton observations, but thanks to the telescope's wide field-of-view many other X-ray sources were also seen in the background. One such serendipitous detection is a faint galaxy cluster seen close to the bottom edge of the image, right of centre. This cluster is much further away from us than NGC 4666, at a distance of about three billion light-years. In order to fully understand the nature of

  6. Shaping ESO2020+ Together: Feedback from the Community Poll

    NASA Astrophysics Data System (ADS)

    Primas, F.; Ivison, R.; Berger, J.-P.; Caselli, P.; De Gregorio-Monsalvo, I.; Alonso Herrero, A.; Knudsen, K. K.; Leibundgut, B.; Moitinho, A.; Saviane, I.; Spyromilio, J.; Testi, L.; Vennes, S.

    2015-09-01

    A thorough evaluation and prioritisation of the ESO science programme into the 2020+ timeframe took place under the auspices of a working group, comprising astronomers drawn from ESO’s advisory structure and from within ESO. This group reported to ESO’s Scientific Technical Committee, and to ESO Council, concluding the exercise with the publication of a report, “Science Priorities at ESO”. A community poll and a dedicated workshop, held in January 2015, formed part of the information gathering process. The community poll was designed to probe the demographics of the user community, its scientific interests, use of observing facilities and plans for use of future telescopes and instruments, its views on types of observing programmes and on the provision of data processing and archiving. A total of 1775 full responses to the poll were received and an analysis of the results is presented here. Foremost is the importance of regular observing programmes on all ESO observing facilities, in addition to Large Programmes and Public Surveys. There was also a strong community requirement for ESO to process and archive data obtained at ESO facilities. Other aspects, especially those related to future facilities, are more challenging to interpret because of biases related to the distribution of science expertise and favoured wavelength regime amongst the targeted audience. The results of the poll formed a fundamental component of the report and pro-vide useful data to guide the evolution of ESO’s science programme.

  7. Mechanical thrombectomy in acute ischemic stroke: Consensus statement by ESO-Karolinska Stroke Update 2014/2015, supported by ESO, ESMINT, ESNR and EAN.

    PubMed

    Wahlgren, Nils; Moreira, Tiago; Michel, Patrik; Steiner, Thorsten; Jansen, Olav; Cognard, Christophe; Mattle, Heinrich P; van Zwam, Wim; Holmin, Staffan; Tatlisumak, Turgut; Petersson, Jesper; Caso, Valeria; Hacke, Werner; Mazighi, Mikael; Arnold, Marcel; Fischer, Urs; Szikora, Istvan; Pierot, Laurent; Fiehler, Jens; Gralla, Jan; Fazekas, Franz; Lees, Kennedy R

    2016-01-01

    The original version of this consensus statement on mechanical thrombectomy was approved at the European Stroke Organisation (ESO)-Karolinska Stroke Update conference in Stockholm, 16-18 November 2014. The statement has later, during 2015, been updated with new clinical trials data in accordance with a decision made at the conference. Revisions have been made at a face-to-face meeting during the ESO Winter School in Berne in February, through email exchanges and the final version has then been approved by each society. The recommendations are identical to the original version with evidence level upgraded by 20 February 2015 and confirmed by 15 May 2015. The purpose of the ESO-Karolinska Stroke Update meetings is to provide updates on recent stroke therapy research and to discuss how the results may be implemented into clinical routine. Selected topics are discussed at consensus sessions, for which a consensus statement is prepared and discussed by the participants at the meeting. The statements are advisory to the ESO guidelines committee. This consensus statement includes recommendations on mechanical thrombectomy after acute stroke. The statement is supported by ESO, European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), and European Academy of Neurology (EAN). © 2016 World Stroke Organization.

  8. The Milky Way's Tiny but Tough Galactic Neighbour

    NASA Astrophysics Data System (ADS)

    2009-10-01

    Today ESO announces the release of a stunning new image of one of our nearest galactic neighbours, Barnard's Galaxy, also known as NGC 6822. The galaxy contains regions of rich star formation and curious nebulae, such as the bubble clearly visible in the upper left of this remarkable vista. Astronomers classify NGC 6822 as an irregular dwarf galaxy because of its odd shape and relatively diminutive size by galactic standards. The strange shapes of these cosmic misfits help researchers understand how galaxies interact, evolve and occasionally "cannibalise" each other, leaving behind radiant, star-filled scraps. In the new ESO image, Barnard's Galaxy glows beneath a sea of foreground stars in the direction of the constellation of Sagittarius (the Archer). At the relatively close distance of about 1.6 million light-years, Barnard's Galaxy is a member of the Local Group, the archipelago of galaxies that includes our home, the Milky Way. The nickname of NGC 6822 comes from its discoverer, the American astronomer Edward Emerson Barnard, who first spied this visually elusive cosmic islet using a 125-millimetre aperture refractor in 1884. Astronomers obtained this latest portrait using the Wide Field Imager (WFI) attached to the 2.2-metre MPG/ESO telescope at ESO's La Silla Observatory in northern Chile. Even though Barnard's Galaxy lacks the majestic spiral arms and glowing, central bulge that grace its big galactic neighbours, the Milky Way, the Andromeda and the Triangulum galaxies, this dwarf galaxy has no shortage of stellar splendour and pyrotechnics. Reddish nebulae in this image reveal regions of active star formation, where young, hot stars heat up nearby gas clouds. Also prominent in the upper left of this new image is a striking bubble-shaped nebula. At the nebula's centre, a clutch of massive, scorching stars send waves of matter smashing into the surrounding interstellar material, generating a glowing structure that appears ring-like from our perspective

  9. Astronomer's new guide to the galaxy: largest map of cold dust revealed

    NASA Astrophysics Data System (ADS)

    2009-07-01

    visible from the APEX site on Chajnantor, as well as combining it with infrared observations to be made by the ESA Herschel Space Observatory. We look forward to new discoveries made with these maps, which will also serve as a guide for future observations with ALMA", said Leonardo Testi from ESO, who is a member of the ATLASGAL team and the European Project Scientist for the ALMA project. Note [1] The map was constructed from individual APEX observations in radiation at 870 µm (0.87 mm) wavelength. More information: The ATLASGAL observations are presented in a paper by Frederic Schuller et al., ATLASGAL -- The APEX Telescope Large Area Survey of the Galaxy at 870 µm, published in Astronomy & Astrophysics. ATLASGAL is a collaboration between the Max Planck Institute for Radio Astronomy, the Max Planck Institute for Astronomy, ESO, and the University of Chile. LABOCA (Large APEX Bolometer Camera), one of APEX's major instruments, is the world's largest bolometer camera (a "thermometer camera", or thermal camera that measures and maps the tiny changes in temperature that occur when sub-millimetre wavelength light falls on its absorbing surface; see ESO 35/07). LABOCA's large field of view and high sensitivity make it an invaluable tool for imaging the "cold Universe". LABOCA was built by the Max Planck Institute for Radio Astronomy. The Atacama Pathfinder Experiment (APEX) telescope is a 12-metre telescope, located at 5100 m altitude on the arid plateau of Chajnantor in the Chilean Andes. APEX operates at millimetre and submillimetre wavelengths. This wavelength range is a relatively unexplored frontier in astronomy, requiring advanced detectors and an extremely high and dry observatory site, such as Chajnantor. APEX, the largest submillimetre-wave telescope operating in the southern hemisphere, is a collaboration between the Max Planck Institute for Radio Astronomy, the Onsala Space Observatory and ESO. Operation of APEX at Chajnantor is entrusted to ESO. APEX is a

  10. NY-ESO-1 Protein Cancer Vaccine With Poly-ICLC and OK-432: Rapid and Strong Induction of NY-ESO-1-specific Immune Responses by Poly-ICLC.

    PubMed

    Takeoka, Tomohira; Nagase, Hirotsugu; Kurose, Koji; Ohue, Yoshihiro; Yamasaki, Makoto; Takiguchi, Shuji; Sato, Eiichi; Isobe, Midori; Kanazawa, Takayuki; Matsumoto, Mitsunobu; Iwahori, Kota; Kawashima, Atsunari; Morimoto-Okazawa, Akiko; Nishikawa, Hiroyoshi; Oka, Mikio; Pan, Linda; Venhaus, Ralph; Nakayama, Eiichi; Mori, Masaki; Doki, Yuichiro; Wada, Hisashi

    2017-03-23

    We conducted a clinical trial of a cancer vaccine using NY-ESO-1 protein with polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) and/or OK-432 against solid tumors. A total of 15 patients were sequentially enrolled in 4 cohorts. Patients in cohort 1 received NY-ESO-1 protein; cohort 2a received NY-ESO-1 protein+OK-432; cohort 2b received NY-ESO-1 protein+poly-ICLC; cohort 3 received NY-ESO-1 protein+OK-432+poly-ICLC with Montanide ISA-51. The endpoints of this trial were safety, NY-ESO-1 immune responses, and clinical response. Vaccine-related adverse events observed were fever and injection-site reaction (grade 1). Two patients showed stable disease after vaccination. NY-ESO-1 antibodies were observed in 4 patients at the baseline (sero-positive) and augmented in all patients after vaccination. Eleven patients showed a conversion of negative antibody responses at baseline to positive after vaccination (seroconversion). The seroconversions were observed in all 11 sero-negative patients by the fourth immunization; in particular, it was observed by the second immunization in patients with poly-ICLC, and these induced antibody responses were stronger than those in patients immunized without poly-ICLC. The number of NY-ESO-1-specific interferon (IFN)γ-producing T cells was increased in patients immunized with poly-ICLC and/or OK-432, and furthermore, the increase of IFNγ-producing CD8 T cells in patients immunized with poly-ICLC was significantly higher than that in patients without poly-ICLC. Nonspecific activations of T-cell or antigen presenting cells were not observed. Our present study showed that poly-ICLC is a promising adjuvant for cancer vaccines.

  11. The Software Distribution for Gemini Observatory's Science Operations Group

    NASA Astrophysics Data System (ADS)

    Hoenig, M. D.; Clarke, M.; Pohlen, M.; Hirst, P.

    2014-05-01

    Gemini Observatory consists of two telescopes in different hemispheres. It also operates mostly on a queue observing model, meaning observations are performed by staff working shifts as opposed to PIs. For these two reasons alone, maintaining and distributing a diverse software suite is not a trivial matter. We present a way to make the appropriate tools available to staff at Gemini North and South, whether they are working on the summit or from our base facility offices in Hilo, Hawai'i and La Serena, Chile.

  12. Three novel NY-ESO-1 epitopes bound to DRB1*0803, DQB1*0401 and DRB1*0901 recognized by CD4 T cells from CHP-NY-ESO-1-vaccinated patients.

    PubMed

    Mizote, Yu; Taniguchi, Taku; Tanaka, Kei; Isobe, Midori; Wada, Hisashi; Saika, Takashi; Kita, Shoichi; Koide, Yukari; Uenaka, Akiko; Nakayama, Eiichi

    2010-07-19

    Three novel NY-ESO-1 CD4 T cell epitopes were identified using PBMC obtained from patients who were vaccinated with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein (CHP-NY-ESO-1). The restriction molecules were determined by antibody blocking and using various EBV-B cells with different HLA alleles as APC to present peptides to CD4 T cells. The minimal epitope peptides were determined using various N- and C-termini truncated peptides deduced from 18-mer overlapping peptides originally identified for recognition. Those epitopes were DRB1*0901-restricted NY-ESO-1 87-100, DQB1*0401-restricted NY-ESO-1 95-107 and DRB1*0803-restricted NY-ESO-1 124-134. CD4 T cells used to determine those epitope peptides recognized EBV-B cells or DC that were treated with recombinant NY-ESO-1 protein or NY-ESO-1-expressing tumor cell lysate, suggesting that the epitope peptides are naturally processed. These CD4 T cells showed a cytokine profile with Th1 characteristics. Furthermore, NY-ESO-1 87-100 peptide/HLA-DRB1*0901 tetramer staining was observed. Multiple Th1-type CD4 T cell responses are beneficial for inducing effective anti-tumor responses after NY-ESO-1 protein vaccination. (c) 2010 Elsevier Ltd. All rights reserved.

  13. VLT Unit Telescopes Named at Paranal Inauguration

    NASA Astrophysics Data System (ADS)

    1999-03-01

    This has been a busy, but also a very successful and rewarding week for the European Southern Observatory and its staff. While "First Light" was achieved at the second 8.2-m VLT Unit Telescope (UT2) ahead of schedule, UT1 produced its sharpest image so far. This happened at a moment of exceptional observing conditions in the night between March 4 and 5, 1999. During a 6-min exposure of the majestic spiral galaxy, NGC 2997 , stellar images of only 0.25 arcsec FWHM (full-width half-maximum) were recorded. This and two other frames of nearly the same quality have provided the base for the beautiful colour-composite shown above. At this excellent angular resolution, individual star forming regions are well visible along the spiral arms. Of particular interest is the peculiar, twisted shape of the long spiral arm to the right. The Paranal Inauguration The official inauguration of the Paranal Observatory took place in the afternoon of March 5, 1999, in the presence of His Excellency, the President of the Republic of Chile, Don Eduardo Frei Ruiz-Tagle, and ministers of his cabinet, as well the Ambassadors to Chile of the ESO member states and many other distinguished guests. The President of the ESO Council, Mr. Henrik Grage, and the ESO Director General, Professor Riccardo Giacconi, were the foremost representatives of the ESO organisation; most members of the ESO Council and ESO staff also participated. A substantial number of media representatives from Europe and Chile were present and reported - often live - from Paranal during the afternoon and evening. The guests were shown the impressive installations at the new observatory, including the first and second 8.2-m VLT Unit Telescopes; the latter having achieved "First Light" just four days before. A festive ceremony took place in the dome of UT2, under the large telescope structure that had been tilted towards the horizon to make place for the numerous participants. After an introductory address by the ESO Director

  14. The Paris Observatory has 350 years

    NASA Astrophysics Data System (ADS)

    Lequeux, James

    2017-01-01

    1926, the astrophysical observatory at Meudon was merged with the Paris one. A strong revival of the Observatory and of all French astronomy took place just after WW2 under the impulse of André Danjon. Radioastronomy was developed with the creation of the Nançay station in 1953, and the Observatory became very active in space research after 1963 thanks mainly to Jean-Louis Steinberg. It is presently one of the biggest astronomical institutes worldwide, with a total scientific, technical and administrative staff of 650, and many students and post-doctoral researchers. Essentially all the aspects of astronomy and astrophysics are covered, including laboratory work, especially on very accurate clocks. However, essentially all the observations are done elsewhere, particularly in international facilities such as IRAM, ESO and with many satellites and space probes.

  15. Atmospheric Extinction Coefficients in the Ic Band for Several Major International Observatories: Results from the BiSON Telescopes, 1984-2016

    NASA Astrophysics Data System (ADS)

    Hale, S. J.; Chaplin, W. J.; Davies, G. R.; Elsworth, Y. P.; Howe, R.; Lund, M. N.; Moxon, E. Z.; Thomas, A.; Pallé, P. L.; Rhodes, E. J., Jr.

    2017-09-01

    Over 30 years of solar data have been acquired by the Birmingham Solar Oscillations Network (BiSON), an international network of telescopes used to study oscillations of the Sun. Five of the six BiSON telescopes are located at major observatories. The observational sites are, in order of increasing longitude: Mount Wilson (Hale) Observatory (MWO), California, USA; Las Campanas Observatory, Chile; Observatorio del Teide, Izaña, Tenerife, Canary Islands; the South African Astronomical Observatory, Sutherland, South Africa; Carnarvon, Western Australia; and the Paul Wild Observatory, Narrabri, New South Wales, Australia. The BiSON data may be used to measure atmospheric extinction coefficients in the {{{I}}}{{c}} band (approximately 700-900 nm), and presented here are the derived atmospheric extinction coefficients from each site over the years 1984-2016.

  16. The Gaia-ESO Survey. Mg-Al anti-correlation in iDR4 globular clusters

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Romano, D.; Tang, B.; Tautvaišienė, G.; Casey, A. R.; Gruyters, P.; Geisler, D.; San Roman, I.; Randich, S.; Alfaro, E. J.; Bragaglia, A.; Flaccomio, E.; Korn, A. J.; Recio-Blanco, A.; Smiljanic, R.; Carraro, G.; Bayo, A.; Costado, M. T.; Damiani, F.; Jofré, P.; Lardo, C.; de Laverny, P.; Monaco, L.; Morbidelli, L.; Sbordone, L.; Sousa, S. G.; Villanova, S.

    2017-05-01

    We use Gaia-ESO (GES) Survey iDR4 data to explore the Mg-Al anti-correlation in globular clusters that were observed as calibrators, as a demonstration of the quality of Gaia-ESO Survey data and analysis. The results compare well with the available literature, within 0.1 dex or less, after a small (compared to the internal spreads) offset between the UVES and GIRAFFE data of 0.10-0.15 dex was taken into account. In particular, for the first time we present data for NGC 5927, which is one of the most metal-rich globular clusters studied in the literature so far with [ Fe / H ] = - 0.39 ± 0.04 dex; this cluster was included to connect with the open cluster regime in the Gaia-ESO Survey internal calibration. The extent and shape of the Mg-Al anti-correlation provide strong constraints on the multiple population phenomenon in globular clusters. In particular, we studied the dependency of the Mg-Al anti-correlation extension with metallicity, present-day mass,and age of the clusters, using GES data in combination with a large set of homogenized literature measurements.We find a dependency with both metallicity and mass, which is evident when fitting for the two parameters simultaneously, but we do not find significant dependency with age. We confirm that the Mg-Al anti-correlation is not seen in all clusters, but disappears for the less massive or most metal-rich clusters. We also use our data set to see whether a normal anti-correlation would explain the low [Mg/α] observed in some extragalactic globular clusters, but find that none of the clusters in our sample can reproduce it; a more extreme chemical composition, such as that of NGC 2419, would be required. We conclude that GES iDR4 data already meet the requirements set by the main survey goals and can be used to study globular clusters in detail, even if the analysis procedures were not specifically designed for them. Based on data products from observations made with ESO Telescopes at the La Silla Paranal

  17. Precision engineering for astronomy: historical origins and the future revolution in ground-based astronomy.

    PubMed

    Cunningham, Colin; Russell, Adrian

    2012-08-28

    Since the dawn of civilization, the human race has pushed technology to the limit to study the heavens in ever-increasing detail. As astronomical instruments have evolved from those built by Tycho Brahe in the sixteenth century, through Galileo and Newton in the seventeenth, to the present day, astronomers have made ever more precise measurements. To do this, they have pushed the art and science of precision engineering to extremes. Some of the critical steps are described in the evolution of precision engineering from the first telescopes to the modern generation telescopes and ultra-sensitive instruments that need a combination of precision manufacturing, metrology and accurate positioning systems. In the future, precision-engineered technologies such as those emerging from the photonics industries may enable future progress in enhancing the capabilities of instruments, while potentially reducing the size and cost. In the modern era, there has been a revolution in astronomy leading to ever-increasing light-gathering capability. Today, the European Southern Observatory (ESO) is at the forefront of this revolution, building observatories on the ground that are set to transform our view of the universe. At an elevation of 5000 m in the Atacama Desert of northern Chile, the Atacama Large Millimetre/submillimetre Array (ALMA) is nearing completion. The ALMA is the most powerful radio observatory ever and is being built by a global partnership from Europe, North America and East Asia. In the optical/infrared part of the spectrum, the latest project for ESO is even more ambitious: the European Extremely Large Telescope, a giant 40 m class telescope that will also be located in Chile and which will give the most detailed view of the universe so far.

  18. Astronomy in Chile Education Ambassadors Program' Gives On-site Experience to Build Knowledge and Enhance Impact: Success of Inaugural Class and Plans for the Future

    NASA Astrophysics Data System (ADS)

    Blue, Charles E.; Spuck, Timothy; ACEAP 2015 Team

    2016-01-01

    A collation of leading U.S. astronomy organizations and observatories selected its first class of educators who traveled to Chile in June/July 2015 as part of the Astronomy in Chile Educator Ambassadors Program (ACEAP). Chosen from a pool of more than 50 applicants, this inaugural group of nine amateur astronomers, planetarium personnel, and astronomy educators toured the major U.S.-funded astronomy facilities in Chile. While there, each ACEAP Ambassador received an in-depth, behind-the-scenes learning experience on the instruments, science, and research coming out of some of the world's most productive and advanced astronomy observatories. In addition, participants learned essential communication skills to help share these exciting experiences with others. Participants also experienced Chilean culture and society, as well as the astrotourism industry that has emerged in Chile.The ultimate goal of this program is to have each ambassador share their experiences as broadly as possible with students and the public across the United States.A first report of the program's inaugural year will be presented as well as the long-term impacts that have already emerged and are in development.

  19. Light, Wind and Fire - Beautiful Image of a Cosmic Sculpture

    NASA Astrophysics Data System (ADS)

    2010-02-01

    000 light-years away from Earth and in close proximity to our home, the much larger Milky Way Galaxy. Like its sister the Large Magellanic Cloud, the Small Magellanic Cloud is visible with the unaided eye from the southern hemisphere and has served as an extragalactic laboratory for astronomers studying the dynamics of star formation. This particular image was obtained using the Wide Field Imager (WFI) instrument at the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. Images like this help astronomers chronicle star birth and evolution, while offering glimpses of how stellar development influences the appearance of the cosmic environment over time. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory, and VISTA the largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  20. A phase I study of vaccination with NY-ESO-1f peptide mixed with Picibanil OK-432 and Montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen.

    PubMed

    Kakimi, Kazuhiro; Isobe, Midori; Uenaka, Akiko; Wada, Hisashi; Sato, Eiichi; Doki, Yuichiro; Nakajima, Jun; Seto, Yasuyuki; Yamatsuji, Tomoki; Naomoto, Yoshio; Shiraishi, Kenshiro; Takigawa, Nagio; Kiura, Katsuyuki; Tsuji, Kazuhide; Iwatsuki, Keiji; Oka, Mikio; Pan, Linda; Hoffman, Eric W; Old, Lloyd J; Nakayama, Eiichi

    2011-12-15

    We conducted a phase I clinical trial of a cancer vaccine using a 20-mer NY-ESO-1f peptide (NY-ESO-1 91-110) that includes multiple epitopes recognized by antibodies, and CD4 and CD8 T cells. Ten patients were immunized with 600 μg of NY-ESO-1f peptide mixed with 0.2 KE Picibanil OK-432 and 1.25 ml Montanide ISA-51. Primary end points of the study were safety and immune response. Subcutaneous injection of the NY-ESO-1f peptide vaccine was well tolerated. Vaccine-related adverse events observed were fever (Grade 1), injection-site reaction (Grade 1 or 2) and induration (Grade 2). Vaccination with the NY-ESO-1f peptide resulted in an increase or induction of NY-ESO-1 antibody responses in nine of ten patients. The sera reacted with recombinant NY-ESO-1 whole protein as well as the NY-ESO-1f peptide. An increase in CD4 and CD8 T cell responses was observed in nine of ten patients. Vaccine-induced CD4 and CD8 T cells responded to NY-ESO-1 91-108 in all patients with various HLA types with a less frequent response to neighboring peptides. The findings indicate that the 20-mer NY-ESO-1f peptide includes multiple epitopes recognized by CD4 and CD8 T cells with distinct specificity. Of ten patients, two with lung cancer and one with esophageal cancer showed stable disease. Our study shows that the NY-ESO-1f peptide vaccine was well tolerated and elicited humoral, CD4 and CD8 T cell responses in immunized patients. Copyright © 2011 UICC.

  1. The AMBRE Project: Stellar parameterisation of the ESO:FEROS archived spectra

    NASA Astrophysics Data System (ADS)

    Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.; Ordenovic, C.

    2012-06-01

    Context. The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA) that has been established in order to carry out the determination of stellar atmospheric parameters for the archived spectra of four ESO spectrographs. Aims: The analysis of the FEROS archived spectra for their stellar parameters (effective temperatures, surface gravities, global metallicities, alpha element to iron ratios and radial velocities) has been completed in the first phase of the AMBRE Project. From the complete ESO:FEROS archive dataset that was received, a total of 21 551 scientific spectra have been identified, covering the period 2005 to 2010. These spectra correspond to 6285 stars. Methods: The determination of the stellar parameters was carried out using the stellar parameterisation algorithm, MATISSE (MATrix Inversion for Spectral SynthEsis), which has been developed at OCA to be used in the analysis of large scale spectroscopic studies in galactic archaeology. An analysis pipeline has been constructed that integrates spectral normalisation, cleaning and radial velocity correction procedures in order that the FEROS spectra could be analysed automatically with MATISSE to obtain the stellar parameters. The synthetic grid against which the MATISSE analysis is carried out is currently constrained to parameters of FGKM stars only. Results: Stellar atmospheric parameters, effective temperature, surface gravity, metallicity and alpha element abundances, were determined for 6508 (30.2%) of the FEROS archived spectra (~3087 stars). Radial velocities were determined for 11 963 (56%) of the archived spectra. 2370 (11%) spectra could not be analysed within the pipeline due to very low signal-to-noise ratios or missing spectral orders. 12 673 spectra (58.8%) were analysed in the pipeline but their parameters were discarded based on quality criteria and error analysis determined within the automated process. The majority of

  2. The Gaia-ESO Survey: Probes of the inner disk abundance gradient

    NASA Astrophysics Data System (ADS)

    Jacobson, H. R.; Friel, E. D.; Jílková, L.; Magrini, L.; Bragaglia, A.; Vallenari, A.; Tosi, M.; Randich, S.; Donati, P.; Cantat-Gaudin, T.; Sordo, R.; Smiljanic, R.; Overbeek, J. C.; Carraro, G.; Tautvaišienė, G.; San Roman, I.; Villanova, S.; Geisler, D.; Muñoz, C.; Jiménez-Esteban, F.; Tang, B.; Gilmore, G.; Alfaro, E. J.; Bensby, T.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Pancino, E.; Recio-Blanco, A.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-06-01

    Context. The nature of the metallicity gradient inside the solar circle (RGC < 8 kpc) is poorly understood, but studies of Cepheids and a small sample of open clusters suggest that it steepens in the inner disk. Aims: We investigate the metallicity gradient of the inner disk using a sample of inner disk open clusters that is three times larger than has previously been studied in the literature to better characterize the gradient in this part of the disk. Methods: We used the Gaia-ESO Survey (GES) [Fe/H] values and stellar parameters for stars in 12 open clusters in the inner disk from GES-UVES data. Cluster mean [Fe/H] values were determined based on a membership analysis for each cluster. Where necessary, distances and ages to clusters were determined via comparison to theoretical isochrones. Results: The GES open clusters exhibit a radial metallicity gradient of -0.10 ± 0.02 dex kpc-1, consistent with the gradient measured by other literature studies of field red giant stars and open clusters in the range RGC ~ 6-12 kpc. We also measure a trend of increasing [Fe/H] with increasing cluster age, as has also been found in the literature. Conclusions: We find no evidence for a steepening of the inner disk metallicity gradient inside the solar circle as earlier studies indicated. The age-metallicity relation shown by the clusters is consistent with that predicted by chemical evolution models that include the effects of radial migration, but a more detailed comparison between cluster observations and models would be premature. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 188.B-3002 and 193.B-0936. These data products have been processed by the Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive

  3. New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools (Corrigendum). I. UKIDSS LAS DR5 vs. SDSS DR7

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; Espinoza Contreras, M.; Zapatero Osorio, M. R.; Solano, E.; Aberasturi, M.; Martín, E. L.

    2017-01-01

    Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 084.C-0928A.Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  4. A Virtual Field Trip to the Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Fisher, R. Scott; Michaud, P. D.

    2010-01-01

    Live from Gemini (LfG) is a virtual field trip using video conferencing technology to connect primary, secondary and post-secondary students with scientists and educators at the Gemini Observatory. As a pilot project, LfG is rapidly becoming one of the observatory's most often-requested educational programs for learners of all ages. The program aligns exceptionally well with national science (and technology) standards, as well as existing school curricula. This combination makes it easy for teachers to justify participation in the program, especially as the necessary video conferencing technology becomes ever more ubiquitous in classrooms and technology learning centers around the world. In developing and testing this pilot project, a programmatic approach and philosophy evolved that includes post-field-trip educational materials, multi-disciplinary subject matter (astronomy, geology, mathematics, meteorology, engineering and even language - the program is offered in Spanish from Gemini South in Chile), and the establishment of a personal connection and rapport with students. The presenters work to create a comfortable interaction despite the perceived technological barriers. The authors’ experiences with the LfG pilot project convince us that this model is viable for almost any astronomical observatory and should be considered by any dynamic, technology- and education-oriented facility.

  5. The Great Observatories Origins Deep Survey

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark

    2008-05-01

    Observing the formation and evolution of ordinary galaxies at early cosmic times requires data at many wavelengths in order to recognize, separate and analyze the many physical processes which shape galaxies' history, including the growth of large scale structure, gravitational interactions, star formation, and active nuclei. Extremely deep data, covering an adequately large volume, are needed to detect ordinary galaxies in sufficient numbers at such great distances. The Great Observatories Origins Deep Survey (GOODS) was designed for this purpose as an anthology of deep field observing programs that span the electromagnetic spectrum. GOODS targets two fields, one in each hemisphere. Some of the deepest and most extensive imaging and spectroscopic surveys have been carried out in the GOODS fields, using nearly every major space- and ground-based observatory. Many of these data have been taken as part of large, public surveys (including several Hubble Treasury, Spitzer Legacy, and ESO Large Programs), which have produced large data sets that are widely used by the astronomical community. I will review the history of the GOODS program, highlighting results on the formation and early growth of galaxies and their active nuclei. I will also describe new and upcoming observations, such as the GOODS Herschel Key Program, which will continue to fill out our portrait of galaxies in the young universe.

  6. Health, Safety and Performance in High Altitude Observatories: A Sustainable Approach

    NASA Astrophysics Data System (ADS)

    Böcker, Michael; Vogt, Joachim; Christ, Oliver; Müller-Leonhardt, Alice

    2009-09-01

    The research project “Optimising Performance, Health and Safety in High Altitude Observatories” was initiated by ESO to establish an approach to promote the well-being of staff working at its high altitude observatories, and in particular at the Antiplano de Chajnantor. A survey by a questionnaire given to both workers and visitors was employed to assess the effects of working conditions at high altitude. Earlier articles have outlined the project and reported early results. The final results and conclusions are presented, together with a concept for sustainable development to improve the performance, health and safety at high altitude employing Critical Incident Stress Management.

  7. Reflected Glory

    NASA Astrophysics Data System (ADS)

    2011-02-01

    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and

  8. Zooming to the centre of the Milky Way - GigaGalaxy Zoom phase 2

    NASA Astrophysics Data System (ADS)

    2009-09-01

    ," says Guisard. This gorgeous starscape is the second of three extremely high resolution images featured in the GigaGalaxy Zoom project, launched by ESO as part of the International Year of Astronomy 2009 (IYA2009). The project allows stargazers to explore and experience the Universe as it is seen with the unaided eye from the darkest and best viewing locations in the world. GigaGalaxy Zoom features a web tool that allows users to take a breathtaking dive into our Milky Way. With this tool users can learn more about many different and exciting objects in the image, such as multicoloured nebulae and exploding stars, just by clicking on them. In this way, the project seeks to link the sky we can all see with the deep, "hidden" cosmos that astronomers study on a daily basis. The wonderful quality of the images is a testament to the splendour of the night sky at ESO's sites in Chile, which are the most productive astronomical observatories in the world. The third GigaGalaxy Zoom image will be revealed next week, on 28 September 2009. Notes [1] The image was obtained from Cerro Paranal, home of ESO's Very Large Telescope, by observing with a 10-cm Takahashi FSQ106Ed f/3.6 telescope and a SBIG STL CCD camera, using a NJP160 mount. The images were collected through three different filters (B, V and R) and then stitched together. This mosaic was assembled from 52 different sky fields made from about 1200 individual images totalling 200 hours exposure time, with the final image having a size of 24 403 x 13 973 pixels. More information As part of the IYA2009, ESO is participating in several remarkable outreach activities, in line with its world-leading rank in the field of astronomy. ESO is hosting the IYA2009 Secretariat for the International Astronomical Union, which coordinates the Year globally. ESO is one of the Organisational Associates of IYA2009, and was also closely involved in the resolution submitted to the United Nations (UN) by Italy, which led to the UN's 62nd

  9. A Long Expected Party — The First Stone Ceremony for the Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    de Zeeuw, T.; Comerón, F.; Tamai, R.

    2017-06-01

    The ceremony to seal the time capsule, signalling the beginning of construction of the dome and main telescope structure for the Extremely Large Telescope, took place at the Paranal Observatory on 26 May 2017, in the presence of the President of Chile, Michelle Bachelet and many international guests. Owing to high winds, the ceremony could not take place as planned on the levelled site on Cerro Armazones, but instead was held at the Paranal Residencia. A brief report of the event and its organisation is presented, and the welcome speech by the ESO Director General is included.

  10. Blasting away a dwarf galaxy: the `tail' of ESO 324-G024

    NASA Astrophysics Data System (ADS)

    Johnson, Megan C.; Kamphuis, Peter; Koribalski, Bärbel S.; Wang, Jing; Oh, Se-Heon; Hill, Alex S.; O'Sullivan, Shane; Haan, Sebastian; Serra, Paolo

    2015-08-01

    We present Australia Telescope Compact Array radio data of the dwarf irregular galaxy ESO 324-G024 which is seen in projection against the giant, northern lobe of the radio galaxy Centaurus A (Cen A, NGC 5128). The distorted morphology and kinematics of ESO 324-G024, as observed in the 21 cm spectral line emission of neutral hydrogen, indicate disruptions by external forces. We investigate whether tidal interactions and/or ram pressure stripping are responsible for the formation of the H I tail stretching to the north-east of ESO 324-G024 with the latter being most probable. Furthermore, we closely analyse the sub-structure of Cen A's polarized radio lobes to ascertain whether ESO 324-G024 is located in front, within or behind the northern lobe. Our multiwavelength, multicomponent approach allows us to determine that ESO 324-G024 is most likely behind the northern radio lobe of Cen A. This result helps to constrain the orientation of the lobe, which is likely inclined to our line of sight by approximately 60° if NGC 5128 and ESO 324-G024 are at the same distance.

  11. A Disturbed Galactic Duo

    NASA Astrophysics Data System (ADS)

    2011-04-01

    The galaxies in this cosmic pairing, captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, display some curious features, demonstrating that each member of the duo is close enough to feel the distorting gravitational influence of the other. The gravitational tug of war has warped the spiral shape of one galaxy, NGC 3169, and fragmented the dust lanes in its companion NGC 3166. Meanwhile, a third, smaller galaxy to the lower right, NGC 3165, has a front-row seat to the gravitational twisting and pulling of its bigger neighbours. This galactic grouping, found about 70 million light-years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure. Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169's arms, shining bright with big, young, blue stars, have been teased apart, and lots of luminous gas has been drawn out from its disc. In NGC 3166's case, the dust lanes that also usually outline spiral arms are in disarray. Unlike its bluer counterpart, NGC 3166 is not forming many new stars. NGC 3169 has another distinction: the faint yellow dot beaming through a veil of dark dust just to the left of and close to the galaxy's centre [1]. This flash is the leftover of a supernova detected in 2003 and known accordingly as SN 2003cg. A supernova of this

  12. Double Engine for a Nebula

    NASA Astrophysics Data System (ADS)

    2009-08-01

    ESO has just released a stunning new image of a field of stars towards the constellation of Carina (the Keel). This striking view is ablaze with a flurry of stars of all colours and brightnesses, some of which are seen against a backdrop of clouds of dust and gas. One unusual star in the middle, HD 87643, has been extensively studied with several ESO telescopes, including the Very Large Telescope Interferometer (VLTI). Surrounded by a complex, extended nebula that is the result of previous violent ejections, the star has been shown to have a companion. Interactions in this double system, surrounded by a dusty disc, may be the engine fuelling the star's remarkable nebula. The new image, showing a very rich field of stars towards the Carina arm of the Milky Way, is centred on the star HD 87643, a member of the exotic class of B[e] stars [1]. It is part of a set of observations that provide astronomers with the best ever picture of a B[e] star. The image was obtained with the Wide Field Imager (WFI) attached to the MPG/ESO 2.2-metre telescope at the 2400-metre-high La Silla Observatory in Chile. The image shows beautifully the extended nebula of gas and dust that reflects the light from the star. The central star's wind appears to have shaped the nebula, leaving bright, ragged tendrils of gas and dust. A careful investigation of these features seems to indicate that there are regular ejections of matter from the star every 15 to 50 years. A team of astronomers, led by Florentin Millour, has studied the star HD 87643 in great detail, using several of ESO's telescopes. Apart from the WFI, the team also used ESO's Very Large Telescope (VLT) at Paranal. At the VLT, the astronomers used the NACO adaptive optics instrument, allowing them to obtain an image of the star free from the blurring effect of the atmosphere. To probe the object further, the team then obtained an image with the Very Large Telescope Interferometer (VLTI). The sheer range of this set of observations

  13. Observing multiple populations in globular clusters with the ESO archive: NGC 6388 reloaded

    NASA Astrophysics Data System (ADS)

    Carretta, Eugenio; Bragaglia, Angela

    2018-06-01

    The metal-rich and old bulge globular cluster (GC) NGC 6388 is one of the most massive Galactic GCs (M 106 M⊙). However, the spectroscopic properties of its multiple stellar populations rested only on 32 red giants (only 7 of which observed with UVES, the others with GIRAFFE), given the difficulties in observing a rather distant cluster, heavily contaminated by bulge and disc field stars. We bypassed the problem using the resources of the largest telescope facility ever: the European Southern Observatory (ESO) archive. By selecting member stars identified by other programmes, we derive atmospheric parameters and the full set of abundances for 15 species from high-resolution UVES spectra of another 17 red giant branch stars in NGC 6388. We confirm that no metallicity dispersion is detectable in this GC. About 30% of the stars show the primordial composition of first-generation stars, about 20% present an extremely modified second-generation composition, and 50% have an intermediate composition. The stars are clearly distributed in the Al-O and Na-O planes in three discrete groups. We find substantial hints that more than a single class of polluters is required to reproduce the composition of the intermediate component in NGC 6388. In the heavily polluted component the sum Mg+Al increases as Al increases. The sum Mg+Al+Si is constant, and is the fossil record of hot H-burning at temperatures higher than about 70 MK in the first-generation polluters that contributed to form multiple populations in this cluster. Based on observations collected at ESO telescopes under programmes 073.D-0211 (propr ietary), and 073.D-0760, 381.D-0329, 095.D-0834 (archival).

  14. VizieR Online Data Catalog: Radial velocity follow-up of the HD 3167 system (Gandolfi+, 2017)

    NASA Astrophysics Data System (ADS)

    Gandolfi, D.; Barragan, O.; Hatzes, A. P.; Fridlund, M.; Fossati, L.; Donati, P.; Johnson, M. C.; Nowak, G.; Prieto-Arranz, J.; Albrecht, S.; Dai, F.; Deeg, H.; Endl, M.; Grziwa, S.; Hjorth, M.; Korth, J.; Nespral, D.; Saario, J.; Smith, A. M. S.; Antoniciello, G.; Alarcon, J.; Bedell, M.; Blay, P.; Brems, S. S.; Cabrera, J.; Csizmadia, S.; Cusano, F.; Cochran, W. D.; Eigmuller, P.; Erikson, A.; Gonzalez Hernandez, J. I.; Guenther, E. W.; Hirano, T.; Suarez Mascareno, A.; Narita, N.; Palle, E.; Parviainen, H.; Patzold, M.; Persson, C. M.; Rauer, H.; Saviane, I.; Schmidtobreick, L.; van Eylen, V.; Winn, J. N.; Zakhozhay, O. V.

    2018-06-01

    We used the FIbre-fed Echelle Spectrograph (FIES; Frandsen & Lindberg 1999anot.conf...71F; Telting et al. 2014AN....335...41T) mounted at the 2.56 m Nordic Optical Telescope (NOT) of Roque de los Muchachos Observatory (La Palma, Spain) to acquire 37 high-resolution spectra (R~67000) in 12 different nights between July and September 2016. We also acquired 50 spectra with the HARPS spectrograph (R~115000; Mayor et al. 2003Msngr.114...20M) and 32 spectra with the HARPS-N spectrograph (R~115000; Cosentino et al. 2012SPIE.8446E..1VC). HARPS and HARPS-N are fiber-fed cross-dispersed echelle spectrographs specifically designed to achieve very high-precision long-term RV stabilities (<1 m/s). They are mounted at the ESO-3.6 m telescope of La Silla observatory (Chile) and at the 3.58 m Telescopio Nazionale Galileo (TNG) of Roque de los Muchachos Observatory (La Palma, Spain). (1 data file).

  15. Riccardo Giacconi to Receive National Medal of Science

    NASA Astrophysics Data System (ADS)

    2005-02-01

    astronomy programs. He was the Principal Investigator for the Einstein Observatory, the first imaging X-ray observatory, and led the team that proposed the current Chandra X-ray Observatory. He became the first director of the Space Telescope Science Institute, responsible for conducting the science program of the Hubble Space Telescope. He later moved to Germany to become Director-General of the European Southern Observatory (ESO), building the Very Large Telescope, an array of four 8-meter telescopes in Chile. While Director-General of ESO, Giacconi initiated a new cooperative program between the United States, ESO, and Canada to develop and build a large array of antennas for radio astronomy, the Atacama Large Millimeter Array (ALMA), in northern Chile. Giacconi was President of AUI from 1999 to 2004, managing the world-class National Radio Astronomy Observatory (NRAO), an astronomical research facility of the National Science Foundation. During his tenure, Giacconi's scientific vision dramatically advanced the observatory's capabilities. NRAO began the construction of ALMA in Chile and also the Expansion of the Very Large Array (EVLA) in New Mexico, opening new scientific frontiers across the entire radio spectrum. "I am delighted that Riccardo Giacconi has received this recognition," said NRAO Director Fred K.Y. Lo. "The value and impact of the multi-wavelength astronomy which he enabled has been nothing short of revolutionary. This honor recognizes Giacconi's contributions to astronomy and the broader scientific community." Dr. Giacconi is currently a University Professor at Johns Hopkins University in Baltimore, and remains a Distinguished Advisor to the Trustees of Associated Universities, Inc.

  16. Lightest exoplanet yet discovered

    NASA Astrophysics Data System (ADS)

    2009-04-01

    Well-known exoplanet researcher Michel Mayor today announced the discovery of the lightest exoplanet found so far. The planet, "e", in the famous system Gliese 581, is only about twice the mass of our Earth. The team also refined the orbit of the planet Gliese 581 d, first discovered in 2007, placing it well within the habitable zone, where liquid water oceans could exist. These amazing discoveries are the outcome of more than four years of observations using the most successful low-mass-exoplanet hunter in the world, the HARPS spectrograph attached to the 3.6-metre ESO telescope at La Silla, Chile. ESO PR Photo 15a/09 Artist's impression of Gliese 581 e ESO PR Photo 15b/09 A planet in the habitable zone ESO PR Video 15a/09 ESOcast 6 ESO PR Video 15b/09 VNR A-roll ESO PR Video 15c/09 Zoom-in on Gliese 581 e ESO PR Video 15d/09 Artist's impression of Gliese 581 e ESO PR Video 15e/09 Artist's impression of Gliese 581 d ESO PR Video 15f/09 Artist's impression of Gliese 581 system ESO PR Video 15g/09 The radial velocity method ESO PR Video 15h/09 Statement in English ESO PR Video 15i/09 Statement in French ESO PR Video 15j/09 La Silla Observatory "The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone' -- a region around the host star with the right conditions for water to be liquid on a planet's surface", says Michel Mayor from the Geneva Observatory, who led the European team to this stunning breakthrough. Planet Gliese 581 e orbits its host star - located only 20.5 light-years away in the constellation Libra ("the Scales") -- in just 3.15 days. "With only 1.9 Earth-masses, it is the least massive exoplanet ever detected and is, very likely, a rocky planet", says co-author Xavier Bonfils from Grenoble Observatory. Being so close to its host star, the planet is not in the habitable zone. But another planet in this system appears to be. From previous observations -- also obtained with the HARPS spectrograph

  17. The Remote Observatories of the Southeastern Association for Research in Astronomy (SARA)

    NASA Astrophysics Data System (ADS)

    Keel, William C.; Oswalt, Terry; Mack, Peter; Henson, Gary; Hillwig, Todd; Batcheldor, Daniel; Berrington, Robert; De Pree, Chris; Hartmann, Dieter; Leake, Martha; Licandro, Javier; Murphy, Brian; Webb, James; Wood, Matt A.

    2017-01-01

    We describe the remote facilities operated by the Southeastern Association for Research in Astronomy (SARA) , a consortium of colleges and universities in the US partnered with Lowell Observatory, the Chilean National Telescope Allocation Committee, and the Instituto de Astrofísica de Canarias. SARA observatories comprise a 0.96 m telescope at Kitt Peak, Arizona; one of 0.6 m aperture on Cerro Tololo, Chile; and the 1 m Jacobus Kapteyn Telescope at the Roque de los Muchachos, La Palma, Spain. All are operated using standard VNC or Radmin protocols communicating with on-site PCs. Remote operation offers considerable flexibility in scheduling, allowing long-term observational cadences difficult to achieve with classical observing at remote facilities, as well as obvious travel savings. Multiple observers at different locations can share a telescope for training, educational use, or collaborative research programs. Each telescope has a CCD system for optical imaging, using thermoelectric cooling to avoid the need for frequent local service, and a second CCD for offset guiding. The Arizona and Chile telescopes also have fiber-fed echelle spectrographs. Switching between imaging and spectroscopy is very rapid, so a night can easily accommodate mixed observing modes. We present some sample observational programs. For the benefit of other groups organizing similar consortia, we describe the operating structure and principles of SARA, as well as some lessons learned from almost 20 years of remote operations.

  18. VizieR Online Data Catalog: VEGAS: A VST Early-type GAlaxy Survey (Capaccioli+, 2015)

    NASA Astrophysics Data System (ADS)

    Capaccioli, M.; Spavone, M.; Grado, A.; Iodice, E.; Limatola, L.; Napolitano, N. R.; Cantiello, M.; Paolillo, M.; Romanowsky, A. J.; Forbes, D. A.; Puzia, T. H.; Raimondo, G.; Schipani, P.

    2015-11-01

    The VST Elliptical GAlaxies Survey (VEGAS) is a deep multiband (g,r,i) imaging survey of early-type galaxies in the southern hemisphere carried out with VST at the ESO Cerro Paranal Observatory (Chile). The large field of view (FOV) of the OmegaCAM mounted on VST (one square degree matched by pixels 0.21-arcsec wide), together with its high efficiency and spatial resolution (typically better than 1-arcsec; Kuijken, 2011Msngr.146....8K) allows us to map with a reasonable integration time the surface brightness of a galaxy out to isophotes encircling about 95% of the total light. Observations started in October 2011 (ESO Period 88), and since then, the survey has acquired exposures for about 20 bright galaxies (and for a wealth of companion objects in the field), for a totality of ~80h (up to Period 93). (1 data file).

  19. News from the ESO Science Archive Facility

    NASA Astrophysics Data System (ADS)

    Dobrzycki, A.; Arnaboldi, M.; Bierwirth, T.; Boelter, M.; Da Rocha, C.; Delmotte, N.; Forchì, V.; Fourniol, N.; klein Gebbinck, M.; Lange, U.; Mascetti, L.; Micol, A.; Moins, C.; Munte, C.; Pluciennik, C.; Retzlaff, J.; Romaniello, M.; Rosse, N.; Sequeiros, I. V.; Vuong, M.-H.; Zampieri, S.

    2015-09-01

    ESO Science Archive Facility (SAF) - one of the world's biggest astronomical archives - combines two roles: operational (ingest, tallying, safekeeping and distribution to observers of raw data taken with ESO telescopes and processed data generated both internally and externally) and scientific (publication and delivery of all flavours of data to external users). This paper presents the “State of the SAF.” SAF, as a living entity, is constantly implementing new services and upgrading the existing ones. We present recent and future developments related to the Archive's Request Handler and metadata handling as well as performance and usage statistics and trends. We also discuss the current and future datasets on offer at SAF.

  20. Operating a petabyte class archive at ESO

    NASA Astrophysics Data System (ADS)

    Suchar, Dieter; Lockhart, John S.; Burrows, Andrew

    2008-07-01

    The challenges of setting up and operating a Petabyte Class Archive will be described in terms of computer systems within a complex Data Centre environment. The computer systems, including the ESO Primary and Secondary Archive and the associated computational environments such as relational databases will be explained. This encompasses the entire system project cycle, including the technical specifications, procurement process, equipment installation and all further operational phases. The ESO Data Centre construction and the complexity of managing the environment will be presented. Many factors had to be considered during the construction phase, such as power consumption, targeted cooling and the accumulated load on the building structure to enable the smooth running of a Petabyte class Archive.

  1. Two Galaxies for a Unique Event

    NASA Astrophysics Data System (ADS)

    2009-04-01

    To celebrate the 100 Hours of Astronomy, ESO is sharing two stunning images of unusual galaxies, both belonging to the Sculptor group of galaxies. The images, obtained at two of ESO's observatories at La Silla and Paranal in Chile, illustrate the beauty of astronomy. ESO PR Photo 14a/09 Irregular Galaxy NGC 55 ESO PR Photo 14b/09 Spiral Galaxy NGC 7793 As part of the International Year of Astronomy 2009 Cornerstone project, 100 Hours of Astronomy, the ambitious "Around the World in 80 Telescopes" event is a unique live webcast over 24 hours, following night and day around the globe to some of the most advanced observatories on and off the planet. To provide a long-lasting memory of this amazing world tour, observatories worldwide are revealing wonderful, and previously unseen, astronomical images. For its part, ESO is releasing outstanding pictures of two galaxies, observed with telescopes at the La Silla and Paranal observatories. The first of these depicts the irregular galaxy NGC 55, a member of the prominent Sculptor group of galaxies in the southern constellation of Sculptor. The galaxy is about 70 000 light-years across, that is, a little bit smaller than our own Milky Way. NGC 55 actually resembles more our galactic neighbour, the Large Magellanic Cloud (LMC), although the LMC is seen face-on, whilst NGC 55 is edge-on. By studying about 20 planetary nebulae in this image, a team of astronomers found that NGC 55 is located about 7.5 million light-years away. They also found that the galaxy might be forming a bound pair with the gorgeous spiral galaxy NGC 300 . Planetary nebulae are the final blooming of Sun-like stars before their retirement as white dwarfs. This striking image of NGC 55, obtained with the Wide Field Imager on the 2.2-metre MPG/ESO telescope at La Silla, is dusted with a flurry of reddish nebulae, created by young, hot massive stars. Some of the more extended ones are not unlike those seen in the LMC, such as the Tarantula Nebula. The quality

  2. User Interface for the ESO Advanced Data Products Image Reduction Pipeline

    NASA Astrophysics Data System (ADS)

    Rité, C.; Delmotte, N.; Retzlaff, J.; Rosati, P.; Slijkhuis, R.; Vandame, B.

    2006-07-01

    The poster presents a friendly user interface for image reduction, totally written in Python and developed by the Advanced Data Products (ADP) group. The interface is a front-end to the ESO/MVM image reduction package, originally developed in the ESO Imaging Survey (EIS) project and used currently to reduce imaging data from several instruments such as WFI, ISAAC, SOFI and FORS1. As part of its scope, the interface produces high-level, VO-compliant, science images from raw data providing the astronomer with a complete monitoring system during the reduction, computing also statistical image properties for data quality assessment. The interface is meant to be used for VO services and it is free but un-maintained software and the intention of the authors is to share code and experience. The poster describes the interface architecture and current capabilities and give a description of the ESO/MVM engine for image reduction. The ESO/MVM engine should be released by the end of this year.

  3. Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS)

    NASA Astrophysics Data System (ADS)

    Botticella, M. T.; Riello, M.; Cappellaro, E.; Benetti, S.; Altavilla, G.; Pastorello, A.; Turatto, M.; Greggio, L.; Patat, F.; Valenti, S.; Zampieri, L.; Harutyunyan, A.; Pignata, G.; Taubenberger, S.

    2008-02-01

    extinction correction both to SF and to CC SN rate and to measure the SN Ia rate in star forming and in passively evolving galaxies over a wide redshift range. Based on observations collected at the European Southern Observatory, using the 2.2 m MPG/ESO telescope on the La Silla (ESO Programmes 62.H-0833, 63.H-0322, 64.H-0390, 67.D-0422, 68.D-0273, 69.D-0453, 72.D-0670, 72.D-0745, 73.D-0670, 74.A-9008, 75.D-0662) and using Very Large Telescope on the Cerro Paranal (ESO Programme 74.D-0714). Table [see full textsee full textsee full text], Figs. [see full textsee full textsee full text]-[see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  4. Trio of Neptunes and their Belt

    NASA Astrophysics Data System (ADS)

    2006-05-01

    Using the ultra-precise HARPS spectrograph on ESO's 3.6-m telescope at La Silla (Chile), a team of European astronomers have discovered that a nearby star is host to three Neptune-mass planets. The innermost planet is most probably rocky, while the outermost is the first known Neptune-mass planet to reside in the habitable zone. This unique system is likely further enriched by an asteroid belt. ESO PR Photo 18a/06 ESO PR Photo 18a/06 Planetary System Around HD 69830 (Artist's Impression) "For the first time, we have discovered a planetary system composed of several Neptune-mass planets", said Christophe Lovis, from the Geneva Observatory and lead-author of the paper presenting the results [1]. During more than two years, the astronomers carefully studied HD 69830, a rather inconspicuous nearby star slightly less massive than the Sun. Located 41 light-years away towards the constellation of Puppis (the Stern), it is, with a visual magnitude of 5.95, just visible with the unaided eye. The astronomers' precise radial-velocity measurements [2] allowed them to discover the presence of three tiny companions orbiting their parent star in 8.67, 31.6 and 197 days. "Only ESO's HARPS instrument installed at the La Silla Observatory, Chile, made it possible to uncover these planets", said Michel Mayor, also from Geneva Observatory, and HARPS Principal Investigator. "Without any doubt, it is presently the world's most precise planet-hunting machine" [3]. ESO PR Photo 18d/06 ESO PR Photo 18d/06 Phase Folded Measurements of HD 69830 The detected velocity variations are between 2 and 3 metres per second, corresponding to about 9 km/h! That's the speed of a person walking briskly. Such tiny signals could not have been distinguished from 'simple noise' by most of today's available spectrographs. The newly found planets have minimum masses between 10 and 18 times the mass of the Earth. Extensive theoretical simulations favour an essentially rocky composition for the inner planet, and

  5. Deformable mirrors development program at ESO

    NASA Astrophysics Data System (ADS)

    Stroebele, Stefan; Vernet, Elise; Brinkmann, Martin; Jakob, Gerd; Lilley, Paul; Casali, Mark; Madec, Pierre-Yves; Kasper, Markus

    2016-07-01

    Over the last decade, adaptive optics has become essential in different fields of research including medicine and industrial applications. With this new need, the market of deformable mirrors has expanded a lot allowing new technologies and actuation principles to be developed. Several E-ELT instruments have identified the need for post focal deformable mirrors but with the increasing size of the telescopes the requirements on the deformable mirrors become more demanding. A simple scaling up of existing technologies from few hundred actuators to thousands of actuators will not be sufficient to satisfy the future needs of ESO. To bridge the gap between available deformable mirrors and the future needs for the E-ELT, ESO started a development program for deformable mirror technologies. The requirements and the path to get the deformable mirrors for post focal adaptive optics systems for the E-ELT is presented.

  6. Strategies for personnel sustainable lifecycle at astronomical observatories and local industry development

    NASA Astrophysics Data System (ADS)

    Bendek, Eduardo A.; Leatherbee, Michael; Smith, Heather; Strappa, Valentina; Zinnecker, Hans; Perez, Mario

    2014-08-01

    Specialized manpower required to efficiently operate world-class observatories requires large investments in time and resources to train personnel in very specific areas of engineering. Isolation and distances to mayor cities pose a challenge to retain motivated and qualified personnel on the mountain. This paper presents strategies that we believe may be effective for retaining this specific know-how in the astronomy field; while at the same time develop a local support industry for observatory operations and astronomical instrumentation development. For this study we choose Chile as a research setting because it will host more than 60% of the world's ground based astronomical infrastructure by the end of the decade, and because the country has an underdeveloped industry for astronomy services. We identify the astronomical infrastructure that exists in the country as well as the major research groups and industrial players. We further identify the needs of observatories that could be outsourced to the local economy. As a result, we suggest spin-off opportunities that can be started by former observatory employees and therefore retaining the knowhow of experienced people that decide to leave on-site jobs. We also identify tools to facilitate this process such as the creation of a centralized repository of local capabilities and observatory needs, as well as exchange programs within astronomical instrumentation groups. We believe that these strategies will contribute to a positive work environment at the observatories, reduce the operation and development costs, and develop a new industry for the host country.

  7. A water vapour monitor at Paranal Observatory

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Rose, Thomas; Chacón, Arlette; Cuevas, Omar; Czekala, Harald; Hanuschik, Reinhard; Momany, Yazan; Navarrete, Julio; Querel, Richard R.; Smette, Alain; van den Ancker, Mario E.; Cure, Michel; Naylor, David A.

    2012-09-01

    We present the performance characteristics of a water vapour monitor that has been permanently deployed at ESO's Paranal observatory as a part of the VISIR upgrade project. After a careful analysis of the requirements and an open call for tender, the Low Humidity and Temperature Profiling microwave radiometer (LHATPRO), manufactured by Radiometer Physics GmbH (RPG), has been selected. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.5 mm). The unit comprises the above humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared radiometer (~10 μm) for cloud detection. The instrument has been commissioned during a 2.5 week period in Oct/Nov 2011, by comparing its measurements of PWV and atmospheric profiles with the ones obtained by 22 radiosonde balloons. In parallel an IR radiometer (Univ. Lethbridge) has been operated, and various observations with ESO facility spectrographs have been taken. The RPG radiometer has been validated across the range 0.5 - 9 mm demonstrating an accuracy of better than 0.1 mm. The saturation limit of the radiometer is about 20 mm. Currently, the radiometer is being integrated into the Paranal infrastructure to serve as a high time-resolution monitor in support of VLT science operations. The water vapour radiometer's ability to provide high precision, high time resolution information on this important aspect of the atmosphere will be most useful for conducting IR observations with the VLT under optimal conditions.

  8. An Elegant Galaxy in an Unusual Light

    NASA Astrophysics Data System (ADS)

    2010-09-01

    A new image taken with the powerful HAWK-I camera on ESO's Very Large Telescope at Paranal Observatory in Chile shows the beautiful barred spiral galaxy NGC 1365 in infrared light. NGC 1365 is a member of the Fornax cluster of galaxies, and lies about 60 million light-years from Earth. NGC 1365 is one of the best known and most studied barred spiral galaxies and is sometimes nicknamed the Great Barred Spiral Galaxy because of its strikingly perfect form, with the straight bar and two very prominent outer spiral arms. Closer to the centre there is also a second spiral structure and the whole galaxy is laced with delicate dust lanes. This galaxy is an excellent laboratory for astronomers to study how spiral galaxies form and evolve. The new infrared images from HAWK-I are less affected by the dust that obscures parts of the galaxy than images in visible light (potw1037a) and they reveal very clearly the glow from vast numbers of stars in both the bar and the spiral arms. These data were acquired to help astronomers understand the complex flow of material within the galaxy and how it affects the reservoirs of gas from which new stars can form. The huge bar disturbs the shape of the gravitational field of the galaxy and this leads to regions where gas is compressed and star formation is triggered. Many huge young star clusters trace out the main spiral arms and each contains hundreds or thousands of bright young stars that are less than ten million years old. The galaxy is too remote for single stars to be seen in this image and most of the tiny clumps visible in the picture are really star clusters. Over the whole galaxy, stars are forming at a rate of about three times the mass of our Sun per year. While the bar of the galaxy consists mainly of older stars long past their prime, many new stars are born in stellar nurseries of gas and dust in the inner spiral close to the nucleus. The bar also funnels gas and dust gravitationally into the very centre of the galaxy

  9. The ESO astronomical site monitor upgrade

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Sommer, Heiko; Sarazin, Marc; Bierwirth, Thomas; Dorigo, Dario; Vera Sequeiros, Ignacio; Navarrete, Julio; Del Valle, Diego

    2016-08-01

    Monitoring and prediction of astronomical observing conditions are essential for planning and optimizing observations. For this purpose, ESO, in the 90s, developed the concept of an Astronomical Site Monitor (ASM), as a facility fully integrated in the operations of the VLT observatory[1]. Identical systems were installed at Paranal and La Silla, providing comprehensive local weather information. By now, we had very good reasons for a major upgrade: • The need of introducing new features to satisfy the requirements of observing with the Adaptive Optics Facility and to benefit other Adaptive Optics systems. • Managing hardware and software obsolescence. • Making the system more maintainable and expandable by integrating off-the-shelf hardware solutions. The new ASM integrates: • A new Differential Image Motion Monitor (DIMM) paired with a Multi Aperture Scintillation Sensor (MASS) to measure the vertical distribution of turbulence in the high atmosphere and its characteristic velocity. • A new SLOpe Detection And Ranging (SLODAR) telescope, for measuring the altitude and intensity of turbulent layers in the low atmosphere. • A water vapour radiometer to monitor the water vapour content of the atmosphere. • The old weather tower, which is being refurbished with new sensors. The telescopes and the devices integrated are commercial products and we have used as much as possible the control system from the vendors. The existing external interfaces, based on the VLT standards, have been maintained for full backward compatibility. All data produced by the system are directly fed in real time into a relational database. A completely new web-based display replaces the obsolete plots based on HP-UX RTAP. We analyse here the architectural and technological choices and discuss the motivations and trade-offs.

  10. Astronomers Break Ground on Atacama Large Millimeter Array (ALMA) - World's Largest Millimeter Wavelength Telescope

    NASA Astrophysics Data System (ADS)

    2003-11-01

    Scientists and dignitaries from Europe, North America and Chile are breaking ground today (Thursday, November 6, 2003) on what will be the world's largest, most sensitive radio telescope operating at millimeter wavelengths . ALMA - the "Atacama Large Millimeter Array" - will be a single instrument composed of 64 high-precision antennas located in the II Region of Chile, in the District of San Pedro de Atacama, at the Chajnantor altiplano, 5,000 metres above sea level. ALMA 's primary function will be to observe and image with unprecedented clarity the enigmatic cold regions of the Universe, which are optically dark, yet shine brightly in the millimetre portion of the electromagnetic spectrum. The Atacama Large Millimeter Array (ALMA) is an international astronomy facility. ALMA is an equal partnership between Europe and North America, in cooperation with the Republic of Chile, and is funded in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Europe by the European Southern Observatory (ESO) and Spain. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO. " ALMA will be a giant leap forward for our studies of this relatively little explored spectral window towards the Universe" , said Dr. Catherine Cesarsky , Director General of ESO. "With ESO leading the European part of this ambitious and forward-looking project, the impact of ALMA will be felt in wide circles on our continent. Together with our partners in North America and Chile, we are all looking forward to the truly outstanding opportunities that will be offered by ALMA , also to young scientists and engineers" . " The U.S. National Science Foundation joins today with our North American partner, Canada, and with the European Southern Observatory, Spain, and Chile to prepare

  11. A search for J-band variability from late-L and T brown dwarfs

    NASA Astrophysics Data System (ADS)

    Clarke, F. J.; Hodgkin, S. T.; Oppenheimer, B. R.; Robertson, J.; Haubois, X.

    2008-06-01

    We present J-band photometric observations of eight late-L and T type brown dwarfs designed to search for variability. We detect small amplitude periodic variability from three of the objects on time-scales of several hours, probably indicating the rotation period of the objects. The other targets do not show any variability down to the level of 0.5-5 per cent This work is based on observations obtained at the European Southern Observatory, La Silla, Chile (ESO Programme 72.C-0006). E-mail: fclarke@astro.ox.ac.uk (FJC); sth@ast.cam.ac.uk (STH); bro@amnh.org (BRO); xavier.haubois@obspm.fr (XH)

  12. VizieR Online Data Catalog: Variable stars in globular clusters (Figuera Jaimes+, 2016)

    NASA Astrophysics Data System (ADS)

    Figuera Jaimes, R.; Bramich, D. M.; Skottfelt, J.; Kains, N.; Jorgensen, U. G.; Horne, K.; Dominik, M.; Alsubai, K. A.; Bozza, V.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Galianni, P.; Gu, S.-H.; W Harpsoe, K. B.; Haugbolle, T.; Hinse, T. C.; Hundertmark, M.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Snodgrass, C.; Southworth, J.; Starkey, D.; Street, R. A.; Surdej, J.; Wang, X.-B.; Wertz, O.

    2016-02-01

    Observations were taken during 2013 and 2014 as part of an ongoing program at the 1.54m Danish telescope at the ESO observatory at La Silla in Chile that was implemented from April to September each year. table1.dat file contains the time-series I photometry for all the variables in the globular clusters studied in this work. We list standard and instrumental magnitudes and their uncertainties corresponding to the variable star identification, filter, and epoch of mid-exposure. For completeness, we also list the reference flux, difference flux, and photometric scale factor, along with the uncertainties on the reference and difference fluxes. (2 data files).

  13. VizieR Online Data Catalog: Variable stars in NGC 6715 (Figuera Jaimes+, 2016)

    NASA Astrophysics Data System (ADS)

    Figuera Jaimes, R.; Bramich, D. M.; Kains, N.; Skottfelt, J.; Jorgensen, U. G.; Horne, K.; Dominik, M.; Alsubai, K. A.; Bozza, V.; Burgdorf, M. J.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Evans, D. F.; Galianni, P.; Gu, S. H.; Harpsoe, K. B. W.; Haugbolle, T.; Hinse, T. C.; Hundertmark, M.; Juncher, D.; Kerins, E.; Korhonen, H.; Kuffmeier, M.; Mancini, L.; Peixinho, N.; Popovas, A.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Snodgrass, C.; Southworth, J.; Starkey, D.; Street, R. A.; Surdej, J.; Tronsgaard, R.; Unda-Sanzana, E.; von Essen, C.; Wang, X. B.; Wertz, O.

    2016-06-01

    Observations were taken during 2013, 2014, and 2015 as part of an ongoing program at the 1.54m Danish telescope at the ESO observatory at La Silla in Chile that was implemented from April to September each year. table1.dat file contains the time-series I photometry for all the variables in NGC 6715 studied in this work. We list standard and instrumental magnitudes and their uncertainties corresponding to the variable star identification, filter, and epoch of mid-exposure. For completeness, we also list the reference flux, difference flux, and photometric scale factor, along with the uncertainties on the reference and difference fluxes. (3 data files).

  14. If we build it, will they come? Curation and use of the ESO telescope bibliography

    NASA Astrophysics Data System (ADS)

    Grothkopf, Uta; Meakins, Silvia; Bordelon, Dominic

    2015-12-01

    The ESO Telescope Bibliography (telbib) is a database of refereed papers published by the ESO users community. It links data in the ESO Science Archive with the published literature, and vice versa. Developed and maintained by the ESO library, telbib also provides insights into the organization's research output and impact as measured through bibliometric studies. Curating telbib is a multi-step process that involves extensive tagging of the database records. Based on selected use cases, this talk will explain how the rich metadata provide parameters for reports and statistics in order to investigate the performance of ESO's facilities and to understand trends and developments in the publishing behaviour of the user community.

  15. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects

    NASA Astrophysics Data System (ADS)

    Smartt, S. J.; Valenti, S.; Fraser, M.; Inserra, C.; Young, D. R.; Sullivan, M.; Pastorello, A.; Benetti, S.; Gal-Yam, A.; Knapic, C.; Molinaro, M.; Smareglia, R.; Smith, K. W.; Taubenberger, S.; Yaron, O.; Anderson, J. P.; Ashall, C.; Balland, C.; Baltay, C.; Barbarino, C.; Bauer, F. E.; Baumont, S.; Bersier, D.; Blagorodnova, N.; Bongard, S.; Botticella, M. T.; Bufano, F.; Bulla, M.; Cappellaro, E.; Campbell, H.; Cellier-Holzem, F.; Chen, T.-W.; Childress, M. J.; Clocchiatti, A.; Contreras, C.; Dall'Ora, M.; Danziger, J.; de Jaeger, T.; De Cia, A.; Della Valle, M.; Dennefeld, M.; Elias-Rosa, N.; Elman, N.; Feindt, U.; Fleury, M.; Gall, E.; Gonzalez-Gaitan, S.; Galbany, L.; Morales Garoffolo, A.; Greggio, L.; Guillou, L. L.; Hachinger, S.; Hadjiyska, E.; Hage, P. E.; Hillebrandt, W.; Hodgkin, S.; Hsiao, E. Y.; James, P. A.; Jerkstrand, A.; Kangas, T.; Kankare, E.; Kotak, R.; Kromer, M.; Kuncarayakti, H.; Leloudas, G.; Lundqvist, P.; Lyman, J. D.; Hook, I. M.; Maguire, K.; Manulis, I.; Margheim, S. J.; Mattila, S.; Maund, J. R.; Mazzali, P. A.; McCrum, M.; McKinnon, R.; Moreno-Raya, M. E.; Nicholl, M.; Nugent, P.; Pain, R.; Pignata, G.; Phillips, M. M.; Polshaw, J.; Pumo, M. L.; Rabinowitz, D.; Reilly, E.; Romero-Cañizales, C.; Scalzo, R.; Schmidt, B.; Schulze, S.; Sim, S.; Sollerman, J.; Taddia, F.; Tartaglia, L.; Terreran, G.; Tomasella, L.; Turatto, M.; Walker, E.; Walton, N. A.; Wyrzykowski, L.; Yuan, F.; Zampieri, L.

    2015-07-01

    Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month. Aims: We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods: PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5m for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 Å between 3345-9995 Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 μm and resolutions 23-33 Å) and imaging with broadband JHKs filters. Results: This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically ~15%, although a number of spectra will have less reliable absolute flux calibration because of

  16. The origin and evolution of the odd-Z iron-peak elements Sc, V, Mn, and Co in the Milky Way stellar disk

    NASA Astrophysics Data System (ADS)

    Battistini, Chiara; Bensby, Thomas

    2015-05-01

    /Ti]-[Ti/H] trends for the thin and thick disks. Conclusions: The elements Sc and V present trends compatible with production from type II supernovae (SNII) events. In addition, Sc clearly shows a metallicity dependence for [ Fe/H ] < -1. Instead, Mn is produced in SNII events for [ Fe/H ] ≲ -0.4 and then type Ia supernovae start to produce Mn. Finally, Co appears to be produced mainly in SNII with suggestion of enrichment from hypernovae at low metallicities. This paper includes data gathered with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile; the Nordic Optical Telescope (NOT) on La Palma, Spain; the Very Large Telescope (VLT) at the European Southern Observatory (ESO) on Paranal, Chile (ESO Proposal ID 69.B-0277 and 72.B-0179); the ESO 1.5-m, 2.2-m. and 3.6-m telescopes on La Silla, Chile (ESO Proposal ID 65.L-0019, 67.B-0108, 76.B-0416, 82.B-0610); and data from UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655).Full versions of Tables 2 and 5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A9Appendices are available in electronic form at http://www.aanda.org

  17. The Cosmic Bat - An Island of Stars in the Making on the Outskirts of Orion

    NASA Astrophysics Data System (ADS)

    2010-03-01

    classes: the slightly older ones, located on the left side of the red rim, the fairly young ones, to its right, making up the small cluster enclosed in the nebula and illuminating it, and eventually the very youngest stars, still deeply embedded in their nascent dusty cocoons, further to the right. Although none of the latter are visible in this image because of the obscuring dust, dozens of them have been revealed through observations in the infrared and millimetre wavelengths of light. This fine distribution of stars, with the older ones closer to Orion and the younger ones concentrated on the opposite side, suggests that a wave of star formation, generated around the hot and massive stars in Orion, propagated throughout NGC 1788 and beyond. This image has been obtained using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical

  18. Trifid Triple Treat

    NASA Astrophysics Data System (ADS)

    2009-09-01

    Today ESO has released a new image of the Trifid Nebula, showing just why it is a firm favourite of astronomers, amateur and professional alike. This massive star factory is so named for the dark dust bands that trisect its glowing heart, and is a rare combination of three nebula types, revealing the fury of freshly formed stars and presaging more star birth. Smouldering several thousand light-years away in the constellation of Sagittarius (the Archer), the Trifid Nebula presents a compelling portrait of the early stages of a star's life, from gestation to first light. The heat and "winds" of newly ignited, volatile stars stir the Trifid's gas and dust-filled cauldron; in time, the dark tendrils of matter strewn throughout the area will themselves collapse and form new stars. The French astronomer Charles Messier first observed the Trifid Nebula in June 1764, recording the hazy, glowing object as entry number 20 in his renowned catalogue. Observations made about 60 years later by John Herschel of the dust lanes that appear to divide the cosmic cloud into three lobes inspired the English astronomer to coin the name "Trifid". Made with the Wide-Field Imager camera attached to the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in northern Chile, this new image prominently displays the different regions of the Trifid Nebula as seen in visible light. In the bluish patch to the upper left, called a reflection nebula, dusty gas scatters the light from nearby, Trifid-born stars. The largest of these stars shines most brightly in the hot, blue portion of the visible spectrum. This, along with the fact that dust grains and molecules scatter blue light more efficiently than red light - a property that explains why we have blue skies and red sunsets - imbues this portion of the Trifid Nebula with an azure hue. Below, in the round, pink-reddish area typical of an emission nebula, the gas at the Trifid's core is heated by hundreds of scorching young stars until it

  19. An Eagle of Cosmic Proportions

    NASA Astrophysics Data System (ADS)

    2009-07-01

    "Spire" - another pillar captured by Hubble - is at the centre left of the image. Finger-like features protrude from the vast cloud wall of cold gas and dust, not unlike stalagmites rising from the floor of a cave. Inside the pillars, the gas is dense enough to collapse under its own weight, forming young stars. These light-year long columns of gas and dust are being simultaneously sculpted, illuminated and destroyed by the intense ultraviolet light from massive stars in NGC 6611, the adjacent young stellar cluster. Within a few million years - a mere blink of the universal eye - they will be gone forever. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  20. Retirement of Massimo Tarenghi

    NASA Astrophysics Data System (ADS)

    Madsen, C.

    2013-09-01

    Massimo Tarenghi, chronologically MPG/ESO project scientist, NTT project manager, VLT programme manager and first Director, ALMA Director and ESO Representative in Chile, has retired after 35 years at ESO. A brief summary of his achievements is presented.

  1. Preliminary results from the Stereo-SCIDAR at the VLT Observatory: extraction of reference atmospheric turbulence profiles for E-ELT adaptive optics instrument performance simulations

    NASA Astrophysics Data System (ADS)

    Sarazin, Marc S.; Osborn, James; Chacon-Oelckers, Arlette; Dérie, Frédéric J.; Le Louarn, Miska; Milli, Julien; Navarrete, Julio; Wilson, Richard R. W.

    2017-09-01

    The Stereo-SCIDAR (Scintillation Detection and Ranging) atmospheric turbulence profiler, built for ESO by Durham University, observes the scintillation patterns of binary elements with one of the four VLT-Interferometer 1.8m auxiliary telescopes at the ESO Paranal Observatory. The primary products are the vertical profiles of the index of refraction structure coefficient and of the wind velocity which allow to compute the wavefront coherence time and the isoplanatic angle with a vertical resolution of 250m. The several thousands of profiles collected during more than 30 nights of operation are grouped following criteria based on the altitude distribution or on principal component analysis. A set of reference profiles representative of the site is proposed as input for the various simulation models developed by the E-ELT (European Extremely Large Telescope) instruments Consortia.

  2. The Light and Dark Face of a Star-Forming Nebula

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Today, ESO is unveiling an image of the little known Gum 19, a faint nebula that, in the infrared, appears dark on one half and bright on the other. On one side hot hydrogen gas is illuminated by a supergiant blue star called V391 Velorum. New star formation is taking place within the ribbon of luminous and dark material that brackets V391 Velorum's left in this perspective. After many millennia, these fledgling stars, coupled with the explosive demise of V391 Velorum as a supernova, will likely alter Gum 19's present Janus-like appearance. Gum 19 is located in the direction of the constellation Vela (the Sail) at a distance of approximately 22 000 light years. The Gum 19 moniker derives from a 1955 publication by the Australian astrophysicist Colin S. Gum that served as the first significant survey of so-called HII (read "H-two") regions in the southern sky. HII refers to hydrogen gas that is ionised, or energised to the extent that the hydrogen atoms lose their electrons. Such regions emit light at well-defined wavelengths (or colours), thereby giving these cosmic clouds their characteristic glow. And indeed, much like terrestrial clouds, the shapes and textures of these HII regions change as time passes, though over the course of eons rather than before our eyes. For now, Gum 19 has somewhat of a science fiction-esque, "rip in spacetime" look to it in this image, with a narrow, near-vertical bright region slashing across the nebula. Looking at it, you could possibly see a resemblance to a two-toned angelfish or an arrow with a darkened point. This new image of the evocative Gum 19 object was captured by an infrared instrument called SOFI, mounted on ESO's New Technology Telescope (NTT) that operates at the La Silla Observatory in Chile. SOFI stands for Son of ISAAC, after the "father" instrument, ISAAC, that is located at ESO's Very Large Telescope observatory at Paranal to the north of La Silla. Observing this nebula in the infrared allows astronomers to see

  3. Sharing the skies: the Gemini Observatory international time allocation process

    NASA Astrophysics Data System (ADS)

    Margheim, Steven J.

    2016-07-01

    Gemini Observatory serves a diverse community of four partner countries (United States, Canada, Brazil, and Argentina), two hosts (Chile and University of Hawaii), and limited-term partnerships (currently Australia and the Republic of Korea). Observing time is available via multiple opportunities including Large and Long Pro- grams, Fast-turnaround programs, and regular semester queue programs. The slate of programs for observation each semester must be created by merging programs from these multiple, conflicting sources. This paper de- scribes the time allocation process used to schedule the overall science program for the semester, with emphasis on the International Time Allocation Committee and the software applications used.

  4. CIAO: wavefront sensors for GRAVITY

    NASA Astrophysics Data System (ADS)

    Scheithauer, Silvia; Brandner, Wolfgang; Deen, Casey; Adler, Tobias; Bonnet, Henri; Bourget, Pierre; Chemla, Fanny; Clenet, Yann; Delplancke, Francoise; Ebert, Monica; Eisenhauer, Frank; Esselborn, Michael; Finger, Gert; Gendron, Eric; Glauser, Adrian; Gonte, Frederic; Henning, Thomas; Hippler, Stefan; Huber, Armin; Hubert, Zoltan; Jakob, Gerd; Jochum, Lieselotte; Jocou, Laurent; Kendrew, Sarah; Klein, Ralf; Kolb, Johann; Kulas, Martin; Laun, Werner; Lenzen, Rainer; Mellein, Marcus; Müller, Eric; Moreno-Ventas, Javier; Neumann, Udo; Oberti, Sylvain; Ott, Jürgen; Pallanca, Laurent; Panduro, Johana; Ramos, Jose; Riquelme, Miguel; Rohloff, Ralf-Rainer; Rousset, Gérard; Schuhler, Nicolas; Suarez, Marcos; Zins, Gerard

    2016-07-01

    GRAVITY is a second generation near-infrared VLTI instrument that will combine the light of the four unit or four auxiliary telescopes of the ESO Paranal observatory in Chile. The major science goals are the observation of objects in close orbit around, or spiraling into the black hole in the Galactic center with unrivaled sensitivity and angular resolution as well as studies of young stellar objects and evolved stars. In order to cancel out the effect of atmospheric turbulence and to be able to see beyond dusty layers, it needs infrared wave-front sensors when operating with the unit telescopes. Therefore GRAVITY consists of the Beam Combiner Instrument (BCI) located in the VLTI laboratory and a wave-front sensor in each unit telescope Coudé room, thus aptly named Coudé Infrared Adaptive Optics (CIAO). This paper describes the CIAO design, assembly, integration and verification at the Paranal observatory.

  5. Comet Halley passes the halfway mark. Very distant image obtained with the ESO NTT.

    NASA Astrophysics Data System (ADS)

    1994-02-01

    Eight years after the passage of Comet Halley in early 1986, astronomers at the European Southern Observatory have succeeded in obtaining an image [1] of this famous object at a distance of no less than 2,820 million km from the Sun. The comet is now about as far away as giant planet Uranus. It recently passed the halfway mark towards the most distant point of its very elongated 76-year orbit. The image shows the 6 x 15 km avocado-shaped nucleus as an extremely faint point of light without any surrounding dust cloud. It appears that the surface is now completely frozen and the comet has ceased to emit dust and gas. This observation was made with the ESO 3.58 metre New Technology Telescope (NTT). It is by far the faintest and most distant image ever recorded of this comet. A DIFFICULT OBSERVATION The new Halley image was obtained in the course of an observational programme by a small group of astronomers [2], aimed at the investigation of distant solar system objects. The observation was difficult to perform and is close to the limit of what is possible, even with the NTT, one of the technologically most advanced astronomical telescopes. In fact, this observation may be compared to viewing a black golfball, used during a late evening game, from a distance of 12,000 km. At Halley's present, very large distance from the Sun, the intensity of the solar light is over 350 times fainter than here on Earth. The surface of the cometary nucleus is very dark; it reflects only 4 % of the infalling sunlight. The amount of light received from Halley is therefore extremely small: the recorded star-like image of the nucleus is about 160 million times fainter than the faintest star that can be seen with the unaided eye. A long exposure was needed to catch enough light to show the object; even with the very sensitive SuSI CCD camera at the NTT, the shutter had to be kept open for a total of 3 hours 45 minutes. During this time, of the order of 9000 photons from Comet Halley were

  6. Chile.

    PubMed

    1988-09-01

    Chile is a long (2650 miles), narrow (250 miles at widest point) country sandwiched between the Andes mountains and the Pacific. The northern desert is rich in copper and nitrates; the temperate middle region is agricultural and supports the major cities, including Santiago, the capital, and the port of Valparaiso; and the southern region is a cold and damp area of forests, grasslands, lakes, and fjords. The country is divided into 12 administrative regions. Chile's population of 12.5 million are mainly of Spanish or Indian descent or mestizos. Literacy is 92.3%, and the national language is Spanish. Infant mortality is 18.1/1000, and life expectancy is 68.2 years. 82% of the people are urban, and most are Roman Catholics. Chile was settled by the Spanish in 1541 and attached to the Viceroyalty of Peru. Independence was won in 1818 under the leadership of Bernardo O'Higgins. In the 1880s Chile extended its sovereignty over the Strait of Magellan in the south and areas of southern Peru and Bolivia in the north. An officially parliamentary government, elected by universal suffrage, drifted into oligarchy and finally into a military dictatorship under Carlos Ibanez in 1924. Constitutional government was restored in 1932. The Christian Democratic government of Eduardo Frei (1964-70) inaugurated major reforms, including land redistribution, education, and far-reaching social and economic policies. A Marxist government under Salvador Allende lasted from 1970 to 1973 when the present military government of General Pinochet Ugarte took power, overthrew Allende, abolished the Congress, and banned political parties. It has moved the country in the direction of a free market economy but at the cost of systematic violations of human rights. A new constitution was promulgated in 1981, and congressional elections have been scheduled for October, 1989. A "National Accord for Transition to Full Democracy" was mediated by the Catholic Church in 1985. The social reforms of the

  7. Possible Astronomical meaning of some El Molle findings at the ESO Observatory of La Silla

    NASA Astrophysics Data System (ADS)

    Vecchiato, Alberto; Bernardi, Gabriella; Bucciarelli, Beatrice

    2015-08-01

    The slopes surrounding the buildings of the European Southern Observatory at La Silla are known to house several hundred rock engravings dating back to the pre-Columbian populations that once inhabited this region. Although precise archaeological studies are missing since none of these sites has been excavated, these petroglyphs are attributed to people of the El Molle Culture, who around AD 300 had just abandoned their original lifestyle of hunting and gathering and developed more evolved settlements based on herding and farming.While it is difficult to ascertain precisely the meaning of these ancient rock engravings, it seems that a specific astronomical alignment can be attributed to a simple yet peculiar, man-made stone structure, which can be found in the same site. The archaeoastronomical dating of this alignment coincides to that of the petroglyphs. Moreover it allows to highlight a noticeable and intriguing connection with a practical function which appears quite reasonable for the population to whom this structure is attributed.

  8. VizieR Online Data Catalog: KiDS-ESO-DR3 multi-band source catalog (de Jong+, 2017)

    NASA Astrophysics Data System (ADS)

    de Jong, J. T. A.; Verdoes Kleijn, G. A.; Erben, T.; Hildebrandt, H.; Kuijken, K.; Sikkema, G.; Brescia, M.; Bilicki, M.; Napolitano, N. R.; Amaro, V.; Begeman, K. G.; Boxhoorn, D. R.; Buddelmeijer, H.; Cavuoti, S.; Getman, F.; Grado, A.; Helmich, E.; Huang, Z.; Irisarri, N.; La Barbera, F.; Longo, G.; McFarland, J. P.; Nakajima, R.; Paolillo, M.; Puddu, E.; Radovich, M.; Rifatto, A.; Tortora, C; Valentijn, E. A.; Vellucci, C.; Vriend, W-J.; Amon, A.; Blake, C.; Choi, A.; Fenech, Conti I.; Herbonnet, R.; Heymans, C.; Hoekstra, H.; Klaes, D.; Merten, J.; Miller, L.; Schneider, P.; Viola, M.

    2017-04-01

    KiDS-ESO-DR3 contains a multi-band source catalogue encompassing all publicly released tiles, a total of 440 survey tiles including the coadded images, weight maps, masks and source lists of 292 survey tiles of KiDS-ESO-DR3, adding to the 148 tiles released previously (50 in KiDS-ESO-DR1 and 98 in KiDS-ESO-DR2). (1 data file).

  9. VISTA Stares Deeply into the Blue Lagoon

    NASA Astrophysics Data System (ADS)

    2011-01-01

    This new infrared image of the Lagoon Nebula was captured as part of a five-year study of the Milky Way using ESO's VISTA telescope at the Paranal Observatory in Chile. This is a small piece of a much larger image of the region surrounding the nebula, which is, in turn, only one part of a huge survey. Astronomers are currently using ESO's Visible and Infrared Survey Telescope for Astronomy (VISTA) to scour the Milky Way's central regions for variable objects and map its structure in greater detail than ever before. This huge survey is called VISTA Variables in the Via Lactea (VVV) [1]. The new infrared image presented here was taken as part of this survey. It shows the stellar nursery called the Lagoon Nebula (also known as Messier 8, see eso0936), which lies about 4000-5000 light-years away in the constellation of Sagittarius (the Archer). Infrared observations allow astronomers to peer behind the veil of dust that prevents them from seeing celestial objects in visible light. This is because visible light, which has a wavelength that is about the same size as the dust particles, is strongly scattered, but the longer wavelength infrared light can pass through the dust largely unscathed. VISTA, with its 4.1-metre diameter mirror - the largest survey telescope in the world - is dedicated to surveying large areas of the sky at near-infrared wavelengths deeply and quickly. It is therefore ideally suited to studying star birth. Stars typically form in large molecular clouds of gas and dust, which collapse under their own weight. The Lagoon Nebula, however, is also home to a number of much more compact regions of collapsing gas and dust, called Bok globules [2]. These dark clouds are so dense that, even in the infrared, they can block the starlight from background stars. But the most famous dark feature in the nebula, for which it is named, is the lagoon-shaped dust lane that winds its way through the glowing cloud of gas. Hot, young stars, which give off intense

  10. Li depletion in solar analogues with exoplanets. Extending the sample

    NASA Astrophysics Data System (ADS)

    Delgado Mena, E.; Israelian, G.; González Hernández, J. I.; Sousa, S. G.; Mortier, A.; Santos, N. C.; Adibekyan, V. Zh.; Fernandes, J.; Rebolo, R.; Udry, S.; Mayor, M.

    2014-02-01

    Aims: We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods: In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600-5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results: We confirm significant differences in the Li distribution of solar twins (Teff = T⊙ ± 80 K, log g = log g⊙ ± 0.2 and [Fe/H] = [Fe/H]⊙ ± 0.2): the full sample of planet host stars (22) shows Li average values lower than "single" stars with no detected planets (60). If we focus on subsamples with narrower ranges in metallicity and age, we observe indications of a similar result though it is not so clear for some of the subsamples. Furthermore, we compare the observed spectra of several couples of stars with very similar parameters that show differences in Li abundances up to 1.6 dex. Therefore we show that neither age, mass, nor metallicity of a parent star is the only cause for enhanced Li depletion in solar analogues. Conclusions: We conclude that another variable must account for that difference and suggest that this could be the presence of planets that causes additional rotationally induced mixing in the external layers of planet host stars. Moreover, we find indications that the amount of depletion of Li in planet-host solar-type stars is higher when the planets are more massive than Jupiter. Based on observations collected at the La Silla Observatory, ESO (Chile), with the HARPS spectrograph at the 3.6 m ESO telescope, with CORALIE spectrograph at the 1.2 m Euler Swiss telescope and with the FEROS spectrograph at the 1.52 m ESO telescope; at the Paranal Observatory, ESO (Chile), using the UVES spectrograph at the VLT/UT2 Kueyen telescope, and with the FIES, SARG, and UES spectrographs at the 2.5 m NOT, the 3.6 m TNG and the 4

  11. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    NASA Astrophysics Data System (ADS)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; Hansen, T. T.; Simon, J. D.; Bernstein, R. A.; Balbinot, E.; Drlica-Wagner, A.; Pace, A. B.; Strigari, L. E.; Pellegrino, C. M.; DePoy, D. L.; Suntzeff, N. B.; Bechtol, K.; Walker, A. R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; March, M.; Miquel, R.; Nord, B.; Roodman, A.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Wechsler, R. H.; Wolf, R. C.; Yanny, B.

    2018-01-01

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ∼ ‑2.6 and are not α-enhanced ([α/Fe] ∼ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility of a different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This paper also includes data based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 096.D-0967(B); PI: E. Balbinot).

  12. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Bensby, T.; Feltzing, S.; Oey, M. S.

    2014-02-01

    important to constrain the data set to a narrow range in the stellar parameters if small differences between stellar populations are to be revealed. In addition, we find that the α-enhanced population has orbital parameters placing the stellar birthplaces in the inner Galactic disk while the low-α stars mainly come from the outer Galactic disk, fully consistent with the recent claims of a short scale-length for the α-enhanced Galactic thick disk. We have also investigated the properties of the Hercules stream and the Arcturus moving group and find that neither of them presents chemical or age signatures that could suggest that they are disrupted clusters or extragalactic accretion remnants from ancient merger events. Instead, they are most likely dynamical features originating within the Galaxy. We have also discovered that a standard 1D, LTE analysis, utilising ionisation and excitation balance of Fe i and Fe ii lines produces a flat lower main sequence. As the exact cause for this effect is unclear we chose to apply an empirical correction. Turn-off stars and more evolved stars appear to be unaffected. This paper includes data gathered with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile; the Nordic Optical Telescope (NOT) on La Palma, Spain; the Very Large Telescope (VLT) at the European Southern Observatory (ESO) on Paranal, Chile (ESO Proposal ID 69.B-0277 and 72.B-0179); the ESO 1.5 m, 2.2 m, and 3.6 m telescopes on La Silla, Chile (ESO Proposal ID 65.L-0019, 67.B-0108, 76.B-0416, 82.B-0610); and data from the UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655).Full Tables C.1-C.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A71Appendices are available in electronic form at http://www.aanda.org

  13. The stellar content of the Hamburg/ESO survey. IV. Selection of candidate metal-poor stars

    NASA Astrophysics Data System (ADS)

    Christlieb, N.; Schörck, T.; Frebel, A.; Beers, T. C.; Wisotzki, L.; Reimers, D.

    2008-06-01

    We present the quantitative methods used for selecting candidate metal-poor stars in the Hamburg/ESO objective-prism survey (HES). The selection is based on the strength of the Ca II K line, B-V colors (both measured directly from the digital HES spectra), as well as J-K colors from the 2 Micron All Sky Survey. The KP index for Ca II K can be measured from the HES spectra with an accuracy of 1.0 Å, and a calibration of the HES B-V colors, using CCD photometry, yields a 1-σ uncertainty of 0.07 mag for stars in the color range 0.3 < B-V < 1.4. These accuracies make it possible to reliably reject stars with [Fe/H] > -2.0 without sacrificing completeness at the lowest metallicities. A test of the selection using 1121 stars of the HK survey of Beers, Preston, and Shectman present on HES plates suggests that the completeness at [Fe/H] < -3.5 is close to 100% and that, at the same time, the contamination of the candidate sample with false positives is low: 50% of all stars with [Fe/H] > -2.5 and 97% of all stars with [Fe/H] > -2.0 are rejected. The selection was applied to 379 HES fields, covering a nominal area of 8853 deg2 of the southern high Galactic latitude sky. The candidate sample consists of 20 271 stars in the magnitude range 10 ≲ B ≲ 18. A comparison of the magnitude distribution with that of the HK survey shows that the magnitude limit of the HES sample is about 2 mag fainter. Taking the overlap of the sky areas covered by both surveys into account, it follows that the survey volume for metal-poor stars has been increased by the HES by about a factor of 10 with respect to the HK survey. We have already identified several very rare objects with the HES, including, e.g., the three most heavy-element deficient stars currently known. Based on observations collected at the European Southern Observatory, Chile (Proposal ID 145.B-0009). Tables A.1 and A.2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or

  14. Exploring the crowded central region of ten Galactic globular clusters using EMCCDs. Variable star searches and new discoveries

    NASA Astrophysics Data System (ADS)

    Figuera Jaimes, R.; Bramich, D. M.; Skottfelt, J.; Kains, N.; Jørgensen, U. G.; Horne, K.; Dominik, M.; Alsubai, K. A.; Bozza, V.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Galianni, P.; Gu, S.-H.; Harpsøe, K. B. W.; Haugbølle, T.; Hinse, T. C.; Hundertmark, M.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Snodgrass, C.; Southworth, J.; Starkey, D.; Street, R. A.; Surdej, J.; Wang, X.-B.; Wertz, O.

    2016-04-01

    Aims: We aim to obtain time-series photometry of the very crowded central regions of Galactic globular clusters; to obtain better angular resolution thanhas been previously achieved with conventional CCDs on ground-based telescopes; and to complete, or improve, the census of the variable star population in those stellar systems. Methods: Images were taken using the Danish 1.54-m Telescope at the ESO observatory at La Silla in Chile. The telescope was equipped with an electron-multiplying CCD, and the short-exposure-time images obtained (ten images per second) were stacked using the shift-and-add technique to produce the normal-exposure-time images (minutes). Photometry was performed via difference image analysis. Automatic detection of variable stars in the field was attempted. Results: The light curves of 12 541 stars in the cores of ten globular clusters were statistically analysed to automatically extract the variable stars. We obtained light curves for 31 previously known variable stars (3 long-period irregular, 2 semi-regular, 20 RR Lyrae, 1 SX Phoenicis, 3 cataclysmic variables, 1 W Ursae Majoris-type and 1 unclassified) and we discovered 30 new variables (16 long-period irregular, 7 semi-regular, 4 RR Lyrae, 1 SX Phoenicis and 2 unclassified). Fluxes and photometric measurements for these stars are available in electronic form through the Strasbourg astronomical Data Center. Based on data collected by the MiNDSTEp team with the Danish 1.54m telescope at ESO's La Silla observatory in Chile.Full Table 1 is only available at CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A128

  15. Complete identification of the Parkes half-Jansky sample of GHz peaked spectrum radio galaxies

    NASA Astrophysics Data System (ADS)

    de Vries, N.; Snellen, I. A. G.; Schilizzi, R. T.; Lehnert, M. D.; Bremer, M. N.

    2007-03-01

    Context: Gigahertz Peaked Spectrum (GPS) radio galaxies are generally thought to be the young counterparts of classical extended radio sources. Statistically complete samples of GPS sources are vital for studying the early evolution of radio-loud AGN and the trigger of their nuclear activity. The "Parkes half-Jansky" sample of GPS radio galaxies is such a sample, representing the southern counterpart of the 1998 Stanghellini sample of bright GPS sources. Aims: As a first step of the investigation of the sample, the host galaxies need to be identified and their redshifts determined. Methods: Deep R-band VLT-FORS1 and ESO 3.6 m EFOSC II images and long slit spectra have been taken for the unidentified sources in the sample. Results: We have identified all twelve previously unknown host galaxies of the radio sources in the sample. Eleven have host galaxies in the range 21.0 < RC < 23.0, while one object, PKS J0210+0419, is identified in the near infrared with a galaxy with Ks = 18.3. The redshifts of 21 host galaxies have been determined in the range 0.474 < z < 1.539, bringing the total number of redshifts to 39 (80%). Analysis of the absolute magnitudes of the GPS host galaxies show that at z>1 they are on average a magnitude fainter than classical 3C radio galaxies, as found in earlier studies. However their restframe UV luminosities indicate that there is an extra light contribution from the AGN, or from a population of young stars. Based on observations collected at the European Southern Observatory Very Large Telescope, Paranal, Chile (ESO prog. ID No. 073.B-0289(B)) and the European Southern Observatory 3.6 m Telescope, La Silla, Chile (prog. ID No. 073.B-0289(A)). Appendices are only available in electronic form at http://www.aanda.org

  16. On the origin of stars with and without planets. Tc trends and clues to Galactic evolution

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; González Hernández, J. I.; Delgado Mena, E.; Sousa, S. G.; Santos, N. C.; Israelian, G.; Figueira, P.; Bertran de Lis, S.

    2014-04-01

    We explore a sample of 148 solar-like stars to search for a possible correlation between the slopes of the abundance trends versus condensation temperature (known as the Tc slope) with stellar parameters and Galactic orbital parameters in order to understand the nature of the peculiar chemical signatures of these stars and the possible connection with planet formation. We find that the Tc slope significantly correlates (at more than 4σ) with the stellar age and the stellar surface gravity. We also find tentative evidence that the Tc slope correlates with the mean galactocentric distance of the stars (Rmean), suggesting that those stars that originated in the inner Galaxy have fewer refractory elements relative to the volatiles. While the average Tc slope for planet-hosting solar analogs is steeper than that of their counterparts without planets, this difference probably reflects the difference in their age and Rmean. We conclude that the age and probably the Galactic birth place are determinant to establish the star's chemical properties. Old stars (and stars with inner disk origin) have a lower refractory-to-volatile ratio. Based on observations collected with the HARPS spectrograph at the 3.6-m telescope (072.C-0488(E)), installed at the La Silla Observatory, ESO (Chile), with the UVES spectrograph at the 8-m Very Large Telescope program IDs: 67.C-0206(A), 074.C-0134(A), 075.D-0453(A), installed at the Cerro Paranal Observatory, ESO (Chile), and with the UES spectrograph at the 4.2-m William Herschel Telescope, installed at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma.Appendix A is available in electronic form at http://www.aanda.org

  17. New portrait of Omega Nebula's glistening watercolours

    NASA Astrophysics Data System (ADS)

    2009-07-01

    newly released image, obtained with the EMMI instrument attached to the ESO 3.58-metre New Technology Telescope (NTT) at La Silla, Chile, shows the central region of the Omega Nebula in exquisite detail. In 2000, another instrument on the NTT, called SOFI, captured another striking image of the nebula (ESO Press Photo 24a/00) in the near-infrared, giving astronomers a penetrating view through the obscuring dust, and clearly showing many previously hidden stars. The NASA/ESA Hubble Space Telescope has also imaged small parts of this nebula (heic0305a and heic0206d) in fine detail. At the left of the image a huge and strangely box-shaped cloud of dust covers the glowing gas. The fascinating palette of subtle colour shades across the image comes from the presence of different gases (mostly hydrogen, but also oxygen, nitrogen and sulphur) that are glowing under the fierce ultraviolet light radiated by the hot young stars. More Information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large

  18. Strategy for monitoring T cell responses to NY-ESO-1 in patients with any HLA class I allele

    PubMed Central

    Gnjatic, Sacha; Nagata, Yasuhiro; Jäger, Elke; Stockert, Elisabeth; Shankara, Srinivas; Roberts, Bruce L.; Mazzara, Gail P.; Lee, Sang Yull; Dunbar, P. Rod; Dupont, Bo; Cerundolo, Vincenzo; Ritter, Gerd; Chen, Yao-Tseng; Knuth, Alexander; Old, Lloyd J.

    2000-01-01

    NY-ESO-1 elicits frequent antibody responses in cancer patients, accompanied by strong CD8+ T cell responses against HLA-A2-restricted epitopes. To broaden the range of cancer patients who can be assessed for immunity to NY-ESO-1, a general method was devised to detect T cell reactivity independent of prior characterization of epitopes. A recombinant adenoviral vector encoding the full cDNA sequence of NY-ESO-1 was used to transduce CD8-depleted peripheral blood lymphocytes as antigen-presenting cells. These modified antigen-presenting cells were then used to restimulate memory effector cells against NY-ESO-1 from the peripheral blood of cancer patients. Specific CD8+ T cells thus sensitized were assayed on autologous B cell targets infected with a recombinant vaccinia virus encoding NY-ESO-1. Strong polyclonal responses were observed against NY-ESO-1 in antibody-positive patients, regardless of their HLA profile. Because the vectors do not cross-react immunologically, only responses to NY-ESO-1 were detected. The approach described here allows monitoring of CD8+ T cell responses to NY-ESO-1 in the context of various HLA alleles and has led to the definition of NY-ESO-1 peptides presented by HLA-Cw3 and HLA-Cw6 molecules. PMID:11005863

  19. Detecting esophageal disease with second-generation capsule endoscopy: initial evaluation of the PillCam ESO 2.

    PubMed

    Gralnek, I M; Adler, S N; Yassin, K; Koslowsky, B; Metzger, Y; Eliakim, R

    2008-04-01

    Esophageal capsule endoscopy (ECE) provides an alternative, minimally invasive modality for evaluating the esophagus. This study evaluates the performance and test characteristics of a second-generation esophageal capsule endoscope, the PillCam ESO 2. Adults with known or suspected esophageal disease were included. Using the simplified ingestion procedure, each patient underwent capsule endoscopy with the PillCam ESO 2. Following ECE, esophagogastroduodenoscopy (EGD) was performed on the same day by an investigator who was blinded to the results of the ECE. In random order, capsule endoscopy videos were read and interpreted by the study investigator blinded to EGD results. 28 patients (19 men, 9 women; mean age 53.3 years) were included. In 82 % of the patients, at least 75 % of the Z line was visualized by the PillCam ESO 2. A per-lesion analysis demonstrated that the PillCam ESO 2 had definitive results in 30/43 lesions (69.8 %) and EGD in 29/43 (67.4 %), P value = 0.41. Compared with EGD for detecting suspected Barrett's esophagus and esophagitis, the PillCam ESO 2 had a sensitivity of 100 % and a specificity of 74 %, and a sensitivity of 80 % and a specificity of 87 %, respectively. The PillCam ESO 2 demonstrated 86 % agreement with EGD in describing the Z line (kappa statistic 0.68). The modified ingestion protocol provided excellent cleansing, with bubbles/saliva having no or only a minor effect on Z line images in 86 % of cases. The PillCam ESO 2 demonstrated excellent visualization of the Z line. Compared with standard EGD, the PillCam ESO 2 had good test characteristics with high rates of detection of suspected Barrett's esophagus and esophagitis. This study provides indirect validation of the simplified ingestion procedure. The PillCam ESO 2 acquires high quality esophageal images, performs safely, and should be able to replace the current PillCam ESO.

  20. VizieR Online Data Catalog: HeI 5876 & 10830Å EWs of solar-type stars (Andretta+, 2017)

    NASA Astrophysics Data System (ADS)

    Andretta, V.; Giampapa, M. S.; Covino, E.; Reiners, A.; Beeck, B.

    2017-11-01

    A total of 134 FEROS spectra (R=48000) of our targets (including telluric standards) were acquired on the night of UT 2011 December 6-7; spectral coverage from 3500 to 9200Å. The Fiber Extended-range Optical Spectrograph (FEROS) was mounted at the 2.2m Max-Planck Gesellschaft/European Southern Observatory (MPG/ESO) telescope at La Silla (Chile). The HeIλ10830 spectroscopic observations were carried out on the same night as the FEROS D3 observations, using the CRyogenic high-resolution InfraRed Echelle Spectrograph (CRIRES), mounted at Unit Telescope 1 (Antu) of the VLT array at Cerro Paranal. The details of the observations is given in table 1. (3 data files).

  1. ESO 243-49 HLX-1: scaling of X-ray spectral properties and black hole mass determination

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Seifina, Elena

    2016-11-01

    We report the results of Swift/XRT observations (2008-2015) of a hyper-luminous X-ray source, ESO 243-49 HLX-1. We demonstrate a strong observational evidence that ESO 243-49 HLX-1 undergoes spectral transitions from the low/hard state to the high/soft state during these observations. The spectra of ESO 243-49 HLX-1 are well fitted by the so-called bulk motion Comptonization model for all spectral states. We have established the photon index (Γ) saturation level, Γsat = 3.0 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ-Ṁ correlation allows us to estimate black hole (BH) mass in ESO 243-49 HLX-1 to be MBH 7 × 104 M⊙ assuming the distance to ESO 243-49 of 95 Mpc. For the BH mass estimate we use the scaling method taking Galactic BHs XTE J1550-564, H 1743-322 and 4U 1630-472, and an extragalactic BH source, M101 ULX-1 as reference sources. The Γ versus Ṁ correlation revealed in ESO 243-49 HLX-1 is similar to those in a number of Galactic and extragalactic BHs and it clearly shows the correlation along with the strong Γ saturation at ≈3. This is a robust observational evidence for the presence of a BH in ESO 243-49 HLX-1. We also find that the seed (disk) photon temperatures are quite low, of order of 50-140 eV which are consistent with high BH mass in ESO 243-49 HLX-1.

  2. Directed evolution for improved secretion of cancer-testis antigen NY-ESO-1 from yeast.

    PubMed

    Piatesi, Andrea; Howland, Shanshan W; Rakestraw, James A; Renner, Christoph; Robson, Neil; Cebon, Jonathan; Maraskovsky, Eugene; Ritter, Gerd; Old, Lloyd; Wittrup, K Dane

    2006-08-01

    NY-ESO-1 is a highly immunogenic tumor antigen and a promising vaccine candidate in cancer immunotherapy. Access to purified protein both for vaccine formulations and for monitoring antigen-specific immune responses is vital to vaccine development. Currently available recombinant Escherichia coli-derived NY-ESO-1 is isolated from inclusion bodies as a complex protein mixture and efforts to improve the purity of this antigen are required, especially for later-stage clinical trials. Using yeast cell surface display and fluorescence activated cell sorting techniques, we have engineered an NY-ESO-1 variant (NY-ESO-L5; C(75)A C(76)A C(78)A L(153)H) with a 100x improved display level on yeast compared to the wild-type protein. This mutant can be effectively produced as an Aga2p-fusion and purified in soluble form directly from the yeast cell wall. In the process, we have identified the epitope recognized by anti-NY-ESO-1 mAb E978 (79-87, GARGPESRL). The availability of an alternative expression host for this important antigen will help avoid artifactual false positive tests of patient immune response due to reaction against expression-host-specific contaminants.

  3. The Gaia-ESO Survey: double-, triple-, and quadruple-line spectroscopic binary candidates

    NASA Astrophysics Data System (ADS)

    Merle, T.; Van Eck, S.; Jorissen, A.; Van der Swaelmen, M.; Masseron, T.; Zwitter, T.; Hatzidimitriou, D.; Klutsch, A.; Pourbaix, D.; Blomme, R.; Worley, C. C.; Sacco, G.; Lewis, J.; Abia, C.; Traven, G.; Sordo, R.; Bragaglia, A.; Smiljanic, R.; Pancino, E.; Damiani, F.; Hourihane, A.; Gilmore, G.; Randich, S.; Koposov, S.; Casey, A.; Morbidelli, L.; Franciosini, E.; Magrini, L.; Jofre, P.; Costado, M. T.; Jeffries, R. D.; Bergemann, M.; Lanzafame, A. C.; Bayo, A.; Carraro, G.; Flaccomio, E.; Monaco, L.; Zaggia, S.

    2017-12-01

    efficient discovery of many new multiple systems. With the detection of the SB1 candidates that will be the subject of a forthcoming paper, the study of the statistical and physical properties of the spectroscopic multiple systems will soon be possible for the entire GES sample. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 188.B-3002. These data products have been processed by the Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.

  4. Seismology in Chile

    USGS Publications Warehouse

    Kausel, E.

    1983-01-01

    The Department of Geology and Geophysics, which is under the faculties of Mathematics and Physical Sciences of the University of Chile, is the organization that is responsible for the Seismological Service of Chile and for installing,operating, and maintaining the seismological stations as well as all the strong-motion stations in Chile.

  5. Induction of CD8 T-cell responses restricted to multiple HLA class I alleles in a cancer patient by immunization with a 20-mer NY-ESO-1f (NY-ESO-1 91-110) peptide.

    PubMed

    Eikawa, Shingo; Kakimi, Kazuhiro; Isobe, Midori; Kuzushima, Kiyotaka; Luescher, Immanuel; Ohue, Yoshihiro; Ikeuchi, Kazuhiro; Uenaka, Akiko; Nishikawa, Hiroyoshi; Udono, Heiichiro; Oka, Mikio; Nakayama, Eiichi

    2013-01-15

    Immunogenicity of a long 20-mer NY-ESO-1f peptide vaccine was evaluated in a lung cancer patient TK-f01, immunized with the peptide with Picibanil OK-432 and Montanide ISA-51. We showed that internalization of the peptide was necessary to present CD8 T-cell epitopes on APC, contrasting with the direct presentation of the short epitope. CD8 T-cell responses restricted to all five HLA class I alleles were induced in the patient after the peptide vaccination. Clonal analysis showed that B*35:01 and B*52:01-restricted CD8 T-cell responses were the two dominant responses. The minimal epitopes recognized by A*24:02, B*35:01, B*52:01 and C*12:02-restricted CD8 T-cell clones were defined and peptide/HLA tetramers were produced. NY-ESO-1 91-101 on A*24:02, NY-ESO-1 92-102 on B*35:01, NY-ESO-1 96-104 on B*52:01 and NY-ESO-1 96-104 on C*12:02 were new epitopes first defined in this study. Identification of the A*24:02 epitope is highly relevant for studying the Japanese population because of its high expression frequency (60%). High affinity CD8 T-cells recognizing tumor cells naturally expressing the epitopes and matched HLA were induced at a significant level. The findings suggest the usefulness of a long 20-mer NY-ESO-1f peptide harboring multiple CD8 T-cell epitopes as an NY-ESO-1 vaccine. Characterization of CD8 T-cell responses in immunomonitoring using peptide/HLA tetramers revealed that multiple CD8 T-cell responses comprised the dominant response. Copyright © 2012 UICC.

  6. CUBES: cassegrain U-band Brazil-ESO spectrograph

    NASA Astrophysics Data System (ADS)

    Barbuy, B.; Bawden Macanhan, V.; Bristow, P.; Castilho, B.; Dekker, H.; Delabre, B.; Diaz, M.; Gneiding, C.; Kerber, F.; Kuntschner, H.; La Mura, G.; Maciel, W.; Meléndez, J.; Pasquini, L.; Pereira, C. B.; Petitjean, P.; Reiss, R.; Siqueira-Mello, C.; Smiljanic, R.; Vernet, J.

    2014-11-01

    CUBES is a high-efficiency, medium-resolution ( R˜20,000) ground based UV (300-400 nm) spectrograph, to be installed in the cassegrain focus of one of ESO's VLT unit telescopes in 2017/18. The CUBES project is a joint venture between ESO and IAG/USP, and LNA/MCTI. CUBES will provide access to a wealth of new and relevant information for stellar as well as extragalactic sources. Main science cases include the study of beryllium and heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range, as well as the study of active galactic nuclei and the quasar absorption lines. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will give a significant gain in sensitivity over existing ground based medium-high resolution spectrographs, enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project including the status, science cases and a discussion of the design options.

  7. Chile.

    PubMed

    1992-05-01

    The background notes on Chile provide a statistical summary of the population, geography, government, and the economy, and more descriptive text on the history, population, government, economy, defense, and foreign relations. In brief, Chile has 13.3 million Spanish Indian (Mestizos), European, and Indian inhabitants and an annual growth rate of 1.6%. 96% are literate. Infant mortality is 18/1000. 34% of the population are involved in industry and commerce, 30% in services, 19% in agriculture and forestry and fishing, 7% in construction, and 2% in mining. The major city is Santiago. The government, which gained independence in 1810, is a republic with executive, legislative, and judicial branches. There are 12 regions. There are 6 major political parties. Suffrage is universal at 18 years. Gross domestic product (GDP) is $29.2 billion. The annual growth rate is 5% and inflation is 19%. Copper, timber, fish, iron ore, nitrates, precious metals, and molybdenum are its natural resources. Agricultural products are 9% of GDP and include wheat, potatoes, corn, sugar beets, onions, beans, fruits, and livestock. Industry is 21% of GDP and includes mineral refining, metal manufacturing, food and fish processing, paper and wood products, and finished textiles. $8.3 billion is the value of exports and $7 billion of imports. Export markets are in Japan, the US, Germany, Brazil, and the United Kingdom. Chile received $3.5 billion in economic aid between 1949-85, but little in recent years. 83% live in urban centers, principally around Santiago. Congressional representation is made on the basis of elections by a unique binomial majority system. Principal government officials are identified. Chile has a diversified free market economy and is almost self-sufficient in food production. The US is a primary trading partner. 49% of Chile's exports are minerals. Chile maintains diplomatic relations with 70 countries, however, relations are strained with Argentina and Bolivia. Relations

  8. Chile stand management for mechanical green chile harvest

    USDA-ARS?s Scientific Manuscript database

    Currently the red chile crop is mechanically harvested. Because the pods will be dehydrated before consumption, breakage and bruising of red pods is not a concern. Green chile, however, is currently hand harvested because of the fragile nature of the fruit and the need to avoid pod damage. Hand h...

  9. HATS-1b: The First Transiting Planet Discovered by the HATSouth Survey

    NASA Astrophysics Data System (ADS)

    Penev, K.; Bakos, G. Á.; Bayliss, D.; Jordán, A.; Mohler, M.; Zhou, G.; Suc, V.; Rabus, M.; Hartman, J. D.; Mancini, L.; Béky, B.; Csubry, Z.; Buchhave, L.; Henning, T.; Nikolov, N.; Csák, B.; Brahm, R.; Espinoza, N.; Conroy, P.; Noyes, R. W.; Sasselov, D. D.; Schmidt, B.; Wright, D. J.; Tinney, C. G.; Addison, B. C.; Lázár, J.; Papp, I.; Sári, P.

    2013-01-01

    We report the discovery of HATS-1b, a transiting extrasolar planet orbiting the moderately bright V = 12.05 G dwarf star GSC 6652-00186, and the first planet discovered by HATSouth, a global network of autonomous wide-field telescopes. HATS-1b has a period of P ≈ 3.4465 days, mass of Mp ≈ 1.86 M J, and radius of Rp ≈ 1.30 R J. The host star has a mass of 0.99 M ⊙ and radius of 1.04 R ⊙. The discovery light curve of HATS-1b has near-continuous coverage over several multi-day timespans, demonstrating the power of using a global network of telescopes to discover transiting planets. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), and the Australian National University (ANU). The station at Las Campanas Observatory (LCO) of the Carnegie Institute, is operated by PU in conjunction with collaborators at the Pontificia Universidad Católica de Chile (PUC), the station at the High Energy Spectroscopic Survey (HESS) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. Based in part on observations made with the Nordic Optical Telescope, operated on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based on observations made with the MPG/ESO 2.2 m Telescope at the ESO Observatory in La Silla. FEROS ID programmes: P087.A-9014(A), P088.A-9008(A), P089.A-9008(A), P087.C-0508(A). GROND ID programme: 089.A-9006(A). This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope.

  10. Tourism in Chile | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications ‹› You are here CTIO Home » Outreach » Tourism » Tourism in Chile Tourism in Chile Map of

  11. Sea & Space: a New European Educational Programme

    NASA Astrophysics Data System (ADS)

    1998-01-01

    This spring, teachers across Europe will enjoy support for exciting, novel educational projects on astronomy, navigation and environmental observations. The largely web-based and highly interactive SEA & SPACE programme makes it possible for pupils to perform field experiments and astronomical observations and to obtain and process satellite images. A contest will take the best pupils for one week to Lisbon (Portugal), to Europe's space port in Kourou (French Guyana) where the European launcher lifts off or to ESO's Very Large Telescope at the Cerro Paranal Observatory in Chile, the largest optical telescope in the world. The SEA & SPACE project is a joint initiative of the European Space Agency (ESA) , the European Southern Observatory (ESO) , and the European Association for Astronomy Education (EAAE). It builds on these organisations' several years' successful participation in the European Week for Scientific and Technological Culture organised by the European Commission that they intend to continue in 1998. The 1998 World Exhibition EXPO98 in Lisbon will focus on the oceans. This is why the umbrella theme of SEA & SPACE is concerned with the many relations between the oceans and the space that surrounds us, from ancient times to present days. Under the new programme, teaching resources are offered for three major areas, Remote Sensing of Europe's Coastal Environment, Navigation and Oceans of Water. Remote Sensing of Europe's Coastal Environment : observations of the Earth from Space are made accessible to pupils who will appreciate their usefulness through interactive image processing and field observations; Navigation : the capabilities and functioning of different navigation techniques are explored through experiments using navigation by the stars, with GPS, and via satellite images/maps; Oceans of Water : What is the role of water in Nature? How can one detect water from satellites or with telescopes? How much water is there in rivers and floods, in an ocean

  12. A Planetary Companion around a Metal-Poor Star with Extragalactic Origin

    NASA Astrophysics Data System (ADS)

    Setiawan, Johny; Klement, Rainer; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Schulze-Hartung, Tim; Rodmann, Jens

    2011-03-01

    We report the detection of a planetary companion around HIP 13044, a metal-poor star on the red Horizontal Branch. The detection is based on radial velocity observations with FEROS, a high-resolution spectrograph at the 2.2-m MPG/ESO telescope, located at ESO La Silla observatory in Chile. The periodic radial velocity variation of P = 16.2 days can be distinguished from the periods of the stellar activity indicators. We computed a minimum planetary mass of 1.25 MJup and an orbital semi-major axis of 0.116 AU for the planet. This discovery is unique in three aspects: First, it is the first planet detection around a star with a metallicity much lower than few percent of the solar value; second, the planet host star resides in a stellar evolutionary stage that is still unexplored in the exoplanet surveys; third, the star HIP 13044 belongs to one of the most significant stellar halo streams in the solar neighborhood, implying an extragalactic origin of the planetary system HIP 13044 in a disrupted former satellite of the Milky Way.

  13. VizieR Online Data Catalog: The AllWISE motion survey (AllWISE2) (Kirkpatrick+, 2016)

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. D.; Kellogg, K.; Schneider, A. C.; Fajardo-Acosta, S.; Cushing, M. C.; Greco, J.; Mace, G. N.; Gelino, C. R.; Wright, E. L.; Eisenhardt, P. R. M.; Stern, D.; Faherty, J. K.; Sheppard, S. S.; Lansbury, G. B.; Logsdon, S. E.; Martin, E. C.; McLean, I. S.; Schurr, S. D.; Cutri, R. M.; Conrow, T.

    2016-07-01

    Observations for the spectroscopic follow-up of interesting AllWISE sources are listed in Table 4. Optical follow-up was conducted with the Palomar/Double Spectrograph on the Hale 5m telescope on Palomar Mountain, California, as our primary optical spectrograph in the northern hemisphere. It was used during the UT nights of 2014 January 26, February 23/24, April 22, June 25/26, July 21, September 27, October 24, and November 15 as well as 2015 June 08, September 07, and December 10. The Boller & Chivens Spectrograph (BCSpec) on the 2.5m Irenee duPont telescope at Las Campanas Observatory, Chile, served as our primary optical spectrograph in the southern hemisphere and was used on the UT nights of 2014 April 30, May 01-04, and November 16-20. Spectra of 10 objects were obtained on the UT nights of 2014 July 03-04 and 2015 December 07-10 at the European Southern Observatory (ESO) 3.58m New Technology Telescope (NTT) at La Silla, Chile. Spectra of seven objects were obtained on the UT nights of 2014 June 26, 2015 August 13, and 2015 December 05 with the Low Resolution Imaging Spectrometer (LRIS) at the 10m W. M. Keck Observatory on Mauna Kea, Hawaii. SpeX on the NASA 3m Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, served as our primary near-infrared spectrograph in the northern hemisphere. The UT dates of observation were 2014 November 11 and 2015 January 27, May 08-09, June 27, July 03-05, and July 20. The Folded-port Infrared Echellette (FIRE) at the 6.5m Walter Baade Telescope at Las Campanas Observatory, Chile, served as our primary near-infrared spectrograph in the southern hemisphere. The UT dates of observation were 2014 August 07-09, 2015 February 08, and 2015 May 31. Several sources were also observed with the Near-Infrared Spectrometer (NIRSPEC) at the 10m W. M. Keck Observatory on Mauna Kea, Hawaii. The observation dates were UT 2014 April 12 and December 03, and 2015 July 03 and July 11. (9 data files).

  14. MHC class II/ESO tetramer-based generation of in vitro primed anti-tumor T-helper lines for adoptive cell therapy of cancer.

    PubMed

    Poli, Caroline; Raffin, Caroline; Dojcinovic, Danijel; Luescher, Immanuel; Ayyoub, Maha; Valmori, Danila

    2013-02-01

    Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO

  15. The Paranal Metamorphosis

    NASA Astrophysics Data System (ADS)

    2000-12-01

    Some years ago, the Paranal mountain was still a remote and inhospitable site, some 12 km from the Pacific Coast in the dry Atacama desert in northern Chile. Few aircraft passengers flying along that coast would notice anything particular about this peak, except perhaps that it was one of the tallest in the steep coastal mountain range. Already in the early 1960's, pioneer astronomers crossed this desolate region in search of suitable sites for future observatories. One of them, Jürgen Stock , did notice the Paranal peak as a possible candidate. However, without any water in this extremely dry area, how could any people, even hardy scientists, ever live up there? He then went on to discover La Silla, where ESO decided to build its first observatory in 1964. ESO presence at Paranal from 1983 In the beginning of the 1980's, when the main construction phase at La Silla was over, ESO launched a thorough search for the best possible site for the next-generation telescope, already then known as the "Very Large Telescope", or VLT. During this campaign, the Paranal mountain was visited by a small search troupe from this organisation, including the ESO Director General (1975 - 1987), Lo Woltjer . The first test measurements indicated a great potential for astronomical observations, both in term of clear nights and low humidity, the latter being particularly important for infrared observations. From 1983, ESO maintained a small site testing station at the top of Paranal. The meteorological conditions were registered around the clock and the atmospheric transparency and stability were recorded each night. At that time, the mountain Vizcachas, a site near ESO's first observatory, La Silla, and some 600 km further south, was also considered a possible site for the VLT. The data from the two sites were therefore carefully compared over a period of several years. Paranal becomes the site for the VLT Following the decision in December 1987 by the ESO Council to embark upon the

  16. SUZAKU OBSERVATIONS OF THE X-RAY BRIGHTEST FOSSIL GROUP ESO 3060170

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yuanyuan; White, Raymond E. III; Miller, Eric D., E-mail: ysu@crimson.ua.edu

    2013-10-01

    'Fossil' galaxy groups, each dominated by a relatively isolated giant elliptical galaxy, have many properties intermediate between groups and clusters of galaxies. We used the Suzaku X-ray observatory to observe the X-ray brightest fossil group, ESO 3060170, out to R{sub 200}, in order to better elucidate the relation between fossil groups, normal groups, and clusters. We determined the intragroup gas temperature, density, and metal abundance distributions and derived the entropy, pressure, and mass profiles for this group. The entropy and pressure profiles in the outer regions are flatter than in simulated clusters, similar to what is seen in observations ofmore » massive clusters. This may indicate that the gas is clumpy and/or the gas has been redistributed. Assuming hydrostatic equilibrium, the total mass is estimated to be ∼1.7 × 10{sup 14} M{sub ☉} within a radius R{sub 200} of ∼1.15 Mpc, with an enclosed baryon mass fraction of 0.13. The integrated iron mass-to-light ratio of this fossil group is larger than in most groups and comparable to those of clusters, indicating that this fossil group has retained the bulk of its metals. A galaxy luminosity density map on a scale of 25 Mpc shows that this fossil group resides in a relatively isolated environment, unlike the filamentary structures in which typical groups and clusters are embedded.« less

  17. The ESO Observing Programmes Committee

    NASA Astrophysics Data System (ADS)

    Westerlund, B. E.

    1982-06-01

    Since 1978 the ESO Observing Programmes Committee (OPC) has "the function to inspect and rank the proposals made for observing programmes at La Silla, and thereby to advise the Director General on the distribution of observing time". The members (one from each member country) and their alternates are nominated by the respective national committees for five-year terms (not immediately renewable). The terms are staggered so that each year one or two persons are replaced. The Chairman is appointed annually by the Council. He is invited to attend Council meetings and to report to its members.

  18. The President and the Galaxy

    NASA Astrophysics Data System (ADS)

    2004-12-01

    On December 9-10, 2004, the ESO Paranal Observatory was honoured with an overnight visit by His Excellency the President of the Republic of Chile, Ricardo Lagos and his wife, Mrs. Luisa Duran de Lagos. The high guests were welcomed by the ESO Director General, Dr. Catherine Cesarsky, ESO's representative in Chile, Mr. Daniel Hofstadt, and Prof. Maria Teresa Ruiz, Head of the Astronomy Department at the Universidad de Chile, as well as numerous ESO staff members working at the VLT site. The visit was characterised as private, and the President spent a considerable time in pleasant company with the Paranal staff, talking with and getting explanations from everybody. The distinguished visitors were shown the various high-tech installations at the observatory, including the Interferometric Tunnel with the VLTI delay lines and the first Auxiliary Telescope. Explanations were given by ESO astronomers and engineers and the President, a keen amateur astronomer, gained a good impression of the wide range of exciting research programmes that are carried out with the VLT. President Lagos showed a deep interest and impressed everyone present with many, highly relevant questions. Having enjoyed the spectacular sunset over the Pacific Ocean from the Residence terrace, the President met informally with the Paranal employees who had gathered for this unique occasion. Later, President Lagos visited the VLT Control Room from where the four 8.2-m Unit Telescopes and the VLT Interferometer (VLTI) are operated. Here, the President took part in an observing sequence of the spiral galaxy NGC 1097 (see PR Photo 35d/04) from the console of the MELIPAL telescope. After one more visit to the telescope platform at the top of Paranal, the President and his wife left the Observatory in the morning of December 10, 2004, flying back to Santiago. ESO PR Photo 35e/04 ESO PR Photo 35e/04 President Lagos Meets with ESO Staff at the Paranal Residencia [Preview - JPEG: 400 x 267pix - 144k] [Normal

  19. Fast ray-tracing algorithm for circumstellar structures (FRACS). II. Disc parameters of the B[e] supergiant CPD-57°,2874 from VLTI/MIDI data

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Bendjoya, P.; Niccolini, G.; Chesneau, O.; Borges Fernandes, M.; Carciofi, A. C.; Spang, A.; Stee, P.; Driebe, T.

    2011-01-01

    Context. B[e] supergiants are luminous, massive post-main sequence stars exhibiting non-spherical winds, forbidden lines, and hot dust in a disc-like structure. The physical properties of their rich and complex circumstellar environment (CSE) are not well understood, partly because these CSE cannot be easily resolved at the large distances found for B[e] supergiants (typically ⪆1 kpc). Aims: From mid-IR spectro-interferometric observations obtained with VLTI/MIDI we seek to resolve and study the CSE of the Galactic B[e] supergiant CPD-57° 2874. Methods: For a physical interpretation of the observables (visibilities and spectrum) we use our ray-tracing radiative transfer code (FRACS), which is optimised for thermal spectro-interferometric observations. Results: Thanks to the short computing time required by FRACS (<10 s per monochromatic model), best-fit parameters and uncertainties for several physical quantities of CPD-57° 2874 were obtained, such as inner dust radius, relative flux contribution of the central source and of the dusty CSE, dust temperature profile, and disc inclination. Conclusions: The analysis of VLTI/MIDI data with FRACS allowed one of the first direct determinations of physical parameters of the dusty CSE of a B[e] supergiant based on interferometric data and using a full model-fitting approach. In a larger context, the study of B[e] supergiants is important for a deeper understanding of the complex structure and evolution of hot, massive stars. Based on VLTI/MIDI observations collected at the European Southern Observatory (ESO), Paranal, Chile under ESO Programmes 074.D-0101 and 078.D-0213. Also based on observations at the ESO 2.2-m telescope, La Silla, Chile, under agreement with the Observatório Nacional-MCT (Brazil).Figure 5 is only available in electronic form at http://www.aanda.org

  20. The Rose-red Glow of Star Formation

    NASA Astrophysics Data System (ADS)

    2011-03-01

    play a pivotal role in astronomy: some types are invaluable for determining distances to far-off galaxies and the age of the Universe. The data for this image were selected from the ESO archive by Manu Mejias as part of the Hidden Treasures competition [2]. Three of Manu's images made the top twenty; his picture of NGC 371 was ranked sixth in the competition. Notes [1] Asteroseismology is the study of the internal structure of pulsating stars by looking at the different frequencies at which they oscillate. This is a similar approach to the study of the structure of the Earth by looking at earthquakes and how their oscillations travel through the interior of the planet. [2] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. Participants submitted nearly 100 entries and ten skilled people were awarded some extremely attractive prizes, including an all expenses paid trip for the overall winner to ESO's Very Large Telescope (VLT) on Cerro Paranal, in Chile, the world's most advanced optical telescope. The ten winners submitted a total of 20 images that were ranked as the highest entries in the competition out of the near 100 images. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three

  1. The Stars behind the Curtain

    NASA Astrophysics Data System (ADS)

    2010-02-01

    still growing into stars, newborn stars, adult stars and stars nearing the end of their life. All these stars have roughly the same age, a million years, a blink of an eye compared to our five billion year-old Sun and Solar System. The fact that some of the stars have just started their lives while others are already dying is due to their extraordinary range of masses: high-mass stars, being very bright and hot, burn through their existence much faster than their less massive, fainter and cooler counterparts. The newly released image, obtained with the FORS instrument attached to the VLT at Cerro Paranal, Chile, portrays a wide field around the stellar cluster and reveals the rich texture of the surrounding clouds of gas and dust. Notes [1] The star, NGC 3603-A1, is an eclipsing system of two stars orbiting around each other in 3.77 days. The most massive star has an estimated mass of 116 solar masses, while its companion has a mass of 89 solar masses. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in

  2. The ESO Scientific and Technical Committee.

    NASA Astrophysics Data System (ADS)

    Léna, P.

    1982-03-01

    Since 1978, the structure of ESO involves a Scientific and Technical Committee (STC) which advises the Council on scientific and technical matters. This committee meets twice a year, usually at Garehing; its members are nominated by the Council and their term is 4 years. The STC has 10 members, who are as evenly distributed as possible among member countries, although indeed mainly chosen for their scientific abilities. The chairman is invited to attend Council meetings and to report to the members.

  3. Antitumor Activity Associated with Prolonged Persistence of Adoptively Transferred NY-ESO-1c259T cells in Synovial Sarcoma.

    PubMed

    D'Angelo, Sandra P; Melchiori, Luca; Merchant, Melinda S; Bernstein, Donna B; Glod, John; Kaplan, Rosandra N; Grupp, Stephan A; Tap, William D; Chagin, Karen; Binder, Gwendolyn K; Basu, Samik; Lowther, Daniel E; Wang, Ruoxi; Bath, Natalie; Tipping, Alex; Betts, Gareth; Ramachandran, Indu; Navenot, Jean-Marc; Zhang, Hua; Wells, Daniel K; Van Winkle, Erin; Kari, Gabor; Trivedi, Trupti; Holdich, Tom; Pandite, Lini N; Amado, Rafael; Mackall, Crystal L

    2018-06-11

    We evaluated safety and activity of autologous T cells expressing NY-ESO-1c259, an affinity-enhanced T cell receptor (TCR) recognizing an HLA-A2-restricted NY-ESO-1/LAGE-1a-derived peptide, in patients with metastatic synovial sarcoma (NY-ESO-1c259T cells). Confirmed antitumor responses occurred in 50% of patients (6/12) and were characterized by tumor shrinkage over several months. Circulating NY-ESO-1c259T cells were present post-infusion in all patients and persisted for at least 6 months in all responders. Most infused NY-ESO-1c259T cells exhibited an effector memory phenotype following the ex vivo expansion, but the persisting pools comprised largely central memory and stem cell memory subsets, which remained polyfunctional and showed no evidence for T cell exhaustion despite persistent tumor burdens. Next generation sequencing of endogenous TCRs in CD8+ NY-ESO-1c259T cells revealed clonal diversity without contraction over time. These data suggest that regenerative pools of NY-ESO-1c259T cells produced a continuing supply of effector cells to mediate sustained, clinically meaningful antitumor effects. Copyright ©2018, American Association for Cancer Research.

  4. Multicentric analysis of performance after major lung resections by using the European Society Objective Score (ESOS).

    PubMed

    Brunelli, Alessandro; Varela, Gonzalo; Van Schil, Paul; Salati, Michele; Novoa, Nuria; Hendriks, Jeroen M; Jimenez, Marcelo F; Lauwers, Patrick

    2008-02-01

    Outcome endpoints are still the most widely used indicators of performance. However, they need to be risk-adjusted in order to be reliable instruments of audit. Recently, the European Society Objective Score (ESOS) was developed from the online European Thoracic Surgery Database as an audit tool. In this study, we applied for the first time the ESOS.01 to assess the performance of three European thoracic surgery units during three successive years of activity. This study is a retrospective analysis performed on prospective databases. We analysed 695 patients submitted to pneumonectomy (117) or lobectomy (578) for lung neoplasm at three European dedicated thoracic surgery units (unit A 264 patients, unit B 262, unit C 169) from January 2004 through December 2006. Qualified thoracic surgeons performed all the operations. No patients in this series were in the original ESOS development set. ESOS.01 was used to estimate the risk of in-hospital mortality in all patients. Observed and predicted mortality rates were then compared within each unit by the z-test. Cumulative observed mortality rates in units A, B and C were 2.3% (six cases), 2.7% (seven cases) and 4.1% (seven cases), respectively. We were not able to find statistically significant differences between observed and ESOS-predicted mortality rates. The comparison of risk-adjusted mortality rates between units did not show significant differences (unit A 3.9%, unit B 3.3%, unit C 5.6%). The use of ESOS.01 revealed that the performances of all units were in line with the predicted ones during each period under analysis and did not differ between each other. The results of our study warrant future efforts to refine the ESOS model and to develop other risk-adjusted outcome indicators with the aim to establish European benchmarks of performance.

  5. Irish Team Wins SEA & SPACE Super Prize

    NASA Astrophysics Data System (ADS)

    1998-09-01

    A secondary school team from Ireland has won a trip to Europe's Spaceport in Kourou, French Guyana, and to ESO's Very Large Telescope (VLT) at Cerro Paranal, Chile. The trip is the Super-Prize for the Sea & Space Newspaper Competition , organised within the framework of the European Week for Scientific and Technological Culture. ESO PR Photo 33/98 ESO PR Photo 33/98 [Preview - JPEG: 800 x 434 pix - 568k] [High-Res - JPEG: 3000 x 1627 pix - 6.7Mb] The presentation of prize certificates to the winning Irish team (right) in Lisbon, on August 31, 1998, by ESO, ESA and EAAE representatives. Stephen Kearney, Cian Wilson (both aged 16 years), Eamonn McKeogh (aged 17 years) together with their teacher, John Daly of Blackrock College in Dublin, prepared their newspaper, Infinitus , on marine and space themes, and came first in the national round of the competition. Together with other students from all over Europe, they were invited to present their winning newspaper to a jury consisting of representatives of the organisers, during a special programme of events at the Gulbenkian Planetarium and EXPO '98 in Lisbon, from 28-31 August, 1998. The Irish team scored highly in all categories of the judging, which included scientific content and originality and creativity of the articles. Their look at Irish contributions to sea and space research also proved popular in a ballot by fellow student competitors. This vote was also taken into account by the judges. The jury was very impressed by the high quality of the national entries and there were several close runners-up. The width and depth was amazing and the variety of ideas and formats presented by the sixteen teams was enormous. A poster competition was organised for younger students, aged 10 to 13 and winning entries at national level are on display at the Oceanophilia Pavilion at EXPO '98. The SEA & SPACE project is a joint initiative of the European Space Agency (ESA) , the European Southern Observatory (ESO) , and the

  6. HATS-17b: A Transiting Compact Warm Jupiter in a 16.3 Day Circular Orbit

    NASA Astrophysics Data System (ADS)

    Brahm, R.; Jordán, A.; Bakos, G. Á.; Penev, K.; Espinoza, N.; Rabus, M.; Hartman, J. D.; Bayliss, D.; Ciceri, S.; Zhou, G.; Mancini, L.; Tan, T. G.; de Val-Borro, M.; Bhatti, W.; Csubry, Z.; Bento, J.; Henning, T.; Schmidt, B.; Rojas, F.; Suc, V.; Lázár, J.; Papp, I.; Sári, P.

    2016-04-01

    We report the discovery of HATS-17b, the first transiting warm Jupiter of the HATSouth network. HATS-17b transits its bright (V = 12.4) G-type ({M}\\star = 1.131+/- 0.030 {M}⊙ , {R}\\star = {1.091}-0.046+0.070 {R}⊙ ) metal-rich ([Fe/H] = +0.3 dex) host star in a circular orbit with a period of P = 16.2546 days. HATS-17b has a very compact radius of 0.777+/- 0.056 {R}{{J}} given its Jupiter-like mass of 1.338+/- 0.065 {M}{{J}}. Up to 50% of the mass of HATS-17b may be composed of heavy elements in order to explain its high density with current models of planetary structure. HATS-17b is the longest period transiting planet discovered to date by a ground-based photometric survey, and is one of the brightest transiting warm Jupiter systems known. The brightness of HATS-17 will allow detailed follow-up observations to characterize the orbital geometry of the system and the atmosphere of the planet. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. This paper includes data gathered with the MPG 2.2 m telescope at the ESO Observatory in La Silla and with the 3.9 m AAT in Siding Spring Observatory. This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope. Based on observations taken with the HARPS spectrograph (ESO 3.6 m telescope at La Silla) under programme 097.C-0571.

  7. The VANDELS ESO spectroscopic survey

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Le Fèvre, O.; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < λ < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃ 0.2 deg2 centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.

  8. ESO Observations of New Moon of Jupiter

    NASA Astrophysics Data System (ADS)

    2000-08-01

    distance of 24.2 million kilometres from the planet. The nature of S/1999 J 1 This means that S/1999 J 1 belongs to the class of "irregular satellites" which move on non-circular and inclined orbits around the planet. They are believed to have been captured onto their current orbits after the planet was formed. S/1999 J 1 is one of the outermost moons of Jupiter known so far. The eight previously-known "irregular satellites" are split into two groups of four. The four members of the more distant group (Ananke, Carme, Pasiphae and Sinope) move on retrograde orbits, i.e. clockwise as seen from above the solar system (opposite to the motion of all major planets, including the Earth). The newly improved orbit of S/1999 J 1 shows it to be a fifth member of this retrograde cluster. The brightness of S/1999 J 1 , as measured on the VLT images, indicates that it must be comparatively small, with a diameter of the order of 10 - 15 kilometres (the smallest Jovian moon known so far). However, an accurate value can only be deduced once the reflectivity of its surface is known. The colour is very slightly red. This appears to favour the possibility that it is a captured asteroid (minor planet), rather than a cometary nucleus, but additional work is needed to cast more light on this. When more observations of S/1999 J 1 become available, the discoverers will propose a name, from Greek mythology according to astronomical tradition, to be approved by the IAU Working Group for Planetary System Nomenclature. This is the caption to ESO PR Photos 19a-b/00 . They may be reproduced, if credit is given to the European Southern Observatory.

  9. Astro Chile | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  10. The Gaia-ESO Survey: Structural and dynamical properties of the young cluster Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Sacco, G. G.; Spina, L.; Randich, S.; Palla, F.; Parker, R. J.; Jeffries, R. D.; Jackson, R.; Meyer, M. R.; Mapelli, M.; Lanzafame, A. C.; Bonito, R.; Damiani, F.; Franciosini, E.; Frasca, A.; Klutsch, A.; Prisinzano, L.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.; Alfaro, E. J.; Micela, G.; Prusti, T.; Barrado, D.; Biazzo, K.; Bouy, H.; Bravi, L.; Lopez-Santiago, J.; Wright, N. J.; Bayo, A.; Gilmore, G.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Pancino, E.; Casey, A. R.; Costado, M. T.; Donati, P.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    the level of mass segregation ΛMSR of the cluster. The comparison between these structural properties and the results of N-body simulations suggests that the cluster formed in a low-density environment, in virial equilibrium or a supervirial state, and highly substructured. This work is one of the last ones carried out with the help and support of our friend and colleague Francesco Palla, who passed away on 26 January 2016.Full Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A97Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey).

  11. ESDIS Standards Office (ESO): Requirements, Standards and Practices

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Mcinerney, Mark Allen; Enloe, Yonsok K.; Conover, Helen T.; Doyle, Allan

    2016-01-01

    The ESDIS Standards Office assists the ESDIS Project in formulating standards policy for NASA Earth Science Data Systems (ESDS), coordinates standards activities within ESDIS, and provides technical expertise and assistance with standards related tasks within the NASA Earth Science Data System Working Groups (ESDSWG). This poster summarizes information found on the earthdata.nasa.gov site that describes the ESO.

  12. The Gaia-ESO Survey: the present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters

    NASA Astrophysics Data System (ADS)

    Spina, L.; Randich, S.; Magrini, L.; Jeffries, R. D.; Friel, E. D.; Sacco, G. G.; Pancino, E.; Bonito, R.; Bravi, L.; Franciosini, E.; Klutsch, A.; Montes, D.; Gilmore, G.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Frasca, A.; Hourihane, A.; Jofré, P.; Lewis, J.; Lind, K.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey).Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A70

  13. ESO 50th Anniversary Gala Dinner

    NASA Astrophysics Data System (ADS)

    Sirey, R.

    2012-12-01

    To formally mark the 50th anniversary of the signing of the ESO Convention, a gala dinner was held in the Munich Residenz. A brief report of the event is presented and the speeches are reproduced. The speakers were the President of the Council, Xavier Barcons; the German Minister for Education and Research, Prof. Dr Annette Schavan; the Bavarian State Minister for Science, Research and the Arts, Dr Wolfgang Heubisch; physics Nobel Laureate, Brian Schmidt; the current Director General, Tim de Zeeuw and the Chilean Minister of Foreign Affairs, Alfredo Moreno Charme.

  14. Nobeyama Radio Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nobeyama Radio Observatory has telescopes at millimeter and submillimeter wavelengths. It was established in 1982 as an observatory of Tokyo Astronomical Observatory (NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN since 1987), and operates the 45 m telescope, Nobeyama Millimeter Array, and Radioheliograph. High-resolution images of star forming regions and molecular clouds have revealed many aspects of...

  15. Europe Agrees on Common Strategy to Initiate Study of LSA/MMA

    NASA Astrophysics Data System (ADS)

    1998-09-01

    strong involvement in millimetre astronomy: the 5 x 15-m IRAM array on Plateau de Bure (France), the 30-m IRAM antenna (Spain), the 20-m at Onsala (Sweden), the 15-m Swedish-ESO Submillimetre Telescope (SEST, La Silla), the 15-m JCMT (Mauna Kea, Hawaii), the 10-m HHT (Arizona), and others. Over 60 research institutes around Europe use these facilities. Many of them have developed technical expertise and leadership in this area together with European industry, so it is natural that a European collaboration should be looking to the future. The idea of a large European southern millimetre array has been discussed since 1991. In 1995, an LSA Project collaboration was established between ESO, the Institut de Radio Astronomie Millimetrique (IRAM), the Onsala Space Observatory, and the Netherlands Foundation for Research in Astronomy (NFRA). This consortium of observatories agreed to pool resources to study critical technical areas and conduct site surveys in Chile. Details are available in a Messenger article (March 98). Possibilities of intercontinental collaboration An important step was taken in June 1997. A similar project is under study in the United States of America (the "Millimeter Array", MMA ). An agreement was entered into between ESO and the U.S. National Radio Astronomy Observatory (NRAO) to explore the possibility of merging the two projects into one. Until then the emphasis in Europe had been on the large collecting area provided by 16-m antennas operating at purely millimetre wavelengths, while in the U.S. the concept was a smaller array of 8-m antennas with good submillimetre performance. However, as there is also considerable interest in Europe in submillimetre observations, and in the U.S. in a larger collecting area, a compromise seemed feasible. Several joint working groups formed under the ESO-NRAO agreement were set up to explore the possibility of a collaborative project. It was concluded that a homogeneous array of 64 x 12-m antennas, providing

  16. Adjuvant NY-ESO-1 vaccine immunotherapy in high-risk resected melanoma: a retrospective cohort analysis.

    PubMed

    Lattanzi, Michael; Han, Joseph; Moran, Una; Utter, Kierstin; Tchack, Jeremy; Sabado, Rachel Lubong; Berman, Russell; Shapiro, Richard; Huang, Hsin-Hui; Osman, Iman; Bhardwaj, Nina; Pavlick, Anna C

    2018-05-18

    Cancer-testis antigen NY-ESO-1 is a highly immunogenic melanoma antigen which has been incorporated into adjuvant vaccine clinical trials. Three such early-phase trials were conducted at our center among patients with high-risk resected melanoma. We herein report on the pooled long-term survival outcomes of these patients in comparison to historical controls. All melanoma patients treated at NYU Langone Health under any of three prospective adjuvant NY-ESO-1 vaccine trials were retrospectively pooled into a single cohort. All such patients with stage III melanoma were subsequently compared to historical control patients identified via a prospective institutional database with protocol-driven follow-up. Survival times were calculated using the Kaplan-Meier method, and Cox proportional hazard models were employed to identify significant prognostic factors and control for confounding variables. A total of 91 patients were treated with an NY-ESO-1 vaccine for the treatment of high-risk resected melanoma. Of this group, 67 patients were stage III and were selected for comparative analysis with 123 historical control patients with resected stage III melanoma who received no adjuvant therapy. Among the pooled vaccine cohort (median follow-up 61 months), the estimated median recurrence-free survival was 45 months, while the median overall survival was not yet reached. In the control cohort of 123 patients (median follow-up 30 months), the estimated median recurrence-free and overall survival were 22 and 58 months, respectively. Within the retrospective stage III cohort, NY-ESO-1 vaccine was associated with decreased risk of recurrence (HR = 0.56, p < 0.01) and death (HR = 0.51, p = 0.01). Upon controlling for sub-stage, the adjuvant NY-ESO-1 clinical trial cohort continued to exhibit decreased risk of recurrence (HR = 0.45, p < 0.01) and death (HR = 0.40, p < 0.01). In this small retrospective cohort of resected stage III melanoma

  17. The Drama of Starbirth - new-born stars wreak havoc in their nursery

    NASA Astrophysics Data System (ADS)

    2011-03-01

    enhanced-colour picture [3] was created from images taken using the FORS1 instrument on ESO's Very Large Telescope. Images were taken through two different filters that isolate the light coming from glowing hydrogen (shown as orange) and glowing ionised sulphur (shown as blue). The different colours in different parts of this violent star formation region reflect different conditions - for example where ionised sulphur is glowing brightly (blue features) the velocities of the colliding material are relatively low - and help astronomers to unravel what is going on in this dramatic scene. Notes [1] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. Participants submitted nearly 100 entries and ten skilled people were awarded some extremely attractive prizes, including an all expenses paid trip for the overall winner to ESO's Very Large Telescope (VLT) on Cerro Paranal, in Chile, the world's most advanced optical telescope. The ten winners submitted a total of 20 images that were ranked as the highest entries in the competition out of the near 100 images. [2] The astronomers George Herbig and Guillermo Haro were not the first to see one of the objects that now bear their names, but they were the first to study the spectra of these strange objects in detail. They realised that they were not just clumps of gas and dust that reflected light, or glowed under the influence of the ultraviolet light from young stars, but were a new class of objects associated with ejected material in star formation regions. [3] Both the ionised sulphur and hydrogen atoms in this nebula emit red light. To differentiate between them in this image the sulphur emission has been coloured blue. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most

  18. MDM Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    MDM Observatory was founded by the University of Michigan, Dartmouth College and the Massachusetts Institute of Technology. Current operating partners include Michigan, Dartmouth, MIT, Ohio State University and Columbia University. The observatory is located on the southwest ridge of the KITT PEAK NATIONAL OBSERVATORY near Tucson, Arizona. It operates the 2.4 m Hiltner Telescope and the 1.3 m McG...

  19. WIYN Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Located at Kitt Peak in Arizona. The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, Yale University and the National Optical Astronomy Observatories (NOAO). Most of the capital costs of the observatory were provided by these universities, while NOAO, which operates the other telescopes of the KITT PEAK NATIONAL OBS...

  20. Private Observatories in South Africa

    NASA Astrophysics Data System (ADS)

    Rijsdijk, C.

    2016-12-01

    Descriptions of private observatories in South Africa, written by their owners. Positions, equipment descriptions and observing programmes are given. Included are: Klein Karoo Observatory (B. Monard), Cederberg Observatory (various), Centurion Planetary and Lunar Observatory (C. Foster), Le Marischel Observatory (L. Ferreira), Sterkastaaing Observatory (M. Streicher), Henley on Klip (B. Fraser), Archer Observatory (B. Dumas), Overbeek Observatory (A. Overbeek), Overberg Observatory (A. van Staden), St Cyprian's School Observatory, Fisherhaven Small Telescope Observatory (J. Retief), COSPAR 0433 (G. Roberts), COSPAR 0434 (I. Roberts), Weltevreden Karoo Observatory (D. Bullis), Winobs (M. Shafer)

  1. ALMA to Help Solving Acute Mountain Sickness Mystery

    NASA Astrophysics Data System (ADS)

    2007-04-01

    , family and social isolation, commuting, intermittent high altitude exposure and other environmental challenges such as low temperatures. "An adequate acclimatisation to 2500m altitude requires around two weeks, and we can thus speculate that going to 5000m would require more than one month to achieve complete acclimatisation," said Professor Juan Silva Urra, from the University of Antofagasta. However, short and long term effects of regular commuting between sea level and high altitude have scarcely been studied in biomedical terms. Scientifically based guidelines for appropriate preventive handling and care under these conditions are lacking and the new study will help bridging this gap. Among the studies to be done, some involve continuous monitoring of the human body through portable devices, including measurements of hormone levels and application of psychometric tests. All measurements at 5000m will be carried out on a voluntary basis, under strict safety protocols, with the presence of a doctor from the investigation team, paramedic personnel form ALMA and an ambulance. The symptoms of Acute Mountain Sickness are headache, sicknesses, gastrointestinal inconveniences, fatigue and insomnia that, depending on their intensities, decrease the capacity to carry out the most routine activities. The valuable data collected will enhance our knowledge of human physiology in extreme environments, generating recommendations that will improve wellbeing and health not only in high-altitude observatories, but also in mining and Antarctic personnel. "We are pleased that ALMA is contributing to other disciplines, like medicine, even before the antennas begin to explore the universe," said Felix Mirabel, ESO's representative in Chile. "This outstanding long-term research that will provide crucial information of human physiology to experts worldwide, has been made possible thanks to the combined effort of Chilean and European universities, in collaboration with ALMA". The Atacama

  2. Brightness Variations of Sun-like Stars: The Mystery Deepens - Astronomers facing Socratic "ignorance"

    NASA Astrophysics Data System (ADS)

    2009-12-01

    Astrophysics, Australia National University), Maria-Rosa L. Cioni (Centre for Astrophysics Research, University of Hertfordshire, UK) and Igor Soszyński (Warsaw University Observatory). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  3. How government can support protection of “dark skies” as a public policy: the experience of Chile

    NASA Astrophysics Data System (ADS)

    Rodriguez, Gabriel

    2015-08-01

    For more than fifty years Chile has been the host of world-leading optical and radio astronomical observatories because of the exceptional atmospheric conditions and the existence of isolated areas in the northern desert regions. As of today, Chile, through agreements with foreign governments and international research institutions around the world concentrates almost 30% of the total radio and optical observation capabilities of the planet, scattered in different sites. With the new projects already planned or in construction, the country will be the host of almost 70% of the total world-wide observational facilities by 2021-2022Since the beginning of the astronomical research activities in Chile, the government has played an increasing role in attracting and facilitating the installation of these projects. The presentation shows how the relationship between the government and international consortia has evolved with special reference to designing policies to protect “dark skies” and to manage the relationship between the observations sites, the local productive activities to be developed in the same areas, mainly mining and energy, and the relationship with local communities and aboriginal populations and traditions. Special reference will be made to recent initiatives connected with World Heritage program of UNESCO, new laws and regulations and public awareness and education.

  4. ALMA Observatory Equipped with its First Antenna

    NASA Astrophysics Data System (ADS)

    2008-12-01

    High in the Atacama region of northern Chile one of the world’s most advanced telescopes has just passed a major milestone. The first of many state-of-the-art antennas has been handed over to the Atacama Large Millimeter/submillimeter Array (ALMA) project. ALMA is being built by a global partnership whose North American partners are led by the National Radio Astronomy Observatory (NRAO). With ALMA, astronomers will study the cool Universe, the molecular gas and tiny dust grains from which stars, planetary systems, galaxies and even life are formed. ALMA will provide new, much-needed insights into the formation of stars and planets, and will reveal distant galaxies in the early Universe, which we see as they were over ten billion years ago. ALMA will initially comprise 66 high-precision antennas, with the option to expand in the future. There will be an array of fifty 12-meter diameter antennas, acting together as a single giant telescope, and a compact array composed of 7-meter and 12-meter antennas. The first 12-meter antenna to be handed over to the observatory was built by Mitsubishi Electric Corporation for the National Astronomical Observatory of Japan, one of the ALMA partners. It will shortly be joined by North American and European antennas. “Our Japanese colleagues have produced this state-of-the-art antenna to exacting specifications. We are very excited about the handover because now we can fully equip this antenna for scientific observations,” said Thijs de Graauw, ALMA Director. Antennas arriving at the ALMA site undergo a series of tests to ensure that they meet the strict requirements of the telescope. The antennas have surfaces accurate to less than the thickness of a human hair, and can be pointed precisely enough to pick out a golf ball at a distance of 9 miles. “The handover of the first Japanese antenna is the crowning achievement of the ALMA Project to date,” said Adrian Russell, the North American ALMA Project Director at NRAO. The

  5. Therapeutical solutions for non-malignant eso-bronchial fistulas

    PubMed Central

    Galie, N; Grigorie, V

    2009-01-01

    We assessed the efficacy of surgical treatment for the patients with eso-respiratory fistulas. The following cases revealed the anesthesic and surgical difficulties, and also intraoperative and postoperative complications that can occur when the esophageal contents get into the respiratory system. In these situations, therapy must be adapted according to fistula’s topography and etiology, and also to patients’ biological conditions. PMID:20108499

  6. Green Chile Pepper Harvest Mechanization

    USDA-ARS?s Scientific Manuscript database

    Pungent green chile (genus /Capsicum/, also spelled chili) is a large, fragile fruit growing on berry shrubs. Chile is harvested by hand to maximize yields and minimize fruit damage. Labor for hand harvesting chile is increasingly costly and difficult to obtain. Harvest mechanization is viewed as...

  7. First two ALMA antennas successfully linked

    NASA Astrophysics Data System (ADS)

    2009-05-01

    Scientists and engineers working on the world's largest ground-based astronomical project, the Atacama Large Millimeter/submillimeter Array (ALMA), have achieved another milestone -- the successful linking of two ALMA astronomical antennas, synchronised with a precision of one millionth of a millionth of a second -- to observe the planet Mars. ALMA is under construction by an international partnership in the Chilean Andes. ESO PR Photo 18a/09 The two ALMA antennas On 30 April, the team observed the first "interferometric fringes" of an astronomical source by linking two 12-metre diameter ALMA antennas, together with the other critical parts of the system. Mars was chosen as a suitable target for the observations, which demonstrate ALMA's full hardware functionality and connectivity. This important milestone was achieved at the ALMA Operations Support Facility, high in Chile's Atacama region, at an altitude of 2900 metres. "We're very proud and excited to have made this crucial observation, as it proves that the various hardware components work smoothly together. This brings us another step closer to full operations for ALMA as an astronomical observatory," says Wolfgang Wild, the European ALMA Project Manager. The two antennas used in this test will be part of ALMA's array of 66 giant 12-metre and 7-metre diameter antennas that will observe in unison as a single giant telescope, under construction on the Chajnantor plateau above the Operations Support Facility, at an altitude of 5000 metres. ALMA will operate as an interferometer, capturing millimetre and submillimetre wavelength signals from the sky with multiple antennas, and combining them to create extremely high resolution images, similar to those that would be obtained by a single, giant antenna with a diameter equal to the distance between the antennas used. "This can only be achieved with the perfect synchronisation of the antennas and the electronic equipment: a precision much better than one millionth of

  8. Europe, Japan and North America Prepare for Joint Construction of the Giant Radio Telescope "ALMA" in Chile

    NASA Astrophysics Data System (ADS)

    2001-04-01

    our own Galaxy, ALMA will study the morphology, the motions and the chemistry of dust-enshrouded regions where stars and planets are being formed. ALMA will shed light on these optically `dark' celestial regions that carry key information on the origin of the richness of structure in the Universe and clues to the origin of life. ALMA is a merger of three large projects - The Millimeter Array (MMA) of the United States, the Large Southern Array (LSA) of Europe, and the Large Millimeter and Submillimeter Array (LMSA) of Japan - each of which has been endorsed as the top-priority project in their respective astronomical communities. The European and North American projects were merged into ALMA in 1999 and joint design and development of ALMA began at that time. The National Research Council of Canada is participating with the U.S. in the project. With Japan joining the project as a third partner equal with North America and Europe, and with Chile also taking part, ALMA has become one of the first truly global projects in the history of fundamental science. In the agreement signed today, the partners pledge to use their best efforts to obtain full approval and funding for their participation in ALMA. With the schedule planned, the telescope should be in full operation in 2010. Note [1]: This Press Release is issued jointly by ESO for its members plus UK and Spain, by the National Astronomical Observatory of Japan (NAOJ), by the US National Science Foundation (NSF) and by CONICYT in Chile. The embargo period coincides with a Press Conference by the partners in Tokyo (Japan). Links to earlier Press Releases etc. about ALMA are found on the dedicated webpage.

  9. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    NASA Astrophysics Data System (ADS)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  10. Opening up a Colourful Cosmic Jewel Box

    NASA Astrophysics Data System (ADS)

    2009-10-01

    The combination of images taken by three exceptional telescopes, the ESO Very Large Telescope on Cerro Paranal , the MPG/ESO 2.2-metre telescope at ESO's La Silla observatory and the NASA/ESA Hubble Space Telescope, has allowed the stunning Jewel Box star cluster to be seen in a whole new light. Star clusters are among the most visually alluring and astrophysically fascinating objects in the sky. One of the most spectacular nestles deep in the southern skies near the Southern Cross in the constellation of Crux. The Kappa Crucis Cluster, also known as NGC 4755 or simply the "Jewel Box" is just bright enough to be seen with the unaided eye. It was given its nickname by the English astronomer John Herschel in the 1830s because the striking colour contrasts of its pale blue and orange stars seen through a telescope reminded Herschel of a piece of exotic jewellery. Open clusters [1] such as NGC 4755 typically contain anything from a few to thousands of stars that are loosely bound together by gravity. Because the stars all formed together from the same cloud of gas and dust their ages and chemical makeup are similar, which makes them ideal laboratories for studying how stars evolve. The position of the cluster amongst the rich star fields and dust clouds of the southern Milky Way is shown in the very wide field view generated from the Digitized Sky Survey 2 data. This image also includes one of the stars of the Southern Cross as well as part of the huge dark cloud of the Coal Sack [2]. A new image taken with the Wide Field Imager (WFI) on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile shows the cluster and its rich surroundings in all their multicoloured glory. The large field of view of the WFI shows a vast number of stars. Many are located behind the dusty clouds of the Milky Way and therefore appear red [3]. The FORS1 instrument on the ESO Very Large Telescope (VLT) allows a much closer look at the cluster itself. The telescope's huge mirror

  11. My Visit to La Silla

    NASA Astrophysics Data System (ADS)

    Muller, A.

    1988-09-01

    The Director General of ESO, Harry van der Laan, invited me to La Silla as consultant during the realuminization and the optical trimming of the ESO Schmidt telescope. I was very happy with this invitation because it gave me an opportunity not only to spend some time at the Schmidt, but also to meet with many friends in Chile. At La Silla I had the good luck to meet Richard West who suggested to me to write a short contribution for the Messenger about my stay in Chile which I have done with pleasure.

  12. ESO adaptive optics facility progress report

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-Francois; Hackenberg, Wolfgang; Kuntschner, Harald; Jochum, Lieselotte; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose A.; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Robert; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andreas; Duchateau, Michel; Downing, Mark; Moreno, Javier R.; Dorn, Reinhold; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan M.; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Maximilian; Pfrommer, Thomas; Biasi, Roberto; Gallieni, Daniele; Bechet, Clementine; Stuik, Remko

    2012-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train. The project has completed the procurement phase and several large structures have been delivered to Garching (Germany) and are being integrated (the AO modules GRAAL and GALACSI and the ASSIST test bench). The 4LGSF Laser (TOPTICA) has undergone final design review and a pre-production unit has been built and successfully tested. The Deformable Secondary Mirror is fully integrated and system tests have started with the first science grade thin shell mirror delivered by SAGEM. The integrated modules will be tested in stand-alone mode in 2012 and upon delivery of the DSM in late 2012, the system test phase will start. A commissioning strategy has been developed and will be updated before delivery to Paranal. A substantial effort has been spent in 2011-2012 to prepare the unit telescope to receive the AOF by preparing the mechanical interfaces and upgrading the cooling and electrical network. This preparation will also simplify the final installation of the facility on the telescope. A lot of attention is given to the system calibration, how to record and correct any misalignment and control the whole facility. A plan is being developed to efficiently operate the AOF after commissioning. This includes monitoring a relevant set of atmospheric parameters for scheduling and a Laser Traffic control system to assist the operator during the night and help/support the observing block preparation.

  13. Forty Years at ESO - Bernard Delabre and Optical Designs

    NASA Astrophysics Data System (ADS)

    de Zeeuw, T.; Lévêque, S.; Pasquini, L.; Péron, M.; Spyromilio, J.

    2017-09-01

    The optical designer Bernard Delabre has retired from ESO after 40 years at the forefront of telescope and instrument optics. A short overview of his achievements and his legacy of astronomical telescopes and instrumenta-tion is presented. Bernard Delabre was awarded the 2017 Tycho Brahe Prize by the European Astronomical Society.

  14. NY-ESO-1 antigen-reactive T cell receptors exhibit diverse therapeutic capability

    PubMed Central

    Sommermeyer, Daniel; Conrad, Heinke; Krönig, Holger; Gelfort, Haike; Bernhard, Helga; Uckert, Wolfgang

    2013-01-01

    The cancer-testis antigen NY-ESO-1 has been used as a target for different immunotherapies like vaccinations and adoptive transfer of antigen-specific cytotoxic T cells, as it is expressed in various tumor types and has limited expression in normal cells. The in vitro generation of T cells with defined antigen specificity by T cell receptor (TCR) gene transfer is an established method to create cells for immunotherapy. However, an extensive characterization of TCR which are candidates for treatment of patients is crucial for successful therapies. The TCR has to be efficiently expressed, their affinity to the desired antigen should be high enough to recognize low amounts of endogenously processed peptides on tumor cells, and the TCR should not be cross-reactive to other antigens. We characterized three NY-ESO-1 antigen-reactive cytotoxic T lymphocyte clones which were generated by different approaches of T cell priming (autologous, allogeneic), and transferred their TCR into donor T cells for more extensive evaluations. Although one TCR most efficiently bound MHC-multimers loaded with NY-ESO-1 peptide, T cells expressing this transgenic TCR were not able to recognize endogenously processed antigen. A second TCR recognized HLA-A2 independent of the bound peptide beside its much stronger recognition of NY-ESO-1 bound to HLA-A2. A third TCR displayed an intermediate but peptide-specific performance in all functional assays and, therefore, is the most promising candidate TCR for further clinical development. Our data indicate that multiple parameters of TCR gene-modified T cells have to be evaluated to identify an optimal TCR candidate for adoptive therapy. PMID:22907642

  15. Metal-poor Stars Observed with the Magellan Telescope. II. Discovery of Four Stars with [Fe/H] <= -3.5

    NASA Astrophysics Data System (ADS)

    Placco, Vinicius M.; Frebel, Anna; Beers, Timothy C.; Christlieb, Norbert; Lee, Young Sun; Kennedy, Catherine R.; Rossi, Silvia; Santucci, Rafael M.

    2014-01-01

    We report on the discovery of seven low-metallicity stars selected from the Hamburg/ESO Survey, six of which are extremely metal-poor (EMP, [Fe/H] <= -3.0), with four having [Fe/H] <= -3.5. Chemical abundances or upper limits are derived for these stars based on high-resolution (R ~ 35,000) Magellan/MIKE spectroscopy, and are in general agreement with those of other very and extremely metal-poor stars reported in the literature. Accurate metallicities and abundance patterns for stars in this metallicity range are of particular importance for studies of the shape of the metallicity distribution function of the Milky Way's halo system, in particular for probing the nature of its low-metallicity tail. In addition, taking into account suggested evolutionary mixing effects, we find that six of the program stars (with [Fe/H] <= -3.35) possess atmospheres that were likely originally enriched in carbon, relative to iron, during their main-sequence phases. These stars do not exhibit overabundances of their s-process elements, and hence may be, within the error bars, additional examples of the so-called CEMP-no class of objects. Based on observations gathered with: The 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; the Southern Astrophysical Research (SOAR) telescope (SO2011B-002), which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); and the New Technology Telescope (NTT) of the European Southern Observatory (088.D-0344A), La Silla, Chile.

  16. Pulsating Star Mystery Solved

    NASA Astrophysics Data System (ADS)

    2010-11-01

    By discovering the first double star where a pulsating Cepheid variable and another star pass in front of one another, an international team of astronomers has solved a decades-old mystery. The rare alignment of the orbits of the two stars in the double star system has allowed a measurement of the Cepheid mass with unprecedented accuracy. Up to now astronomers had two incompatible theoretical predictions of Cepheid masses. The new result shows that the prediction from stellar pulsation theory is spot on, while the prediction from stellar evolution theory is at odds with the new observations. The new results, from a team led by Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), appear in the 25 November 2010 edition of the journal Nature. Grzegorz Pietrzyński introduces this remarkable result: "By using the HARPS instrument on the 3.6-metre telescope at ESO's La Silla Observatory in Chile, along with other telescopes, we have measured the mass of a Cepheid with an accuracy far greater than any earlier estimates. This new result allows us to immediately see which of the two competing theories predicting the masses of Cepheids is correct." Classical Cepheid Variables, usually called just Cepheids, are unstable stars that are larger and much brighter than the Sun [1]. They expand and contract in a regular way, taking anything from a few days to months to complete the cycle. The time taken to brighten and grow fainter again is longer for stars that are more luminous and shorter for the dimmer ones. This remarkably precise relationship makes the study of Cepheids one of the most effective ways to measure the distances to nearby galaxies and from there to map out the scale of the whole Universe [2]. Unfortunately, despite their importance, Cepheids are not fully understood. Predictions of their masses derived from the theory of pulsating stars are 20-30% less than predictions from the theory of the

  17. Which Observatories have the Clearest Skies? A Comparative Analysis of 2004 as Seen by the Night Sky Live Global Network of CONCAMs

    NASA Astrophysics Data System (ADS)

    Pereira, W. E.; Muzzin, V.; Merlo, M.; Shamir, L.; Nemiroff, R. J.; Night Sky Live Collaboration

    2004-12-01

    Nearly identical fisheye CONCAMs are now deployed at many major observatories as part of the Night Sky Live (NSL) global network and return real-time data to http://NightSkyLive.net . Combined, these images create a unique ability to assess and compare the relative ground-truth clarity of the skies above these observatories every few minutes. To this end, data and images from CONCAMs are used to estimate the fraction of time that stars are detectable in at least half the sky for each month of 2004. This preliminary comparison was done by visual inspection of on-line archived CONCAM images. Sites involved include Mauna Kea (Hawaii), Haleakala (Hawaii), Siding Spring (Australia), Canary Islands (Spain), Kitt Peak (Arizona), Cerro Pachon (Chile), Wise (Israel), and Sutherland (South Africa).

  18. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  19. Shedding Light on the Cosmic Skeleton

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  20. First Temperate Exoplanet Sized Up

    NASA Astrophysics Data System (ADS)

    2010-03-01

    exoplanets, the planet has a temperate climate. The temperature of its gaseous surface is expected to be between 160 degrees and minus twenty degrees Celsius, with minimal variations between day and night. The exact value depends on the possible presence of a layer of highly reflective clouds. The CoRoT satellite, operated by the French space agency CNES [3], identified the planet after 145 days of observations during the summer of 2008. Observations with the very successful ESO exoplanet hunter - the HARPS instrument attached to the 3.6-metre ESO telescope at La Silla in Chile - allowed the astronomers to measure its mass, confirming that Corot-9b is indeed an exoplanet, with a mass about 80% the mass of Jupiter. This finding is being published in this week's edition of the journal Nature. Notes [1] A planetary transit occurs when a celestial body passes in front of its host star and blocks some of the star's light. This type of eclipse causes changes in the apparent brightness of the star and enables the planet's diameter to be measured. Combined with radial velocity measurements made by the HARPS spectrograph, it is also possible to deduce the mass and, hence, the density of the planet. It is this combination that allows astronomers to study this object in great detail. The fact that it is transiting - but nevertheless not so close to its star to be a "hot Jupiter" - is what makes this object uniquely well suited for further studies. [2] Temperate gas giants are, so far, the largest known group of exoplanets discovered. [3] The CoRoT (Convection, Rotation and Transits) space telescope was constructed by CNES, with contributions from Austria, Germany, Spain, Belgium, Brazil and the European Space Agency (ESA). It was specifically designed to detect transiting exoplanets and carry out seismological studies of stars. Its results are supplemented by observations with several ground-based telescopes, among them the IAC-80 (Teide Observatory), the Canada France Hawaii Telescope

  1. Observatories and Telescopes of Modern Times

    NASA Astrophysics Data System (ADS)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  2. Immunohistochemical assessment of NY-ESO-1 expression in esophageal adenocarcinoma resection specimens.

    PubMed

    Hayes, Stephen J; Hng, Keng Ngee; Clark, Peter; Thistlethwaite, Fiona; Hawkins, Robert E; Ang, Yeng

    2014-04-14

    To assess NY-ESO-1 expression in a cohort of esophageal adenocarcinomas. A retrospective search of our tissue archive for esophageal resection specimens containing esophageal adenocarcinoma was performed, for cases which had previously been reported for diagnostic purposes, using the systematised nomenclature of human and veterinary medicine coding system. Original haematoxylin and eosin stained sections were reviewed, using light microscopy, to confirm classification and tumour differentiation. A total of 27 adenocarcinoma resection specimens were then assessed using immunohistochemistry for NY-ESO-1 expression: 4 well differentiated, 14 moderately differentiated, 4 moderate-poorly differentiated, and 5 poorly differentiated. Four out of a total of 27 cases of esophageal adenocarcinoma examined (15%) displayed diffuse cytoplasmic and nuclear expression for NY-ESO-1. They displayed a heterogeneous and mosaic-type pattern of diffuse staining. Diffuse cytoplasmic staining was not identified in any of these structures: stroma, normal squamous epithelium, normal submucosal gland and duct, Barrett's esophagus (goblet cell), Barrett's esophagus (non-goblet cell) and high grade glandular dysplasia. All adenocarcinomas showed an unexpected dot-type pattern of staining at nuclear, paranuclear and cytoplasmic locations. Similar dot-type staining, with varying frequency and size of dots, was observed on examination of Barrett's metaplasia, esophageal submucosal gland acini and the large bowel negative control, predominantly at the crypt base. Furthermore, a prominent pattern of apical (luminal) cytoplasmic dot-type staining was observed in some cases of Barrett's metaplasia and also adenocarcinoma. A further morphological finding of interest was noted on examination of haematoxylin and eosin stained sections, as aggregates of lymphocytes were consistently noted to surround submucosal glands. We have demonstrated for the first time NY-ESO-1 expression by esophageal

  3. Immunohistochemical assessment of NY-ESO-1 expression in esophageal adenocarcinoma resection specimens

    PubMed Central

    Hayes, Stephen J; Hng, Keng Ngee; Clark, Peter; Thistlethwaite, Fiona; Hawkins, Robert E; Ang, Yeng

    2014-01-01

    AIM: To assess NY-ESO-1 expression in a cohort of esophageal adenocarcinomas. METHODS: A retrospective search of our tissue archive for esophageal resection specimens containing esophageal adenocarcinoma was performed, for cases which had previously been reported for diagnostic purposes, using the systematised nomenclature of human and veterinary medicine coding system. Original haematoxylin and eosin stained sections were reviewed, using light microscopy, to confirm classification and tumour differentiation. A total of 27 adenocarcinoma resection specimens were then assessed using immunohistochemistry for NY-ESO-1 expression: 4 well differentiated, 14 moderately differentiated, 4 moderate-poorly differentiated, and 5 poorly differentiated. RESULTS: Four out of a total of 27 cases of esophageal adenocarcinoma examined (15%) displayed diffuse cytoplasmic and nuclear expression for NY-ESO-1. They displayed a heterogeneous and mosaic-type pattern of diffuse staining. Diffuse cytoplasmic staining was not identified in any of these structures: stroma, normal squamous epithelium, normal submucosal gland and duct, Barrett’s esophagus (goblet cell), Barrett’s esophagus (non-goblet cell) and high grade glandular dysplasia. All adenocarcinomas showed an unexpected dot-type pattern of staining at nuclear, paranuclear and cytoplasmic locations. Similar dot-type staining, with varying frequency and size of dots, was observed on examination of Barrett’s metaplasia, esophageal submucosal gland acini and the large bowel negative control, predominantly at the crypt base. Furthermore, a prominent pattern of apical (luminal) cytoplasmic dot-type staining was observed in some cases of Barrett’s metaplasia and also adenocarcinoma. A further morphological finding of interest was noted on examination of haematoxylin and eosin stained sections, as aggregates of lymphocytes were consistently noted to surround submucosal glands. CONCLUSION: We have demonstrated for the first time NY-ESO

  4. Measurement of serum antibodies against NY-ESO-1 by ELISA: A guide for the treatment of specific immunotherapy for patients with advanced colorectal cancer.

    PubMed

    Long, Yan-Yan; Wang, Yu; Huang, Qian-Rong; Zheng, Guang-Shun; Jiao, Shun-Chang

    2014-10-01

    NY-ESO-1 has been identified as one of the most immunogenic antigens; thus, is a highly attractive target for cancer immunotherapy. The present study analyzed the expression of serum antibodies (Abs) against NY-ESO-1 in patients with advanced colorectal cancer (CRC), with the aim of guiding the treatment of NY-ESO-1-based specific-immunotherapy for these patients. Furthermore, the present study was the first to evaluate the kinetic expression of anti-NY-ESO-1 Abs and investigate the possible influencing factors. A total of 239 serum samples from 155 pathologically confirmed patients with advanced CRC (stages III and IV) were collected. The presence of spontaneous Abs against NY-ESO-1 was analyzed using an enzyme-linked immunosorbent assay (ELISA). The results demonstrated that 24.5% (38/155) of the investigated patients were positive for NY-ESO-1-specific Abs. No statistically significant correlations were identified between the expression of anti-NY-ESO-1 Abs and clinicopathological parameters, including age and gender, location, grading, local infiltration, lymph node status, metastatic status and K-ras mutation status (P>0.05). In 59 patients, the kinetic expression of anti-NY-ESO-1 Abs was analyzed, of which 14 patients were initially positive and 45 patients were initially negative. Notably, 16/59 (27.1%) patients changed their expression status during the study period, and the initially positive patients were more likely to change compared with the initially negative patients (85.7 vs. 8.8%; P<0.001). Therefore, monitoring serum Abs against NY-ESO-1 by ELISA is an easy and feasible method. The high expression rate of NY-ESO-1-specific Abs in CRC patients indicates that measuring the levels of serum Abs against NY-ESO-1 may guide the treatment of NY-ESO-1-based specific immunotherapy for patients with advanced CRC.

  5. Measurement of serum antibodies against NY-ESO-1 by ELISA: A guide for the treatment of specific immunotherapy for patients with advanced colorectal cancer

    PubMed Central

    LONG, YAN-YAN; WANG, YU; HUANG, QIAN-RONG; ZHENG, GUANG-SHUN; JIAO, SHUN-CHANG

    2014-01-01

    NY-ESO-1 has been identified as one of the most immunogenic antigens; thus, is a highly attractive target for cancer immunotherapy. The present study analyzed the expression of serum antibodies (Abs) against NY-ESO-1 in patients with advanced colorectal cancer (CRC), with the aim of guiding the treatment of NY-ESO-1-based specific-immunotherapy for these patients. Furthermore, the present study was the first to evaluate the kinetic expression of anti-NY-ESO-1 Abs and investigate the possible influencing factors. A total of 239 serum samples from 155 pathologically confirmed patients with advanced CRC (stages III and IV) were collected. The presence of spontaneous Abs against NY-ESO-1 was analyzed using an enzyme-linked immunosorbent assay (ELISA). The results demonstrated that 24.5% (38/155) of the investigated patients were positive for NY-ESO-1-specific Abs. No statistically significant correlations were identified between the expression of anti-NY-ESO-1 Abs and clinicopathological parameters, including age and gender, location, grading, local infiltration, lymph node status, metastatic status and K-ras mutation status (P>0.05). In 59 patients, the kinetic expression of anti-NY-ESO-1 Abs was analyzed, of which 14 patients were initially positive and 45 patients were initially negative. Notably, 16/59 (27.1%) patients changed their expression status during the study period, and the initially positive patients were more likely to change compared with the initially negative patients (85.7 vs. 8.8%; P<0.001). Therefore, monitoring serum Abs against NY-ESO-1 by ELISA is an easy and feasible method. The high expression rate of NY-ESO-1-specific Abs in CRC patients indicates that measuring the levels of serum Abs against NY-ESO-1 may guide the treatment of NY-ESO-1-based specific immunotherapy for patients with advanced CRC. PMID:25187840

  6. The VANDELS ESO public spectroscopic survey

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Fèvre, O. Le; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < λ < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃ 0.2 deg2 centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.

  7. ESO089-G018 and ESO089-G019: long-slit spectroscopy of emission-line galaxies

    NASA Astrophysics Data System (ADS)

    da Rocha-Poppe, P. C.; Faúndez-Abans, M.; Fernandes-Martin, V. A.; Fernandes, I. F.; de Oliveira-Abans, M.; Rodrígues-Ardila, A.

    2010-03-01

    We present the first spectroscopic observations for the galaxies ESO089-G018 (hereafter G18, an Sb(?)-type galaxy seen nearly edge-on) and ESO089-G019 (hereafter G19, an SA(s): a peculiar galaxy), extracted from the sample of ring-shaped galaxies compiled in Faúndez-Abans & de Oliveira-Abans. The main goal of this work is to investigate the spectral classification using the three line-ratio diagrams, called diagnostic diagrams, of Veilleux & Osterbrock. However, in order to separate the different types of galaxies [HII galaxies, Seyfert 2 galaxies and low-ionization nuclear emission-line region galaxies (LINERs)] we have to used empirical boundaries between them. Based on the observed spectra, we suggest G18 is a `weak-[OI] LINER' or even a `transition object' or LINER/HII. In the case of G19, we see Hβ in absorption and no [OIII] lines, impeding the [OIII]/Hβ ratio to be estimated. However, other lines ratios have been evaluated for the discussion. We classify the nature of G19 as ambiguous, because of the difficulty in determining its ionizing source (narrow-line active galactic nuclei or HII galaxies) in different diagnostic diagrams. The errors in the fluxes were mostly caused by uncertainties in the placement of the continuum level. We have estimated nuclear redshift of z = 0.034 (G18) and z = 0.039 (G19), corresponding to a heliocentric velocity of 10246 and 11734kms-1, respectively. Some other physical parameters have been derived whenever possible. All spectra were reduced and analysed in a homogeneous way with the standard IRAF procedures. Based on observations carried out at Observatório do Pico dos Dias (OPD), which operated by the LNA/MCT, Brazil-MG. E-mail: paulopoppe@gmail.com

  8. Obituary: Adriaan Blaauw, 1914-2010

    NASA Astrophysics Data System (ADS)

    de Zeeuw, Tim

    2011-12-01

    Observatory, or simply as ESO. In 1953, Baade and Oort proposed the idea of combining European resources to create an astronomical research organisation that could compete in the international arena. Blaauw had returned to Leiden in 1948 at Oort's invitation, had moved to Yerkes Observatory in 1953, becoming its associate director in 1956, and moved back to Groningen in 1957, where he revitalized the institute and initiated a new program in radio astronomy together with van Woerden. Here he was also in a key position to contribute to transforming the idea of Baade and Oort into reality. He was Secretary of the ESO Committee (the proto ESO Council) from 1959 through 1963, a period which included the signing of the ESO Convention on 5 October 1962 by the five founding Member States Belgium, France, Germany, the Netherlands and Sweden. Blaauw became ESO's Scientific Director in 1968. In this position he also provided the decisive push to combine the various national journals for astronomy into Astronomy and Astrophysics, which today is one of the leading astronomy research publications in the world. Blaauw succeeded Heckman as Director General of ESO in 1970, for a five-year term. During this period several telescopes including the ESO 0.5-meter and 1-meter Schmidt telescopes began operating at ESO's first observatory site, La Silla, in Chile, and much work was done on the design and construction of the ESO 3.6-meter telescope, which saw first light in 1976. Blaauw decided that it was crucial for this challenging project to move ESO's Headquarters and the Technical Department from Hamburg to Geneva, to benefit from the presence of the experienced CERN engineering group. After his ESO period, Blaauw returned to Leiden, where he continued to play a very important role in international astronomy. He was President of the International Astronomical Union from 1976 to 1979. During his tenure he used his considerable diplomatic skills to convince China to rejoin the IAU even though

  9. Okayama Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Okayama Astrophysical Observatory (OAO) is a branch Observatory of the NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN. Its main facilities are 188 cm and 91 cm telescopes, equipped with newly built instruments with CCD/IR cameras (e.g. OASIS). OAO accepts nearly 300 astronomers a year, according to the observation program scheduled by the committee....

  10. 32 New Exoplanets Found

    NASA Astrophysics Data System (ADS)

    2009-10-01

    oday, at an international ESO/CAUP exoplanet conference in Porto, the team who built the High Accuracy Radial Velocity Planet Searcher, better known as HARPS, the spectrograph for ESO's 3.6-metre telescope, reports on the incredible discovery of some 32 new exoplanets, cementing HARPS's position as the world's foremost exoplanet hunter. This result also increases the number of known low-mass planets by an impressive 30%. Over the past five years HARPS has spotted more than 75 of the roughly 400 or so exoplanets now known. "HARPS is a unique, extremely high precision instrument that is ideal for discovering alien worlds," says Stéphane Udry, who made the announcement. "We have now completed our initial five-year programme, which has succeeded well beyond our expectations." The latest batch of exoplanets announced today comprises no less than 32 new discoveries. Including these new results, data from HARPS have led to the discovery of more than 75 exoplanets in 30 different planetary systems. In particular, thanks to its amazing precision, the search for small planets, those with a mass of a few times that of the Earth - known as super-Earths and Neptune-like planets - has been given a dramatic boost. HARPS has facilitated the discovery of 24 of the 28 planets known with masses below 20 Earth masses. As with the previously detected super-Earths, most of the new low-mass candidates reside in multi-planet systems, with up to five planets per system. In 1999, ESO launched a call for opportunities to build a high resolution, extremely precise spectrograph for the ESO 3.6-metre telescope at La Silla, Chile. Michel Mayor, from the Geneva Observatory, led a consortium to build HARPS, which was installed in 2003 and was soon able to measure the back-and-forward motions of stars by detecting small changes in a star's radial velocity - as small as 3.5 km/hour, a steady walking pace. Such a precision is crucial for the discovery of exoplanets and the radial velocity method

  11. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Smiljanic, R.; Romano, D.; Bragaglia, A.; Donati, P.; Magrini, L.; Friel, E.; Jacobson, H.; Randich, S.; Ventura, P.; Lind, K.; Bergemann, M.; Nordlander, T.; Morel, T.; Pancino, E.; Tautvaišienė, G.; Adibekyan, V.; Tosi, M.; Vallenari, A.; Gilmore, G.; Bensby, T.; François, P.; Koposov, S.; Lanzafame, A. C.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-05-01

    cannot simultaneously explain the run of [Al/Fe] with [Fe/H], and vice versa. The comparison with stellar ages is hampered by severe uncertainties. Indeed, reliable age estimates are available for only a half of the stars of the sample. We conclude that Al is underproduced by the models, except for stellar ages younger than about 7 Gyr. In addition, some significant source of late Na production seems to be missing in the models. Either current Na and Al yields are affected by large uncertainties, and/or some important Galactic source(s) of these elements has as yet not been taken into account. Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey), and on data obtained from the ESO Archive originally observed under programs 60.A-9143, 076.B-0263 and 082.D-0726.Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A115

  12. Astro Tourism in Chile | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications ‹› You are here CTIO Home » Outreach » Tourism » Astro Tourism in Chile Astro Tourism in

  13. MONA, LISA and VINCI Soon Ready to Travel to Paranal

    NASA Astrophysics Data System (ADS)

    2000-11-01

    First Instruments for the VLT Interferometer Summary A few months from now, light from celestial objects will be directed for the first time towards ESO's Very Large Telescope Interferometer (VLTI) at the Paranal Observatory (Chile). During this "First Light" event and the subsequent test phase, the light will be recorded with a special test instrument, VINCI (VLT INterferometer Commissioning Instrument). The main components of this high-tech instrument are aptly named MONA (a system that combines the light beams from several telescopes by means of optical fibers) and LISA (the infrared camera). VINCI was designed and constructed within a fruitful collaboration between ESO and several research institutes and industrial companies in France and Germany . It is now being assembled at the ESO Headquarters in Garching (Germany) and will soon be ready for installation at the telescope on Paranal. With the VLTI and VINCI, Europe's astronomers are now entering the first, crucial phase of an exciting scientific and technology venture that will ultimately put the world's most powerful optical/IR interferometric facility in their hands . PR Photo 31/00 : VINCI during tests at the ESO Headquarters in Garching. The VLT Interferometer (VLTI) ESO Press Photo 31/00 ESO Press Photo 31/00 [Preview; JPEG: 400 x 301; 43k] [Normal; JPEG: 800 x 602;208xk] [Full-Res; JPEG: 1923 x 1448; 2.2Mb] PR Photo 31/00 shows the various components of the complex VINCI instrument for the VLT Interferometer , during the current tests at the Optical Laboratory at the ESO Headquarters in Garching (Germany). It will later be installed in "clean-room" conditions within the Interferometric Laboratory at the Paranal Observatory. This electronic photo was obtained for documentary purposes. VINCI (VLT INterferometer Commissioning Instrument) is the "First Light" instrument for the Very Large Telescope Interferometer (VLTI) at the Paranal Observatory (Chile). Early in 2001, it will be used for the first tests

  14. The Gaia-ESO Survey: Exploring the complex nature and origins of the Galactic bulge populations

    NASA Astrophysics Data System (ADS)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Mikolaitis, Š.; Matteucci, F.; Spitoni, E.; Schultheis, M.; Hayden, M.; Hill, V.; Zoccali, M.; Minniti, D.; Gonzalez, O. A.; Gilmore, G.; Randich, S.; Feltzing, S.; Alfaro, E. J.; Babusiaux, C.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Pancino, E.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    not participate in the X-shape bulge. Their Mg enhancement level and general shape in the [Mg/Fe] vs. [Fe/H] plane is comparable to that of the thick disk sequence. The position at which [Mg/Fe] starts to decrease with [Fe/H], called the "knee", is observed in the metal-poor bulge at [Fe/H] knee = -0.37 ± 0.09, being 0.06 dex higher than that of the thick disk. Although this difference is inside the error bars, it suggest a higher star formation rate (SFR) for the bulge than for the thick disk. We estimate an upper limit for this difference of Δ [Fe/H] knee = 0.24 dex. Finally, we present a chemical evolution model that suitably fits the whole bulge sequence by assuming a fast (<1 Gyr) intense burst of stellar formation that takes place at early epochs. Conclusions: We associate metal-rich stars with the bar boxy/peanut bulge formed as the product of secular evolution of the early thin disk. On the other hand, the metal-poor subpopulation might be the product of an early prompt dissipative collapse dominated by massive stars. Nevertheless, our results do not allow us to firmly rule out the possibility that these stars come from the secular evolution of the early thick disk. This is the first time that an analysis of the bulge MDF and α-abundances has been performed in a large area on the basis of a homogeneous, fully spectroscopic analysis of high-resolution, high S/N data. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 188.B-3002. These data products have been processed by the Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.

  15. A Type II Supernova Hubble Diagram from the CSP-I, SDSS-II, and SNLS Surveys

    NASA Astrophysics Data System (ADS)

    de Jaeger, T.; González-Gaitán, S.; Hamuy, M.; Galbany, L.; Anderson, J. P.; Phillips, M. M.; Stritzinger, M. D.; Carlberg, R. G.; Sullivan, M.; Gutiérrez, C. P.; Hook, I. M.; Howell, D. Andrew; Hsiao, E. Y.; Kuncarayakti, H.; Ruhlmann-Kleider, V.; Folatelli, G.; Pritchet, C.; Basa, S.

    2017-02-01

    The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on photometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae (SNe II) combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey II SN, and the Supernova Legacy Survey. Applying the Photometric Color Method (PCM) to 73 SNe II with a redshift range of 0.01-0.5 and with no spectral information, we derive an intrinsic dispersion of 0.35 mag. A comparison with the Standard Candle Method (SCM) using 61 SNe II is also performed and an intrinsic dispersion in the Hubble diagram of 0.27 mag, I.e., 13% in distance uncertainties, is derived. Due to the lack of good statistics at higher redshifts for both methods, only weak constraints on the cosmological parameters are obtained. However, assuming a flat universe and using the PCM, we derive the universe’s matter density: {{{Ω }}}m={0.32}-0.21+0.30 providing a new independent evidence for dark energy at the level of two sigma. This paper includes data gathered with the 6.5 m Magellan Telescopes, with the du Pont and Swope telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program N-2005A-Q-11, GN-2005B-Q-7, GN-2006A-Q-7, GS-2005A-Q-11, GS-2005B-Q-6, and GS-2008B-Q-56). Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Programmes 076.A-0156,078.D-0048, 080.A-0516, and 082.A-0526).

  16. Supernova 2010ev: A reddened high velocity gradient type Ia supernova

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Claudia P.; González-Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena; Olivares E., Felipe; Haislip, Joshua B.; Reichart, Daniel E.

    2016-05-01

    Aims: We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods: We obtain and analyze multiband optical light curves and optical/near-infrared spectroscopy at low and medium resolution spanning -7 days to +300 days from the B-band maximum. Results: A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light-curve shape of Δm15(B) = 1.12 ± 0.02 and a stretch s = 0.94 ± 0.01 suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of E(B - V) = 0.25 ± 0.05 and a reddening law of Rv = 1.54 ± 0.65. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si IIλ6355 absorption features. We also find that SN 2010ev is a high velocity gradient SN with v˙Si = 164 ± 7 km s-1 d-1. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocities to SN 2002bo and SN 2002dj. The analysis of the nebular spectra indicates that the [Fe II]λ7155 and [Ni II]λ7378 lines are redshifted, as expected for a high velocity gradient supernova. All these common intrinsic and extrinsic properties of the high velocity gradient (HVG) group are different from the low velocity gradient (LVG) normal SN Ia population and suggest significant variety in SN Ia explosions. This paper includes data gathered with the Du Pont Telescope at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2010A-Q-14). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 085.D-0577).

  17. A Hubble Diagram from Type II Supernovae Based Solely on Photometry: The Photometric Color Method

    NASA Astrophysics Data System (ADS)

    de Jaeger, T.; González-Gaitán, S.; Anderson, J. P.; Galbany, L.; Hamuy, M.; Phillips, M. M.; Stritzinger, M. D.; Gutiérrez, C. P.; Bolt, L.; Burns, C. R.; Campillay, A.; Castellón, S.; Contreras, C.; Folatelli, G.; Freedman, W. L.; Hsiao, E. Y.; Krisciunas, K.; Krzeminski, W.; Kuncarayakti, H.; Morrell, N.; Olivares E., F.; Persson, S. E.; Suntzeff, N.

    2015-12-01

    We present a Hubble diagram of SNe II using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I for which optical and near-infrared light curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the V band and the second a color term. We obtain a dispersion of 0.44 mag using a combination of the (V - i) color and the r band and we are able to reduce the dispersion to 0.39 mag using our golden sample. A comparison of our photometric color method (PCM) with the standardized candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag, which compares with 0.43 mag from the PCM for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will increase the detection rate of supernovae by orders of magnitude. Such numbers will prohibit spectroscopic follow up in the vast majority of cases, and hence methods must be deployed which can proceed using solely photometric data. This paper includes data gathered with the 6.5 m Magellan Telescopes, with the du Pont and Swope telescopes located at Las Campanas Observatory, Chile, and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2008B-Q-56). Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Programmes 076.A-0156,078.D-0048, 080.A-0516, and 082.A-0526).

  18. Protoplanetary disks in Taurus: Probing the role of multiplicity with ALMA observations

    NASA Astrophysics Data System (ADS)

    Laos, Stefan; Akeson, Rachel L.; Jensen, Eric L. N.

    2017-01-01

    We present results from an ALMA survey of single and multiple young systems in Taurus designed to probe how protoplanetary disk mass depends on both stellar mass and multiplicity. In observations taken in Cycles 0 and 2, we detect over 25 new disks. These detections include disks around stars in both single and multiple systems and are predominantly around lower mass stars with spectral types from M0 to M6. Combined with previous detections, these observations reveal a wide range of disk mass around both primary and companion stars, and allow us to test if the relation previously seen between disk and stellar mass continues at lower stellar masses. We find that within multiple systems the ratio of primary to secondary stellar mass is not correlated with the ratio of primary to secondary disk mass. In some cases, the secondary star hosts the more massive disk, contrary to theoretical predictions. We will discuss the implications of these results for the process of planet formation in multiple systems.This work makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00150.S. and ADS/JAO.ALMA#2013.1.00105.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  19. VizieR Online Data Catalog: HD 176986 HARPS + HARPS-N data (Suarez Mascareno+, 2018)

    NASA Astrophysics Data System (ADS)

    Suarez Mascareno, A.; Gonzalez Hernandez, J. I.; Rebolo, R.; Velasco, S.; Toledo-Padron, B.; Udry, S.; Motalebi, F.; Segransan, D.; Wyttenbach, A.; Mayor, M.; Pepe, F.; Lovis, C.; Santos, N. C.; Figueira, P.; Esposito, M.

    2017-11-01

    HD 176986 has been extensively monitored since mid-2004 with HARPS and HARPS-N. The star was followed first in the HARPS planet-search programme on Guaranteed Time Observations (GTO, PI: M. Mayor) on-going for 6 years between autumn 2003 and spring 2009. The observations were then continued within the ESO Large Programs 183.C-0972+183.C-1005 (PI: S. Udry). Then it was observed with HARPS-N from 2014 onwards as part of the RoPES project using a nightly-cadence observation strategy aimed at the detection of very low-mass planets in close orbits of quiet G and K-type stars. HARPS Mayor2003 and HARPS-N Cosentino2012 are two fibre-fed high resolution echelle spectrographs installed at the 3.6m ESO telescope in La Silla Observatory (Chile) and at the Telescopio Nazionale Galileo in the Roque de los Muchachos Observatory (Spain), respectively. During the HARPS campaigns our star was typically observed once per night using an exposure time of 900s, with just a few exceptions. In the HARPS-N campaign the star was always observed using 3x300s exposures per visit, having one visit per night during the first years and two visits separated by a few hours during the 2016 and 2017 campaigns. The data is then re-sampled and averaged into 1 hour bins. The combination of both observational programmes provided 156 HARPS observations and 103 HARPS-N newly acquired observations, coming from 234 individual nights, during 13.2 years of observations. (1 data file).

  20. NY-ESO-1 autoantibody as a tumor-specific biomarker for esophageal cancer: screening in 1969 patients with various cancers.

    PubMed

    Oshima, Yoko; Shimada, Hideaki; Yajima, Satoshi; Nanami, Tatsuki; Matsushita, Kazuyuki; Nomura, Fumio; Kainuma, Osamu; Takiguchi, Nobuhiro; Soda, Hiroaki; Ueda, Takeshi; Iizasa, Toshihiko; Yamamoto, Naoto; Yamamoto, Hiroshi; Nagata, Matsuo; Yokoi, Sana; Tagawa, Masatoshi; Ohtsuka, Seiko; Kuwajima, Akiko; Murakami, Akihiro; Kaneko, Hironori

    2016-01-01

    Although serum NY-ESO-1 antibodies (s-NY-ESO-1-Abs) have been reported in patients with esophageal carcinoma, this assay system has not been used to study a large series of patients with various other cancers. Serum samples of 1969 cancer patients [esophageal cancer (n = 172), lung cancer (n = 269), hepatocellular carcinoma (n = 91), prostate cancer (n = 358), gastric cancer (n = 313), colorectal cancer (n = 262), breast cancer (n = 365)] and 74 healthy individuals were analyzed using an originally developed enzyme-linked immunosorbent assay system for s-NY-ESO-1-Abs. The optical density cut-off value, determined as the mean plus three standard deviations for serum samples from the healthy controls, was fixed at 0.165. Conventional tumor markers were also evaluated in patients with esophageal carcinoma. The positive rate of s-NY-ESO-1-Abs in patients with esophageal cancer (31 %) was significantly higher than that in the other groups: patients with lung cancer (13 %), patients with hepatocellular carcinoma (11 %), patients with prostate cancer (10 %), patients with gastric cancer (10 %), patients with colorectal cancer (8 %), patients with breast cancer (7 %), and healthy controls (0 %). The positive rate of s-NY-ESO-1-Abs was comparable to that of serum p53 antibodies (33 %), squamous cell carcinoma antigen (36 %), carcinoembryonic antigen (26 %), and CYFRA 21-1 (18 %) and gradually increased with the tumor stage. The positive rate of s-NY-ESO-1-Abs was significantly higher in patients with esophageal cancer than in patients with the other types of cancers. On the basis of its high specificity and sensitivity, even in patients with stage I tumors, s-NY-ESO-1-Abs may be one of the first choices for esophageal cancer.

  1. Climatology at the Roque de LOS Muchachos Observatory

    NASA Astrophysics Data System (ADS)

    Varela, Antonia M.; Muñoz-Tuñón, Casiana

    2009-09-01

    The Roque de los Muchachos Observatory (ORM) at La Palma (Canary Islands) is one of the two top pre-selected sites for hosting the future European Extremely Large Telescope (E-ELT), the other ones are Ventarrones (Chile), Macon (Argentine) and Aklim (Maroc). Meteorological and seeing conditions are crucial both for the site selection and for telescope design and feasibility studies for adaptive optics. The ELTs shall be very sensitive to wind behavior when operating in open air, therefore ground level wind velocity and wind gust are also required for the feasibility of the telescope construction. Here we analyze the wind speed and wind direction, the air temperature, the relative humidity and the barometric pressure statistical results obtained from data recorded at different sites at the ORM by several Automatic Weather Stations (AWS) since 1985, day and night time separately. Ground wind speed regimes (775mbar) are compared with those provided by satellites from 200 to 700mbar. There exists also observational evidence of the correlation between the seeing and the wind speed and wind direction that will be discussed in this work.

  2. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Sackett, C.

    1999-05-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building and dome has been completed, and first light is planned for spring 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have received an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  3. Science with ESO's Multi-conjugate Adaptive-optics Demonstrator - MAD

    NASA Astrophysics Data System (ADS)

    Melnick, Jorge; Marchetti, Enrico; Amico, Paola

    2012-07-01

    ESO's Multi-conjugate Adaptive-optics Demonstrator (MAD) was a prototype designed and built to demonstrate wide-field adaptive optics science on large telescopes. The outstanding results obtained during commissioning and guaranteed time observations (GTO) prompted ESO to issue and open call to the community for 23 science demonstration (SD) observing nights distributed in three runs (in order to provide access to the summer an winter skies). Thus, in total MAD was used for science for 33 nights including the 10 nights of GTO time. date, 19 articles in refereed journals (including one in Nature) have been published based fully or partially o MAD data. To the best of our knowledge, these are not only the first, but also the only scientific publication from MCAO instruments world-wide to date (at least in Astronomy). The scientific impact of these publication, as measured by the h-index, is comparable to that of other AO instruments on the VLT, although over the years these instruments have been allocated many more nights than MAD. In this contribution we present an overview of the scientific results from MAD and a more detailed discussion of the most cited papers.

  4. Manfred Ziebell Retires

    NASA Astrophysics Data System (ADS)

    Hofstadt, D.

    2002-12-01

    On December 1st, 2002, after thirty- seven years of service, first in Chile and then in Garching, Ms. Christa Euler will leave ESO to enjoy a welldeserved retirement. Among the current staff, she is probably the only person who started her career at ESO just four years after the Organization was founded.

  5. McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    McDonald Observatory, located in West Texas near Fort Davis, is the astronomical observatory of the University of Texas at Austin. Discoveries at McDonald Observatory include water vapor on Mars, the abundance of rare-earth chemical elements in stars, the discovery of planets circling around nearby stars and the use of the measurements of rapid oscillations in the brightness of white dwarf stars ...

  6. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  7. The Most Distant Mature Galaxy Cluster - Young, but surprisingly grown-up

    NASA Astrophysics Data System (ADS)

    2011-03-01

    Astronomers have used an armada of telescopes on the ground and in space, including the Very Large Telescope at ESO's Paranal Observatory in Chile to discover and measure the distance to the most remote mature cluster of galaxies yet found. Although this cluster is seen when the Universe was less than one quarter of its current age it looks surprisingly similar to galaxy clusters in the current Universe. "We have measured the distance to the most distant mature cluster of galaxies ever found", says the lead author of the study in which the observations from ESO's VLT have been used, Raphael Gobat (CEA, Paris). "The surprising thing is that when we look closely at this galaxy cluster it doesn't look young - many of the galaxies have settled down and don't resemble the usual star-forming galaxies seen in the early Universe." Clusters of galaxies are the largest structures in the Universe that are held together by gravity. Astronomers expect these clusters to grow through time and hence that massive clusters would be rare in the early Universe. Although even more distant clusters have been seen, they appear to be young clusters in the process of formation and are not settled mature systems. The international team of astronomers used the powerful VIMOS and FORS2 instruments on ESO's Very Large Telescope (VLT) to measure the distances to some of the blobs in a curious patch of very faint red objects first observed with the Spitzer space telescope. This grouping, named CL J1449+0856 [1], had all the hallmarks of being a very remote cluster of galaxies [2]. The results showed that we are indeed seeing a galaxy cluster as it was when the Universe was about three billion years old - less than one quarter of its current age [3]. Once the team knew the distance to this very rare object they looked carefully at the component galaxies using both the NASA/ESA Hubble Space Telescope and ground-based telescopes, including the VLT. They found evidence suggesting that most of the

  8. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  9. Discarded candidate companions to low-mass members of Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Comerón, F.

    2012-01-01

    Context. Direct detections of brown dwarfs and planetary-mass companions to members of nearby star-forming regions provide important clues about the process of star formation, core fragmentation, and protoplanetary disk evolution. Aims: We study two faint objects at a very small angular distance from the low-mass star ESO-Hα-558 and the possible massive brown dwarf ESO-Hα-566, both of which are members of the Chamaeleon I star-forming region, to establish whether they are physical companions to those sources. If they are, their low luminosities should imply L or T spectral types, which have clearly detectable spectral features. Methods: Adaptive optics-assisted imaging and spectroscopy of both faint candidate companions has been obtained with the NACO instrument at the Very Large Telescope (VLT). Results: Photometry shows that the colors of both objects are compatible with them being moderately reddened, normal stars in the background of the Chamaeleon I clouds. This interpretation is confirmed spectroscopically, as the spectrum between 1.4 and 2.4 μm of both objects has a featureless, monotonic slope lacking the strong H2O absorption features that dominate cool stellar and substellar spectra in that domain. Conclusions: We demonstrate that the two faint sources seen very close to ESO-Hα-558 and ESO-Hα-566 are unrelated background stars, instead of giant planetary-mass companions as might be expected based on their faintness and angular proximity. Based on observations collected with the Very Large Telescope (VLT) at the European Southern Observatory, Paranal, Chile, under observing programmes 075.C-0809(B) and 078.C-0429(C).

  10. AO wavefront sensing detector developments at ESO

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Kolb, Johann; Baade, Dietrich; Iwert, Olaf; Hubin, Norbert; Reyes, Javier; Feautrier, Philippe; Gach, Jean-Luc; Balard, Philippe; Guillaume, Christian; Stadler, Eric; Magnard, Yves

    2010-07-01

    The detector is a critical component of any Adaptive Optics WaveFront Sensing (AO WFS) system. The required combination of fast frame rate, high quantum efficiency, low noise, large number and size of pixels, and low image lag can often only be met by specialized custom developments. ESO's very active WFS detector development program is described. Key test results are presented for newly developed detectors: a) the e2v L3Vision CCD220 (the fastest/lowest noise AO detector to date) to be deployed soon on 2nd Generation VLT instruments, and b) the MPI-HLL pnCCD with its superb high "red" response. The development of still more advanced laser/natural guide-star WFS detectors is critical for the feasibility of ESO's EELT. The paper outlines: a) the multi-phased development plan that will ensure detectors are available on-time for EELT first-light AO systems, b) results of design studies performed by industry during 2007 including a comparison of the most promising technologies, c) results from CMOS technology demonstrators that were built and tested over the past two years to assess and validate various technologies at the pixel level, their fulfillment of critical requirements (especially read noise and speed), and scalability to full-size. The next step will be towards Scaled-Down Demonstrators (SDD) to retire architecture and process risks. The SDD will be large enough to be used for E-ELT first-light AO WFS systems. For full operability, 30-50 full-scale devices will be needed.

  11. The Milky Way above La Silla

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Anybody who visits a high-altitude astronomical observatory at this time of the year will be impressed by the beauty of the Milky Way band that stretches across the sky. Compared to the poor views from cities and other human conglomerations, the dark and bright nebulae come into view together with an astonishing palette of clear stellar colours. This view above the ESO La Silla Observatory in the southernmost part of the Atacama desert was obtained some evenings ago by ESO Software Engineer Nico Housen. Normally stationed at the Paranal Observatory, he seized the opportunity of a visit to ESO's other observatory site to produce this amazing vista of the early evening scenery. To the left is the decommisioned 15-metre dish of the Swedish-ESO Submillimetre Telescope (SEST), and on the right in the background is the dome of the ESO 3.6-metre telescope, at the highest point of the mountain. The southern Milky Way is seen along the right border of the SEST and above the 3.6 metre telescope. There is an upside-down reflection of the sky and the horizon behind the photographer in the highly polished antenna dish of the SEST. Besides the reflection of the horizon (the darker part in the top of the dish) and the Milky Way (which runs as a thin cloud from the bottom of the dish up to the horizon) there is also a yellow area of light to the right. This is the reflection of the city lights of the city of La Serena, about 100 km away and too faint to disturb observations of celestial objects high above La Silla. The 3.6-m telescope began operations in 1976 and was ESO's largest telescope until the advent of the VLT at Paranal. Never endowed with a fancy name like the VLT Unit telescopes, the "3.6-m" houses several state-of-the-art astronomical instruments, including the ultra-precise HARPS facility that is used to hunt for exoplanets, cf. ESO PR 22/04. The SEST was for a long time the only instrument of its kind in the southern hemisphere. With it, ESO gained invaluable

  12. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  13. Architectural Blueprint for Plate Boundary Observatories based on interoperable Data Management Platforms

    NASA Astrophysics Data System (ADS)

    Kerschke, D. I.; Häner, R.; Schurr, B.; Oncken, O.; Wächter, J.

    2014-12-01

    Interoperable data management platforms play an increasing role in the advancement of knowledge and technology in many scientific disciplines. Through high quality services they support the establishment of efficient and innovative research environments. Well-designed research environments can facilitate the sustainable utilization, exchange, and re-use of scientific data and functionality by using standardized community models. Together with innovative 3D/4D visualization, these concepts provide added value in improving scientific knowledge-gain, even across the boundaries of disciplines. A project benefiting from the added value is the Integrated Plate boundary Observatory in Chile (IPOC). IPOC is a European-South American network to study earthquakes and deformation at the Chilean continental margin and to monitor the plate boundary system for capturing an anticipated great earthquake in a seismic gap. In contrast to conventional observatories that monitor individual signals only, IPOC captures a large range of different processes through various observation methods (e.g., seismographs, GPS, magneto-telluric sensors, creep-meter, accelerometer, InSAR). For IPOC a conceptual design has been devised that comprises an architectural blueprint for a data management platform based on common and standardized data models, protocols, and encodings as well as on an exclusive use of Free and Open Source Software (FOSS) including visualization components. Following the principles of event-driven service-oriented architectures, the design enables novel processes by sharing and re-using functionality and information on the basis of innovative data mining and data fusion technologies. This platform can help to improve the understanding of the physical processes underlying plate deformations as well as the natural hazards induced by them. Through the use of standards, this blueprint can not only be facilitated for other plate observing systems (e.g., the European Plate

  14. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Rideout, C.; Vanlew, K.

    1998-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction is nearly completed and first light is planned for fall 1998. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. That telescope has been in use for the past four years by up to 50 schools per month. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have applied for an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  15. Australia to Build Fibre Positioner for the Very Large Telescope

    NASA Astrophysics Data System (ADS)

    1998-06-01

    The Anglo-Australian Observatory (AAO) at Epping (New South Wales, Australia) has been awarded the contract to build a fibre positioner for the European Southern Observatory's Very Large Telescope (VLT). This new, large astronomical facility is located at the Paranal Observatory in Chile and will feature four Unit Telescopes, each with a main mirror of 8.2-m diameter. This positioner, (affectionately) known as the OzPoz , will form part of the FLAMES facility (the F ibre L arge A rea M ulti- E lement S pectrograph), to be mounted on the second Unit Telescope (UT2) of the VLT in 2001. The construction of this facility includes other institutes in Europe, e.g. Observatoire de Genève (Switzerland) and Observatoire de Meudon (France). The ESO Instrument Division will coordinate the entire project that will result in an observational capability that is unique in the world. Optical fibres at astronomical telescopes Optical fibres have come to play an increasingly important role as transmitters of information, for instance in telephone and computer networks. It may be less known that they can be used in a similar way to transmit visible and infrared light in astronomical telescopes. Over the past decade, the AAO has been refining its skills in building optical-fibre instruments for its own telescopes, the 3.9-metre Anglo-Australian Telescope and the 1.2-m UK Schmidt Telescope (a telescope dedicated to wide-field surveys). These instruments enable astronomers to study many celestial objects simultaneously, increasing the effectiveness and productivity by enormous factors. The OzPoz positioner sets up to 560 optical fibres (developed in collaboration with the Observatoire de Meudon in France) very precisely by a robotic arm to match the positions of galaxies and quasars in the telescope's focal plane. The positional accuracy is about 50 µm (0.05 mm), or 0.08 arcsec on the sky. The fibres siphon the light from these very faint and distant astronomical objects and guide it

  16. Recombinant Lactobacillus plantarum induces immune responses to cancer testis antigen NY-ESO-1 and maturation of dendritic cells

    PubMed Central

    Mobergslien, Anne; Vasovic, Vlada; Mathiesen, Geir; Fredriksen, Lasse; Westby, Phuong; Eijsink, Vincent GH; Peng, Qian; Sioud, Mouldy

    2015-01-01

    Given their safe use in humans and inherent adjuvanticity, Lactic Acid Bacteria may offer several advantages over other mucosal delivery strategies for cancer vaccines. The objective of this study is to evaluate the immune responses in mice after oral immunization with Lactobacillus (L) plantarum WCFS1 expressing a cell-wall anchored tumor antigen NY-ESO-1. And to investigate the immunostimulatory potency of this new candidate vaccine on human dendritic cells (DCs). L. plantarum displaying NY-ESO-1 induced NY-ESO-1 specific antibodies and T-cell responses in mice. By contrast, L. plantarum displaying conserved proteins such as heat shock protein-27 and galectin-1, did not induce immunity, suggesting that immune tolerance to self-proteins cannot be broken by oral administration of L. plantarum. With respect to immunomodulation, immature DCs incubated with wild type or L. plantarum-NY-ESO-1 upregulated the expression of co-stimulatory molecules and secreted a large amount of interleukin (IL)-12, TNF-α, but not IL-4. Moreover, they upregulated the expression of immunosuppressive factors such as IL-10 and indoleamine 2,3-dioxygenase. Although L. plantarum-matured DCs expressed inhibitory molecules, they stimulated allogeneic T cells in-vitro. Collectively, the data indicate that L. plantarum-NY-ESO-1 can evoke antigen-specific immunity upon oral administration and induce DC maturation, raising the potential of its use in cancer immunotherapies. PMID:26185907

  17. The Gaia-ESO Survey: Separating disk chemical substructures with cluster models. Evidence of a separate evolution in the metal-poor thin disk

    NASA Astrophysics Data System (ADS)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Schultheis, M.; Guiglion, G.; Mikolaitis, Š.; Kordopatis, G.; Hill, V.; Gilmore, G.; Randich, S.; Alfaro, E. J.; Bensby, T.; Koposov, S. E.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.; Chiappini, C.

    2016-02-01

    Context. Recent spectroscopic surveys have begun to explore the Galactic disk system on the basis of large data samples, with spatial distributions sampling regions well outside the solar neighborhood. In this way, they provide valuable information for testing spatial and temporal variations of disk structure kinematics and chemical evolution. Aims: The main purposes of this study are to demonstrate the usefulness of a rigorous mathematical approach to separate substructures of a stellar sample in the abundance-metallicity plane, and provide new evidence with which to characterize the nature of the metal-poor end of the thin disk sequence. Methods: We used a Gaussian mixture model algorithm to separate in the [Mg/Fe] vs. [Fe/H] plane a clean disk star subsample (essentially at RGC< 10 kpc) from the Gaia-ESO survey (GES) internal data release 2 (iDR2). We aim at decomposing it into data groups highlighting number density and/or slope variations in the abundance-metallicity plane. An independent sample of disk red clump stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) was used to cross-check the identified features. Results: We find that the sample is separated into five groups associated with major Galactic components; the metal-rich end of the halo, the thick disk, and three subgroups for the thin disk sequence. This is confirmed with the sample of red clump stars from APOGEE. The three thin disk groups served to explore this sequence in more detail. The two metal-intermediate and metal-rich groups of the thin disk decomposition ([Fe/H] > -0.25 dex) highlight a change in the slope at solar metallicity. This holds true at different radial regions of the Milky Way. The distribution of Galactocentric radial distances of the metal-poor part of the thin disk ([Fe/H] < -0.25 dex) is shifted to larger distances than those of the more metal-rich parts. Moreover, the metal-poor part of the thin disk presents indications of a scale height

  18. 27 CFR 9.154 - Chiles Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Chiles Valley. (a) Name. The name of the viticultural area described in this section is “Chiles Valley... viticultural area are four 1:24,000 Scale U.S.G.S. topography maps. They are titled: (1) St. Helena, CA 1960 photorevised 1980; (2) Rutherford, CA 1951 photorevised 1968; (3) Chiles Valley, CA 1958 photorevised 1980; (4...

  19. News and Views: Diamond is new head of SKA; Did you read our `A&G' mobile issue? BBC writer wins astro journalism prize; Kavli prize recognizes work on Kuiper Belt objects

    NASA Astrophysics Data System (ADS)

    2012-10-01

    Philip Diamond will become director general of the Square Kilometre Array this month, moving from Australia to the new SKA headquarters at Jodrell Bank Radio Observatory. Technology writer Katia Moskvitch has won the first European Astronomy Journalism Prize for her series of articles on the Very Large Telescope at Paranal, Chile. Moskvitch will be the guest of the ESO at the inauguration of the Atacama Large Millimeter/submillimeter Array (ALMA) in the Atacama desert in March 2013. The 2012 Kavli Prize in Astrophysics is shared between David C Jewitt (University of California, USA), Jane X Luu (Massachusetts Institute of Technology, Lincoln Laboratory, USA), and Michael E Brown (California Institute of Technology, USA) “for discovering and characterizing the Kuiper Belt and its largest members, work that led to a major advance in the understanding of the history of our planetary system”.

  20. Pre-seismic anomalous geomagnetic signature related to M8.3 earthquake occurred in Chile on September 16-th, 2015

    NASA Astrophysics Data System (ADS)

    Armand Stanica, Dragos, ,, Dr.; Stanica, Dumitru, ,, Dr.; Vladimirescu, Nicoleta

    2016-04-01

    In this paper, we retrospectively analyzed the geomagnetic data collected, via internet (www.intermagnet.com), on the interval 01 July-30 September 2015 at the observatories Easter Island (IMP) and Pilar (PIL), placed in Chile and Argentina, respectively, to emphasize a possible relationship between the pre-seismic anomalous behavior of the normalized function Bzn and M8.3 earthquake, that occurred in Offshore Coquimbo (Chile) on September 16-th, 2015. The daily mean distributions of the normalized function Bzn=Bz/Bperp (where Bz is vertical component of the geomagnetic field; Bperp is geomagnetic component perpendicular to the geoelectrical strike) and its standard deviation (STDEV) are performed in the ULF frequency range 0.001Hz to 0.0083Hz by using the FFT band-pass filter analysis. It was demonstrated that in pre-seismic conditions the Bzn has a significant enhancement due to the crustal electrical conductivity changes, possibly associated with the earthquake-induced rupture-processes and high-pressure fluid flow through the faulting system developed inside the foci and its neighboring area. After analyzing the anomalous values of the normalized function Bzn obtained at Easter Island and Pilar observatories, the second one taken as reference, we used a statistical analysis, based on a standardized random variable equation, to identify on 1-2 September 2015 a pre-seismic signature related to the M8.3 earthquake. The lead time was 14 days before the M8.3 earthquake occurrence. The final conclusion is that the proposed geomagnetic methodology might be used to provide suitable information for the extreme earthquake hazard assessment.

  1. Gemini Observatory Takes its Local Communities on an Expanding Journey

    NASA Astrophysics Data System (ADS)

    Harvey, Janice; Michaud, Peter

    2012-08-01

    Currently in its 7th year (2011) Hawaii's annual Journey through the Universe (JttU) program is a flagship Gemini Observatory public education/outreach initiative involving a broad cross-section of the local Hawai'i Island astronomical community, the public, educators, businesses, local government officials, and thousands of local students. This paper describes the program, its history, planning, implementation, as well as the program's objectives and philosophy. The success of this program is documented here, as measured by continuous and expanding engagement of educators, the community, and the public, along with formal evaluation feedback and selected informal verbal testimony. The program's success also serves as justification for the planned adaptation of a version of the program in Chile in 2011 (adapted for Chilean educational and cultural differences). Finally, lessons learned are shared which have refined the program for Gemini's host communities but can also apply to any institution wishing to initiate a similar program.

  2. ESO 2.2-m WFI Image of the Tarantula Nebula

    NASA Image and Video Library

    2017-12-08

    NASA image release May 11, 2010 Hubble Catches Heavyweight Runaway Star Speeding from 30 Doradus Image: ESO 2.2-m WFI Image of the Tarantula Nebula A blue-hot star, 90 times more massive than our Sun, is hurtling across space fast enough to make a round trip from Earth to the Moon in merely two hours. Though the speed is not a record-breaker, it is unique to find a homeless star that has traveled so far from its nest. The only way the star could have been ejected from the star cluster where it was born is through a tussle with a rogue star that entered the binary system where the star lived, which ejected the star through a dynamical game of stellar pinball. This is strong circumstantial evidence for stars as massive as 150 times our Sun's mass living in the cluster. Only a very massive star would have the gravitational energy to eject something weighing 90 solar masses. The runaway star is on the outskirts of the 30 Doradus nebula, a raucous stellar breeding ground in the nearby Large Magellanic Cloud. The finding bolsters evidence that the most massive stars in the local universe reside in 30 Doradus, making it a unique laboratory for studying heavyweight stars. 30 Doradus, also called the Tarantula Nebula, is roughly 170,000 light-years from Earth. To learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/runaway-star.html Credit: NASA/ESO, J. Alves (Calar Alto, Spain), and B. Vandame and Y. Beletski (ESO) NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  3. The Ocean Observatories Initiative: Data, Data and More Data

    NASA Astrophysics Data System (ADS)

    Crowley, M. F.; Vardaro, M.; Belabbassi, L.; Smith, M. J.; Garzio, L. M.; Knuth, F.; Glenn, S. M.; Schofield, O.; Lichtenwalner, C. S.; Kerfoot, J.

    2016-02-01

    The Ocean Observatories Initiative (OOI), a project funded by the National Science Foundation (NSF) and managed by the Consortium for Ocean Leadership, is a networked infrastructure of science-driven sensor systems that measure the physical, chemical, geological, and biological variables in the ocean and seafloor on coastal, regional, and global scales. OOI long term research arrays have been installed off the Washington coast (Cabled), Massachusetts and Oregon coasts (Coastal) and off Alaska, Greenland, Chile and Argentina (Global). Woods Hole Oceanographic Institution and Oregon State University are responsible for the coastal and global moorings and their autonomous vehicles. The University of Washington is responsible for cabled seafloor systems and moorings. Rutgers University operates the Cyberinfrastructure (CI) portion of the OOI, which acquires, processes and distributes data to the scientists, researchers, educators and the public. It also provides observatory mission command and control, data assessment and distribution, and long-term data management. This talk will present an overview of the OOI infrastructure and its three primary websites which include: 1) An OOI overview website offering technical information on the infrastructure ranging from instruments to science goals, news, deployment updates, and information on the proposal process, 2) The Education and Public Engagement website where students can view and analyze exactly the same data that scientists have access to at exactly the same time, but with simple visualization tools and compartmentalized lessons that lead them through complex science questions, and 3) The primary data access website and machine to machine interface where anyone can plot or download data from the over 700 instruments within the OOI Network.

  4. Comprehensive adipocytic and neurogenic tissue microarray analysis of NY-ESO-1 expression - a promising immunotherapy target in malignant peripheral nerve sheath tumor and liposarcoma

    PubMed Central

    Shurell, Elizabeth; Vergara-Lluri, Maria E.; Li, Yunfeng; Crompton, Joseph G.; Singh, Arun; Bernthal, Nicholas; Wu, Hong; Eilber, Fritz C.; Dry, Sarah M.

    2016-01-01

    Background Immunotherapy targeting cancer-testis antigen NY-ESO-1 shows promise for tumors with poor response to chemoradiation. Malignant peripheral nerve sheath tumors (MPNSTs) and liposarcomas (LPS) are chemoresistant and have few effective treatment options. Materials Methods Using a comprehensive tissue microarray (TMA) of both benign and malignant tumors in primary, recurrent, and metastatic samples, we examined NY-ESO-1 expression in peripheral nerve sheath tumor (PNST) and adipocytic tumors. The PNST TMA included 42 MPNSTs (spontaneous n = 26, NF1-associated n = 16), 35 neurofibromas (spontaneous n = 22, NF-1 associated n = 13), 11 schwannomas, and 18 normal nerves. The LPS TMA included 48 well-differentiated/dedifferentiated (WD/DD) LPS, 13 myxoid/round cell LPS, 3 pleomorphic LPS, 8 lipomas, 1 myelolipoma, and 3 normal adipocytic tissue samples. Stained in triplicate, NY-ESO-1 intensity and density were scored. Results NY-ESO-1 expression was exclusive to malignant tumors. 100% of myxoid/round cell LPS demonstrated NY-ESO-1 expression, while only 6% of WD/DD LPS showed protein expression, one of which was WD LPS. Of MPNST, 4/26 (15%) spontaneous and 2/16 (12%) NF1-associated MPNSTs demonstrated NY-ESO-1 expression. Strong NY-ESO-1 expression was observed in myxoid/round cell and dedifferentiated LPS, and MPNST in primary, neoadjuvant, and metastatic settings. Conclusions We found higher prevalence of NY-ESO-1 expression in MPNSTs than previously reported, highlighting a subset of MPNST patients who may benefit from immunotherapy. This study expands our understanding of NY-ESO-1 in WD/DD LPS and is the first demonstration of staining in a WD LPS and metastatic/recurrent myxoid/round cell LPS. These results suggest immunotherapy targeting NY-ESO-1 may benefit patients with aggressive tumors resistant to conventional therapy. PMID:27655679

  5. VizieR Online Data Catalog: BV light curves of WX Eridani (Arentoft+, 2004)

    NASA Astrophysics Data System (ADS)

    Arentoft, T.; Lampens, P.; van Cauteren, P.; Duerbeck, H. W.; Garcia-Melendo, E.; Sterken, C.

    2004-04-01

    Photometric V and B CCD time-series observations of WX Eri, obtained at the South African Astronomical Observatory (SAAO), Beersel Hills Observatory (BH), Las Campanas Observatory (LCO), European Southern Observatory (ESO), Sternwarte Hoher List (HOLI/HOLIr) and at Esteve Duran Observatory (EDO) during 2001 and early 2002. The measurements from the different observatories was merged and shifted to standard values. (1 data file).

  6. Chile Country Analysis Brief

    EIA Publications

    2016-01-01

    Chile is the only member of the Organization of Economic Cooperation and Development (OECD) in South America. It is the fifth-largest consumer of energy on the continent, but unlike most other large economies in the region, it is only a minor producer of fossil fuels. Therefore, Chile is heavily dependent on energy imports.

  7. Area Handbook Series: Chile: A Country Study

    DTIC Science & Technology

    1982-05-01

    de Educaci6n en Chile a Partir de 1973." (Paper presented at workshop "Six...34Salud en Chile : El Problema de Fondo," Mensaje [Santiago], 28, No. 282, September 1979, 558-66. Goldrich, Daniel, Raymond B. Pratt, and C. R. Schuller...Transforma- ciones del Sistema de Ateni6n M6dica en Chile ." (Paper pre- sented at workshop "Six Years of Military Rule in Chile ," sponsored by

  8. The Carl Sagan solar and stellar observatories as remote observatories

    NASA Astrophysics Data System (ADS)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  9. WNCC Observatory

    NASA Astrophysics Data System (ADS)

    Snyder, L. F.

    2003-05-01

    Western Nevada Community College (WNCC), located in Carson City, Nevada, is a small two year college with only 6,000 students. Associate degrees and Cer- tificates of Achievement are awarded. The college was built and started classes in 1971 and about 12 years ago the chair of the physics department along with a few in administration had dreams of building a small observatory for education. Around that time a local foundation, Nevada Gaming Foundation for Education Excellence, was looking for a beneficiary in the education field to receive a grant. They decided an observatory at the college met their criteria. Grants to the foundation instigated by Senators, businesses, and Casinos and donations from the local public now total $1.3 million. This paper will explain the different facets of building the observatory, the planning, construction, telescopes and equipment decisions and how we think it will operate for the public, education and research. The organization of local volunteers to operate and maintain the observatory and the planned re- search will be explained.

  10. ``Route of astronomical observatories'' project: Classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2016-10-01

    Observatories offer a good possibility for serial transnational applications. For example one can choose groups like baroque or neoclassical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments or made by famous firms. I will discuss what has been achieved and show examples, like the route of astronomical observatories, the transition from classical astronomy to modern astrophysics. I will also discuss why the implementation of the World Heritage & Astronomy initiative is difficult and why there are problems to nominate observatories for election in the national tentative lists.

  11. The peculiar isolated neutron star in the Carina Nebula. Deep XMM-Newton and ESO-VLT observations of 2XMM J104608.7-594306

    NASA Astrophysics Data System (ADS)

    Pires, A. M.; Motch, C.; Turolla, R.; Schwope, A.; Pilia, M.; Treves, A.; Popov, S. B.; Janot-Pacheco, E.

    2012-08-01

    While fewer in number than the dominant rotation-powered radio pulsar population, peculiar classes of isolated neutron stars (INSs) - which include magnetars, the ROSAT-discovered "Magnificent Seven" (M7), rotating radio transients (RRATs), and central compact objects in supernova remnants (CCOs) - represent a key element in understanding the neutron star phenomenology. We report the results of an observational campaign to study the properties of the source 2XMM J104608.7-594306, a newly discovered thermally emitting INS. The evolutionary state of the neutron star is investigated by means of deep dedicated observations obtained with the XMM-Newton Observatory, the ESO Very Large Telescope, as well as publicly available γ-ray data from the Fermi Space Telescope and the AGILE Mission. The observations confirm previous expectations and reveal a unique type of object. The source, which is likely within the Carina Nebula (NH = 2.6 × 1021 cm-2), has a spectrum that is both thermal and soft, with kT∞ = 135 eV. Non-thermal (magnetospheric) emission is not detected down to 1% (3σ, 0.1-12 keV) of the source luminosity. Significant deviations (absorption features) from a simple blackbody model are identified in the spectrum of the source around energies 0.6 keV and 1.35 keV. While the former deviation is likely related to a local oxygen overabundance in the Carina Nebula, the latter can only be accounted for by an additional spectral component, which is modelled as a Gaussian line in absorption with EW = 91 eV and σ = 0.14 keV (1σ). Furthermore, the optical counterpart is fainter than mV = 27 (2σ) and no γ-ray emission is significantly detected by either the Fermi or AGILE missions. Very interestingly, while these characteristics are remarkably similar to those of the M7 or the only RRAT so far detected in X-rays, which all have spin periods of a few seconds, we found intriguing evidence of very rapid rotation, P = 18.6 ms, at the 4σ confidence level. We interpret

  12. New Sub-Millimetre Light in the Desert

    NASA Astrophysics Data System (ADS)

    2005-07-01

    The Atacama Pathfinder Experiment (APEX) project has just passed another major milestone by successfully commissioning its new technology 12-m telescope, located on the 5100m high Chajnantor plateau in the Atacama Desert (Chile). The APEX telescope, designed to work at sub-millimetre wavelengths, in the 0.2 to 1.5 mm range, has just performed its first scientific observations. This new front-line facility will provide access to the "Cold Universe" with unprecedented sensitivity and image quality. Karl Menten, Director of the group for Millimeter and Sub-Millimeter Astronomy at the Max-Planck-Institute for Radio Astronomy (MPIfR) and Principal Investigator of the APEX project is excited: " Among the first observations, we have obtained wonderful spectra, which took only minutes to take but offer a fascinating view of the highly complex organic chemistry in star-forming regions. In addition, we have also obtained exquisite images from the Magellanic Clouds and observed molecules in the active nuclei of several external galaxies. Traditionally, telescopes turn to weak extragalactic sources only after they are well in operation. With APEX, we could pick them amongst our first targets!" Because sub-millimetre radiation from space is heavily absorbed by water vapour in the Earth's atmosphere, APEX is located at an altitude of 5100 metres in the high Chilean Atacama desert on the Chajnantor plains, 50 km east of San Pedro de Atacama in northern Chile. The Atacama desert is one of the driest places on Earth, thus providing unsurpassed observing opportunities - at the costs of the demanding logistics required to operate a frontier science observatory at this remote place. Along with the Japanese 10-m ASTE telescope, which is operating at a neighbouring, lower altitude location, APEX is the first and largest sub-millimetre facility under southern skies. With its precise antenna and large collecting area, it will provide, at this exceptional location, unprecedented access to

  13. VISTA Reveals the Secret of the Unicorn

    NASA Astrophysics Data System (ADS)

    2010-10-01

    A new infrared image from ESO's VISTA survey telescope reveals an extraordinary landscape of glowing tendrils of gas, dark clouds and young stars within the constellation of Monoceros (the Unicorn). This star-forming region, known as Monoceros R2, is embedded within a huge dark cloud. The region is almost completely obscured by interstellar dust when viewed in visible light, but is spectacular in the infrared. An active stellar nursery lies hidden inside a massive dark cloud rich in molecules and dust in the constellation of Monoceros. Although it appears close in the sky to the more familiar Orion Nebula it is actually almost twice as far from Earth, at a distance of about 2700 light-years. In visible light a grouping of massive hot stars creates a beautiful collection of reflection nebulae where the bluish starlight is scattered from parts of the dark, foggy outer layers of the molecular cloud. However, most of the new-born massive stars remain hidden as the thick interstellar dust strongly absorbs their ultraviolet and visible light. In this gorgeous infrared image taken from ESO's Paranal Observatory in northern Chile, the Visible and Infrared Survey Telescope for Astronomy (VISTA [1], eso0949) penetrates the dark curtain of cosmic dust and reveals in astonishing detail the folds, loops and filaments sculpted from the dusty interstellar matter by intense particle winds and the radiation emitted by hot young stars. "When I first saw this image I just said 'Wow!' I was amazed to see all the dust streamers so clearly around the Monoceros R2 cluster, as well as the jets from highly embedded young stellar objects. There is such a great wealth of exciting detail revealed in these VISTA images," says Jim Emerson, of Queen Mary, University of London and leader of the VISTA consortium. With its huge field of view, large mirror and sensitive camera, VISTA is ideal for obtaining deep, high quality infrared images of large areas of the sky, such as the Monoceros R2 region

  14. The "+" for CRIRES: enabling better science at infrared wavelength and high spectral resolution at the ESO VLT

    NASA Astrophysics Data System (ADS)

    Dorn, Reinhold J.; Follert, Roman; Bristow, Paul; Cumani, Claudio; Eschbaumer, Siegfried; Grunhut, Jason; Haimerl, Andreas; Hatzes, Artie; Heiter, Ulrike; Hinterschuster, Renate; Ives, Derek J.; Jung, Yves; Kerber, Florian; Klein, Barbara; Lavaila, Alexis; Lizon, Jean Louis; Löwinger, Tom; Molina-Conde, Ignacio; Nicholson, Belinda; Marquart, Thomas; Oliva, Ernesto; Origlia, Livia; Pasquini, Luca; Paufique, Jérôme; Piskunov, Nikolai; Reiners, Ansgar; Seemann, Ulf; Stegmeier, Jörg; Stempels, Eric; Tordo, Sebastien

    2016-08-01

    The adaptive optics (AO) assisted CRIRES instrument is an IR (0.92 - 5.2 μm) high-resolution spectrograph was in operation from 2006 to 2014 at the Very Large Telescope (VLT) observatory. CRIRES was a unique instrument, accessing a parameter space (wavelength range and spectral resolution) up to now largely uncharted. It consisted of a single-order spectrograph providing long-slit (40 arcsecond) spectroscopy with a resolving power up to R=100 000. However the setup was limited to a narrow, single-shot, spectral range of about 1/70 of the central wavelength, resulting in low observing efficiency for many scientific programmes requiring a broad spectral coverage. The CRIRES upgrade project, CRIRES+, transforms this VLT instrument into a cross-dispersed spectrograph to increase the simultaneously covered wavelength range by a factor of ten. A new and larger detector focal plane array of three Hawaii 2RG detectors with 5.3 μm cut-off wavelength will replace the existing detectors. For advanced wavelength calibration, custom-made absorption gas cells and an etalon system will be added. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. This upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities offered by CRIRES+. CRIRES+ has now entered its assembly and integration phase and will return with all new capabilities by the beginning of 2018 to the Very Large Telescope in Chile. This article will provide the reader with an update of the current status of the instrument as well as the remaining steps until final installation at the Paranal Observatory.

  15. Foreshocks and aftershocks of the 2014 M8.1 Iquique, northern Chile, megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Soto, Hugo; Sippl, Christian; Schurr, Bernd; Asch, Günter; Tilmann, Frederik; Comte, Diana; Ruiz, Sergio; Oncken, Onno

    2017-04-01

    The M8.1 2014 Iquique earthquake broke a central piece of the long-standing, >500 km long northern Chile seismic gap. The Iquique earthquake sequence started off with a M6.7 thrust event presumably in the upper plate seaward of the Chilean coastline. Deformation was quickly transferred onto the megathrust with three more events of M>6 until it culminated in the mainshock that broke a compact asperity with possibly up to 12 m of slip two weeks later. The mainshock was followed by vigorous aftershock sequence, including a M7.7 event just south of the main slip patch approx. two days later. The whole sequence of events was well recorded by the Integrated Plate Boundary Observatory Chile (IPOC). The IPOC network was complemented quickly after the first large foreshock by 60 additional temporary seismic stations deployed by the University of Chile and the German Research Centre for Geosciences - GFZ. Processing the continuous data with an automated multi-step process for event detection, association and phase picking, we located more than 25,000 events for one month preceding and nine months following the Iquique mainshock. Whereas the foreshocks skirt around the updip limit of the mainshock asperity, the aftershocks agglomerate in two belts, one updip and one downdip of the main asperity offshore the Chilean coast. The deepest events on the plate interface reach 65 km depth in two separated clusters under the coastal cordillera, which show a significant difference in dip, indicating strong long-wavelength slab topography or a slab tear. We will also analyze upper- and deeper intra-plate seismicity and in particular its changes following the Iquique mainshock.

  16. Chile Earthquake: U.S. and International Response

    DTIC Science & Technology

    2010-03-11

    5 United Nations Office for the Coordination of Humanitarian Affairs, “Chile Earthquake: Situation Report #2,” March 1, 2010; Gobierno de Chile...U.S. Department of State, March 2, 2010. 6 “Bachelet decreta primer Estado de Catástrofe desde terremoto de 1985,” El Mercurio (Chile), March 1...2010; “Amplían toque de queda en zonas más afectadas por terremoto en Chile,” Agence France Presse, March 1, 2010; “160 detained, one killed during

  17. VizieR Online Data Catalog: GOODS-S CANDELS multiwavelength catalog (Guo+, 2013)

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Ferguson, H. C.; Giavalisco, M.; Barro, G.; Willner, S. P.; Ashby, M. L. N.; Dahlen, T.; Donley, J. L.; Faber, S. M.; Fontana, A.; Galametz, A.; Grazian, A.; Huang, K.-H.; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; McGrath, E. J.; Peth, M.; Salvato, M.; Wuyts, S.; Castellano, M.; Cooray, A. R.; Dickinson, M. E.; Dunlop, J. S.; Fazio, G. G.; Gardner, J. P.; Gawiser, E.; Grogin, N. A.; Hathi, N. P.; Hsu, L.-T.; Lee, K.-S.; Lucas, R. A.; Mobasher, B.; Nandra, K.; Newman, J. A.; van der Wel, A.

    2014-04-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS; Grogin et al. 2011ApJS..197...35G; Koekemoer et al. 2011ApJS..197...36K) is designed to document galaxy formation and evolution over the redshift range of z=1.5-8. The core of CANDELS is to use the revolutionary near-infrared HST/WFC3 camera, installed on HST in 2009 May, to obtain deep imaging of faint and faraway objects. The GOODS-S field, centered at RAJ2000=03:32:30 and DEJ2000=-27:48:20 and located within the Chandra Deep Field South (CDFS; Giacconi et al. 2002, Cat. J/ApJS/139/369), is a sky region of about 170arcmin2 which has been targeted for some of the deepest observations ever taken by NASA's Great Observatories, HST, Spitzer, and Chandra as well as by other world-class telescopes. The field has been (among others) imaged in the optical wavelength with HST/ACS in F435W, F606W, F775W, and F850LP bands as part of the HST Treasury Program: the Great Observatories Origins Deep Survey (GOODS; Giavalisco et al. 2004, Cat. II/261); in the mid-IR (3.6-24um) wavelength with Spitzer as part of the GOODS Spitzer Legacy Program (PI: M. Dickinson). The CDF-S/GOODS field was observed by the MOSAIC II imager on the CTIO 4m Blanco telescope to obtain deep U-band observations in 2001 September. Another U-band survey in GOODS-S was carried out using the VIMOS instrument mounted at the Melipal Unit Telescope of the VLT at ESO's Cerro Paranal Observatory, Chile. This large program of ESO (168.A-0485; PI: C. Cesarsky) was obtained in service mode observations in UT3 between 2004 August and fall 2006. In the ground-based NIR, imaging observations of the CDFS were carried out in J, H, Ks bands using the ISAAC instrument mounted at the Antu Unit Telescope of the VLT. Data were obtained as part of the ESO Large Programme 168.A-0485 (PI: C. Cesarsky) as well as ESO Programmes 64.O-0643, 66.A-0572, and 68.A-0544 (PI: E. Giallongo) with a total allocation time of ~500 hr from 1999 October to 2007 January

  18. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  19. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.

  20. First ALMA Transporter Ready for Challenging Duty

    NASA Astrophysics Data System (ADS)

    2008-07-01

    The first of two ALMA transporters -- unique vehicles designed to move high-tech radio-telescope antennas in the harsh, high-altitude environment of the Atacama Large Millimeter/submillimeter Array -- has been completed and passed its initial operational tests. The 130-ton machine moves on 28 wheels and will be able to transport a 115-ton antenna and set it down on a concrete pad within millimeters of a prescribed position. ALMA Transporter The ALMA Transporter on a Test Run CREDIT: ESO Click on image for high-resolution file (244 KB) The ALMA transporter rolled out of its hangar and underwent the tests at the Scheuerle Fahrzeugfabrik company site near Nuremberg, Germany. The machine is scheduled for delivery at the ALMA site in Chile by the end of 2007, and a second vehicle will follow about three months later. ALMA is a giant, international observatory under construction in the Atacama Desert of northern Chile at an elevation of 16,500 feet. Using at least 66 high-precision antennas, with the possibility of increasing the number in the future, ALMA will provide astronomers with an unprecedented ability to explore the Universe as seen at wavelengths of a few millimeters to less than a millimeter. By moving the antennas from configurations as compact as 150 meters to as wide as 15 kilometers, the system will provide a zoom-lens ability for scientists. "The ability to move antennas to reconfigure the array is vital to fulfilling ALMA's scientific mission. The operations plan calls for moving antennas on a daily basis to provide the flexibility that will be such a big part of ALMA's scientific value. That's why the transporters are so important and why this is such a significant milestone," said Adrian Russell, North American Project Manager for ALMA. "The ALMA antennas will be assembled and their functionality will be verified at a base camp, located at an altitude of 2900 meters (9500 feet) and the transporters will in a first step bring the telescopes up to the

  1. Rotational properties of main belt asteroids: photoelectric and CCD observations of 15 objects

    NASA Astrophysics Data System (ADS)

    Florczak, M.; Dotto, E.; Barucci, M. A.; Birlan, M.; Erikson, A.; Fulchignoni, M.; Nathues, A.; Perret, L.; Thebault, P.

    1997-11-01

    In this paper we present the results of several observational campaigns carried out during 1996 at the 1.2 m telescope of the Haute Provence Observatory (France) and at the 1.5m Danish, 0.9m Dutch, 0.6m Bochum and 0.5m telescopes of the European Southern Observatory (ESO, La Silla, Chile), in order to enlarge the available sample of know asteroid rotational periods. A total of 64 single night lightcurves for 15 asteroids were obtained. The rotational periods have been determined for 12 objects, with different quality code: 424 Gratia ( Psyn = 19.47 h), 440 Theodora ( Psyn = 4.828 h), 446 Aeternitas ( Psyn = 15.85 h), 491 Carina ( Psyn = 14.87 h), 727 Nipponia ( Psyn = 4.6 h), 732 Tjilaki ( Psyn = 12.34 h), 783 Nora ( Psyn = 34.4 h), 888 Parysatis ( Psyn = 5.49 h), 1626 Sadeya ( Psyn = 3.438 h), 2209 Tianjin ( Psyn = 9.47 h), 2446 Lunacharsky ( Psyn = 3.613 h) and 3776 Vartiovuori ( Psyn = 7.7 h). For 1246 Chaka, 1507 Vaasa and 1994 Shane the complete rotational phase was not covered and for two of them it was possible to find only an indication of the rotational period.

  2. Rule of Repression in Chile.

    ERIC Educational Resources Information Center

    American Indian Journal, 1979

    1979-01-01

    This report on the current condition of the Mapuche Indians of Chile is edited from a document on the "Situation of Human Rights in Chile" and details the repressive and inhumane treatment of the largest indigenous ethnic minority in the country. (Author/RTS)

  3. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; VanLew, K.; Melsheimer, T.; Sackett, C.

    1999-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. Construction of the dome and the remote control system has been completed, and the telescope is now on-line and operational over the Internet. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have begun teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  4. Planet from another galaxy discovered - Galactic cannibalism brings an exoplanet of extragalactic origin within astronomers' reach

    NASA Astrophysics Data System (ADS)

    2010-11-01

    An exoplanet orbiting a star that entered our Milky Way from another galaxy has been detected by a European team of astronomers using the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. The Jupiter-like planet is particularly unusual, as it is orbiting a star nearing the end of its life and could be about to be engulfed by it, giving tantalising clues about the fate of our own planetary system in the distant future. Over the last 15 years, astronomers have detected nearly 500 planets orbiting stars in our cosmic neighbourhood, but none outside our Milky Way has been confirmed [1]. Now, however, a planet with a minimum mass 1.25 times that of Jupiter [2] has been discovered orbiting a star of extragalactic origin, even though the star now finds itself within our own galaxy. It is part of the so-called Helmi stream [3] - a group of stars that originally belonged to a dwarf galaxy that was devoured by our galaxy, the Milky Way, in an act of galactic cannibalism about six to nine billion years ago. The results are published today in Science Express. "This discovery is very exciting," says Rainer Klement of the Max-Planck-Institut für Astronomie (MPIA), who was responsible for the selection of the target stars for this study. "For the first time, astronomers have detected a planetary system in a stellar stream of extragalactic origin. Because of the great distances involved, there are no confirmed detections of planets in other galaxies. But this cosmic merger has brought an extragalactic planet within our reach." The star is known as HIP 13044, and it lies about 2000 light-years from Earth in the southern constellation of Fornax (the Furnace). The astronomers detected the planet, called HIP 13044 b, by looking for the tiny telltale wobbles of the star caused by the gravitational tug of an orbiting companion. For these precise observations, the team used the high-resolution spectrograph FEROS [4] attached to the 2.2-metre MPG/ESO telescope [5] at

  5. HUBBLE PHOTOGRAPHS WARPED GALAXY AS CAMERA PASSES MILESTONE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has captured an image of an unusual edge-on galaxy, revealing remarkable details of its warped dusty disk and showing how colliding galaxies spawn the formation of new generations of stars. The dust and spiral arms of normal spiral galaxies, like our own Milky Way, appear flat when viewed edge-on. This month's Hubble Heritage image of ESO 510-G13 shows a galaxy that, by contrast, has an unusual twisted disk structure, first seen in ground-based photographs obtained at the European Southern Observatory (ESO) in Chile. ESO 510-G13 lies in the southern constellation Hydra, roughly 150 million light-years from Earth. Details of the structure of ESO 510-G13 are visible because the interstellar dust clouds that trace its disk are silhouetted from behind by light from the galaxy's bright, smooth central bulge. The strong warping of the disk indicates that ESO 510-G13 has recently undergone a collision with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort the structures of the galaxies as their stars, gas, and dust merge together in a process that takes millions of years. Eventually the disturbances will die out, and ESO 510-G13 will become a normal-appearing single galaxy. In the outer regions of ESO 510-G13, especially on the right-hand side of the image, we see that the twisted disk contains not only dark dust, but also bright clouds of blue stars. This shows that hot, young stars are being formed in the disk. Astronomers believe that the formation of new stars may be triggered by collisions between galaxies, as their interstellar clouds smash together and are compressed. The Heritage Team used Hubble's Wide Field Planetary Camera 2 (WFPC2) to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty spiral arms, the bright bulge, and the blue star-forming regions. During the

  6. The evolution of optics education at the U.S. National Optical Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Pompea, Stephen M.; Walker, Constance E.; Sparks, Robert T.

    2014-07-01

    The last decade of optics education at the U.S. National Optical Astronomy Observatory will be described in terms of program planning, assessment of community needs, identification of networks and strategic partners, the establishment of specific program goals and objectives, and program metrics and evaluation. A number of NOAO's optics education programs for formal and informal audiences will be described, including our Hands-On Optics program, illumination engineering/dark skies energy education programs, afterschool programs, adaptive optics education program, student outreach, and Galileoscope program. Particular emphasis will be placed on techniques for funding and sustaining high-quality programs. The use of educational gap analysis to identify the key needs of the formal and informal educational systems will be emphasized as a technique that has helped us to maximize our educational program effectiveness locally, regionally, nationally, and in Chile.

  7. VIMOS Instrument Control Software Design: an Object Oriented Approach

    NASA Astrophysics Data System (ADS)

    Brau-Nogué, Sylvie; Lucuix, Christian

    2002-12-01

    The Franco-Italian VIMOS instrument is a VIsible imaging Multi-Object Spectrograph with outstanding multiplex capabilities, allowing to take spectra of more than 800 objects simultaneously, or integral field spectroscopy mode in a 54x54 arcsec area. VIMOS is being installed at the Nasmyth focus of the third Unit Telescope of the European Southern Observatory Very Large Telescope (VLT) at Mount Paranal in Chile. This paper will describe the analysis, the design and the implementation of the VIMOS Instrument Control System, using UML notation. Our Control group followed an Object Oriented software process while keeping in mind the ESO VLT standard control concepts. At ESO VLT a complete software library is available. Rather than applying waterfall lifecycle, ICS project used iterative development, a lifecycle consisting of several iterations. Each iteration consisted in : capture and evaluate the requirements, visual modeling for analysis and design, implementation, test, and deployment. Depending of the project phases, iterations focused more or less on specific activity. The result is an object model (the design model), including use-case realizations. An implementation view and a deployment view complement this product. An extract of VIMOS ICS UML model will be presented and some implementation, integration and test issues will be discussed.

  8. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO.

    PubMed

    Xingling, Shao; Honglun, Wang

    2015-07-01

    This paper proposes a novel composite integrated guidance and control (IGC) law for missile intercepting against unknown maneuvering target with multiple uncertainties and control constraint. First, by using back-stepping technique, the proposed IGC law design is separated into guidance loop and control loop. The unknown target maneuvers and variations of aerodynamics parameters in guidance and control loop are viewed as uncertainties, which are estimated and compensated by designed model-assisted reduced-order extended state observer (ESO). Second, based on the principle of active disturbance rejection control (ADRC), enhanced feedback linearization (FL) based control law is implemented for the IGC model using the estimates generated by reduced-order ESO. In addition, performance analysis and comparisons between ESO and reduced-order ESO are examined. Nonlinear tracking differentiator is employed to construct the derivative of virtual control command in the control loop. Third, the closed-loop stability for the considered system is established. Finally, the effectiveness of the proposed IGC law in enhanced interception performance such as smooth interception course, improved robustness against multiple uncertainties as well as reduced control consumption during initial phase are demonstrated through simulations. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Young Astronomers' Observe with ESO Telescopes

    NASA Astrophysics Data System (ADS)

    1995-11-01

    Today, forty 16-18 year old students and their teachers are concluding a one-week, educational `working visit' to the ESO Headquarters in Garching (See ESO Press Release 14/95 of 8 November 1995). They are the winners of the Europe-wide contest `Europe Towards the Stars', organised by ESO with the support of the European Union, under the auspices of the Third European Week for Scientific and Technological Culture. From November 14-20, they have worked with professional ESO astronomers in order to get insight into the methods and principles of modern astronomy and astrophysics, as carried out at one of the world's foremost international centres. This included very successful remote observations with the ESO 3.5-m New Technology Telescope (NTT) and the 1.4-m Coude Auxiliary Telescope (CAT) via a satellite link between the ESO Headquarters and the La Silla observatory in Chile, 12,000 kilometres away. After a general introduction to modern astronomy on the first day of the visit, the participants divided into six teams, according to their interests. Some chose to observe distant galaxies, others prefered to have a closer look on binary stars, and one team decided to investigate a star which is thought to be surrounded by a proto-planetary system. Each team was supported by an experienced ESO astronomer. Then followed the observations at the remote consoles during three nights, the first at the NTT and the following at the CAT. Each team had access to the telescope during half a night. Although the work schedule - exactly as in `real' science - was quite hard, especially during the following data reduction and interpretative phase, all teams managed extremely well and in high spirits. The young astronomers' observations were favoured by excellent atmospheric conditions. At the NTT, the seeing was better than 0.5 arcsecond during several hours, an exceptional value that allows very good images to be obtained. All observations represent solid and interesting science, and

  10. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  11. Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.

    2012-09-01

    Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.

  12. Ssalmon - The Solar Simulations For The Atacama Large Millimeter Observatory Network

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Ssalmon Group

    2016-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) provides a new powerful tool for observing the solar chromosphere at high spatial, temporal, and spectral resolution, which will allow for addressing a wide range of scientific topics in solar physics. Numerical simulations of the solar atmosphere and modeling of instrumental effects are valuable tools for constraining, preparing and optimizing future observations with ALMA and for interpreting the results. In order to co-ordinate related activities, the Solar Simulations for the Atacama Large Millimeter Observatory Network (SSALMON) was initiated on September 1st, 2014, in connection with the NA- and EU-led solar ALMA development studies. As of April, 2015, SSALMON has grown to 83 members from 18 countries (plus ESO and ESA). Another important goal of SSALMON is to promote the scientific potential of solar science with ALMA, which has resulted in two major publications so far. During 2015, the SSALMON Expert Teams produced a White Paper with potential science cases for Cycle 4, which will be the first time regular solar observations will be carried out. Registration and more information at http://www.ssalmon.uio.no.

  13. Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First 2 Years

    NASA Astrophysics Data System (ADS)

    Matheson, Thomas; Blondin, Stéphane; Foley, Ryan J.; Chornock, Ryan; Filippenko, Alexei V.; Leibundgut, Bruno; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Kirshner, Robert P.; Clocchiatti, Alejandro; Aguilera, Claudio; Barris, Brian; Becker, Andrew C.; Challis, Peter; Covarrubias, Ricardo; Garnavich, Peter; Hicken, Malcolm; Jha, Saurabh; Krisciunas, Kevin; Li, Weidong; Miceli, Anthony; Miknaitis, Gajus; Prieto, Jose Luis; Rest, Armin; Riess, Adam G.; Salvo, Maria Elena; Schmidt, Brian P.; Stubbs, Christopher W.; Suntzeff, Nicholas B.; Tonry, John L.

    2005-05-01

    We present the results of spectroscopic observations of targets discovered during the first 2 years of the ESSENCE project. The goal of ESSENCE is to use a sample of ~200 Type Ia supernovae (SNe Ia) at moderate redshifts (0.2<~z<~0.8) to place constraints on the equation of state of the universe. Spectroscopy not only provides the redshifts of the objects but also confirms that some of the discoveries are indeed SNe Ia. This confirmation is critical to the project, as techniques developed to determine luminosity distances to SNe Ia depend on the knowledge that the objects at high redshift have the same properties as the ones at low redshift. We describe the methods of target selection and prioritization, the telescopes and detectors, and the software used to identify objects. The redshifts deduced from spectral matching of high-redshift SNe Ia with low-redshift SNe Ia are consistent with those determined from host-galaxy spectra. We show that the high-redshift SNe Ia match well with low-redshift templates. We include all spectra obtained by the ESSENCE project, including 52 SNe Ia, five core-collapse SNe, 12 active galactic nuclei, 19 galaxies, four possibly variable stars, and 16 objects with uncertain identifications. Based in part on observations obtained at the Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation (NSF); the European Southern Observatory, Chile (ESO Programme 170.A-0519) the Gemini Observatory, which is operated by AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership (the NSF [United States], the Particle Physics and Astronomy Research Council [United Kingdom], the National Research Council [Canada], CONICYT [Chile], the Australian Research Council [Australia], CNPq [Brazil], and CONICET [Argentina] [programs GN-2002B-Q-14, GN-2003B-Q-14, and GS-2003B-Q-11]) the

  14. The Boulder magnetic observatory

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.; Pedrie, Kolby L.; Blum, Cletus C.

    2015-08-14

    The Boulder magnetic observatory has, since 1963, been operated by the Geomagnetism Program of the U.S. Geological Survey in accordance with Bureau and national priorities. Data from the observatory are used for a wide variety of scientific purposes, both pure and applied. The observatory also supports developmental projects within the Geomagnetism Program and collaborative projects with allied geophysical agencies.

  15. Wildfires in Chile: A review

    NASA Astrophysics Data System (ADS)

    Úbeda, Xavier; Sarricolea, Pablo

    2016-11-01

    This paper reviews the literature examining the wildfire phenomenon in Chile. Since ancient times, Chile's wildfires have shaped the country's landscape, but today, as in many other parts of the world, the fire regime - pattern, frequency and intensity - has grown at an alarming rate. In 2014, > 8000 fires were responsible for burning c. 130,000 ha, making it the worst year in Chile's recent history. The reasons for this increase appear to be the increment in the area planted with flammable species; the rejection of these landscape modifications on the part of local communities that target these plantations in arson attacks; and, the adoption of intensive forest management practices resulting in the accumulation of a high fuel load. These trends have left many native species in a precarious situation and forest plantation companies under considerable financial pressure. An additional problem is posed by fires at the wildland urban interface (WUI), threatening those inhabitants that live in Chile's most heavily populated cities. The prevalence of natural fires in Chile; the relationship between certain plant species and fire in terms of seed germination strategies and plant adaptation; the relationship between fire and invasive species; and, the need for fire prevention systems and territorial plans that include fire risk assessments are some of the key aspects discussed in this article. Several of the questions raised will require further research, including just how fire-dependent the ecosystems in Chile are, how the forest at the WUI can be better managed to prevent human and material damage, and how best to address the social controversy that pits the Mapuche population against the timber companies.

  16. Full Speed Ahead for Eso's Very Large Telescope First Enclosure on its way to PARANAL!

    NASA Astrophysics Data System (ADS)

    1994-09-01

    During the past months, vast progress has been made in the construction of ESO's 16-metre equivalent Very Large Telescope (VLT). This major scientific and technological project aims at installing the world's largest optical telescope in the form of four interconnected telescopes with 8.2-metre mirrors on the Paranal mountain in the Chilean Atacama desert. It continues to be on schedule as it heads towards its completion, just after the year 2000. An important milestone will be reached in early October 1994 when the first large shipment containing heavy steel parts of the enclosure for VLT Unit Telescope no. 1 leaves the Italian port of Genova [1]. Meanwhile the construction work on the Paranal site is also progressing very well. It is now expected that, as planned, the first enclosure will be ready in May 1995 to receive the first 8.2-metre telescope. This Press Release is accompanied by four colour pictures that illustrate some of the most recent developments. CONSTRUCTION PROGRESS IN EUROPE Considerable progress has been made by ESO's industrial partners in Europe, and the VLT Project has now entered into a new and dynamic phase of construction. The first 8.2-metre mirror is currently in the middle of a two-year polishing process at the REOSC company near Paris, and the first interferometric tests have shown that this very delicate operation is progressing well. The enormous mirror surface, with a total area of more than 50 m^2, is slowly but steadily approaching the desired shape which must be achieved within a few hundred-thousandths of one millimetre over the entire surface. Mirror blank no. 2 is now ready at the Schott factory in Mainz (Germany) and will be delivered by barge transport to REOSC in October 1994. Blank no. 3 has successfully completed the critical ceramization phase and blank no. 4 will soon receive the same treatment. The circular steel track, 18 metres in diameter, that will support Telescope no. 1 has now been successfully machined at the

  17. Hubble and ESO's VLT provide unique 3D views of remote galaxies

    NASA Astrophysics Data System (ADS)

    2009-03-01

    Astronomers have obtained exceptional 3D views of distant galaxies, seen when the Universe was half its current age, by combining the twin strengths of the NASA/ESA Hubble Space Telescope's acute eye, and the capacity of ESO's Very Large Telescope to probe the motions of gas in tiny objects. By looking at this unique "history book" of our Universe, at an epoch when the Sun and the Earth did not yet exist, scientists hope to solve the puzzle of how galaxies formed in the remote past. ESO PR Photo 10a/09 A 3D view of remote galaxies ESO PR Photo 10b/09 Measuring motions in 3 distant galaxies ESO PR Video 10a/09 Galaxies in collision For decades, distant galaxies that emitted their light six billion years ago were no more than small specks of light on the sky. With the launch of the Hubble Space Telescope in the early 1990s, astronomers were able to scrutinise the structure of distant galaxies in some detail for the first time. Under the superb skies of Paranal, the VLT's FLAMES/GIRAFFE spectrograph (ESO 13/02) -- which obtains simultaneous spectra from small areas of extended objects -- can now also resolve the motions of the gas in these distant galaxies (ESO 10/06). "This unique combination of Hubble and the VLT allows us to model distant galaxies almost as nicely as we can close ones," says François Hammer, who led the team. "In effect, FLAMES/GIRAFFE now allows us to measure the velocity of the gas at various locations in these objects. This means that we can see how the gas is moving, which provides us with a three-dimensional view of galaxies halfway across the Universe." The team has undertaken the Herculean task of reconstituting the history of about one hundred remote galaxies that have been observed with both Hubble and GIRAFFE on the VLT. The first results are coming in and have already provided useful insights for three galaxies. In one galaxy, GIRAFFE revealed a region full of ionised gas, that is, hot gas composed of atoms that have been stripped of

  18. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  19. Introducing CUBES: the Cassegrain U-band Brazil-ESO spectrograph

    NASA Astrophysics Data System (ADS)

    Bristow, Paul; Barbuy, Beatriz; Macanhan, Vanessa B.; Castilho, Bruno; Dekker, Hans; Delabre, Bernard; Diaz, Marcos; Gneiding, Clemens; Kerber, Florian; Kuntschner, Harald; La Mura, Giovanni; Reiss, Roland; Vernet, J.

    2014-07-01

    CUBES is a high-efficiency, medium-resolution (R ≃ 20, 000) spectrograph dedicated to the "ground based UV" (approximately the wavelength range from 300 to 400nm) destined for the Cassegrain focus of one of ESO's VLT unit telescopes in 2018/19. The CUBES project is a joint venture between ESO and Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) at the Universidade de São Paulo and the Brazilian Laboratório Nacional de Astrofísica (LNA). CUBES will provide access to a wealth of new and relevant information for stellar as well as extra-galactic sources. Principle science cases include the study of heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range and the determination of the Beryllium abundance as well as the study of active galactic nuclei and the inter-galactic medium. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will enable a significant gain in sensitivity over existing ground based medium-high resolution spectrographs enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project, introducing the science cases that drive the design and discussing the design options and technological challenges.

  20. Studies to Control Endemic Typhoid Fever in Chile

    DTIC Science & Technology

    1982-01-29

    de las colecistopatias en Chile . Rev.Med.Chile 100:1376- 1381, 1972. 8. Medina, E., Kaempffer, A.M., DeCroizet, V.A., Yrrazaval, Toporowicz, M...Epidemoologia de las colecistopatias en Chile . II. Factores de importancia en estudios de autopsia. Rev.Med.Chile 100:1382-1389, 1972. 9. Marinovio, I...necesario ef ec tuar previamente ex5menes bactereol.’gicos de inocuidad y potencia_ de la vacuna en el Instituto de Salud Priblica de

  1. News from ESO Archive Services: Next Generation Request Handler and Data Access Delegation

    NASA Astrophysics Data System (ADS)

    Fourniol, N.; Lockhart, J.; Suchar, D.; Tacconi-Garman, L. E.; Moins, C.; Bierwirth, T.; Eglitis, P.; Vuong, M.; Micol, A.; Delmotte, N.; Vera, I.; Dobrzycki, A.; Forchì, V.; Lange, U.; Sogni, F.

    2012-09-01

    We present the new ESO Archive services which improve the electronic data access via the Download Manager and also provide PIs with the option to delegate data access to their collaborators via the Data Access Control.

  2. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  3. VizieR Online Data Catalog: L-σ relation for massive star formation (Chavez+, 2014)

    NASA Astrophysics Data System (ADS)

    Chavez, R.; Terlevich, R.; Terlevich, E.; Bresolin, F.; Melnick, J.; Plionis, M.; Basilakos, S.

    2015-03-01

    We observed 128 HIIGx selected from the SDSS DR7 spectroscopic catalogue (Abazajian et al., 2009ApJS..182..543A) for having the strongest emission lines relative to the continuum (i.e. largest equivalent widths) and in the redshift range 0.01ESO VLT in Paranal, Chile and the HDS at the National Astronomical Observatory of Japan (NAOJ) Subaru Telescope in Mauna Kea, Hawaii. (5 data files).

  4. VizieR Online Data Catalog: Selection function of Milky Way field stars (Stonkute+, 2016)

    NASA Astrophysics Data System (ADS)

    Stonkute, E.; Koposov, S. E.; Howes, L. M.; Feltzing, S.; Worley, C. C.; Gilmore, G.; Ruchti, G. R.; Kordopatis, G.; Randich, S.; Zwitter, T.; Bensby, T.; Bragaglia, A.; Smiljanic, R.; Costado, M. T.; Tautvaisiene, G.; Casey, A. R.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Franciosini, E.; Hourihane, A.; Jofre, P.; Lardo, C.; Lewis, J.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.

    2017-10-01

    The observations are conducted with the FLAMES (Pasquini et al., 2002Msngr.110....1P) at the Very Large Telescope (VLT) array operated by the European Southern Observatory on Cerro Paranal, Chile. FLAMES is a fibre facility of the VLT and is mounted at the Nasmyth A platform of the second Unit Telescope of VLT. In this paper, we present the Gaia-ESO Survey selection function only for the Milky Way field stars observed with the GIRAFFE and UVES spectrographs at VLT, not including the bulge. All targets were selected according to their colours and magnitudes, using photometry from the VISTA Hemisphere Survey (VHS; McMahon et al. 2013Msngr.154...35M) and the Two Micron All-Sky Survey (2MASS; Skrutskie et al., 2006, Cat. VII/233). Selected potential target lists were generated at the Cambridge Astronomy Survey Unit (CASU) centre. (3 data files).

  5. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-01-01

    Managed by the Marshall Space Flight Center and built by TRW, the second High Energy Astronomy Observatory was launched November 13, 1978. The observatory carried the largest X-ray telescope ever built and was renamed the Einstein Observatory after achieving orbit.

  6. Resolving the Circumstellar Environment of the Galactic B[e] Supergiant Star MWC 137 from Large to Small Scales

    NASA Astrophysics Data System (ADS)

    Kraus, Michaela; Liimets, Tiina; Cappa, Cristina E.; Cidale, Lydia S.; Nickeler, Dieter H.; Duronea, Nicolas U.; Arias, Maria L.; Gunawan, Diah S.; Oksala, Mary E.; Borges Fernandes, Marcelo; Maravelias, Grigoris; Curé, Michel; Santander-García, Miguel

    2017-11-01

    The Galactic object MWC 137 has been suggested to belong to the group of B[e] supergiants. However, with its large-scale optical bipolar ring nebula and high-velocity jet and knots, it is a rather atypical representative of this class. We performed multiwavelength observations spreading from the optical to the radio regimes. Based on optical imaging and long-slit spectroscopic data, we found that the northern parts of the large-scale nebula are predominantly blueshifted, while the southern regions appear mostly redshifted. We developed a geometrical model consisting of two double cones. Although various observational features can be approximated with such a scenario, the observed velocity pattern is more complex. Using near-infrared integral-field unit spectroscopy, we studied the hot molecular gas in the vicinity of the star. The emission from the hot CO gas arises in a small-scale disk revolving around the star on Keplerian orbits. Although the disk itself cannot be spatially resolved, its emission is reflected by the dust arranged in arc-like structures and the clumps surrounding MWC 137 on small scales. In the radio regime, we mapped the cold molecular gas in the outskirts of the optical nebula. We found that large amounts of cool molecular gas and warm dust embrace the optical nebula in the east, south, and west. No cold gas or dust was detected in the north and northwestern regions. Despite the new insights into the nebula kinematics gained from our studies, the real formation scenario of the large-scale nebula remains an open issue. Based on observations collected with (1) the ESO VLT Paranal Observatory under programs 094.D-0637(B) and 097.D-0033(A), (2) the MPG 2.2 m telescope at La Silla Observatory, Chile, under programs 096.A-9030(A) and 096.A-9039(A), (3) the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the

  7. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; VanLew, K.; Melsheimer, T.; Sackett, C.

    2000-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. The telescope is operational over the Internet, and we are now debugging the software to enable schools to control the telescope from classroom computers and take images. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have completed the first teacher training workshops to allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms. The workshops were accredited by the school district, and received very favorable reviews.

  8. The Penllergare Observatory

    NASA Astrophysics Data System (ADS)

    Birks, J. L.

    2005-12-01

    This rather picturesque and historically important Victorian observatory was built by the wealthy John Dillwyn Llewelyn near to his mansion, some four miles north-west of Swansea, Wales. He had many scientific interests, in addition to astronomy, and was a notable pioneer of photography in Wales. Together with his eldest daughter, Thereza, (who married the grandson of the fifth Astronomer Royal, Nevil Maskelyne), he took some early photographs of the Moon from this site. This paper describes the construction of the observatory, and some of those primarily involved with it. Despite its having undergone restoration work in 1982, the state of the observatory is again the cause for much concern.

  9. [Papillomavirus and cervical cancer in Chile].

    PubMed

    O'Ryan, Miguel; Valenzuela, María Teresa

    2008-11-01

    Molecular, clinical and epidemiological studies have established beyond doubt that human papiloma viruses (HPV) cause cervical cancer. The virus is also associated with genital warts and other less common cancers in oropharynx, vulva, vagina and penis. Worldwide, VPH genotypes 16 and 18 are the most common high risk genotypes, detected in near 70% of women with cervical cancer. The discovery of a cause-effect relationship between several carcinogenic microorganisms and cancer open avenues for new diagnostic, treatment and prevention strategies. In this issue of Revista Médica de Chile, two papers on HPV are presented. Guzman and colleagues demonstrate that HPV can be detected in 66% to 77% of healthy male adolescents bypolymerase chain reaction and that positivity depends on the site of the penis that is sampled. These results support the role of male to female transmission of high risk HPVs in Chile and should lead to even more active educational campaigns. The second paper provides recommendations for HPV vaccine use in Chile, generated by the Immunization Advisory Committee of the Chilean Infectious Disease Society. To issue these recommendations, the Committee analyzes the epidemiological information available on HPV infection and cervical cancer in Chile, vaccine safety and effectiveness data, and describes cost-effectiveness studies. Taking into account that universal vaccination is controversial, the Committee favors vaccine use in Chile and it's incorporation into a national program. However, there is an indication that the country requires the implementation of an integrated surveillance approach including cross matching of data obtained from HPV genotype surveillance, monitoring of vaccination coverage, and surveillance of cervical cancer. The final decision of universal vaccine use in Chile should be based on a through analysis of information.ev Mid Chile

  10. Chile: Civil-Military Relations and Democratic Consolidation

    DTIC Science & Technology

    1998-12-01

    Publishers, 1992), 41. 26 Javier Martinez and Alvaro Diaz , Chile The Great Transformation (Harrisonburg, Virginia: The Brookings Institution, 1996...the world economy, by means of technological advancements, makes it necessary to reduce 32 Javier Martinez and Alvaro Diaz , Chile the Great...disapproves the executive’s budget. There is no 60 Alicia Frohman, "Chile: External Actors and the Transition to Democracy," in Beyond Sovereignty

  11. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  12. Turning Planetary Theory Upside Down

    NASA Astrophysics Data System (ADS)

    2010-04-01

    The discovery of nine new transiting exoplanets is announced today at the RAS National Astronomy Meeting (NAM2010). When these new results were combined with earlier observations of transiting exoplanets astronomers were surprised to find that six out of a larger sample of 27 were found to be orbiting in the opposite direction to the rotation of their host star - the exact reverse of what is seen in our own Solar System. The new discoveries provide an unexpected and serious challenge to current theories of planet formation. They also suggest that systems with exoplanets of the type known as hot Jupiters are unlikely to contain Earth-like planets. "This is a real bomb we are dropping into the field of exoplanets," says Amaury Triaud, a PhD student at the Geneva Observatory who, with Andrew Cameron and Didier Queloz, leads a major part of the observational campaign. Planets are thought to form in the disc of gas and dust encircling a young star. This proto-planetary disc rotates in the same direction as the star itself, and up to now it was expected that planets that form from the disc would all orbit in more or less the same plane, and that they would move along their orbits in the same direction as the star's rotation. This is the case for the planets in the Solar System. After the initial detection of the nine new exoplanets [1] with the Wide Angle Search for Planets (WASP, [2]), the team of astronomers used the HARPS spectrograph on the 3.6-metre ESO telescope at the La Silla observatory in Chile, along with data from the Swiss Euler telescope, also at La Silla, and data from other telescopes to confirm the discoveries and characterise the transiting exoplanets [3] found in both the new and older surveys. Surprisingly, when the team combined the new data with older observations they found that more than half of all the hot Jupiters [4] studied have orbits that are misaligned with the rotation axis of their parent stars. They even found that six exoplanets in this

  13. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph B.

    2007-01-01

    The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."

  14. KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Lee; Lee, Chung-Uk; Park, Byeong-Gon; Kim, Dong-Jin; Cha, Sang-Mok; Lee, Yongseok; Han, Cheongho; Chun, Moo-Young; Yuk, Insoo

    2016-02-01

    The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.

  15. NASA's Great Observatories: Paper Model.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

  16. Everyday astronomy @ Sydney Observatory

    NASA Astrophysics Data System (ADS)

    Parello, S. L.

    2008-06-01

    Catering to a broad range of audiences, including many non-English speaking visitors, Sydney Observatory offers everything from school programmes to public sessions, day care activities to night observing, personal interactions to web-based outreach. With a history of nearly 150 years of watching the heavens, Sydney Observatory is now engaged in sharing the wonder with everybody in traditional and innovative ways. Along with time-honoured tours of the sky through two main telescopes, as well as a small planetarium, Sydney Observatory also boasts a 3D theatre, and offers programmes 363 days a year - rain or shine, day and night. Additionally, our website neversleeps, with a blog, YouTube videos, and night sky watching podcasts. And for good measure, a sprinkling of special events such as the incomparable Festival of the Stars, for which most of northern Sydney turns out their lights. Sydney Observatory is the oldest working observatory in Australia, and we're thrilled to be looking forward to our 150th Anniversary next year in anticipation of the International Year of Astronomy immediately thereafter.

  17. [A scientometric view of Revista Médica de Chile].

    PubMed

    Krauskopf, Manuel; Krauskopf, Erwin

    2008-08-01

    During the last decade Revista Médica de Chile increased its visibility, measured on citations and impact factor. To perform a scientometric analysis to assess the performance of Revista Médica de Chile. Thomson's-ISI Web of Science and Journal Citation Reports QCR) were consulted for performance indicators of Revista Médica de Chile and Latin American journals whose subject is General and Internal Medicine. We also report the h-index of the journal, which infers quality linked to the quantity of the output. According to the h-index, Revista Médica de Chile ranks 4 among the 36 journals indexed and published by Argentina, Brazil, Chile and México. The top ten articles published by Revista Médica de Chile and the institutions with the higher contribution to the journal, were identified using citations. In the Latin American region, Brazil relevantly increased its scientific output. However, Argentina, Chile and México maintain a plateau during the last decade. Revista Médica de Chile increased notoriously its performance. Its contribution to the Chilean scientific community dedicated to Medicine appears to be of central value.

  18. Investigation of a sample of carbon-enhanced metal-poor stars observed with FORS and GMOS

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Gallagher, A. J.; Bonifacio, P.; Spite, M.; Duffau, S.; Spite, F.; Monaco, L.; Sbordone, L.

    2018-06-01

    Aims: Carbon-enhanced metal-poor (CEMP) stars represent a sizeable fraction of all known metal-poor stars in the Galaxy. Their formation and composition remains a significant topic of investigation within the stellar astrophysics community. Methods: We analysed a sample of low-resolution spectra of 30 dwarf stars, obtained using the visual and near UV FOcal Reducer and low dispersion Spectrograph for the Very Large Telescope (FORS/VLT) of the European Southern Observatory (ESO) and the Gemini Multi-Object Spectrographs (GMOS) at the GEMINI telescope, to derive their metallicity and carbon abundance. Results: We derived C and Ca from all spectra, and Fe and Ba from the majority of the stars. Conclusions: We have extended the population statistics of CEMP stars and have confirmed that in general, stars with a high C abundance belonging to the high C band show a high Ba-content (CEMP-s or -r/s), while stars with a normal C abundance or that are C-rich, but belong to the low C band, are normal in Ba (CEMP-no). Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 099.D-0791.Based on observations obtained at the Gemini Observatory (processed using the Gemini IRAF package), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).Tables 1 and 2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A68

  19. NASA Extends Chandra X-ray Observatory Contract with the Smithsonian Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    2002-07-01

    NASA NASA has extended its contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass. to August 2003 to provide science and operational support for the Chandra X- ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract is an 11-month period of performance extension to the Chandra X-ray Center contract, with an estimated value of 50.75 million. Total contract value is now 298.2 million. The contract extension resulted from the delay of the launch of the Chandra X-ray Observatory from August 1998 to July 1999. The revised period of performance will continue the contract through Aug. 31, 2003, which is 48 months beyond operational checkout of the observatory. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes both the observatory operations and the science data processing and general observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and distributing by satellite the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and the processing and delivery of the resulting scientific data. Each year, there are on the order of 200 to 250 observing proposals selected out of about 800 submitted, with a total amount of observing time about 20 million seconds. X-ray astronomy can only be performed from space because Earth's atmosphere blocks X-rays from reaching the surface. The Chandra Observatory travels one-third of the way to the Moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg-shaped, orbit is 200 times higher than that of its visible-light- gathering sister, the Hubble Space Telescope. NASA

  20. Milky Way's super-efficient particle accelerators caught in the act

    NASA Astrophysics Data System (ADS)

    2009-06-01

    /JAXA Department of High Energy Astrophysics, Kanagawa, Japan), S. Funk (Kavli Institute for Particle Astrophysics and Cosmology, Stanford, USA), P. Ghavamian (Space Telescope Science Institute, Baltimore, USA), K. J. van der Heyden (University of Cape Town, South Africa), and R. Yamazaki (Department of Physical Science, Hiroshima University, Japan). C.G. Bassa is also affiliated with the Radboud University Nijmegen, the Netherlands. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  1. Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Young, E.; Marcum, P.; Krabbe, A.

    2010-12-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  2. Where Do Mexico and Chile Stand on Inclusive Education? Short Title: Inclusion in Mexico and Chile

    ERIC Educational Resources Information Center

    García-Cedillo, Ismael; Romero-Contreras, Silvia; Ramos-Abadie, Liliana

    2015-01-01

    This paper discusses the background, current situation and challenges of educational integration and inclusive education in Mexico and Chile. These countries obtained similar low results on the academic achievement of their students (Mexico last and Chile second last) among OECD countries; and above average scores, among Latin-American countries.…

  3. Adaptive optics for the ESO-VLT

    NASA Astrophysics Data System (ADS)

    Merkle, Fritz

    1989-04-01

    This paper discusses adaptive optics, its performance, and its requirements for applications in astronomy to overcome limitations due to atmospheric turbulence. Guidelines for the implementation of these devices in telescopes are given, in particular for the Very Large Telescope (VLT) at ESO. It is intended to equip each one of the four 8-m telescopes of the VLT, which are arranged in a linear array with an independent adaptive optical system. These systems will serve the individual and the combined coude foci. A small-scale prototype adaptive system is under development. It is equipped with a 19-piezoelectric-actuator deformable mirror, a Shack-Hartmann-type wavefront sensor, and a dedicated wavefront computer for closing the feedback loop. This system is based on a polychromatic approach; i.e., it senses the wavefront in the visible, but the adaptive correction loop works at 3-5 microns.

  4. IFU simulator: a powerful alignment and performance tool for MUSE instrument

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Boudon, Didier; Daguisé, Eric; Dubois, Jean-Pierre; Jarno, Aurélien; Kosmalski, Johan; Piqueras, Laure; Remillieux, Alban; Renault, Edgard

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transferred in monolithic way without dismounting onto VLT telescope where the first light was overcame. This talk describes the IFU Simulator which is the main alignment and performance tool for MUSE instrument. The IFU Simulator mimics the optomechanical interface between the MUSE pre-optic and the 24 IFUs. The optomechanical design is presented. After, the alignment method of this innovative tool for identifying the pupil and image planes is depicted. At the end, the internal test report is described. The success of the MUSE alignment using the IFU Simulator is demonstrated by the excellent results obtained onto MUSE positioning, image quality and throughput. MUSE commissioning at the VLT is planned for September, 2014.

  5. Expression and clinical significance of MAGE and NY-ESO-1 cancer-testis antigens in adenoid cystic carcinoma of the head and neck.

    PubMed

    Veit, Johannes A; Heine, Daniela; Thierauf, Julia; Lennerz, Jochen; Shetty, Subasch; Schuler, Patrick J; Whiteside, Theresa; Beutner, Dirk; Meyer, Moritz; Grünewald, Inga; Ritter, Gerd; Gnjatic, Sacha; Sikora, Andrew G; Hoffmann, Thomas K; Laban, Simon

    2016-07-01

    Adenoid cystic carcinoma (ACC) of the head and neck is a rare but highly malignant tumor. Cancer-testis antigens (CTAs) represent an immunogenic family of cancer-specific proteins and thus represent an attractive target for immunotherapy. Eighty-four cases of ACC were identified, the CTAs pan-Melanoma antigen (pan-MAGE; M3H67) and New York esophageal squamous cell carcinoma (NY-ESO-1; E978) were detected immunohistochemically (IHC) and correlated with clinical data. Expression of NY-ESO-1 was found in 48 of 84 patients (57.1%) and of pan-MAGE in 28 of 84 patients (31.2%). Median overall survival (OS) in NY-ESO-1 positive versus negative patients was 130.8 and 282.0 months (p = .223), respectively. OS in pan-MAGE positive versus negative patients was 105.3 and 190.5 months, respectively (p = .096). Patients expressing both NY-ESO-1 and pan-MAGE simultaneously had significantly reduced OS with a median of 90.5 months compared with 282.0 months in negative patients (p = .047). A significant fraction of patients with ACC show expression of the CTAs NY-ESO-1 and/or pan-MAGE with promising immunotherapeutic implications. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1008-1016, 2016. © 2016 Wiley Periodicals, Inc.

  6. Counternarcotic Efforts in the Southern Cone: Chile

    DTIC Science & Technology

    1990-06-30

    deportation is simply not practical . Statistics of cocaine coming into Chile by "ant smuggling" do not exist. Carabineros mentions that according to...existing evidence is contradictory. A recent report ordered by the Ministry of Foreign 10 Affairs does not support the allegation that Chile is being used...Gugliotta and Jeff Leen, Kings of Cocaine (New York: Harper and Row, 1989) p.23. 11 industry based in Chile and controlled by a few refiners who bought

  7. ESO imaging survey: infrared observations of CDF-S and HDF-S

    NASA Astrophysics Data System (ADS)

    Olsen, L. F.; Miralles, J.-M.; da Costa, L.; Benoist, C.; Vandame, B.; Rengelink, R.; Rité, C.; Scodeggio, M.; Slijkhuis, R.; Wicenec, A.; Zaggia, S.

    2006-06-01

    This paper presents infrared data obtained from observations carried out at the ESO 3.5 m New Technology Telescope (NTT) of the Hubble Deep Field South (HDF-S) and the Chandra Deep Field South (CDF-S). These data were taken as part of the ESO Imaging Survey (EIS) program, a public survey conducted by ESO to promote follow-up observations with the VLT. In the HDF-S field the infrared observations cover an area of ~53 square arcmin, encompassing the HST WFPC2 and STIS fields, in the JHKs passbands. The seeing measured in the final stacked images ranges from 0.79 arcsec to 1.22 arcsec and the median limiting magnitudes (AB system, 2'' aperture, 5σ detection limit) are J_AB˜23.0, H_AB˜22.8 and K_AB˜23.0 mag. Less complete data are also available in JKs for the adjacent HST NICMOS field. For CDF-S, the infrared observations cover a total area of ~100 square arcmin, reaching median limiting magnitudes (as defined above) of J_AB˜23.6 and K_AB˜22.7 mag. For one CDF-S field H band data are also available. This paper describes the observations and presents the results of new reductions carried out entirely through the un-supervised, high-throughput EIS Data Reduction System and its associated EIS/MVM C++-based image processing library developed, over the past 5 years, by the EIS project and now publicly available. The paper also presents source catalogs extracted from the final co-added images which are used to evaluate the scientific quality of the survey products, and hence the performance of the software. This is done comparing the results obtained in the present work with those obtained by other authors from independent data and/or reductions carried out with different software packages and techniques. The final science-grade catalogs together with the astrometrically and photometrically calibrated co-added images are available at CDS.

  8. Socioeconomic determinants of disability in Chile.

    PubMed

    Zitko Melo, Pedro; Cabieses Valdes, Báltica

    2011-10-01

    Disability is a worldwide public health priority. A shift from a biomedical perspective of dysfunction to a broader social understanding of disability has been proposed. Among many different social factors described in the past, socioeconomic position remains as a key multidimensional determinant of health. The study goal was to analyze the relationship between disability and different domains of socioeconomic position in Chile. Cross-sectional analysis of an anonymized population-based survey conducted in Chile in 2006. Any disability (dichotomous variable) and 6 different types of disability were analyzed on the bases of their relationship with income quintiles, occupational status, educational level, and material living standards (quality of the housing, overcrowding rate and sanitary conditions). Confounding and interaction effects were explored using R statistical program. Income, education, occupation, and material measures of socioeconomic position, along with some sociodemographic characteristics of the population, were independently associated with the chance of being disabled in Chile. Interestingly, classic measures of socioeconomic position (income, education, and occupation) were consistently associated with any disability in Chile, whereas material living conditions were partially confounded by these classic measures. In addition to this, each type of disability showed a particular pattern of related social determinants, which also varied by age group. This study contributed to the understanding of disability in Chile and how different domains of socioeconomic position might be associated with this prevalent condition. Disability remains a complex multidimensional public health problem in Chile that requires the inclusion of a wide range of risk factors, of which socioeconomic position is particularly relevant. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Studying the Light Pollution around Urban Observatories: Columbus State University’s WestRock Observatory

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Brendon Andrew; Johnson, Michael

    2017-01-01

    Light pollution plays an ever increasing role in the operations of observatories across the world. This is especially true in urban environments like Columbus, GA, where Columbus State University’s WestRock Observatory is located. Light pollution’s effects on an observatory include high background levels, which results in a lower signal to noise ratio. Overall, this will limit what the telescope can detect, and therefore limit the capabilities of the observatory as a whole.Light pollution has been mapped in Columbus before using VIIRS DNB composites. However, this approach did not provide the detailed resolution required to narrow down the problem areas around the vicinity of the observatory. The purpose of this study is to assess the current state of light pollution surrounding the WestRock observatory by measuring and mapping the brightness of the sky due to light pollution using light meters and geographic information system (GIS) software.Compared to VIIRS data this study allows for an improved spatial resolution and a direct measurement of the sky background. This assessment will enable future studies to compare their results to the baseline established here, ensuring that any changes to the way the outdoors are illuminated and their effects can be accurately measured, and counterbalanced.

  10. [Beginning of the Microbiology education in Chile: formation centers].

    PubMed

    Osorio, Carlos

    2015-08-01

    The first Chair of Microbiology in Chile was created in the School of Medicine of the Cañadilla at the University of Chile in 1892. Dr. Alejandro del Río Soto Aguilar was its first Professor. For almost three decades it was the only educational center for microbiologists in Chile. Among them were the first Professors of the new School of Medicine of the Catholic University of Chile and of the University of Concepción.

  11. Type II Supernova Spectral Diversity. II. Spectroscopic and Photometric Correlations

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Claudia P.; Anderson, Joseph P.; Hamuy, Mario; González-Gaitan, Santiago; Galbany, Lluis; Dessart, Luc; Stritzinger, Maximilian D.; Phillips, Mark M.; Morrell, Nidia; Folatelli, Gastón

    2017-11-01

    We present an analysis of observed trends and correlations between a large range of spectral and photometric parameters of more than 100 type II supernovae (SNe II), during the photospheric phase. We define a common epoch for all SNe of 50 days post-explosion, where the majority of the sample is likely to be under similar physical conditions. Several correlation matrices are produced to search for interesting trends between more than 30 distinct light-curve and spectral properties that characterize the diversity of SNe II. Overall, SNe with higher expansion velocities are brighter, have more rapidly declining light curves, shorter plateau durations, and higher 56Ni masses. Using a larger sample than previous studies, we argue that “Pd”—the plateau duration from the transition of the initial to “plateau” decline rates to the end of the “plateau”—is a better indicator of the hydrogen envelope mass than the traditionally used optically thick phase duration (OPTd: explosion epoch to end of plateau). This argument is supported by the fact that Pd also correlates with s 3, the light-curve decline rate at late times: lower Pd values correlate with larger s 3 decline rates. Large s 3 decline rates are likely related to lower envelope masses, which enables gamma-ray escape. We also find a significant anticorrelation between Pd and s 2 (the plateau decline rate), confirming the long standing hypothesis that faster declining SNe II (SNe IIL) are the result of explosions with lower hydrogen envelope masses and therefore have shorter Pd values. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS- 2008B-Q-56). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programs 076.A-0156, 078.D-0048, 080.A-0516, and 082.A-0526).

  12. Type II Supernova Spectral Diversity. I. Observations, Sample Characterization, and Spectral Line Evolution

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Claudia P.; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; González-Gaitan, Santiago; Stritzinger, Maximilian D.; Phillips, Mark M.; Galbany, Lluis; Folatelli, Gastón; Dessart, Luc; Contreras, Carlos; Della Valle, Massimo; Freedman, Wendy L.; Hsiao, Eric Y.; Krisciunas, Kevin; Madore, Barry F.; Maza, José; Suntzeff, Nicholas B.; Prieto, Jose Luis; González, Luis; Cappellaro, Enrico; Navarrete, Mauricio; Pizzella, Alessandro; Ruiz, Maria T.; Smith, R. Chris; Turatto, Massimo

    2017-11-01

    We present 888 visual-wavelength spectra of 122 nearby type II supernovae (SNe II) obtained between 1986 and 2009, and ranging between 3 and 363 days post-explosion. In this first paper, we outline our observations and data reduction techniques, together with a characterization based on the spectral diversity of SNe II. A statistical analysis of the spectral matching technique is discussed as an alternative to nondetection constraints for estimating SN explosion epochs. The time evolution of spectral lines is presented and analyzed in terms of how this differs for SNe of different photometric, spectral, and environmental properties: velocities, pseudo-equivalent widths, decline rates, magnitudes, time durations, and environment metallicity. Our sample displays a large range in ejecta expansion velocities, from ˜9600 to ˜1500 km s-1 at 50 days post-explosion with a median {{{H}}}α value of 7300 km s-1. This is most likely explained through differing explosion energies. Significant diversity is also observed in the absolute strength of spectral lines, characterized through their pseudo-equivalent widths. This implies significant diversity in both temperature evolution (linked to progenitor radius) and progenitor metallicity between different SNe II. Around 60% of our sample shows an extra absorption component on the blue side of the {{{H}}}α P-Cygni profile (“Cachito” feature) between 7 and 120 days since explosion. Studying the nature of Cachito, we conclude that these features at early times (before ˜35 days) are associated with Si II λ 6355, while past the middle of the plateau phase they are related to high velocity (HV) features of hydrogen lines. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2008B-Q-56). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere

  13. The ESA/ESO/NASA Photoshop FITS Liberator 3: Have your say on new features

    NASA Astrophysics Data System (ADS)

    Nielsen, L. H.; Christensen, L. L.; Hurt, R. L.; Nielsen, K.; Johansen, T.

    2008-06-01

    The popular, free ESA/ESO/NASA Photoshop FITS Liberator image processing software (a plugin for Adobe Photoshop) is about to get simpler, faster and more user-friendly! Here we would like to solicit inputs from the community of users.

  14. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-11-13

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  15. Deepest Wide-Field Colour Image in the Southern Sky

    NASA Astrophysics Data System (ADS)

    2003-01-01

    LA SILLA CAMERA OBSERVES CHANDRA DEEP FIELD SOUTH ESO PR Photo 02a/03 ESO PR Photo 02a/03 [Preview - JPEG: 400 x 437 pix - 95k] [Normal - JPEG: 800 x 873 pix - 904k] [HiRes - JPEG: 4000 x 4366 pix - 23.1M] Caption : PR Photo 02a/03 shows a three-colour composite image of the Chandra Deep Field South (CDF-S) , obtained with the Wide Field Imager (WFI) camera on the 2.2-m MPG/ESO telescope at the ESO La Silla Observatory (Chile). It was produced by the combination of about 450 images with a total exposure time of nearly 50 hours. The field measures 36 x 34 arcmin 2 ; North is up and East is left. Technical information is available below. The combined efforts of three European teams of astronomers, targeting the same sky field in the southern constellation Fornax (The Oven) have enabled them to construct a very deep, true-colour image - opening an exceptionally clear view towards the distant universe . The image ( PR Photo 02a/03 ) covers an area somewhat larger than the full moon. It displays more than 100,000 galaxies, several thousand stars and hundreds of quasars. It is based on images with a total exposure time of nearly 50 hours, collected under good observing conditions with the Wide Field Imager (WFI) on the MPG/ESO 2.2m telescope at the ESO La Silla Observatory (Chile) - many of them extracted from the ESO Science Data Archive . The position of this southern sky field was chosen by Riccardo Giacconi (Nobel Laureate in Physics 2002) at a time when he was Director General of ESO, together with Piero Rosati (ESO). It was selected as a sky region towards which the NASA Chandra X-ray satellite observatory , launched in July 1999, would be pointed while carrying out a very long exposure (lasting a total of 1 million seconds, or 278 hours) in order to detect the faintest possible X-ray sources. The field is now known as the Chandra Deep Field South (CDF-S) . The new WFI photo of CDF-S does not reach quite as deep as the available images of the "Hubble Deep Fields

  16. Life in the Universe - Is there anybody out there?

    NASA Astrophysics Data System (ADS)

    2001-07-01

    States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland and the United Kingdom. Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have observer status. The European Space Agency (ESA) is an international/intergovernmental organisation made of 15 member states: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. ESA provides and promotes, for peaceful purposes only, cooperation among its member states in space research, technology and their applications. With ESA, Europe shapes and shares space for people, companies and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Portugal, Sweden and Switzerland. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO La Silla Observatory (Chile) is one of the largest and best-equipped in the world. Of ESO's Very Large Telescope Array (VLT) at Cerro Paranal (Chile), the four 8.2-m telescopes, ANTU, KUEYEN, MELIPAL and YEPUN are already in operation; the VLT Interferometer (VLTI) follows next.

  17. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    NASA Astrophysics Data System (ADS)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    The installation of Earthscope Transportable Array-style geophysical observatories in Chile expands open data seismic recording capabilities in the southern hemisphere by nearly 30%, and has nearly tripled the number of seismic stations providing freely-available data in southern South America. Through the use of collocated seismic and atmospheric sensors at these stations we are able to analyze how local atmospheric conditions generate seismic noise, which can degrade data in seismic frequency bands at stations in the ';roaring forties' (S latitudes). Seismic vaults that are climate-controlled and insulated from the local environment are now employed throughout the world in an attempt to isolate seismometers from as many noise sources as possible. However, this is an expensive solution that is neither practical nor possible for all seismic deployments; and also, the increasing number and scope of temporary seismic deployments has resulted in the collection and archiving of terabytes of seismic data that is affected to some degree by natural seismic noise sources such as wind and atmospheric pressure changes. Changing air pressure can result in a depression and subsequent rebound of Earth's surface - which generates low frequency noise in seismic frequency bands - and even moderate winds can apply enough force to ground-coupled structures or to the surface above the seismometers themselves, resulting in significant noise. The 10 stations of the permanent Geophysical Reporting Observatories (GRO Chile), jointly installed during 2011-12 by IRIS and the Chilean Servicio Sismológico, include instrumentation in addition to the standard three seismic components. These stations, spaced approximately 300 km apart along the length of the country, continuously record a variety of atmospheric data including infrasound, air pressure, wind speed, and wind direction. The collocated seismic and atmospheric sensors at each station allow us to analyze both datasets together, to

  18. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  19. New and updated stellar parameters for 71 evolved planet hosts. On the metallicity-giant planet connection

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Santos, N. C.; Sousa, S. G.; Adibekyan, V. Zh.; Delgado Mena, E.; Tsantaki, M.; Israelian, G.; Mayor, M.

    2013-09-01

    planets. The data presented here are based on observations collected at the La Silla Paranal Observatory, ESO (Chile) with the FEROS spectrograph at the 2.2 m telescope (ESO runs ID 70.C-0084, 088.C-0892, 089.C-0444, and 090.C-0146) and the HARPS spectrograph at the 3.6 m telescope (ESO run ID 72.C-0488); at the Paranal Observatory, ESO (Chile) with the UVES spectrograph at the VLT Kueyen telescope (ESO runs ID 074.C-0134, 079.C-0131, 380.C-0083, and 083.C-0174); at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with the FIES spectrograph at the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden (program ID 44-210); and at the Observatoire de Haute-Provence (OHP, CNRS/OAMP), France with the SOPHIE spectrographs at the 1.93 m telescope (program ID 11B.DISC.SOUS).Tables 1, 5, 6 and Appendix A are available in electronic form at http://www.aanda.orgTables 5, 6, and A.1 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A70

  20. The Inauguration of the Atacama Large Millimeter/submillimeter Array

    NASA Astrophysics Data System (ADS)

    Testi, L.; Walsh, J.

    2013-06-01

    On 13 March 2013 the official inauguration of the Atacama Large Millimeter/submillimeter Array (ALMA) took place at the Operations Support Facility in northern Chile. A report of the event and the preceding press conference is presented and the texts of the speeches by the President of Chile, Sebastián Piñera, and the Director General of ESO, Tim de Zeeuw, are included.

  1. Griffith Observatory: Hollywood's Celestial Theater

    NASA Astrophysics Data System (ADS)

    Margolis, Emily A.; Dr. Stuart W. Leslie

    2018-01-01

    The Griffith Observatory, perched atop the Hollywood Hills, is perhaps the most recognizable observatory in the world. Since opening in 1935, this Los Angeles icon has brought millions of visitors closer to the heavens. Through an analysis of planning documentation, internal newsletters, media coverage, programming and exhibition design, I demonstrate how the Observatory’s Southern California location shaped its form and function. The astronomical community at nearby Mt. Wilson Observatory and Caltech informed the selection of instrumentation and programming, especially for presentations with the Observatory’s Zeiss Planetarium, the second installed in the United States. Meanwhile the Observatory staff called upon some of Hollywood’s best artists, model makers, and scriptwriters to translate the latest astronomical discoveries into spectacular audiovisual experiences, which were enhanced with Space Age technological displays on loan from Southern California’s aerospace companies. The influences of these three communities- professional astronomy, entertainment, and aerospace- persist today and continue to make Griffith Observatory one of the premiere sites of public astronomy in the country.

  2. VizieR Online Data Catalog: The G+M eclipsing binary V530 Orionis photometry (Torres+, 2014)

    NASA Astrophysics Data System (ADS)

    Torres, G.; Lacy, C. H. S.; Pavlovski, K.; Feiden, G. A.; Sabby, J. A.; Bruntt, H.; Clausen, J. V.

    2017-08-01

    V530 Ori was monitored spectroscopically with three different instruments over a period of more than 17 yr. Observations began at the Harvard-Smithsonian Center for Astrophysics (CfA) in 1996 June with a Cassegrain-mounted echelle spectrograph ("Digital Speedometer", DS; Latham 1992ASPC...32..110L) attached to the 1.5 m Tillinghast reflector at the F. L. Whipple Observatory (Mount Hopkins, AZ). We gathered a further 30 spectra of V530 Ori at the Kitt Peak National Observatory (KPNO) from 1999 March to 2001 January, using the coude-feed telescope and the coude spectrometer. Finally, 41 additional observations were obtained at the CfA from 2009 November to 2014 March with the Tillinghast Reflector Echelle Spectrograph (TRES; Furesz 2008, PhD thesis , Univ. Szeged, Hungary) on the 1.5 m telescope mentioned earlier. Two sets of V-band images of V530 Ori were obtained with independent robotic telescopes operating at the University of Arkansas (URSA WebScope) and near Silver City, NM (NFO WebScope) from 2001 January to 2012 February. Differential photometric measurements of V530 Ori were also gathered with the Stromgren Automatic Telescope at ESO (La Silla, Chile), during several campaigns from 2001 January to 2006 February. (5 data files).

  3. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  4. The current situation for gastric cancer in Chile

    PubMed Central

    Caglevic, Christian; Silva, Shirley; Mahave, Mauricio; Rolfo, Christian; Gallardo, Jorge

    2016-01-01

    Gastric cancer is a neoplasm with a high incidence and mortality rate in Chile where more than 3000 people die every year from this type of cancer. This study shows the clinical and epidemiological considerations of this disease, information about translational research on this pathology in Chile, the contribution of Chilean doctors to the development of gastric cancer management awareness and the general situation of gastric cancer in Chile. PMID:28105078

  5. The current situation for gastric cancer in Chile.

    PubMed

    Caglevic, Christian; Silva, Shirley; Mahave, Mauricio; Rolfo, Christian; Gallardo, Jorge

    2016-01-01

    Gastric cancer is a neoplasm with a high incidence and mortality rate in Chile where more than 3000 people die every year from this type of cancer. This study shows the clinical and epidemiological considerations of this disease, information about translational research on this pathology in Chile, the contribution of Chilean doctors to the development of gastric cancer management awareness and the general situation of gastric cancer in Chile.

  6. Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Khosroshahi, H. G.; Danesh, A.; Molaeinezhad, A.

    2016-09-01

    The Iranian National Observatory is under construction at an altitude of 3600m at Gargash summit 300km southern Tehran. The site selection was concluded in 2007 and the site monitoring activities have begun since then, which indicates a high quality of the site with a median seeing of 0.7 arcsec through the year. One of the major observing facilities of the observatory is a 3.4m Alt-Az Ritchey-Chretien optical telescope which is currently under design. This f/11 telescope will be equipped with high resolution medium-wide field imaging cameras as well as medium and high resolution spectrographs. In this review, I will give an overview of astronomy research and education in Iran. Then I will go through the past and present activities of the Iranian National Observatory project including the site quality, telescope specifications and instrument capabilities.

  7. Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Ginski, C.; Stolker, T.; Pinilla, P.; Dominik, C.; Boccaletti, A.; de Boer, J.; Benisty, M.; Biller, B.; Feldt, M.; Garufi, A.; Keller, C. U.; Kenworthy, M.; Maire, A. L.; Ménard, F.; Mesa, D.; Milli, J.; Min, M.; Pinte, C.; Quanz, S. P.; van Boekel, R.; Bonnefoy, M.; Chauvin, G.; Desidera, S.; Gratton, R.; Girard, J. H. V.; Keppler, M.; Kopytova, T.; Lagrange, A.-M.; Langlois, M.; Rouan, D.; Vigan, A.

    2016-11-01

    Aims: We studied the well-known circumstellar disk around the Herbig Ae/Be star HD 97048 with high angular resolution to reveal undetected structures in the disk which may be indicative of disk evolutionary processes such as planet formation. Methods: We used the IRDIS near-IR subsystem of the extreme adaptive optics imager SPHERE at the ESO/VLT to study the scattered light from the circumstellar disk via high resolution polarimetry and angular differential imaging. Results: We imaged the disk in unprecedented detail and revealed four ring-like brightness enhancements and corresponding gaps in the scattered light from the disk surface with radii between 39 au and 341 au. We derived the inclination and position angle as well as the height of the scattering surface of the disk from our observational data. We found that the surface height profile can be described by a single power law up to a separation 270 au. Using the surface height profile we measured the scattering phase function of the disk and found that it is consistent with theoretical models of compact dust aggregates. We discuss the origin of the detected features and find that low mass (≤1 MJup) nascent planets are a possible explanation. Based on data collected at the European Southern Observatory, Chile (ESO Programs 096.C-0248, 096.C-0241, 077.C-0106).

  8. Light Dawns on Dark Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    2010-12-01

    Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, using the GROND instrument on the 2.2-metre MPG/ESO telescope at La Silla in Chile, has found that these gigantic explosions don't require exotic explanations. Their faintness is now fully explained by a combination of causes, the most important of which is the presence of dust between the Earth and the explosion. Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the rest remaining mysteriously dark. Some astronomers suspected that these dark afterglows could be examples of a whole new class of gamma-ray bursts, while others thought that they might all be at very great distances. Previous studies had suggested that obscuring dust between the burst and us might also explain why they were so dim. "Studying afterglows is vital to further our understanding of the objects that become gamma-ray bursts and what they tell us about star formation in the early Universe," says the study's lead author Jochen Greiner from the Max-Planck Institute for Extraterrestrial Physics in Garching bei München, Germany. NASA launched the Swift satellite at the end of 2004. From its orbit above the Earth's atmosphere it can detect gamma-ray bursts and immediately relay their positions to other observatories so that the afterglows could be studied. In the new study, astronomers combined Swift

  9. Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation?

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Rigopoulou, D.; Lutz, D.; Tecza, M.

    2001-12-01

    We report high-quality near-IR spectroscopy of 12 ultraluminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies, most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are ``ellipticals in formation.'' Random motions dominate their stellar dynamics, but significant rotation is common. Gasdynamics and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution-sensitive, reff-σ projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane, and their distribution of vrotsini/σ closely resemble those of intermediate-mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas-rich disk galaxies while giant ellipticals with large cores have a different formation history. Based on observations at the European Southern Observatory, Chile (ESO 65.N-0266, 65.N-0289), and on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, The University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the general financial support by the W. M. Keck Foundation.

  10. Rising Expectations in Brazil and Chile

    ERIC Educational Resources Information Center

    Elacqua, Gregory; Alves, Fatima

    2014-01-01

    Two themes connect Brazil and Chile: one is economic success; the other is social unrest. Protests rocked cities across Brazil in June 2013, and in Chile, recent student protests turned violent. Yet living conditions in both nations are better now than they've ever been. Successful economic and social reforms over the last two decades have led to…

  11. Pox 186: An ultracompact galaxy with dominant ionized gas emission

    NASA Astrophysics Data System (ADS)

    Guseva, N. G.; Papaderos, P.; Izotov, Y. I.; Noeske, K. G.; Fricke, K. J.

    2004-07-01

    We present a ground-based optical spectroscopic and HST U, V, I photometric study of the blue compact dwarf (BCD) galaxy Pox 186. It is found that the emission of the low-surface brightness (LSB) component in Pox 186 at radii ⪉3 arcsec (⪉270 pc in linear scale) is mainly gaseous in origin. We detect Hα emission out to radii as large as 6 arcsec. At radii ⪆3 arcsec the light of the LSB component is contaminated by the emission of background galaxies complicating the study of the outermost regions. The surface brightness distribution in the LSB component can be approximated by an exponential law with a scale length α ⪉ 120 pc. This places Pox 186 among the most compact dwarf galaxies known. The derived α is likely to be an upper limit to the scale length of the LSB component because of the strong contribution of the gaseous emission. The oxygen abundance in the bright H II region derived from the 4.5 m Multiple Mirror Telescope (MMT) and 3.6 m ESO telescope spectra are 12 + log (O/H) = 7.76 ± 0.02 and 7.74 ± 0.01 (˜Z⊙/15), respectively, in accordance with previous determinations. The helium mass fractions found in this region are Y = 0.248 ± 0.009 (MMT) and Y = 0.248 ± 0.004 (3.6 m) suggesting a high primordial helium abundance. The MMT Observatory is a joint facility of the Smithsonian Institution and the University of Arizona. Based on observations collected at the European Southern Observatory, Chile, ESO program 71.B-0032(A). 12+\\log(O/H)⊙ = 8.92 (Anders & Grevesse \\cite{Anders89}).

  12. Detection of new eruptions in the Magellanic Clouds luminous blue variables R 40 and R 110

    NASA Astrophysics Data System (ADS)

    Campagnolo, J. C. N.; Borges Fernandes, M.; Drake, N. A.; Kraus, M.; Guerrero, C. A.; Pereira, C. B.

    2018-05-01

    We performed a spectroscopic and photometric analysis to study new eruptions in two luminous blue variables (LBVs) in the Magellanic Clouds. We detected a strong new eruption in the LBV R40 that reached V 9.2 in 2016, which is around 1.3 mag brighter than the minimum registered in 1985. During this new eruption, the star changed from an A-type to a late F-type spectrum. Based on photometric and spectroscopic empirical calibrations and synthetic spectral modeling, we determine that R 40 reached Teff = 5800-6300 K during this new eruption. This object is thereby probably one of the coolest identified LBVs. We could also identify an enrichment of nitrogen and r- and s-process elements. We detected a weak eruption in the LBV R 110 with a maximum of V 9.9 mag in 2011, that is, around 1.0 mag brighter than in the quiescent phase. On the other hand, this new eruption is about 0.2 mag fainter than the first eruption detected in 1990, but the temperature did not decrease below 8500 K. Spitzer spectra show indications of cool dust in the circumstellar environment of both stars, but no hot or warm dust was present, except by the probable presence of PAHs in R 110. We also discuss a possible post-red supergiant nature for both stars. Based on observations with the 0.6 m telescope at Pico dos Dias Observatory (Brazil) and MPG/ESO 2.2-m telescope at the European Southern Observatory (La Silla, Chile) under the Prog. IDs: 094.A-9029(D), 096.A-9039(A), and 098.A-9039(C), and under the agreements ESO-Observatório Nacional/MCTIC and MPI-Observatório Nacional/MCTIC, Prog. IDs.: 076.D-0609(A) and 096.A-9030(A).

  13. The sudden appearance of CO emission in LHA 115-S 65

    NASA Astrophysics Data System (ADS)

    Oksala, M. E.; Kraus, M.; Arias, M. L.; Borges Fernandes, M.; Cidale, L.; Muratore, M. F.; Curé, M.

    2012-10-01

    Molecular emission has been detected in several Magellanic Cloud B[e] supergiants. In this Letter, we report on the detection of CO band head emission in the B[e] supergiant LHA 115-S 65, and present a K-band near-infrared spectrum obtained with the Spectrograph for INtegral Field Observation in the Near-Infrared (SINFONI; R= 4500) on the ESO VLT UT4 telescope. The observed molecular band head emission in S65 is quite surprising in the light of a previous non-detection by McGregor, Hyland & McGinn, as well as a high-resolution (R= 50 000) Gemini/Phoenix spectrum of this star taken nine months earlier showing no emission. Based on analysis of the optical spectrum by Kraus, Borges Fernandes & de Araújo, we suspect that the sudden appearance of molecular emission could be due to density build-up in an outflowing viscous disc, as seen for Be stars. This new discovery, combined with variability in two other similar evolved massive stars, indicates an evolutionary link between B[e] supergiants and luminous blue variables. Based on observations obtained with ESO telescopes at the La Silla Paranal Observatory under programme ID 088.D-044 and at the Gemini Observatory which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), under programme ID GS-2010B-Q-31.

  14. Checklist, diversity and distribution of testate amoebae in Chile.

    PubMed

    Fernández, Leonardo D; Lara, Enrique; Mitchell, Edward A D

    2015-10-01

    Bringing together more than 170 years of data, this study represents the first attempt to construct a species checklist and analyze the diversity and distribution of testate amoebae in Chile, a country that encompasses the southwestern region of South America, countless islands and part of the Antarctic. In Chile, known diversity includes 416 testate amoeba taxa (64 genera, 352 infrageneric taxa), 24 of which are here reported for the first time. Species-accumulation plots show that in Chile, the number of testate amoeba species reported has been continually increasing since the mid-19th century without leveling off. Testate amoebae have been recorded in 37 different habitats, though they are more diverse in peatlands and rainforest soils. Only 11% of species are widespread in continental Chile, while the remaining 89% of the species exhibit medium or short latitudinal distribution ranges. Also, species composition of insular Chile and the Chilean Antarctic territory is a depauperated subset of that found in continental Chile. Nearly, the 10% of the species reported here are endemic to Chile and many of them are distributed only within the so-called Chilean biodiversity hotspot (ca. 25° S-47° S). These findings are here thoroughly discussed in a biogeographical and evolutionary context. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. An intragenic approach to confer glyphosate resistance in chile (Capsicum annuum) by introducing an in vitro mutagenized chile EPSPS gene encoding for a glyphosate resistant EPSPS protein

    PubMed Central

    Bagga, Suman; Apodaca, Kimberly; Lucero, Yvonne

    2018-01-01

    Chile pepper (Capsicum annuum) is an important high valued crop worldwide, and when grown on a large scale has problems with weeds. One important herbicide used is glyphosate. Glyphosate inactivates the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), a key enzyme in the synthesis of aromatic amino acids. A transgenic approach towards making glyphosate resistant plants, entails introducing copies of a gene encoding for glyphosate-resistant EPSPS enzyme into the plant. The main objective of our work was to use an intragenic approach to confer resistance to glyphosate in chile which would require using only chile genes for transformation including the selectable marker. Tobacco was used as the transgenic system to identify different gene constructs that would allow for the development of the intragenic system for chile, since chile transformation is inefficient. An EPSPS gene was isolated from chile and mutagenized to introduce substitutions that are known to make the encoded enzyme resistant to glyphosate. The promoter for EPSPS gene was isolated from chile and the mutagenized chile EPSPS cDNA was engineered behind both the CaMV35S promoter and the EPSPS promoter. The leaves from the transformants were checked for resistance to glyphosate using a cut leaf assay. In tobacco, though both gene constructs exhibited some degree of resistance to glyphosate, the construct with the CaMV35S promoter was more effective and as such chile was transformed with this gene construct. The chile transformants showed resistance to low concentrations of glyphosate. Furthermore, preliminary studies showed that the mutated EPSPS gene driven by the CaMV35S promoter could be used as a selectable marker for transformation. We have shown that an intragenic approach can be used to confer glyphosate-resistance in chile. However, we need a stronger chile promoter and a mutated chile gene that encodes for a more glyphosate resistant EPSPS protein. PMID:29649228

  16. [New medical schools in Chile].

    PubMed

    Castillo, P

    1994-03-01

    In Chile there are six established medical schools at public (Chile, Valparaiso and Temuco) or private (Catholic, Concepción and Austral) universities created between 1833 and 1971. Since 1990, three new medical schools (two private) were created and a fourth is projected, concerning the chilean medical corps. We present three position articles on the subject written by Dean Pedro Rosso, from the Catholic University, Dr Pedro Castillo, Chief of Human Resources of the Ministry of Health and Dean Alejandro Goic from the University of Chile. Dean Rosso emphasizes the need to have assessment procedures that guarantee quality standards in the new medical schools. Dr Castillo attracts attention on preserving the compromise with the society, inherent to chilean medicine. Dean Goic analyzes systematically the reasons to prevent the proliferation of medical schools in the country, maintaining an equilibrium between freedom of teaching and public faith protection.

  17. Observatory data and the Swarm mission

    NASA Astrophysics Data System (ADS)

    Macmillan, S.; Olsen, N.

    2013-11-01

    The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth's core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those that may use higher cadence 1-second and 1-minute data from observatories.

  18. The Diagnostic Potential of Fe Lines Applied to Protostellar Jets

    NASA Astrophysics Data System (ADS)

    Giannini, T.; Nisini, B.; Antoniucci, S.; Alcalá, J. M.; Bacciotti, F.; Bonito, R.; Podio, L.; Stelzer, B.; Whelan, E. T.

    2013-11-01

    be overcome through a statistical approach involving many lines. Based on observations collected with X-shooter at the Very Large Telescope on Cerro Paranal (Chile), operated by the European Southern Observatory (ESO). Program ID: 085.C-0238(A).

  19. ALMA Test Sharpens Vision of New Observatory

    NASA Astrophysics Data System (ADS)

    2010-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) has passed a key milestone crucial to producing the high-quality images that will be the trademark of this revolutionary new tool for astronomy. A team of ALMA astronomers and engineers successfully linked three of the observatory's advanced antennas at the 16,500-foot-elevation observing site in northern Chile. Linking three antennas to work in unison for the first time allowed the ALMA team to correct errors that can arise when only two antennas are used, thus paving the way for precise, high-resolution imaging. The three-antenna linkup was a key test of the full electronic and software system now being installed at ALMA. Its success shows that the completed ALMA system of 66 high-tech antennas will be capable of producing astronomical images of unprecedented quality at its designed observing wavelengths. "This successful test shows that we are well on the way to providing the clear, sharp ALMA images that will open a whole new window for observing the Universe. We look forward to imaging stars and planets as well as galaxies in their formation processes," said Fred Lo, director of the National Radio Astronomy Observatory (NRAO), which leads North America's participation in the ALMA project. A multi-antenna imaging system such as ALMA uses its antennas in pairs, with each antenna working with every other antenna. Each pair contributes a unique piece of information about the region of sky under observation. The contributions of all the pairs are collected and computer-processed into a completed image following the observation. Earlier ALMA tests, at the ALMA Test Facility in New Mexico, at ALMA's lower-elevation Operations Support Facility, and at the high observing site, had successfully linked pairs of antennas. This demonstrated the proper functioning of the antennas and electronic systems as what scientists and engineers call interferometer pairs. However, the information from one pair of antennas may be

  20. The Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Odell, C. R.

    1979-01-01

    A convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists is presented. An attempt is made to provide enough detail so that a professional scientist, observer or theorist, can plan how the observatory may be used to further his observing programs or to test theoretical models.

  1. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Anna Michalak, an Orbiting Carbon Observatory science team member from the University of Michigan, Ann Arbor, speaks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  2. AO WFS detector developments at ESO to prepare for the E-ELT

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Casali, Mark; Finger, Gert; Lewis, Steffan; Marchetti, Enrico; Mehrgan, Leander; Ramsay, Suzanne; Reyes, Javier

    2016-07-01

    ESO has a very active on-going AO WFS detector development program to not only meet the needs of the current crop of instruments for the VLT, but also has been actively involved in gathering requirements, planning, and developing detectors and controllers/cameras for the instruments in design and being proposed for the E-ELT. This paper provides an overall summary of the AO WFS Detector requirements of the E-ELT instruments currently in design and telescope focal units. This is followed by a description of the many interesting detector, controller, and camera developments underway at ESO to meet these needs; a) the rationale behind and plan to upgrade the 240x240 pixels, 2000fps, "zero noise", L3Vision CCD220 sensor based AONGC camera; b) status of the LGSD/NGSD High QE, 3e- RoN, fast 700fps, 1760x1680 pixels, Visible CMOS Imager and camera development; c) status of and development plans for the Selex SAPHIRA NIR eAPD and controller. Most of the instruments and detector/camera developments are described in more detail in other papers at this conference.

  3. Distant Supernovae Indicate Ever-Expanding Universe

    NASA Astrophysics Data System (ADS)

    1998-12-01

    parameters, the age of the Universe and the geometry of space can be derived. They have been the focus of a large number of astronomical programmes over the past decades. Many aspects of the currently preferred cosmological model, the Hot Big Bang , have been impressively confirmed by observations of the expansion of the Universe, the cosmic background radiation, and also the explanation of the synthesis of light elements. Still, our knowledge about the dynamical state of the Universe, as well as the early formation of structures, i.e., of galaxies and stars, is far from complete - this remains a field of active research. Possibly, the simplest way to test our present assumptions in this direction is to measure accurate distances and compare them with the expected cosmic scale. This is where the recent results contribute to our understanding of the Universe. The key role of supernovae The two research teams, both with participation from ESO [1], have concentrated on the study of rare stellar explosions, during which certain old stars undergo internal incineration. In this process, explosive nuclear fusion burns matter into the most stable atomic nucleus, iron, and releases a gigantic amount of energy. ESO PR Photo 50a/98 ESO PR Photo 50a/98 [Preview - JPEG: 800 x 648 pix - 768k] [High-Res - JPEG: 3000 x 2431 pix - 8.5Mb] ESO PR Photo 50b/98 ESO PR Photo 50b/98 [Preview - JPEG: 800 x 649 pix - 784k] [High-Res - JPEG: 3000 x 2432 pix - 8.4Mb] These photos illustrate the follow-up observations on which the new results described in this Press Release are based. Sky fields with clusters of galaxies are monitored with the 4-m telescope at Cerro Tololo Interamerican Observatory (CTIO) in Chile and spectra are obtained of suddenly appearing star-like objects that may be supernovae. Confirmed Type Ia supernovae are then monitored by ESO telescopes at La Silla and at other observatories. In PR Photo 50a/98 , a supernova at redshift z = 0.51 [2] (corresponding to a distance of about 10

  4. Chile's seismogenic coupling zones - geophysical and neotectonic observations from the South American subduction zone prior to the Maule 2010 earthquake

    NASA Astrophysics Data System (ADS)

    Oncken With Tipteq, Onno; Ipoc Research Groups

    2010-05-01

    Accumulation of deformation at convergent plate margins is recently identified to be highly discontinuous and transient in nature: silent slip events, non-volcanic tremors, afterslip, fault coupling and complex response patterns of the upper plate during a single event as well as across several seismic cycles have all been observed in various settings and combinations. Segments of convergent plate margins with high recurrence rates and at different stages of the rupture cycle like the Chilean margin offer an exceptional opportunity to study these features and their interaction resolving behaviour during the seismic cycle and over repeated cycles. A past (TIPTEQ) and an active international initiative (IPOC; Integrated Plate Boundary Observatory Chile) address these goals with research groups from IPG Paris, Seismological Survey of Chile, Free University Berlin, Potsdam University, Hamburg University, IFM-GEOMAR Kiel, and GFZ Potsdam employing an integrated plate boundary observatory and associated projects. We focus on the south Central Chilean convergent margin and the North Chilean margin as natural laboratories embracing the recent Maule 2010 megathrust event. Here, major recent seismic events have occurred (south Central Chile: 1960, Mw = 9.5; 2010, Mw = 8.8; North Chile: 1995, Mw = 8; 2001, Mw = 8.7; 2007, Mw: 7.8) or are expected in the very near future (Iquique, last ruptured 1877, Mw = 8.8) allowing observation at critical time windows of the seismic cycle. Seismic imaging and seismological data have allowed us to relocate major rupture hypocentres and to locate the geometry of the locked zone and the degree of locking in both areas. The reflection seismic data exhibit well defined changes of reflectivity and Vp/Vs ratio along the plate interface that can be correlated with different parts of the coupling zone as well as with changes during the seismic cycle. Observations suggest an important role of the hydraulic system, an inference that is strongly

  5. Central Chile

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The beginning of spring in central Chile looked like this to SeaWiFS. The snow-covered Andes mark the country's eastern border, and phytoplankton blooms and river sediment plumes fill the waters off its west coast. A large eddy due west of Concepcion is highlighted by the phytoplankton it contains.

  6. The ESO Slice Project (ESP) galaxy redshift survey. VII. The redshift and real-space correlation functions

    NASA Astrophysics Data System (ADS)

    Guzzo, L.; Bartlett, J. G.; Cappi, A.; Maurogordato, S.; Zucca, E.; Zamorani, G.; Balkowski, C.; Blanchard, A.; Cayatte, V.; Chincarini, G.; Collins, C. A.; Maccagni, D.; MacGillivray, H.; Merighi, R.; Mignoli, M.; Proust, D.; Ramella, M.; Scaramella, R.; Stirpe, G. M.; Vettolani, G.

    2000-03-01

    these galaxies, the amplitude of clustering is on all scales >4 h^{-1} Mpc about a factor of 2 above that of all other subsamples containing less luminous galaxies. When redshift-space distortions are removed through projection of xi (r) i(r_p,\\pi) , however, a weak dependence on luminosity is seen at small separations also at fainter magnitudes, resulting in a growth of r_o from 3.45_{-0.30}^{+0.21} h^{-1} Mpc to 5.15_{-0.44}^{+0.39} h^{-1} Mpc, when the limiting absolute magnitude of the sample changes from M=-18.5 to M=-20. This effect is masked in redshift space, as the mean pairwise velocity dispersion experiences a parallel increase, basically erasing the effect of the clustering growth on xi (r) i(s) . Based on observations collected at the European Southern Observatory, La Silla, Chile.}

  7. INTERMAGNET and magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, Arnaud

    2012-01-01

    A magnetic observatory is a specially designed ground-based facility that supports time-series measurement of the Earth’s magnetic field. Observatory data record a superposition of time-dependent signals related to a fantastic diversity of physical processes in the Earth’s core, mantle, lithosphere, ocean, ionosphere, magnetosphere, and, even, the Sun and solar wind.

  8. Astronomical Archive at Tartu Observatory

    NASA Astrophysics Data System (ADS)

    Annuk, K.

    2007-10-01

    Archiving astronomical data is important task not only at large observatories but also at small observatories. Here we describe the astronomical archive at Tartu Observatory. The archive consists of old photographic plate images, photographic spectrograms, CCD direct--images and CCD spectroscopic data. The photographic plate digitizing project was started in 2005. An on-line database (based on MySQL) was created. The database includes CCD data as well photographic data. A PHP-MySQL interface was written for access to all data.

  9. Report on the ESO Workshop ''Satellites and Streams in Santiago''

    NASA Astrophysics Data System (ADS)

    Küpper, A. H. W.; Mieske, S.

    2015-09-01

    Galactic satellites and tidal streams are arguably the two most direct imprints of hierarchical structure formation in the haloes of galaxies. At this ESO workshop we sought to create the big picture of the galactic accretion process, and shed light on the interplay between satellites and streams in the Milky Way, Andromeda and beyond. The Scientific Organising Committee prepared a well-balanced programme with 60 talks and 30 poster contributions, resulting in a meeting which was greatly enjoyed by the more than 110 participants at the venue, and worldwide via Twitter (#SSS15).

  10. WFIRST Observatory Performance

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The WFIRST observatory will be a powerful and flexible wide-field near-infrared facility. The planned surveys will provide data applicable to an enormous variety of astrophysical science. This presentation will provide a description of the observatory and its performance characteristics. This will include a discussion of the point spread function, signal-to-noise budgets for representative observing scenarios and the corresponding limiting sensitivity. Emphasis will be given to providing prospective Guest Observers with information needed to begin thinking about new observing programs.

  11. Cosmic "Dig" Reveals Vestiges of the Milky Way's Building Blocks

    NASA Astrophysics Data System (ADS)

    2009-11-01

    means of a computer-controlled deformable mirror that counteracts the image distortion introduced by atmospheric turbulence. It is based on real-time optical corrections computed at very high speed (many hundreds of times each second) from image data obtained by a wavefront sensor (a special camera) that monitors light from a reference star, Present AO systems can only correct the effect of atmospheric turbulence in a very small region of the sky - typically 15 arcseconds or less - the correction degrading very quickly when moving away from the reference star. Engineers have therefore developed new techniques to overcome this limitation, one of which is multi-conjugate adaptive optics. MAD uses up to three guide stars instead of one as references to remove the blur caused by atmospheric turbulence over a field of view thirty times larger than existing techniques (eso0719). More information This research was presented in a paper that appears in the 26 November 2009 issue of Nature , "The cluster Terzan 5 as a remnant of a primordial building block of the Galactic bulge", by F. R. Ferraro et al.. The team is composed of Francesco Ferraro, Emanuele Dalessandro, Alessio Mucciarelli and Barbara Lanzoni (Department of Astronomy, University of Bologna, Italy), Giacomo Beccari (ESA, Space Science Department, Noordwijk, Netherlands), Mike Rich (Department of Physics and Astronomy, UCLA, Los Angeles, USA), Livia Origlia, Michele Bellazzini and Gabriele Cocozza (INAF - Osservatorio Astronomico di Bologna, Italy), Robert T. Rood (Astronomy Department, University of Virginia, Charlottesville, USA), Elena Valenti (ESO and Pontificia Universidad Catolica de Chile, Departamento de Astronomia, Santiago, Chile) and Scott Ransom (National Radio Astronomy Observatory, Charlottesville, USA). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries

  12. VISTA: Pioneering New Survey Telescope Starts Work

    NASA Astrophysics Data System (ADS)

    2009-12-01

    A new telescope - VISTA (the Visible and Infrared Survey Telescope for Astronomy) - has just started work at ESO's Paranal Observatory and has made its first release of pictures. VISTA is a survey telescope working at infrared wavelengths and is the world's largest telescope dedicated to mapping the sky. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. Spectacular new images of the Flame Nebula, the centre of our Milky Way galaxy and the Fornax Galaxy Cluster show that it is working extremely well. VISTA is the latest telescope to be added to ESO's Paranal Observatory in the Atacama Desert of northern Chile. It is housed on the peak adjacent to the one hosting the ESO Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA's main mirror is 4.1 metres across and is the most highly curved mirror of this size and quality ever made - its deviations from a perfect surface are less than a few thousandths of the thickness of a human hair - and its construction and polishing presented formidable challenges. VISTA was conceived and developed by a consortium of 18 universities in the United Kingdom [1] led by Queen Mary, University of London and became an in-kind contribution to ESO as part of the UK's accession agreement. The telescope design and construction were project-managed by the Science and Technology Facilities Council's UK Astronomy Technology Centre (STFC, UK ATC). Provisional acceptance of VISTA was formally granted by ESO at a ceremony at ESO's Headquarters in Garching, Germany, attended by representatives of Queen Mary, University of London and STFC, on 10 December 2009 and the telescope will now be operated by ESO. "VISTA is a unique addition to ESO's observatory on Cerro Paranal. It will play a pioneering role in surveying the southern sky at infrared wavelengths and will find many interesting targets for further study by the Very Large Telescope, ALMA and

  13. Archive interoperability in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Genova, Françoise

    2003-02-01

    Main goals of Virtual Observatory projects are to build interoperability between astronomical on-line services, observatory archives, databases and results published in journals, and to develop tools permitting the best scientific usage from the very large data sets stored in observatory archives and produced by large surveys. The different Virtual Observatory projects collaborate to define common exchange standards, which are the key for a truly International Virtual Observatory: for instance their first common milestone has been a standard allowing exchange of tabular data, called VOTable. The Interoperability Work Area of the European Astrophysical Virtual Observatory project aims at networking European archives, by building a prototype using the CDS VizieR and Aladin tools, and at defining basic rules to help archive providers in interoperability implementation. The prototype is accessible for scientific usage, to get user feedback (and science results!) at an early stage of the project. ISO archive participates very actively to this endeavour, and more generally to information networking. The on-going inclusion of the ISO log in SIMBAD will allow higher level links for users.

  14. Giant Galaxy Messier 87 finally sized up

    NASA Astrophysics Data System (ADS)

    2009-05-01

    Using ESO's Very Large Telescope, astronomers have succeeded in measuring the size of giant galaxy Messier 87 and were surprised to find that its outer parts have been stripped away by still unknown effects. The galaxy also appears to be on a collision course with another giant galaxy in this very dynamic cluster. ESO PR Photo 19a/09 The Intercluster Light ESO PR Photo 19b/09 Intergalactic Planetary Nebulae ESO PR Photo 19c/09 The Virgo Cluster The new observations reveal that Messier 87's halo of stars has been cut short, with a diameter of about a million light-years, significantly smaller than expected, despite being about three times the extent of the halo surrounding our Milky Way [1]. Beyond this zone only few intergalactic stars are seen. "This is an unexpected result," says co-author Ortwin Gerhard. "Numerical models predict that the halo around Messier 87 should be several times larger than our observations have revealed. Clearly, something must have cut the halo off early on." The team used FLAMES, the super-efficient spectrograph at ESO's Very Large Telescope at the Paranal Observatory in Chile, to make ultra-precise measurements of a host of planetary nebulae in the outskirts of Messier 87 and in the intergalactic space within the Virgo Cluster of galaxies, to which Messier 87 belongs. FLAMES can simultaneously take spectra many sources, spread over an area of the sky about the size of the Moon. The new result is quite an achievement. The observed light from a planetary nebula in the Virgo Cluster is as faint as that from a 30-Watt light bulb at a distance of about 6 million kilometres (about 15 times the Earth-Moon distance). Furthermore, planetary nebulae are thinly spread through the cluster, so even FLAMES's wide field of view could only capture a few tens of nebulae at a time. "It is a little bit like looking for a needle in a haystack, but in the dark", says team member Magda Arnaboldi. "The FLAMES spectrograph on the VLT was the best instrument

  15. J, H, K Spectro-Interferometry of the Mira Variable S Orionis

    DTIC Science & Technology

    2008-01-01

    the Mira variable S Orionis M. Wittkowski1, D. A. Boboltz2, T. Driebe3, J.-B. Le Bouquin4 F. Millour3 K. Ohnaka3, and M. Scholz5,6 1 ESO, Karl ... Schwarzschild -Str. 2, 85748 Garching bei München, Germany e-mail: mwittkow@eso.org 2 US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC

  16. OECD Reviews of School Resources: Chile 2017

    ERIC Educational Resources Information Center

    Santiago, Paulo; Fiszbein, Ariel; Jaramillo, Sandra García; Radinger, Thomas

    2017-01-01

    This country review report for Chile provides, from an international perspective, an independent analysis of major issues facing the use of school resources in Chile, current policy initiatives, and possible future approaches. The report serves three purposes: i) to provide insights and advice to Chilean education authorities; ii) to help other…

  17. Sofia Observatory Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Temi, Pasquale; Miller, Walter; Dunham, Edward; McLean, Ian; Wolf, Jurgen; Becklin, Eric; Bida, Tom; Brewster, Rick; Casey, Sean; Collins, Peter; hide

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration (SCAI) flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument configuration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. SCAI activities included in-flight partial Science Instrument commissioning prior to the use of the instruments as measuring engines. This paper reports on the data collected during the SCAI flights and presents current SOFIA Observatory performance and characterization.

  18. A Partnership for a Community College in Chile

    ERIC Educational Resources Information Center

    McCrink, Carmen L.; Whitford, Heidi

    2017-01-01

    This chapter describes the results of case study research on a partnership between a community college in the United States and a university in Chile that attempted to develop the first community college system in Chile.

  19. In Brief: Deep-sea observatory

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  20. An astronomical observatory for Peru

    NASA Astrophysics Data System (ADS)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.