Sample records for observatory eso paranal

  1. President of Czech Republic visits ESO's Paranal Observatory

    NASA Astrophysics Data System (ADS)

    2011-04-01

    On 6 April 2011, the ESO Paranal Observatory was honoured with a visit from the President of the Czech Republic, Václav Klaus, and his wife Livia Klausová, who also took the opportunity to admire Cerro Armazones, the future site of the planned E-ELT. The distinguished visitor was shown the technical installations at the observatory, and was present when the dome of one of the four 8.2-metre Unit Telescopes of ESO's Very Large Telescope opened for a night's observing at Cerro Paranal, the world's most advanced visible-light observatory. "I'm delighted to welcome President Klaus to the Paranal Observatory and to show him first-hand the world-leading astronomical facility that ESO has designed, has built, and operates for European astronomy," said ESO's Director General, Tim de Zeeuw. President Klaus replied, "I am very impressed by the remarkable technology that ESO has built here in the heart of the desert. Czech astronomers are already making good use of these facilities and we look forward to having Czech industry and its scientific community contribute to the future E-ELT." From the VLT platform, the President had the opportunity to admire Cerro Armazones as well as other spectacular views of Chile's Atacama Desert surrounding Paranal. Adjacent to Cerro Paranal, Armazones has been chosen as the site for the future E-ELT (see eso1018). ESO is seeking approval from its governing bodies by the end of 2011 for the go-ahead for the 1-billion euro E-ELT. Construction is expected to begin in 2012 and the start of operations is planned for early in the next decade. President Klaus was accompanied by the Minister of Foreign Affairs of the Czech Republic, Karel Schwarzenberg, the Czech Ambassador in Chile, Zdenek Kubánek, dignitaries of the government, and a Czech industrial delegation. The group was hosted at Paranal by the ESO Director General, Tim de Zeeuw, the ESO Representative in Chile, Massimo Tarenghi, the Director of Operations, Andreas Kaufer, and Jan Palous, Czech representative at the ESO Council. After the opening of the telescopes, President Klaus had the opportunity to enjoy the spectacular sunset over the Pacific Ocean from the VLT platform. Then he visited the VLT control room, which operates the four Unit Telescopes and the VLT Interferometer (VLTI). Here, the President took part in the start of observations from the console of one of the VLT Unit telescopes. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  2. ESO Delegation to Visit Chile: the Chile-Eso Treaty and Paranal

    NASA Astrophysics Data System (ADS)

    1994-05-01

    The ESO Council, in its extraordinary session on 28 April 1994, among other matters discussed the relations with the Republic of Chile and the situation around Paranal mountain [1], the designated site for the ESO Very Large Telescope (VLT). Council decided to send a high ranking delegation to Santiago de Chile to discuss with Chilean authorities the pending problems, including the finalisation of the new Treaty between the Republic of Chile and ESO and the legal aspects of the Paranal location. The ESO delegation will consist of Dr. Peter Creola (President of ESO Council), Dr. Catherine Cesarsky (Vice-President of ESO Council), Dr. Henrik Grage (Former Vice-President of ESO Council) and Professor Riccardo Giacconi (ESO Director General), the latter accompanied by his advisers. The delegation will arrive in Chile during the second half of May 1994. The ESO delegation will meet with the Chilean Minister of Foreign Affairs, Mr. Carlos Figueroa, and the Secretary of State in the Ministry of Foreign Affairs, Mr. Jose Miguel Insulza. Other meetings at high level are being planned. The delegation will report about these discussions to the ESO Council during its ordinary session on 7 - 8 June 1994. FOUR PARANAL PHOTOS AVAILABLE A series of four photos which show the current status of the work at Paranal has been prepared. Photographic colour prints for use by the media can be requested from the ESO Information and Photographic Service (please remember to indicate the identification numbers). [1] See ESO Press Release 07/94 of 21 April 1994. PHOTO CAPTIONS ESO PR PHOTO 08/94-1: CERRO PARANAL This aerial photo of the Paranal mountain, the designated site for the ESO Very Large Telescope (VLT), was obtained on 22 March 1994. Paranal is situated in the driest part of the Chilean Atacama desert, approx. 130 km south of the city of Antofagasta, and about 12 km from the Pacific Ocean. In this view towards the West, the ocean is seen in the background. The altitude is 2650 metres. The top of the mountain has been levelled to make place for the extensive VLT installations. ESO has constructed a road from the main road in the area (the ``Old Panamericana'') to the summit. It passes by the ESO base camp (in the foreground, left of the road). The constructors' camp is located on the other side of the road. This photo (ESO PR Photo 08/94-1) accompanies ESO Press Release 08/94 of 6 May 1994 and may be reproduced, if credit is given to the European Southern Observatory. ESO PR PHOTO 08/94-2: CERRO PARANAL This aerial photo of the Paranal mountain, the designated site for the ESO Very Large Telescope (VLT), was obtained on 22 March 1994. Paranal is located in the driest part of the Chilean Atacama desert, approx. 130 km south of the city of Antofagasta, and about 12 km from the Pacific Ocean. The altitude is 2650 metres. In this view towards the East, the high mountains of the Andean Cordillera are in the background. The top of the mountain has been levelled to make place for the extensive VLT installations. The four excavations for the buildings that will house the four 8.2 metre VLT unit telescopes are clearly seen. There are some dust clouds from the construction activity at the site. There are several other peaks in this area which may possibly be used for astronomical installations. The one to the left on which some site testing equipment can be seen, is known as the ``NTT Peak''. This photo (ESO PR Photo 08/94-2) accompanies ESO Press Release 08/94 of 6 May 1994 and may be reproduced, if credit is given to the European Southern Observatory. ESO PR PHOTO 08/94-3: CERRO PARANAL This aerial photo of the Paranal mountain, the designated site for the ESO Very Large Telescope (VLT), was obtained on 22 March 1994. Paranal is located in the driest part of the Chilean Atacama desert, approx. 130 km south of the city of Antofagasta, and about 12 km from the Pacific Ocean. The altitude is 2650 metres. The top of the mountain has been levelled to make place for the extensive VLT installations. The four excavations for the buildings that will house the four 8.2 metre VLT unit telescopes are clearly seen. The positions of some of the future structures have been marked. The control building will be located on the platform at the rightmost edge of the mountain. This photo (ESO PR Photo 08/94-3) accompanies ESO Press Release 08/94 of 6 May 1994 and may be reproduced, if credit is given to the European Southern Observatory. ESO PR PHOTO 08/94-4: CERRO PARANAL This photo of the ESO Base Camp at the foot of the Paranal mountain, the designated site for the ESO Very Large Telescope (VLT), was obtained in late March 1994. Paranal is located in the driest part of the Chilean Atacama desert, approx. 130 km south of the city of Antofagasta, and about 12 km from the Pacific Ocean. The altitude is 2650 metres. The top of the mountain has been levelled to make place for the extensive VLT installations. This photo (ESO PR Photo 08/94-4) accompanies ESO Press Release 08/94 of 6 May 1994 and may be reproduced, if credit is given to the European Southern Observatory.

  3. The Paranal Metamorphosis

    NASA Astrophysics Data System (ADS)

    2000-12-01

    Some years ago, the Paranal mountain was still a remote and inhospitable site, some 12 km from the Pacific Coast in the dry Atacama desert in northern Chile. Few aircraft passengers flying along that coast would notice anything particular about this peak, except perhaps that it was one of the tallest in the steep coastal mountain range. Already in the early 1960's, pioneer astronomers crossed this desolate region in search of suitable sites for future observatories. One of them, Jürgen Stock , did notice the Paranal peak as a possible candidate. However, without any water in this extremely dry area, how could any people, even hardy scientists, ever live up there? He then went on to discover La Silla, where ESO decided to build its first observatory in 1964. ESO presence at Paranal from 1983 In the beginning of the 1980's, when the main construction phase at La Silla was over, ESO launched a thorough search for the best possible site for the next-generation telescope, already then known as the "Very Large Telescope", or VLT. During this campaign, the Paranal mountain was visited by a small search troupe from this organisation, including the ESO Director General (1975 - 1987), Lo Woltjer . The first test measurements indicated a great potential for astronomical observations, both in term of clear nights and low humidity, the latter being particularly important for infrared observations. From 1983, ESO maintained a small site testing station at the top of Paranal. The meteorological conditions were registered around the clock and the atmospheric transparency and stability were recorded each night. At that time, the mountain Vizcachas, a site near ESO's first observatory, La Silla, and some 600 km further south, was also considered a possible site for the VLT. The data from the two sites were therefore carefully compared over a period of several years. Paranal becomes the site for the VLT Following the decision in December 1987 by the ESO Council to embark upon the VLT Project (with Massimo Tarenghi as Project Manager), Paranal was chosen as the site in 1991. In the meantime, the Chilean Government had resolved to donate an area of approx. 700 km 2 around this mountain to ESO, and construction work started the same year. The left photo shows Paranal at this stage. The development of Paranal included much blasting and heavy earthwork; about 350,000 m 3 of rock had to be moved to achieve a flat platform of sufficient size to house the various components of the VLT and, in particular, the spacious VLT Interferometer. The situation, right after this work, is depicted in the middle photo from 1994. An operational observatory The construction at Paranal progressed at high speed. It is hard to believe that just four years later, "First Light" was achieved with the first 8.2-m telescope, ANTU, in May 1998. Then followed KUEYEN (March 1999), MELIPAL (January 2000) and YEPUN (September 2000). The first two telescopes have now been "taken over" by the astronomers and Paranal has become an operational observatory with Roberto Gilmozzi as Director. Large numbers of scientists in the ESO member countries, and even more within international collaborations, are busy producing exciting research results, now increasingly visible in the world's professional journals and some of which are announced in the ESO Press Releases. The other two will soon be equipped with high-quality astronomical instruments; the first will be VIMOS at MELIPAL in the beginning of 2001. Both telescopes will become fully available to the astronomical community in the course of 2001. And now the VLT Interferometer... The next decisive step will happen already in early 2001, when the VLT Interferometer is expected to see "First Fringes", the equivalent of "First Light" for this type of facility. This is when two small "siderostats" on the Paranal platform will track and capture the light from one and the same (bright) star, directing the two beams towards the underground Interferometric Laboratory via a series of intermediate mirrors. Here, the critical technical elements are the "delay lines" in the Interferometric Tunnel, cf. ESO Press Photos 26a-e/00.They have already undergone the first tests with very positive results, so the ESO staff is in a confident mood. Later in 2001, two of the 8.2-m Unit Telescopes will be coupled and interferometric test observations will be made on faint celestial objects. In the next years, the three movable 1.8-m Auxiliary Telescopes will be installed on the Paranal "railroad" and the VLT Interferometer will progressively enter into full operation. From a lonely mountain top to the world's foremost optical/infrared astronomical observatory, Paranal has indeed come a long way! This is the caption to ESO PR Photo 36/00 . It may be reproduced, if credit is given to the European Southern Observatory.

  4. 40+ Years of Instrumentation for the La Silla Paranal Observatory

    NASA Astrophysics Data System (ADS)

    D'Odorico, S.

    2018-03-01

    As ESO Period 100 comes to a close, I look back at the development of ESO's instrumentation programme over more than 40 years. Instrumentation and detector activities were initially started by a small group of designers, engineers, technicians and astronomers while ESO was still at CERN in Geneva in the late 1970s. They have since led to the development of a successful suite of optical and infrared instruments for the La Silla Paranal Observatory, as testified by the continuous growth in the number of proposals for observing time and in the publications based on data from ESO telescopes. The instrumentation programme evolved significantly with the VLT and most instruments were developed by national institutes in close cooperation with ESO. This policy was a cornerstone of the VLT programme from the beginning and a key to its success.

  5. EVALSO: A New High-speed Data Link to Chilean Observatories

    NASA Astrophysics Data System (ADS)

    2010-11-01

    Stretching 100 kilometres through Chile's harsh Atacama Desert, a newly inaugurated data cable is creating new opportunities at ESO's Paranal Observatory and the Observatorio Cerro Armazones. Connecting these facilities to the main Latin American scientific data backbone completes the last gap in the high-speed link between the observatories and Europe. This new cable is part of the EVALSO (Enabling Virtual Access to Latin American Southern Observatories) project [1], a European Commission FP7 [2] co-funded programme co-ordinated by the University of Trieste that includes ESO, Observatorio Cerro Armazones (OCA, part of Ruhr-Universität Bochum), the Chilean academic network REUNA and other organisations. As well as the cable itself, the EVALSO project involves buying capacity on existing infrastructure to complete a high-bandwidth connection from the Paranal area to ESO's headquarters near Munich, Germany. Project co-ordinator Fernando Liello said: "This project has been an excellent collaboration between the consortium members. As well as giving a fast connection to the two observatories, it brings wider benefits to the academic communities both in Europe and Latin America." The sites of Paranal and Armazones are ideal for astronomical observation due to their high altitude, clear skies and remoteness from light pollution. But their location means they are far from any pre-existing communications infrastructure, which until now has left them dependent on a microwave link to send scientific data back to a base station near Antofagasta. Telescopes at ESO's Paranal observatory produce well over 100 gigabytes of data per night, equivalent to more than 20 DVDs, even after compressing the files. While the existing link is sufficient to carry the data from the current generation of instruments at the Very Large Telescope (VLT), it does not have the bandwidth to handle data from the VISTA telescope (Visible and Infrared Survey Telescope for Astronomy, see eso0949), or for the new generation of VLT instruments coming online in the next few years. This means that for much of the data coming from Paranal, the only practical way to send it to ESO Headquarters has been to save it onto hard drives and send these by airmail. This can mean a wait of days or even weeks before observations from VISTA are ready for analysis. Even with this careful rationing of the connection and sophisticated data management to use the connection as efficiently as possible, the link can get saturated at peak times. While this causes no major problems at present, it indicates that the link is reaching capacity. ESO Director General Tim de Zeeuw said: "ESO's observatory at Paranal is growing, with new telescopes and instruments coming online. Our world-class scientific observatories need state-of-the-art infrastructure." In the place of the existing connection, which has a limit of 16 megabit/s (similar to home ADSL broadband), EVALSO will provide a much faster 10 gigabit/s link - a speed fast enough to transfer an entire DVD movie in a matter of seconds [3]. Mario Campolargo, Director, Emerging Technologies and Infrastructures at the European Commission, said: "It is strategically important that the community of astronomers of Europe gets the best access possible to the ESO observatories: this is one of the reasons why the European Union supports the deployment of regional e-infrastructures for science in Latin America and interlinks them with GÉANT [4] and other EU e-infrastructures." The dramatic increase in bandwidth will allow increased use of Paranal's data from a distance, in real-time. It will allow easier monitoring of the VISTA telescope's performance, and quicker access to VLT data, increasing the responsiveness of quality control. And with the expanded bandwidth, new opportunities will open up, such as astronomers and technicians taking part in meetings via high-definition videoconferencing without having to travel to Chile. Moreover, looking forward, the new link will provide enough bandwidth to keep up with the ever-growing volumes of information from Paranal and Armazones in future years, as new and bandwidth-intensive instruments come into use. Immediate remote access to data at a distant location is not just about saving money and making the observatory's work more efficient. For unexpected and unpredictable events, such as gamma-ray bursts, there is often not enough time for astronomers to travel to observatories, and EVALSO will give experts a chance to work remotely on these events almost as if they were at the observatory. Notes [1] EVALSO is funded under the European Commission FP7 and is a partnership among Universita degli Studi di Trieste (Italy), ESO, Ruhr-Universität Bochum (Germany), Consortium GARR (Gestione Ampliamento Rete Ricerca) (Italy), Universiteit Leiden (Netherlands), Istituto Nazionale di Astrofisica (Italy), Queen Mary, University of London (UK), Cooperacion LatinoAmericana de Redes Avanzasas (CLARA) (Uruguay), and Red Universitaria Nacional (REUNA) (Chile). [2] FP7 (the European Commission Seventh Framework Programme for Research and Technical Development) is the European Union's main instrument for funding research. Its aim is to make, or keep, the EU as a world leader in its priority areas in science and technology. [3] The newly laid cable has a bandwidth of 10 gigabit/s. The entire network infrastructure between Paranal to ESO HQ in Germany is theoretically capable of transferring data at a maximum of 1 gigabit/s. [4] GÉANT is a pan-European data network dedicated to the research and education community. It connects 40 million users across 40 countries. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  6. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS, a unique instrument capable of measuring stellar radial velocities with an unsurpassed accuracy better than 1 m/s, making it a very powerful tool for the discovery of extra-solar planets. In addition, astronomers have also access to the 2.2-m ESO/MPG telescope with its Wide Field Imager camera. A new control room, the RITZ (Remote Integrated Telescope Zentrum), allows operating all three ESO telescopes at La Silla from a single place. The La Silla Observatory is also the first world-class observatory to have been granted certification for the International Organization for Standardization (ISO) 9001 Quality Management System. Moreover, the infrastructure of La Silla is still used by many of the ESO member states for targeted projects such as the Swiss 1.2-m Euler telescope and the robotic telescope specialized in the follow-up of gamma-ray bursts detected by satellites, the Italian REM (Rapid Eye Mount). In addition, La Silla is in charge of the APEX (Atacama Pathfinder Experiment) 12-m sub-millimetre telescope which will soon start routine observations at Chajnantor, the site of the future Atacama Large Millimeter Array (ALMA). The APEX project is a collaboration between the Max Planck Society in Germany, Onsala Observatory in Sweden and ESO. ESO also operates Paranal, home of the Very Large Telescope (VLT) and the VLT Interferometer (VLTI). Antu, the first 8.2-m Unit Telescope of the VLT, saw First Light in May 1998, starting what has become a revolution in European astronomy. Since then, the three other Unit Telescopes - Kueyen, Melipal and Yepun - have been successfully put into operation with an impressive suite of the most advanced astronomical instruments. The interferometric mode of the VLT (VLTI) is also operational and fully integrated in the VLT data flow system. In the VLTI mode, one state-of-the-art instrument is already available and another will follow soon. With its remarkable resolution and unsurpassed surface area, the VLT is at the forefront of astronomical technology and is one of the premier facilities in the world for optical and near-infrared observations. In addition to the state-of-the-art Very Large Telescope and the four Auxiliary Telescopes of 1.8-m diameter which can move to relocate in up to 30 different locations feeding the interferometer, Paranal will also be home to the 2.6-m VLT Survey telescope (VST) and the 4.2-m VISTA IR survey telescope. Both Paranal and La Silla have a proven record of their unique ability to address most current issues in observational astronomy. In 2004 alone, each observatory provided data for the publication of about 350 peer-reviewed journal articles, more than any other ground-based observatory. With the present merging of these top-ranking astronomical observatories, fostering synergies and harmonizing the many diverse activities, ESO and the entire community of European astronomers will profit even more from these highly efficient research facilities. Images of ESO's observatories and telescopes are available in the ESO gallery.

  7. The Growth of the User Community of the La Silla Paranal Observatory Science Archive

    NASA Astrophysics Data System (ADS)

    Romaniello, M.; Arnaboldi, M.; Da Rocha, C.; De Breuck, C.; Delmotte, N.; Dobrzycki, A.; Fourniol, N.; Freudling, W.; Mascetti, L.; Micol, A.; Retzlaff, J.; Sterzik, M.; Sequeiros, I. V.; De Breuck, M. V.

    2016-03-01

    The archive of the La Silla Paranal Observatory has grown steadily into a powerful science resource for the ESO astronomical community. Established in 1998, the Science Archive Facility (SAF) stores both the raw data generated by all ESO instruments and selected processed (science-ready) data. The growth of the SAF user community is analysed through access and publication statistics. Statistics are presented for archival users, who do not contribute to observing proposals, and contrasted with regular and archival users, who are successful in competing for observing time. Archival data from the SAF contribute to about one paper out of four that use data from ESO facilities. This study reveals that the blend of users constitutes a mixture of the traditional ESO community making novel use of the data and of a new community being built around the SAF.

  8. German Foreign Minister Visits Paranal Observatory

    NASA Astrophysics Data System (ADS)

    2002-03-01

    During his current tour of countries in South America, the Honourable Foreign Minister of Germany, Mr. Joschka Fischer, stopped over at the ESO Paranal Observatory Wednesday night (March 6 - 7, 2002). Arriving in Antofagasta, capital of the II Chilean region, the Foreign Minister and his suite was met by local Chilean officials, headed by Mr. Jorge Molina, Intendente of the Region, as well as His Excellency, the German Ambassador to Chile, Mr. Georg CS Dick and others. In the afternoon of March 6, the Foreign Minister, accompanied by a distinguished delegation from the German Federal Parliament as well as by businessmen from Germany, travelled to Paranal, site of the world's largest optical/infrared astronomical facility, the ESO Very Large Telescope (VLT). The delegation was welcomed by the Observatory Director, Dr. Roberto Gilmozzi, the VLT Programme Manager, Professor Massimo Tarenghi, the ESO Representative in Chile, Mr. Daniel Hofstadt and ESO staff members, and also by Mr. Reinhard Junker, Deputy Director General (European Co-operation) at the German Ministry for Education and Research. The visitors were shown the various high-tech installations at this remote desert site, some of which have been constructed by German firms. Moreover, most of the large, front-line VLT astronomical instruments have been built in collaboration between ESO and European research institutes, several of these in Germany. One of the latest arrivals to Paranal, the CONICA camera (cf. ESO PR 25/01 ), was built under an ESO contract by the Max-Planck-Institutes for Astronomy (MPIA, in Heidelberg) and Extraterrestrial Physics (MPE, in Garching). The guests had the opportunity to enjoy the spectacular sunset over the Pacific Ocean from the terrace of the new Residencia building ( Photos 05/02 ). At the beginning of the night, the Minister was invited to the Control Room for the VLT Interferometer (VLTI) from where this unique new facility ( ESO PR 23/01 ) is now being thoroughly tested before it enters into service later this year. In his expression of thanks, Minister Fischer enthusiastically referred to his visit at Paranal. He said he was truly impressed by the technology of the telescopes and considered the VLT project a model of European technological and scientific cooperation. Later in the evening, the Minister was invited to perform an observing sequence at the console of the MELIPAL telescope.

  9. Relations Between Chile and ESO

    NASA Astrophysics Data System (ADS)

    1994-06-01

    As announced in an earlier Press Release (PR 08/94 of 6 May 1994), a high-ranking ESO delegation visited Santiago de Chile during the week of 24 - 28 May 1994 to discuss various important matters of mutual interest with the Chilean Government. It consisted of Dr. Peter Creola (President of ESO Council), Dr. Catherine Cesarsky (Vice-President of ESO Council), Dr. Henrik Grage (Former Vice-President of ESO Council) and Professor Riccardo Giacconi (ESO Director General), the latter accompanied by his advisers. THE SUPPLEMENTARY TREATY BETWEEN CHILE AND ESO Following a meeting with the ambassadors to Chile of the eight ESO member countries, the ESO delegation was received by the Chilean Minister of Foreign Affairs, Mr. Carlos Figueroa, and members of his staff. The ESO delegation was pleased to receive assurances that the present Chilean Government, like its predecessors, will continue to honour all contractual agreements, in particular the privileges and immunities of this Organisation, which were laid down in the Treaty between ESO and Chile that was signed by the parties in 1963 and ratified the following year. The discussions covered some aspects of the proposed Supplementary Treaty which has been under preparation during the past year. This included in particular the desire of the Chilean side to further increase the percentage of guaranteed time for Chilean astronomers at the future ESO Very Large Telescope (VLT) and also the rules governing the installation by ESO member countries of additional telescopes at the ESO observatories in Chile. ESO invited a Chilean delegation to visit the ESO Headquarters in Garching (Germany) later this year for the final adjustment of the text of the Supplementary Treaty, after which it should be possible to proceed rapidly with the signing and ratification by the Chilean Parliament and the ESO Council. THE SITUATION AROUND PARANAL The ESO delegation expressed its deep concern to the Chilean Government about the continuing legal questioning of ESO's privileges and immunities at the designated VLT site on the Paranal mountain south of the city of Antofagasta (see ESO Press Release 07/94 of 21 April 1994), and also around the ownership of the land. ESO is now very worried about the timely completion of this 500 million DEM project. Unless a clarification of this problem is achieved as soon as possible, it is unlikely that the current plan for the construction of the VLT observatory at Paranal can be maintained. The ESO delegation expressed the opinion that these uncertainties must be removed, before the final negotiations about the above mentioned Treaty can proceed. RECEPTION BY THE PRESIDENT OF CHILE During its stay in Santiago, the ESO delegation was honoured to be received by the President of the Republic of Chile, Don Eduardo Frei Ruiz Tagle. ESO extended a warm invitation to the President to lay the cornerstone of the VLT observatory at Paranal later in 1994 at the appropriate moment. Twenty-five years ago, in 1969, the ESO La Silla observatory was inaugurated by his predecessor and father, Don Eduardo Frei Montalva. DECISIONS BY THE ESO COUNCIL The ESO delegation reported about the discussions in Santiago to the ESO Council, during its ordinary semi-annual session on June 7 - 8, 1994. The Council noted with satisfaction the clear attitude expressed by the Chilean Government, especially what concerns ESO's privileges and immunities in the host country. The ESO Council expects that the Chilean courts will also confirm these privileges and immunities. The ESO Council expressed the hope that it will now be possible to arrive at a resolution of the outstanding issues. However, in view of the increasingly tight VLT schedule - it is planned to ship the first VLT building to Paranal in the month of September this year - the Council was also much concerned about any further delays. Council requested the ESO management to ensure that the authorities of the member countries will be kept closely informed about the further developments during the coming months. The ESO Council Working Group on Relations between ESO and Chile will meet on June 29, 1994, to analyse the developments; it will report to Council immediately thereafter. Further underlining the importance of these issues for the Organisation and European Astronomy, Council resolved to meet during an extraordinary meeting on August 8 - 9, 1994. This will allow a thorough evaluation of the entire situation before ESO engages itself more fully at Paranal.

  10. Core network infrastructure supporting the VLT at ESO Paranal in Chile

    NASA Astrophysics Data System (ADS)

    Reay, Harold

    2000-06-01

    In October 1997 a number of projects were started at ESO's Paranal Observatory at Cerro Paranal in Chile to upgrade the communications infrastructure in place at the time. The planned upgrades were to internal systems such as computer data networks and telephone installations and also data links connecting Paranal to other ESO sites. This paper details the installation work carried out on the Paranal Core Network (PCN) during the period of October 1997 to December 1999. These installations were to provide both short term solutions to the requirement for reliable high bandwidth network connectivity between Paranal and ESO HQ in Garching, Germany in time for UTI (Antu) first light and perhaps more importantly, to provide the core systems necessary for a site moving towards operational status. This paper explains the reasons for using particular cable types, network topology, and fiber backbone design and implementation. We explain why it was decided to install the PCN in two distinct stages and how equipment used in temporary installations was re-used in the Very Large Telescope networks. Finally we describe the tools used to monitor network and satellite link performance and will discuss whether network backbone bandwidth meets the expected utilization and how this bandwidth can easily be increased in the future should there be a requirement.

  11. Brazil to Join the European Southern Observatory

    NASA Astrophysics Data System (ADS)

    2010-12-01

    The Federative Republic of Brazil has yesterday signed the formal accession agreement paving the way for it to become a Member State of the European Southern Observatory (ESO). Following government ratification Brazil will become the fifteenth Member State and the first from outside Europe. On 29 December 2010, at a ceremony in Brasilia, the Brazilian Minister of Science and Technology, Sergio Machado Rezende and the ESO Director General, Tim de Zeeuw signed the formal accession agreement aiming to make Brazil a Member State of the European Southern Observatory. Brazil will become the fifteen Member State and the first from outside Europe. Since the agreement means accession to an international convention, the agreement must now be submitted to the Brazilian Parliament for ratification [1]. The signing of the agreement followed the unanimous approval by the ESO Council during an extraordinary meeting on 21 December 2010. "Joining ESO will give new impetus to the development of science, technology and innovation in Brazil as part of the considerable efforts our government is making to keep the country advancing in these strategic areas," says Rezende. The European Southern Observatory has a long history of successful involvement with South America, ever since Chile was selected as the best site for its observatories in 1963. Until now, however, no non-European country has joined ESO as a Member State. "The membership of Brazil will give the vibrant Brazilian astronomical community full access to the most productive observatory in the world and open up opportunities for Brazilian high-tech industry to contribute to the European Extremely Large Telescope project. It will also bring new resources and skills to the organisation at the right time for them to make a major contribution to this exciting project," adds ESO Director General, Tim de Zeeuw. The European Extremely Large Telescope (E-ELT) telescope design phase was recently completed and a major review was conducted where every aspect of this large project was scrutinised by an international panel of independent experts. The panel found that the E-ELT project is technically ready to enter the construction phase. The go-ahead for E-ELT construction is planned for 2011 and when operations start early in the next decade, European, Brazilian and Chilean astronomers will have access to this giant telescope. The president of ESO's governing body, the Council, Laurent Vigroux, concludes: "Astronomers in Brazil will benefit from collaborating with European colleagues, and naturally from having observing time at ESO's world-class observatories at La Silla and Paranal, as well as on ALMA, which ESO is constructing with its international partners." Notes [1] After ratification of Brazil's membership, the ESO Member States will be Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  12. ESO telbib: Linking In and Reaching Out

    NASA Astrophysics Data System (ADS)

    Grothkopf, U.; Meakins, S.

    2015-04-01

    Measuring an observatory's research output is an integral part of its science operations. Like many other observatories, ESO tracks scholarly papers that use observational data from ESO facilities and uses state-of-the-art tools to create, maintain, and further develop the Telescope Bibliography database (telbib). While telbib started out as a stand-alone tool mostly used to compile lists of papers, it has by now developed into a multi-faceted, interlinked system. The core of the telbib database is links between scientific papers and observational data generated by the La Silla Paranal Observatory residing in the ESO archive. This functionality has also been deployed for ALMA data. In addition, telbib reaches out to several other systems, including ESO press releases, the NASA ADS Abstract Service, databases at the CDS Strasbourg, and impact scores at Altmetric.com. We illustrate these features to show how the interconnected telbib system enhances the content of the database as well as the user experience.

  13. Eso's Situation in Chile

    NASA Astrophysics Data System (ADS)

    1995-02-01

    ESO, the European Southern Observatory, in reply to questions raised by the international media, as well as an ongoing debate about the so-called "Paranal case" in Chilean newspapers, would like to make a number of related observations concerning its status and continued operation in that country [1]. THE ESO OBSERVATORY SITES IN CHILE The European Southern Observatory, an international organisation established and supported by eight European countries, has been operating more than 30 years in the Republic of Chile. Here ESO maintains one of the world's prime astronomical observatories on the La Silla mountain in the southern part of the Atacama desert. This location is in the Fourth Chilean Region, some 600 km north of Santiago de Chile. In order to protect the La Silla site against dust and light pollution from possible future mining industries, roads and settlements, ESO early acquired the territory around this site. It totals about 825 sq. km and has effectively contributed to the preservation of its continued, excellent "astronomical" quality. Each year, more than 500 astronomers from European countries, Chile and elsewhere profit from this when they come to La Silla to observe with one or more of the 15 telescopes now located there. In 1987, the ESO Council [2] decided to embark upon one of the most prestigious and technologically advanced projects ever conceived in astronomy, the Very Large Telescope (VLT). It will consist of four interconnected 8.2-metre telescopes and will become the largest optical telescope in the world when it is ready. It is safe to predict that many exciting discoveries will be made with this instrument, and it will undoubtedly play a very important role in our exploration of the distant universe and its many mysteries during the coming decades. THE VLT AND PARANAL In order to find the best site for the VLT, ESO performed a thorough investigation of many possible mountain tops, both near La Silla and in Northern Chile. They showed that the best VLT site would be the Paranal Mountain, 700 km north of La Silla and 130 km south of Antofagasta, the capital of the Second Region in Chile. In October 1988, the Chilean Government by an official act donated the land surrounding Paranal (in all 725 sq. km) to ESO. As is the case for La Silla, this would serve to protect the planned, incredibly sensitive mega-telescope against all possible future sources of outside interference. The donation was made on the condition that ESO would indeed proceed with the construction of the VLT at Paranal within the next five years. The corresponding decision was taken by the ESO Council in December 1990. The construction of the VLT observatory site at Paranal started immediately thereafter, thus fulfilling the condition attached to the donation. The construction of the VLT is now well advanced. In Europe, the main parts of the first VLT unit 8.2-metre telescope will be pre-assembled later this year and the first two of the enormous mirrors are being polished. In Chile, the extensive landscaping of the Paranal peak was finished in 1993, during which around 300,000 cubic metres of rock and soil was removed to provide a 100x100 sq. metres platform for the VLT, and the concrete foundations are now ready. The installation of the first telescope enclosure can now begin and the next will start later this year. The first of the four telescopes is expected to start observations in late 1997. All in all, ESO has until now committed about 70 percent of the expected total investment for the VLT, estimated to be approximately 570 million DEM. THE OWNERSHIP OF PARANAL According to information later received, the Chilean Ministry of National Properties ("Bienes Nacionales") inscribed in 1977 in its name various lands in the commune of Taltal, including the area of the Paranal peak. At that time, i.e. ten years before ESO decided to construct the VLT, nobody in this Organisation could imagine that this telescope would one day be constructed at that site. It was only seven years later, in 1984, that ESO initiated the search for a future VLT site that ultimately led to the recommendation in favour of Paranal, the subsequent donation by the Chilean Government and the beginning of the construction, as described above. ESO has never had any doubt on the legality of this donation by the Chilean Government. The Organisation started the work at Paranal in full confidence that this generous act was correct and respected its condition, i.e. to start construction of the VLT observatory within a given time frame. However, in April 1993, when the work at Paranal was already quite advanced, a Chilean family brought a lawsuit against the Chilean State and ESO, claiming that a small part of the land (about 22 sq. km, including the very peak of Paranal) that was inscribed by the state in 1977, had been property of this family. The lawsuit is presently pending with the competent Chilean courts and it is not known when a final judgement will be given. In keeping with its status as an International Organisation and conforming to the international practice of such organisations, ESO decided not to become a party in this lawsuit. The Organisation, therefore, has restricted its involvement to merely invoking the immunity from lawsuit and jurisdiction to which it is entitled (see below). ESO believes that the issue of past ownership is an internal Chilean matter. Nevertheless, it has been widely reported that on January 30, 1995, in response to an appeal by the claimants, a Chambre of the Chilean Supreme Court issued a preliminary decision that may be interpreted as ordering to stop the construction of the VLT during an undetermined period of time. This would seriously delay the entire project and necessarily entail additional, substantial costs. ESO'S IMMUNITIES ESO's relations with its host state, the Republic of Chile, is governed by an international Convention ("Convenio"), signed in 1963 and ratified by the Chilean Congress (Parliament) in 1964. According to this, the Chilean Government "grants to ESO the same immunities, prerogatives, privileges and facilities as the Government applies to the United Nations Economic Commission for Latin America (CEPAL), as granted in the Convention signed in Santiago on 16 February 1953" (Article 4 of the Chile-ESO Convention). Through this, the Chilean Government has in particular recognized that "the possessions and properties of (ESO) wherever they may be, and whoever may have them in his possession, shall be exempt of registration, requisition, confiscation, expropriation and of whatever interference, may it be through executive, administrative, judicial or legislative action" (Art. 4, Sec. 8, CEPAL Convention). Such privileges and immunities are not peculiar to the relations between Chile and ESO. They apply, as already mentioned, to CEPAL as well as to all other United Nations' Agencies and they are today typically recognized by the host states of International Organisations throughout the world. The Chilean Government and ESO agreed in 1983-84 by an exchange of diplomatic notes that these privileges and immunities apply not only to the La Silla observatory, but equally to any other observatory site that the Organisation may establish in the future in the Republic of Chile. It is obvious that, in order to exclude a possible breach of international law, the reported preliminary decision requires to be considered and interpreted in the light of these privileges and immunities. ESO trusts that the competent Chilean authorities will take the appropriate action and decisions which are required for ensuring the Organisation's international status and its protection from any public interference into its possessions and properties. In a Press Conference at the ESO Headquarters in Santiago de Chile on February 13, 1995, Mr. Daniel Hofstadt, ESO's highest-ranking representative in Chile, stated on behalf of the Organisation that "ESO is in Chile with the purpose to do science and not to participate in polemics or litigations. For this reason, ESO has until now been silent in these matters, but we have now become obliged to make our opinion known". The ESO representative also made it clear, that "ESO does not question the rights of the claimants to recur to the Chilean Tribunals which must decide on the matter of ownership, and that ESO cannot be party to this lawsuit". He added that "ESO fully trusts that the Chilean Government will do whatever is necessary to defend the immunity of ESO". THE CURRENT SITUATION During the past few days, declarations from high officials at the Chilean Ministry of Foreign Affairs have been made which clearly confirm ESO's immunity of jurisdiction from Chilean Courts. The same opinion has been ventured by Chilean experts in international law, quoted in various Chilean newspapers. On Friday, February 17, the Chilean Minister of Foreign Affairs, Mr. Jose M. Insulza, made a similar, very eloquent statement. ESO welcomes these articulate expressions that support its official position and trusts that the current situation will be speedily resolved by the competent Chilean authorities, so that the construction work at Paranal will not be stopped. During the past three decades, ESO's presence in Chile has been characterised by good relations to all sides. The development of astronomy in Chile during the past decades has reached such a level that it will now benefit from a new quality of cooperation. In addition to its past and numerous services to Chilean astronomy, ESO has recently considered to establish a "guaranteed" observing time for astronomers from this country, both at La Silla and the future VLT observatory on Paranal. With a proposed 10 percent quota for the VLT, Chilean astronomers will in fact have free access to the equivalent of 40 percent of one 8.2-metre telescope; the associated, not insignificant cost is entirely carried by ESO. ESO has also considered to incorporate elements of Chilean labour legislation into its rules and regulations for local staff. These proposed actions are contained in an Amendment to the Convention which was initialled late last year and is now awaiting signature by the Chilean Government and ratification by the Chilean Congress, as well as by the ESO Council. FUTURE INFORMATION In conjunction with the present Press Release ESO has prepared a pre-edited video-news reel with video-clips (approx. 4 minutes) about Paranal and the current work there. It is available for TV channels in the usual formats (Beta-SP and M II). Please fax your request to the ESO Information Service (+4989-3202362). ESO will continue to keep the media informed about further important developments around the VLT Project, in addition to the usual scientific and technological news, available through Press Releases and the ESO house journal, "The Messenger/El Mensajero". ----- Notes: [1] See also the following ESO Press Releases: PR 14/94 of 29 September 1994, PR 13/94 of 9 August 1994; PR 12/94 of 10 June 1994; PR 08/94 of 5 May 1994, and PR 07/94 of 21 April 1994. [2] The Council of ESO consists of two representatives from each of the eight member states. It is the highest legislative authority of the organisation and normally meets twice a year. ----- ESO Press Information is made available on the World-Wide Web (URL: http://www.hq.eso.org/) and on CompuServe (space science and astronomy area, GO SPACE).

  14. Clear New View of a Classic Spiral

    NASA Astrophysics Data System (ADS)

    2010-05-01

    ESO is releasing a beautiful image of the nearby galaxy Messier 83 taken by the HAWK-I instrument on ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The picture shows the galaxy in infrared light and demonstrates the impressive power of the camera to create one of the sharpest and most detailed pictures of Messier 83 ever taken from the ground. The galaxy Messier 83 (eso0825) is located about 15 million light-years away in the constellation of Hydra (the Sea Serpent). It spans over 40 000 light-years, only 40 percent the size of the Milky Way, but in many ways is quite similar to our home galaxy, both in its spiral shape and the presence of a bar of stars across its centre. Messier 83 is famous among astronomers for its many supernovae: vast explosions that end the lives of some stars. Over the last century, six supernovae have been observed in Messier 83 - a record number that is matched by only one other galaxy. Even without supernovae, Messier 83 is one of the brightest nearby galaxies, visible using just binoculars. Messier 83 has been observed in the infrared part of the spectrum using HAWK-I [1], a powerful camera on ESO's Very Large Telescope (VLT). When viewed in infrared light most of the obscuring dust that hides much of Messier 83 becomes transparent. The brightly lit gas around hot young stars in the spiral arms is also less prominent in infrared pictures. As a result much more of the structure of the galaxy and the vast hordes of its constituent stars can be seen. This clear view is important for astronomers looking for clusters of young stars, especially those hidden in dusty regions of the galaxy. Studying such star clusters was one of the main scientific goals of these observations [2]. When compared to earlier images, the acute vision of HAWK-I reveals far more stars within the galaxy. The combination of the huge mirror of the VLT, the large field of view and great sensitivity of the camera, and the superb observing conditions at ESO's Paranal Observatory makes HAWK-I one of the most powerful near-infrared imagers in the world. Astronomers are eagerly queuing up for the chance to use the camera, which began operation in 2007 (eso0736), and to get some of the best ground-based infrared images ever of the night sky. Notes [1] HAWK-I stands for High-Acuity Wide-field K-band Imager. More technical details about the camera can be found in an earlier press release (eso0736). [2] The data used to prepare this image were acquired by a team led by Mark Gieles (University of Cambridge) and Yuri Beletsky (ESO). Mischa Schirmer (University of Bonn) performed the challenging data processing. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  15. Report on the ''2017 ESO Calibration Workshop: The Second-Generation VLT Instruments and Friends''

    NASA Astrophysics Data System (ADS)

    Smette, A.; Kerber, F.; Kaufer, A.

    2017-03-01

    The participants at the 2017 ESO Calibration Workshop shared their experiences and the challenges encountered in calibrating VLT second-generation instruments and the upgraded first-generation instruments, and discussed improvements in the characterisation of the atmosphere and data reduction. A small group of ESO participants held a follow-up retreat and identified possible game changers in the future operations of the La Silla Paranal Observatory: feedback on the proposals is encouraged.

  16. ESO Council Decides to Continue VLT Project at Paranal

    NASA Astrophysics Data System (ADS)

    1994-08-01

    The Council [1] of the European Southern Observatory has met in extraordinary session at the ESO Headquarters in Garching near Munich on August 8 and 9, 1994. The main agenda items were concerned with the recent developments around ESO's relations with the host state, the Republic of Chile, as well as the status of the organisation's main project, the 16-metre equivalent Very Large Telescope (VLT) which will become the world's largest optical telescope. Council had decided to hold this special meeting [2] because of various uncertainties that have arisen in connection with the implementation of the VLT Project at Cerro Paranal, approx. 130 kilometres south of Antofagasta, capital of the II Region in Chile. Following continued consultations at different levels within the ESO member states and after careful consideration of all aspects of the current situation - including various supportive actions by the Chilean Government as well as the incessive attacks against this international organisation from certain sides reported in the media in that country - Council took the important decision to continue the construction of the VLT Observatory at Paranal, while at the same time requesting the ESO Management to pursue the ongoing studies of alternative solutions. THE COUNCIL DECISIONS In particular, the ESO Council took note of recent positive developments which have occurred since the May 1994 round of discussions with the Chilean authorities in Santiago. The confirmation of ESO's immunities as an International Organization in Chile, contained in a number of important statements and documents, is considered a significant step by the Chilean Government to insure to ESO the unhindered erection and later operation of the VLT on Paranal. Under these circumstances and in order to maintain progress on the VLT project, the ESO Council authorized the ESO Management to continue the on-site work at Paranal. Council also took note of the desire expressed by the Chilean Government to complete negotiation of a Supplementary and Amending Agreement and it was decided that a Council Delegation shall conclude as soon as possible the negotiation of this Agreement. Council noted that the Chilean Delegation has accepted ESO's invitation to hold the final round of negotiations in Europe and proposed that this final round shall be held in the period Sept. 15 - Oct. 15, 1994. Nonetheless, Council also expressed its preoccupation with regard to remaining ambiguities contained in some official statements according to which the formal recognition of ESO's status on Paranal would depend on the conclusion of the above mentioned Agreement. At the May 1994 meetings in Santiago [2], understanding had been reached that this Agreement will merely confirm the already existing legal situation. The main objective is to expand the cooperation between Chile and ESO by granting ensured access for Chilean astronomers to ESO's facilities and incorporate elements of Chilean labour legislation into the ESO internal staff regulations. In view of these circumstances, and pending the successful conclusion of these negotiations, Council therefore instructed the ESO Management to continue exploring alternative sites for the VLT. In a final statement, the ESO Council again expressed its hope that the scientific co-operation between Europe and Chile in the field of astronomy which began in 1963 will continue to develop and expand well into the next century to the mutual benefit of science in both communities. CONTINUATION OF THE VLT PROJECT In practical terms, the above decision by Council implies that ESO will now initiate the steps necessary to move from Europe to Paranal the main mechanical parts of the rotating dome (total weight around 500 tonnes) for the first VLT 8.2-metre unit telescope. It is expected that the sea transport will take place in September-October of this year and that assembly at Paranal will begin soon thereafter, once the concrete base, now under construction, is ready. This will enable the 500 million DEM VLT Project to stay within the planned timeline for completion just after the year 2000. 1. The Council of ESO consists of two representatives from each of the eight member states. It is the highest authority of the organisation and normally meets twice a year. 2. See ESO Press Release 12/94 of June 10, 1994.

  17. E-ELT Site Chosen - World's Biggest Eye on the Sky to be Located on Armazones, Chile

    NASA Astrophysics Data System (ADS)

    2010-04-01

    On 26 April 2010, the ESO Council selected Cerro Armazones as the baseline site for the planned 42-metre European Extremely Large Telescope (E-ELT). Cerro Armazones is a mountain at an altitude of 3060 metres in the central part of Chile's Atacama Desert, some 130 kilometres south of the town of Antofagasta and about 20 kilometres from Cerro Paranal, home of ESO's Very Large Telescope. "This is an important milestone that allows us to finalise the baseline design of this very ambitious project, which will vastly advance astronomical knowledge," says Tim de Zeeuw, ESO's Director General. "I thank the site selection team for the tremendous work they have done over the past few years." ESO's next step is to build a European extremely large optical/infrared telescope (E-ELT) with a primary mirror 42 metres in diameter. The E-ELT will be "the world's biggest eye on the sky" - the only such telescope in the world. ESO is drawing up detailed construction plans together with the community. The E-ELT will address many of the most pressing unsolved questions in astronomy, and may, eventually, revolutionise our perception of the Universe, much as Galileo's telescope did 400 years ago. The final go-ahead for construction is expected at the end of 2010, with the start of operations planned for 2018. The decision on the E-ELT site was taken by the ESO Council, which is the governing body of the Organisation composed of representatives of ESO's fourteen Member States, and is based on an extensive comparative meteorological investigation, which lasted several years. The majority of the data collected during the site selection campaigns will be made public in the course of the year 2010. Various factors needed to be considered in the site selection process. Obviously the "astronomical quality" of the atmosphere, for instance, the number of clear nights, the amount of water vapour, and the "stability" of the atmosphere (also known as seeing) played a crucial role. But other parameters had to be taken into account as well, such as the costs of construction and operations, and the operational and scientific synergy with other major facilities (VLT/VLTI, VISTA, VST, ALMA and SKA etc). In March 2010, the ESO Council was provided with a preliminary report with the main conclusions from the E-ELT Site Selection Advisory Committee [1]. These conclusions confirmed that all the sites examined in the final shortlist (Armazones, Ventarrones, Tolonchar and Vizcachas in Chile, and La Palma in Spain) have very good conditions for astronomical observing, each one with its particular strengths. The technical report concluded that Cerro Armazones, near Paranal, stands out as the clearly preferred site, because it has the best balance of sky quality for all the factors considered and can be operated in an integrated fashion with ESO's Paranal Observatory. Cerro Armazones and Paranal share the same ideal conditions for astronomical observations. In particular, over 320 nights are clear per year. Taking into account the very clear recommendation of the Site Selection Advisory Committee and all other relevant aspects, especially the scientific quality of the site, Council has now endorsed the choice of Cerro Armazones as the E-ELT baseline site [2]. "Adding the transformational scientific capabilities of the E-ELT to the already tremendously powerful integrated VLT observatory guarantees the long-term future of Paranal as the most advanced optical/infrared observatory in the world and further strengthens ESO's position as the world-leading organisation for ground-based astronomy," says de Zeeuw. In anticipation of the choice of Cerro Armazones as the future site of the E-ELT and to facilitate and support the project, the Chilean Government has agreed to donate to ESO a substantial tract of land contiguous to ESO's Paranal property and containing Armazones in order to ensure the continued protection of the site against all adverse influences, in particular light pollution and mining activities. Notes [1] The independent E-ELT Site Selection Advisory Committee (SSAC) has been analysing results from several possible sites worldwide in great detail. Similar efforts have been carried out by the Thirty-Meter Telescope (TMT) site selection team from the US. For the sake of efficiency, the sites pre-selected by the TMT team (all in North and South America) were not studied by the SSAC, as the TMT team shared their data with the SSAC. Two of the sites on the SSAC short list, including Armazones, were on the TMT list. [2] The full ESO Council Resolution reads as follow: Resolution of ESO Council on the Baseline Site for the E-ELT Recognising * the very clear recommendation from the Site Selection Advisory Committee that the E-ELT should be located on Cerro Armazones in Northern Chile * the considerable scientific synergy that would result between the E-ELT and future facilities in the Southern Hemisphere, most notably ALMA and SKA * the operational and scientific synergies with Paranal that would result and expressing its warmest appreciation for * the very generous offers from Spain and Chile to host the E-ELT * the very considerable contributions to the quality and depth of the discussion on the siting of the E-ELT made by Chile and Spain in the course of developing their offers; Council has concluded that the overriding driver for the decision on the location of the E-ELT should be the scientific quality of the site. The scientific qualities of Cerro Armazones and the positive impact that locating the E-ELT there will have on the future scientific leadership of ESO are sufficiently compelling to outweigh the very substantial offer made by Spain. Council has therefore resolved to approve the recommendation of the Director General to adopt Cerro Armazones in Chile as the baseline site for the E-ELT. Council noted that this decision is essential for the completion of the construction proposal for decision at a later date. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence.

  18. "Clouds" above Paranal.

    NASA Astrophysics Data System (ADS)

    1994-04-01

    ESO, the European Southern Observatory, in reply to questions raised by the media would like to clarify its position with regard to recent events which concern the land on which the Paranal mountain is situated. THE DECISION TO BUILD THE VLT AT PARANAL In December 1987, the Council [1] of the European Southern Observatory decided to build the largest optical telescope in the world, the 16-metre equivalent Very Large Telescope (VLT) [2], before the end of the century and at a total cost that was expected to approach 500 million DEM. Already several years before that, ESO had started a search for the best possible site for this new giant telescope. At the time of Council's decision, intensive investigations at various sites in the Chilean Atacama desert had effectively narrowed down the choice to two possibilities, the Vizcachas mountain near La Silla, and the Paranal mountain, located approx. 130 km south of Antofagasta, the capital of the Chilean Region II. The meteorological data measured by the ESO teams favoured Paranal, especially in terms of number of clear nights and amount of turbulence in the atmosphere. However, while Vizcachas is situated on land that had earlier been acquired by ESO, this was not the case for the Paranal mountain. ESO was therefore very pleased to learn in 1988 that the Chilean government had decided to donate an area of 725 sq. km around Paranal to this Organisation, on the condition that it would be decided within the next five years to construct the VLT at this site. The size of this land is dictated by the need to avoid any activities (e.g., mining) which may adversely influence the exceedingly sensitive astronomical observations with the VLT. The offer was gratefully accepted by the ESO Council and in November 1988 ESO became owner of the land. After further detailed considerations of the scientific and technical implications, the ESO Council during its December 1990 meeting decided to construct the VLT on Paranal [3], thus fulfilling the condition attached to the donation. The excavation work began at Paranal in 1992. When it was over in late 1993, a total of 300,000 m^3 of rock had been removed, creating a platform large enough for the extensive VLT installations at the top. In December 1993, ESO signed a contract with the Swedish firm SKANSKA-Belfry Ltd. for the construction of the VLT foundations and buildings. The team from this firm joined the other contractors (geological survey, installation of water tanks, etc.) at Paranal in January 1994. LEGAL PROBLEMS AROUND PARANAL However, in March 1993, the descendants of Admiral Juan Jose Latorre claimed that a part of the land which was donated to ESO and, in particular, the site upon which the VLT is to be constructed, had earlier been given to the admiral in return for his services to his fatherland during the Chilean wars of the late 19th century. The Latorre family introduced with the Court of Antofagasta a law suit against the State of Chile and against ESO, demanding that its property in this part of the land be recognized, that the land be returned and that damage be paid. The law suit and several legal actions of the Latorre family connected therewith have been brought to the attention of the public. Related public statements require that ESO makes the following comments and corrections. This is all the more the case since ESO enjoys in Chile a special legal status, the particulars of which are not well known there, apparently not even among members of the legal profession. The European Organisation for Astronomical Research in the Southern Hemisphere is an International Organisation which carries out its official activities in Chile on the basis of an international treaty that operates between the Government of Chile and ESO. The relations between the Organisation and the Republic of Chile are thus relations between two subjects of international law and they are as such exclusively governed by international law, in particular by the said treaty, i.e., the Convention concluded between ESO and the Government of Chile in 1963. As this is usual in the relations between International Organisations and their host states, this treaty has been further developed during the years. And as this typically occurs between subjects of international law, related changes have been confirmed by the exchange of diplomatic notes. In an exchange of notes which took place during 1983/1984, the Government of Chile and ESO agreed in particular that ESO's privileges and immunities which derive from the 1963 Convention shall also apply to all future astronomical observatories which ESO would install in Chile with the agreement of the Government. The Republic of Chile has donated to ESO the Paranal site for the very purpose to erect on Cerro Paranal the Very Large Telescope. The Government thus granted the site to ESO in order to enable the Organisation to fulfill its official purposes in Chile. Consequently, the grant of the land took place within the framework of the existing treaty relations between the Republic of Chile and ESO. In the event that there would be a dispute between these two subjects of international law on any aspect of the matter, Article X of the Convention would apply which provides for dispute settlement by way of international arbitration. For these reasons ESO could not be involved in the legal dispute pending between the Government of Chile and the Latorre family before the Chilean courts. ESO feels that this dispute constitutes an internal Chilean matter. For the same reasons, ESO has requested the Supreme Court of Chile to apply and enforce in this dispute the Organisation's jurisdictional immunity and the exemption of its possessions from any public, even judicial, interference, as ESO is entitled under the applicable treaty provisions. ESO notes with satisfaction that the Supreme Court of Chile has recently issued a decision which recognizes the Organisation's privileges and immunities. However, during a first stage of the other legal actions taken by the Latorre family against ESO and its project to erect the VLT there seemed to be a risk that the lower courts in Chile would not be sufficiently familiar with the Organisation's particular status [4]. In order to reduce this risk, ESO has again resorted to the usual means of communication with the Government of Chile and has asked the Government in a recent ``Nota Verbal'' to clarify and explain the issue of its privileges and immunities to all competent Chilean authorities, including the courts. Since ESO has been founded and is funded by eight European States, it is obvious that the Latorre complaint and the various actions of the Latorre family have caused the concern of the ESO member states. It is also nothing more than the usual practice among states that the ESO member states have notified their concern to the Government of Chile by way of a diplomatic note. Of course, neither ESO nor the ESO member states would be able to or even intend to exercise any influence on internal Chilean affairs. On 15 April 1994, a delegation of the ambassadors of the ESO member states to Chile met with the Minister Secretary of the Presidency, G. Arriagada, and the Under Secretary of Foreign Affairs, J. Insulza, to discuss the Paranal legal problems. ESO expects that the Chilean courts will eventually decide on the Latorre complaint and it trusts that any consequence such decision may have for its activities on Paranal will be settled between the Government and ESO according to the principles and rules of international law applicable in such situation. MOST RECENT DEVELOPMENTS The judge of Antofagasta has rejected another Latorre request for preliminary injunction against ESO to stop the works at Paranal (and also held that ESO cannot, for the time being, sell the mountain). Yesterday, 20 April 1994, the Chilean Supreme Court in plenary session rejected by a 10/4 vote the request by the Latorre party to send a ``Visiting Judge'' to Taltal and Antofagasta. It therefore appears that the Chilean courts have come to accept ESO's status and legal position. The ESO Council has decided to hold an extraordinary meeting at the ESO Headquarters in Garching on 28 April 1994, to discuss the above mentioned developments and to decide about the future actions by this Organisation. [1] The Council of ESO consists of two representatives from each of the eight member states. It is the highest authority of the organisation and normally meets twice a year. [2] See ESO Press Release 16/87 of 8 December 1987. [3] See ESO Press Release 11/90 of 4 December 1990. [4] One specific, recent incident has been widely reported: On 17 March 1994, the Latorre party filed with the civil judge of Taltal (the provincial town nearest Paranal) a request aiming at a court injunction against ESO's contractor SKANSKA-Belfi Ltd., for a prohibition to ``effect new works'' on its alleged property. On 23 March 1994, the judge appeared on Paranal, ordering to close the operations of the contractor. The court order was revoked by the judge of Taltal on 15 April 1994, and the work at Paranal has now started again. However, this work stoppage has incurred significant losses and a damage claim is now being considered.

  19. New Paranal Views

    NASA Astrophysics Data System (ADS)

    2001-01-01

    Last year saw very good progress at ESO's Paranal Observatory , the site of the Very Large Telescope (VLT). The third and fourth 8.2-m Unit Telescopes, MELIPAL and YEPUN had "First Light" (cf. PR 01/00 and PR 18/00 ), while the first two, ANTU and KUEYEN , were busy collecting first-class data for hundreds of astronomers. Meanwhile, work continued towards the next phase of the VLT project, the combination of the telescopes into the VLT Interferometer. The test instrument, VINCI (cf. PR 22/00 ) is now being installed in the VLTI Laboratory at the centre of the observing platform on the top of Paranal. Below is a new collection of video sequences and photos that illustrate the latest developments at the Paranal Observatory. The were obtained by the EPR Video Team in December 2000. The photos are available in different formats, including "high-resolution" that is suitable for reproduction purposes. A related ESO Video News Reel for professional broadcasters will soon become available and will be announced via the usual channels. Overview Paranal Observatory (Dec. 2000) Video Clip 02a/01 [MPEG - 4.5Mb] ESO PR Video Clip 02a/01 "Paranal Observatory (December 2000)" (4875 frames/3:15 min) [MPEG Video+Audio; 160x120 pix; 4.5Mb] [MPEG Video+Audio; 320x240 pix; 13.5 Mb] [RealMedia; streaming; 34kps] [RealMedia; streaming; 200kps] ESO Video Clip 02a/01 shows some of the construction activities at the Paranal Observatory in December 2000, beginning with a general view of the site. Then follow views of the Residencia , a building that has been designed by Architects Auer and Weber in Munich - it integrates very well into the desert, creating a welcome recreational site for staff and visitors in this harsh environment. The next scenes focus on the "stations" for the auxiliary telescopes for the VLTI and the installation of two delay lines in the 140-m long underground tunnel. The following part of the video clip shows the start-up of the excavation work for the 2.6-m VLT Survey Telescope (VST) as well as the location known as the "NTT Peak", now under consideration for the installation of the 4-m VISTA telescope. The last images are from to the second 8.2-m Unit Telescope, KUEYEN, that has been in full use by the astronomers with the UVES and FORS2 instruments since April 2000. ESO PR Photo 04a/01 ESO PR Photo 04a/01 [Preview - JPEG: 466 x 400 pix - 58k] [Normal - JPEG: 931 x 800 pix - 688k] [Hires - JPEG: 3000 x 2577 pix - 7.6M] Caption : PR Photo 04a/01 shows an afternoon view from the Paranal summit towards East, with the Base Camp and the new Residencia on the slope to the right, above the valley in the shadow of the mountain. ESO PR Photo 04b/01 ESO PR Photo 04b/01 [Preview - JPEG: 791 x 400 pix - 89k] [Normal - JPEG: 1582 x 800 pix - 1.1Mk] [Hires - JPEG: 3000 x 1517 pix - 3.6M] PR Photo 04b/01 shows the ramp leading to the main entrance to the partly subterranean Residencia , with the steel skeleton for the dome over the central area in place. ESO PR Photo 04c/01 ESO PR Photo 04c/01 [Preview - JPEG: 498 x 400 pix - 65k] [Normal - JPEG: 995 x 800 pix - 640k] [Hires - JPEG: 3000 x 2411 pix - 6.6M] PR Photo 04c/01 is an indoor view of the reception hall under the dome, looking towards the main entrance. ESO PR Photo 04d/01 ESO PR Photo 04d/01 [Preview - JPEG: 472 x 400 pix - 61k] [Normal - JPEG: 944 x 800 pix - 632k] [Hires - JPEG: 3000 x 2543 pix - 5.8M] PR Photo 04d/01 shows the ramps from the reception area towards the rooms. The VLT Interferometer The Delay Lines consitute a most important element of the VLT Interferometer , cf. PR Photos 26a-e/00. At this moment, two Delay Lines are operational on site. A third system will be integrated early this year. The VLTI Delay Line is located in an underground tunnel that is 168 metres long and 8 metres wide. This configuration has been designed to accommodate up to eight Delay Lines, including their transfer optics in an ideal environment: stable temperature, high degree of cleanliness, low levels of straylight, low air turbulence. The positions of the Delay Line carriages are computed to adjust the Optical Path Lengths requested for the fringe pattern observation. The positions are controlled in real time by a laser metrology system, specially developed for this purpose. The position precision is about 20 nm (1 nm = 10 -9 m, or 1 millionth of a millimetre) over a distance of 120 metres. The maximum velocity is 0.50 m/s in position mode and maximum 0.05 m/s in operation. The system is designed for 25 year of operation and to survive earthquake up to 8.6 magnitude on the Richter scale. The VLTI Delay Line is a three-year project, carried out by ESO in collaboration with Dutch Space Holdings (formerly Fokker Space) and TPD-TNO . VLTI Delay Lines (December 2000) - ESO PR Video Clip 02b/01 [MPEG - 3.6Mb] ESO PR Video Clip 02b/01 "VLTI Delay Lines (December 2000)" (2000 frames/1:20 min) [MPEG Video+Audio; 160x120 pix; 3.6Mb] [MPEG Video+Audio; 320x240 pix; 13.7 Mb] [RealMedia; streaming; 34kps] [RealMedia; streaming; 200kps] ESO Video Clip 02b/00 shows the Delay Lines of the VLT Interferometer facility at Paranal during tests. One of the carriages is moving on 66-metre long rectified rails, driven by a linear motor. The carriage is equipped with three wheels in order to preserve high guidance accuracy. Another important element is the Cat's Eye that reflects the light from the telescope to the VLT instrumentation. This optical system is made of aluminium (including the mirrors) to avoid thermo-mechanical problems. ESO PR Photo 04e/01 ESO PR Photo 04e/01 [Preview - JPEG: 400 x 402 pix - 62k] [Normal - JPEG: 800 x 804 pix - 544k] [Hires - JPEG: 3000 x 3016 pix - 6.2M] Caption : PR Photo 04e/01 shows one of the 30 "stations" for the movable 1.8-m Auxiliary Telescopes. When one of these telescopes is positioned ("parked") on top of it, The light will be guided through the hole towards the Interferometric Tunnel and the Delay Lines. ESO PR Photo 04f/01 ESO PR Photo 04f/01 [Preview - JPEG: 568 x 400 pix - 96k] [Normal - JPEG: 1136 x 800 pix - 840k] [Hires - JPEG: 3000 x 2112 pix - 4.6M] PR Photo 04f/01 shows a general view of the Interferometric Tunnel and the Delay Lines. ESO PR Photo 04g/01 ESO PR Photo 04g/01 [Preview - JPEG: 406 x 400 pix - 62k] [Normal - JPEG: 812 x 800 pix - 448k] [Hires - JPEG: 3000 x 2956 pix - 5.5M] PR Photo 04g/01 shows one of the Delay Line carriages in parking position. The "NTT Peak" The "NTT Peak" is a mountain top located about 2 km to the north of Paranal. It received this name when ESO considered to move the 3.58-m New Technology Telescope from La Silla to this peak. The possibility of installing the 4-m VISTA telescope (cf. PR 03/00 ) on this peak is now being discussed. ESO PR Photo 04h/01 ESO PR Photo 04h/01 [Preview - JPEG: 630 x 400 pix - 89k] [Normal - JPEG: 1259 x 800 pix - 1.1M] [Hires - JPEG: 3000 x 1907 pix - 5.2M] PR Photo 04h/01 shows the view from the "NTT Peak" towards south, vith the Paranal mountain and the VLT enclosures in the background. ESO PR Photo 04i/01 ESO PR Photo 04i/01 [Preview - JPEG: 516 x 400 pix - 50k] [Normal - JPEG: 1031 x 800 pix - 664k] [Hires - JPEG: 3000 x 2328 pix - 6.0M] PR Photo 04i/01 is a view towards the "NTT Peak" from the top of the Paranal mountain. The access road and the concrete pillar that was used to support a site testing telescope at the top of this peak are seen This is the caption to ESO PR Photos 04a-1/01 and PR Video Clips 02a-b/01 . They may be reproduced, if credit is given to the European Southern Observatory. The ESO PR Video Clips service to visitors to the ESO website provides "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clip 01/01 about the Physics On Stage Festival (11 January 2001) . Information is also available on the web about other ESO videos.

  20. Philippe Busquin Visits Paranal

    NASA Astrophysics Data System (ADS)

    2003-07-01

    The European Commissioner for Research, Mr. Philippe Busquin, who is currently visiting the Republic of Chile, arrived at the ESO Paranal Observatory on Tuesday afternoon, July 29, 2003. The Commissioner was accompanied, among others, by the EU Ambassador to Chile, Mr. Wolfgang Plasa, and Ms. Christina Lazo, Executive Director of the Chilean Science and Technology Agency (CONICYT). The distinguished visitors were able to acquaint themselves with one of the foremost European research facilities, the ESO Very Large Telescope (VLT), during an overnight stay at this remote site. Arriving after the long flight from Europe in Antofagasta, capital of the II Chilean region, the Commissioner continued along the desert road to Paranal, some 130 km south of Antofasta and site of the world's largest and most efficient optical/infrared astronomical telescope facility. The high guests were welcomed by the ESO Director General, Dr. Catherine Cesarsky, and the ESO Representative in Chile, Mr. Daniel Hofstadt, as well as ESO staff members of many nationalities. The visitors were shown the various high-tech installations at the observatory, including many of the large, front-line VLT astronomical instruments that have been built in collaboration between ESO and European research institutes. Explanations were given by ESO astronomers and engineers and the Commissioner gained a good impression of the wide range of exciting research programmes that are carried out with the VLT. Having enjoyed the spectacular sunset over the Pacific Ocean from the KUEYEN telescope, one of the four 8.2-m telescopes that form the VLT array, the Commissioner visited the VLT Control Room from where the four 8.2-m Unit Telescopes and the VLT Interferometer (VLTI) are operated. Here, the Commissioner was invited to follow an observing sequence at the console of the KUEYEN telescope. " This is a tribute to the human genius ", commented the Commissioner. " It is an extraordinary contribution to the development of knowledge, and as Commissioner for Research, I am proud that this is a European achievement. " " It is a great pleasure to receive Commissioner Busquin, whose actions towards European research we admire, and to share with him the excitement about the wonders of the Universe and the advanced technology that allows us to probe them" , said the Director General of ESO, Dr. Catherine Cesarsky. The Commissioner and the other guests will leave Paranal in the early morning of Wednesday, July 30, travelling back to Santiago de Chile via Antofagasta.

  1. Blockbuster starring ESO Paranal opens tomorrow

    NASA Astrophysics Data System (ADS)

    2008-10-01

    The 22nd James Bond adventure is due for release tomorrow, 31 October 2008, in the UK and a week later in the rest of the world. A key location in the movie is the Residencia, the hotel for astronomers and staff at ESO's Paranal Observatory. Blockbuster starring ESO Paranal opens tomorrow ESO PR Photo 38/08 The James Bond "Quantum of Solace" filmmakers Quantum of Solace is the latest film in one of most successful movie franchises -- that of renowned 007 Agent James Bond of the British Secret Service MI6. The agent "on Her Majesty's secret service" is once again played by Daniel Craig. Key scenes of the movie were filmed at Paranal, the home of ESO's Very Large Telescope, and the most advanced optical telescope in the world. Usually occupied by no more than 100 astronomers, engineers and technicians, Paranal welcomed the 300-strong film crew for several days of shooting at the end of March 2008. The crew travelled from their hotel base in Antofagasta for up to two hours each morning to reach the filming locations. "We are delighted to have a movie like this filmed at Paranal and it was extremely good to see how careful the crew were with the surroundings and how mindful they were of the fact that they were in an operating, working observatory", says Tim de Zeeuw, ESO Director General. "Paranal is a unique observatory in a unique setting and it is no real surprise that it plays a major part in a James Bond movie", he adds. The filmmakers were mostly interested in filming exterior scenes at the Paranal Residencia, the accommodation for staff operating the Very Large Telescope. In the movie, the Residencia is supposedly the "Perla de Las Dunas", a unique hotel in the desert. Cerro Paranal is a 2600 m high mountain in the Chilean Atacama Desert, perhaps the driest on Earth. The high altitude site and extreme dryness make excellent conditions for astronomical observations. To make it possible for people to live and work here, a hotel, or Residencia, was built at the base camp. The award-winning design by architects Auer & Weber, which includes an enclosed tropical garden and pool under a futuristic domed roof, gives the Residencia interior a feeling of open space within the protecting walls. Quantum of Solace director Marc Forster was the driving force behind the decision to film in so many unusual areas: "Exotic locations are a trademark of James Bond films, they are crucial in helping transport the audience to a different world. It is hard to find Bond locations because the bar has risen and the world is becoming smaller. We also had to find locations that would reflect the psychological state of Bond. For example, one of the reasons I chose the desert was because it represents solitude and loneliness - it represents Bond's state of mind." Pressed to pick a favourite location, Production Designer Dennis Gassner cites ESO Paranal in the Atacama Desert. "It is the furthest location we travelled to and it came to me in a very serendipitous fashion. We were looking for deserts around the world and the Atacama came up in conversation, so I went online. The first web page on the Atacama had a very, very small photograph of the ESO hotel and it just jumped right out at me. I was here in London, Marc Forster was in Los Angeles at his computer and within five minutes he called and said, 'We have it, this is it!'." The ESO Paranal building gives a nod to the sets associated with the Bond films of the sixties, Gassner comments: "I actually didn't pick the ESO hotel because of the dome, which makes a reference to that great scene in Dr. NO, it just happened to be the situation. I'm glad for it because I love that scene, but it wasn't conscious at all." Most of the scenes inside the Residencia were filmed in the historic Pinewood Studios in Buckinghamshire just outside London. The production used the world famous 007 stage and five other sound stages to build the interiors of over 14 different sets over the six month shoot. The interior of the hotel was built on the 007 stage and fitted with over 50 explosives to film Bond's violent confrontation with his adversary, Greene. It is perhaps fitting that the hotel receptionist in the movie is played by Charlie Chaplin's granddaughter, Oona Chaplin. Her Chilean father is a director of photography.

  2. UK Announces Intention to Join ESO

    NASA Astrophysics Data System (ADS)

    2000-11-01

    Summary The Particle Physics and Astronomy Research Council (PPARC) , the UK's strategic science investment agency, today announced that the government of the United Kingdom is making funds available that provide a baseline for this country to join the European Southern Observatory (ESO) . The ESO Director General, Dr. Catherine Cesarsky , and the ESO Community warmly welcome this move towards fuller integration in European astronomy. "With the UK as a potential member country of ESO, our joint opportunities for front-line research and technology will grow significantly", she said. "This announcement is a clear sign of confidence in ESO's abilities, most recently demonstrated with the construction and operation of the unique Very Large Telescope (VLT) on Paranal. Together we will look forward with confidence towards new, exciting projects in ground-based astronomy." It was decided earlier this year to place the 4-m UK Visible and Infrared Survey Telescope (VISTA) at Paranal, cf. ESO Press Release 03/00. Following negotiations between ESO and PPARC, a detailed proposal for the associated UK/ESO Agreement with the various entry modalities will now be presented to the ESO Council for approval. Before this Agreement can enter into force, the ESO Convention and associated protocols must also be ratified by the UK Parliament. Research and key technologies According to the PPARC press release, increased funding for science, announced by the UK government today, will enable UK astronomers to prepare for the next generation of telescopes and expand their current telescope portfolio through membership of the European Southern Observatory (ESO). The uplift to its baseline budget will enable PPARC to enter into final negotiations for UK membership of the ESO. This will ensure that UK astronomers, together with their colleagues in the ESO member states, are actively involved in global scale preparations for the next generation of astronomy facilities. among these are ALMA (Atacama Large Millimeter Array) in Chile and the very large optical/infrared telescopes now undergoing conceptual studies. ESO membership will give UK astronomers access to the suite of four world-class 8.2-meter VLT Unit Telescopes at the Paranal Observatory (Chile), as well as other state-of-the-art facilities at ESO's other observatory at La Silla. Through PPARC the UK already participates in joint collaborative European science programmes such as CERN and the European Space Agency (ESA), which have already proved their value on the world scale. Joining ESO will consolidate this policy, strengthen ESO and enhance the future vigour of European astronomy. Statements Commenting on the funding announcement, Prof. Ian Halliday , PPARC's CEO, said that " this new funding will ensure our physicists and astronomers remain at the forefront of international research - leading in discoveries that push back the frontiers of knowledge - and the UK economy will also benefit through the provision of highly trained people and the resulting advances in IT and commercial spin-offs ". Prof. Mike Edmunds , UCW Cardiff, and Chairman of the UK Astronomy Review Panel which recently set out a programme of opportunities and priorities for the next 10 - 20 years added that " this is excellent news for UK science and lays the foundation for cutting edge research over the next ten years. British astronomers will be delighted by the Government's rapid and positive response to their case. " Speaking on behalf of the ESO Organisation and the community of more than 2500 astronomers in the ESO member states [2], the ESO Director General, Dr. Catherine Cesarsky , declared: "When ESO was created in 1962, the UK decided not to join, because of access to other facilities in the Southern Hemisphere. But now ESO has developed into one of the world's main astronomical organisations, with top technology and operating the VLT at Paranal, the largest and most efficient optical/infrared telescope facility in the world. We look forward to receiving our UK colleagues in our midst and work together on the realization of future cutting-edge projects." Joining ESO was considered a top priority for UK astronomy following a community report to the UK Long Term Science Review, which set out a programme of opportunities and priorities for PPARC science over the next 10 to 20 years. The report is available on the web at URL: www.pparc.ac.uk/ltsr.

  3. A Giant of Astronomy and a Quantum of Solace - James Bond filming at Paranal

    NASA Astrophysics Data System (ADS)

    2008-03-01

    Cerro Paranal, the 2600m high mountain in the Chilean Atacama Desert that hosts ESO's Very Large Telescope, will be the stage for scenes in the next James Bond movie, "Quantum of Solace". ESO PR Photo 07a/08 ESO PR Photo 07a/08 The Paranal Residencia Looking akin to Mars, with its red sand and lack of vegetation, the Atacama Desert is thought to be the driest place on Earth. Cerro Paranal is home to ESO's Very Large Telescope (VLT), which, with its array of four giant 8.2-m individual telescopes, is the world's most advanced optical observatory. The high-altitude site and extreme dryness make excellent conditions for astronomical observations. "We needed a unique site for a unique set of telescopes, and we found it at Paranal," said Andreas Kaufer, ESO's Paranal Director. "We are very excited that the Bond production team have also chosen this location." The excellent astronomical conditions at Paranal come at a price, however. In this forbidding desert environment, virtually nothing can grow outside. The humidity drops below 10%, there are intense ultraviolet rays from the sun, and the high altitude leaves people short of breath. Living in this extremely isolated place feels like visiting another planet. To make it possible for people to live and work here, a hotel or "Residencia" was built in the base camp, allowing them to escape from the arid outside environment. Here, returning from long shifts at the VLT and other installations on the mountain, they can breathe moist air and relax, sheltered from the harsh conditions outside. The Residencia's award-winning design, including an enclosed tropical garden and pool under a futuristic domed roof, gives its interior a feeling of open space within the protective walls - this is a true "haven in the desert". It is this unique building that serves as the backdrop for the James Bond filming. View Larger Map QUANTUM OF SOLACE producer, Michael G. Wilson said: "The Residencia of Paranal Observatory caught the attention of our director, Marc Forster and production designer, Dennis Gassner, both for its exceptional design and its remote location in the Atacama desert. It is a true oasis and the perfect hide-out for Dominic Greene, our villain, whom 007 is tracking in our new James Bond film." In addition to the shooting at the Residencia, further action will take place at the Paranal airstrip. The film crew present on Paranal includes Englishman Daniel Craig, taking again the role of James Bond, French actor Mathieu Amalric, leading lady Olga Kurylenko, from the Ukraine, as well as acclaimed Mexican actors, Joaquin Cosio and Jesus Ochoa. This cast from across Europe and Latin America mirrors the international staff that works for ESO at Paranal. After leaving Paranal at the end of the week, the film crew will shoot in other locations close to Antofagasta. Other sequences have been filmed in Panama and, following the Chilean locations, the unit will be travelling to Italy and Austria before returning to Pinewood Studios near London in May. QUANTUM OF SOLACE will be released in the UK on 31 October 2008, and in the US and internationally on 7 November 2008.

  4. Zooming to the centre of the Milky Way - GigaGalaxy Zoom phase 2

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The second of three images of ESO's GigaGalaxy Zoom project has just been released online. It is a new and wonderful 340-million-pixel vista of the central parts of our home galaxy as seen from ESO's Paranal Observatory with an amateur telescope. This 34 by 20-degree wide image provides us with a view as experienced by amateur astronomers around the world. However, its incredible beauty and appeal owe much to the quality of the observing site and the skills of Stéphane Guisard, the world-renowned astrophotographer, who is also an ESO engineer. This second image directly benefits from the quality of Paranal's sky, one of the best on the planet, where ESO's Very Large Telescope is located. In addition, Guisard has drawn on his professional expertise as an optical engineer specialising in telescopes, a rare combination in the world of astrophotographers. Guisard, as head of the optical engineering team at Paranal, is responsible for ensuring that the Very Large Telescope has the best optical performance possible. To create this stunning, true-colour mosaic of the Galactic Centre region, Guisard assembled about 1200 individual images, totalling more than 200 hours of exposure time, collected over 29 nights, during Guisard's free time, while working during the day at Paranal [1]. The image shows the region spanning the sky from the constellation of Sagittarius (the Archer) to Scorpius (the Scorpion). The very colourful Rho Ophiuchi and Antares region is a prominent feature to the right, although much darker areas, such as the Pipe and Snake nebulae also stand out. The dusty lane of our Milky Way runs obliquely through the image, dotted with remarkable bright, reddish nebulae, such as the Lagoon and the Trifid Nebulae, as well as NGC 6357 and NGC 6334. This dark lane also hosts the very centre of our Galaxy, where a supermassive black hole is lurking. "The area I have depicted in this image is an incredibly rich region of the sky, and the one I find most beautiful," says Guisard. This gorgeous starscape is the second of three extremely high resolution images featured in the GigaGalaxy Zoom project, launched by ESO as part of the International Year of Astronomy 2009 (IYA2009). The project allows stargazers to explore and experience the Universe as it is seen with the unaided eye from the darkest and best viewing locations in the world. GigaGalaxy Zoom features a web tool that allows users to take a breathtaking dive into our Milky Way. With this tool users can learn more about many different and exciting objects in the image, such as multicoloured nebulae and exploding stars, just by clicking on them. In this way, the project seeks to link the sky we can all see with the deep, "hidden" cosmos that astronomers study on a daily basis. The wonderful quality of the images is a testament to the splendour of the night sky at ESO's sites in Chile, which are the most productive astronomical observatories in the world. The third GigaGalaxy Zoom image will be revealed next week, on 28 September 2009. Notes [1] The image was obtained from Cerro Paranal, home of ESO's Very Large Telescope, by observing with a 10-cm Takahashi FSQ106Ed f/3.6 telescope and a SBIG STL CCD camera, using a NJP160 mount. The images were collected through three different filters (B, V and R) and then stitched together. This mosaic was assembled from 52 different sky fields made from about 1200 individual images totalling 200 hours exposure time, with the final image having a size of 24 403 x 13 973 pixels. More information As part of the IYA2009, ESO is participating in several remarkable outreach activities, in line with its world-leading rank in the field of astronomy. ESO is hosting the IYA2009 Secretariat for the International Astronomical Union, which coordinates the Year globally. ESO is one of the Organisational Associates of IYA2009, and was also closely involved in the resolution submitted to the United Nations (UN) by Italy, which led to the UN's 62nd General Assembly proclaiming 2009 the International Year of Astronomy. In addition to a wide array of activities planned both at the local and international level, ESO is leading three of the twelve global Cornerstone Projects. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky". A native of France, Guisard has worked for ESO in Chile since 1994, and is now the head Optics Engineer for ESO's Very Large Telescope (VLT). He is in charge of the optical alignment of the Paranal telescopes, as well as maintaining and improving the image quality of these telescopes and their active optics. Stéphane spends most of his free time photographing the night sky, enjoying the same crystal clear skies as the VLT. His fantastic astronomical images and time-lapse movies have been used in many books and TV programmes. Stéphane Guisard is also a photographer for The World At Night (TWAN).

  5. A Nearby Galactic Exemplar

    NASA Astrophysics Data System (ADS)

    2010-09-01

    ESO has released a spectacular new image of NGC 300, a spiral galaxy similar to the Milky Way, and located in the nearby Sculptor Group of galaxies. Taken with the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile, this 50-hour exposure reveals the structure of the galaxy in exquisite detail. NGC 300 lies about six million light-years away and appears to be about two thirds the size of the full Moon on the sky. Originally discovered from Australia by the Scottish astronomer James Dunlop early in the nineteenth century, NGC 300 is one of the closest and most prominent spiral galaxies in the southern skies and is bright enough to be seen easily in binoculars. It lies in the inconspicuous constellation of Sculptor, which has few bright stars, but is home to a collection of nearby galaxies that form the Sculptor Group [1]. Other members that have been imaged by ESO telescopes include NGC 55 (eso0914), NGC 253 (eso1025, eso0902) and NGC 7793 (eso0914). Many galaxies have at least some slight peculiarity, but NGC 300 seems to be remarkably normal. This makes it an ideal specimen for astronomers studying the structure and content of spiral galaxies such as our own. This picture from the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile was assembled from many individual images taken through a large set of different filters with a total exposure time close to 50 hours. The data was acquired over many observing nights, spanning several years. The main purpose of this extensive observational campaign was to take an unusually thorough census of the stars in the galaxy, counting both the number and varieties of the stars, and marking regions, or even individual stars, that warrant deeper and more focussed investigation. But such a rich data collection will also have many other uses for years to come. By observing the galaxy with filters that isolate the light coming specifically from hydrogen and oxygen, the many star-forming regions along NGC 300's spiral arms are shown with particular clarity in this image as red and pink clouds. With its huge field of view, 34 x 34 arcminutes, similar to the apparent size of the full Moon in the sky, the WFI is an ideal tool for astronomers to study large objects such as NGC 300. NGC 300 is also the home of many interesting astronomical phenomena that have been studied with ESO telescopes. ESO astronomers recently discovered the most distant and one of the most massive stellar-mass black holes yet found (eso1004) in this galaxy, as the partner of a hot and luminous Wolf-Rayet star in a binary system. NGC 300 and another galaxy, NGC 55, are slowly spinning around and towards each other, in the early stages of a lengthy merging process (eso0914). The current best estimate of the distance to the NCG 300 was also determined by astronomers using ESO's Very Large Telescope at the Paranal Observatory (eso0524), among others. Notes [1] Although it is normally considered as member of the Sculptor Group, the most recent distance measurements show that NGC 300 lies significantly closer to us than many of the other galaxies in the group and may be only loosely associated with them. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  6. Reaching New Heights in Astronomy - ESO Long Term Perspectives

    NASA Astrophysics Data System (ADS)

    de Zeeuw, T.

    2016-12-01

    A comprehensive description of ESO in the current global astronomical context, and its plans for the next decade and beyond, are presented. This survey covers all aspects of the Organisation, including the optical-infrared programme at the La Silla Paranal Observatory, the submillimetre facilities ALMA and APEX, the construction of the 39-metre European Extremely Large Telescope and the science operation of these facilities. An extension of the current optical/infrared/submillimetre facilities into multi-messenger astronomy has been made with the decision to host the southern Cherenkov Telescope Array at Paranal. The structure of the Organisation is presented and the further development of the staff is described within the scope of the long-range financial planning. The role of Chile is highlighted and expansion of the number of Member States beyond the current 15 is discussed. The strengths of the ESO model, together with challenges as well as possible new opportunities and initiatives, are examined and a strategy for the future of ESO is outlined.

  7. United Kingdom to Join ESO on July 1, 2002

    NASA Astrophysics Data System (ADS)

    2001-12-01

    ESO and PPARC Councils Endorse Terms of Accession [1] The Councils of the European Southern Observatory (ESO) and the UK Particle Physics and Astronomy Research Council (PPARC) , at their respective meetings on December 3 and 5, 2001, have endorsed the terms for UK membership of ESO, as recently agreed by their Negotiating Teams. All members of the Councils - the governing bodies of the two organisations - welcomed the positive spirit in which the extensive negotiations had been conducted and expressed great satisfaction at the successful outcome of a complex process. The formal procedure of accession will now commence in the UK and is expected to be achieved in good time to allow accession from July 2002. The European Southern Observatory is the main European organisation for astronomy and the United Kingdom will become its tenth member state [2]. ESO operates two major observatories in the Chilean Atacama desert where the conditions for astronomical observations are second-to-none on earth and it has recently put into operation the world's foremost optical/infrared telescope, the Very Large Telescope (VLT) at Paranal. With UK membership, British astronomers will join their European colleagues in preparing new projects now being planned on a global scale. They will also be able to pursue their research on some of the most powerful astronomical instruments available. The ESO Director General, Dr. Catherine Cesarsky , is "delighted that we have come this far after the lengthy negotiations needed to prepare properly the admission of another major European country to our organisation. When ESO was created nearly 40 years ago, the UK was planning for its own facilities in the southern hemisphere, in collaboration with Australia, and decided not to join. However, the impressive scientific and technological advances since then and ESOs emergence as a prime player on the European research scene have convinced our UK colleagues of the great advantages of presenting a united European face in astronomy through ESO". The President of the ESO Council, Dr. Arno Freytag , shares this opinion fully. "This is a most important step in the continuing process of European integration. The entry of the UK will of course be very useful to the scientists in that country, but I have no doubt that the benefits will be mutual. With its world-level astronomical and engineering expertise and with one of the most active research communities in Europe, the UK will bring significant intellectual, technical and financial resources to strengthen ESO. I have no doubt that the impressive research that is now being carried out by numerous astronomers with the ESO facilities has been our best advertisement and I am sure that this has had an important effect on the very welcome decision by the UK to join ESO." The UK will pay the usual annual contribution to ESO from the date of its entry. It has also been decided that as an important part of the special contribution to be made on entry, the UK will deliver the VISTA infrared survey telescope to ESO as an in-kind contribution. This wide-field telescope facility is now being constructed in the UK for a consortium of universities and it was decided already last year to place it at Paranal, cf. ESO PR 03/00. It will now become a fully integrated part of the ESO Paranal Observatory providing important survey observations in support of the VLT. Ian Halliday , Chief Executive of PPARC, is "delighted that the negotiations with ESO and subsequent Council meetings have passed this critical decision point. We now expect a straightforward parliamentary process to ratify the intergovernmental treaty. This decision will allow UK astronomers to have access to the world-class VLT telescopes at Paranal. Just as importantly UK Astronomy will have a sound basis for the future ALMA and OWL projects in a European context. This is a major increase in investment in, and capability for, UK Astronomy." Notes [1]: Both ESO and PPARC issue co-ordinated Press Releases about the UK accession today. The PPARC release is available at URL: http://www.pparc.ac.uk/NW/ESOstars.asp [2]: ESO's current member state are Belgium, Denmark, France, Germany, Italy, the Netherlands, Portugal, Sweden and Switzerland.

  8. Britain Approaches ESO about Installation of Major New Telescope at Paranal

    NASA Astrophysics Data System (ADS)

    2000-02-01

    The Executive Board of the UK Visible and Infrared Survey Telescope (VISTA) project announced today [1] that it is aiming at the installation of a new and powerful astronomical telescope at the ESO Paranal Observatory (Chile). This 4-metre telescope is a specialised wide-angle facility equipped with powerful cameras and efficient detectors that will enable it to obtain deep images of large sky areas in short time. These survey observations will be made in several wavebands in the optical and, in particular, the near-infrared region of the electromagnetic spectrum. VISTA will become the largest and most effective telescope of its type when it enters into operation in 2004. It is a project of a consortium of 18 UK universities [2]. Construction is expected to start in spring 2000. Funding of the project was announced in May 1999, as one of the first allocations from the "Joint Infrastructure Fund (JIF)", an initiative of the UK Government's Department of Trade and Industry, the Wellcome Trust, and the Higher Education Funding Council for England. ESO's Director General, Dr. Catherine Cesarsky , is very pleased with this decision. She received a mandate from the ESO Council in December 1999 to negotiate a contract with the UK Particle Physics and Astronomy Research Council (PPARC) , acting on behalf of the VISTA Executive Board, for the installation of VISTA at Paranal and now looks forward to settle the associated legal and operational details with her British counterparts at good pace. "The installation of VISTA at Paranal will be of great benefit to all European astronomers", she says. "The placement of a survey telescope of this size next to ESO's VLT, the world's largest optical telescope, opens a plethora of exciting opportunities for joint research projects. Deep observations with VISTA, especially in infrared wavebands, will provide a most valuable, first census of large regions of space. This will most certainly lead to the discoveries of many new and interesting celestial objects which can then be studied in much more detail with the many specialised instruments at the powerful VLT Unit Telescopes." ESO, the European Southern Observatory, has eight member states, Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. The United Kingdom participated actively in the early discussions in the 1950's about the establishment of ESO, but later elected not to join, mainly because of its access to other southern astronomical facilities in Australia and South Africa. ESO already possesses a smaller survey instrument at the La Silla Observatory (Chile), with the optical Wide-Field Imager at the ESO/MPG 2.2-m telescope. In addition, the 2.6-m VLT Survey Telescope (VST) with the 16kx16k OmegaCam camera will be installed at Paranal in 2002. It will operate in the visual region of the spectrum and, together with VISTA's infrared capability, ensure unequalled sky- and wavelength coverage from one observing site. Notes [1] The announcement was made in a PPARC Press Release, available at http://www.pparc.ac.uk and at the AlphaGalileo site. [2] Universities in the VISTA Consortium are (in alphabetical order) Birmingham, Cambridge, Cardiff, Durham, Edinburgh, Hertfordshire, Keele, Central Lancashire, Leicester, Liverpool John Moores, Nottingham, Oxford, Queen Mary & Westfield College, Queen's University Belfast, St Andrews, Southampton, Sussex, University College London.

  9. VizieR Online Data Catalog: Variables in Centaurus field F170 (Pietrukowicz+, 2012)

    NASA Astrophysics Data System (ADS)

    Pietrukowicz, P.; Minniti, D.; Alonso-Garcia; J.; Hempel, M.

    2011-10-01

    VJHKs photometry of stars in two VIMOS disc fields: F167 and F170. Data table with 333 variables detected in the field F170 in Centaurus. The optical observations were taken with the 8.2-m Unit Telescope 3 + VIMOS imager with a scale of 0.205"/pix at ESO Very Large Telescope at Paranal Observatory. Date of the observations: Apr 11-12, 2005. The infrared observations were obtained with the 4.1-m VISTA telescope + VIRCAM with a scale of 0.34"/pix also at Paranal Observatory. Date of the observations: Mar-Apr 2010. (4 data files).

  10. Obsolescence of electronics at the VLT

    NASA Astrophysics Data System (ADS)

    Hüdepohl, Gerhard; Haddad, Juan-Pablo; Lucuix, Christian

    2016-07-01

    The ESO Very Large Telescope Observatory (VLT) at Cerro Paranal in Chile had its first light in 1998. Most of the telescopes' electronics components were chosen and designed in the mid 1990s and are now around 20 years old. As a consequence we are confronted with increasing failure rates due to aging and lack of spare parts, since many of the components are no longer available on the market. The lifetime of large telescopes is generally much beyond 25 years. Therefore the obsolescence of electronics components and modules becomes an issue sooner or later and forces the operations teams to upgrade the systems to new technology in order to avoid that the telescope becomes inoperable. Technology upgrade is a time and money consuming process, which in many cases is not straightforward and has various types of complications. This paper shows the strategy, analysis, approach, timeline, complications and progress in obsolescence driven electronics upgrades at the ESO Very Large Telescope (VLT) at the Paranal Observatory.

  11. Expectations Increase as VLT First Light Approaches

    NASA Astrophysics Data System (ADS)

    1998-05-01

    Two weeks before the moment of "First Light" of Unit Telescope no. 1 of the Very Large Telescope (VLT) , the ESO Team at the Paranal Observatory reports good progress of the preparatory work. The crucial optimization of the world's first, thin 8.2-metre mirror proceeds according to the established plan. It is thus expected that this important event will take place as foreseen, i.e. during the night of May 25-26, 1998 . If no unforeseen obstacles are encountered, the first scientific images will then be presented during a series of near-simultaneous Press Conferences in the ESO member countries on May 27 . The photos will be published on the WWW the same day, together with explanatory texts. In preliminary optical tests at the first VLT Unit Telescope (UT1), the initial adjustment of the active optics system that controls the telescope optics has demonstrated excellent results. In particular, the first tests have verified the fine optical performance of the 8.2-m primary mirror and of the complex control system that maintains the shape of this thin and flexible Zerodur mirror. In short test exposures with the guide probe (the technical device that is used to steer the telescope) - i.e., not yet with the scientific CCD-camera that will be used for the First Light images - the telescope has been following the external seeing provided by the Paranal site. Image quality of better than 0.5 arcsec has been achieved routinely. "We are pleased with the progress and confident that the telescope will live up to the expectations", says Riccardo Giacconi , Director General of ESO. "The team at Paranal is doing a great job." For more details about the various media activities surrounding the VLT First Light event, please consult the First Light homepage. A list of locations, times and contact addresses for the Press Conferences is available on the web. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  12. Two Galaxies for a Unique Event

    NASA Astrophysics Data System (ADS)

    2009-04-01

    To celebrate the 100 Hours of Astronomy, ESO is sharing two stunning images of unusual galaxies, both belonging to the Sculptor group of galaxies. The images, obtained at two of ESO's observatories at La Silla and Paranal in Chile, illustrate the beauty of astronomy. ESO PR Photo 14a/09 Irregular Galaxy NGC 55 ESO PR Photo 14b/09 Spiral Galaxy NGC 7793 As part of the International Year of Astronomy 2009 Cornerstone project, 100 Hours of Astronomy, the ambitious "Around the World in 80 Telescopes" event is a unique live webcast over 24 hours, following night and day around the globe to some of the most advanced observatories on and off the planet. To provide a long-lasting memory of this amazing world tour, observatories worldwide are revealing wonderful, and previously unseen, astronomical images. For its part, ESO is releasing outstanding pictures of two galaxies, observed with telescopes at the La Silla and Paranal observatories. The first of these depicts the irregular galaxy NGC 55, a member of the prominent Sculptor group of galaxies in the southern constellation of Sculptor. The galaxy is about 70 000 light-years across, that is, a little bit smaller than our own Milky Way. NGC 55 actually resembles more our galactic neighbour, the Large Magellanic Cloud (LMC), although the LMC is seen face-on, whilst NGC 55 is edge-on. By studying about 20 planetary nebulae in this image, a team of astronomers found that NGC 55 is located about 7.5 million light-years away. They also found that the galaxy might be forming a bound pair with the gorgeous spiral galaxy NGC 300 . Planetary nebulae are the final blooming of Sun-like stars before their retirement as white dwarfs. This striking image of NGC 55, obtained with the Wide Field Imager on the 2.2-metre MPG/ESO telescope at La Silla, is dusted with a flurry of reddish nebulae, created by young, hot massive stars. Some of the more extended ones are not unlike those seen in the LMC, such as the Tarantula Nebula. The quality of the image is clearly demonstrated by the remarkable number of background galaxies seen, as well as the huge numbers of individual stars that can be counted within NGC 55. The second image shows another galaxy belonging to the Sculptor group. This is NGC 7793, which has a chaotic spiral structure, unlike the class of grand-design spiral galaxies to which our Milky Way belongs. The image shows how difficult it is to identify any particular spiral arm in these chaotic structures, although it is possible to guess at a general rotating pattern. NGC 7793 is located slightly further away than NGC 55, about 12.5 million light-years from us, and is about half the size of NGC 55. NGC 7793 was observed with one of the workhorses of the ESO Paranal Observatory, the FORS instrument, attached to the Very Large Telescope.

  13. VISTA Views the Sculptor Galaxy

    NASA Astrophysics Data System (ADS)

    2010-06-01

    A spectacular new image of the Sculptor Galaxy (NGC 253) has been taken with the ESO VISTA telescope at the Paranal Observatory in Chile as part of one of its first major observational campaigns. By observing in infrared light VISTA's view is less affected by dust and reveals a myriad of cooler stars as well as a prominent bar of stars across the central region. The VISTA image provides much new information on the history and development of the galaxy. The Sculptor Galaxy (NGC 253) lies in the constellation of the same name and is one of the brightest galaxies in the sky. It is prominent enough to be seen with good binoculars and was discovered by Caroline Herschel from England in 1783. NGC 253 is a spiral galaxy that lies about 13 million light-years away. It is the brightest member of a small collection of galaxies called the Sculptor Group, one of the closest such groupings to our own Local Group of galaxies. Part of its visual prominence comes from its status as a starburst galaxy, one in the throes of rapid star formation. NGC 253 is also very dusty, which obscures the view of many parts of the galaxy (eso0902). Seen from Earth, the galaxy is almost edge on, with the spiral arms clearly visible in the outer parts, along with a bright core at its centre. VISTA, the Visible and Infrared Survey Telescope for Astronomy, the latest addition to ESO's Paranal Observatory in the Chilean Atacama Desert, is the world's largest survey telescope. After being handed over to ESO at the end of 2009 (eso0949) the telescope was used for two detailed studies of small sections of the sky before it embarked on the much larger surveys that are now in progress. One of these "mini surveys" was a detailed study of NGC 253 and its environment. As VISTA works at infrared wavelengths it can see right through most of the dust that is such a prominent feature of the Sculptor Galaxy when viewed in visible light. Huge numbers of cooler stars that are barely detectable with visible-light telescopes are now also seen. The VISTA view reveals most of what was hidden by the thick dust clouds in the central part of the disc and allows a clear view of a prominent bar of stars across the nuclear region - a feature that is not seen in visible light pictures. The majestic spiral arms now spread over the whole disc of the galaxy. The spectacular viewing conditions VISTA shares with ESO's Very Large Telescope (VLT), located on the next mountain peak, also allow VISTA images to be exceptionally sharp for a ground-based telescope. With this powerful instrument at their command astronomers wanted to peel away some of the mysteries of the Sculptor Galaxy. They are studying the myriad of cool red giant stars in the halo that surrounds the galaxy, measuring the composition of some of NGC 253's small dwarf satellite galaxies, and searching for as yet undiscovered new objects such as globular clusters and ultra-compact dwarf galaxies that would otherwise be invisible without the deep VISTA infrared images. Using the unique VISTA data they plan to map how the galaxy formed and has evolved. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  14. ESO Highlights in 2008

    NASA Astrophysics Data System (ADS)

    2009-01-01

    As is now the tradition, the European Southern Observatory looks back at the exciting moments of last year. 2008 was in several aspects an exceptionally good year. Over the year, ESO's telescopes provided data for more than 700 scientific publications in refereed journals, making ESO the most productive ground-based observatory in the world. ESO PR Highlights 2008 ESO PR Photo 01a/09 The image above is a clickable map. These are only some of the press releases issued by ESO in 2008. For a full listing, please go to ESO 2008 page. Austria signed the agreement to join the other 13 ESO member states (ESO 11/08 and 20/08), while the year marked the 10th anniversary of first light for ESO's "perfect science machine", the Very Large Telescope (ESO 16/08 and 17/08). The ALMA project, for which ESO is the European partner, had a major milestone in December, as the observatory was equipped with its first antenna (ESO 49/08). Also the Atacama Pathfinder Experiment (APEX) telescope impressed this year with some very impressive and publicly visible results. Highlights came in many fields: Astronomers for instance used the Very Large Telescope (VLT) to discover and image a probable giant planet long sought around the star Beta Pictoris (ESO 42/08). This is now the eighth extrasolar planet to have been imaged since the VLT imaged the first extrasolar planet in 2004 (three of eight were imaged with VLT). The VLT also enabled three students to confirm the nature of a unique planet (ESO 45/08). This extraordinary find, which turned up during their research project, is a planet about five times as massive as Jupiter. This is the first planet discovered orbiting a fast-rotating hot star. The world's foremost planet-hunting instrument, HARPS, located at ESO's La Silla observatory, scored a new first, finding a system of three super-Earths around a star (ESO 19/08). Based on the complete HARPS sample, astronomers now think that one Sun-like star out of three harbours short orbit, low-mass planets. With the VLT and another recent instrument, CRIRES, astronomers have also been able to study planet-forming discs around young Sun-like stars in unsurpassed detail, clearly revealing the motion and distribution of the gas in the inner parts of the disc, possibly implying the presence of giant planets (ESO 27/08). As the result of an impressive 16-year long study, that combines data obtained with ESO's New Technology Telescope and the VLT, a team of German astronomers has produced the most detailed view ever of the surroundings of the monster lurking at our Galaxy's heart -- a supermassive black hole (ESO 46/08). Combining data from APEX and the VLT, another team studied the violent flares coming from this region (ESO 41/08). The flares are the likely signatures of material being torn apart by the black hole. Making such science discoveries doesn't happen without the best technological tools. ESO is constantly upgrading its battery of instruments and telescopes on Cerro Paranal, home of the VLT. For example, the PRIMA instrument for the VLT Interferometer (VLTI) recently saw first light (ESO 29/08). When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and determine positions on the sky better than any other existing astronomical facility. The Multi-Conjugate Adaptive Optics Demonstrator (MAD) prototype, mounted on the VLT, provided astronomers with the sharpest image of the full disc of planet Jupiter ever taken from the Earth's surface (ESO 33/08). The future VISTA telescope on Paranal also received its record-curved 4.1-metre mirror, paving the way for unique surveys of the southern sky in the infrared (ESO 10/08). In preparation for other instruments of the future, staff at ESO joined with quantum optics specialists to develop a new calibration system for ultra-precise spectrographs (ESO 26/08). Given the presence of such state-of-the-art technology, it is perhaps no surprise that the crucial scenes from the latest James Bond sequel were filmed at Paranal (even though the director was really more interested in blowing up the Residencia, the lodge where staff and visitors can relax after working at one of the world's most advanced ground-based astronomical observatories). In March, a movie crew of 300 people, including the principal actors, were shooting at Paranal (ESO 007/08 and 38/08). On the outreach side, ESO's series of video podcasts, the ESOcast, premiered with the first three episodes. More than two thousand new and historic ESO images were put online in the ESO image archive as well as more than 300 hundred videos, mostly in High Definition. The work to digitise ESO's heritage will continue in 2009. Doubtless just as many exciting results will be presented this year too. Especially as 2009 has been officially declared the International Year of Astronomy (IYA) by the UN, UNESCO and the International Astronomical Union. The Year is coordinated from the global IYA Secretariat hosted by ESO. In addition ESO leads a number of global and regional activities.

  15. Through thick and thin: quantitative classification of photometric observing conditions on Paranal

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Querel, Richard R.; Neureiter, Bianca; Hanuschik, Reinhard

    2016-07-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer is used to monitor sky conditions over ESO's Paranal observatory. It provides measurements of precipitable water vapour (PWV) at 183 GHz, which are being used in Service Mode for scheduling observations that can take advantage of favourable conditions for infrared (IR) observations. The instrument also contains an IR camera measuring sky brightness temperature at 10.5 μm. It is capable of detecting cold and thin, even sub-visual, cirrus clouds. We present a diagnostic diagram that, based on a sophisticated time series analysis of these IR sky brightness data, allows for the automatic and quantitative classification of photometric observing conditions over Paranal. The method is highly sensitive to the presence of even very thin clouds but robust against other causes of sky brightness variations. The diagram has been validated across the complete range of conditions that occur over Paranal and we find that the automated process provides correct classification at the 95% level. We plan to develop our method into an operational tool for routine use in support of ESO Science Operations.

  16. Surface Layer turbulence profiling with the SL-SLODAR and LUSCI at ESO Paranal Observatory

    NASA Astrophysics Data System (ADS)

    Lombardi, G.; Sarazin, M.; Char, F.; González Ávila, C.; Navarrete, J.; Tokovinin, A.; Wilson, R. W.; Butterley, T.

    2014-10-01

    In the context of the Surface Layer investigation at ESO Paranal Observatory, a Surface Layer Slope Detection And Ranging (SL-SLODAR) instrument prototype has been used at Paranal during 2012, while Lunar Scintillometer (LuSci) measurements campaigns are being carried out since 2008. Simultaneous Surface Layer profiling data from the two instruments are analysed in order to compare the two instruments to enforce their reliability and finely characterize the Paranal Surface Layer profile. BETA is the slope of the turbulence power spectrum delivered by the SL-SLODAR. It is intended purely as a diagnostic tool to indicate whether the Cn2 profile can be trusted. When BETA is significantly less than 3.667 (Kolmogorov law value) this generally indicates that the wind speed is low and the data sets are too short to fully sample the low frequency components of the turbulence. Around the Kolmogorov value, the integrals form the SL-SLODAR and LuSci are pretty much the same. This is valid also in the first 20 m above ground only (SL). Both instruments agree very well when the wind speed on the Paranal platform is higher than 3 m/s. This last result suggests that wind speed higher than 3 m/s allow to have more reliable turbulence profile measurements from both instruments for further analyses of the Surface Layer. Furthermore, the disagreement of the two instruments in connection with wind speed lower than 3 m/s also suggests that the wind speed is a critical parameter to be taken into account before the treatment of the data.

  17. VISTA Captures Celestial Cat's Hidden Secrets

    NASA Astrophysics Data System (ADS)

    2010-04-01

    The Cat's Paw Nebula, NGC 6334, is a huge stellar nursery, the birthplace of hundreds of massive stars. In a magnificent new ESO image taken with the Visible and Infrared Survey Telescope for Astronomy (VISTA) at the Paranal Observatory in Chile, the glowing gas and dust clouds obscuring the view are penetrated by infrared light and some of the Cat's hidden young stars are revealed. Towards the heart of the Milky Way, 5500 light-years from Earth in the constellation of Scorpius (the Scorpion), the Cat's Paw Nebula stretches across 50 light-years. In visible light, gas and dust are illuminated by hot young stars, creating strange reddish shapes that give the object its nickname. A recent image by ESO's Wide Field Imager (WFI) at the La Silla Observatory (eso1003) captured this visible light view in great detail. NGC 6334 is one of the most active nurseries of massive stars in our galaxy. VISTA, the latest addition to ESO's Paranal Observatory in the Chilean Atacama Desert, is the world's largest survey telescope (eso0949). It works at infrared wavelengths, seeing right through much of the dust that is such a beautiful but distracting aspect of the nebula, and revealing objects hidden from the sight of visible light telescopes. Visible light tends to be scattered and absorbed by interstellar dust, but the dust is nearly transparent to infrared light. VISTA has a main mirror that is 4.1 metres across and it is equipped with the largest infrared camera on any telescope. It shares the spectacular viewing conditions with ESO's Very Large Telescope (VLT), which is located on the nearby summit. With this powerful instrument at their command, astronomers were keen to see the birth pains of the big young stars in the Cat's Paw Nebula, some nearly ten times the mass of the Sun. The view in the infrared is strikingly different from that in visible light. With the dust obscuring the view far less, they can learn much more about how these stars form and develop in their first few million years of life. VISTA's very wide field of view allows the whole star-forming region to be imaged in one shot with much greater clarity than ever before. The VISTA image is filled with countless stars of our Milky Way galaxy overlaid with spectacular tendrils of dark dust that are seen here fully for the first time. The dust is sufficiently thick in places to block even the near-infrared radiation to which VISTA's camera is sensitive. In many of the dusty areas, such as those close to the centre of the picture, features that appear orange are apparent - evidence of otherwise hidden active young stars and their accompanying jets. Further out though, slightly older stars are laid bare to VISTA's vision, revealing the processes taking them from their first nuclear fusion along the unsteady path of the first few million years of their lives. The VISTA telescope is now embarking on several big surveys of the southern sky that will take years to complete. The telescope's large mirror, high quality images, sensitive camera and huge field of view make it by far the most powerful infrared survey telescope on Earth. As this striking image shows, VISTA will keep astronomers busy analysing data they could not have otherwise acquired. This cat is out of the bag. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  18. Dutch Minister of Science Visits ESO Facilities in Chile

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Mrs. Maria van der Hoeven, the Dutch Minister of Education, Culture and Science, who travelled to the Republic of Chile, arrived at the ESO Paranal Observatory on Friday afternoon, May 13, 2005. The Minister was accompanied, among others, by the Dutch Ambassador to Chile, Mr. Hinkinus Nijenhuis, and Mr. Cornelis van Bochove, the Dutch Director of Science. The distinguished visitors were able to acquaint themselves with one of the foremost European research facilities, the ESO Very Large Telescope (VLT), during an overnight stay at this remote site, and later, with the next major world facility in sub-millimetre and millimetre astronomy, the Atacama Large Millimeter Array (ALMA). At Paranal, the guests were welcomed by the ESO Director General, Dr. Catherine Cesarsky; the ESO Council President, Prof. Piet van der Kruit; the ESO Representative in Chile, Prof. Felix Mirabel; the Director of the La Silla Paranal Observatory, Dr. Jason Spyromilio; by one of the Dutch members of the ESO Council, Prof. Tim de Zeeuw; by the renowned astrophysicist from Leiden, Prof. Ewine van Dishoek, as well as by ESO staff members. The visitors were shown the various high-tech installations at the observatory, including many of the large, front-line VLT astronomical instruments that have been built in collaboration between ESO and European research institutes. Explanations were given by ESO astronomers and engineers and the Minister gained a good impression of the wide range of exciting research programmes that are carried out with the VLT. Having enjoyed the spectacular sunset over the Pacific Ocean from the Paranal deck, the Minister visited the VLT Control Room from where the four 8.2-m Unit Telescopes and the VLT Interferometer (VLTI) are operated. Here, the Minister was invited to follow an observing sequence at the console of the Kueyen (UT2) and Melipal (UT3) telescopes. "I was very impressed, not just by the technology and the science, but most of all by all the people involved," expressed Mrs. Maria van der Hoeven during her visit. "An almost unique level of international cooperation is achieved at ESO, and everything is done by those who can do it best, irrespective of their country or institution. This spirit of excellence is an example for all Europe, notably for the new European Research Council." Catherine Cesarsky, ESO Director General, remarked that Dutch astronomers have been part of ESO from the beginning: "The Dutch astronomy community and industry play a major role in various aspects of the Very Large Telescope, and more particularly in its interferometric mode. With their long-based expertise in radio astronomy, Dutch astronomers greatly contribute in this field, and are now also playing a major role in the construction of ALMA. It is thus a particularly great pleasure to receive Her Excellency, Mrs. Maria van der Hoeven." ESO PR Photo 16d/05 ESO PR Photo 16d/05 Dutch Minister Maria van der Hoeven at Chajnantor - I [Preview - JPEG: 400 x 480 pix - 207k] [Normal - JPEG: 800 x 959 pix - 617k] ESO PR Photo 16e/05 ESO PR Photo 16e/05 Dutch Minister Maria van der Hoeven at Chajnantor - II [Preview - JPEG: 400 x 605 pix - 179k] [Normal - JPEG: 800 x 1210 pix - 522k] Caption: ESO PR Photo 16d/05: In front of the APEX antenna at Chajnantor. From left to right: Prof. Piet van der Kruit, Mrs. Maria van der Hoeven, Prof. Tim de Zeeuw, and Prof. Ewine van Dishoeck. ESO PR Photo 16e/05 shows the Delegation on the 5000m high Llano de Chajnantor plateau. From left to right: Dr. Leo Le Duc, Prof. Felix Mirabel, Prof. Tim de Zeeuw, Prof. Ewine van Dishoeck, Dr. Cornelius van Bochove, Mrs. Maria van der Hoeven, Mr. Hans van der Vlies, Dr. Joerg Eschwey, Mr. Hinkinus Nijenhuis, Prof. Piet van der Kruit, Mr. Hans van den Broek, and Mr. Eduardo Donoso. The delegation spent the night at the Observatory before heading further North in the Chilean Andes to San Pedro de Atacama and from there to the Operation Support Facility of the future ALMA Observatory. On Sunday, May 15, the delegation went to the 5000m Llano de Chajnantor, the future site of the large array of 12m antennas that is being build there and should be completed by 2013. The Minister in particular could visit the 12m APEX (Atacama Pathfinder Experiment) telescope and see the technical infrastructure. "I am fully confident that the worldwide cooperation in ALMA will be equally successful as the VLT, and I am convinced that the discoveries to be made here are meaningful for the Earth we live in", said Mrs. van der Hoeven. "History and future are coming together in the north of Chile, in a very special way," she added. "In the region of the ancient Atacamenos, scientists from all over the world are discovering more and more about the universe and the birth and death of stars. They even find new planets. They do that on Paranal with the VLT and soon will be doing that on the ALMA site." The Minister and her delegation left for Santiago in the afternoon.

  19. New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools (Corrigendum). I. UKIDSS LAS DR5 vs. SDSS DR7

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; Espinoza Contreras, M.; Zapatero Osorio, M. R.; Solano, E.; Aberasturi, M.; Martín, E. L.

    2017-01-01

    Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 084.C-0928A.Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  20. The Milky Way above La Silla

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Anybody who visits a high-altitude astronomical observatory at this time of the year will be impressed by the beauty of the Milky Way band that stretches across the sky. Compared to the poor views from cities and other human conglomerations, the dark and bright nebulae come into view together with an astonishing palette of clear stellar colours. This view above the ESO La Silla Observatory in the southernmost part of the Atacama desert was obtained some evenings ago by ESO Software Engineer Nico Housen. Normally stationed at the Paranal Observatory, he seized the opportunity of a visit to ESO's other observatory site to produce this amazing vista of the early evening scenery. To the left is the decommisioned 15-metre dish of the Swedish-ESO Submillimetre Telescope (SEST), and on the right in the background is the dome of the ESO 3.6-metre telescope, at the highest point of the mountain. The southern Milky Way is seen along the right border of the SEST and above the 3.6 metre telescope. There is an upside-down reflection of the sky and the horizon behind the photographer in the highly polished antenna dish of the SEST. Besides the reflection of the horizon (the darker part in the top of the dish) and the Milky Way (which runs as a thin cloud from the bottom of the dish up to the horizon) there is also a yellow area of light to the right. This is the reflection of the city lights of the city of La Serena, about 100 km away and too faint to disturb observations of celestial objects high above La Silla. The 3.6-m telescope began operations in 1976 and was ESO's largest telescope until the advent of the VLT at Paranal. Never endowed with a fancy name like the VLT Unit telescopes, the "3.6-m" houses several state-of-the-art astronomical instruments, including the ultra-precise HARPS facility that is used to hunt for exoplanets, cf. ESO PR 22/04. The SEST was for a long time the only instrument of its kind in the southern hemisphere. With it, ESO gained invaluable experience in ground-based non-optical observations, paving the way for the ALMA project. The Atacama Large Millimetre Array (ALMA) [1] is one of the largest ground-based astronomy projects of the next decade after the ESO VLT. Its construction started last year and will be completed by 2011. When ready, it will be the largest and most sensitive astronomical observatory of its kind, comprisiing some sixty-four 12-m antennas located on a 10-km wide plateau at a 5000-m elevation in the Atacama Desert. More information on ALMA can be found on ESO PR 29/03 or on the ESO ALMA web page. ESO PR Photo 27/04 may be reproduced if Nico Housen and the European Southern Observatory are mentioned as source. Technical information: The photo was obtained on September 4, 2004 at about 20:45 hrs local time (00:45 hrs UT) with a Nikon D100 digital camera with a Sigma 20mm/f1.8 lens. The exposure time was about 40 sec at 1600 ASA.

  1. A water vapour monitor at Paranal Observatory

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Rose, Thomas; Chacón, Arlette; Cuevas, Omar; Czekala, Harald; Hanuschik, Reinhard; Momany, Yazan; Navarrete, Julio; Querel, Richard R.; Smette, Alain; van den Ancker, Mario E.; Cure, Michel; Naylor, David A.

    2012-09-01

    We present the performance characteristics of a water vapour monitor that has been permanently deployed at ESO's Paranal observatory as a part of the VISIR upgrade project. After a careful analysis of the requirements and an open call for tender, the Low Humidity and Temperature Profiling microwave radiometer (LHATPRO), manufactured by Radiometer Physics GmbH (RPG), has been selected. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.5 mm). The unit comprises the above humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared radiometer (~10 μm) for cloud detection. The instrument has been commissioned during a 2.5 week period in Oct/Nov 2011, by comparing its measurements of PWV and atmospheric profiles with the ones obtained by 22 radiosonde balloons. In parallel an IR radiometer (Univ. Lethbridge) has been operated, and various observations with ESO facility spectrographs have been taken. The RPG radiometer has been validated across the range 0.5 - 9 mm demonstrating an accuracy of better than 0.1 mm. The saturation limit of the radiometer is about 20 mm. Currently, the radiometer is being integrated into the Paranal infrastructure to serve as a high time-resolution monitor in support of VLT science operations. The water vapour radiometer's ability to provide high precision, high time resolution information on this important aspect of the atmosphere will be most useful for conducting IR observations with the VLT under optimal conditions.

  2. A Long Expected Party — The First Stone Ceremony for the Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    de Zeeuw, T.; Comerón, F.; Tamai, R.

    2017-06-01

    The ceremony to seal the time capsule, signalling the beginning of construction of the dome and main telescope structure for the Extremely Large Telescope, took place at the Paranal Observatory on 26 May 2017, in the presence of the President of Chile, Michelle Bachelet and many international guests. Owing to high winds, the ceremony could not take place as planned on the levelled site on Cerro Armazones, but instead was held at the Paranal Residencia. A brief report of the event and its organisation is presented, and the welcome speech by the ESO Director General is included.

  3. Celestial Fireworks from Dying Stars

    NASA Astrophysics Data System (ADS)

    2011-04-01

    This image of the nebula NGC 3582, which was captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile, shows giant loops of gas bearing a striking resemblance to solar prominences. These loops are thought to have been ejected by dying stars, but new stars are also being born within this stellar nursery. These energetic youngsters emit intense ultraviolet radiation that makes the gas in the nebula glow, producing the fiery display shown here. NGC 3582 is part of a large star-forming region in the Milky Way, called RCW 57. It lies close to the central plane of the Milky Way in the southern constellation of Carina (The Keel of Jason's ship, the Argo). John Herschel first saw this complex region of glowing gas and dark dust clouds in 1834, during his stay in South Africa. Some of the stars forming in regions like NGC 3582 are much heavier than the Sun. These monster stars emit energy at prodigious rates and have very short lives that end in explosions as supernovae. The material ejected from these dramatic events creates bubbles in the surrounding gas and dust. This is the probable cause of the loops visible in this picture. This image was taken through multiple filters. From the Wide Field Imager, data taken through a red filter are shown in green and red, and data taken through a filter that isolates the red glow characteristic of hydrogen are also shown in red. Additional infrared data from the Digitized Sky Survey are shown in blue. The image was processed by ESO using the observational data identified by Joe DePasquale, from the United States [1], who participated in ESO's Hidden Treasures 2010 astrophotography competition [2]. The competition was organised by ESO in October-November 2010, for everyone who enjoys making beautiful images of the night sky using astronomical data obtained using professional telescopes. Notes [1] Joe searched through ESO's archive and identified datasets that he used to compose his image of NGC 3582, which was the tenth highest ranked entry in the competition, out of almost 100 entries. His original work can be seen here. [2] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. To find out more about Hidden Treasures, visit http://www.eso.org/public/outreach/hiddentreasures/. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. Brilliant Star in a Colourful Neighbourhood

    NASA Astrophysics Data System (ADS)

    2010-07-01

    A spectacular new image from ESO's Wide Field Imager at the La Silla Observatory in Chile shows the brilliant and unusual star WR 22 and its colourful surroundings. WR 22 is a very hot and bright star that is shedding its atmosphere into space at a rate many millions of times faster than the Sun. It lies in the outer part of the dramatic Carina Nebula from which it formed. Very massive stars live fast and die young. Some of these stellar beacons have such intense radiation passing through their thick atmospheres late in their lives that they shed material into space many millions of times more quickly than relatively sedate stars such as the Sun. These rare, very hot and massive objects are known as Wolf-Rayet stars [1], after the two French astronomers who first identified them in the mid-nineteenth century, and one of the most massive ones yet measured is known as WR 22. It appears at the centre of this picture, which was created from images taken through red, green and blue filters with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. WR 22 is a member of a double star system and has been measured to have a mass at least 70 times that of the Sun. WR 22 lies in the southern constellation of Carina, the keel of Jason's ship Argo in Greek mythology. Although the star lies over 5000 light-years from the Earth it is so bright that it can just be faintly seen with the unaided eye under good conditions. WR 22 is one of many exceptionally brilliant stars associated with the beautiful Carina Nebula (also known as NGC 3372) and the outer part of this huge region of star formation in the southern Milky Way forms the colourful backdrop to this image. The subtle colours of the rich background tapestry are a result of the interactions between the intense ultraviolet radiation coming from hot massive stars, including WR 22, and the vast gas clouds, mostly hydrogen, from which they formed. The central part of this enormous complex of gas and dust lies off the left side of this picture as can be seen in image eso1031b. This area includes the remarkable star Eta Carinae and was featured in an earlier press release (eso0905). Notes [1] More information about Wolf-Rayet stars More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  5. ESO's Hidden Treasures Brought to Light

    NASA Astrophysics Data System (ADS)

    2011-01-01

    ESO's Hidden Treasures 2010 astrophotography competition attracted nearly 100 entries, and ESO is delighted to announce the winners. Hidden Treasures gave amateur astronomers the opportunity to search ESO's vast archives of astronomical data for a well-hidden cosmic gem. Astronomy enthusiast Igor Chekalin from Russia won the first prize in this difficult but rewarding challenge - the trip of a lifetime to ESO's Very Large Telescope at Paranal, Chile. The pictures of the Universe that can be seen in ESO's releases are impressive. However, many hours of skilful work are required to assemble the raw greyscale data captured by the telescopes into these colourful images, correcting them for distortions and unwanted signatures of the instrument, and enhancing them so as to bring out the details contained in the astronomical data. ESO has a team of professional image processors, but for the ESO's Hidden Treasures 2010 competition, the experts decided to give astronomy and photography enthusiasts the opportunity to show the world what they could do with the mammoth amount of data contained in ESO's archives. The enthusiasts who responded to the call submitted nearly 100 entries in total - far exceeding initial expectations, given the difficult nature of the challenge. "We were completely taken aback both by the quantity and the quality of the images that were submitted. This was not a challenge for the faint-hearted, requiring both an advanced knowledge of data processing and an artistic eye. We are thrilled to have discovered so many talented people," said Lars Lindberg Christensen, Head of ESO's education and Public Outreach Department. Digging through many terabytes of professional astronomical data, the entrants had to identify a series of greyscale images of a celestial object that would reveal the hidden beauty of our Universe. The chance of a great reward for the lucky winner was enough to spur on the competitors; the first prize being a trip to ESO's Very Large Telescope in Paranal, Chile, with guided tours and the opportunity to participate in a night's observations. Runner-up prizes included an iPod, books and DVDs. Furthermore, the highest ranked images will be released for the world to see on www.eso.org as Photo Releases or Pictures of the Week, co-crediting the winners. The jury evaluated the entries based on the quality of the data processing, the originality of the image and the overall aesthetic feel. As several of the highest ranked images were submitted by the same people, the jury decided to make awards to the ten most talented participants, so as to give more people the opportunity to win a prize and reward their hard work and talent. The ten winners of the competition are: * First prize, a trip to Paranal + goodies: Igor Chekalin (Russia). * Second prize, an iPod Touch + goodies: Sergey Stepanenko (Ukraine). * Third Prize, VLT laser cube model + goodies: Andy Strappazzon (Belgium). * Fourth to tenth prizes, Eyes on the Skies Book + DVD + goodies: Joseph (Joe) DePasquale (USA), Manuel (Manu) Mejias (Argentina), Alberto Milani (Italy), Joshua (Josh) Barrington (USA), Oleg Maliy (Ukraine), Adam Kiil (United Kingdom), Javier Fuentes (Chile). The ten winners submitted the twenty highest ranked images: 1. M78 by Igor Chekalin. 2. NGC3169 & NGC3166 and SN 2003cg by Igor Chekalin. 3. NGC6729 by Sergey Stepanenko. 4. The Moon by Andy Strappazzon. 5. NGC 3621 by Joseph (Joe) DePasquale. 6. NGC 371 by Manuel (Manu) Mejias. 7. Dust of Orion Nebula (ESO 2.2m telescope) by Igor Chekalin. 8. NGC1850 EMMI by Sergey Stepanenko. 9. Abell 1060 by Manuel (Manu) Mejias. 10. Celestial Prominences NGC3582 by Joseph DePasquale. 11. Globular Cluster NGC288 by Alberto Milani. 12. Antennae Galaxies by Alberto Milani. 13. Sakurai's Object by Joshua (Josh) Barrington. 14. NGC 1929, N44 Superbubble by Manuel (Manu) Mejias. 15. NGC 3521 by Oleg Maliy. 16. NGC 6744 by Andy Strappazzon. 17. NGC 2217 by Oleg Maliy. 18. VIMOS.2008-01-31T07_16_47j by Adam Kiil. 19. NGC 2467 - number 2 by Josh Barrington. 20. Haffner 18 and 19 by Javier Fuentes. Igor Chekalin, winner of the trip to Paranal, says: "It was a great experience and pleasure to work with such amazing data. As an amateur astrophotographer, this was the most difficult processing and post-processing job I have ever done. My participation in the Hidden Treasures competition gave me a range of challenges, from installing new software to studying techniques and even operating systems that I did not know before." The success of the ESO's Hidden Treasures 2010 competition and the enthusiasm of the skilled participants made it easy to decide to run a follow-up to the competition. Stay tuned and check www.eso.org for news about ESO's Hidden Treasures 2011. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  6. MONA, LISA and VINCI Soon Ready to Travel to Paranal

    NASA Astrophysics Data System (ADS)

    2000-11-01

    First Instruments for the VLT Interferometer Summary A few months from now, light from celestial objects will be directed for the first time towards ESO's Very Large Telescope Interferometer (VLTI) at the Paranal Observatory (Chile). During this "First Light" event and the subsequent test phase, the light will be recorded with a special test instrument, VINCI (VLT INterferometer Commissioning Instrument). The main components of this high-tech instrument are aptly named MONA (a system that combines the light beams from several telescopes by means of optical fibers) and LISA (the infrared camera). VINCI was designed and constructed within a fruitful collaboration between ESO and several research institutes and industrial companies in France and Germany . It is now being assembled at the ESO Headquarters in Garching (Germany) and will soon be ready for installation at the telescope on Paranal. With the VLTI and VINCI, Europe's astronomers are now entering the first, crucial phase of an exciting scientific and technology venture that will ultimately put the world's most powerful optical/IR interferometric facility in their hands . PR Photo 31/00 : VINCI during tests at the ESO Headquarters in Garching. The VLT Interferometer (VLTI) ESO Press Photo 31/00 ESO Press Photo 31/00 [Preview; JPEG: 400 x 301; 43k] [Normal; JPEG: 800 x 602;208xk] [Full-Res; JPEG: 1923 x 1448; 2.2Mb] PR Photo 31/00 shows the various components of the complex VINCI instrument for the VLT Interferometer , during the current tests at the Optical Laboratory at the ESO Headquarters in Garching (Germany). It will later be installed in "clean-room" conditions within the Interferometric Laboratory at the Paranal Observatory. This electronic photo was obtained for documentary purposes. VINCI (VLT INterferometer Commissioning Instrument) is the "First Light" instrument for the Very Large Telescope Interferometer (VLTI) at the Paranal Observatory (Chile). Early in 2001, it will be used for the first tests of this very complex system. Subsequently, it will serve to tune this key research facility to the highest possible performance. The VLTI is based on the combination of light (beams) from the telescopes at Paranal. Of these, the four 8.2-m Unit Telescopes are already in operation - they will soon be joined by three 1.8-m telescopes that can be relocated on rails, cf. PR Photo 43b/99. By means of a system of mirrors, the light from two or more of these telescopes will be guided to the central Interferometric Laboratory , at the center of the observing platform on Paranal. Information about the heart of this complex system, the Delay Lines that are located in the underground Interferometric Tunnel, is available with the recent ESO PR Photos 26a-e/00. The VLTI will later receive other front-line instruments, e.g. AMBER , MIDI and PRIMA. When fully ready some years from now, the VLTI will produce extremely sharp images. This will have a major impact on different types of exciting astronomical observations, e.g.: * the direct discovery and imaging of extra-solar planets comparable to Jupiter, * the discovery and imaging of low-mass stars such as brown dwarfs, * observations of star-forming regions and to better understand the physical processes that give birth to stars, * spectral analysis of the atmospheres of nearby stars, and * imaging the objects of the very core of our Galaxy and the detection of black holes in active nuclei of galaxies. The VINCI test instrument The new instrument, VINCI , will soon be delivered to Paranal by the Département de Recherche Spatiale (Department for Space Research), a joint unit of the Centre Nationale de la Recherche Scientifique (French National Centre for Scientific Research) and the Paris Observatory. VINCI is a functional copy of the FLUOR instrument - now at the IOTA (Infrared Optical Telescope Array) interferometer - that has been upgraded and adapted to the needs of the VLTI. FLUOR was developed by the Département de Recherche Spatiale (DESPA) of the Paris Observatory. It was used in 1991 at the Kitt Peak National Observatory (Arizona, USA), for the first (coherent) combination of the light beams from two independent telescopes by means of optical fibers of fluoride glass. It has since been in operation for five years as a focal instrument at the IOTA Interferometer (Mount Hopkins, Arizona, USA) within a collaboration with the Harvard Smithsonian Center for Astrophysics), producing a rich harvest of scientific data. The VINCI partners The VINCI instrument is constructed in a collaboration between ESO (that also finances it) and the following laboratories and institutes: * DESPA (Paris Observatory) provides the expertise, the general concept, the development and integration of the optomechanics (with the exception of the camera) and the electronics, * Observatoire Midi-Pyrénées that produces the control software * The LISA infrared camera is developed by the Max-Planck-Institut für Extraterrestrische Physik (Garching, Germany), and * ESO provides the IR camera electronics and the overall observational software and is also responsible for the final integration. DESPA delivered VINCI to ESO in Garching on September 27, 2000, and is now assembling the instrument in the ESO optical workshop. It will stay here during three months, until it has been fully integrated and thoroughly tested. It will then be shipped to Paranal at the beginning of next year. After set-up and further tests, the first observations on the sky are expected in late March 2001. Fluoride fibers guide the light The heart of VINCI - named MONA - is a fiber optics beam combine unit. It is the outcome of a fertile, 10-year research partnership between Science (DESPA) and Industry ("Le Verre Fluoré" [2]). Optical fibers will be used to combine the light from two telescopes inside VINCI . Since the instrument will be working in the near-infrared region of the spectrum (wavelength 2-2.5 µm), it is necessary to use optical fibers made of a special type of glass that is transparent at these wavelengths. By far the best best material for this is fluoride glass . It was invented by one of the co-founders of the company "Le Verre Fluoré", the only manufacturer of this kind of highly specialized material in the world. Optical fibers of fluoride glass from this company are therefore used in VINCI . They are of a special type ("monomode") with a very narrow core measuring only 6.5 µm (0.065 mm) across. Light that is collected by one of the telescopes in the VLTI array (e.g., by the 50 m 2 mirror of a VLT Unit Telescope) is guided through the VLTI system of optics and finally enters this core. The fibers guide the light and at the same time "clean" the light beam by eliminating the errors introduced by the atmospheric turbulence, hereby improving the accuracy of the measurements by a factor of 10. DESPA has shown that this is indeed possible by means of real astronomical observations with the FLUOR experiment. Following this positive demonstration, it has been decided to equip the instrumentation of all interferometers currently under construction with fibers or equivalent systems.

  7. Paranal maintenance and CMMS experience

    NASA Astrophysics Data System (ADS)

    Montano, Nelson

    2004-10-01

    During the last four years of operations, low technical downtime has been one of the relevant records of the Paranal Observatory. From the beginning of the Very Large Telescope (VLT) project, European Southern Observatory (ESO) has considered the implementation of a proper maintenance strategy a fundamental point in order to ensure low technical down time and preserve the Observatory's assets. The implementation of the maintenance strategy was based on the following aspects: - Strong maintenance sense during the design stage. Line Replacement Unit (LRU) concept, standardization and modularity of the Observatory equipment - Creation of a dedicated team for Maintenance - The implementation of a Computerized Maintenance Management System After four operational years, the result of these aspects has exceeded the expectations; the Observatory has been operating with high availability under a sustainable strategy. The strengths of the maintenance strategy have been based on modern maintenance concepts applied by regular production companies, where any minute of down time involves high cost. The operation of the actual Paranal Maintenance System is based mainly on proactive activities, such as regular inspections, preventive maintenance (PM) and predictive maintenance (PdM) plans. Nevertheless, it has been necessary to implement a strong plan for corrective maintenance (CM). The Spare Parts Strategy has also been an important point linked to the Maintenance Strategy and CMMS implementation. At present, almost 4,000 items related to the Observatory spare parts are loaded into the CMMS database. Currently, we are studying the implementation of a Reliability Centered Maintenance (RCM) project in one of our critical systems The following document presents the actual status of the Paranal Maintenance Strategy and which have been the motivations to implement the established strategy.

  8. A new mix of power for the ESO installations in Chile: greener, more reliable, cheaper

    NASA Astrophysics Data System (ADS)

    Filippi, G.; Tamai, R.; Kalaitzoglou, D.; Wild, W.; Delorme, A.; Rioseco, D.

    2016-07-01

    The highest sky quality demands for astronomical research impose to locate observatories often in areas not easily reached by the existing power infrastructures. At the same time, availability and cost of power is a primary factor for sustainable operations. Power may also be a potential source for CO2 pollution. As part of its green initiatives, ESO is in the process of replacing the power sources for its own, La Silla and Paranal-Armazones, and shared, ALMA, installations in Chile in order to provide them with more reliable, affordable, and smaller CO2 footprint power solutions. The connectivity to the Chilean interconnected power systems (grid) which is to extensively use Non-Conventional Renewable Energy (NCRE) as well as the use of less polluting fuels wherever self-generation cannot be avoided are key building blocks for the solutions selected for every site. In addition, considerations such as the environmental impact and - if required - the partnership with other entities have also to be taken into account. After years of preparatory work to which the Chilean Authorities provided great help and support, ESO has now launched an articulated program to upgrade the existing agreements/facilities in i) the La Silla Observatory, from free to regulated grid client status due to an agreement with a Solar Farm private initiative, in ii) the Paranal-Armazones Observatory, from local generation using liquefied petroleum gas (LPG) to connection to the grid which is to extensively use NCRE, and last but not least, in iii) the ALMA Observatory where ESO participates together with North American and East Asian partners, from replacing the LPG as fuel for the turbine local generation system with the use of less polluting natural gas (NG) supplied by a pipe connection to eliminate the pollution caused by the LPG trucks (currently 1 LPG truck from the VIII region, Bio Bio, to the II region, ALMA and back every day, for a total of 3000km). The technologies used and the status of completion of the different projects, as well as the expected benefits are discussed in this paper.

  9. VLT Unit Telescopes Named at Paranal Inauguration

    NASA Astrophysics Data System (ADS)

    1999-03-01

    This has been a busy, but also a very successful and rewarding week for the European Southern Observatory and its staff. While "First Light" was achieved at the second 8.2-m VLT Unit Telescope (UT2) ahead of schedule, UT1 produced its sharpest image so far. This happened at a moment of exceptional observing conditions in the night between March 4 and 5, 1999. During a 6-min exposure of the majestic spiral galaxy, NGC 2997 , stellar images of only 0.25 arcsec FWHM (full-width half-maximum) were recorded. This and two other frames of nearly the same quality have provided the base for the beautiful colour-composite shown above. At this excellent angular resolution, individual star forming regions are well visible along the spiral arms. Of particular interest is the peculiar, twisted shape of the long spiral arm to the right. The Paranal Inauguration The official inauguration of the Paranal Observatory took place in the afternoon of March 5, 1999, in the presence of His Excellency, the President of the Republic of Chile, Don Eduardo Frei Ruiz-Tagle, and ministers of his cabinet, as well the Ambassadors to Chile of the ESO member states and many other distinguished guests. The President of the ESO Council, Mr. Henrik Grage, and the ESO Director General, Professor Riccardo Giacconi, were the foremost representatives of the ESO organisation; most members of the ESO Council and ESO staff also participated. A substantial number of media representatives from Europe and Chile were present and reported - often live - from Paranal during the afternoon and evening. The guests were shown the impressive installations at the new observatory, including the first and second 8.2-m VLT Unit Telescopes; the latter having achieved "First Light" just four days before. A festive ceremony took place in the dome of UT2, under the large telescope structure that had been tilted towards the horizon to make place for the numerous participants. After an introductory address by the ESO Director General, speeches were delivered by the President of the ESO Council and the President of Chile. The speakers praised the great achievement of bringing the very complex, high-technology VLT project this far so successfully and also the wonderful new opportunities for front-line research with this new facility. This would not have been possible without excellent cooperation between the many parties to this project, individuals as well as research institutes, companies and governments, all working towards a common goal. The ceremony was concluded with a discourse on "Understanding the Universe" by Physics Nobel Prize winner, Professor Carlo Rubbia, former Director of CERN. At the end of the day, the President of the ESO Council, the ESO Director General and the Heads of Delegations had the opportunity to witness an observing session with the UT1 from the VLT Control Room. The 300 other guests followed this event via internal video broadcast. Mapuche names for the Unit Telescopes It had long been ESO's intention to provide "real" names to the four VLT Unit Telescopes, to replace the current, somewhat dry and technical designations as UT1 to UT4. Four meaningful names of objects in the sky in the Mapuche language were chosen. This indigeneous people lives mostly in the area south of Santiago de Chile. An essay contest was arranged in this connection among schoolchildren of the Chilean II Region of which Antofagasta is the capital to write about the implications of these names. It drew many excellent entries dealing with the rich cultural heritage of ESO's host country. The jury was unanimous in its choice of the winning essay. This was submitted by 17-year old Jorssy Albanez Castilla from Chuquicamata near the city of Calama. She received the prize, an amateur telescope, during the Paranal Inauguration. Henceforth, the four Unit Telescopes will be known as ANTU (UT1; pronounced an-too ; The Sun), KUEYEN (UT2; qua-yen , like in "quake"; The Moon), MELIPAL (UT3; me-li-pal ; The Southern Cross) and YEPUN (UT4; ye-poon ; Sirius), respectively. An audio sequence with these names pronounced by a native speaker is available below: [RealMedia - Audio only - 164k] "First Light" of UT2 Following the installation of the main mirror in its cell and a 20-hour working session to put the complex secondary mirror and its support in place, the UT2, now Kueyen , achieved (technical) first light in the morning of March 1, 1999, when an image was obtained of a bright star. It showed this telescope to be in good optical shape and further adjustments of the optical and mechanical systems are expected soon to result in some "astronomical" images. The announcement of this important event was made by the ESO Director during the opening session of the VLT Symposium that was held in Antofagasta during March 1-4, 1999. This meeting attracted over 250 scientists from all over world. It provided a most useful opportunity to discuss future scientific programmes with the VLT and other large telescopes. The participants were left with the impression of mounting expectations, just four weeks before the first VLT Unit Telescope, Antu (UT1), will receive the first visiting astronomers. More images from UT1 ESO PR Photo 17c/99 ESO PR Photo 17c/99 [Preview - JPEG: 400 x 667 pix - 332k] [Normal - JPEG: 800 x 1334 pix - 1.3M] [High-Res - JPEG: 2108 x 3450 pix - 2.8M] Caption to PR Photo 17c/99 : This colour composite photo of the Chamaeleon I area is based on six 1-min exposures obtained with VLT UT1 + FORS1 in the V, R and I bands. The sky field measures 6.8 x 11.2 arcmin 2 ; North is up and East is left [1]. Despite the extensive preparations for the Paranal Inguration and the VLT Symposium, excellent progress is being made during the final tuning of Antu (UT1) and its instruments for the "hand-over" to the astronomers on April 1, 1999. This involves exposures in many different modes and of different sky regions. Another impressive photo is shown here that was obtained some nights ago. It displays a sky area near the Chamaeleon I complex of bright nebulae and hot stars in the constellation of the same name, close to the southern celestial pole. Note: [1]: The photos in this Press Release were prepared at Paranal immediately following the Inauguration event and have only been subject to minimal image processing. To reduce the file size, the high-resolution versions carry no identifying text How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  10. Coming Home at Paranal

    NASA Astrophysics Data System (ADS)

    2002-02-01

    Unique "Residencia" Opens at the VLT Observatory Summary The Paranal Residencia at the ESO VLT Observatory is now ready and the staff and visitors have moved into their new home. This major architectural project has the form of a unique subterranean construction with a facade opening towards the Pacific Ocean , far below at a distance of about 12 km. Natural daylight is brought into the building through a 35-m wide glass-covered dome, a rectangular courtyard roof and various skylight hatches. Located in the middle of the Atacama Desert, one of the driest areas on Earth, the Residencia incorporates a small garden and a swimming pool, allowing the inhabitants to retreat from time to time from the harsh outside environment. Returning from long shifts at the VLT and other installations on the mountain, here they can breathe moist air and receive invigorating sensory impressions. With great originality of the design, it has been possible to create an interior with a feeling of open space - this is a true "home in the desert" . Moreover, with strict ecological power, air and water management , the Paranal Residencia has already become a symbol of innovative architecture in its own right. Constructed with robust, but inexpensive materials, it is an impressively elegant and utilitarian counterpart to the VLT high-tech facilities poised some two hundred meters above, on the top of the mountain. PR Photo 05a/02 : Aerial view of the Paranal Observatory area. PR Photo 05b/02 : Aerial view of the Paranal Residencia . PR Photo 05c/02 : Outside view of the Paranal Residencia . PR Photo 05d/02 : The Entry Hall (fisheye view). PR Photo 05e/02 : The Entry Hall with garden and pool. PR Photo 05f/02 : The Reception Area . PR Photo 05g/02 : The Reception Area - decoration. PR Photo 05h/02 : The Reception Area - decoration. PR Photo 05i/02 : The Reception Area - decoration. PR Photo 05j/02 : View towards the Cantine . PR Photo 05k/02 : View towards the Kitchen . PR Photo 05l/02 : View of the Corridors . PR Photo 05m/02 : A Bedroom . PR Photo 05n/02 : The main facade in evening light . PR Photo 05o/02 : View from the Observing Platform towards the Residencia in evening light. The Paranal Residencia ESO PR Photo 05a/02 ESO PR Photo 05a/02 [Preview - JPEG: 611 x 400 pix - 73k] [Normal - JPEG: 1222 x 800 pix - 936k] [HiRes - JPEG: 3000 x 1964 pix - 4.6M] ESO PR Photo 05b/02 ESO PR Photo 05b/02 [Preview - JPEG: 619 x 400 pix - 92k] [Normal - JPEG: 1238 x 800 pix - 944k] [HiRes - JPEG: 3000 x 1938 pix - 3.1M] Caption : PR Photo 05a/02 shows an aerial view of the Paranal Observatory. Below the observing platform at the top of the mountain - at a distance of about 3 km - is the Base Camp with the technical area (to the right of the road) and the new Residencia building (left of the road). To the extreme left is a temporary container camp of the construction company. PR Photo 05b/02 shows the Base Camp in more detail. In the course of 2002, many of the containers on the right side will be removed. The square building in the foreground to the left of the entrance gate is the future "Visitors' Centre".- A dummy 8.2-m concrete mirror is also placed here. These photos were made by ESO engineer Gert Hüdepohl during the final construction phase in late 2001. Ever since the construction of the ESO Very Large Telescope (VLT) at Paranal began in 1991, staff and visitors have resided in cramped containers in the "Base Camp". This is one of driest and most inhospitable areas in the Chilean Atacama Desert and eleven years is a long time to wait. However, there was never any doubt that the construction of the telescope itself must have absolute priority. Nevertheless, with the major technical installations in place, the time had come to develop a more comfortable and permanent base of living at Paranal, outside the telescope area. A unique architectural concept The concept for the Paranal Residencia emerged from a widely noted international architectural competition, won by Auer and Weber Freie Architekten from Munich (Germany), and with Dominik Schenkirz as principal designer. The interior furnishing and decoration was awarded to the Chilean architect Paula Gutierrez . The construction began in late 1998. Information about this work and several photos illustrating the progress have been published as PR Photos 31a-d/99 , PR Photo 43h/99 and PR Photos 04b-d/01 . Taking advantage of an existing depression in the ground, the architects created a unique subterranean construction with a single facade opening towards the Pacific Ocean , far below at a distance of about 12 km. It has the same colour as the desert and blends perfectly into the surroundings. The Paranal Residencia is elegant, with robust and inexpensive materials. Natural daylight is brought into the building through a 35-m wide glass-covered dome, a rectangular courtyard roof and various skylight hatches. The great originality of this design has made it possible to create an interior with a feeling of open space, despite the underground location. Some building characteristics are indicated below Facilities at the Residencia To the visitor who arrives at the Paranal Residencia from the harsh natural environment, the welcoming feeling under the dome is unexpected and instantly pleasant. This is a true "oasis" within coloured concrete walls and the air is agreeably warm and moist. There is a strong sense of calm and serenity and, above all, a feeling of coming home . At night, the lighting below the roofing closure fabric is spectacular and the impression on the mind is overwhelming. The various facilities are integrated over four floors below ground level. They include small, but nice and simple bedrooms, offices, meeting points, a restaurant, a library, a reception area, a cinema and other recreational areas. The natural focal point is located next to the reception at the entrance. The dining room articulates the building at the -2 level and view points through the facade form bridges between the surrounding Paranal desert and the interior. Simple, but elegant furnishing and specially manufactured carpeting complement a strong design of perspectives. The Republic of Chile, the host state for the ESO Paranal Observatory, is present with its emblematic painter Roberto Matta . Additional space is also provided for a regional art and activity display. The staff moved out of the containers and into their new home in mid-January 2002. Today, the Paranal Residencia has already become a symbol of innovative architecture in its own right, an impressively elegant and utilitarian counterpart to the VLT high-tech facilities poised some two hundred meters above, on the top of the mountain. Some building characteristics * Construction initiated in 1998 * Area: 10000 m 2 * Total cost: 12 Million Euro (less than 2% of the total cost of the VLT project), approx. 1200 Euro/m 2 * 108 bedrooms, each with 16 m 2 * Cantine capacity for 200 persons * 22 offices * 5 terraces/viewpoints * 70-seat cinema room * Multiple meeting areas * Double room library * Building management control for the environment and the lighting * Swimming pool; water treatment and grey water recirculation * Modular concept with potential for extension to 200 rooms * Completely light-tight and with a high level of sound insulation * Communication network with phone and TV-set in each room * Main contractors: Vial y Vives, Petricio Industrial, Koch The Paranal Residencia: A Photo Collection

  11. REOSC Delivers the Best Astronomical Mirror in the World to ESO

    NASA Astrophysics Data System (ADS)

    1999-12-01

    On December 14, 1999, REOSC , the Optical Department of the SAGEM Group , finished the polishing of the fourth 8.2-m main mirror for the Very Large Telescope (VLT) of the European Southern Observatory. The mirror was today delivered to ESO at a ceremony at the REOSC factory in Saint Pierre du Perray, just south of Paris. The precision of the form of the mirror that was achieved during the polishing process is 8.5 nanometer (1 nanometer = 1 millionth of a millimetre) over the optical surface. This exceptional value corresponds to an optical resolution (theoretical image sharpness) of 0.03 arcseconds in the visible spectrum. This corresponds to distinguishing two objects separated by only 15 cm at a distance of 1000 km and will allow to detect astronomical objects that are 10,000 million times fainter than what can be perceived with the unaided eye. This impressive measure of quality, achieved by the REOSC teams during much painstaking work, implies that this VLT mirror is the most accurate in the world. In fact, all four 8.2-m VLT main mirrors polished by REOSC are well within the very strict specifications set by ESO, but this is the best of them all. The celebration today is the successful highlight of a contract initiated more than ten years ago, during which REOSC has perfected new polishing and control techniques - innovations improved and developed in a unique workshop dedicated to these giant mirrors. These methods and means are directly applicable to the new generations of segmented mirrors that are now being developed for astronomy and space observations. They are, in this sense, at the foremost front of optical technology. REOSC, the Optical Department of the SAGEM Group , is specialised in the study and realisation of high-precision optics for astronomy, space, defence, science and industry. For earlier information about the work on the VLT mirrors, cf. ESO Press Release 15/95 (13 November 1995). The SAGEM Group is a French high-technology group. It employs about 15,500 people - more information is available at URL: www.sagem.com. Information about the ESO and the VLT project is available via the ESO website: www.eso.org. Some Key Dates The polishing at REOSC of the main mirrors for the four VLT Unit Telescopes has been a major industrial feat. Here are some of the main dates: July 1989 ESO and REOSC sign contract for the polishing of the four 8.2-m and various associated activities July 1989 - April 1992 Design activities, construction of REOSC production plant April 1992 Mirror Container and concrete dummy mirror blank completed - test transport May 1992 Inauguration of REOSC production plant July 1993 Delivery of first 8.2-m mirror blank to ESO at Schott Glaswerke AG (Mainz, Germany) October 1994 Delivery of second 8.2-m mirror blank to ESO at Schott Glaswerke AG September 1995 Delivery of third 8.2-m mirror blank to ESO at Schott Glaswerke AG May 1996 Acceptance by ESO of first polished mirror at REOSC September 1996 Delivery of fourth 8.2-m mirror blank to ESO at Schott Glaswerke AG October 1996 Acceptance by ESO of second polished mirror at REOSC June 1997 Acceptance by ESO of third polished mirror at REOSC October - December 1997 Transport and delivery of first mirror to Paranal by Gondrand (France) August - September 1998 Transport and delivery of second mirror to Paranal by Gondrand December 1998 - January 1999 Transport and delivery of third mirror to Paranal by Gondrand December 1999 Acceptance by ESO of fourth polished mirror at REOSC February 1999 - April 2000 Transport and delivery of fourth mirror to Paranal by Gondrand Note [1] A Press Release on the REOSC event and the delivery of the fourth VLT main mirror to ESO is also published by SAGEM (in French and English). How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO PR Photo 44/99 may be reproduced, if credit is given to SAGEM and the European Southern Observatory.

  12. Ambitious Survey Spots Stellar Nurseries

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers scanning the skies as part of ESO's VISTA Magellanic Cloud survey have now obtained a spectacular picture of the Tarantula Nebula in our neighbouring galaxy, the Large Magellanic Cloud. This panoramic near-infrared view captures the nebula itself in great detail as well as the rich surrounding area of sky. The image was obtained at the start of a very ambitious survey of our neighbouring galaxies, the Magellanic Clouds, and their environment. The leader of the survey team, Maria-Rosa Cioni (University of Hertfordshire, UK) explains: "This view is of one of the most important regions of star formation in the local Universe - the spectacular 30 Doradus star-forming region, also called the Tarantula Nebula. At its core is a large cluster of stars called RMC 136, in which some of the most massive stars known are located." ESO's VISTA telescope [1] is a new survey telescope at the Paranal Observatory in Chile (eso0949). VISTA is equipped with a huge camera that detects light in the near-infrared part of the spectrum, revealing a wealth of detail about astronomical objects that gives us insight into the inner workings of astronomical phenomena. Near-infrared light has a longer wavelength than visible light and so we cannot see it directly for ourselves, but it can pass through much of the dust that would normally obscure our view. This makes it particularly useful for studying objects such as young stars that are still enshrouded in the gas and dust clouds from which they formed. Another powerful aspect of VISTA is the large area of the sky that its camera can capture in each shot. This image is the latest view from the VISTA Magellanic Cloud Survey (VMC). The project will scan a vast area - 184 square degrees of the sky (corresponding to almost one thousand times the apparent area of the full Moon) including our neighbouring galaxies the Large and Small Magellanic Clouds. The end result will be a detailed study of the star formation history and three-dimensional geometry of the Magellanic system. Chris Evans from the VMC team adds: "The VISTA images will allow us to extend our studies beyond the inner regions of the Tarantula into the multitude of smaller stellar nurseries nearby, which also harbour a rich population of young and massive stars. Armed with the new, exquisite infrared images, we will be able to probe the cocoons in which massive stars are still forming today, while also looking at their interaction with older stars in the wider region." The wide-field image shows a host of different objects. The bright area above the centre is the Tarantula Nebula itself, with the RMC 136 cluster of massive stars in its core. To the left is the NGC 2100 star cluster. To the right is the tiny remnant of the supernova SN1987A (eso1032). Below the centre are a series of star-forming regions including NGC 2080 - nicknamed the "Ghost Head Nebula" - and the NGC 2083 star cluster. The VISTA Magellanic Cloud Survey is one of six huge near-infrared surveys of the southern sky that will take up most of the first five years of operations of VISTA. Notes [1] VISTA ― the Visible and Infrared Survey Telescope for Astronomy ― is the newest telescope at ESO's Paranal Observatory in northern Chile. VISTA is a survey telescope working at near-infrared wavelengths and is the world's largest survey telescope. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. The telescope is housed on the peak adjacent to the one hosting ESO's Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA has a main mirror that is 4.1 m across. In photographic terms it can be thought of as a 67-megapixel digital camera with a 13 000 mm f/3.25 mirror lens. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  13. End-to-End Operations in the ELT Era

    NASA Astrophysics Data System (ADS)

    Hainaut, O. R.; Bierwirth, T.; Brillant, S.; Mieske, S.; Patat, F.; Rejkuba, M.; Romaniello, M.; Sterzik, M.

    2018-03-01

    The Data Flow System is the infrastructure on which Very Large Telescope (VLT) observations are performed at the Observatory, before and after the observations themselves take place. Since its original conception in the late 1990s, it has evolved to accommodate new observing modes and new instruments on La Silla and Paranal. Several updates and upgrades are needed to overcome its obsolescence and to integrate requirements from the new instruments from the community and, of course, from ESO's Extremely Large Telescope (ELT), which will be integrated into Paranal's operations. We describe the end-to-end operations and the resulting roadmap guiding their further development.

  14. VST project: distributed control system overview

    NASA Astrophysics Data System (ADS)

    Mancini, Dario; Mazzola, Germana; Molfese, C.; Schipani, Pietro; Brescia, Massimo; Marty, Laurent; Rossi, Emilio

    2003-02-01

    The VLT Survey Telescope (VST) is a co-operative program between the European Southern Observatory (ESO) and the INAF Capodimonte Astronomical Observatory (OAC), Naples, for the study, design, and realization of a 2.6-m wide-field optical imaging telescope to be operated at the Paranal Observatory, Chile. The telescope design, manufacturing and integration are responsibility of OAC. The VST has been specifically designed to carry out stand-alone observations in the UV to I spectral range and to supply target databases for the ESO Very Large Telescope (VLT). The control hardware is based on a large utilization of distributed embedded specialized controllers specifically designed, prototyped and manufactured by the Technology Working Group for VST project. The use of a field bus improves the whole system reliability in terms of high level flexibility, control speed and allow to reduce drastically the plant distribution in the instrument. The paper describes the philosophy and the architecture of the VST control HW with particular reference to the advantages of this distributed solution for the VST project.

  15. CIAO: wavefront sensors for GRAVITY

    NASA Astrophysics Data System (ADS)

    Scheithauer, Silvia; Brandner, Wolfgang; Deen, Casey; Adler, Tobias; Bonnet, Henri; Bourget, Pierre; Chemla, Fanny; Clenet, Yann; Delplancke, Francoise; Ebert, Monica; Eisenhauer, Frank; Esselborn, Michael; Finger, Gert; Gendron, Eric; Glauser, Adrian; Gonte, Frederic; Henning, Thomas; Hippler, Stefan; Huber, Armin; Hubert, Zoltan; Jakob, Gerd; Jochum, Lieselotte; Jocou, Laurent; Kendrew, Sarah; Klein, Ralf; Kolb, Johann; Kulas, Martin; Laun, Werner; Lenzen, Rainer; Mellein, Marcus; Müller, Eric; Moreno-Ventas, Javier; Neumann, Udo; Oberti, Sylvain; Ott, Jürgen; Pallanca, Laurent; Panduro, Johana; Ramos, Jose; Riquelme, Miguel; Rohloff, Ralf-Rainer; Rousset, Gérard; Schuhler, Nicolas; Suarez, Marcos; Zins, Gerard

    2016-07-01

    GRAVITY is a second generation near-infrared VLTI instrument that will combine the light of the four unit or four auxiliary telescopes of the ESO Paranal observatory in Chile. The major science goals are the observation of objects in close orbit around, or spiraling into the black hole in the Galactic center with unrivaled sensitivity and angular resolution as well as studies of young stellar objects and evolved stars. In order to cancel out the effect of atmospheric turbulence and to be able to see beyond dusty layers, it needs infrared wave-front sensors when operating with the unit telescopes. Therefore GRAVITY consists of the Beam Combiner Instrument (BCI) located in the VLTI laboratory and a wave-front sensor in each unit telescope Coudé room, thus aptly named Coudé Infrared Adaptive Optics (CIAO). This paper describes the CIAO design, assembly, integration and verification at the Paranal observatory.

  16. ESO Telescope Designer Raymond Wilson Wins Prestigious Kavli Award for Astrophysics

    NASA Astrophysics Data System (ADS)

    2010-06-01

    Raymond Wilson, whose pioneering optics research at ESO made today's giant telescopes possible thanks to "active optics" technology, has been awarded the 2010 Kavli Prize in astrophysics. The founder and original leader of the Optics and Telescopes Group at ESO, Wilson shares the million-dollar prize with two American scientists, Jerry Nelson and Roger Angel. The biennial prize, presented by the Norwegian Academy of Science and Letters, the Kavli Foundation, and the Norwegian Ministry of Education and Research, was instituted in 2008 and is given to researchers who significantly advance knowledge in the fields of nanoscience, neuroscience, and astrophysics, acting as a complement to the Nobel Prize. The award is named for and funded by Fred Kavli, the Norwegian entrepreneur and phi­lanthropist who later founded the Kavlico Corpora­tion in the US - today one of the world's largest suppliers of sensors for aeronautic, automotive and industrial applications. Wilson, who joined ESO in 1972, strived to achieve optical perfection, developing the concept of active optics as a way to enhance the size of telescopic primary mirrors. It is the size of these mirrors that determines the ability of a telescope to gather light and study faint and distant objects. Before active optics, mirrors over six metres in diameter were impossible, being too heavy, costly, and likely to bend from gravity and temperature changes. The use of active optics, which preserves optimal image quality by continually adjusting the mirror's shape during observations, made lighter, thinner so-called "meniscus mirrors" possible. Wilson first led the implementation of active optics in the revolutionary New Technology Telescope at ESO's La Silla Observatory, and continued to develop and improve the technology until his retirement in 1993. Since then, active optics have become a standard part of modern astronomy, applied in every big telescope including ESO's Very Large Telescope (VLT), a telescope array with four individual telescopes with 17.5 cm thick 8.2-metre mirrors. Active optics has contributed towards making the VLT the world's most successful ground-based observatory and will be an integral part of ESO's European Extremely Large Telescope (E-ELT) project. Active optics technology is also part of the twin 10-metre Keck telescopes, the Subaru telescope's 8.2-metre mirror and the two 8.1-metre Gemini telescopes. Co-prize winners Jerry Nelson and Roger Angel respectively pioneered the use of segmentation in telescope primary mirrors - as used on the Keck telescopes, and the development of lightweight mirrors with short focal ratios. A webcast from Oslo, Norway, announcing the prize winners is available at www.kavlifoundation.org and www.kavliprize.no. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  17. A Picture-perfect Pure-disc Galaxy

    NASA Astrophysics Data System (ADS)

    2011-02-01

    The bright galaxy NGC 3621, captured here using the Wide Field Imager on the 2.2-metre telescope at ESO's La Silla Observatory in Chile, appears to be a fine example of a classical spiral. But it is in fact rather unusual: it does not have a central bulge and is therefore described as a pure-disc galaxy. NGC 3621 is a spiral galaxy about 22 million light-years away in the constellation of Hydra (The Sea Snake). It is comparatively bright and can be seen well in moderate-sized telescopes. This picture was taken using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. The data were selected from the ESO archive by Joe DePasquale as part of the Hidden Treasures competition [1]. Joe's picture of NGC 3621 was ranked fifth in the competition. This galaxy has a flat pancake shape, indicating that it hasn't yet come face to face with another galaxy as such a galactic collision would have disturbed the thin disc of stars, creating a small bulge in its centre. Most astronomers think that galaxies grow by merging with other galaxies, in a process called hierarchical galaxy formation. Over time, this should create large bulges in the centres of spirals. Recent research, however, has suggested that bulgeless, or pure-disc, spiral galaxies like NGC 3621 are actually fairly common. This galaxy is of further interest to astronomers because its relative proximity allows them to study a wide range of astronomical objects within it, including stellar nurseries, dust clouds, and pulsating stars called Cepheid variables, which astronomers use as distance markers in the Universe [2]. In the late 1990s, NGC 3621 was one of 18 galaxies selected for a Key Project of the Hubble Space Telescope: to observe Cepheid variables and measure the rate of expansion of the Universe to a higher accuracy than had been possible before. In the successful project, 69 Cepheid variables were observed in this galaxy alone. Multiple monochrome images taken through four different colour filters were combined to make this picture. Images taken through a blue filter have been coloured blue in the final picture, images through a yellow-green filter are shown as green and images through a red filter as dark orange. In addition images taken through a filter that isolates the glow of hydrogen gas have been coloured red. The total exposure times per filter were 30, 40, 40 and 40 minutes respectively. Notes [1] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. Participants submitted nearly 100 entries and ten skilled people were awarded some extremely attractive prizes, including an all expenses paid trip for the overall winner to ESO's Very Large Telescope (VLT) on Cerro Paranal, in Chile, the world's most advanced optical telescope. The ten winners submitted a total of 20 images that were ranked as the highest entries in the competition out of the near 100 images. [2] Cepheid variables are very luminous stars - up to 30 000 times brighter than our Sun - whose brightness varies at regular intervals over several days, weeks or months. The period of this variation in luminosity is related to the star's true brightness, known as its absolute magnitude. By knowing the absolute magnitude of the star, and measuring how bright it appears, astronomers can easily calculate its distance from Earth. Cepheid variables are therefore vital for establishing the scale of the Universe. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  18. The Orion Nebula: Still Full of Surprises

    NASA Astrophysics Data System (ADS)

    2011-01-01

    This ethereal-looking image of the Orion Nebula was captured using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory, Chile. This nebula is much more than just a pretty face, offering astronomers a close-up view of a massive star-forming region to help advance our understanding of stellar birth and evolution. The data used for this image were selected by Igor Chekalin (Russia), who participated in ESO's Hidden Treasures 2010 astrophotography competition. Igor's composition of the Orion Nebula was the seventh highest ranked entry in the competition, although another of Igor's images was the eventual overall winner. The Orion Nebula, also known as Messier 42, is one of the most easily recognisable and best-studied celestial objects. It is a huge complex of gas and dust where massive stars are forming and is the closest such region to the Earth. The glowing gas is so bright that it can be seen with the unaided eye and is a fascinating sight through a telescope. Despite its familiarity and closeness there is still much to learn about this stellar nursery. It was only in 2007, for instance, that the nebula was shown to be closer to us than previously thought: 1350 light-years, rather than about 1500 light-years. Astronomers have used the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile to observe the stars within Messier 42. They found that the faint red dwarfs in the star cluster associated with the glowing gas radiate much more light than had previously been thought, giving us further insights into this famous object and the stars that it hosts. The data collected for this science project, with no original intention to make a colour image, have now been reused to create the richly detailed picture of Messier 42 shown here. The image is a composite of several exposures taken through a total of five different filters. Light that passed through a red filter as well as light from a filter that shows the glowing hydrogen gas, were coloured red. Light in the yellow-green part of the spectrum is coloured green, blue light is coloured blue and light that passed through an ultraviolet filter has been coloured purple. The exposure times were about 52 minutes through each filter. This image was processed by ESO using the observational data found by Igor Chekalin (Russia) [1], who participated in ESO's Hidden Treasures 2010 astrophotography competition [2], organised by ESO in October-November 2010, for everyone who enjoys making beautiful images of the night sky using real astronomical data. Notes [1] Igor searched through ESO's archive and identified datasets that he used to compose his image of Messier 42, which was the seventh highest ranked entry in the competition, out of almost 100 entries. His original work can be seen here. Igor Chekalin was awarded the first prize of the competition for his composition of Messier 78, and he also submitted an image of NGC3169, NGC3166 and SN 2003cg, which was ranked second highest. [2] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. Participants submitted nearly 100 entries and ten skilled people were awarded some extremely attractive prizes, including an all expenses paid trip for the overall winner to ESO's Very Large Telescope (VLT) on Cerro Paranal, in Chile, the world's most advanced optical telescope. The ten winners submitted a total of 20 images that were ranked as the highest entries in the competition out of the near 100 images. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  19. Preliminary results from the Stereo-SCIDAR at the VLT Observatory: extraction of reference atmospheric turbulence profiles for E-ELT adaptive optics instrument performance simulations

    NASA Astrophysics Data System (ADS)

    Sarazin, Marc S.; Osborn, James; Chacon-Oelckers, Arlette; Dérie, Frédéric J.; Le Louarn, Miska; Milli, Julien; Navarrete, Julio; Wilson, Richard R. W.

    2017-09-01

    The Stereo-SCIDAR (Scintillation Detection and Ranging) atmospheric turbulence profiler, built for ESO by Durham University, observes the scintillation patterns of binary elements with one of the four VLT-Interferometer 1.8m auxiliary telescopes at the ESO Paranal Observatory. The primary products are the vertical profiles of the index of refraction structure coefficient and of the wind velocity which allow to compute the wavefront coherence time and the isoplanatic angle with a vertical resolution of 250m. The several thousands of profiles collected during more than 30 nights of operation are grouped following criteria based on the altitude distribution or on principal component analysis. A set of reference profiles representative of the site is proposed as input for the various simulation models developed by the E-ELT (European Extremely Large Telescope) instruments Consortia.

  20. ESO's First Observatory Celebrates 40th Anniversary

    NASA Astrophysics Data System (ADS)

    2009-03-01

    ESO's La Silla Observatory, which is celebrating its 40th anniversary, became the largest astronomical observatory of its time. It led Europe to the frontline of astronomical research, and is still one of the most scientifically productive in ground-based astronomy. ESO PR Photo 12a/09 La Silla Aerial View ESO PR Photo 12b/09 The ESO New Technology Telescope ESO PR Photo 12c/09 SEST on La Silla ESO PR Photo 12d/09 Looking for the best site ESO PR Video 12a/09 ESOcast 5 With about 300 refereed publications attributable to the work of the observatory per year, La Silla remains at the forefront of astronomy. It has led to an enormous number of scientific discoveries, including several "firsts". The HARPS spectrograph is the world's foremost exoplanet hunter. It detected the system around Gliese 581, which contains what may be the first known rocky planet in a habitable zone, outside the Solar System (ESO 22/07). Several telescopes at La Silla played a crucial role in discovering that the expansion of the Universe is accelerating (ESO 21/98) and in linking gamma-ray bursts -- the most energetic explosions in the Universe since the Big Bang - with the explosions of massive stars (ESO 15/98). Since 1987, the ESO La Silla Observatory has also played an important role in the study and follow-up of the nearest supernova, SN 1987A (ESO 08/07). "The La Silla Observatory continues to offer the astronomical community exceptional capabilities," says ESO Director General, Tim de Zeeuw. "It was ESO's first presence in Chile and as such, it triggered a very long and fruitful collaboration with this country and its scientific community." The La Silla Observatory is located at the edge of the Chilean Atacama Desert, one of the driest and loneliest areas of the world. Like other observatories in this geographical area, La Silla is located far from sources of polluting light and, as the Paranal Observatory that houses the Very Large Telescope, it has one of the darkest and clearest night skies on the Earth. At its peak, La Silla was home to no fewer than 15 telescopes, among them the first -- and, for a very long time, the only -- telescope working in submillimetric waves (the 15-metre SEST) in the southern hemisphere, which paved the way for APEX and ALMA, and the 1-metre Schmidt telescope, which completed the first photographic mapping of the southern sky. The telescopes at La Silla have also supported countless space missions, e.g., by obtaining the last images of comet Shoemaker Levy 9 before it crashed into Jupiter, thereby helping predicting the exact moment when the Galileo spacecraft should observe to capture images of the cosmic collision. "Many of the current generation of astronomers were trained on La Silla where they got their first experience with what were then considered large telescopes," says Bruno Leibundgut, ESO Director for Science. While some of the smaller telescopes have been closed over the years, frontline observations continue with the larger telescopes, aided by new and innovative astronomical instruments. La Silla currently hosts two of the most productive 4-metre class telescopes in the world, the 3.5-metre New Technology Telescope (NTT) and the 3.6-metre ESO telescope. "The NTT broke new ground for telescope engineering and design," says Andreas Kaufer, director of the La Silla Paranal Observatory. The NTT was the first in the world to have a computer-controlled main mirror (active optics), a technology developed at ESO and now applied to the VLT and most of the world's current large telescopes. The ESO 3.6-metre telescope, which was for many years one of the largest European telescopes in operation, is now home to the extrasolar planet hunter, HARPS (High Accuracy Radial velocity Planet Searcher), a spectrograph with unrivalled precision. The infrastructure of La Silla is used by many of the ESO member states for targeted projects such as the Swiss 1.2-metre Euler telescope, the Italian Rapid-Eye Mount (REM) and French TAROT gamma-ray burst chasers as well as more common user facilities such as the 2.2-metre telescope of the German Max Planck Society and the 1.5-metre Danish telescopes. The 67-million pixel Wide Field Imager on the 2.2-metre telescope has taken many amazing images of celestial objects, some of which have now become icons of their own. The La Silla Observatory, north of the town of La Serena, has been a stronghold of the organisation's capabilities since the 1960s. The site was chosen after an initial prospecting expedition -- partly on horseback -- to the Chilean Andes, during 1963 and 1964, by the first ESO Director General, Otto Heckmann, and several senior astronomers. This was done with the help of AURA, which had just chosen to install an observatory at nearby Cerro Tololo. In the following years, the site was developed and the first small and mid-sized telescopes were erected, followed by the 3.6-metre telescope in 1977 and the NTT in 1989. On 25 March 1969, an audience of more than 300 people, including the then Chilean President, Eduardo Frei and the Minister of Education of Sweden, Olof Palme, celebrated the completion of the first phase of the construction programme. "The erection of the La Silla Observatory is not only of vast importance for the future of astronomical research, but also a striking example of what may be achieved through efficient, and truly far-reaching, international cooperation," said Olof Palme at the time. The future of the La Silla Observatory remains bright. In 2007 ESO's Council endorsed a plan that maintains an important role for La Silla, alongside the other large ESO facilities, the VLT, ALMA and the E-ELT. La Silla also plans to host new national telescope projects and visitor instruments -- an option that has already received a strong positive response from the astronomical community.

  1. Double Engine for a Nebula

    NASA Astrophysics Data System (ADS)

    2009-08-01

    ESO has just released a stunning new image of a field of stars towards the constellation of Carina (the Keel). This striking view is ablaze with a flurry of stars of all colours and brightnesses, some of which are seen against a backdrop of clouds of dust and gas. One unusual star in the middle, HD 87643, has been extensively studied with several ESO telescopes, including the Very Large Telescope Interferometer (VLTI). Surrounded by a complex, extended nebula that is the result of previous violent ejections, the star has been shown to have a companion. Interactions in this double system, surrounded by a dusty disc, may be the engine fuelling the star's remarkable nebula. The new image, showing a very rich field of stars towards the Carina arm of the Milky Way, is centred on the star HD 87643, a member of the exotic class of B[e] stars [1]. It is part of a set of observations that provide astronomers with the best ever picture of a B[e] star. The image was obtained with the Wide Field Imager (WFI) attached to the MPG/ESO 2.2-metre telescope at the 2400-metre-high La Silla Observatory in Chile. The image shows beautifully the extended nebula of gas and dust that reflects the light from the star. The central star's wind appears to have shaped the nebula, leaving bright, ragged tendrils of gas and dust. A careful investigation of these features seems to indicate that there are regular ejections of matter from the star every 15 to 50 years. A team of astronomers, led by Florentin Millour, has studied the star HD 87643 in great detail, using several of ESO's telescopes. Apart from the WFI, the team also used ESO's Very Large Telescope (VLT) at Paranal. At the VLT, the astronomers used the NACO adaptive optics instrument, allowing them to obtain an image of the star free from the blurring effect of the atmosphere. To probe the object further, the team then obtained an image with the Very Large Telescope Interferometer (VLTI). The sheer range of this set of observations, from the panoramic WFI image to the fine detail of the VLTI observations, corresponds to a zoom-in factor of 60 000 between the two extremes. The astronomers found that HD 87643 has a companion located at about 50 times the Earth-Sun distance and is embedded in a compact dust shell. The two stars probably orbit each other in a period between 20 and 50 years. A dusty disc may also be surrounding the two stars. The presence of the companion could be an explanation for the regular ejection of matter from the star and the formation of the nebula: as the companion moves on a highly elliptical orbit, it would regularly come very close to HD 87643, triggering an ejection. Notes [1]: B[e] stars are stars of spectral type B, with emission lines in their spectra, hence the "e". They are surrounded by a large amount of dust. More information The work on HD 87643 has been published in a paper to appear in Astronomy and Astrophysics: A binary engine fueling HD 87643's complex circumstellar environment using AMBER/VLTI imaging, by F. Millour et al. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  2. Fourth Light at Paranal!

    NASA Astrophysics Data System (ADS)

    2000-09-01

    VLT YEPUN Joins ANTU, KUEYEN and MELIPAL It was a historical moment last night (September 3 - 4, 2000) in the VLT Control Room at the Paranal Observatory , after nearly 15 years of hard work. Finally, four teams of astronomers and engineers were sitting at the terminals - and each team with access to an 8.2-m telescope! From now on, the powerful "Paranal Quartet" will be observing night after night, with a combined mirror surface of more than 210 m 2. And beginning next year, some of them will be linked to form part of the unique VLT Interferometer with unparalleled sensitivity and image sharpness. YEPUN "First Light" Early in the evening, the fourth 8.2-m Unit Telescope, YEPUN , was pointed to the sky for the first time and successfully achieved "First Light". Following a few technical exposures, a series of "first light" photos was made of several astronomical objects with the VLT Test Camera. This instrument was also used for the three previous "First Light" events for ANTU ( May 1998 ), KUEYEN ( March 1999 ) and MELIPAL ( January 2000 ). These images served to evaluate provisionally the performance of the new telescope, mainly in terms of mechanical and optical quality. The ESO staff were very pleased with the results and pronounced YEPUN fit for the subsequent commissioning phase. When the name YEPUN was first given to the fourth VLT Unit Telescope, it was supposed to mean "Sirius" in the Mapuche language. However, doubts have since arisen about this translation and a detailed investigation now indicates that the correct meaning is "Venus" (as the Evening Star). For a detailed explanation, please consult the essay On the Meaning of "YEPUN" , now available at the ESO website. The first images At 21:39 hrs local time (01:39 UT), YEPUN was turned to point in the direction of a dense Milky Way field, near the border between the constellations Sagitta (The Arrow) and Aquila (The Eagle). A guide star was acquired and the active optics system quickly optimized the mirror system. At 21:44 hrs (01:44 UT), the Test Camera at the Cassegrain focus within the M1 mirror cell was opened for 30 seconds, with the planetary nebula Hen 2-428 in the field. The resulting "First Light" image was immediately read out and appeared on the computer screen at 21:45:53 hrs (01:45:53 UT). "Not bad! - "Very nice!" were the first, "business-as-usual"-like comments in the room. The zenith distance during this observation was 44° and the image quality was measured as 0.9 arcsec, exactly the same as that registered by the Seeing Monitoring Telescope outside the telescope building. There was some wind. ESO PR Photo 22a/00 ESO PR Photo 22a/00 [Preview - JPEG: 374 x 400 pix - 128k] [Normal - JPEG: 978 x 1046 pix - 728k] Caption : ESO PR Photo 22a/00 shows a colour composite of some of the first astronomical exposures obtained by YEPUN . The object is the planetary nebula Hen 2-428 that is located at a distance of 6,000-8,000 light-years and seen in a dense sky field, only 2° from the main plane of the Milky Way. As other planetary nebulae, it is caused by a dying star (the bluish object at the centre) that shreds its outer layers. The image is based on exposures through three optical filtres: B(lue) (10 min exposure, seeing 0.9 arcsec; here rendered as blue), V(isual) (5 min; 0.9 arcsec; green) and R(ed) (3 min; 0.9 arcsec; red). The field measures 88 x 78 arcsec 2 (1 pixel = 0.09 arcsec). North is to the lower right and East is to the lower left. The 5-day old Moon was about 90° away in the sky that was accordingly bright. The zenith angle was 44°. The ESO staff then proceeded to take a series of three photos with longer exposures through three different optical filtres. They have been combined to produce the image shown in ESO PR Photo 22a/00 . More astronomical images were obtained in sequence, first of the dwarf galaxy NGC 6822 in the Local Group (see PR Photo 22f/00 below) and then of the spiral galaxy NGC 7793 . All 8.2-m telescopes now in operation at Paranal The ESO Director General, Catherine Cesarsky , who was present on Paranal during this event, congratulated the ESO staff to the great achievement, herewith bringing a major phase of the VLT project to a successful end. She was particularly impressed by the excellent optical quality that was achieved at this early moment of the commissioning tests. A measurement showed that already now, 80% of the light is concentrated within 0.22 arcsec. The manager of the VLT project, Massimo Tarenghi , was very happy to reach this crucial project milestone, after nearly fifteen years of hard work. He also remarked that with the M2 mirror already now "in the active optics loop", the telescope was correctly compensating for the somewhat mediocre atmospheric conditions on this night. The next major step will be the "first light" for the VLT Interferometer (VLTI) , when the light from two Unit Telescopes is combined. This event is expected in the middle of next year. Impressions from the YEPUN "First Light" event First Light for YEPUN - ESO PR VC 06/00 ESO PR Video Clip 06/00 "First Light for YEPUN" (5650 frames/3:46 min) [MPEG Video+Audio; 160x120 pix; 7.7Mb] [MPEG Video+Audio; 320x240 pix; 25.7 Mb] [RealMedia; streaming; 34kps] [RealMedia; streaming; 200kps] ESO Video Clip 06/00 shows sequences from the Control Room at the Paranal Observatory, recorded with a fixed TV-camera in the evening of September 3 at about 23:00 hrs local time (03:00 UT), i.e., soon after the moment of "First Light" for YEPUN . The video sequences were transmitted via ESO's dedicated satellite communication link to the Headquarters in Garching for production of the clip. It begins at the moment a guide star is acquired to perform an automatic "active optics" correction of the mirrors; the associated explanation is given by Massimo Tarenghi (VLT Project Manager). The first astronomical observation is performed and the first image of the planetary nebula Hen 2-428 is discussed by the ESO Director General, Catherine Cesarsky . The next image, of the nearby dwarf galaxy NGC 6822 , arrives and is shown and commented on by the ESO Director General. Finally, Massimo Tarenghi talks about the next major step of the VLT Project. The combination of the lightbeams from two 8.2-m Unit Telescopes, planned for the summer of 2001, will mark the beginning of the VLT Interferometer. ESO Press Photo 22b/00 ESO Press Photo 22b/00 [Preview; JPEG: 400 x 300; 88k] [Full size; JPEG: 1600 x 1200; 408k] The enclosure for the fourth VLT 8.2-m Unit Telescope, YEPUN , photographed at sunset on September 3, 2000, immediately before "First Light" was successfully achieved. The upper part of the mostly subterranean Interferometric Laboratory for the VLTI is seen in front. (Digital Photo). ESO Press Photo 22c/00 ESO Press Photo 22c/00 [Preview; JPEG: 400 x 300; 112k] [Full size; JPEG: 1280 x 960; 184k] The initial tuning of the YEPUN optical system took place in the early evening of September 3, 2000, from the "observing hut" on the floor of the telescope enclosure. From left to right: Krister Wirenstrand who is responsible for the VLT Control Software, Jason Spyromilio - Head of the Commissioning Team, and Massimo Tarenghi , VLT Manager. (Digital Photo). ESO Press Photo 22d/00 ESO Press Photo 22d/00 [Preview; JPEG: 400 x 300; 112k] [Full size; JPEG: 1280 x 960; 184k] "Mission Accomplished" - The ESO Director General, Catherine Cesarsky , and the Paranal Director, Roberto Gilmozzi , face the VLT Manager, Massimo Tarenghi at the YEPUN Control Station, right after successful "First Light" for this telescope. (Digital Photo). An aerial image of YEPUN in its enclosure is available as ESO PR Photo 43a/99. The mechanical structure of YEPUN was first pre-assembled at the Ansaldo factory in Milan (Italy) where it served for tests while the other telescopes were erected at Paranal. An early photo ( ESO PR Photo 37/95 ) is available that was obtained during the visit of the ESO Council to Milan in December 1995, cf. ESO PR 18/95. Paranal at sunset ESO Press Photo 22e/00 ESO Press Photo 22e/00 [Preview; JPEG: 400 x 200; 14kb] [Normal; JPEG: 800 x 400; 84kb] [High-Res; JPEG: 4000 x 2000; 4.0Mb] Wide-angle view of the Paranal Observatory at sunset. The last rays of the sun illuminate the telescope enclosures at the top of the mountain and some of the buildings at the Base Camp. The new "residencia" that will provide living space for the Paranal staff and visitors from next year is being constructed to the left. The "First Light" observations with YEPUN began soon after sunset. This photo was obtained in March 2000. Additional photos (September 6, 2000) ESO PR Photo 22f/00 ESO PR Photo 22f/00 [Preview - JPEG: 400 x 487 pix - 224k] [Normal - JPEG: 992 x 1208 pix - 1.3Mb] Caption : ESO PR Photo 22f/00 shows a colour composite of three exposures of a field in the dwarf galaxy NGC 6822 , a member of the Local Group of Galaxies at a distance of about 2 million light-years. They were obtained by YEPUN and the VLT Test Camera at about 23:00 hrs local time on September 3 (03:00 UT on September 4), 2000. The image is based on exposures through three optical filtres: B(lue) (10 min exposure; here rendered as blue), V(isual) (5 min; green) and R(ed) (5 min; red); the seeing was 0.9 - 1.0 arcsec. Individual stars of many different colours (temperatures) are seen. The field measures about 1.5 x 1.5 arcmin 2. Another image of this galaxy was obtained earlier with ANTU and FORS1 , cf. PR Photo 10b/99. ESO Press Photo 22g/00 ESO Press Photo 22g/00 [Preview; JPEG: 400 x 300; 136k] [Full size; JPEG: 1280 x 960; 224k] Most of the crew that put together YEPUN is here photographed after the installation of the M1 mirror cell at the bottom of the mechanical structure (on July 30, 2000). Back row (left to right): Erich Bugueno (Mechanical Supervisor), Erito Flores (Maintenance Technician); front row (left to right) Peter Gray (Mechanical Engineer), German Ehrenfeld (Mechanical Engineer), Mario Tapia (Mechanical Engineer), Christian Juica (kneeling - Mechanical Technician), Nelson Montano (Maintenance Engineer), Hansel Sepulveda (Mechanical Technican) and Roberto Tamai (Mechanical Engineer). (Digital Photo). ESO PR Photos may be reproduced, if credit is given to the European Southern Observatory. The ESO PR Video Clips service to visitors to the ESO website provides "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clip 05/00 ("Portugal to Accede to ESO (27 June 2000). Information is also available on the web about other ESO videos.

  3. School students "Catch a Star"!

    NASA Astrophysics Data System (ADS)

    2007-04-01

    School students from across Europe and beyond have won prizes in an astronomy competition, including the trip of a lifetime to one of the world's most powerful astronomical observatories, on a mountaintop in Chile. ESO, the European Organisation for Astronomical Research in the Southern Hemisphere, together with the European Association for Astronomy Education (EAAE), has just announced the winners of the 2007 "Catch a Star!" competition. ESO PR Photo 21/07 "Catch a Star!" is an international astronomy competition for school students, in which students are invited to 'become astronomers' and explore the Universe. The competition includes two categories for written projects on astronomical themes, to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. For the artistically minded, "Catch a Star!" also includes an astronomy-themed artwork competition. Students from 22 countries submitted hundreds of written projects and pieces of artwork. "The standard of entries was most impressive, and made the jury's task of choosing winners both enjoyable and difficult! We hope that everyone, whether or not they won a prize, had fun taking part, and learnt some exciting things about our Universe", said Douglas Pierce-Price, Education Officer at ESO. The top prize, of a week-long trip to Chile to visit the ESO Very Large Telescope (VLT) on Paranal, was won by students Jan Mestan and Jan Kotek from Gymnazium Pisek in the Czech Republic, together with their teacher Marek Tyle. Their report on "Research and Observation of the Solar Eclipse" told how they had studied solar eclipses, and involved their fellow students in observations of an eclipse from their school in 2006. The team will travel to Chile and visit the ESO VLT - one of the world's most powerful optical/infrared telescopes - where they will meet astronomers and be present during a night of observations on the 2600m high Paranal mountaintop. "It's fantastic that we will see the VLT in action. I'm also looking forward to my first view of the southern sky!" said Jan Mestan. His fellow student is also excited about the trip. "I am very happy that we'll visit the Paranal observatory, because this is one of the best astronomical observatories in the world, in the amazing scenery of the Atacama Desert", said Jan Kotek. "This was a very well written project, and we particularly liked the way in which the students involved the rest of their school.", said Douglas Pierce-Price. The team's hard work was also helped by some good fortune, as it seemed at first that bad weather might block their view of the eclipse. "It was cloudy, overcast, and a strong west wind was blowing in Pisek. The meteorological situation was nearly hopeless, and we thought we might have to cancel the observation. But later, the sky luckily cleared up and we could see the eclipse!", said the students. "I am very glad that my students' work won the top prize in this great competition. I believe that the visit to the VLT will be an important experience in their education." said teacher Marek Tyle. Other "Catch a Star" participants have won exciting trips to observatories across Europe. Emilio Rojas, Angel Sanchez, Javier Ortiz and their teacher Roberto Palmer from Spain have won a trip to Koenigsleiten Observatory in Austria for their project "Jupiter on the radio". Bogumil Giertler, Ammar Ahmed, and their teacher Richard Burt from Italy have won a trip to Wendelstein Observatory in Germany for their project "Determining the relative radiant of the Geminid meteor shower". Victor Raimbault, Remi Takase, Thomas Salez and their teacher Michel Faye from France have won a trip to Calar Alto Observatory in Spain, a prize kindly donated by the Spanish Council for Scientific Research, for their project "Light on Dark Matter". Forty other teams won prizes, which included astronomy software and sets of posters showcasing stunning astronomical images taken with ESO telescopes. In the artwork competition, sixty winning pictures were chosen with the help of a public vote. The beautiful pictures created by students of all ages can be seen in the gallery on the "Catch a Star" website. The full list of winners can also be found on the website. The full list of winners can be found at http://www.eso.org/catchastar/CAS2007/winners.php The gallery can be found at http://www.eso.org/catchastar/CAS2007/gallery.php Further information about the competition can be found at http://www.eso.org/catchastar/CAS2007/

  4. "First Light" Approaches for Fourth VLT Unit Telescope

    NASA Astrophysics Data System (ADS)

    2000-08-01

    These days, the ESO staff at Paranal is having a strong feeling of "déja-vu". Only seven months after the third 8.2-m VLT Unit Telescope, MELIPAL , achieved "First Light", this crucial moment is now rapidly approaching for YEPUN , the fourth and last of the giants at the ESO observatory. Following successful coating with a thin layer of aluminium in early June 2000, the 8.2-m primary Zerodur mirror (M1) was placed in its supporting cell and safely attached to the mechanical structure of YEPUN on July 31. On August 26, the 1.1-m M2 Beryllium Mirror for YEPUN was coated. Again, this delicate operation went very well and the measured reflectivity was excellent, about 91%. The M2 mirror and its support were then assembled and successfully installed at the telescope on Sunday, August 27. Before the optical mirrors were installed, and with dummies in their place, careful tests were made of most telescope functions. In particular, this included accurate balancing of the 450-tonnes telescope frame on its hydrostatic oil bearings, as well as precise adjustment of all motions. It now remains for the ESO engineers to do the final performance optimization of the entire telescope. The work on the fourth telescope has been particularly noticeable because a large proportion of the assembly, integration, tuning and testing was organised and executed by ESOs young group of capable engineers and technicians. As the engineering staff at Paranal has grown and during the earlier work on the first three telescopes, they have been acquiring the necessary expertise to autonomously integrate and maintain the 8.2-m telescopes. During the coming "First Light" observations, light from the selected celestial objects will be registered by the VLT Test Camera at the Cassegrain Focus. This comparatively simple instrument was also used for the consecutive "First Light" events for ANTU ( May 1998 ), KUEYEN ( March 1999 ) and MELIPAL ( January 2000 ). It is mounted on the telescope's optical axis within the M1 Mirror Cell, just behind the main mirror. It is planned to make one or more of these first images available on the web soon thereafter. This is the caption to ESO PR Photos 21a-b/00 . They may be reproduced, if credit is given to the European Southern Observatory. Note, however, that since these photos were electronically recorded and were primarily obtained to document the ongoing activities at Paranal, they are not of full professional quality for photographic reproduction.

  5. ESO Council Visits First VLT Unit Telescope Structure in Milan

    NASA Astrophysics Data System (ADS)

    1995-12-01

    As the ESO Very Large Telescope (VLT) rapidly takes on shape, Europe has just come one step closer to the realisation of its 556 million DEM astronomical showcase project. Last week, the ESO Council held its semi-annual meeting in Milan (Italy) [1]. During a break in the long agenda list, Council members had the opportunity to visit the Ansaldo factory in the outskirts of this city and to see for the first time the assembled mechanical structure of one of the four 8.2-metre VLT Unit telescopes. This Press Release is accompanied by a photo that shows the ESO Council delegates in front of the giant telescope. After a long climb up the steep staircase to the large Nasmyth platform at the side of the telescope where the astronomical instruments will later be placed, Dr. Peter Creola (Switzerland) , President of the ESO Council and a mechanics expert, grabbed the handrail and surveyed the structure with a professional eye: `I knew it was going to be big, but not that enormous!', he said. Other delegates experienced similar feelings, especially when they watched the 430 tonnes of steel in the 24-metre tall and squat structure turn smoothly and silently around the vertical axis. The Chairman of the ESO Scientific Technical Committee (STC), Dr. Johannes Andersen (Denmark) , summarized his first, close encounter with the VLT by `This is great fun!' and several of his colleague astronomers were soon seen in various corners of the vast structure, engaged in elated discussions about the first scientific investigations to be done with the VLT in two years' time. The VLT Main Structures The visit by Council took place at the invitation of Ansaldo Energia S.p.A. (Genova), EIE-European Industrial Engineering S.r.I. (Venice) and SOIMI-Societa Impianti Industriale S.p.A. (Milan), the three Italian enterprises responsible for the construction of the main structures of the VLT 8.2-metre Unit telescopes. Short speeches were given on this occasion by Drs. Ferruccio Bressani (Ansaldo), Luigi Guiffrida (SOIMI), Gianpietro Marchiori (EIE) and Prof. Massimo Tarenghi (ESO), describing the very successful implementation of this major VLT contract that was awarded by ESO in September 1991 [2]. All speakers praised the good collaboration between ESO and its industrial partners and Prof. Riccardo Giacconi , Director General of ESO, expressed his satisfaction `with the splendid performance of the ESO-Industry team which was bringing us close to the realisation of the premier telescope array in optical ground-based astronomy in the world'. The participants were also pleased to listen to several of the Italian engineers present who commented on the very positive experience of being personally involved in the world's largest telescope project. The VLT telescope structures incorporate many new technological concepts. Thanks to these and careful planning of the many components and their integration, it has been possible to achieve, among others, light weight construction, high mechanical stiffness, good thermal equilibrium with the ambient air (of importance for the seeing during the observations), low electromagnetic emissitivity (i.e. low interference with the sensitive astronomical instruments) and easy maintainability. Of particular interest is also the giant, direct drive system with a diameter of 9 metres and the sophisticated, innovative laser encoder system. In this way, there is no direct contact between the moving parts and the friction during the rotation is kept at an absolute minimum. The Next Steps The ESO VLT project is now entering into a decisive phase and the next years will see an increasing number of telescope parts and instruments from the scientific and industrial laboratories of Europe converging towards the VLT observatory at Cerro Paranal in Chile. It is gratifying that, despite its high degree of complexity and incorporation of a substantial number of new technologies, the project is within schedule and budget. There will be several important milestones in 1996. During the next two months, the mounting of the mechanical structure in Milan will be completed. Following this, a group of ESO hard- and software experts will spend about 6 months next to it, implementing and thoroughly testing all aspects of the very advanced VLT telescope control system. In the meantime, the erection of the first telescope enclosure at Paranal is rapidly proceeding and the outside panelling will soon be put in place. This work will be completed in January 1996, after which the integration of all inside mechanical components will follow. The take-over by ESO of the fully operational, first enclosure is scheduled for May 1996. The other enclosures will become ready at regular intervals thereafter. In Milan, all of the heavy parts of the second telescope structure have already been produced and the third and fourth are about 60 percent complete. While the first structure has now been pre-assembled for tests, the individual parts of the second will not be put together before they are shipped to Paranal in early 1996. Starting in June 1996, they will then be assembled inside the completed, first enclosure. Thus, the `second' structure will become the `first' VLT Unit telescope (UT1). This work will last until early 1997, after which the first 8.2-metre mirror will arrive from Europe and be installed. Finally, after another test and optimisation period, `first light' for UT1 is expected in late 1997. This procedure is very advantageous, because it allows to continue under less time pressure the extensive tests on the `first' structure in Milan until a satisfactory state of debugging and optimisation of the new VLT control system has been reached. In this way, the time necessary for the installation of this system in UT1 at Paranal in 1997 will be significantly shortened. In fact, the structure seen by the ESO Council in Milan will be the last to be shipped to Paranal where it will then become the fourth 8.2-metre Unit telescope (UT4). Mirrors and Instruments As earlier announced, ESO officially received the first 8.2-metre VLT mirror from REOSC in Paris [3] on November 21. The polishing of the second mirror has already started and, based on the experience gained with the first, it is expected that this work will be accomplished in less time. The third blank is already at REOSC and the fourth will soon be ready at Schott Glaswerke in Mainz (Germany). Following extended studies, and as yet another move towards new technology within the VLT project, it has now been decided to make the 1.2-metre secondary VLT mirrors of beryllium, a very light, exotic metal. The contracting firm is Dornier of the DASA group (Germany). This saves much weight and allows these relatively large mirrors to be efficiently used in the `chopping and tilting' mode needed for observations in the infrared wavelength region as well as for the critical, image-sharpening adaptive optics system. Significant progress has also been achieved on the first astronomical instruments which will be installed at the VLT. The integration of the first two of these, ISAAC and CONICA which will be installed on UT1 in the course of 1997, has already started in the ESO laboratories at the Headquarters in Garching. Important advances have also taken place within the FORS (managed by a consortium of Landessternwarte Heidelberg, Universitaets-Sternwarte Goettingen and Institut fuer Astronomie und Astrophysik der Ludwig Maximilians Universitaet Muenchen) and FUEGOS (Paris Observatory, Meudon Observatory, Toulouse Observatory, Geneva Observatory and Bologna Observatory) projects. More details about these and other VLT instruments will be given in later communications. Notes: [1] The Council of ESO consists of two representatives from each of the eight member states. It is the highest legislative authority of the organisation and normally meets twice a year. This time, Council was invited to Milan by the Director of the Osservatorio di Brera (Milan), Prof. Guido Chincarini, and the Italian delegation. [2] See ESO Press Release 08/91 of 24 September 1991. [3] See ESO Press Release 15/95 of 13 November 1995. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  6. On the Trail of a Cosmic Cat

    NASA Astrophysics Data System (ADS)

    2010-01-01

    ESO has just released a stunning new image of the vast cloud known as the Cat's Paw Nebula or NGC 6334. This complex region of gas and dust, where numerous massive stars are born, lies near the heart of the Milky Way galaxy, and is heavily obscured by intervening dust clouds. Few objects in the sky have been as well named as the Cat's Paw Nebula, a glowing gas cloud resembling the gigantic pawprint of a celestial cat out on an errand across the Universe. British astronomer John Herschel first recorded NGC 6334 in 1837 during his stay in South Africa. Despite using one of the largest telescopes in the world at the time, Herschel seems to have only noted the brightest part of the cloud, seen here towards the lower left. NGC 6334 lies about 5500 light-years away in the direction of the constellation Scorpius (the Scorpion) and covers an area on the sky slightly larger than the full Moon. The whole gas cloud is about 50 light-years across. The nebula appears red because its blue and green light are scattered and absorbed more efficiently by material between the nebula and Earth. The red light comes predominantly from hydrogen gas glowing under the intense glare of hot young stars. NGC 6334 is one of the most active nurseries of massive stars in our galaxy and has been extensively studied by astronomers. The nebula conceals freshly minted brilliant blue stars - each nearly ten times the mass of our Sun and born in the last few million years. The region is also home to many baby stars that are buried deep in the dust, making them difficult to study. In total, the Cat's Paw Nebula could contain several tens of thousands of stars. Particularly striking is the red, intricate bubble in the lower right part of the image. This is most likely either a star expelling large amount of matter at high speed as it nears the end of its life or the remnant of a star that already has exploded. This new portrait of the Cat's Paw Nebula was created from images taken with the Wide Field Imager (WFI) instrument at the 2.2-metre MPG/ESO telescope at the La Silla Observatory in Chile, combining images taken through blue, green and red filters, as well as a special filter designed to let through the light of glowing hydrogen. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  7. NGC 4945: The Milky Way's not-so-distant Cousin

    NASA Astrophysics Data System (ADS)

    2009-09-01

    ESO has released a striking new image of a nearby galaxy that many astronomers think closely resembles our own Milky Way. Though the galaxy is seen edge-on, observations of NGC 4945 suggest that this hive of stars is a spiral galaxy much like our own, with swirling, luminous arms and a bar-shaped central region. These resemblances aside, NGC 4945 has a brighter centre that likely harbours a supermassive black hole, which is devouring reams of matter and blasting energy out into space. As NGC 4945 is only about 13 million light-years away in the constellation of Centaurus (the Centaur), a modest telescope is sufficient for skygazers to spot this remarkable galaxy. NGC 4945's designation comes from its entry number in the New General Catalogue compiled by the Danish-Irish astronomer John Louis Emil Dreyer in the 1880s. James Dunlop, a Scottish astronomer, is credited with originally discovering NGC 4945 in 1826 from Australia. Today's new portrait of NGC 4945 comes courtesy of the Wide Field Imager (WFI) instrument at the 2.2-metre MPG/ESO telescope at the La Silla Observatory in Chile. NGC 4945 appears cigar-shaped from our perspective on Earth, but the galaxy is actually a disc many times wider than it is thick, with bands of stars and glowing gas spiralling around its centre. With the use of special optical filters to isolate the colour of light emitted by heated gases such as hydrogen, the image displays sharp contrasts in NGC 4945 that indicate areas of star formation. Other observations have revealed that NGC 4945 has an active galactic nucleus, meaning its central bulge emits far more energy than calmer galaxies like the Milky Way. Scientists classify NGC 4945 as a Seyfert galaxy after the American astronomer Carl K. Seyfert, who wrote a study in 1943 describing the odd light signatures emanating from some galactic cores. Since then, astronomers have come to suspect that supermassive black holes cause the turmoil in the centre of Seyfert galaxies. Black holes gravitationally draw gas and dust into them, accelerating and heating this attracted matter until it emits high-energy radiation, including X-rays and ultraviolet light. Most large, spiral galaxies, including the Milky Way, host a black hole in their centres, though many of these dark monsters no longer actively "feed" at this stage in galactic development. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  8. VizieR Online Data Catalog: Radial velocities of 51 Peg (Martins+, 2015)

    NASA Astrophysics Data System (ADS)

    Martins, J. H. C.; Santos, N. C.; Figueira, P.; Faria, J. P.; Montalto, M.; Boisse, I.; Ehrenreich, D.; Lovis, C.; Mayor, M.; Melo, C.; Pepe, F.; Sousa, S.; Udry, S.; Cunha, D.

    2015-04-01

    The table contains the radial velocity data for HARPS observations of 51 Peg. This data was collected with the HARPS spectrograph at ESO's 3.6-m Telescope at La Silla-Paranal Observatory, as part of ESO programme 091.C-0271. It consists of 91 spectra observed in seven different nights (2013-06-08, 2013-06-25, 2013-08-02, 2013-08-04, 2013-09-05, 2013-09-09 and 2013-09-30) totalling around 12.5h of observing time. The obtained spectra have a S/N on the 50th order (~5560Å) that varies between 122 and 388. The spectra cover the wavelengths range from roughly 3781Å to 6910Å. (1 data file).

  9. Searching for solar siblings among the HARPS data

    NASA Astrophysics Data System (ADS)

    Batista, S. F. A.; Adibekyan, V. Zh.; Sousa, S. G.; Santos, N. C.; Delgado Mena, E.; Hakobyan, A. A.

    2014-04-01

    The search for solar siblings has been particularly fruitful in the past few years. At present, there are four plausible candidates reported in the literature: HIP21158, HIP87382, HIP47399, and HIP92831. In this study we conduct a search for solar siblings among the HARPS high-resolution FGK dwarfs sample, which includes precise chemical abundances and kinematics for 1111 stars. Using a new approach based on chemical abundance trends with condensation temperature, kinematics, and ages we found one (additional) potential solar sibling candidate: HIP97507. Based on observations collected at the La Silla Paranal Observatory, ESO (Chile) with the HARPS spectrograph at the 3.6-m telescope (ESO runs ID 72.C-0488, 082.C-0212, and 085.C-0063).

  10. The Light and Dark Face of a Star-Forming Nebula

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Today, ESO is unveiling an image of the little known Gum 19, a faint nebula that, in the infrared, appears dark on one half and bright on the other. On one side hot hydrogen gas is illuminated by a supergiant blue star called V391 Velorum. New star formation is taking place within the ribbon of luminous and dark material that brackets V391 Velorum's left in this perspective. After many millennia, these fledgling stars, coupled with the explosive demise of V391 Velorum as a supernova, will likely alter Gum 19's present Janus-like appearance. Gum 19 is located in the direction of the constellation Vela (the Sail) at a distance of approximately 22 000 light years. The Gum 19 moniker derives from a 1955 publication by the Australian astrophysicist Colin S. Gum that served as the first significant survey of so-called HII (read "H-two") regions in the southern sky. HII refers to hydrogen gas that is ionised, or energised to the extent that the hydrogen atoms lose their electrons. Such regions emit light at well-defined wavelengths (or colours), thereby giving these cosmic clouds their characteristic glow. And indeed, much like terrestrial clouds, the shapes and textures of these HII regions change as time passes, though over the course of eons rather than before our eyes. For now, Gum 19 has somewhat of a science fiction-esque, "rip in spacetime" look to it in this image, with a narrow, near-vertical bright region slashing across the nebula. Looking at it, you could possibly see a resemblance to a two-toned angelfish or an arrow with a darkened point. This new image of the evocative Gum 19 object was captured by an infrared instrument called SOFI, mounted on ESO's New Technology Telescope (NTT) that operates at the La Silla Observatory in Chile. SOFI stands for Son of ISAAC, after the "father" instrument, ISAAC, that is located at ESO's Very Large Telescope observatory at Paranal to the north of La Silla. Observing this nebula in the infrared allows astronomers to see through at least parts of the dust. The furnace that fuels Gum 19's luminosity is a gigantic, superhot star called V391 Velorum. Shining brightest in the scorching blue range of visible light, V391 Velorum boasts a surface temperature in the vicinity of 30 000 degrees Celsius. This massive star has a temperamental nature, however, and is categorised as a variable star accordingly. V391 Velorum's brightness can fluctuate suddenly as a result of strong activity that can include ejections of shells of matter, which contribute to Gum 19's composition and light emissions. Stars on the grand scale of V391 Velorum do not burn bright for long, and after a relatively short lifetime of about ten million years these titans blow up as supernovae. These explosions, which temporarily rival whole galaxies in their light intensity, blast heated matter in surrounding space, an event that can radically change the colour and shape of its enclosing nebula. As such, V391 Velorum's death throes may well leave Gum 19 unrecognisable. Within the neighbourhood of this fitful supergiant, new stars nonetheless continue to grow. HII regions denote sites of active star formation wherein great quantities of gas and dust have begun to collapse under their own gravity. In several million years - a blink of an eye in cosmic time - these shrinking knots of matter will eventually reach the high density at their centres necessary to ignite nuclear fusion. The fresh outpouring of energy and stellar winds from these newborn stars will also modify the gaseous landscape of Gum 19. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  11. VLTI First Fringes with Two Auxiliary Telescopes at Paranal

    NASA Astrophysics Data System (ADS)

    2005-03-01

    World's Largest Interferometer with Moving Optical Telescopes on Track Summary The Very Large Telescope Interferometer (VLTI) at Paranal Observatory has just seen another extension of its already impressive capabilities by combining interferometrically the light from two relocatable 1.8-m Auxiliary Telescopes. Following the installation of the first Auxiliary Telescope (AT) in January 2004 (see ESO PR 01/04), the second AT arrived at the VLT platform by the end of 2004. Shortly thereafter, during the night of February 2 to 3, 2005, the two high-tech telescopes teamed up and quickly succeeded in performing interferometric observations. This achievement heralds an era of new scientific discoveries. Both Auxiliary Telescopes will be offered from October 1, 2005 to the community of astronomers for routine observations, together with the MIDI instrument. By the end of 2006, Paranal will be home to four operational ATs that may be placed at 30 different positions and thus be combined in a very large number of ways ("baselines"). This will enable the VLTI to operate with enormous flexibility and, in particular, to obtain extremely detailed (sharp) images of celestial objects - ultimately with a resolution that corresponds to detecting an astronaut on the Moon. PR Photo 07a/05: Paranal Observing Platform with AT1 and AT2 PR Photo 07b/05: AT1 and AT2 with Open Domes PR Photo 07c/05: Evening at Paranal with AT1 and AT2 PR Photo 07d/05: AT1 and AT2 under the Southern Sky PR Photo 07e/05: First Fringes with AT1 and AT2 PR Video Clip 01/05: Two ATs at Paranal (Extract from ESO Newsreel 15) A Most Advanced Device ESO PR Video 01/05 ESO PR Video 01/05 Two Auxiliary Telescopes at Paranal [QuickTime: 160 x 120 pix - 37Mb - 4:30 min] [QuickTime: 320 x 240 pix - 64Mb - 4:30 min] ESO PR Photo 07a/05 ESO PR Photo 07a/05 [Preview - JPEG: 493 x400 pix - 44k] [Normal - JPEG: 985 x 800 pix - 727k] [HiRes - JPEG: 5000 x 4060 pix - 13.8M] Captions: ESO PR Video Clip 01/05 is an extract from ESO Video Newsreel 15, released on March 14, 2005. It provides an introduction to the VLT Interferometer (VLTI) and the two Auxiliary Telescopes (ATs) now installed at Paranal. ESO PR Photo 07a/05 shows the impressive ensemble at the summit of Paranal. From left to right, the enclosure of VLT Antu, Kueyen and Melipal, AT1, the VLT Survey Telescope (VST) in the background, AT2 and VLT Yepun. Located at the summit of the 2,600-m high Cerro Paranal in the Atacama Desert (Chile), ESO's Very Large Telescope (VLT) is at the forefront of astronomical technology and is one of the premier facilities in the world for optical and near-infrared observations. The VLT is composed of four 8.2-m Unit Telescope (Antu, Kueyen, Melipal and Yepun). They have been progressively put into service together with a vast suite of the most advanced astronomical instruments and are operated every night in the year. Contrary to other large astronomical telescopes, the VLT was designed from the beginning with the use of interferometry as a major goal. The href="/instruments/vlti">VLT Interferometer (VLTI) combines starlight captured by two 8.2- VLT Unit Telescopes, dramatically increasing the spatial resolution and showing fine details of a large variety of celestial objects. The VLTI is arguably the world's most advanced optical device of this type. It has already demonstrated its powerful capabilities by addressing several key scientific issues, such as determining the size and the shape of a variety of stars (ESO PR 22/02, PR 14/03 and PR 31/03), measuring distances to stars (ESO PR 25/04), probing the innermost regions of the proto-planetary discs around young stars (ESO PR 27/04) or making the first detection by infrared interferometry of an extragalactic object (ESO PR 17/03). "Little Brothers" ESO PR Photo 07b/05 ESO PR Photo 07b/05 [Preview - JPEG: 597 x 400 pix - 47k] [Normal - JPEG: 1193 x 800 pix - 330k] [HiRes - JPEG: 5000 x 3354 pix - 10.0M] ESO PR Photo 07c/05 ESO PR Photo 07c/05 [Preview - JPEG: 537 x 400 pix - 31k] [Normal - JPEG: 1074 x 800 pix - 555k] [HiRes - JPEG: 3000 x 2235 pix - 6.0M] ESO PR Photo 07d/05 ESO PR Photo 07d/05 [Preview - JPEG: 400 x 550 pix - 60k] [Normal - JPEG: 800 x 1099 pix - 946k] [HiRes - JPEG: 2414 x 3316 pix - 11.0M] Captions: ESO PR Photo 07b/05 shows VLTI Auxiliary Telescopes 1 and 2 (AT1 and AT2) in the early evening light, with the spherical domes opened and ready for observations. In ESO PR Photo 07c/05, the same scene is repeated later in the evening, with three of the large telescope enclosures in the background. This photo and ESO PR Photo 07c/05 which is a time-exposure with AT1 and AT2 under the beautiful night sky with the southern Milky Way band were obtained by ESO staff member Frédéric Gomté. However, most of the time the large telescopes are used for other research purposes. They are therefore only available for interferometric observations during a limited number of nights every year. Thus, in order to exploit the VLTI each night and to achieve the full potential of this unique setup, some other (smaller), dedicated telescopes were included into the overall VLT concept. These telescopes, known as the VLTI Auxiliary Telescopes (ATs), are mounted on tracks and can be placed at precisely defined "parking" observing positions on the observatory platform. From these positions, their light beams are fed into the same common focal point via a complex system of reflecting mirrors mounted in an underground system of tunnels. The Auxiliary Telescopes are real technological jewels. They are placed in ultra-compact enclosures, complete with all necessary electronics, an air conditioning system and cooling liquid for thermal control, compressed air for enclosure seals, a hydraulic plant for opening the dome shells, etc. Each AT is also fitted with a transporter that lifts the telescope and relocates it from one station to another. It moves around with its own housing on the top of Paranal, almost like a snail. Moreover, these moving ultra-high precision telescopes, each weighing 33 tonnes, fulfill very stringent mechanical stability requirements: "The telescopes are unique in the world", says Bertrand Koehler, the VLTI AT Project Manager. "After being relocated to a new position, the telescope is repositioned to a precision better than one tenth of a millimetre - that is, the size of a human hair! The image of the star is stabilized to better than thirty milli-arcsec - this is how we would see an object of the same size as one of the VLT enclosures on the Moon. Finally, the path followed by the light inside the telescope after bouncing on ten mirrors is stable to better than a few nanometres, which is the size of about one hundred atoms." A World Premiere ESO PR Photo 07e/05 ESO PR Photo 07e/05 "First Fringes" with two ATs [Preview - JPEG: 400 x 559 pix - 61k] [Normal - JPEG: 800 x 1134 pix - 357k] Caption: ESO PR Photo 07e/05 The "First Fringes" obtained with the first two VLTI Auxiliary Telescopes, as seen on the computer screen during the observation. The fringe pattern arises when the light beams from the two 1.8-m telescopes are brought together inside the VINCI instrument. The pattern itself contains information about the angular extension of the observed object, here the 6th-magnitude star HD62082. The fringes are acquired by moving a mirror back and forth around the position of equal path length for the two telescopes. One such scan can be seen in the third row window. This pattern results from the raw interferometric signals (the last two rows) after calibration and filtering using the photometric signals (the 4th and 5th row). The first two rows show the spectrum of the fringe pattern signal. More details about the interpretation of this pattern is given in Appendix A of PR 06/01. The possibility to move the ATs around and thus to perform observations with a large number of different telescope configurations ensures a great degree of flexibility, unique for an optical interferometric installation of this size and crucial for its exceptional performance. The ATs may be placed at 30 different positions and thus be combined in a very large number of ways. If the 8.2-m VLT Unit Telescopes are also taken into account, no less than 254 independent pairings of two telescopes ("baselines"), different in length and/or orientation, are available. Moreover, while the largest possible distance between two 8.2-m telescopes (ANTU and YEPUN) is about 130 metres, the maximal distance between two ATs may reach 200 metres. As the achievable image sharpness increases with telescope separation, interferometric observations with the ATs positioned at the extreme positions will therefore yield sharper images than is possible by combining light from the large telescopes alone. All of this will enable the VLTI to obtain exceedingly detailed (sharp) and very complete images of celestial objects - ultimately with a resolution that corresponds to detecting an astronaut on the Moon. Auxiliary Telescope no. 1 (AT1) was installed on the observatory's platform in January 2004. Now, one year later, the second of the four to be delivered, has been integrated into the VLTI. The installation period lasted two months and ended around midnight during the night of February 2-3, 2005. With extensive experience from the installation of AT1, the team of engineers and astronomers were able to combine the light from the two Auxiliary Telescopes in a very short time. In fact, following the necessary preparations, it took them only five minutes to adjust this extremely complex optical system and successfully capture the "First Fringes" with the VINCI test instrument! The star which was observed is named HD62082 and is just at the limit of what can be observed with the unaided eye (its visual magnitude is 6.2). The fringes were as clear as ever, and the VLTI control system kept them stable for more than one hour. Four nights later this exercise was repeated successfully with the mid-infrared science instrument MIDI. Fringes on the star Alphard (Alpha Hydrae) were acquired on February 7 at 4:05 local time. For Roberto Gilmozzi, Director of ESO's La Silla Paranal Observatory, "this is a very important new milestone. The introduction of the Auxiliary Telescopes in the development of the VLT Interferometer will bring interferometry out of the specialist experiment and into the domain of common user instrumentation for every astronomer in Europe. Without doubt, it will enormously increase the potentiality of the VLTI." With two more telescopes to be delivered within a year to the Paranal Observatory, ESO cements its position as world-leader in ground-based optical astronomy, providing Europe's scientists with the tools they need to stay at the forefront in this exciting science. The VLT Interferometer will, for example, allow astronomers to study details on the surface of stars or to probe proto-planetary discs and other objects for which ultra-high precision imaging is required. It is premature to speculate on what the Very Large Telescope Interferometer will soon discover, but it is easy to imagine that there may be quite some surprises in store for all of us.

  12. The Superwind Galaxy NGC 4666

    NASA Astrophysics Data System (ADS)

    2010-09-01

    The galaxy NGC 4666 takes pride of place at the centre of this new image, made in visible light with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. NGC 4666 is a remarkable galaxy with very vigorous star formation and an unusual "superwind" of out-flowing gas. It had previously been observed in X-rays by the ESA XMM-Newton space telescope, and the image presented here was taken to allow further study of other objects detected in the earlier X-ray observations. The prominent galaxy NGC 4666 in the centre of the picture is a starburst galaxy, about 80 million light-years from Earth, in which particularly intense star formation is taking place. The starburst is thought to be caused by gravitational interactions between NGC 4666 and its neighbouring galaxies, including NGC 4668, visible to the lower left. These interactions often spark vigorous star-formation in the galaxies involved. A combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast flow of gas from the galaxy into space - a so-called "superwind". The superwind is huge in scale, coming from the bright central region of the galaxy and extending for tens of thousands of light-years. As the superwind gas is very hot it emits radiation mostly as X-rays and in the radio part of the spectrum and cannot be seen in visible light images such as the one presented here. This image was made as part of a follow-up to observations made with the ESA XMM-Newton space telescope in X-rays. NGC 4666 was the target of the original XMM-Newton observations, but thanks to the telescope's wide field-of-view many other X-ray sources were also seen in the background. One such serendipitous detection is a faint galaxy cluster seen close to the bottom edge of the image, right of centre. This cluster is much further away from us than NGC 4666, at a distance of about three billion light-years. In order to fully understand the nature of astronomical objects, researchers must study them at several wavelengths. This is because light of different wavelengths can tell us about different physical processes taking place. In this case the Wide Field Imager (WFI) [1] observations were made in visible light to further investigate these serendipitously detected X-ray objects - a good example of how astronomers using different telescopes work together to explore the Universe. Notes [1] The WFI is a joint project between the European Southern Observatory (ESO), the Max-Planck-Institut für Astronomie (MPIA) in Heidelberg (Germany) and the Osservatorio Astronomico di Capodimonte (OAC) in Naples (Italy). More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  13. The Milky Way's Tiny but Tough Galactic Neighbour

    NASA Astrophysics Data System (ADS)

    2009-10-01

    Today ESO announces the release of a stunning new image of one of our nearest galactic neighbours, Barnard's Galaxy, also known as NGC 6822. The galaxy contains regions of rich star formation and curious nebulae, such as the bubble clearly visible in the upper left of this remarkable vista. Astronomers classify NGC 6822 as an irregular dwarf galaxy because of its odd shape and relatively diminutive size by galactic standards. The strange shapes of these cosmic misfits help researchers understand how galaxies interact, evolve and occasionally "cannibalise" each other, leaving behind radiant, star-filled scraps. In the new ESO image, Barnard's Galaxy glows beneath a sea of foreground stars in the direction of the constellation of Sagittarius (the Archer). At the relatively close distance of about 1.6 million light-years, Barnard's Galaxy is a member of the Local Group, the archipelago of galaxies that includes our home, the Milky Way. The nickname of NGC 6822 comes from its discoverer, the American astronomer Edward Emerson Barnard, who first spied this visually elusive cosmic islet using a 125-millimetre aperture refractor in 1884. Astronomers obtained this latest portrait using the Wide Field Imager (WFI) attached to the 2.2-metre MPG/ESO telescope at ESO's La Silla Observatory in northern Chile. Even though Barnard's Galaxy lacks the majestic spiral arms and glowing, central bulge that grace its big galactic neighbours, the Milky Way, the Andromeda and the Triangulum galaxies, this dwarf galaxy has no shortage of stellar splendour and pyrotechnics. Reddish nebulae in this image reveal regions of active star formation, where young, hot stars heat up nearby gas clouds. Also prominent in the upper left of this new image is a striking bubble-shaped nebula. At the nebula's centre, a clutch of massive, scorching stars send waves of matter smashing into the surrounding interstellar material, generating a glowing structure that appears ring-like from our perspective. Other similar ripples of heated matter thrown out by feisty young stars are dotted across Barnard's Galaxy. At only about a tenth of the Milky Way's size, Barnard's Galaxy fits its dwarfish classification. All told, it contains about 10 million stars - a far cry from the Milky Way's estimated 400 billion. In the Local Group, as elsewhere in the Universe, however, dwarf galaxies outnumber their larger, shapelier cousins. Irregular dwarf galaxies like Barnard's Galaxy get their random, blob-like forms from close encounters with or "digestion" by other galaxies. Like everything else in the Universe, galaxies are in motion, and they often make close passes or even go through one another. The density of stars in galaxies is quite low, meaning that few stars physically collide during these cosmic dust-ups. Gravity's fatal attraction, however, can dramatically warp and scramble the shapes of the passing or crashing galaxies. Whole bunches of stars are pulled or flung from their galactic home, in turn forming irregularly shaped dwarf galaxies like NGC 6822. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  14. An Elegant Galaxy in an Unusual Light

    NASA Astrophysics Data System (ADS)

    2010-09-01

    A new image taken with the powerful HAWK-I camera on ESO's Very Large Telescope at Paranal Observatory in Chile shows the beautiful barred spiral galaxy NGC 1365 in infrared light. NGC 1365 is a member of the Fornax cluster of galaxies, and lies about 60 million light-years from Earth. NGC 1365 is one of the best known and most studied barred spiral galaxies and is sometimes nicknamed the Great Barred Spiral Galaxy because of its strikingly perfect form, with the straight bar and two very prominent outer spiral arms. Closer to the centre there is also a second spiral structure and the whole galaxy is laced with delicate dust lanes. This galaxy is an excellent laboratory for astronomers to study how spiral galaxies form and evolve. The new infrared images from HAWK-I are less affected by the dust that obscures parts of the galaxy than images in visible light (potw1037a) and they reveal very clearly the glow from vast numbers of stars in both the bar and the spiral arms. These data were acquired to help astronomers understand the complex flow of material within the galaxy and how it affects the reservoirs of gas from which new stars can form. The huge bar disturbs the shape of the gravitational field of the galaxy and this leads to regions where gas is compressed and star formation is triggered. Many huge young star clusters trace out the main spiral arms and each contains hundreds or thousands of bright young stars that are less than ten million years old. The galaxy is too remote for single stars to be seen in this image and most of the tiny clumps visible in the picture are really star clusters. Over the whole galaxy, stars are forming at a rate of about three times the mass of our Sun per year. While the bar of the galaxy consists mainly of older stars long past their prime, many new stars are born in stellar nurseries of gas and dust in the inner spiral close to the nucleus. The bar also funnels gas and dust gravitationally into the very centre of the galaxy, where astronomers have found evidence for the presence of a super-massive black hole, well hidden among myriads of intensely bright new stars. NGC 1365, including its two huge outer spiral arms, spreads over around 200 000 light-years. Different parts of the galaxy take different times to make a full rotation around the core of the galaxy, with the outer parts of the bar completing one circuit in about 350 million years. NGC 1365 and other galaxies of its type have come to more prominence in recent years with new observations indicating that the Milky Way could also be a barred spiral galaxy. Such galaxies are quite common - two thirds of spiral galaxies are barred according to recent estimates, and studying others can help astronomers understand our own galactic home. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  15. Light, Wind and Fire - Beautiful Image of a Cosmic Sculpture

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Today ESO has released a dramatic new image of NGC 346, the brightest star-forming region in our neighbouring galaxy, the Small Magellanic Cloud, 210 000 light-years away towards the constellation of Tucana (the Toucan). The light, wind and heat given off by massive stars have dispersed the glowing gas within and around this star cluster, forming a surrounding wispy nebular structure that looks like a cobweb. NGC 346, like other beautiful astronomical scenes, is a work in progress, and changes as the aeons pass. As yet more stars form from loose matter in the area, they will ignite, scattering leftover dust and gas, carving out great ripples and altering the face of this lustrous object. NGC 346 spans approximately 200 light-years, a region of space about fifty times the distance between the Sun and its nearest stellar neighbours. Astronomers classify NGC 346 as an open cluster of stars, indicating that this stellar brood all originated from the same collapsed cloud of matter. The associated nebula containing this clutch of bright stars is known as an emission nebula, meaning that gas within it has been heated up by stars until the gas emits its own light, just like the neon gas used in electric store signs. Many stars in NGC 346 are relatively young in cosmic terms with their births dating back only a few million years or so (eso0834). Powerful winds thrown off by a massive star set off this recent round of star birth by compressing large amounts of matter, the first critical step towards igniting new stars. This cloud of material then collapses under its own gravity, until some regions become dense and hot enough to roar forth as a brilliantly shining, nuclear fusion-powered furnace - a star, illuminating the residual debris of gas and dust. In sufficiently congested regions like NGC 346, with high levels of recent star birth, the result is a glorious, glowing vista for our telescopes to capture. NGC 346 is in the Small Magellanic Cloud, a dwarf galaxy some 210 000 light-years away from Earth and in close proximity to our home, the much larger Milky Way Galaxy. Like its sister the Large Magellanic Cloud, the Small Magellanic Cloud is visible with the unaided eye from the southern hemisphere and has served as an extragalactic laboratory for astronomers studying the dynamics of star formation. This particular image was obtained using the Wide Field Imager (WFI) instrument at the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. Images like this help astronomers chronicle star birth and evolution, while offering glimpses of how stellar development influences the appearance of the cosmic environment over time. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory, and VISTA the largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  16. The President and the Galaxy

    NASA Astrophysics Data System (ADS)

    2004-12-01

    On December 9-10, 2004, the ESO Paranal Observatory was honoured with an overnight visit by His Excellency the President of the Republic of Chile, Ricardo Lagos and his wife, Mrs. Luisa Duran de Lagos. The high guests were welcomed by the ESO Director General, Dr. Catherine Cesarsky, ESO's representative in Chile, Mr. Daniel Hofstadt, and Prof. Maria Teresa Ruiz, Head of the Astronomy Department at the Universidad de Chile, as well as numerous ESO staff members working at the VLT site. The visit was characterised as private, and the President spent a considerable time in pleasant company with the Paranal staff, talking with and getting explanations from everybody. The distinguished visitors were shown the various high-tech installations at the observatory, including the Interferometric Tunnel with the VLTI delay lines and the first Auxiliary Telescope. Explanations were given by ESO astronomers and engineers and the President, a keen amateur astronomer, gained a good impression of the wide range of exciting research programmes that are carried out with the VLT. President Lagos showed a deep interest and impressed everyone present with many, highly relevant questions. Having enjoyed the spectacular sunset over the Pacific Ocean from the Residence terrace, the President met informally with the Paranal employees who had gathered for this unique occasion. Later, President Lagos visited the VLT Control Room from where the four 8.2-m Unit Telescopes and the VLT Interferometer (VLTI) are operated. Here, the President took part in an observing sequence of the spiral galaxy NGC 1097 (see PR Photo 35d/04) from the console of the MELIPAL telescope. After one more visit to the telescope platform at the top of Paranal, the President and his wife left the Observatory in the morning of December 10, 2004, flying back to Santiago. ESO PR Photo 35e/04 ESO PR Photo 35e/04 President Lagos Meets with ESO Staff at the Paranal Residencia [Preview - JPEG: 400 x 267pix - 144k] [Normal - JPEG: 640 x 427 pix - 240k] ESO PR Photo 35f/04 ESO PR Photo 35f/04 The Presidential Couple with Professor Maria Teresa Ruiz and the ESO Director General [Preview - JPEG: 500 x 400 pix - 224k] [Normal - JPEG: 1000 x 800 pix - 656k] [FullRes - JPEG: 1575 x 1260 pix - 1.0M] ESO PR Photo 35g/04 ESO PR Photo 35g/04 President Lagos with ESO Staff [Preview - JPEG: 500 x 400 pix - 192k] [Normal - JPEG: 1000 x 800 pix - 592k] [FullRes - JPEG: 1575 x 1200 pix - 1.1M] Captions: ESO PR Photo 35e/04 was obtained during President Lagos' meeting with ESO Staff at the Paranal Residencia. On ESO PR Photo 35f/04, President Lagos and Mrs. Luisa Duran de Lagos are seen at a quiet moment during the visit to the VLT Control Room, together with Prof. Maria Teresa Ruiz (far right), Head of the Astronomy Department at the Universidad de Chile, and the ESO Director General. ESO PR Photo 35g/04 shows President Lagos with some ESO staff members in the Paranal Residencia. VLT obtains a splendid photo of a unique galaxy, NGC 1097 ESO PR Photo 35d/04 ESO PR Photo 35d/04 Spiral Galaxy NGC 1097 (Melipal + VIMOS) [Preview - JPEG: 400 x 525 pix - 181k] [Normal - JPEG: 800 x 1049 pix - 757k] [FullRes - JPEG: 2296 x 3012 pix - 7.9M] Captions: ESO PR Photo 35d/04 is an almost-true colour composite based on three images made with the multi-mode VIMOS instrument on the 8.2-m Melipal (Unit Telescope 3) of ESO's Very Large Telescope. They were taken on the night of December 9-10, 2004, in the presence of the President of the Republic of Chile, Ricardo Lagos. Details are available in the Technical Note below. A unique and very beautiful image was obtained with the VIMOS instrument with President Lagos at the control desk. Located at a distance of about 45 million light-years in the southern constellation Fornax (the Furnace), NGC 1097 is a relatively bright, barred spiral galaxy of type SBb, seen face-on. At magnitude 9.5, and thus just 25 times fainter than the faintest object that can be seen with the unaided eye, it appears in small telescopes as a bright, circular disc. ESO PR Photo 35d/04, taken on the night of December 9 to 10, 2004 with the VIsible Multi-Object Spectrograph ("VIMOS), a four-channel multiobject spectrograph and imager attached to the 8.2-m VLT Melipal telescope, shows that the real structure is much more complicated. NGC 1097 is indeed a most interesting object in many respects. As this striking image reveals, NGC 1097 presents a centre that consists of a broken ring of bright knots surrounding the galaxy's nucleus. The sizes of these knots - presumably gigantic bubbles of hydrogen atoms having lost one electron (HII regions) through the intense radiation from luminous massive stars - range from roughly 750 to 2000 light-years. The presence of these knots suggests that an energetic burst of star formation has recently occurred. NGC 1097 is also known as an example of the so-called LINER (Low-Ionization Nuclear Emission Region Galaxies) class. Objects of this type are believed to be low-luminosity examples of Active Galactic Nuclei (AGN), whose emission is thought to arise from matter (gas and stars) falling into oblivion in a central black hole. There is indeed much evidence that a supermassive black hole is located at the very centre of NGC 1097, with a mass of several tens of million times the mass of the Sun. This is at least ten times more massive than the central black hole in our own Milky Way. However, NGC 1097 possesses a comparatively faint nucleus only, and the black hole in its centre must be on a very strict "diet": only a small amount of gas and stars is apparently being swallowed by the black hole at any given moment. A turbulent past As can be clearly seen in the upper part of PR Photo 35d/04, NGC 1097 also has a small galaxy companion; it is designated NGC 1097A and is located about 42,000 light-years away from the centre of NGC 1097. This peculiar elliptical galaxy is 25 times fainter than its big brother and has a "box-like" shape, not unlike NGC 6771, the smallest of the three galaxies that make up the famous Devil's Mask, cf. ESO PR Photo 12/04. There is evidence that NGC 1097 and NGC 1097A have been interacting in the recent past. Another piece of evidence for this galaxy's tumultuous past is the presence of four jets - not visible on this image - discovered in the 1970's on photographic plates. These jets are now believed to be the captured remains of a disrupted dwarf galaxy that passed through the inner part of the disc of NGC 1097. Moreover, another interesting feature of this active galaxy is the fact that no less than two supernovae were detected inside it within a time span of only four years. SN 1999eu was discovered by Japanese amateur Masakatsu Aoki (Toyama, Japan) on November 5, 1999. This 17th-magnitude supernova was a peculiar Type II supernova, the end result of the core collapse of a very massive star. And in the night of January 5 to 6, 2003, Reverend Robert Evans (Australia) discovered another Type II supernova of 15th magnitude. Also visible in this very nice image which was taken during very good sky conditions - the seeing was well below 1 arcsec - are a multitude of background galaxies of different colours and shapes. Given the fact that the total exposure time for this three-colour image was just 11 min, it is a remarkable feat, demonstrating once again the very high efficiency of the VLT.

  17. A High-Tech Oasis in the Desert

    NASA Astrophysics Data System (ADS)

    2001-03-01

    For hundreds of years, probably even longer, astronomers have sought the solitude, far from the disturbing influence of other human activities. Not without reason, their remote observatories have sometimes been likened with monasteries, sacred sites where man is closer to the skies and himself. Imagine the incredible silence of the desert, only now and then broken by feeble wind gusts. Sense the fading light as the sun sinks towards the distant horizon behind the enormous expanse of the Pacific Ocean. Rich colours develop in the clear and dry desert atmosphere while deep shadows move across the empty land. Marvel at the soft and subtle shades reflected by the layers of clouds above the ocean, far below. The sun sets fast at this low latitude and when the last rays are gone, you feel the chill of the evening air. Slowly, you become aware of increased activity in the distance - now is the moment when another hard night's work is about to begin. This is the place where ESO operates the VLT - the Paranal Observatory. CD-ROM with the original file available To allow optimal reproduction, also for professional use, a new CD-ROM is now available from the EPR Dept., with the full data set of this panoramic photo (23457 x 3496 pix, or 497 x 74 cm at 120 ppi; RGB TIFF; 235 Mb). It also contains a similar photo of the ESO La Silla Observatory ( PR Photo 39/99 ; 17500 x 1983 pix; or 440 x 50 cm at 100 ppi; RGB TIFF; 99 Mb). Photographer's note This panoramic view has been assembled in the classical way from 8 individual exposures, taken with an overlap of approximately 30% on either side. This is necessary to achieve a smooth blending of the sky and to correct the different perspective projections in each image frame. The resulting field-of-view is approximately 190°. The exposures were taken in rapid succession from a site near the water tanks at the time of the setting sun, beginning from the East (to the right), in order to compensate for the huge differences in contrast while shooting in the direction of and against the sunlight. KODAK Ektachrome Professional 200 roll film was used with a Linhof Super Technika 6 x 9 camera, fitted with a Schneider-Kreuznach S-Symmar 5.6/100mm lens. The selected frames were scanned by a Polaroid Sprintscan 45i and composed on a G3 Power Macintosh computer in Adobe Photoshop, supported with 1 GB of RAM. My special thanks go to the Engineering Department at Paranal for moving the four telescopes into a photogenic position, to the astronomers who donated some precious minutes of calibration time and also to the safety officer who drove me and my bulky equipment uphill to this site. Hans Hermann Heyer (ESO EPR Dept.) ESO PR Photo 11/01 may be reproduced, if credit is given to the European Southern Observatory (ESO).

  18. The Stars behind the Curtain

    NASA Astrophysics Data System (ADS)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are still growing into stars, newborn stars, adult stars and stars nearing the end of their life. All these stars have roughly the same age, a million years, a blink of an eye compared to our five billion year-old Sun and Solar System. The fact that some of the stars have just started their lives while others are already dying is due to their extraordinary range of masses: high-mass stars, being very bright and hot, burn through their existence much faster than their less massive, fainter and cooler counterparts. The newly released image, obtained with the FORS instrument attached to the VLT at Cerro Paranal, Chile, portrays a wide field around the stellar cluster and reveals the rich texture of the surrounding clouds of gas and dust. Notes [1] The star, NGC 3603-A1, is an eclipsing system of two stars orbiting around each other in 3.77 days. The most massive star has an estimated mass of 116 solar masses, while its companion has a mass of 89 solar masses. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  19. The Trilogy is Complete - GigaGalaxy Zoom Phase 3

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The third image of ESO's GigaGalaxy Zoom project has just been released online, completing this eye-opening dive into our galactic home in outstanding fashion. The latest image follows on from views, released over the last two weeks, of the sky as seen with the unaided eye and through an amateur telescope. This third instalment provides another breathtaking vista of an astronomical object, this time a 370-million-pixel view of the Lagoon Nebula of the quality and depth needed by professional astronomers in their quest to understand our Universe. The newly released image extends across a field of view of more than one and a half square degree - an area eight times larger than that of the full Moon - and was obtained with the Wide Field Imager attached to the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. This 67-million-pixel camera has already created several of ESO's iconic pictures. The intriguing object depicted here - the Lagoon Nebula - is located four to five thousand light-years away towards the constellation of Sagittarius (the Archer). The nebula is a giant interstellar cloud, 100 light-years across, where stars are forming. The scattered dark patches seen all over the nebula are huge clouds of gas and dust that are collapsing under their own weight and which will soon give birth to clusters of young, glowing stars. Some of the smallest clouds are known as "globules" and the most prominent ones have been catalogued by the astronomer Edward Emerson Barnard. The Lagoon Nebula hosts the young open stellar cluster known as NGC 6530. This is home for 50 to 100 stars and twinkles in the lower left portion of the nebula. Observations suggest that the cluster is slightly in front of the nebula itself, though still enshrouded by dust, as revealed by reddening of the starlight, an effect that occurs when small dust particles scatter light. The name of the Lagoon Nebula derives from the wide lagoon-shaped dark lane located in the middle of the nebula that divides it into two glowing sections. This gorgeous starscape is the last in the series of three huge images featured in the GigaGalaxy Zoom project, launched by ESO as part of the International Year of Astronomy 2009 (IYA2009). Through three giant images, the GigaGalaxy Zoom project reveals the full sky as it appears with the unaided eye from one of the darkest deserts on Earth, then zooms in on a rich region of the Milky Way using an amateur telescope, and finally uses the power of a professional telescope to reveal the details of a famous nebula. In this way, the project links the sky we can all see with the deep, "hidden" cosmos that astronomers study on a daily basis. The wonderful quality of the images is a testament to the splendour of the night sky at ESO's sites in Chile, which are the most productive astronomical observatories in the world. "The GigaGalaxy Zoom project's dedicated website has proved very successful, drawing hundreds of thousands of visitors from all around the world," says project coordinator Henri Boffin. "With the trilogy now complete, viewers will be able to explore a magnificently detailed cosmic environment on many different scales and take a breathtaking dive into our Milky Way." More information As part of the IYA2009, ESO is participating in several remarkable outreach activities, in line with its world-leading rank in the field of astronomy. ESO is hosting the IYA2009 Secretariat for the International Astronomical Union, which coordinates the Year globally. ESO is one of the Organisational Associates of IYA2009, and was also closely involved in the resolution submitted to the United Nations (UN) by Italy, which led to the UN's 62nd General Assembly proclaiming 2009 the International Year of Astronomy. In addition to a wide array of activities planned both at the local and international level, ESO is leading four of the thirteen global Cornerstone Projects. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky". The third image of the GigaGalaxy Zoom project was taken with the Wide Field Imager (WFI) attached to the MPG/ESO 2.2-metre telescope at the ESO La Silla Observatory. In order to optimise telescope time, the images were obtained by ESO staff astronomers, who select the most favourable observations to be made at any given time, taking into account the visibility of the objects and the sky conditions. The La Silla Observatory, 600 km north of Santiago de Chile and at an altitude of 2400 metres, has been an ESO stronghold since the 1960s. Here, ESO operates several of the most productive 2-4-metre-class telescopes in the world.

  20. The Dusty Disc of NGC 247

    NASA Astrophysics Data System (ADS)

    2011-03-01

    This image of NGC 247, taken by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile, reveals the fine details of this highly inclined spiral galaxy and its rich backdrop. Astronomers say this highly tilted orientation, when viewed from Earth, explains why the distance to this prominent galaxy was previously overestimated. The spiral galaxy NGC 247 is one of the closest spiral galaxies of the southern sky. In this new view from the Wide Field Imager on the MPG/ESO 2.2-metre telescope in Chile large numbers of the galaxy's component stars are clearly resolved and many glowing pink clouds of hydrogen, marking regions of active star formation, can be made out in the loose and ragged spiral arms. NGC 247 is part of the Sculptor Group, a collection of galaxies associated with the Sculptor Galaxy (NGC 253, also shown in eso0902 and eso1025). This is the nearest group of galaxies to our Local Group, which includes the Milky Way, but putting a precise value on such celestial distances is inherently difficult. To measure the distance from the Earth to a nearby galaxy, astronomers have to rely on a type of variable star called a Cepheid to act as a distance marker. Cepheids are very luminous stars, whose brightness varies at regular intervals. The time taken for the star to brighten and fade can be plugged into a simple mathematical relation that gives its intrinsic brightness. When compared with the measured brightness this gives the distance. However, this method isn't foolproof, as astronomers think this period-luminosity relationship depends on the composition of the Cepheid. Another problem arises from the fact that some of the light from a Cepheid may be absorbed by dust en route to Earth, making it appear fainter, and therefore further away than it really is. This is a particular problem for NGC 247 with its highly inclined orientation, as the line of sight to the Cepheids passes through the galaxy's dusty disc. However, a team of astronomers is currently looking into the factors that influence these celestial distance markers in a study called the Araucaria Project [1]. The team has already reported that NGC 247 is more than a million light-years closer to the Milky Way than was previously thought, bringing its distance down to just over 11 million light-years. Apart from the main galaxy itself, this view also reveals numerous galaxies shining far beyond NGC 247. In the upper right of the picture three prominent spirals form a line and still further out, far behind them, many more galaxies can be seen, some shining right through the disc of NGC 247. This colour image was created from a large number of monochrome exposures taken through blue, yellow/green and red filters taken over many years. In addition exposures through a filter that isolates the glow from hydrogen gas have also been included and coloured red. The total exposure times per filter were 20 hours, 19 hours, 25 minutes and 35 minutes, respectively. Notes [1] The Araucaria Project is a collaboration between astronomers from institutions in Chile, the United States and Europe. ESO's Very Large Telescope provided data for the project. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  1. TOPoS: chemical study of extremely metal-poor stars.

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Sbordone, L.; Bonifacio, P.; Cayrel, R.; Christlieb, N.; Clark, P.; François, P.; Glover, S.; Klessen, R.; Koch, A.; Ludwig, H.-G.; Monaco, L.; Plez, B.; Spite, F.; Spite, M.; Steffen, M.; Zaggia, S.

    The extremely metal-poor (EMP) stars hold in their atmospheres the fossil record of the chemical composition of the early phases of the Galactic evolution. The chemical analysis of such objects provides important constraints on these early phases. EMP stars are very rare objects; to dig them out, large amounts of data have to be processed. With an automatic procedure, we analysed objects with colours of Turn-Off stars from the Sloan Digital Sky Survey to select a sample of good candidate EMP stars. In the latest years, we observed a sample of these candidates with X-Shooter and UVES, and we have an ongoing ESO large programme to use these spectrographs to observe EMP stars. I will report here the results on metallicity and Strontium abundance. Based on observations obtained at ESO Paranal Observatory, programme 189.D-0165(A)

  2. The Rose-red Glow of Star Formation

    NASA Astrophysics Data System (ADS)

    2011-03-01

    The vivid red cloud in this new image from ESO's Very Large Telescope is a region of glowing hydrogen surrounding the star cluster NGC 371. This stellar nursery lies in our neighbouring galaxy, the Small Magellanic Cloud. The object dominating this image may resemble a pool of spilled blood, but rather than being associated with death, such regions of ionised hydrogen - known as HII regions - are sites of creation with high rates of recent star birth. NGC 371 is an example of this; it is an open cluster surrounded by a nebula. The stars in open clusters all originate from the same diffuse HII region, and over time the majority of the hydrogen is used up by star formation, leaving behind a shell of hydrogen such as the one in this image, along with a cluster of hot young stars. The host galaxy to NGC 371, the Small Magellanic Cloud, is a dwarf galaxy a mere 200 000 light-years away, which makes it one of the closest galaxies to the Milky Way. In addition, the Small Magellanic Cloud contains stars at all stages of their evolution; from the highly luminous young stars found in NGC 371 to supernova remnants of dead stars. These energetic youngsters emit copious amounts of ultraviolet radiation causing surrounding gas, such as leftover hydrogen from their parent nebula, to light up with a colourful glow that extends for hundreds of light-years in every direction. The phenomenon is depicted beautifully in this image, taken using the FORS1 instrument on ESO's Very Large Telescope (VLT). Open clusters are by no means rare; there are numerous fine examples in our own Milky Way. However, NGC 371 is of particular interest due to the unexpectedly large number of variable stars it contains. These are stars that change in brightness over time. A particularly interesting type of variable star, known as slowly pulsating B stars, can also be used to study the interior of stars through asteroseismology [1], and several of these have been confirmed in this cluster. Variable stars play a pivotal role in astronomy: some types are invaluable for determining distances to far-off galaxies and the age of the Universe. The data for this image were selected from the ESO archive by Manu Mejias as part of the Hidden Treasures competition [2]. Three of Manu's images made the top twenty; his picture of NGC 371 was ranked sixth in the competition. Notes [1] Asteroseismology is the study of the internal structure of pulsating stars by looking at the different frequencies at which they oscillate. This is a similar approach to the study of the structure of the Earth by looking at earthquakes and how their oscillations travel through the interior of the planet. [2] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. Participants submitted nearly 100 entries and ten skilled people were awarded some extremely attractive prizes, including an all expenses paid trip for the overall winner to ESO's Very Large Telescope (VLT) on Cerro Paranal, in Chile, the world's most advanced optical telescope. The ten winners submitted a total of 20 images that were ranked as the highest entries in the competition out of the near 100 images. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  3. Atoms-for-Peace: A Galactic Collision in Action

    NASA Astrophysics Data System (ADS)

    2010-11-01

    European Southern Observatory astronomers have produced a spectacular new image of the famous Atoms-for-Peace galaxy (NGC 7252). This galactic pile-up, formed by the collision of two galaxies, provides an excellent opportunity for astronomers to study how mergers affect the evolution of the Universe. Atoms-for-Peace is the curious name given to a pair of interacting and merging galaxies that lie around 220 million light-years away in the constellation of Aquarius. It is also known as NGC 7252 and Arp 226 and is just bright enough to be seen by amateur astronomers as a very faint small fuzzy blob. This very deep image was produced by ESO's Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. A galaxy collision is one of the most important processes influencing how our Universe evolves, and studying them reveals important clues about galactic ancestry. Luckily, such collisions are long drawn-out events that last hundreds of millions of years, giving astronomers plenty of time to observe them. This picture of Atoms-for-Peace represents a snapshot of its collision, with the chaos in full flow, set against a rich backdrop of distant galaxies. The results of the intricate interplay of gravitational interactions can be seen in the shapes of the tails made from streams of stars, gas and dust. The image also shows the incredible shells that formed as gas and stars were ripped out of the colliding galaxies and wrapped around their joint core. While much material was ejected into space, other regions were compressed, sparking bursts of star formation. The result was the formation of hundreds of very young star clusters, around 50 to 500 million years old, which are speculated to be the progenitors of globular clusters. Atoms-for-Peace may be a harbinger of our own galaxy's fate. Astronomers predict that in three or four billion years the Milky Way and the Andromeda Galaxy will collide, much as has happened with Atoms-for-Peace. But don't panic: the distance between stars within a galaxy is vast, so it is unlikely that our Sun will end up in a head-on collision with another star during the merger. The object's curious nickname has an interesting history. In December 1953, President Eisenhower gave a speech that was dubbed Atoms for Peace. The theme was promoting nuclear power for peaceful purposes - a particularly hot topic at the time. This speech and the associated conference made waves in the scientific community and beyond to such an extent that NGC 7252 was named the Atoms-for-Peace galaxy. In many ways, this is oddly appropriate: the curious shape that we can see is the result of two galaxies merging to produce something new and grand, a little like what occurs in nuclear fusion. Furthermore, the giant loops resemble a textbook diagram of electrons orbiting an atomic nucleus. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. Reflected Glory

    NASA Astrophysics Data System (ADS)

    2011-02-01

    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and HD 38563B, are the main powerhouses behind Messier 78. However, the nebula is home to many more stars, including a collection of about 45 low mass, young stars (less than 10 million years old) in which the cores are still too cool for hydrogen fusion to start, known as T Tauri stars. Studying T Tauri stars is important for understanding the early stages of star formation and how planetary systems are created. Remarkably, this complex of nebulae has also changed significantly in the last ten years. In February 2004 the experienced amateur observer Jay McNeil took an image of this region with a 75 mm telescope and was surprised to see a bright nebula - the prominent fan shaped feature near the bottom of this picture - where nothing was seen on most earlier images. This object is now known as McNeil's Nebula and it appears to be a highly variable reflection nebula around a young star. This colour picture was created from many monochrome exposures taken through blue, yellow/green and red filters, supplemented by exposures through an H-alpha filter that shows light from glowing hydrogen gas. The total exposure times were 9, 9, 17.5 and 15.5 minutes per filter, respectively. Notes [1] Igor Chekalin from Russia uncovered the raw data for this image of Messier 78 in ESO's archives in the competition Hidden Treasures (eso1102). He processed the raw data with great skill, claiming first prize in the contest for his final image (Flickr link). ESO's team of in-house image processing experts then independently processed the raw data at full resolution to produce the image shown here. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  5. A Disturbed Galactic Duo

    NASA Astrophysics Data System (ADS)

    2011-04-01

    The galaxies in this cosmic pairing, captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, display some curious features, demonstrating that each member of the duo is close enough to feel the distorting gravitational influence of the other. The gravitational tug of war has warped the spiral shape of one galaxy, NGC 3169, and fragmented the dust lanes in its companion NGC 3166. Meanwhile, a third, smaller galaxy to the lower right, NGC 3165, has a front-row seat to the gravitational twisting and pulling of its bigger neighbours. This galactic grouping, found about 70 million light-years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure. Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169's arms, shining bright with big, young, blue stars, have been teased apart, and lots of luminous gas has been drawn out from its disc. In NGC 3166's case, the dust lanes that also usually outline spiral arms are in disarray. Unlike its bluer counterpart, NGC 3166 is not forming many new stars. NGC 3169 has another distinction: the faint yellow dot beaming through a veil of dark dust just to the left of and close to the galaxy's centre [1]. This flash is the leftover of a supernova detected in 2003 and known accordingly as SN 2003cg. A supernova of this variety, classified as a Type Ia, is thought to occur when a dense, hot star called a white dwarf - a remnant of medium-sized stars like our Sun - gravitationally sucks gas away from a nearby companion star. This added fuel eventually causes the whole star to explode in a runaway fusion reaction. The new image presented here of a remarkable galactic dynamic duo is based on data selected by Igor Chekalin for ESO's Hidden Treasures 2010 astrophotography competition. Chekalin won the first overall prize and this image received the second highest ranking of the nearly 100 contest entries [2]. Notes [1] Other much more noticeable points of light, such as the one toward the left end of the spiral arm running underneath of NGC 3169's core, are stars within the Milky Way that happen to fall by chance very close to the line of sight between our telescopes and the galaxies. [2] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. To find out more about Hidden Treasures, visit http://www.eso.org/public/outreach/hiddentreasures/. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  6. The GalileoMobile starts its South American voyage - Astronomy education goes on tour through the Andes Mountains

    NASA Astrophysics Data System (ADS)

    2009-10-01

    Today marks the beginning of the GalileoMobile Project, a two-month expedition to bring the wonder and excitement of astronomy to young people in Chile, Bolivia and Peru. Supported by ESO and partners, a group of astronomers and educators will travel through a region of the Andes Mountains aboard the GalileoMobile, offering astronomical activities, such as workshops for students and star parties for the general public. Professional filmmakers on the trip will produce a multilingual documentary capturing the thrill of discovery through science, culture and travel. The GalileoMobile is a Special Project of the International Year of Astronomy 2009 (IYA2009), which is a global celebration commemorating the first use of a telescope to view the Universe by the Italian astronomer Galileo four hundred years ago. The project will promote basic science education through astronomy by visiting schools and communities that have limited access to outreach programmes. The GalileoMobile will provide these underserved groups with hands-on activities and educational material from international partners. The van is fully equipped to offer unique sky-observing opportunities for young students and other locals, with star parties at night and solar observations during the day. The team will use various tools including IYA2009's handy Galileoscopes, which will be donated to the schools after the visits. By stimulating curiosity, critical thinking and a sense of wonder and discovery for the Universe and our planet, the GalileoMobile Project aims to encourage interest in astronomy and science, and exchange culturally different visions of the cosmos. Spearheading the initiative is a group of enthusiastic Latin American and European PhD students from the European Southern Observatory, the Max Planck Society, the University Observatory Munich, and the Stockholm University Observatory. This itinerant educational programme is intended to reach about 20 000 people during eight weeks in October and November 2009, and will cover 5000 kilometres. The voyage will largely take place across the Altiplano, or high plateau, shared by Peru, Bolivia and Chile, which is among the poorest regions in these countries. South America and the Andes Mountains were particularly chosen for the GalileoMobile Project for several reasons. IYA2009 already has a strong presence in the region through national contacts, including three Cornerstone IYA2009 projects: Developing Astronomy Globally, Universe Awareness and the Galileo Teacher Training Programme, which are all official partners of the project. Most people in Peru, Bolivia and Chile speak the same language, Spanish [1], and have a rich astronomical heritage dating back to the pre-Columbian Inca and Tiwanaku civilisations that lived on the Altiplano. The region's high elevation and the quality of its skies for astronomical observations also made it an attractive candidate for the maiden voyage of the GalileoMobile. The journey starts today 5 October 2009 in Antofagasta, Chile, with a free, public inauguration event at 19:00 in the Berta González Square at the Universidad Católica del Norte. The event, which will include observations of the night sky, is organised by ESO in collaboration with Explora II Region and the Astronomy Institute of the University. From Antofagasta the GalileoMobile heads north through La Paz in Bolivia and on into Peru. The return trip to Antofagasta goes via the Panamericana coastal road, and passes near the home of ESO's world-class observatory, the Very Large Telescope at Cerro Paranal. ESO Education and Outreach coordinator in Chile, Laura Ventura, will assist the GalileoMobile team as they greet communities throughout Chile's northern deserts. "The GalileoMobile is a wonderful initiative, and a unique opportunity to reinforce educational activities in the north of Chile and the neighbouring countries. It will promote greater awareness of astronomy and science", says Ventura. "We are looking forward to helping the team members make the GalileoMobile a great success." To chronicle this remarkable astronomy expedition, members of the GalileoMobile team will write entries for the GalileoMobile blog and Cosmic Diary, an online blog-cum-journal that is also a Cornerstone IYA2009 project, and run a Twitter feed and a Facebook page. The team will reach out to national newspapers, websites and television stations during the tour, and will be accompanied by a film crew who will produce a multilingual documentary of the expedition. Project Coordinator Philippe Kobel concludes: "We hope that, by showing the excitement of astronomical discovery, and the diversity and richness of the South American traditions, the GalileoMobile Project will encourage a feeling of 'unity under the same sky' between people of different cultures and backgrounds." The GalileoMobile is supported by the European Southern Observatory (ESO), whose host country is Chile and which is the seat of the International Year of Astronomy 2009 (IYA2009) Secretariat, the Max Planck Society (MPG/MPE/MPA/MPS), NORDITA, Regione Molise and the Optical Society of America. Notes [1] To facilitate access to remote sites and foster the communication and translation in native non-Spanish languages, such as Quechua and Aymara, local university students or education officials will join the GalileoMobile team from time to time. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  7. ESO PR Highlights in 2004

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Last year proved again a wonderful one for astronomy in general and for ESO in particular. Certainly the most important astronomical event for a large public was the unique Transit of Venus : on June 8, 2004, Venus - the Earth's sister planet - passed in front of the Sun. This rare event - the last one occurred in 1882 - attracted the attention of millions of people all over the world. ESO in cooperation with several other institutes and with support from the European Commission organised through the whole year the Venus Transit 2004 (VT-2004) public education programme that successfully exposed the broad public to a number of fundamental issues at the crucial interface between society and basic science. The web site experienced a record 55 million webhits during a period of 8 hours around the transit. The programme also re-enacted the historical determination of the distance to the Sun (the "Astronomical Unit") by collecting 4550 timings of the four contacts made by more than 1500 participating group of observers and combining them in a calculation of the AU. This resulted in an astonishing accurate value of the Astronomical Unit. More details are available at the VT-2004 website, whose wealth of information will certainly make it a useful tool until the next transit in 2012! For ESO also, 2004 proved a very special year. Finland officially joined as eleventh member state and in December, the Chilean President, Ricardo Lagos, visited the Paranal Observatory. Last year was also the Fifth anniversary of the Very Large Telescope, ESO's flagship facility, as on April 1, 1999 the first 8.2-m VLT Unit Telescope, Antu (UT1), was "handed over" to the astronomers. On this occasion, ESO released several products, including a selection of the best astronomical images taken with the VLT, the VLT Top 20. But there is no doubt that the numerous high quality images published last year are all contenders to top the charts of best astronomical pictures. The year 2004 also saw many new interesting scientific results on the basis of data from ESO telescopes, including several results from the unmatched interferometer mode of the VLT, the VLTI, some of which were highlighted in ESO Press Releases. Certainly worth noting is the possible first ever bona-fide image of an exoplanet and the discovery of the lightest known exoplanet . At the beginning of the year, Paranal welcomed the first Auxiliary Telescope, while on the instrument side as well, 2004 was a good year: we saw the arrival of SINFONI on the VLT, of AMBER on the VLTI, and the installation at the NACO Adaptive Optics instrument of the " Simultaneous Differential Imager (SDI)" to detect exoplanets. And the first prototype of the Astrophysical Virtual Observatory was able to provide unprecedented results on the existence of Type-2 quasars by discovering an entire population of obscured, powerful supermassive black holes. Many of these developments are described in ESO's Press Releases, most with Press Photos, cf. the 2004 PR Index. Some of last year's ESO PR highlights may be accessed directly via the clickable image above.

  8. The Drama of Starbirth - new-born stars wreak havoc in their nursery

    NASA Astrophysics Data System (ADS)

    2011-03-01

    A new image from ESO's Very Large Telescope gives a close-up view of the dramatic effects new-born stars have on the gas and dust from which they formed. Although the stars themselves are not visible, material they have ejected is colliding with the surrounding gas and dust clouds and creating a surreal landscape of glowing arcs, blobs and streaks. The star-forming region NGC 6729 is part of one of the closest stellar nurseries to the Earth and hence one of the best studied. This new image from ESO's Very Large Telescope gives a close-up view of a section of this strange and fascinating region (a wide-field view is available here: eso1027). The data were selected from the ESO archive by Sergey Stepanenko as part of the Hidden Treasures competition [1]. Sergey's picture of NGC 6729 was ranked third in the competition. Stars form deep within molecular clouds and the earliest stages of their development cannot be seen in visible-light telescopes because of obscuration by dust. In this image there are very young stars at the upper left of the picture. Although they cannot be seen directly, the havoc that they have wreaked on their surroundings dominates the picture. High-speed jets of material that travel away from the baby stars at velocities as high as one million kilometres per hour are slamming into the surrounding gas and creating shock waves. These shocks cause the gas to shine and create the strangely coloured glowing arcs and blobs known as Herbig-Haro objects [2]. In this view the Herbig-Haro objects form two lines marking out the probable directions of ejected material. One stretches from the upper left to the lower centre, ending in the bright, circular group of glowing blobs and arcs at the lower centre. The other starts near the left upper edge of the picture and extends towards the centre right. The peculiar scimitar-shaped bright feature at the upper left is probably mostly due to starlight being reflected from dust and is not a Herbig-Haro object. This enhanced-colour picture [3] was created from images taken using the FORS1 instrument on ESO's Very Large Telescope. Images were taken through two different filters that isolate the light coming from glowing hydrogen (shown as orange) and glowing ionised sulphur (shown as blue). The different colours in different parts of this violent star formation region reflect different conditions - for example where ionised sulphur is glowing brightly (blue features) the velocities of the colliding material are relatively low - and help astronomers to unravel what is going on in this dramatic scene. Notes [1] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. Participants submitted nearly 100 entries and ten skilled people were awarded some extremely attractive prizes, including an all expenses paid trip for the overall winner to ESO's Very Large Telescope (VLT) on Cerro Paranal, in Chile, the world's most advanced optical telescope. The ten winners submitted a total of 20 images that were ranked as the highest entries in the competition out of the near 100 images. [2] The astronomers George Herbig and Guillermo Haro were not the first to see one of the objects that now bear their names, but they were the first to study the spectra of these strange objects in detail. They realised that they were not just clumps of gas and dust that reflected light, or glowed under the influence of the ultraviolet light from young stars, but were a new class of objects associated with ejected material in star formation regions. [3] Both the ionised sulphur and hydrogen atoms in this nebula emit red light. To differentiate between them in this image the sulphur emission has been coloured blue. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  9. VizieR Online Data Catalog: VEGAS: A VST Early-type GAlaxy Survey (Capaccioli+, 2015)

    NASA Astrophysics Data System (ADS)

    Capaccioli, M.; Spavone, M.; Grado, A.; Iodice, E.; Limatola, L.; Napolitano, N. R.; Cantiello, M.; Paolillo, M.; Romanowsky, A. J.; Forbes, D. A.; Puzia, T. H.; Raimondo, G.; Schipani, P.

    2015-11-01

    The VST Elliptical GAlaxies Survey (VEGAS) is a deep multiband (g,r,i) imaging survey of early-type galaxies in the southern hemisphere carried out with VST at the ESO Cerro Paranal Observatory (Chile). The large field of view (FOV) of the OmegaCAM mounted on VST (one square degree matched by pixels 0.21-arcsec wide), together with its high efficiency and spatial resolution (typically better than 1-arcsec; Kuijken, 2011Msngr.146....8K) allows us to map with a reasonable integration time the surface brightness of a galaxy out to isophotes encircling about 95% of the total light. Observations started in October 2011 (ESO Period 88), and since then, the survey has acquired exposures for about 20 bright galaxies (and for a wealth of companion objects in the field), for a totality of ~80h (up to Period 93). (1 data file).

  10. A Swarm of Ancient Stars

    NASA Astrophysics Data System (ADS)

    2010-12-01

    We know of about 150 of the rich collections of old stars called globular clusters that orbit our galaxy, the Milky Way. This sharp new image of Messier 107, captured by the Wide Field Imager on the 2.2-metre telescope at ESO's La Silla Observatory in Chile, displays the structure of one such globular cluster in exquisite detail. Studying these stellar swarms has revealed much about the history of our galaxy and how stars evolve. The globular cluster Messier 107, also known as NGC 6171, is a compact and ancient family of stars that lies about 21 000 light-years away. Messier 107 is a bustling metropolis: thousands of stars in globular clusters like this one are concentrated into a space that is only about twenty times the distance between our Sun and its nearest stellar neighbour, Alpha Centauri, across. A significant number of these stars have already evolved into red giants, one of the last stages of a star's life, and have a yellowish colour in this image. Globular clusters are among the oldest objects in the Universe. And since the stars within a globular cluster formed from the same cloud of interstellar matter at roughly the same time - typically over 10 billion years ago - they are all low-mass stars, as lightweights burn their hydrogen fuel supply much more slowly than stellar behemoths. Globular clusters formed during the earliest stages in the formation of their host galaxies and therefore studying these objects can give significant insights into how galaxies, and their component stars, evolve. Messier 107 has undergone intensive observations, being one of the 160 stellar fields that was selected for the Pre-FLAMES Survey - a preliminary survey conducted between 1999 and 2002 using the 2.2-metre telescope at ESO's La Silla Observatory in Chile, to find suitable stars for follow-up observations with the VLT's spectroscopic instrument FLAMES [1]. Using FLAMES, it is possible to observe up to 130 targets at the same time, making it particularly well suited to the spectroscopic study of densely populated stellar fields, such as globular clusters. M107 is not visible to the naked eye, but, with an apparent magnitude of about eight, it can easily be observed from a dark site with binoculars or a small telescope. The globular cluster is about 13 arcminutes across, which corresponds to about 80 light-years at its distance, and it is found in the constellation of Ophiuchus, north of the pincers of Scorpius. Roughly half of the Milky Way's known globular clusters are actually found in the constellations of Sagittarius, Scorpius and Ophiuchus, in the general direction of the centre of the Milky Way. This is because they are all in elongated orbits around the central region and are on average most likely to be seen in this direction. Messier 107 was discovered by Pierre Méchain in April 1782 and it was added to the list of seven Additional Messier Objects that were originally not included in the final version of Messier's catalogue, which was published the previous year. On 12 May 1793, it was independently rediscovered by William Herschel, who was able to resolve this globular cluster into stars for the first time. But it was not until 1947 that this globular cluster finally took its place in Messier's catalogue as M107, making it the most recent star cluster to be added to this famous list. This image is composed from exposures taken through the blue, green and near-infrared filters by the Wide Field Camera (WFI) on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. Notes [1] Fibre Large Array Multi-Element Spectrograph More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  11. Shedding Light on the Cosmic Skeleton

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Astronomers have tracked down a gigantic, previously unknown assembly of galaxies located almost seven billion light-years away from us. The discovery, made possible by combining two of the most powerful ground-based telescopes in the world, is the first observation of such a prominent galaxy structure in the distant Universe, providing further insight into the cosmic web and how it formed. "Matter is not distributed uniformly in the Universe," says Masayuki Tanaka from ESO, who led the new study. "In our cosmic vicinity, stars form in galaxies and galaxies usually form groups and clusters of galaxies. The most widely accepted cosmological theories predict that matter also clumps on a larger scale in the so-called 'cosmic web', in which galaxies, embedded in filaments stretching between voids, create a gigantic wispy structure." These filaments are millions of light years long and constitute the skeleton of the Universe: galaxies gather around them, and immense galaxy clusters form at their intersections, lurking like giant spiders waiting for more matter to digest. Scientists are struggling to determine how they swirl into existence. Although massive filamentary structures have been often observed at relatively small distances from us, solid proof of their existence in the more distant Universe has been lacking until now. The team led by Tanaka discovered a large structure around a distant cluster of galaxies in images they obtained earlier. They have now used two major ground-based telescopes to study this structure in greater detail, measuring the distances from Earth of over 150 galaxies, and, hence, obtaining a three-dimensional view of the structure. The spectroscopic observations were performed using the VIMOS instrument on ESO's Very Large Telescope and FOCAS on the Subaru Telescope, operated by the National Astronomical Observatory of Japan. Thanks to these and other observations, the astronomers were able to make a real demographic study of this structure, and have identified several groups of galaxies surrounding the main galaxy cluster. They could distinguish tens of such clumps, each typically ten times as massive as our own Milky Way galaxy - and some as much as a thousand times more massive - while they estimate that the mass of the cluster amounts to at least ten thousand times the mass of the Milky Way. Some of the clumps are feeling the fatal gravitational pull of the cluster, and will eventually fall into it. "This is the first time that we have observed such a rich and prominent structure in the distant Universe," says Tanaka. "We can now move from demography to sociology and study how the properties of galaxies depend on their environment, at a time when the Universe was only two thirds of its present age." The filament is located about 6.7 billion light-years away from us and extends over at least 60 million light-years. The newly uncovered structure does probably extend further, beyond the field probed by the team, and hence future observations have already been planned to obtain a definite measure of its size. More information This research was presented in a paper published as a letter in the Astronomy & Astrophysics Journal: The spectroscopically confirmed huge cosmic structure at z = 0.55, by Tanaka et al. The team is composed of Masayuki Tanaka (ESO), Alexis Finoguenov (Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany and University of Maryland, Baltimore, USA), Tadayuki Kodama (National Astronomical Observatory of Japan, Tokyo, Japan), Yusei Koyama (Department of Astronomy, University of Tokyo, Japan), Ben Maughan (H.H. Wills Physics Laboratory, University of Bristol, UK) and Fumiaki Nakata (Subaru Telescope, National Astronomical Observatory of Japan). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  12. VISTA Reveals the Secret of the Unicorn

    NASA Astrophysics Data System (ADS)

    2010-10-01

    A new infrared image from ESO's VISTA survey telescope reveals an extraordinary landscape of glowing tendrils of gas, dark clouds and young stars within the constellation of Monoceros (the Unicorn). This star-forming region, known as Monoceros R2, is embedded within a huge dark cloud. The region is almost completely obscured by interstellar dust when viewed in visible light, but is spectacular in the infrared. An active stellar nursery lies hidden inside a massive dark cloud rich in molecules and dust in the constellation of Monoceros. Although it appears close in the sky to the more familiar Orion Nebula it is actually almost twice as far from Earth, at a distance of about 2700 light-years. In visible light a grouping of massive hot stars creates a beautiful collection of reflection nebulae where the bluish starlight is scattered from parts of the dark, foggy outer layers of the molecular cloud. However, most of the new-born massive stars remain hidden as the thick interstellar dust strongly absorbs their ultraviolet and visible light. In this gorgeous infrared image taken from ESO's Paranal Observatory in northern Chile, the Visible and Infrared Survey Telescope for Astronomy (VISTA [1], eso0949) penetrates the dark curtain of cosmic dust and reveals in astonishing detail the folds, loops and filaments sculpted from the dusty interstellar matter by intense particle winds and the radiation emitted by hot young stars. "When I first saw this image I just said 'Wow!' I was amazed to see all the dust streamers so clearly around the Monoceros R2 cluster, as well as the jets from highly embedded young stellar objects. There is such a great wealth of exciting detail revealed in these VISTA images," says Jim Emerson, of Queen Mary, University of London and leader of the VISTA consortium. With its huge field of view, large mirror and sensitive camera, VISTA is ideal for obtaining deep, high quality infrared images of large areas of the sky, such as the Monoceros R2 region. The width of VISTA's field of view is equivalent to about 80 light-years at this distance. Since the dust is largely transparent at infrared wavelengths, many young stars that cannot be seen in visible-light images become apparent. The most massive of these stars are less than ten million years old. The new image was created from exposures taken in three different parts of the near-infrared spectrum. In molecular clouds like Monoceros R2, the low temperatures and relatively high densities allow molecules to form, such as hydrogen, which under certain conditions emit strongly in the near infrared. Many of the pink and red structures that appear in the VISTA image are probably the glows from molecular hydrogen in outflows from young stars. Monoceros R2 has a dense core, no more than two light-years in extent, which is packed with very massive young stars, as well as a cluster of bright infrared sources, which are typically new-born massive stars still surrounded by dusty discs. This region lies at the centre of the image, where a much higher concentration of stars is visible on close inspection and where the prominent reddish features probably indicate emission from molecular hydrogen. The rightmost of the bright clouds in the centre of the picture is NGC 2170, the brightest reflection nebula in this region. In visible light, the nebulae appear as bright, light blue islands in a dark ocean, while in the infrared frenetic factories are revealed in their interiors where hundreds of massive stars are coming into existence. NGC 2170 is faintly visible through a small telescope and was discovered by William Herschel from England in 1784. Stars form in a process that typically lasts few million years and which takes place inside large clouds of interstellar gas and dust, hundreds of light-years across. Because the interstellar dust is opaque to visible light, infrared and radio observations are crucial in the understanding of the earliest stages of the stellar evolution. By mapping the southern sky systematically, VISTA will gather some 300 gigabytes per night, providing a huge amount of information on those regions that will be studied in greater detail by the Very Large Telescope (VLT), the Atacama Large Millimeter/submillimeter Array (ALMA) and, in the future, by the European Extremely Large Telescope (E-ELT). Notes [1] With its 4.1-metre primary mirror, VISTA is the largest survey telescope in the world and is equipped with the largest infrared camera on any telescope, with 67 million pixels. It is dedicated to sky surveys, which began early in 2010. Located on a peak next to Cerro Paranal, the home of the ESO VLT in northern Chile, VISTA shares the same exceptional observing conditions. Due to the remarkable quality of the sky in this area of the Atacama Desert, one of the driest sites on Earth, Cerro Armazones, located only 20 km away from Cerro Paranal, has been recently selected as the site for the future E-ELT. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  13. And Then There Were Three...!

    NASA Astrophysics Data System (ADS)

    2000-01-01

    VLT MELIPAL Achieves Successful "First Light" in Record Time This was a night to remember at the ESO Paranal Observatory! For the first time, three 8.2-m VLT telescopes were observing in parallel, with a combined mirror surface of nearly 160 m 2. In the evening of January 26, the third 8.2-m Unit Telescope, MELIPAL ("The Southern Cross" in the Mapuche language), was pointed to the sky for the first time and successfully achieved "First Light". During this night, a number of astronomical exposures were made that served to evaluate provisionally the performance of the new telescope. The ESO staff expressed great satisfaction with MELIPAL and there were broad smiles all over the mountain. The first images ESO PR Photo 04a/00 ESO PR Photo 04a/00 [Preview - JPEG: 400 x 352 pix - 95k] [Normal - JPEG: 800 x 688 pix - 110k] Caption : ESO PR Photo 04a/00 shows the "very first light" image for MELIPAL . It is that of a relatively bright star, as recorded by the Guide Probe at about 21:50 hrs local time on January 26, 2000. It is a 0.1 sec exposure, obtained after preliminary adjustment of the optics during a few iterations with the computer controlled "active optics" system. The image quality is measured as 0.46 arcsec FWHM (Full-Width at Half Maximum). ESO PR Photo 04b/00 ESO PR Photo 04b/00 [Preview - JPEG: 400 x 429 pix - 39k] [Normal - JPEG: 885 x 949 pix - 766k] Caption : ESO PR Photo 04b/00 shows the central region of the Crab Nebula, the famous supernova remnant in the constellation Taurus (The Bull). It was obtained early in the night of "First Light" with the third 8.2-m VLT Unit Telescope, MELIPAL . It is a composite of several 30-sec exposures with the VLT Test Camera in three broad-band filters, B (here rendered as blue; most synchrotron emission), V (green) and R (red; mostly emission from hydrogen atoms). The Crab Pulsar is visible to the left; it is the lower of the two brightest stars near each other. The image quality is about 0.9 arcsec, and is completely determined by the external seeing caused by the atmospheric turbulence above the telescope at the time of the observation. The coloured, vertical lines to the left are artifacts of a "bad column" of the CCD. The field measures about 1.3 x 1.3 arcmin 2. This image may be compared with that of the same area that was recently obtained with the FORS2 instrument at KUEYEN ( PR Photo 40g/99 ). Following two days of preliminary adjustments after the installation of the secondary mirror, cf. ESO PR Photos 03a-n/00 , MELIPAL was pointed to the sky above Paranal for the first time, soon after sunset in the evening of January 26. The light of a bright star was directed towards the Guide Probe camera, and the VLT Commissioning Team, headed by Dr. Jason Spyromilio , initiated the active optics procedure . This adjusts the 150 computer-controlled supports under the main 8.2-m Zerodur mirror as well as the position of the secondary 1.1-m Beryllium mirror. After just a few iterations, the optical quality of the recorded stellar image was measured as 0.46 arcsec ( PR Photo 04a/00 ), a truly excellent value, especially at this stage! Immediately thereafter, at 22:16 hrs local time (i.e., at 01:16 hrs UT on January 27), the shutter of the VLT Test Camera at the Cassegrain focus was opened. A 1-min exposure was made through a R(ed) optical filter of a distant star cluster in the constellation Eridanus (The River). The light from its faint stars was recorded by the CCD at the focal plane and the resulting frame was read into the computer. Despite the comparatively short exposure time, myriads of stars were seen when this "first frame" was displayed on the computer screen. Moreover, the sizes of these images were found to be virtually identical to the 0.6 arcsec seeing measured simultaneously with a monitor telescope, outside the telescope enclosure. This confirmed that MELIPAL was in very good shape. Nevertheless, these very first images were still slightly elongated and further optical adjustments and tests were therefore made to eliminate this unwanted effect. It is a tribute to the extensive experience and fine skills of the ESO staff that within only 1 hour, a 30 sec exposure of the central region of the Crab Nebula in Taurus with round images was obtained, cf. PR Photo 04b/00 . The ESO Director General, Dr. Catherine Cesarsky , who assumed her function in September 1999, was present in the Control Room during these operations. She expressed great satisfaction with the excellent result and warmly congratulated the ESO staff to this achievement. She was particularly impressed with the apparent ease with which a completely new telescope of this size could be adjusted in such a short time. A part of her statement on this occasion was recorded on ESO PR Video Clip 02/00 that accompanies this Press Release. Three telescopes now in operation at Paranal At 02:30 UT on January 27, 2000, three VLT Unit Telescopes were observing in parallel, with measured seeing values of 0.6 arcsec ( ANTU - "The Sun"), 0.7 arcsec ( KUEYEN -"The Moon") and 0.7 arcsec ( MELIPAL ). MELIPAL has now joined ANTU and KUEYEN that had "First Light" in May 1998 and March 1999, respectively. The fourth VLT Unit Telescope, YEPUN ("Sirius") will become operational later this year. While normal scientific observations continue with ANTU , the UVES and FORS2 astronomical instruments are now being commissioned at KUEYEN , before this telescope will be handed over to the astronomers on April 1, 2000. The telescope commissioning period will now start for MELIPAL , after which its first instrument, VIMOS will be installed later this year. Impressions from the MELIPAL "First Light" event First Light for MELIPAL ESO PR Video Clip 02/00 "First Light for MELIPAL" (3350 frames/2:14 min) [MPEG Video+Audio; 160x120 pix; 3.1Mb] [MPEG Video+Audio; 320x240 pix; 9.4 Mb] [RealMedia; streaming; 34kps] [RealMedia; streaming; 200kps] ESO Video Clip 02/00 shows sequences from the Control Room at the Paranal Observatory, recorded with a fixed TV-camera on January 27 at 03:00 UT, soon after the moment of "First Light" with the third 8.2-m VLT Unit Telescope ( MELIPAL ). The video sequences were transmitted via ESO's dedicated satellite communication link to the Headquarters in Garching for production of the Clip. It begins with a statement by the Manager of the VLT Project, Dr. Massimo Tarenghi , as exposures of the Crab Nebula are obtained with the telescope and the raw frames are successively displayed on the monitor screen. In a following sequence, ESO's Director General, Dr. Catherine Cesarsky , briefly relates the moment of "First Light" for MELIPAL , as she experienced it at the telescope controls. ESO Press Photo 04c/00 ESO Press Photo 04c/00 [Preview; JPEG: 400 x 300; 44k] [Full size; JPEG: 1600 x 1200; 241k] The computer screen with the image of a bright star, as recorded by the Guide Probe in the early evening of January 26; see also PR Photo 04a/00. This image was used for the initial adjustments by means of the active optics system. (Digital Photo). ESO Press Photo 04d/00 ESO Press Photo 04d/00 [Preview; JPEG: 400 x 314; 49k] [Full size; JPEG: 1528 x 1200; 189k] ESO staff at the moment of "First Light" for MELIPAL in the evening of January 26. The photo was made in the wooden hut on the telescope observing floor from where the telescope was controlled during the first hours. (Digital Photo). ESO PR Photos may be reproduced, if credit is given to the European Southern Observatory. The ESO PR Video Clips service to visitors to the ESO website provides "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clip 01/00 with aerial sequences from Paranal (12 January 2000). Information is also available on the web about other ESO videos.

  14. R Coronae Australis: A Cosmic Watercolour

    NASA Astrophysics Data System (ADS)

    2010-06-01

    This magnificent view of the region around the star R Coronae Australis was created from images taken with the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile. R Coronae Australis lies at the heart of a nearby star-forming region and is surrounded by a delicate bluish reflection nebula embedded in a huge dust cloud. The image reveals surprising new details in this dramatic area of sky. The star R Coronae Australis lies in one of the nearest and most spectacular star-forming regions. This portrait was taken by the Wide Field Imager (WFI) on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. The image is a combination of twelve separate pictures taken through red, green and blue filters. This image shows a section of sky that spans roughly the width of the full Moon. This is equivalent to about four light-years at the distance of the nebula, which is located some 420 light-years away in the small constellation of Corona Australis (the Southern Crown). The complex is named after the star R Coronae Australis, which lies at the centre of the image. It is one of several stars in this region that belong to the class of very young stars that vary in brightness and are still surrounded by the clouds of gas and dust from which they formed. The intense radiation given off by these hot young stars interacts with the gas surrounding them and is either reflected or re-emitted at a different wavelength. These complex processes, determined by the physics of the interstellar medium and the properties of the stars, are responsible for the magnificent colours of nebulae. The light blue nebulosity seen in this picture is mostly due to the reflection of starlight off small dust particles. The young stars in the R Coronae Australis complex are similar in mass to the Sun and do not emit enough ultraviolet light to ionise a substantial fraction of the surrounding hydrogen. This means that the cloud does not glow with the characteristic red colour seen in many star-forming regions. The huge dust cloud in which the reflection nebula is embedded is here shown in impressively fine detail. The subtle colours and varied textures of the dust clouds make this image resemble an impressionist painting. A prominent dark lane crosses the image from the centre to the bottom left. Here the visible light emitted by the stars that are forming inside the cloud is completely absorbed by the dust. These objects could only be detected by observing at longer wavelengths, by using a camera that can detect infrared radiation. R Coronae Australis itself is not visible to the unaided eye, but the tiny, tiara-shaped constellation in which it lies is easily spotted from dark sites due to its proximity on the sky to the larger constellation of Sagittarius and the rich star clouds towards the centre of our own galaxy, the Milky Way. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  15. Quantifying photometric observing conditions on Paranal using an IR camera

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Querel, Richard R.; Hanuschik, Reinhard

    2014-08-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. In addition to measuring precipitable water vapour (PWV) the instrument also contains an IR camera measuring sky brightness temperature at 10.5 μm. Due to its extended operating range down to -100 °C it is capable of detecting very cold and very thin, even sub-visual, cirrus clouds. We present a set of instrument flux calibration values as compared with a detrended fluctuation analysis (DFA) of the IR camera zenith-looking sky brightness data measured above Paranal taken over the past two years. We show that it is possible to quantify photometric observing conditions and that the method is highly sensitive to the presence of even very thin clouds but robust against variations of sky brightness caused by effects other than clouds such as variations of precipitable water vapour. Hence it can be used to determine photometric conditions for science operations. About 60 % of nights are free of clouds on Paranal. More work will be required to classify the clouds using this technique. For the future this approach might become part of VLT science operations for evaluating nightly sky conditions.

  16. VISTA: Pioneering New Survey Telescope Starts Work

    NASA Astrophysics Data System (ADS)

    2009-12-01

    A new telescope - VISTA (the Visible and Infrared Survey Telescope for Astronomy) - has just started work at ESO's Paranal Observatory and has made its first release of pictures. VISTA is a survey telescope working at infrared wavelengths and is the world's largest telescope dedicated to mapping the sky. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. Spectacular new images of the Flame Nebula, the centre of our Milky Way galaxy and the Fornax Galaxy Cluster show that it is working extremely well. VISTA is the latest telescope to be added to ESO's Paranal Observatory in the Atacama Desert of northern Chile. It is housed on the peak adjacent to the one hosting the ESO Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA's main mirror is 4.1 metres across and is the most highly curved mirror of this size and quality ever made - its deviations from a perfect surface are less than a few thousandths of the thickness of a human hair - and its construction and polishing presented formidable challenges. VISTA was conceived and developed by a consortium of 18 universities in the United Kingdom [1] led by Queen Mary, University of London and became an in-kind contribution to ESO as part of the UK's accession agreement. The telescope design and construction were project-managed by the Science and Technology Facilities Council's UK Astronomy Technology Centre (STFC, UK ATC). Provisional acceptance of VISTA was formally granted by ESO at a ceremony at ESO's Headquarters in Garching, Germany, attended by representatives of Queen Mary, University of London and STFC, on 10 December 2009 and the telescope will now be operated by ESO. "VISTA is a unique addition to ESO's observatory on Cerro Paranal. It will play a pioneering role in surveying the southern sky at infrared wavelengths and will find many interesting targets for further study by the Very Large Telescope, ALMA and the future European Extremely Large Telescope," says Tim de Zeeuw, the ESO Director General. At the heart of VISTA is a 3-tonne camera containing 16 special detectors sensitive to infrared light, with a combined total of 67 million pixels. Observing at wavelengths longer than those visible with the human eye allows VISTA to study objects that are otherwise impossible to see in visible light because they are either too cool, obscured by dust clouds or because they are so far away that their light has been stretched beyond the visible range by the expansion of the Universe. To avoid swamping the faint infrared radiation coming from space, the camera has to be cooled to -200 degrees Celsius and is sealed with the largest infrared-transparent window ever made. The VISTA camera was designed and built by a consortium including the Rutherford Appleton Laboratory, the UK ATC and the University of Durham in the United Kingdom. Because VISTA is a large telescope that also has a large field of view it can both detect faint sources and also cover wide areas of sky quickly. Each VISTA image captures a section of sky covering about ten times the area of the full Moon and it will be able to detect and catalogue objects over the whole southern sky with a sensitivity that is forty times greater than that achieved with earlier infrared sky surveys such as the highly successful Two Micron All-Sky Survey. This jump in observational power - comparable to the step in sensitivity from the unaided eye to Galileo's first telescope - will reveal vast numbers of new objects and allow the creation of far more complete inventories of rare and exotic objects in the southern sky. "We're delighted to have been able to provide the astronomical community with the VISTA telescope. The exceptional quality of the scientific data is a tribute to all the scientists and engineers who were involved in this exciting and challenging project," adds Ian Robson, Head of the UK ATC. The first released image shows the Flame Nebula (NGC 2024), a spectacular star-forming cloud of gas and dust in the familiar constellation of Orion (the Hunter) and its surroundings. In visible light the core of the object is hidden behind thick clouds of dust, but the VISTA image, taken at infrared wavelengths, can penetrate the murk and reveal the cluster of hot young stars hidden within. The wide field of view of the VISTA camera also captures the glow of NGC 2023 and the ghostly form of the famous Horsehead Nebula. The second image is a mosaic of two VISTA views towards the centre of our Milky Way galaxy in the constellation of Sagittarius (the Archer). Vast numbers of stars are revealed - this single picture shows about one million stars - and the majority are normally hidden behind thick dust clouds and only become visible at infrared wavelengths. For the final image, VISTA has stared far beyond our galaxy to take a family photograph of a cluster of galaxies in the constellation of Fornax (the Chemical Furnace). The wide field allows many galaxies to be captured in a single image including the striking barred-spiral NGC 1365 and the big elliptical galaxy NGC 1399. VISTA will spend almost all of its time mapping the southern sky in a systematic fashion. The telescope is embarking on six major sky surveys with different scientific goals over its first five years. One survey will cover the entire southern sky and others will be dedicated to smaller regions to be studied in greater detail. VISTA's surveys will help our understanding of the nature, distribution and origin of known types of stars and galaxies, map the three-dimensional structure of our galaxy and the neighbouring Magellanic Clouds, and help determine the relation between the structure of the Universe and the mysterious dark energy and dark matter. The huge data volumes - typically 300 gigabytes per night or more than 100 terabytes per year - will flow back into the ESO digital archive and will be processed into images and catalogues at data centres in the United Kingdom at the Universities of Cambridge and Edinburgh. All data will become public and be available to astronomers around the globe. Jim Emerson of Queen Mary, University of London and leader of the VISTA consortium, is looking forward to a rich harvest of science from the new telescope: "History has shown us some of the most exciting results that come out of projects like VISTA are the ones you least expect - and I'm personally very excited to see what these will be!" Notes [1] The VISTA Consortium is led by Queen Mary, University of London and consists of: Queen Mary, University of London; Queen's University of Belfast; University of Birmingham; University of Cambridge; Cardiff University; University of Central Lancashire; University of Durham; The University of Edinburgh; University of Hertfordshire; Keele University; Leicester University; Liverpool John Moores University; University of Nottingham; University of Oxford; University of St Andrews; University of Southampton; University of Sussex and University College London. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  17. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third image is of NGC 1300, a spiral galaxy with arms extending from the ends of a spectacularly prominent central bar. It is considered a prototypical example of barred spiral galaxies and lies at a distance of about 65 million light-years, in the constellation of Eridanus (the River). The spiral galaxy in the fourth image, NGC 4030, lies about 75 million light-years from Earth, in the constellation of Virgo. In 2007 Takao Doi, a Japanese astronaut who doubles as an amateur astronomer, spotted a supernova - a stellar explosion that is briefly almost as bright as its host galaxy - going off in this galaxy. The fifth image, NGC 2997, is a spiral galaxy roughly 30 million light-years away in the constellation of Antlia (the Air Pump). NGC 2997 is the brightest member of a group of galaxies of the same name in the Local Supercluster of galaxies. Our own Local Group, of which the Milky Way is a member, is itself also part of the Local Supercluster. Last but not least, NGC 1232 is a beautiful galaxy some 65 million light-years away in the constellation of Eridanus (the River). The galaxy is classified as an intermediate spiral galaxy - somewhere between a barred and an unbarred spiral galaxy. An image of this galaxy and its small companion galaxy NGC 1232A in visible light was one of the first produced by the VLT (eso9845). HAWK-I has now returned to NGC 1232 to show a different view of it at near-infrared wavelengths. As this galactic gallery makes clear, HAWK-I lets us see the spiral structures in these six bright galaxies in exquisite detail and with a clarity that is only made possible by observing in the infrared. Notes [1] HAWK-I stands for High-Acuity Wide-field K-band Imager. More technical details about the camera can be found in an earlier press release (eso0736). [2] More information about the VLT instruments can be found at: http://www.eso.org/public/teles-instr/vlt/vlt-instr.html. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  18. Opening up a Colourful Cosmic Jewel Box

    NASA Astrophysics Data System (ADS)

    2009-10-01

    The combination of images taken by three exceptional telescopes, the ESO Very Large Telescope on Cerro Paranal , the MPG/ESO 2.2-metre telescope at ESO's La Silla observatory and the NASA/ESA Hubble Space Telescope, has allowed the stunning Jewel Box star cluster to be seen in a whole new light. Star clusters are among the most visually alluring and astrophysically fascinating objects in the sky. One of the most spectacular nestles deep in the southern skies near the Southern Cross in the constellation of Crux. The Kappa Crucis Cluster, also known as NGC 4755 or simply the "Jewel Box" is just bright enough to be seen with the unaided eye. It was given its nickname by the English astronomer John Herschel in the 1830s because the striking colour contrasts of its pale blue and orange stars seen through a telescope reminded Herschel of a piece of exotic jewellery. Open clusters [1] such as NGC 4755 typically contain anything from a few to thousands of stars that are loosely bound together by gravity. Because the stars all formed together from the same cloud of gas and dust their ages and chemical makeup are similar, which makes them ideal laboratories for studying how stars evolve. The position of the cluster amongst the rich star fields and dust clouds of the southern Milky Way is shown in the very wide field view generated from the Digitized Sky Survey 2 data. This image also includes one of the stars of the Southern Cross as well as part of the huge dark cloud of the Coal Sack [2]. A new image taken with the Wide Field Imager (WFI) on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile shows the cluster and its rich surroundings in all their multicoloured glory. The large field of view of the WFI shows a vast number of stars. Many are located behind the dusty clouds of the Milky Way and therefore appear red [3]. The FORS1 instrument on the ESO Very Large Telescope (VLT) allows a much closer look at the cluster itself. The telescope's huge mirror and exquisite image quality have resulted in a brand-new, very sharp view despite a total exposure time of just 5 seconds. This new image is one of the best ever taken of this cluster from the ground. The Jewel Box may be visually colourful in images taken on Earth, but observing from space allows the NASA/ESA Hubble Space Telescope to capture light of shorter wavelengths than can not be seen by telescopes on the ground. This new Hubble image of the core of the cluster represents the first comprehensive far ultraviolet to near-infrared image of an open galactic cluster. It was created from images taken through seven filters, allowing viewers to see details never seen before. It was taken near the end of the long life of the Wide Field Planetary Camera 2 ― Hubble's workhorse camera up until the recent Servicing Mission, when it was removed and brought back to Earth. Several very bright, pale blue supergiant stars, a solitary ruby-red supergiant and a variety of other brilliantly coloured stars are visible in the Hubble image, as well as many much fainter ones. The intriguing colours of many of the stars result from their differing intensities at different ultraviolet wavelengths. The huge variety in brightness of the stars in the cluster exists because the brighter stars are 15 to 20 times the mass of the Sun, while the dimmest stars in the Hubble image are less than half the mass of the Sun. More massive stars shine much more brilliantly. They also age faster and make the transition to giant stars much more quickly than their faint, less-massive siblings. The Jewel Box cluster is about 6400 light-years away and is approximately 16 million years old. Notes [1] Open, or galactic, star clusters are not to be confused with globular clusters ― huge balls of tens of thousands of ancient stars in orbit around our galaxy and others. It seems that most stars, including our Sun, formed in open clusters. [2] The Coal Sack is a dark nebula in the Southern Hemisphere, near the Southern Cross, that can be seen with the unaided eye. A dark nebula is not the complete absence of light, but an interstellar cloud of thick dust that obscures most background light in the visible. [3] If the light from a distant star passes through dust clouds in space the blue light is scattered and absorbed more than the red. As a result the starlight looks redder when it arrives on Earth. The same effect creates the glorious red colours of terrestrial sunsets. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky". The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

  19. An Eagle of Cosmic Proportions

    NASA Astrophysics Data System (ADS)

    2009-07-01

    Today ESO has released a new and stunning image of the sky around the Eagle Nebula, a stellar nursery where infant star clusters carve out monster columns of dust and gas. Located 7000 light-years away, towards the constellation of Serpens (the Snake), the Eagle Nebula is a dazzling stellar nursery, a region of gas and dust where young stars are currently being formed and where a cluster of massive, hot stars, NGC 6611, has just been born. The powerful light and strong winds from these massive new arrivals are shaping light-year long pillars, seen in the image partly silhouetted against the bright background of the nebula. The nebula itself has a shape vaguely reminiscent of an eagle, with the central pillars being the "talons". The star cluster was discovered by the Swiss astronomer, Jean Philippe Loys de Chéseaux, in 1745-46. It was independently rediscovered about twenty years later by the French comet hunter, Charles Messier, who included it as number 16 in his famous catalogue, and remarked that the stars were surrounded by a faint glow. The Eagle Nebula achieved iconic status in 1995, when its central pillars were depicted in a famous image obtained with the NASA/ESA Hubble Space Telescope. In 2001, ESO's Very Large Telescope (VLT) captured another breathtaking image of the nebula in the near-infrared, giving astronomers a penetrating view through the obscuring dust, and clearly showing stars being formed in the pillars. The newly released image, obtained with the Wide-Field Imager camera attached to the MPG/ESO 2.2-metre telescope at La Silla, Chile, covers an area on the sky as large as the full Moon, and is about 15 times more extensive than the previous VLT image, and more than 200 times more extensive than the iconic Hubble visible-light image. The whole region around the pillars can now be seen in exquisite detail. The "Pillars of Creation" are in the middle of the image, with the cluster of young stars, NGC 6611, lying above and to the right. The "Spire" - another pillar captured by Hubble - is at the centre left of the image. Finger-like features protrude from the vast cloud wall of cold gas and dust, not unlike stalagmites rising from the floor of a cave. Inside the pillars, the gas is dense enough to collapse under its own weight, forming young stars. These light-year long columns of gas and dust are being simultaneously sculpted, illuminated and destroyed by the intense ultraviolet light from massive stars in NGC 6611, the adjacent young stellar cluster. Within a few million years - a mere blink of the universal eye - they will be gone forever. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  20. A Milestone for the VLT Interferometer

    NASA Astrophysics Data System (ADS)

    2000-10-01

    Less than one month after "First Light" for the fourth 8.2-m YEPUN telescope ( ESO PR 18/00 ), another special moment occurred at ESO's Paranal Observatory. This time, it was the first truly "underground" event, in the 168-metre long Interferometric Tunnel that has been dug beneath the platform at the top of the mountain. As one staff member remarked on this occasion, it was something like "the first scheduled trip of the Paranal metro"! With the successful integration of the first Delay Line on Monday, September 25th, 2000, ESO has accomplished another important step towards the VLT Interferometer (VLTI). It will be followed by the integration of the second Delay Line by the end of November and the third is scheduled for February 2001; both are now in their final development phase in Europe. "VLTI First Light" is then expected to take place soon thereafter, by means of two small special telescopes ("siderostats"). The combination of the light beams from two of the 8.2-m Unit Telescopes will happen in mid-2001. The VLTI Delay Lines The VLTI Delay Lines form essential parts of this very complicated optical system. They serve to ensure that the light beams from several telescopes arrive in phase at the common interferometric focus. Details about how they function may be found in ESO PR 04/98. In order to achieve the necessary performance, ESO has worked with two Dutch contractors, Fokker Space and TNO-TPD - Netherlands Organization for Applied Scientific Research - Institute of Applied Physics , to arrive at a totally new Delay Line concept. Another Dutch participant in the VLTI project is the Nova-ESO VLTI Expertise Centre (NEVEC) , cf. ESO PR 14/00. The installation at Paranal The last twelve months have been very busy for the integration team, with much preparatory work at the VLTI buildings for the final installation of the Delay Line systems. The assembly of the translation mechanisms for the first two Delay Lines in the tunnel started in mid-2000. This included the alignment of their rails and supports to the extreme accuracy of about 0.25 mm over a total distance of 66.7 metres ( PR Photos 26a-b/00 ). To achieve such an unusually high precision, ESO - in collaboration with the French company FOGALE - developed a measurement system that is based on the water-level principle. The delicate assembly and alignment of the critical sub-systems of the Delay Line were undertaken with the support of Fokker Space and TPD/TNO ( PR Photo 26e/00 ). Also for this, state-of-the-art methods were required in order to ensure a stringent performance of the system. This includes optical alignment of the optics with an accuracy at the arcsec level and positioning of the linear motors at the 0.01 mm (10 µm) level. The Delay Line is one of the key systems in the VLT Interferometer. It is responsible for the compensation of the length of the optical path that is different from the individual telescopes. Extreme accuracy needed In the case of the VLT, this accuracy of the path length compensation must be within a tolerance of only 0.05 µm (0.00005 mm) over a distance of 120 metres. The present concept by ESO and the Dutch contractors is based on a retro-reflector (a "Cat's Eye") that is fixed on a carriage that runs on two stainless steel rails ( PR Photos 26c-d/00 ). The motion on these rails is performed by a 60 metres linear motor and a piezo-transducer element. They are controlled by a laser metrology system that measures the instantaneous distances betwen the mirrors with the required accuracy. This carriage is 2.5 metres long and weighs 250 kg. The total friction force is less than 50 grammes, thanks to the extreme accuracy of the rail alignment and special ball bearings. Because of this, the total power required for the Delay Line operation is only about 15 W. The mirrors of the retro-reflector are made of aluminium by REOSC (France). They have been coated with a single layer of gold for the best possible reflection at infrared wavelengths. This is the caption to ESO PR Photos 26a-e/00 . They may be reproduced, if credit is given to the European Southern Observatory. Note, however, that since these photos were electronically recorded and were primarily obtained to document the ongoing activities at Paranal, they are not of full professional quality for photographic reproduction.

  1. The Cosmic Bat - An Island of Stars in the Making on the Outskirts of Orion

    NASA Astrophysics Data System (ADS)

    2010-03-01

    The delicate nebula NGC 1788, located in a dark and often neglected corner of the Orion constellation, is revealed in a new and finely nuanced image that ESO is releasing today. Although this ghostly cloud is rather isolated from Orion's bright stars, the latter's powerful winds and light have had a strong impact on the nebula, forging its shape and making it home to a multitude of infant suns. Stargazers all over the world are familiar with the distinctive profile of the constellation of Orion (the Hunter). Fewer know about the nebula NGC 1788, a subtle, hidden treasure just a few degrees away from the bright stars in Orion's belt. NGC 1788 is a reflection nebula, whose gas and dust scatter the light coming from a small cluster of young stars in such a way that the tenuous glow forms a shape reminiscent of a gigantic bat spreading its wings. Very few of the stars belonging to the nebula are visible in this image, as most of them are obscured by the dusty cocoons surrounding them. The most prominent, named HD 293815, can be distinguished as the bright star in the upper part of the cloud, just above the centre of the image and the pronounced dark lane of dust extending through the nebula. Although NGC 1788 appears at first glance to be an isolated cloud, observations covering a field beyond the one presented in this image have revealed that bright, massive stars, belonging to the vast stellar groupings in Orion, have played a decisive role in shaping NGC 1788 and stimulating the formation of its stars. They are also responsible for setting the hydrogen gas ablaze in the parts of the nebula facing Orion, leading to the red, almost vertical rim visible in the left half of the image. All the stars in this region are extremely young, with an average age of only a million years, a blink of an eye compared to the Sun's age of 4.5 billion years. Analysing them in detail, astronomers have discovered that these "preschool" stars fall naturally into three well separated classes: the slightly older ones, located on the left side of the red rim, the fairly young ones, to its right, making up the small cluster enclosed in the nebula and illuminating it, and eventually the very youngest stars, still deeply embedded in their nascent dusty cocoons, further to the right. Although none of the latter are visible in this image because of the obscuring dust, dozens of them have been revealed through observations in the infrared and millimetre wavelengths of light. This fine distribution of stars, with the older ones closer to Orion and the younger ones concentrated on the opposite side, suggests that a wave of star formation, generated around the hot and massive stars in Orion, propagated throughout NGC 1788 and beyond. This image has been obtained using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  2. Trifid Triple Treat

    NASA Astrophysics Data System (ADS)

    2009-09-01

    Today ESO has released a new image of the Trifid Nebula, showing just why it is a firm favourite of astronomers, amateur and professional alike. This massive star factory is so named for the dark dust bands that trisect its glowing heart, and is a rare combination of three nebula types, revealing the fury of freshly formed stars and presaging more star birth. Smouldering several thousand light-years away in the constellation of Sagittarius (the Archer), the Trifid Nebula presents a compelling portrait of the early stages of a star's life, from gestation to first light. The heat and "winds" of newly ignited, volatile stars stir the Trifid's gas and dust-filled cauldron; in time, the dark tendrils of matter strewn throughout the area will themselves collapse and form new stars. The French astronomer Charles Messier first observed the Trifid Nebula in June 1764, recording the hazy, glowing object as entry number 20 in his renowned catalogue. Observations made about 60 years later by John Herschel of the dust lanes that appear to divide the cosmic cloud into three lobes inspired the English astronomer to coin the name "Trifid". Made with the Wide-Field Imager camera attached to the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in northern Chile, this new image prominently displays the different regions of the Trifid Nebula as seen in visible light. In the bluish patch to the upper left, called a reflection nebula, dusty gas scatters the light from nearby, Trifid-born stars. The largest of these stars shines most brightly in the hot, blue portion of the visible spectrum. This, along with the fact that dust grains and molecules scatter blue light more efficiently than red light - a property that explains why we have blue skies and red sunsets - imbues this portion of the Trifid Nebula with an azure hue. Below, in the round, pink-reddish area typical of an emission nebula, the gas at the Trifid's core is heated by hundreds of scorching young stars until it emits the red signature light of hydrogen, the major component of the gas, just as hot neon gas glows red-orange in illuminated signs all over the world. The gases and dust that crisscross the Trifid Nebula make up the third kind of nebula in this cosmic cloud, known as dark nebulae, courtesy of their light-obscuring effects. (The iconic Horsehead Nebula may be the most famous of these. Within these dark lanes, the remnants of previous star birth episodes continue to coalesce under gravity's inexorable attraction. The rising density, pressure and temperature inside these gaseous blobs will eventually trigger nuclear fusion, and yet more stars will form. In the lower part of this emission nebula, a finger of gas pokes out from the cloud, pointing directly at the central star powering the Trifid. This is an example of an evaporating gaseous globule, or "EGG", also seen in the Eagle Nebula, another star-forming region. At the tip of the finger, which was photographed by Hubble, a knot of dense gas has resisted the onslaught of radiation from the massive star. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  3. VISTA Stares Deeply into the Blue Lagoon

    NASA Astrophysics Data System (ADS)

    2011-01-01

    This new infrared image of the Lagoon Nebula was captured as part of a five-year study of the Milky Way using ESO's VISTA telescope at the Paranal Observatory in Chile. This is a small piece of a much larger image of the region surrounding the nebula, which is, in turn, only one part of a huge survey. Astronomers are currently using ESO's Visible and Infrared Survey Telescope for Astronomy (VISTA) to scour the Milky Way's central regions for variable objects and map its structure in greater detail than ever before. This huge survey is called VISTA Variables in the Via Lactea (VVV) [1]. The new infrared image presented here was taken as part of this survey. It shows the stellar nursery called the Lagoon Nebula (also known as Messier 8, see eso0936), which lies about 4000-5000 light-years away in the constellation of Sagittarius (the Archer). Infrared observations allow astronomers to peer behind the veil of dust that prevents them from seeing celestial objects in visible light. This is because visible light, which has a wavelength that is about the same size as the dust particles, is strongly scattered, but the longer wavelength infrared light can pass through the dust largely unscathed. VISTA, with its 4.1-metre diameter mirror - the largest survey telescope in the world - is dedicated to surveying large areas of the sky at near-infrared wavelengths deeply and quickly. It is therefore ideally suited to studying star birth. Stars typically form in large molecular clouds of gas and dust, which collapse under their own weight. The Lagoon Nebula, however, is also home to a number of much more compact regions of collapsing gas and dust, called Bok globules [2]. These dark clouds are so dense that, even in the infrared, they can block the starlight from background stars. But the most famous dark feature in the nebula, for which it is named, is the lagoon-shaped dust lane that winds its way through the glowing cloud of gas. Hot, young stars, which give off intense ultraviolet light, are responsible for making the nebula glow brightly. But the Lagoon Nebula is also home to much younger stellar infants. Newborn stars have been detected in the nebula that are so young that they are still surrounded by their natal accretion discs. Such new born stars occasionally eject jets of matter from their poles. When this ejected material ploughs into the surrounding gas short-lived bright streaks called Herbig-Haro objects [3] are formed, making the new-borns easy to spot. In the last five years, several Herbig-Haro objects have been detected in the Lagoon Nebula, so the baby boom is clearly still in progress here. Notes [1] This survey, one of six VISTA surveys currently in progress, will image the central parts of the Milky Way many times over a period of five years and will detect huge numbers of new variable objects. [2] Bart Bok was a Dutch-American astronomer who spent most of his long career in the United States and Australia. He first noticed the dark spots that now bear his name, in star formation regions and speculated that they may be associated with the earliest stages of star formation. The hidden baby stars were only observed directly when infrared imaging was possible several decades later. [3] Although not the first to see such objects, the astronomers George Herbig and Guillermo Haro were the first to study the spectra of these strange objects in detail and realise that they were not just clumps of gas and dust that reflected light, or glowed under the influence of the ultraviolet light from young stars, but were a new class of objects associated with star formation. More information The science team for VVV includes Dante Minniti (Universidad Catolica, Chile), Phil Lucas (University of Hertfordshire, UK), Ignacio Toledo (Universidad Catolica) and Maren Hempel (Universidad Catolica). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. On the RR Lyrae Stars in Globulars. V. The Complete Near-infrared (JHK s ) Census of ω Centauri RR Lyrae Variables

    NASA Astrophysics Data System (ADS)

    Braga, V. F.; Stetson, P. B.; Bono, G.; Dall’Ora, M.; Ferraro, I.; Fiorentino, G.; Iannicola, G.; Marconi, M.; Marengo, M.; Monson, A. J.; Neeley, J.; Persson, S. E.; Beaton, R. L.; Buonanno, R.; Calamida, A.; Castellani, M.; Di Carlo, E.; Fabrizio, M.; Freedman, W. L.; Inno, L.; Madore, B. F.; Magurno, D.; Marchetti, E.; Marinoni, S.; Marrese, P.; Matsunaga, N.; Minniti, D.; Monelli, M.; Nonino, M.; Piersimoni, A. M.; Pietrinferni, A.; Prada-Moroni, P.; Pulone, L.; Stellingwerf, R.; Tognelli, E.; Walker, A. R.; Valenti, E.; Zoccali, M.

    2018-03-01

    We present a new complete near-infrared (NIR, JHK s ) census of RR Lyrae stars (RRLs) in the globular ω Cen (NGC 5139). We collected 15,472 JHK s images with 4–8 m class telescopes over 15 years (2000–2015) covering a sky area around the cluster center of 60 × 34 arcmin2. These images provided calibrated photometry for 182 out of the 198 cluster RRL candidates with 10 to 60 measurements per band. We also provide new homogeneous estimates of the photometric amplitude for 180 (J), 176 (H) and 174 (K s ) RRLs. These data were supplemented with single-epoch JK s magnitudes from VHS and with single-epoch H magnitudes from 2MASS. Using proprietary optical and NIR data together with new optical light curves (ASAS-SN) we also updated pulsation periods for 59 candidate RRLs. As a whole, we provide JHK s magnitudes for 90 RRab (fundamentals), 103 RRc (first overtones) and one RRd (mixed-mode pulsator). We found that NIR/optical photometric amplitude ratios increase when moving from first overtone to fundamental and to long-period (P > 0.7 days) fundamental RRLs. Using predicted period–luminosity–metallicity relations, we derive a true distance modulus of 13.674 ± 0.008 ± 0.038 mag (statistical error and standard deviation of the median) based on spectroscopic iron abundances, and of 13.698 ± 0.004 ± 0.048 mag based on photometric iron abundances. We also found evidence of possible systematics at the 5%–10% level in the zero-point of the period–luminosity relations based on the five calibrating RRLs whose parallaxes had been determined with the HST. This publication makes use of data gathered with the Magellan/Baade Telescope at Las Campanas Observatory, the Blanco Telescope at Cerro Tololo Inter-American Observatory, NTT at La Silla (ESO Program IDs: 64.N-0038(A), 66.D-0557(A), 68.D-0545(A), 073.D-0313(A), ID 073.D-0313(A) and 59.A-9004(D)), VISTA at Paranal (ESO Program ID: 179.A-2010) and VLT at Paranal (ESO Program ID: ID96406).

  5. ESO Large Program on physical studies of Trans-Neptunian objects and Centaurs: Final results of the visible spectrophotometric observations

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Doressoundiram, A.; Tozzi, G. P.; Barucci, M. A.; Boehnhardt, H.; de Bergh, C.; Delsanti, A.; Davies, J.; Dotto, E.

    2004-07-01

    The Large Program on physical studies of TNOs and Centaurs, started at ESO Cerro Paranal on April 2001, has recently been concluded. This project was devoted to the investigation of the surface properties of these icy bodies through photometric and spectroscopic observations. In this paper we present the latest results on these pristine bodies obtained from the spectrophotometric investigation in the visible range. The newly obtained spectrophotometric data on 3 Centaurs and 5 TNOs, coming from 2 observing runs at the Very Large Telescope (VLT), show a large variety of spectral characteristics, comprising both gray and red objects in the two different populations. A very broad and weak absorption feature, centered around 7000 Å , has been revealed in the spectrum of the gray TNO 2003 AZ84. This absorption is very similar to a feature observed on low albedo main belt asteroids and attributed to the action of the aqueous alteration process on minerals. This process was previously also claimed as the most plausible explanation for some peculiar visible absorption bands observed on 2000 EB173 and 2000 GN171 in the framework of the Large Program (Lazzarin et al. \\cite{Lazzarin03}; de Bergh et al. \\cite{Bergh04}). This detection seems to reinforce the hypothesis that aqueous alteration might have taken place also at such large heliocentric distances. We also report the results of a spectroscopic investigation performed outside the Large Program on the very interesting TNO 2000 GN171 during part of its rotational period. This object, previously observed twice in the framework of the Large Program, had shown during the early observations a very peculiar absorption band tentatively attributed to aqueous alteration processes. As this feature was not confirmed in a successive spectrum, we recently repeated the investigations of 2000 GN171, finding out that it has an heterogeneous composition. Finally an analysis of the visible spectral slopes is reported for all the data coming from the Large Program and those available in literature. Based on observations obtained at the VLT Observatory Cerro Paranal of European Southern Observatory, ESO, Chile, in the framework of programs 167.C-0340(G), 071.C-0500.

  6. Closing the Loop for ALMA - Three antennas working in unison open new bright year for revolutionary observatory

    NASA Astrophysics Data System (ADS)

    2010-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) has passed a key milestone crucial for the high quality images that will be the trademark of this revolutionary new tool for astronomy. Astronomers and engineers have, for the first time, successfully linked three of the observatory's antennas at the 5000-metre elevation observing site in northern Chile. Having three antennas observing in unison paves the way for precise images of the cool Universe at unprecedented resolution, by providing the missing link to correct errors that arise when only two antennas are used. On 20 November 2009 the third antenna for the ALMA observatory was successfully installed at the Array Operations Site, the observatory's "high site" on the Chajnantor plateau, at an altitude of 5000 metres in the Chilean Andes. Later, after a series of technical tests, astronomers and engineers observed the first signals from an astronomical source making use of all three 12-metre diameter antennas linked together, and are now working around the clock to establish the stability and readiness of the system. "The first signal using just two ALMA antennas, observed in October, can be compared to a baby's first babblings," says Leonardo Testi, the European Project Scientist for ALMA at ESO. "Observing with a third antenna represents the moment when the baby says its very first, meaningful word - not yet a full sentence, but overwhelmingly exciting! The linking of three antennas is indeed the first actual step towards our goal of achieving precise and sharp images at submillimetre wavelengths." The successful linking of the antenna trio was a key test of the full electronic and software system now being installed at ALMA, and its success anticipates the future capabilities of the observatory. When complete, ALMA will have at least 66 high-tech antennas operating together as an "interferometer", working as a single, huge telescope probing the sky in the millimetre and submillimetre wavelengths of light. The combination of the signals received at the individual antennas is crucial to achieve images of astronomical sources of unprecedented quality at its designed observing wavelengths. The three-antenna linkup is a critical step towards the observatory's operations as an interferometer. Although the first, successful measurements employing just two antennas were obtained at the ALMA high site from October 2009 (see ESO Announcement) and demonstrated the excellent performance of the instruments, the addition of the third antenna is a leap of vital importance into the future of the observatory. This major milestone for the project is known as "phase closure" and provides an important independent check on the quality of the interferometry. "The use of a network of three (or more) antennas in an interferometer dramatically enhances its performance over a simple pair of antennas," explains Wolfgang Wild, the European ALMA Project Manager. "This gives astronomers control over possible features which degrade the quality of the image, arising due to the instrument or to atmospheric turbulence. By comparing the signals received simultaneously by the three individual antennas, these unwanted effects can be cancelled out - this is completely impossible using only two antennas." To achieve this crucial goal, astronomers observed the light coming from a distant extragalactic source, the quasar QSO B1921-293, well known to astronomers for its bright emission at very long wavelengths, including the millimetre/submillimetre range probed by ALMA. The stability of the signal measured from this object shows that the antennas are working impressively well. Several additional antennas will be installed on the Chajnantor plateau over the next year and beyond, allowing astronomers to start producing early scientific results with the ALMA system around 2011. After this, the interferometer will steadily grow to reach its full scientific potential, with at least 66 antennas. ALMA, an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. More information The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ESO is the European partner in ALMA. ALMA, the largest astronomical project in existence, is a revolutionary telescope, comprising an array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. ALMA will start scientific observations in 2011. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory, and VISTA, the world's largest survey telescope. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  7. Finland to Join ESO

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Finland will become the eleventh member state of the European Southern Observatory (ESO) [1]. Today, during a ceremony at the ESO Headquarters in Garching (Germany), a corresponding Agreement was signed by the Finnish Minister of Education and Science, Ms. Tuula Haatainen and the ESO Director General, Dr. Catherine Cesarsky, in the presence of other high officials from Finland and the ESO member states (see Video Clip 02/04 below). Following subsequent ratification by the Finnish Parliament of the ESO Convention and the associated protocols [2], it is foreseen that Finland will formally join ESO on July 1, 2004. Uniting European Astronomy ESO PR Photo 03/04 ESO PR Photo 03/04 Caption : Signing of the Finland-ESO Agreement on February 9, 2004, at the ESO Headquarters in Garching (Germany). At the table, the ESO Director General, Dr. Catherine Cesarsky, and the Finnish Minister of Education and Science, Ms. Tuula Haatainen . [Preview - JPEG: 400 x 499 pix - 52k] [Normal - JPEG: 800 x 997 pix - 720k] [Full Res - JPEG: 2126 x 2649 pix - 2.9M] The Finnish Minister of Education and Science, Ms. Tuula Haatainen, began her speech with these words: "On behalf of Finland, I am happy and proud that we are now joining the European Southern Observatory, one of the most successful megaprojects of European science. ESO is an excellent example of the potential of European cooperation in science, and along with the ALMA project, more and more of global cooperation as well." She also mentioned that besides science ESO offers many technological challenges and opportunities. And she added: "In Finland we will try to promote also technological and industrial cooperation with ESO, and we hope that the ESO side will help us to create good working relations. I am confident that Finland's membership in ESO will be beneficial to both sides." Dr. Catherine Cesarsky, ESO Director General, warmly welcomed the Finnish intention to join ESO. "With the accession of their country to ESO, Finnish astronomers, renowned for their expertise in many frontline areas, will have new, exciting opportunities for working on research programmes at the frontiers of modern astrophysics." "This is indeed the right time to join ESO", she added. "The four 8.2-m VLT Unit Telescopes with their many first-class instruments are working with unsurpassed efficiency at Paranal, probing the near and distant Universe and providing European astronomers with a goldmine of unique astronomical data. The implementation of the VLT Interferometer is progressing well and last year we entered into the construction phase of the intercontinental millimetre- and submillimetre-band Atacama Large Millimeter Array. And the continued design studies for gigantic optical/infrared telescopes like OWL are progressing fast. Wonderful horizons are indeed opening for the coming generations of European astronomers!" She was seconded by the President of the ESO Council, Professor Piet van der Kruit, "This is a most important step in the continuing evolution of ESO. By having Finland become a member of ESO, we welcome a country that has put in place a highly efficient and competitive innovation system with one of the fastest growths of research investment in the EU area. I have no doubt that the Finnish astronomers will not only make the best scientific use of ESO facilities but that they will also greatly contribute through their high quality R&D to technological developments which will benefit the whole ESO community. " Notes [1]: Current ESO member countries are Belgium, Denmark, France, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kindgdom. [2]: The ESO Convention was established in 1962 and specifies the goals of ESO and the means to achieve these, e.g., "The Governments of the States parties to this convention... desirous of jointly creating an observatory equipped with powerful instruments in the Southern hemisphere and accordingly promoting and organizing co-operation in astronomical research..." (from the Preamble to the ESO Convention).

  8. The Gaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities

    NASA Astrophysics Data System (ADS)

    Jackson, R. J.; Jeffries, R. D.; Lewis, J.; Koposov, S. E.; Sacco, G. G.; Randich, S.; Gilmore, G.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J. E.; Feltzing, S.; Ferguson, A. M. N.; Micela, G.; Neguerela, I.; Prusti, T.; Rix, H.-W.; Vallenari, A.; Alfaro, E. J.; Allende Prieto, C.; Babusiaux, C.; Bensby, T.; Blomme, R.; Bragaglia, A.; Flaccomio, E.; Francois, P.; Hambly, N.; Irwin, M.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Van Eck, S.; Walton, N.; Bayo, A.; Bergemann, M.; Carraro, G.; Costado, M. T.; Damiani, F.; Edvardsson, B.; Franciosini, E.; Frasca, A.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lind, K.; Magrini, L.; Marconi, G.; Martayan, C.; Masseron, T.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2015-08-01

    Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims: A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (vsini) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods: We present an analysis to empirically quantify the size and distribution of uncertainties in RV and vsini using spectra from repeated exposures of the same stars. Results: We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and vsini, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student's t-distributions than by normal distributions. Conclusions: Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the vsini precision for stars in young clusters, as a function of S/N, vsini and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 km s-1, dependent on instrumental configuration. Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia- ESO Large Public Survey (188.B-3002).Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A75

  9. The Cherenkov Telescope Array: Exploring the Very-high-energy Sky from ESO's Paranal Site

    NASA Astrophysics Data System (ADS)

    Hofmann, W.

    2017-06-01

    The Cherenkov Telescope Array (CTA) is a next-generation observatory for ground-based very-high-energy gamma-ray astronomy, using the imaging atmospheric Cherenkov technique to detect and reconstruct gamma-ray induced air showers. The CTA project is planning to deploy 19 telescopes on its northern La Palma site, and 99 telescopes on its southern site at Paranal, covering the 20 GeV to 300 TeV energy domain and offering vastly improved performance compared to currently operating Cherenkov telescopes. The combination of three different telescope sizes (23-, 12- and 4-metre) allows cost-effective coverage of the wide energy range. CTA will be operated as a user facility, dividing observation time between a guest observer programme and large Key Science Projects (KSPs), and the data will be made public after a one-year proprietary period. The history of the project, the implementation of the arrays, and some of the major science goals and KSPs, are briefly summarised.

  10. Deep Sky Diving with the ESO New Technology Telescope

    NASA Astrophysics Data System (ADS)

    1998-01-01

    Preparations for future cosmological observations with the VLT Within a few months, the first 8.2-meter Unit Telescope of the ESO Very Large Telescope (VLT) array will open its eye towards the sky above the Atacama desert. As documented by recent Press Photos from ESO, the construction work at the Paranal VLT Observatory is proceeding rapidly. Virtually all of the telescope components, including the giant Zerodur mirror (cf. ESO PR Photos 35a-l/97 ), are now on the mountain. While the integration of the telescope and its many optical, mechanical and electronic components continues, astronomers in the ESO member countries and at ESO are now busy defining the observing programmes that will be carried out with the new telescope, soon after it enters into operation. In this context, new and exciting observations have recently been obtained with the 3.5-m New Technology Telescope at the ESO La Silla Observatory, 600 km to the south of Paranal. How to record the faintest and most remote astronomical objects With its very large mirror surface (and correspondingly great light collecting power), as well as an unsurpassed optical quality, the VLT will be able to look exceedingly far out into the Universe, well beyond current horizons. The best technique to record the faintest possible light and thus the most remote celestial objects, is to combine large numbers of exposures of the same field with slightly different telescope pointing. This increases the total number of photons recorded and by imaging the stars and galaxies on different areas (pixels) of the detector, the signal-to-noise ratio and hence the visibility of the faintest objects is improved. The famous Hubble Deep Field Images were obtained in this way by combining over 300 single exposures and they show myriads of faint galaxies in the distant realms of the Universe. The NTT as test bench for the VLT ESO is in the fortunate situation of possessing a `prototype' model of the Very Large Telescope, the 3.5-m New Technology Telescope. Many of the advanced technological concepts now incorporated into the VLT were first tested in the NTT. When this new facility entered into operation at La Silla in 1990, it represented a break-through in telescope technology and it has since then made many valuable contributions to front-line astronomical projects. Last year, the control and data flow system at the NTT was thoroughly refurbished to the high VLT standards and current observations with the NTT closely simulate the future operation of the VLT. The successful, early tests with the new operations system have been described in ESO Press Release 03/97. The NTT SUSI Deep Field With the possibility to test already now observing procedures which will become standard for the operation of the VLT, a group of astronomers [1] was granted NTT time for observations of Faint Galaxies in an Ultra-Deep Multicolour SUSI field . This is a programme aimed at the study of the distribution of faint galaxies in the field and of gravitational lensing effects (cosmic mirages and deformation of images of distant galaxies caused by the gravitational field of intervening matter). SUSI (SUperb Seeing Imager) is a high-resolution CCD-camera at the NTT that is particularly efficient under excellent sky conditions. The observations were fully defined in advance and were carried out in service mode from February to April 1997 with flexible scheduling by a team of dedicated ESO astronomers (the NTT team). Only in this way was it possible to obtain the exposures under optimal atmospheric conditions, i.e. `photometric' sky and little atmospheric turbulence (seeing better than 1 arcsec). A total of 122 CCD frames were obtained in four colours (blue, green-yellow, red and near-infrared) with a total exposure time of no less than 31.5 hours. The frames cover a 2.3 x 2.3 arcmin `empty' sky field centered south of the high-redshift quasar QSO BR 1202-0725 (z=4.7), located just south of the celestial equator. ESO PR Photo 01a/98 Caption to ESO PR Photo 01/98 and access to two versions of the photo The frames were computer processed and combined to yield a colour view of the corresponding sky field ( ESO Press Photo 01/98 ). This is indeed a very deep look into the southern sky. The astronomers have found that the limiting magnitude (at a signal-to-noise ratio of 3) is beyond 27 in the blue and red frames and only slightly brighter in the two others. Magnitude 27 corresponds to a brightness that is 250 million times fainter than what can be perceived with the unaided eye. Although not as deep as the Hubble Deep Field due to the shorter exposure time and brighter sky background (caused by light emission in the upper layers of the terrestrial atmosphere), this new set of data is among the best ground-based observations of this type ever obtained. Galaxies down to a magnitude of roughly 25 will soon be targets of detailed spectroscopic observations with the VLT. They will provide a measure of their basic physical parameters like redshift, luminosity and mass. How to access the new data This scientific program aims at the study of the photometric redshift distribution of the faint galaxies [2] and of gravitational lensing effects (cosmic mirages). It has been decided to make the complete data set available to the wide scientific community and it is expected that many astronomers all over the world will want to perform their own investigations by means of this unique observational material. A full description of the project is available on the ESO Web at http://www.eso.org/ndf/. Here you will find a comprehensive explanation of the scientific background, details about the observations and the data reduction, as well as easy access to the corresponding data files. Notes: [1] The group consists of Sandro D'Odorico (Principal Investigator, ESO) and Jacqueline Bergeron (ESO), Hans-Martin Adorf (ESO), Stephane Charlot (IAP, Paris, France), David Clements (IAS, Orsay, France), Stefano Cristiani (Univ. of Padova, Italy), Luiz da Costa (ESO), Eiichi Egami (MPI Extraterrestrial Physics, Garching, Germany), Adriano Fontana (Rome Observatory, Italy), Bernard Fort (Paris Observatory, France), Laurent Gautret (Paris Observatory, France), Emanuele Giallongo (Rome Observatory, Italy), Roberto Gilmozzi, Richard N.Hook and Bruno Leibundgut (ESO), Yannick Mellier and Patrick Petitjean (IAP, Paris, France), Alvio Renzini, Sandra Savaglio and Peter Shaver (ESO), Stella Seitz (Munich Observatory, Germany) and Lin Yan (ESO). [2]. The photometric redshift method allows to determine an approximate distance of a distant galaxy by measuring its colour, i.e., its relative brightness (magnitude) in different wavebands. It is based on the proportionality between the distance of a galaxy and its recession velocity (the Hubble law). The higher the velocity, the more its emission will be shifted towards longer wavelengths and the redder is the colour. Recent investigations of galaxies seen in the Hubble Deep Field have shown that the redshifts (and thus distances) found by this method are quite accurate in most cases. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  11. Orion in a New Light - VISTA exposes high-speed antics of young stars

    NASA Astrophysics Data System (ADS)

    2010-02-01

    The Orion Nebula reveals many of its hidden secrets in a dramatic image taken by ESO's new VISTA survey telescope. The telescope's huge field of view can show the full splendour of the whole nebula and VISTA's infrared vision also allows it to peer deeply into dusty regions that are normally hidden and expose the curious behaviour of the very active young stars buried there. VISTA - the Visible and Infrared Survey Telescope for Astronomy - is the latest addition to ESO's Paranal Observatory (eso0949). It is the largest survey telescope in the world and is dedicated to mapping the sky at infrared wavelengths. The large (4.1-metre) mirror, wide field of view and very sensitive detectors make VISTA a unique instrument. This dramatic new image of the Orion Nebula illustrates VISTA's remarkable powers. The Orion Nebula [1] is a vast stellar nursery lying about 1350 light-years from Earth. Although the nebula is spectacular when seen through an ordinary telescope, what can be seen using visible light is only a small part of a cloud of gas in which stars are forming. Most of the action is deeply embedded in dust clouds and to see what is really happening astronomers need to use telescopes with detectors sensitive to the longer wavelength radiation that can penetrate the dust. VISTA has imaged the Orion Nebula at wavelengths about twice as long as can be detected by the human eye. As in the many visible light pictures of this object, the new wide field VISTA image shows the familiar bat-like form of the nebula in the centre of the picture as well as the fascinating surrounding area. At the very heart of this region lie the four bright stars forming the Trapezium, a group of very hot young stars pumping out fierce ultraviolet radiation that is clearing the surrounding region and making the gas glow. However, observing in the infrared allows VISTA to reveal many other young stars in this central region that cannot be seen in visible light. Looking to the region above the centre of the picture, curious red features appear that are completely invisible except in the infrared. Many of these are very young stars that are still growing and are seen through the dusty clouds from which they form. These youthful stars eject streams of gas with typical speeds of 700 000 km/hour and many of the red features highlight the places where these gas streams collide with the surrounding gas, causing emission from excited molecules and atoms in the gas. There are also a few faint, red features below the Orion Nebula in the image, showing that stars form there too, but with much less vigour. These strange features are of great interest to astronomers studying the birth and youth of stars. This new image shows the power of the VISTA telescope to image wide areas of sky quickly and deeply in the near-infrared part of the spectrum. The telescope is just starting to survey the sky and astronomers are anticipating a rich harvest of science from this unique ESO facility. Notes [1] The Orion Nebula lies in the sword of the famous celestial hunter and is a favourite target both for casual sky watchers and astrophysicists alike. It is faintly visible to the unaided eye and appeared to early telescopic observers as a small cluster of blue-white stars surrounded by a mysterious grey-green mist. The object was first described in the early seventeenth century although the identity of the discoverer is uncertain. The French comet-hunter Messier made an accurate sketch of its main features in the mid-eighteenth century and gave it the number 42 in his famous catalogue. He also allocated the number 43 to the smaller detached region just above the main part of the nebula. Later William Herschel speculated that the nebula might be "the chaotic material of future suns" and astronomers have since discovered that the mist is indeed gas glowing under the fierce ultraviolet light from young hot stars that have recently formed there. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  12. BOOK REVIEW: Geheimnisvolles Universum - Europas Astronomen entschleiern das Weltall

    NASA Astrophysics Data System (ADS)

    Duerbeck, H. W.; Lorenzen, D. H.

    2002-12-01

    The 25th birthday of ESO, in 1987, was celebrated by the publication of an illustrated popular book, "Exploring the Southern Sky" (Springer-Verlag 1987), which also saw editions in Danish, English, French, German, and Spanish. Written and illustrated by the ESO staff members Svend Laustsen, Claus Madsen and Richard M. West, its many pictures were mainly taken with the ESO 3.6m and Schmidt telescopes. The structure of the book - perhaps at that time somewhat unusual - started with things far away (Universe and galaxies), zoomed in to the Milky Way, and finally reached the Solar System (with a concluding chapter dealing with the La Silla observatory). Now, with the 4 units of the Very Large Telescope in full operation, and on the occasion of ESO's 40th birthday, another jubilee book has appeared: "Geheimnisvolles Universum: Europas Astronomen entschleiern das Weltall", written by the science journalist Dirk H. Lorenzen, of Hamburg, Germany, and prefaced by Catherine Cesarsky, Director General of ESO. Presumably, this book will also soon become available in more languages spoken in ESO member countries. Thus it may be worthwhile to review the first edition, although some readers may like to wait for more easily accessible editions. Before going into details, let me first mention that I find this a very impressing book, great to look at and refreshing to read. With ESO seen through the eyes of a visitor, things gain a perspective that is quite different from that of the previous book, and at least as attractive. It comes as no surprise that the book starts with a visit of ESO's showcase, the Paranal Observatory, and the writer not only notes down his own impressions, but also cites statements of some of the many people that keep Paranal going - technicians and staff astronomers. This mixture of texts provides a good impression of the operations at a large observatory for the general reader. The two more 'astronomical' parts that follow deal with star and planet formation, stellar death and dust formation, as well as with the Universe, its beginnings and contents (focussing on quasars and SN Ia); like the previous chapters, they contain many quotations of astronomers involved in these types of research (I suppose they are taken from interviews); these blocks, each composed of three chapters, are separated by a more technical part, two chapters dealing with interferometry and adaptive optics. The last third of the book is then dedicated almost exclusively to ESO's "prehistory", and here the reviewer starts to frown. This is a very extensive report on Juergen Stock's early site testing work for US astronomers, first for Gerard Kuiper and the University of Texas, and then for the Association of Universities for Research in Astronomy (AURA), to find an suitable place for a projected telescope and then for the AURA southern observatory, with page-long excerpts from his notebooks (or the printed "Stock reports"). It also deals with Stock's later activities in Chile and Venezuela. Finally, there are a few pages on the foundation of ESO and the choice of a Chilean site, as well as another few pages on future projects of ESO. The decision of ESO to go to Chile is treated very briefly, much shorter than in Blaauw's 1991 book "ESO's Early History"; the reasons for the early focussing on a site in South Africa, and the relatively quick jump on the "Chilean bandwagon" remain quite obscure. Compared to that, the 25 pages of "Stock reports" written to help the decision making of the site of the AURA observatory, contain a lot of not-too-relevant details like prices and names of horses and mules employed in Stock's site testing survey. It is fun reading, but does not penetrate under the surface, and the author's somewhat desperate attempt to join together the ends of the threat, "also the VLT is a consequence of Juergen Stock's activities in Chile", appears not very convincing. I do not want at all to diminish Stock's immense work that made Chile to the "golden land of astronomy" in the late decades of the 20th century. Stock was sent by the US astronomers, and they became active because of Kuiper's enthusiasm, that was triggered by a visit of Federico Rutlland, director of the Astronomy Department of the Universidad de Chile - the former Chilean National Observatory, whose founding was triggered by the activities of a US astronomical expedition in the mid-19th century, headed by James Gilliss; and Gilliss was inspired by an astronomical proposition made in 1847 by Christian Gerling, a mathematics professor of Marburg. And besides this line of events, there have been other astronomical expeditions and observing stations in the north of Chile in the late 19th and early 20th century. What is the true first cause of the presently florishing astronomical activity in Chile? Certainly not the "Stock report"! At times ESO's development resembled more a random walk than a strategic process, that - given enough time and money - finally culminated in a very successful research institution. This very pretty and informative book, whose author - intentionally or unintentionally - had the courage to neglect important things, and to include irrelevant things, is not a book that tells the whole story (and actually no book can achieve this goal!). Even a book like Lorenzen's that is composed of huge fragments that do not quite fit into the story, can make fascinating reading. However, besides the publisher's logo, this book carries the ESO logo, and therefore becomes something like an "official" ESO publication. And this is why one wonders why so much space is used up to describe activities which have hardly any relation to ESO's history, a history that really deserves to be communicated to the interested general public. If this book would encourage some of the early players of ESO to pen down their memoirs and make them available to science writers and historians, a story at least as colorful as that of Juergen Stock would emerge! And only then it would be possible to write a more balanced history of ESO.

  13. The Most Distant Mature Galaxy Cluster - Young, but surprisingly grown-up

    NASA Astrophysics Data System (ADS)

    2011-03-01

    Astronomers have used an armada of telescopes on the ground and in space, including the Very Large Telescope at ESO's Paranal Observatory in Chile to discover and measure the distance to the most remote mature cluster of galaxies yet found. Although this cluster is seen when the Universe was less than one quarter of its current age it looks surprisingly similar to galaxy clusters in the current Universe. "We have measured the distance to the most distant mature cluster of galaxies ever found", says the lead author of the study in which the observations from ESO's VLT have been used, Raphael Gobat (CEA, Paris). "The surprising thing is that when we look closely at this galaxy cluster it doesn't look young - many of the galaxies have settled down and don't resemble the usual star-forming galaxies seen in the early Universe." Clusters of galaxies are the largest structures in the Universe that are held together by gravity. Astronomers expect these clusters to grow through time and hence that massive clusters would be rare in the early Universe. Although even more distant clusters have been seen, they appear to be young clusters in the process of formation and are not settled mature systems. The international team of astronomers used the powerful VIMOS and FORS2 instruments on ESO's Very Large Telescope (VLT) to measure the distances to some of the blobs in a curious patch of very faint red objects first observed with the Spitzer space telescope. This grouping, named CL J1449+0856 [1], had all the hallmarks of being a very remote cluster of galaxies [2]. The results showed that we are indeed seeing a galaxy cluster as it was when the Universe was about three billion years old - less than one quarter of its current age [3]. Once the team knew the distance to this very rare object they looked carefully at the component galaxies using both the NASA/ESA Hubble Space Telescope and ground-based telescopes, including the VLT. They found evidence suggesting that most of the galaxies in the cluster were not forming stars, but were composed of stars that were already about one billion years old. This makes the cluster a mature object, similar in mass to the Virgo Cluster, the nearest rich galaxy cluster to the Milky Way. Further evidence that this is a mature cluster comes from observations of X-rays coming from CL J1449+0856 made with ESA's XMM-Newton space observatory. The cluster is giving off X-rays that must be coming from a very hot cloud of tenuous gas filling the space between the galaxies and concentrated towards the centre of the cluster. This is another sign of a mature galaxy cluster, held firmly together by its own gravity, as very young clusters have not had time to trap hot gas in this way. As Gobat concludes: "These new results support the idea that mature clusters existed when the Universe was less than one quarter of its current age. Such clusters are expected to be very rare according to current theory, and we have been very lucky to spot one. But if further observations find many more then this may mean that our understanding of the early Universe needs to be revised." Notes [1] The strange name refers to the object's position in the sky. [2] The galaxies appear red in the picture partly because they are thought to be mainly composed of cool, red stars. In addition the expansion of the Universe since the light left these remote systems has increased the wavelength of the light further so that it is mostly seen as infrared radiation when it gets to Earth. [3] The astronomers measured the distance to the cluster by splitting the light up into its component colours in a spectrograph. They then compared this spectrum with one of a similar object in the nearby Universe. This allowed them to measure the redshift of the remote galaxies - how much the Universe has expanded since the light left the galaxies. The redshift was found to be 2.07, which means that the cluster is seen about three billion years after the Big Bang. More information This research was presented in a paper, "A mature cluster with X-ray emission at z = 2.07", by R. Gobat et al., published in the journal Astronomy & Astrophysics. The team is composed of R. Gobat (Laboratoire AIM-Paris-Saclay, France), E. Daddi (AIM-Paris), M. Onodera (ETH Zürich, Switzerland), A. Finoguenov (Max-Planck-Institut für extraterrestrische Physik [MPE], Garching, Germany), A. Renzini (INAF-Osservatorio Astronomico di Padova), N. Arimoto (National Astronomical Observatory of Japan), R. Bouwens (Lick Observatory, Santa Cruz, USA), M. Brusa (MPE), R.-R. Chary (California Institute of Technology, USA), A. Cimatti (Università di Bologna, Italy), M. Dickinson (NOAO, Tucson, USA), X. Kong (University of Science and Technology of China), and M.Mignoli (INAF - Osservatorio Astronomico di Bologna, Italy). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  14. Discovery of a stellar companion to the nearby solar-analogue HD 104304

    NASA Astrophysics Data System (ADS)

    Schnupp, C.; Bergfors, C.; Brandner, W.; Daemgen, S.; Fischer, D.; Marcy, G.; Henning, Th.; Hippler, S.; Janson, M.

    2010-06-01

    Context. Sun-like stars are promising candidates to host exoplanets and are often included in exoplanet surveys by radial velocity (RV) and direct imaging. In this paper we report on the detection of a stellar companion to the nearby solar-analogue star HD 104304, which previously was considered to host a planetary mass or brown dwarf companion. Aims: We searched for close stellar and substellar companions around extrasolar planet host stars with high angular resolution imaging to characterize planet formation environments. Methods: The detection of the stellar companion was achieved by high angular resolution measurements, using the “Lucky Imaging” technique at the ESO NTT 3.5 m with the AstraLux Sur instrument. We combined the results with VLT/NACO archive data, where the companion could also be detected. The results were compared to precise RV measurements of HD 104304, obtained at the Lick and Keck observatories from 2001-2010. Results: We confirmed common proper motion of the binary system. A spectral type of M4V of the companion and a mass of 0.21 M_⊙ was derived. Due to comparison of the data with RV measurements of the unconfirmed planet candidate listed in the Extrasolar Planets Encyclopaedia, we suggest that the discovered companion is the origin of the RV trend and that the inclination of the orbit of i≈35°explains the relatively small RV signal. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatory under programme IDs 083.C-0145 and 084.C-0812, and on data obtained from the ESO Science Archive Facility.

  15. Milky Way's super-efficient particle accelerators caught in the act

    NASA Astrophysics Data System (ADS)

    2009-06-01

    Thanks to a unique "ballistic study" that combines data from ESO's Very Large Telescope and NASA's Chandra X-ray Observatory, astronomers have now solved a long-standing mystery of the Milky Way's particle accelerators. They show in a paper published today on Science Express that cosmic rays from our galaxy are very efficiently accelerated in the remnants of exploded stars. ESO PR Photo 23a/09 The rim of RCW 86 ESO PR Photo 23b/09 DSS + insert, annotated ESO PR Photo 23c/09 DSS image ESO PR Video 23a/09 Zoom-in RCW 86 During the Apollo flights astronauts reported seeing odd flashes of light, visible even with their eyes closed. We have since learnt that the cause was cosmic rays -- extremely energetic particles from outside the Solar System arriving at the Earth, and constantly bombarding its atmosphere. Once they reach Earth, they still have sufficient energy to cause glitches in electronic components. Galactic cosmic rays come from sources inside our home galaxy, the Milky Way, and consist mostly of protons moving at close to the speed of light, the "ultimate speed limit" in the Universe. These protons have been accelerated to energies exceeding by far the energies that even CERN's Large Hadron Collider will be able to achieve. "It has long been thought that the super-accelerators that produce these cosmic rays in the Milky Way are the expanding envelopes created by exploded stars, but our observations reveal the smoking gun that proves it", says Eveline Helder from the Astronomical Institute Utrecht of Utrecht University in the Netherlands, the first author of the new study. "You could even say that we have now confirmed the calibre of the gun used to accelerate cosmic rays to their tremendous energies", adds collaborator Jacco Vink, also from the Astronomical Institute Utrecht. For the first time Helder, Vink and colleagues have come up with a measurement that solves the long-standing astronomical quandary of whether or not stellar explosions produce enough accelerated particles to explain the number of cosmic rays that hit the Earth's atmosphere. The team's study indicates that they indeed do and it directly tells us how much energy is removed from the shocked gas in the stellar explosion and used to accelerate particles. "When a star explodes in what we call a supernova a large part of the explosion energy is used for accelerating some particles up to extremely high energies", says Helder. "The energy that is used for particle acceleration is at the expense of heating the gas, which is therefore much colder than theory predicts". The researchers looked at the remnant of a star that exploded in AD 185, as recorded by Chinese astronomers. The remnant, called RCW 86, is located about 8200 light-years away towards the constellation of Circinus (the Drawing Compass). It is probably the oldest record of the explosion of a star. Using ESO's Very Large Telescope, the team measured the temperature of the gas right behind the shock wave created by the stellar explosion. They measured the speed of the shock wave as well, using images taken with NASA's X-ray Observatory Chandra three years apart. They found it to be moving at between 10 and 30 million km/h, between 1 and 3 percent the speed of light. The temperature of the gas turned out to be 30 million degrees Celsius. This is quite hot compared to everyday standards, but much lower than expected, given the measured shock wave's velocity. This should have heated the gas up to at least half a billion degrees. "The missing energy is what drives the cosmic rays", concludes Vink. More Information This research was presented in a paper to appear in Science: Measuring the cosmic ray acceleration efficiency of a supernova remnant, by E. A. Helder et al. The team is composed of E.A. Helder, J. Vink and F. Verbunt (Astronomical Institute Utrecht, Utrecht University, The Netherlands), C.G. Bassa and J.A.M. Bleeker (SRON, Netherlands Institute for Space Research, The Netherlands), A. Bamba (ISAS/JAXA Department of High Energy Astrophysics, Kanagawa, Japan), S. Funk (Kavli Institute for Particle Astrophysics and Cosmology, Stanford, USA), P. Ghavamian (Space Telescope Science Institute, Baltimore, USA), K. J. van der Heyden (University of Cape Town, South Africa), and R. Yamazaki (Department of Physical Science, Hiroshima University, Japan). C.G. Bassa is also affiliated with the Radboud University Nijmegen, the Netherlands. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  16. The water vapour radiometer of Paranal: homogeneity of precipitable water vapour from two years of operations

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Querel, Richard R.; Neureiter, Bianca

    2015-04-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ∼2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (∼10 μm) for cloud detection. We present a statistical analysis of the homogeneity of all-sky PWV using 24 months of PWV observations. The question we tried to address was whether PWV is homogeneous enough across the sky such that service mode observations with the VLT can routinely be conducted with a user-provided constraint for PWV measured at zenith. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 2 to 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be justified in terms of scientific gain before implementation can be considered. We plan to extend our analysis of PWV variations covering a larger parameters space for temporal and spatial resolution in the future. Also for climate studies such data sets will be relevant.

  17. All-sky homogeneity of precipitable water vapour over Paranal

    NASA Astrophysics Data System (ADS)

    Querel, Richard R.; Kerber, Florian

    2014-08-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (~10 μm) for cloud detection. We present, for the first time, a statistical analysis of the homogeneity of all-sky PWV using 21 months of periodic (every 6 hours) all-sky scans from the radiometer. These data provide unique insight into the spatial and temporal variation of atmospheric conditions relevant for astronomical observations, particularly in the infrared. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.32 mm (peak to valley) or 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 10-15% (peak to valley) and 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared that can only be conducted during periods of very good atmospheric transmission and hence low PWV. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be justified in terms of scientific gain before implementation can be considered. This will be explored further in the future.

  18. The Perfect Science Machine

    NASA Astrophysics Data System (ADS)

    2008-05-01

    ESO celebrates 10 years since First Light of the VLT Today marks the 10th anniversary since First Light with ESO's Very Large Telescope (VLT), the most advanced optical telescope in the world. Since then, the VLT has evolved into a unique suite of four 8.2-m Unit Telescopes (UTs) equipped with no fewer than 13 state-of-the-art instruments, and four 1.8-m moveable Auxiliary Telescopes (ATs). The telescopes can work individually, and they can also be linked together in groups of two or three to form a giant 'interferometer' (VLTI), allowing astronomers to see details corresponding to those from a much larger telescope. Green Flash at Paranal ESO PR Photo 16a/08 The VLT 10th anniversary poster "The Very Large Telescope array is a flagship facility for astronomy, a perfect science machine of which Europe can be very proud," says Tim de Zeeuw, ESO's Director General. "We have built the most advanced ground-based optical observatory in the world, thanks to the combination of a long-term adequately-funded instrument and technology development plan with an approach where most of the instruments were built in collaboration with institutions in the member states, with in-kind contributions in labour compensated by guaranteed observing time." Sitting atop the 2600m high Paranal Mountain in the Chilean Atacama Desert, the VLT's design, suite of instruments, and operating principles set the standard for ground-based astronomy. It provides the European scientific community with a telescope array with collecting power significantly greater than any other facilities available at present, offering imaging and spectroscopy capabilities at visible and infrared wavelengths. Blue Flash at Paranal ESO PR Photo 16b/08 A Universe of Discoveries The first scientifically useful images, marking the official 'First Light' of the VLT, were obtained on the night of 25 to 26 May 1998, with a test camera attached to "Antu", Unit Telescope number 1. They were officially presented to the press on the 27 May, exactly ten years ago. Since then, all four Unit Telescopes and four Auxiliary Telescopes went into routine operations and the number of instruments has continued to grow, to fill all the possible positions in the telescopes where instruments can be attached. In 2007, about 500 peer-reviewed papers using data collected with VLT and VLTI instruments at Paranal were published in scientific journals. Since the start of science operations, in April 1999, the VLT has led to the publication of more than 2200 refereed papers, an average of about one paper published every single working day. "The combination of high operational efficiency, system reliability and uptime for scientific observations results in very high scientific productivity," says Andreas Kaufer, director of the La Silla Paranal Observatory. The VLT and VLTI have contributed to all areas of astronomy, including the nature of dark matter and dark energy; the extreme physics of gamma-ray bursts and supernovae; the formation, structure and evolution of galaxies; the properties of exoplanets, Solar System objects, star clusters and stellar populations, the interstellar and intergalactic medium, and of super-massive black holes in galactic nuclei, in particular the one in the Galactic Centre; and the formation of stars and planets. The stunning scientific success of the VLT has attracted new member states to ESO. In the past decade Portugal joined (in 2001, after a ten-year associate status), followed by the United Kingdom (2002), Finland (2004), Spain (2006) and the Czech Republic (2007). Austria also announced its intent to join later this year. Another measure of success is the number of observing proposals made every year for the use of the VLT, which is now above the 1900 mark. On average, the amount of time requested to use the VLT is 6 times higher than what is available. The VLT will continue to increase in power over the next decade. The first of the second-generation VLT instruments, X-Shooter, will come online this year, with KMOS, SPHERE and MUSE to follow, together with multiple laser guide stars, an adaptive secondary mirror on Yepun (UT4), and one or more third-generation instruments, including an ultra-stable high-resolution spectrograph at the combined focus. The VLTI will also be equipped with second-generation instruments. Clearly, the VLT's story has only begun. More Information The VLT was designed from the start as an integrated system of four 8.2m telescopes, including the possibility to combine the light from individual telescopes for optical interferometry, enabling stupendous spatial resolution. First light on Antu occurred in May 1998, with Kueyen, Melipal and Yepun following soon after. Most of the VLT and VLTI instruments were built in close collaboration with institutes in the member states. The first-generation instrument suite was completed in 2007 with the commissioning of CRIRES. The Paranal arsenal includes turnkey adaptive optics systems and a rapid-response mode to react to fast transient events. Recently, the near-infrared imager HAWK-I was added as a 'generation-1.5' instrument.

  19. ESO unveils an amazing, interactive, 360-degree panoramic view of the entire night sky

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The first of three images of ESO's GigaGalaxy Zoom project - a new magnificent 800-million-pixel panorama of the entire sky as seen from ESO's observing sites in Chile - has just been released online. The project allows stargazers to explore and experience the Universe as it is seen with the unaided eye from the darkest and best viewing locations in the world. This 360-degree panoramic image, covering the entire celestial sphere, reveals the cosmic landscape that surrounds our tiny blue planet. This gorgeous starscape serves as the first of three extremely high-resolution images featured in the GigaGalaxy Zoom project, launched by ESO within the framework of the International Year of Astronomy 2009 (IYA2009). GigaGalaxy Zoom features a web tool that allows users to take a breathtaking dive into our Milky Way. With this tool users can learn more about many different and exciting objects in the image, such as multicoloured nebulae and exploding stars, just by clicking on them. In this way, the project seeks to link the sky we can all see with the deep, "hidden" cosmos that astronomers study on a daily basis. The wonderful quality of the images is a testament to the splendour of the night sky at ESO's sites in Chile, which are the most productive astronomical observatories in the world. The plane of our Milky Way Galaxy, which we see edge-on from our perspective on Earth, cuts a luminous swath across the image. The projection used in GigaGalaxy Zoom place the viewer in front of our Galaxy with the Galactic Plane running horizontally through the image - almost as if we were looking at the Milky Way from the outside. From this vantage point, the general components of our spiral galaxy come clearly into view, including its disc, marbled with both dark and glowing nebulae, which harbours bright, young stars, as well as the Galaxy's central bulge and its satellite galaxies. The painstaking production of this image came about as a collaboration between ESO, the renowned French writer and astrophotographer Serge Brunier and his fellow Frenchman Frédéric Tapissier. Brunier spent several weeks during the period between August 2008 and February 2009 capturing the sky, mostly from ESO observatories at La Silla and Paranal in Chile. In order to cover the full Milky Way, Brunier also made a week-long trip to La Palma, one of the Canary Islands, to photograph the northern skies [1]. Once the raw photographs were in hand, image processing by Tapissier and ESO experts helped to convey accurately the night sky as our eyes behold it [2]. The resulting image, now available on GigaGalaxy Zoom, is composed of almost 300 fields each individually captured by Brunier four times, adding up to nearly 1200 photos that encompass the entire night sky. "I wanted to show a sky that everyone can relate to - with its constellations, its thousands of stars, with names familiar since childhood, its myths shared by all civilisations since Homo became Sapiens," says Brunier. "The image was therefore made as man sees it, with a regular digital camera under the dark skies in the Atacama Desert and on La Palma." As photographing extended over several months, objects from the Solar System came and went through the star fields, with bright planets such as Venus and Jupiter. A brilliant, emerald-green comet also flew by, although spotting it among a background of tens of millions of stars will be difficult (but rewarding). Overall, the creators of the GigaGalaxy Zoom project hope that these tremendous efforts in bringing the night sky as observed under the best conditions on the planet to stargazers everywhere will inspire awe for the beautiful, immense Universe that we live in. "The vision of the IYA2009 is to help people rediscover their place in the Universe through the day- and night-time sky, and this is exactly what the GigaGalaxy Zoom project is all about," says project coordinator Henri Boffin. The second dramatic GigaGalaxy Zoom image will be revealed next week, on 21 September 2009. Notes [1] During his quest, Brunier used a Nikon D3 digital camera. The apparent motion of the sky caused by Earth's rotation was corrected for using a small, precise equatorial mount moving in the opposite direction, which made a whole circle in 23 hours 56 minutes around the Earth's axis of rotation. Each photo required a six-minute exposure, for a total exposure time of more than 120 hours. [2] The data processing, using software called Autopano Pro Giga, took great care in respecting the colours and "texture" of the Milky Way. Frédéric Tapissier needed about 340 computing hours on a powerful PC to complete the task. More information As part of the IYA2009, ESO is participating in several remarkable outreach activities, in line with its world-leading rank in the field of astronomy. ESO is hosting the IYA2009 Secretariat for the International Astronomical Union, which coordinates the Year globally. ESO is one of the Organisational Associates of IYA2009, and was also closely involved in the resolution submitted to the United Nations (UN) by Italy, which led to the UN's 62nd General Assembly proclaiming 2009 the International Year of Astronomy. In addition to a wide array of activities planned both at the local and international level, ESO is leading three of the twelve global Cornerstone Projects. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky". Serge Brunier is a French journalist, photographer and writer who specialises in popularising astronomy. He is a regular contributor to Science & Vie magazine, and to the France Info radio station. He has written numerous popular astronomy books, translated into over ten languages, and is a prize-winning photographer, who has captured images of solar eclipses from the most amazing places in the world. A life-long quest for the best skies in the world led him to Chile. This whole sky panorama was presented from 25 August till 13 September 2009 in the exhibition "Un ciel pour la planète" (A sky for the planet) in the Atrium of the Monte-Carlo Casino, Monaco. With a giant print of 12 times 6 metres, the exhibition was under the Patronage of The Prince Albert II of Monaco, and showed with images and videos the making of this unique ESO project.

  20. VizieR Online Data Catalog: HeI 5876 & 10830Å EWs of solar-type stars (Andretta+, 2017)

    NASA Astrophysics Data System (ADS)

    Andretta, V.; Giampapa, M. S.; Covino, E.; Reiners, A.; Beeck, B.

    2017-11-01

    A total of 134 FEROS spectra (R=48000) of our targets (including telluric standards) were acquired on the night of UT 2011 December 6-7; spectral coverage from 3500 to 9200Å. The Fiber Extended-range Optical Spectrograph (FEROS) was mounted at the 2.2m Max-Planck Gesellschaft/European Southern Observatory (MPG/ESO) telescope at La Silla (Chile). The HeIλ10830 spectroscopic observations were carried out on the same night as the FEROS D3 observations, using the CRyogenic high-resolution InfraRed Echelle Spectrograph (CRIRES), mounted at Unit Telescope 1 (Antu) of the VLT array at Cerro Paranal. The details of the observations is given in table 1. (3 data files).

  1. Sea & Space: a New European Educational Programme

    NASA Astrophysics Data System (ADS)

    1998-01-01

    This spring, teachers across Europe will enjoy support for exciting, novel educational projects on astronomy, navigation and environmental observations. The largely web-based and highly interactive SEA & SPACE programme makes it possible for pupils to perform field experiments and astronomical observations and to obtain and process satellite images. A contest will take the best pupils for one week to Lisbon (Portugal), to Europe's space port in Kourou (French Guyana) where the European launcher lifts off or to ESO's Very Large Telescope at the Cerro Paranal Observatory in Chile, the largest optical telescope in the world. The SEA & SPACE project is a joint initiative of the European Space Agency (ESA) , the European Southern Observatory (ESO) , and the European Association for Astronomy Education (EAAE). It builds on these organisations' several years' successful participation in the European Week for Scientific and Technological Culture organised by the European Commission that they intend to continue in 1998. The 1998 World Exhibition EXPO98 in Lisbon will focus on the oceans. This is why the umbrella theme of SEA & SPACE is concerned with the many relations between the oceans and the space that surrounds us, from ancient times to present days. Under the new programme, teaching resources are offered for three major areas, Remote Sensing of Europe's Coastal Environment, Navigation and Oceans of Water. Remote Sensing of Europe's Coastal Environment : observations of the Earth from Space are made accessible to pupils who will appreciate their usefulness through interactive image processing and field observations; Navigation : the capabilities and functioning of different navigation techniques are explored through experiments using navigation by the stars, with GPS, and via satellite images/maps; Oceans of Water : What is the role of water in Nature? How can one detect water from satellites or with telescopes? How much water is there in rivers and floods, in an ocean, on Mars, in comets, in stars, in the Universe? SEA & SPACE will use the Internet and the WWW to transport teaching resources so that teachers and pupils can communicate with the organisers and among themselves. To this end, the National Committees of the European Association for Astronomy Education will operate sites onto which the information and resources provided by ESA and ESO are loaded. The Contest, in which pupils will write and design a poster or a newspaper on a subject related to SEA & SPACE, will be organised simultaneously in most European countries and will not require Internet access. SEA & SPACE will start as from 1 March 1998. Further information is provided on the Home Pages of ESA, ESO and EAAE. In early February, a dedicated joint SEA & SPACE Home Page will be operational where schools can register for the project and for regular mailing of new information: * http://www.esa.int/seaspace * http://www.eso.org/seaspace * http://www.algonet.se/~sirius/eaae/seaspace Note: [1] This press release is published jointly by ESA, ESO and EAAE. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  2. VLT Commissioning Data Now Publicly Available

    NASA Astrophysics Data System (ADS)

    1999-11-01

    "First Light" was achieved in May 1998 for VLT ANTU , the first 8.2-m Unit Telescope at the Paranal Observatory ( ESO PR 06/98 ). Since then, thousands of detailed images and spectra of a great variety of celestial objects have been recorded with this major new research facility. While some of these were obtained for scientific programmes and were therefore directed towards specific research needs, others were made during the "Commissioning Phases" in 1998/99 for the two major astronomical instruments, FORS1 ( FO cal R educer and S pectrograph) and ISAAC ( I nfrared S pectrometer A nd A rray C amera). They were carried out in order to test thoroughly the performance of the telescope and its instruments before the new facility was handed over to the astronomers on April 1, 1999. The Commissioning data are accordingly of variable quality and, contrarily to the science data, normally not intensity calibrated. However, while some of these frames are short test exposures that mainly served to ascertain the image quality under various observing conditions, a substantial fraction still contains scientifically valuable data. 10 Gigabytes released As planned, and in order to facilitate the exploitation of this useful material, ESO has today released over 10 Gigabytes of ANTU Commissioning data (and some additional test data from before April 1, 1999), obtained in the various observing modes of FORS1 and ISAAC . They encompass a total of 2235 files and are now available to astronomers and other interested parties in the ESO Member States. Information about this release and on how to obtain the data on CD-ROM or in electronic form is now available via the Science Archive Facility website. A special page with the list of raw science data frames included in this release has been set up. Searches for specific data (e.g., by object, sky field, filter, time of observation; calibration files, etc.) can be made from the ESO Science Archive Data Products page. These Commissioning data are "raw" in the sense that they come directly from the instrument. The original files are recorded in standard FITS-format and in order to save space, they have been compressed by a factor of about 2. Before they can be used, they must therefore first be decompressed and subjected to image processing, e.g. with the ESO MIDAS system , available on a special MIDAS CD-ROM from ESO. The above image of a well-known spiral galaxy, Messier 83 , was prepared by superposing three CCD frames from this data release that are now available in the archive. This galaxy is located in the southern constellation Hydra (The Water-Snake) and is also known as NGC 5236 ; the distance is about 15 million light-years. The spiral structure resembles that of the Milky Way Galaxy in which we live, but Messier 83 also possesses a bar-like structure at the centre. Corresponding frames of many other interesting objects are included among the data now released. A small part of these have served to produce some of the VLT Astronomical Images that have been released at the ESO Outreach website during the past year. Current VLT observations Observations continue with the first two VLT Unit Telescopes, ANTU and KUEYEN ; the latter is still in the Commissioning Phase with the UVES and FORS2 instruments until it will be made available to the astronomers on April 1, 2000. The current VLT data production rate is about 2200 files/week, corresponding to about 10 Gigabytes or 16 CD-ROMs. Efficient data handling procedures developed by ESO ensure a rapid and secure transfer from the telescopes at the Paranal Observatory to the data archive at the Garching Headquarters, and from here to the receiving astronomers. A description of the main features of this "VLT Data Flow System" is available in PR 10/99. The amount of data will increase as more instruments enter into operation and will ultimately reach about 40,000 Gigabytes/year. The next major event will be the "First Light" for the third Unit Telescope, MELIPAL , now expected in February 2000. The preparations are proceeding well, with the 8.2-m main mirror of Zerodur about to be coated during the next days. The fourth telescope, YEPUN , will follow later next year. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  3. VizieR Online Data Catalog: 25 Ori group low-mass stars (Downes+, 2014)

    NASA Astrophysics Data System (ADS)

    Downes, J. J.; Briceno, C.; Mateu, C.; Hernandez, J.; Vivas, A. K.; Calvet, N.; Hartmann, L.; Petr-Gotzens, M. G.; Allen, L.

    2015-04-01

    Multi-epoch optical V-, R-, I-band and Hα observations across the entire Orion OB1 association (spanning ~180deg2) were obtained as part of the CVSO (Briceno et al., 2005AJ....129..907B, Cat. J/AJ/129/907), being conducted since 1998 with the Jurgen Stock 1.0/1.5 Schmidt-type telescope and the 8000x8000-pixel QUEST-I CCD Mosaic camera, at the National Astronomical Observatory of Venezuela. During 2009 a new dedicated 4m survey telescope, the Visible and Infrared Survey Telescope for Astronomy (VISTA), located at ESO's Paranal Observatory, was commissioned by the VISTA consortium. For the Galactic Science Verification of VISTA, an ~30deg2 area of the Orion OB1 association, which included the Orion Belt region, part of the Orion A cloud, the 25 Orionis and σ Ori clusters, was imaged in the Z, Y, J, H and Ks filters, during 2009 October 16 to November 2. (3 data files).

  4. A Cosmic Zoo in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    2010-06-01

    Astronomers often turn their telescopes to the Large Magellanic Cloud (LMC), one of the closest galaxies to our own Milky Way, in their quest to understand the Universe. In this spectacular new image from the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile, a celestial menagerie of different objects and phenomena in part of the LMC is on display, ranging from vast globular clusters to the remains left by brilliant supernovae explosions. This fascinating observation provides data for a wide variety of research projects unravelling the life and death of stars and the evolution of galaxies. The Large Magellanic Cloud (LMC) is only about 160 000 light-years from our own Milky Way - very close on a cosmic scale. This proximity makes it a very important target as it can be studied in far more detail than more distant systems. The LMC lies in the constellation of Dorado (the Swordfish), deep in the southern sky and well placed for observations from ESO's observatories in Chile. It is one of the galaxies forming the Local Group surrounding the Milky Way [1]. Though enormous on a human scale, the LMC is less than one tenth the mass of our home galaxy and spans just 14 000 light-years compared to about 100 000 light-years for the Milky Way. Astronomers refer to it as an irregular dwarf galaxy [2]. Its irregularity, combined with its prominent central bar of stars suggests to astronomers that tidal interactions with the Milky Way and fellow Local Group galaxy, the Small Magellanic Cloud, could have distorted its shape from a classic barred spiral into its modern, more chaotic form. This image is a mosaic of four pictures from the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. The image covers a region of sky more than four times as large as the full Moon. The huge field of view of this camera makes it possible to see a very wide range of objects in the LMC in a single picture, although only a small part of the entire galaxy can be included. Dozens of clusters of young stars can be seen as well as traces of glowing gas clouds. Huge numbers of faint stars fill the image from edge to edge and in the background, more galaxies, far beyond the LMC, are visible. Globular clusters are collections of hundreds of thousands to millions of stars bound by gravity into a roughly spherical shape just a few light-years across. Many clusters orbit the Milky Way and most are ancient, over ten billion years old, and composed mainly of old red stars. The LMC also has globular clusters and one is visible as the fuzzy white oval cluster of stars in the upper right part of the image. This is NGC 1978, an unusually massive globular cluster. Unlike most other globular clusters, NGC 1978 is believed to be just 3.5 billion years old. The presence of this kind of object in the LMC leads astronomers to think that the LMC has a more recent history of active star formation than our own Milky Way. As well as being a vigorous region of star birth, the LMC has also seen many spectacular stellar deaths in the form of brilliant supernova explosions. At the top right of the image, the remnant of one such supernova, a strangely shaped wispy cloud called DEM L 190, often also referred to as N 49, can be seen. This giant cloud of glowing gas is the brightest supernova remnant in the LMC, and is about 30 light-years across. At the centre, where the star once burned, now lies a magnetar, a neutron star with an extremely powerful magnetic field. It was only in 1979 that satellites orbiting Earth detected a powerful gamma-ray burst from this object, drawing attention to the extreme properties of this new class of stellar exotica created by supernova explosions. This part of the Large Magellanic Cloud is so packed with star clusters and other objects that astronomers can spend entire careers exploring it. With so much activity, it is easy to see why astronomers are so keen to study the strange creatures in this heavenly zoo. Notes [1] http://en.wikipedia.org/wiki/Local_Group [2] http://en.wikipedia.org/wiki/Galaxy_morphological_classification More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  5. New portrait of Omega Nebula's glistening watercolours

    NASA Astrophysics Data System (ADS)

    2009-07-01

    The Omega Nebula, sometimes called the Swan Nebula, is a dazzling stellar nursery located about 5500 light-years away towards the constellation of Sagittarius (the Archer). An active star-forming region of gas and dust about 15 light-years across, the nebula has recently spawned a cluster of massive, hot stars. The intense light and strong winds from these hulking infants have carved remarkable filigree structures in the gas and dust. When seen through a small telescope the nebula has a shape that reminds some observers of the final letter of the Greek alphabet, omega, while others see a swan with its distinctive long, curved neck. Yet other nicknames for this evocative cosmic landmark include the Horseshoe and the Lobster Nebula. Swiss astronomer Jean-Philippe Loys de Chéseaux discovered the nebula around 1745. The French comet hunter Charles Messier independently rediscovered it about twenty years later and included it as number 17 in his famous catalogue. In a small telescope, the Omega Nebula appears as an enigmatic ghostly bar of light set against the star fields of the Milky Way. Early observers were unsure whether this curiosity was really a cloud of gas or a remote cluster of stars too faint to be resolved. In 1866, William Huggins settled the debate when he confirmed the Omega Nebula to be a cloud of glowing gas, through the use of a new instrument, the astronomical spectrograph. In recent years, astronomers have discovered that the Omega Nebula is one of the youngest and most massive star-forming regions in the Milky Way. Active star-birth started a few million years ago and continues through today. The brightly shining gas shown in this picture is just a blister erupting from the side of a much larger dark cloud of molecular gas. The dust that is so prominent in this picture comes from the remains of massive hot stars that have ended their brief lives and ejected material back into space, as well as the cosmic detritus from which future suns form. The newly released image, obtained with the EMMI instrument attached to the ESO 3.58-metre New Technology Telescope (NTT) at La Silla, Chile, shows the central region of the Omega Nebula in exquisite detail. In 2000, another instrument on the NTT, called SOFI, captured another striking image of the nebula (ESO Press Photo 24a/00) in the near-infrared, giving astronomers a penetrating view through the obscuring dust, and clearly showing many previously hidden stars. The NASA/ESA Hubble Space Telescope has also imaged small parts of this nebula (heic0305a and heic0206d) in fine detail. At the left of the image a huge and strangely box-shaped cloud of dust covers the glowing gas. The fascinating palette of subtle colour shades across the image comes from the presence of different gases (mostly hydrogen, but also oxygen, nitrogen and sulphur) that are glowing under the fierce ultraviolet light radiated by the hot young stars. More Information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  6. The origin and evolution of the odd-Z iron-peak elements Sc, V, Mn, and Co in the Milky Way stellar disk

    NASA Astrophysics Data System (ADS)

    Battistini, Chiara; Bensby, Thomas

    2015-05-01

    Context. Elements heavier than Li are produced in the interiors of stars. However, for many elements the exact production sites and the timescales on which they are dispersed into the interstellar medium are unknown. Having a clear picture on the origins of the elements is important for our ability to trace and understand the formation and chemical evolution of the Milky Way and its stellar populations. Aims: The aim of this study is to investigate the origin and evolution of Sc, V, Mn, and Co for a homogeneous and statistically significant sample of stars probing the different populations of the Milky Way, in particular the thin and thick disks. Methods: Using high-resolution spectra obtained with the MIKE, FEROS, SOFIN, FIES, UVES, and HARPS spectrographs, we determine Sc, V, Mn, and Co abundances for a large sample of F and G dwarfs in the solar neighborhood. The method is based on spectral synthesis and using one-dimensional, plane-parallel, local thermodynamic equilibrium (LTE) model stellar atmospheres calculated with the MARCS 2012 code. The non-LTE (NLTE) corrections from the literature were applied to Mn and Co. Results: We find that the abundance trends derived for Sc (594 stars), V (466 stars), and Co (567 stars) are very similar to what has been observed for the α-elements in the thin and thick disks. On the contrary, Mn (569 stars) is generally underabundant relative to the Sun (i.e., [ Mn/Fe ] < 0) for [ Fe/H ] < 0. In addition, for Mn, when NLTE corrections are applied, the trend changes and is almost flat over the entire metallicity range of the stars in our sample (-2 ≲ [ Fe/H ] ≲ + 0.4). The [Sc/Fe]-[Fe/H] abundance trends show a small separation between the thin and thick disks, while for V and Co they completely overlap. For Mn there is a small difference in [Mn/Fe], but only when NLTE corrections are used. Comparisons with Ti as a reference element show flat trends for all the elements except for Mn that show well separated [Mn/Ti]-[Ti/H] trends for the thin and thick disks. Conclusions: The elements Sc and V present trends compatible with production from type II supernovae (SNII) events. In addition, Sc clearly shows a metallicity dependence for [ Fe/H ] < -1. Instead, Mn is produced in SNII events for [ Fe/H ] ≲ -0.4 and then type Ia supernovae start to produce Mn. Finally, Co appears to be produced mainly in SNII with suggestion of enrichment from hypernovae at low metallicities. This paper includes data gathered with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile; the Nordic Optical Telescope (NOT) on La Palma, Spain; the Very Large Telescope (VLT) at the European Southern Observatory (ESO) on Paranal, Chile (ESO Proposal ID 69.B-0277 and 72.B-0179); the ESO 1.5-m, 2.2-m. and 3.6-m telescopes on La Silla, Chile (ESO Proposal ID 65.L-0019, 67.B-0108, 76.B-0416, 82.B-0610); and data from UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655).Full versions of Tables 2 and 5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A9Appendices are available in electronic form at http://www.aanda.org

  7. "Catch a Star !"

    NASA Astrophysics Data System (ADS)

    2002-05-01

    ESO and EAAE Launch Web-based Educational Programme for Europe's Schools Catch a star!... and discover all its secrets! This is the full title of an innovative educational project, launched today by the European Southern Observatory (ESO) and the European Association for Astronomy Education (EAAE). It welcomes all students in Europe's schools to an exciting web-based programme with a competition. It takes place within the context of the EC-sponsored European Week of Science and Technology (EWST) - 2002 . This unique project revolves around a web-based competition and is centred on astronomy. It is specifically conceived to stimulate the interest of young people in various aspects of this well-known field of science, but will also be of interest to the broad public. What is "Catch a Star!" about? [Go to Catch a Star Website] The programme features useful components from the world of research, but it is specifically tailored to (high-)school students. Younger participants are also welcome. Groups of up to four persons (e.g., three students and one teacher) have to select an astronomical object - a bright star, a distant galaxy, a beautiful comet, a planet or a moon in the solar system, or some other celestial body. Like detectives, they must then endeavour to find as much information as possible about "their" object. This information may be about the position and visibility in the sky, the physical and chemical characteristics, particular historical aspects, related mythology and sky lore, etc. They can use any source available, the web, books, newspaper and magazine articles, CDs etc. for this work. The group members must prepare a (short) summarising report about this investigation and "their" object, with their own ideas and conclusions, and send it to ESO (email address: eduinfo@eso.org). A jury, consisting of specialists from ESO and the EAAE, will carefully evaluate these reports. All projects that are found to fulfill the stipulated requirements, including a reasonable degree of scientific correctness, are entered as "registered projects" and will receive a lottery number. The first 1000 participants from the corresponding groups will also get a "Catch a star" T-Shirt by mail. All accepted entries will be listed at the corresponding website and all accepted reports will be displayed soon after the expiry of the deadline for submission on November 1st, 2002 . Winners to be Announced on November 8, 2002 On November 8th, 2002, at the end of the European Week of Science and Technology, the winners will be found by drawing numbers in a lottery. This event will take place at the ESO Headquarters in Garching (Germany) and will be webcast. The First Prize is a free trip for the members of the group to the ESO Paranal Observatory in Chile , the site of the ESO Very Large Telescope (VLT) . The Paranal trip will be realised in any case, but because of age restrictions, it can only be offered to a group in which all participants are 15 years of age or older at the time of the drawing. Younger participants may win an interesting trip within Europe. There will also be other prizes, to be announced later. Starting now The programme starts now and is open for groups of up to three students and one teacher, who must all belong to a school in Europe on November 1, 2002 . This means that only students who did not yet terminate their school studies on this date can participate. No student may participate in more than one group. The programme is administered by the ESO Educational Office , in close collaboration with members of the EAAE, mostly physics teachers. Details about how to register and how to prepare the report about "your" object are available on the web at: http://www.eso.org/public/outreach/eduoff/cas/ About the ESO Educational Office The ESO Educational Office was established in July 2001. It is part of the EPR Department at ESO Headquarters in Garching near Munich. The aim is to provide support of astronomy and astrophysics education, especially at the high-school level. This includes teaching materials, courses for teachers and specific educational projects, for instance in the context of the yearly European Week of Science and Technology. More information is available in ESO PR 29/01 and at the ESA/ESO Astronomy Excercise Series website. Note also the Frontline Astrophysics for School Teachers (FAST 2002) , an ESO teacher training course just announced. The application deadline for participation is June 1, 2002 . Contact for the "Catch a Star!" Programme: ESO Education Office eduinfo@eso.org

  8. Irish Team Wins SEA & SPACE Super Prize

    NASA Astrophysics Data System (ADS)

    1998-09-01

    A secondary school team from Ireland has won a trip to Europe's Spaceport in Kourou, French Guyana, and to ESO's Very Large Telescope (VLT) at Cerro Paranal, Chile. The trip is the Super-Prize for the Sea & Space Newspaper Competition , organised within the framework of the European Week for Scientific and Technological Culture. ESO PR Photo 33/98 ESO PR Photo 33/98 [Preview - JPEG: 800 x 434 pix - 568k] [High-Res - JPEG: 3000 x 1627 pix - 6.7Mb] The presentation of prize certificates to the winning Irish team (right) in Lisbon, on August 31, 1998, by ESO, ESA and EAAE representatives. Stephen Kearney, Cian Wilson (both aged 16 years), Eamonn McKeogh (aged 17 years) together with their teacher, John Daly of Blackrock College in Dublin, prepared their newspaper, Infinitus , on marine and space themes, and came first in the national round of the competition. Together with other students from all over Europe, they were invited to present their winning newspaper to a jury consisting of representatives of the organisers, during a special programme of events at the Gulbenkian Planetarium and EXPO '98 in Lisbon, from 28-31 August, 1998. The Irish team scored highly in all categories of the judging, which included scientific content and originality and creativity of the articles. Their look at Irish contributions to sea and space research also proved popular in a ballot by fellow student competitors. This vote was also taken into account by the judges. The jury was very impressed by the high quality of the national entries and there were several close runners-up. The width and depth was amazing and the variety of ideas and formats presented by the sixteen teams was enormous. A poster competition was organised for younger students, aged 10 to 13 and winning entries at national level are on display at the Oceanophilia Pavilion at EXPO '98. The SEA & SPACE project is a joint initiative of the European Space Agency (ESA) , the European Southern Observatory (ESO) , and the European Association for Astronomy Education (EAAE) , in cooperation with the German National Research Centre for Information Technology (GMD). It builds on these organisations' several years' successful participation in the European Week for Scientific and Technological Culture organised by the European Commission . Note: [1] This press release is published jointly by ESA, ESO and EAAE. More information about the background of SEA & SPACE is available in ESO PR 02/98 (January 22, 1998) and ESA Press Release N 03-98 (23 January 1998). SEA & SPACE webpages are available at these URL's: * http://www.esrin.esa.int/seaspace * http://www.eso.org/seaspace , and * http://www.algonet.se/~sirius/eaae/seaspace How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  9. Portugal to Accede to ESO

    NASA Astrophysics Data System (ADS)

    2000-06-01

    The Republic of Portugal will become the ninth member state of the European Southern Observatory (ESO) [1]. Today, during a ceremony at the ESO Headquarters in Garching (Germany), a corresponding Agreement was signed by the Portuguese Minister of Science and Technology, José Mariano Gago and the ESO Director General, Catherine Cesarsky , in the presence of other high officials from Portugal and the ESO member states (see Video Clip 05/00 below). Following subsequent ratification by the Portuguese Parliament of the ESO Convention and the associated protocols [2], it is foreseen that Portugal will formally join this organisation on January 1, 2001. Uniting European Astronomy ESO PR Photo 16/00 ESO PR Photo 16/00 [Preview - JPEG: 400 x 405 pix - 160k] [Normal - JPEG: 800 x 809 pix - 408k] Caption : Signing of the Portugal-ESO Agreement on June 27, 2000, at the ESO Headquarters in Garching (Germany). At the table, the ESO Director General, Catherine Cesarsky , and the Portuguese Minister of Science and Technology, José Mariano Gago . In his speech, the Portuguese Minister of Science and Technology, José Mariano Gago , stated that "the accession of Portugal to ESO is the result of a joint effort by ESO and Portugal during the last ten years. It was made possible by the rapid Portuguese scientific development and by the growth and internationalisation of its scientific community." He continued: "Portugal is fully committed to European scientific and technological development. We will devote our best efforts to the success of ESO". Catherine Cesarsky , ESO Director General since 1999, warmly welcomed the Portuguese intention to join ESO. "With the accession of their country to ESO, Portuguese astronomers will have great opportunities for working on research programmes at the frontiers of modern astrophysics." "This is indeed a good time to join ESO", she added. "The four 8.2-m VLT Unit Telescopes with their many first-class instruments are nearly ready, and the VLT Interferometer will soon follow. With a decision about the intercontinental millimetre-band ALMA project expected next year and the first concept studies for gigantic optical/infrared telescopes like OWL now well under way at ESO, there is certainly no lack of perspectives, also for coming generations of European astronomers!" Portuguese astronomy: a decade of progress The beginnings of the collaboration between Portugal and ESO, now culminating in the imminent accession of that country to the European research organisation, were almost exactly ten years ago. On July 10, 1990, the Republic of Portugal and ESO signed a Co-operation Agreement , aimed at full Portuguese membership of the ESO organisation within the next decade. During the interim period, Portuguese astronomers were granted access to ESO facilities while the Portuguese government would provide support towards the development of astronomy and the associated infrastructure in this country. A joint Portuguese/ESO Advisory Body was set up to monitor the development of Portuguese astronomy and its interaction with ESO. Over the years, an increasing number of measures to strengthen the Portuguese research infrastructure within astrophysics and related fields were proposed and funded. More and more, mostly young Portuguese astronomers began to make use of ESO's facilities at the La Silla observatory and recently, of the Very Large Telescope (VLT) at Paranal. Now, ten years later, the Portuguese astronomical community is the youngest in Europe with more than 90% of its PhD's awarded during the last eight years. As expected, the provisional access to ESO telescopes - especially the Very Large Telescope (VLT) with its suite of state-of-the-art instruments for observations at wavelengths ranging from the UV to the mid-infrared - has proven to be a great incentive to the Portuguese scientists. As a clear demonstration of these positive developments, a very successful Workshop entitled "Portugal - ESO - VLT" was held in Lisbon on April 17-18, 2000. It was primarily directed towards young Portuguese scientists and served to inform them about the ESO Very Large Telescope (VLT) and the steadily evolving, exciting research possibilities with this world-class facility. Notes [1]: Current ESO member countries are Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. [2]: The ESO Convention was established in 1962 and specifies the goals of ESO and the means to achieve these, e.g., "The Governments of the States parties to this convention... desirous of jointly creating an observatory equipped with powerful instruments in the Southern hemisphere and accordingly promoting and organizing co-operation in astronomical research..." (from the Preamble to the ESO Convention). Video Clip from the Signing Ceremony

  10. The Next Generation Transit Survey (NGTS)

    NASA Astrophysics Data System (ADS)

    Wheatley, Peter J.; West, Richard G.; Goad, Michael R.; Jenkins, James S.; Pollacco, Don L.; Queloz, Didier; Rauer, Heike; Udry, Stéphane; Watson, Christopher A.; Chazelas, Bruno; Eigmüller, Philipp; Lambert, Gregory; Genolet, Ludovic; McCormac, James; Walker, Simon; Armstrong, David J.; Bayliss, Daniel; Bento, Joao; Bouchy, François; Burleigh, Matthew R.; Cabrera, Juan; Casewell, Sarah L.; Chaushev, Alexander; Chote, Paul; Csizmadia, Szilárd; Erikson, Anders; Faedi, Francesca; Foxell, Emma; Gänsicke, Boris T.; Gillen, Edward; Grange, Andrew; Günther, Maximilian N.; Hodgkin, Simon T.; Jackman, James; Jordán, Andrés; Louden, Tom; Metrailler, Lionel; Moyano, Maximiliano; Nielsen, Louise D.; Osborn, Hugh P.; Poppenhaeger, Katja; Raddi, Roberto; Raynard, Liam; Smith, Alexis M. S.; Soto, Maritza; Titz-Weider, Ruth

    2018-04-01

    We describe the Next Generation Transit Survey (NGTS), which is a ground-based project searching for transiting exoplanets orbiting bright stars. NGTS builds on the legacy of previous surveys, most notably WASP, and is designed to achieve higher photometric precision and hence find smaller planets than have previously been detected from the ground. It also operates in red light, maximizing sensitivity to late K and early M dwarf stars. The survey specifications call for photometric precision of 0.1 per cent in red light over an instantaneous field of view of 100 deg2, enabling the detection of Neptune-sized exoplanets around Sun-like stars and super-Earths around M dwarfs. The survey is carried out with a purpose-built facility at Cerro Paranal, Chile, which is the premier site of the European Southern Observatory (ESO). An array of twelve 20 cm f/2.8 telescopes fitted with back-illuminated deep-depletion CCD cameras is used to survey fields intensively at intermediate Galactic latitudes. The instrument is also ideally suited to ground-based photometric follow-up of exoplanet candidates from space telescopes such as TESS, Gaia and PLATO. We present observations that combine precise autoguiding and the superb observing conditions at Paranal to provide routine photometric precision of 0.1 per cent in 1 h for stars with I-band magnitudes brighter than 13. We describe the instrument and data analysis methods as well as the status of the survey, which achieved first light in 2015 and began full-survey operations in 2016. NGTS data will be made publicly available through the ESO archive.

  11. Brightness Variations of Sun-like Stars: The Mystery Deepens - Astronomers facing Socratic "ignorance"

    NASA Astrophysics Data System (ADS)

    2009-12-01

    An extensive study made with ESO's Very Large Telescope deepens a long-standing mystery in the study of stars similar to the Sun. Unusual year-long variations in the brightness of about one third of all Sun-like stars during the latter stages of their lives still remain unexplained. Over the past few decades, astronomers have offered many possible explanations, but the new, painstaking observations contradict them all and only deepen the mystery. The search for a suitable interpretation is on. "Astronomers are left in the dark, and for once, we do not enjoy it," says Christine Nicholls from Mount Stromlo Observatory, Australia, lead author of a paper reporting the study. "We have obtained the most comprehensive set of observations to date for this class of Sun-like stars, and they clearly show that all the possible explanations for their unusual behaviour just fail." The mystery investigated by the team dates back to the 1930s and affects about a third of Sun-like stars in our Milky Way and other galaxies. All stars with masses similar to our Sun become, towards the end of their lives, red, cool and extremely large, just before retiring as white dwarfs. Also known as red giants, these elderly stars exhibit very strong periodic variations in their luminosity over timescales up to a couple of years. "Such variations are thought to be caused by what we call 'stellar pulsations'," says Nicholls. "Roughly speaking, the giant star swells and shrinks, becoming brighter and dimmer in a regular pattern. However, one third of these stars show an unexplained additional periodic variation, on even longer timescales - up to five years." In order to find out the origin of this secondary feature, the astronomers monitored 58 stars in our galactic neighbour, the Large Magellanic Cloud, over two and a half years. They acquired spectra using the high resolution FLAMES/GIRAFFE spectrograph on ESO's Very Large Telescope and combined them with images from other telescopes [1], achieving an impressive collection of the properties of these variable stars. Outstanding sets of data like the one collected by Nicholls and her colleagues often offer guidance on how to solve a cosmic puzzle by narrowing down the plethora of possible explanations proposed by the theoreticians. In this case, however, the observations are incompatible with all the previously conceived models and re-open an issue that has been thoroughly debated. Thanks to this study, astronomers are now aware of their own "ignorance" - a genuine driver of the knowledge-seeking process, as the ancient Greek philosopher Socrates is said to have taught. "The newly gathered data show that pulsations are an extremely unlikely explanation for the additional variation," says team leader Peter Wood. "Another possible mechanism for producing luminosity variations in a star is to have the star itself move in a binary system. However, our observations are strongly incompatible with this hypothesis too." The team found from further analysis that whatever the cause of these unexplained variations is, it also causes the giant stars to eject mass either in clumps or as an expanding disc. "A Sherlock Holmes is needed to solve this very frustrating mystery," concludes Nicholls. Notes [1] Precise brightness measurements were made by the MACHO and OGLE collaborations, running on telescopes in Australia and Chile, respectively. The OGLE observations were made at the same time as the VLT observations. More information This research was presented in two papers: one appeared in the November issue of the Monthly Notices of the Royal Astronomical Society ("Long Secondary Periods in Variable Red Giants", by C. P. Nicholls et al.), and the other has just been published in the Astrophysical Journal ("Evidence for mass ejection associated with long secondary periods in red giants", by P. R. Wood and C. P. Nicholls). The team is composed of Christine P. Nicholls and Peter R. Wood (Research School of Astronomy and Astrophysics, Australia National University), Maria-Rosa L. Cioni (Centre for Astrophysics Research, University of Hertfordshire, UK) and Igor Soszyński (Warsaw University Observatory). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  12. Astronomer's new guide to the galaxy: largest map of cold dust revealed

    NASA Astrophysics Data System (ADS)

    2009-07-01

    Astronomers have unveiled an unprecedented new atlas of the inner regions of the Milky Way, our home galaxy, peppered with thousands of previously undiscovered dense knots of cold cosmic dust -- the potential birthplaces of new stars. Made using observations from the APEX telescope in Chile, this survey is the largest map of cold dust so far, and will prove an invaluable map for observations made with the forthcoming ALMA telescope, as well as the recently launched ESA Herschel space telescope. ESO PR Photo 24a/09 View of the Galactic Plane from the ATLASGAL survey (annotated and in five sections) ESO PR Photo 24b/09 View of the Galactic Plane from the ATLASGAL survey (annotated) ESO PR Photo 24c/09 View of the Galactic Plane from the ATLASGAL survey (in five sections) ESO PR Photo 24d/09 View of the Galactic Plane from the ATLASGAL survey ESO PR Photo 24e/09 The Galactic Centre and Sagittarius B2 ESO PR Photo 24f/09 The NGC 6357 and NGC 6334 nebulae ESO PR Photo 24g/09 The RCW120 nebula ESO PR Video 24a/09 Annotated pan as seen by the ATLASGAL survey This new guide for astronomers, known as the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) shows the Milky Way in submillimetre-wavelength light (between infrared light and radio waves [1]). Images of the cosmos at these wavelengths are vital for studying the birthplaces of new stars and the structure of the crowded galactic core. "ATLASGAL gives us a new look at the Milky Way. Not only will it help us investigate how massive stars form, but it will also give us an overview of the larger-scale structure of our galaxy", said Frederic Schuller from the Max Planck Institute for Radio Astronomy, leader of the ATLASGAL team. The area of the new submillimetre map is approximately 95 square degrees, covering a very long and narrow strip along the galactic plane two degrees wide (four times the width of the full Moon) and over 40 degrees long. The 16 000 pixel-long map was made with the LABOCA submillimetre-wave camera on the ESO-operated APEX telescope. APEX is located at an altitude of 5100 m on the arid plateau of Chajnantor in the Chilean Andes -- a site that allows optimal viewing in the submillimetre range. The Universe is relatively unexplored at submillimetre wavelengths, as extremely dry atmospheric conditions and advanced detector technology are required for such observations. The interstellar medium -- the material between the stars -- is composed of gas and grains of cosmic dust, rather like fine sand or soot. However, the gas is mostly hydrogen and relatively difficult to detect, so astronomers often search for these dense regions by looking for the faint heat glow of the cosmic dust grains. Submillimetre light allows astronomers to see these dust clouds shining, even though they obscure our view of the Universe at visible light wavelengths. Accordingly, the ATLASGAL map includes the denser central regions of our galaxy, in the direction of the constellation of Sagittarius -- home to a supermassive black hole (ESO 46/08) -- that are otherwise hidden behind a dark shroud of dust clouds. The newly released map also reveals thousands of dense dust clumps, many never seen before, which mark the future birthplaces of massive stars. The clumps are typically a couple of light-years in size, and have masses of between ten and a few thousand times the mass of our Sun. In addition, ATLASGAL has captured images of beautiful filamentary structures and bubbles in the interstellar medium, blown by supernovae and the winds of bright stars. Some striking highlights of the map include the centre of the Milky Way, the nearby massive and dense cloud of molecular gas called Sagittarius B2, and a bubble of expanding gas called RCW120, where the interstellar medium around the bubble is collapsing and forming new stars (see ESO 40/08). "It's exciting to get our first look at ATLASGAL, and we will be increasing the size of the map over the next year to cover all of the galactic plane visible from the APEX site on Chajnantor, as well as combining it with infrared observations to be made by the ESA Herschel Space Observatory. We look forward to new discoveries made with these maps, which will also serve as a guide for future observations with ALMA", said Leonardo Testi from ESO, who is a member of the ATLASGAL team and the European Project Scientist for the ALMA project. Note [1] The map was constructed from individual APEX observations in radiation at 870 µm (0.87 mm) wavelength. More information: The ATLASGAL observations are presented in a paper by Frederic Schuller et al., ATLASGAL -- The APEX Telescope Large Area Survey of the Galaxy at 870 µm, published in Astronomy & Astrophysics. ATLASGAL is a collaboration between the Max Planck Institute for Radio Astronomy, the Max Planck Institute for Astronomy, ESO, and the University of Chile. LABOCA (Large APEX Bolometer Camera), one of APEX's major instruments, is the world's largest bolometer camera (a "thermometer camera", or thermal camera that measures and maps the tiny changes in temperature that occur when sub-millimetre wavelength light falls on its absorbing surface; see ESO 35/07). LABOCA's large field of view and high sensitivity make it an invaluable tool for imaging the "cold Universe". LABOCA was built by the Max Planck Institute for Radio Astronomy. The Atacama Pathfinder Experiment (APEX) telescope is a 12-metre telescope, located at 5100 m altitude on the arid plateau of Chajnantor in the Chilean Andes. APEX operates at millimetre and submillimetre wavelengths. This wavelength range is a relatively unexplored frontier in astronomy, requiring advanced detectors and an extremely high and dry observatory site, such as Chajnantor. APEX, the largest submillimetre-wave telescope operating in the southern hemisphere, is a collaboration between the Max Planck Institute for Radio Astronomy, the Onsala Space Observatory and ESO. Operation of APEX at Chajnantor is entrusted to ESO. APEX is a "pathfinder" for ALMA -- it is based on a prototype antenna constructed for the ALMA project, it is located on the same plateau and will find many targets that ALMA will be able to study in extreme detail. The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ESO is the European partner in ALMA. ALMA, the largest astronomical project in existence, is a revolutionary telescope, comprising an array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. ALMA will start scientific observations in 2011. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  13. Quantitative Characterisation of Sky Conditions on Paranal with the Microwave Radiometer LHATPRO - Five Years and Learning

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Querel, R.; Neureiter, B.; Hanuschik, R.

    2017-09-01

    "A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, optimized for measuring small amounts of atmospheric precipitable water vapour (PWV), has now been in use for more than five years to monitor sky conditions over ESO's Paranal observatory (median PWV 2.5 mm). We'll summarise the performance characteristics of the unit and the current applications of its data in scheduling observations in Service Mode to take advantage of favourable conditions for infrared observations. We'll elaborate on our improved understanding of PWV over Paranal, including an analysis of PWV homogeneity addressing an important calibration issue. In addition we'll describe how the capabilities of the LHATPRO can be used in the future to further strengthen science operations and calibration by also offering line-of-sight support for individual VLT observations. Using its IR data we developed a method for an automated classification of photometric observing conditions in a quantitative way, supporting high precision photometry. Its highly precise PWV measurements enable new low PWV science during episodes of extremely low water vapour that result in a strongly increased transmission also outside the standard atmospheric windows. A goal for the future is to combine various diagnostics measurements (altitude resolved profiles) by LHATPRO and other instruments and sophisticated atmospheric modeling to better characterize relevant properties of the atmosphere and to thus enable more precise, local short-term forecasting for optimised science operations."

  14. ESO Director General to Become President of AUI

    NASA Astrophysics Data System (ADS)

    1998-11-01

    The appointment of Professor Riccardo Giacconi , Director General of the European Southern Observatory (ESO) since January 1, 1993, to the Presidency of Associated Universities, Inc. ( AUI ) in the USA, has been jointly announced by Professor Paul C. Martin, Chair of AUI's Board of Trustees and Mr. Henrik Grage, President of the ESO Council. Professor Giacconi will assume this new position at the end of his term at ESO as of July 1, 1999. AUI is a not-for-profit science management corporation that operates the National Radio Astronomy Observatory ( NRAO) under a Cooperative Agreement with the National Science Foundation (NSF). Corporate headquarters are located in Washington, D.C. The President is its chief executive officer. Nine northeastern universities joined in founding AUI in 1946: Columbia University, Cornell University, Harvard University, The Johns Hopkins University, Massachusetts Institute of Technology, the University of Pennsylvania, Princeton University, the University of Rochester, and Yale University. Over the years, AUI has taken on a broad national character with a diversified Board of Trustees from universities and other institutions across the United States. ESO is an intergovernmental organization, at present with the following member countries: Belgium, Denmark, France, Germany, Italy, The Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO was founded in 1962 to establish and operate an astronomical observatory in the southern hemisphere and to promote and organize co-operation in astronomical research in Europe. While the ESO Headquarters are situated in Europe, the observing facilities are located in Chile (South America). The organization's main administrative and technical departments are located at the ESO Headquarters, in Garching near Munich, Germany. They include a number of highly specialized facilities, e.g. the optical, infrared, detector and instrumentation laboratories, all engaged in front-line research and development. The European Coordinating Facility for the Hubble Space Telescope, jointly managed by ESO and the European Space Agency (ESA), is also situated in Garching. Mr. Grage , President of the ESO Council, expressed the gratitude of the ESO Community for the leadership provided by Prof. Giacconi during these crucial years of development of the organization and its La Silla and Paranal Observatories. In particular, the splendid achievements on the Very Large Telescope (VLT) are a tribute to the ESO staff and to his management and guidance. VLT is currently the largest single project in ground-based astronomy. It has met or exceeded all performance requirements while being built on time and within budget. When reached for comment, Professor Giacconi pointed out: "I have enjoyed enormously the time I have spent here at ESO and I consider it one of the high points of my career. I feel confident that I am leaving ESO in very good condition. The fine performance of the entire staff has succeeded in bringing the organization to an outstanding position in ground-based astronomy in the world. The prospects for the future are equally brilliant. I will be happy and proud to assume the Presidency of Associated Universities, Inc. starting next summer. For more than fifty years, AUI has, in collaboration with universities and the national and international scientific community, overseen and managed national facilities which have made possible a wealth of important discoveries in physics, astronomy, and many other areas of science and technology. In the 21st Century, new challenges and opportunities to serve the community await AUI." Asked about the recent developments in astronomy, Professor Giacconi added that "Advances in this fundamental field of research have come to depend more and more on the execution of complex and large projects. Many of these necessitate international cooperation on the broadest scale. The VLT is an outstanding example and will be the prime ground-based optical observatory of the coming Century. The expertise of AUI and NRAO in providing effective support to the radio astronomy community will prove an invaluable asset in carrying out, under NSF sponsorship, the new and ambitious international cooperative project in submillimeter wave astronomy. I look forward to the opportunity to help AUI in the realization of this undertaking, so important for future advances in the field. Scientific research in different disciplines is ever more closely interwoven today in methodology and management approaches. The expertise of AUI and of the university community it represents qualifies the organization to manage scientific endeavors in many fields. Guiding AUI in responding to the many challenges and opportunities it faces will be interesting and exciting." "We are thrilled that Professor Giacconi has decided to take this position," said Professor Paul Martin , Chairman of the Board of AUI. "It is hard to imagine anyone better qualified to lead an organization committed to managing facilities performing frontier science. His vision and foresight have been at the heart of pioneering projects including the Einstein Observatory, the Space Telescope, and the VLT. He is an extraordinary scientist and an outstanding manager whose accomplishments and values have earned him worldwide respect and admiration." Prior to this assignment at ESO, Prof. Giacconi had served as Director of the Hubble Space Telescope Science Institute in Baltimore, Maryland. He is best known in scientific circles for his pioneering contributions to X-ray astronomy. His seminal work in this field, which started at American Science and Engineering, Inc., culminated in the realization, while on the faculty of Harvard University, of the orbital Einstein Observatory in the 1970's. He is currently on leave as Research Professor of Johns Hopkins University and Astronomer Emeritus at STScI. He is the recipient of numerous prestigious scientific awards for his work. Prof. Giacconi is a member of the U.S. National Academy of Sciences and the American Academy of Arts and Sciences. He is the author of books as well as more than 200 scientific publications. Note: [1] This is a joint Press Release of ESO and AUI (URL: http://www.aui.edu/ ). How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  15. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Bensby, T.; Feltzing, S.; Oey, M. S.

    2014-02-01

    Aims: The aim of this paper is to explore and map the age and abundance structure of the stars in the nearby Galactic disk. Methods: We have conducted a high-resolution spectroscopic study of 714 F and G dwarf and subgiant stars in the Solar neighbourhood. The star sample has been kinematically selected to trace the Galactic thin and thick disks to their extremes, the metal-rich stellar halo, sub-structures in velocity space such as the Hercules stream and the Arcturus moving group, as well as stars that cannot (kinematically) be associated with either the thin disk or the thick disk. The determination of stellar parameters and elemental abundances is based on a standard analysis using equivalent widths and one-dimensional, plane-parallel model atmospheres calculated under the assumption of local thermodynamical equilibrium (LTE). The spectra have high resolution (R = 40 000-110 000) and high signal-to-noise (S/N = 150-300) and were obtained with the FEROS spectrograph on the ESO 1.5 m and 2.2 m telescopes, the SOFIN and FIES spectrographs on the Nordic Optical Telescope, the UVES spectrograph on the ESO Very Large Telescope, the HARPS spectrograph on the ESO 3.6 m telescope, and the MIKE spectrograph on the Magellan Clay telescope. The abundances from individual Fe i lines were were corrected for non-LTE effects in every step of the analysis. Results: We present stellar parameters, stellar ages, kinematical parameters, orbital parameters, and detailed elemental abundances for O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba for 714 nearby F and G dwarf stars. Our data show that there is an old and α-enhanced disk population, and a younger and less α-enhanced disk population. While they overlap greatly in metallicity between -0.7 < [Fe/H] ≲ +0.1, they show a bimodal distribution in [α/Fe]. This bimodality becomes even clearer if stars where stellar parameters and abundances show larger uncertainties (Teff ≲ 5400 K) are discarded, showing that it is important to constrain the data set to a narrow range in the stellar parameters if small differences between stellar populations are to be revealed. In addition, we find that the α-enhanced population has orbital parameters placing the stellar birthplaces in the inner Galactic disk while the low-α stars mainly come from the outer Galactic disk, fully consistent with the recent claims of a short scale-length for the α-enhanced Galactic thick disk. We have also investigated the properties of the Hercules stream and the Arcturus moving group and find that neither of them presents chemical or age signatures that could suggest that they are disrupted clusters or extragalactic accretion remnants from ancient merger events. Instead, they are most likely dynamical features originating within the Galaxy. We have also discovered that a standard 1D, LTE analysis, utilising ionisation and excitation balance of Fe i and Fe ii lines produces a flat lower main sequence. As the exact cause for this effect is unclear we chose to apply an empirical correction. Turn-off stars and more evolved stars appear to be unaffected. This paper includes data gathered with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile; the Nordic Optical Telescope (NOT) on La Palma, Spain; the Very Large Telescope (VLT) at the European Southern Observatory (ESO) on Paranal, Chile (ESO Proposal ID 69.B-0277 and 72.B-0179); the ESO 1.5 m, 2.2 m, and 3.6 m telescopes on La Silla, Chile (ESO Proposal ID 65.L-0019, 67.B-0108, 76.B-0416, 82.B-0610); and data from the UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655).Full Tables C.1-C.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A71Appendices are available in electronic form at http://www.aanda.org

  16. Jupiter's Spot Seen Glowing - Scientists Get First Look at Weather Inside the Solar System's Biggest Storm

    NASA Astrophysics Data System (ADS)

    2010-03-01

    New ground-breaking thermal images obtained with ESO's Very Large Telescope and other powerful ground-based telescopes show swirls of warmer air and cooler regions never seen before within Jupiter's Great Red Spot, enabling scientists to make the first detailed interior weather map of the giant storm system linking its temperature, winds, pressure and composition with its colour. "This is our first detailed look inside the biggest storm of the Solar System," says Glenn Orton, who led the team of astronomers that made the study. "We once thought the Great Red Spot was a plain old oval without much structure, but these new results show that it is, in fact, extremely complicated." The observations reveal that the reddest colour of the Great Red Spot corresponds to a warm core within the otherwise cold storm system, and images show dark lanes at the edge of the storm where gases are descending into the deeper regions of the planet. The observations, detailed in a paper appearing in the journal Icarus, give scientists a sense of the circulation patterns within the solar system's best-known storm system. Sky gazers have been observing the Great Red Spot in one form or another for hundreds of years, with continuous observations of its current shape dating back to the 19th century. The spot, which is a cold region averaging about -160 degrees Celsius, is so wide that about three Earths could fit inside its boundaries. The thermal images were mostly obtained with the VISIR [1] instrument attached to ESO's Very Large Telescope in Chile, with additional data coming from the Gemini South telescope in Chile and the National Astronomical Observatory of Japan's Subaru Telescope in Hawaii. The images have provided an unprecedented level of resolution and extended the coverage provided by NASA's Galileo spacecraft in the late 1990s. Together with observations of the deep cloud structure by the 3-metre NASA Infrared Telescope Facility in Hawaii, the level of thermal detail observed from these giant observatories is for the first time comparable to visible-light images from the NASA/ESA Hubble Space Telescope. VISIR allows the astronomers to map the temperature, aerosols and ammonia within and surrounding the storm. Each of these parameters tells us how the weather and circulation patterns change within the storm, both spatially (in 3D) and with time. The years of VISIR observations, coupled with those from the other observatories, reveals how the storm is incredibly stable despite turbulence, upheavals and close encounters with other anticyclones that affect the edge of the storm system. "One of the most intriguing findings shows the most intense orange-red central part of the spot is about 3 to 4 degrees warmer than the environment around it," says lead author Leigh Fletcher. This temperature difference might not seem like a lot, but it is enough to allow the storm circulation, usually counter-clockwise, to shift to a weak clockwise circulation in the very middle of the storm. Not only that, but on other parts of Jupiter, the temperature change is enough to alter wind velocities and affect cloud patterns in the belts and zones. "This is the first time we can say that there's an intimate link between environmental conditions - temperature, winds, pressure and composition - and the actual colour of the Great Red Spot," says Fletcher. "Although we can speculate, we still don't know for sure which chemicals or processes are causing that deep red colour, but we do know now that it is related to changes in the environmental conditions right in the heart of the storm." Notes [1] VISIR stands for VLT Imager and Spectrometer for mid Infrared (eso0417). It is a complex multi-mode instrument designed to operate in the 10 and 20 micron atmospheric windows, i.e. at wavelengths up to about 40 times longer than visible light, and to provide images as well as spectra. More information This research was presented in a paper to appear in Icarus ("Thermal Structure and Composition of Jupiter's Great Red Spot from High-Resolution Thermal Imaging", by L. Fletcher et al.). The team is composed of Leigh N. Fletcher and P. G. J. Irwin (University of Oxford, UK), G. S. Orton, P. Yanamandra-Fisher, and B. M. Fisher (Jet Propulsion Laboratory, California Institute of Technology, USA), O. Mousis (Observatoire de Besançon, France, and University of Arizona, Tucson, USA), P. D. Parrish (University of Edinburgh, UK), L. Vanzi (Pontificia Universidad Catolica de Chile, Santiago, Chile), T. Fujiyoshi and T. Fuse (Subaru Telescope, National Astronomical Observatory of Japan, Hawaii, USA), A.A. Simon-Miller (NASA/Goddard Spaceflight Center, Greenbelt, Maryland, USA), E. Edkins (University of California, Santa Barbara, USA), T.L. Hayward (Gemini Observatory, La Serena, Chile), and J. De Buizer (SOFIA - USRA, NASA Ames Research Center, Moffet Field, CA 94035, USA). Leigh Fletcher was working at JPL during the study. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  17. The composition of the Eureka family of Martian Trojan asteroids

    NASA Astrophysics Data System (ADS)

    Borisov, Galin; Christou, Apostolos; Bagnulo, Stefano

    2016-10-01

    The so-called Martian Trojan asteroids orbit the Sun just inside the terrestrial planet region. They are thought to date from the earliest period of the solar system's history (Scholl et al, Icarus, 2005). Recently, Christou (Icarus, 2013) identified an orbital concentration of Trojans, named the "Eureka" cluster after its largest member, 5261 Eureka. This asteroid belongs to the rare olivine-rich A taxonomic class (Rivkin et al, Icarus, 2007; Lim et al, DPS/EPSC 2011). Unlike asteroids belonging to other taxonomies (e.g. C or S), no orbital concentrations or families of A-types are currently known to exist. These asteroids may represent samples of the building blocks that came together to form Mars and the other terrestrial planets but have since been destroyed by collisions (Sanchez et al, Icarus, 2014, and references therein).We have used the X-SHOOTER echelle spectrograph on the ESO VLT KUEYEN to obtain vis-NIR reflectance spectra of asteroids in the cluster and test their genetic relationship to Eureka. During the presentation we will show the spectra, compare them with available spectra for Eureka itself and discuss the implications for the origin of this cluster and for other olivine-dominated asteroids in the Main Belt.Based on observations made with ESO Telescopes at the La Silla-Paranal Observatory under programme ID 296.C-5030 (PI: A. Christou). Astronomical Research at Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL).

  18. ESO takes the public on an astronomical journey "Around the World in 80 Telescopes"

    NASA Astrophysics Data System (ADS)

    2009-03-01

    A live 24-hour free public video webcast, "Around the World in 80 Telescopes", will take place from 3 April 09:00 UT/GMT to 4 April 09:00 UT/GMT, chasing day and night around the globe to let viewers "visit" some of the most advanced astronomical telescopes on and off the planet. The webcast, organised by ESO for the International Year of Astronomy 2009 (IYA2009), is the first time that so many large observatories have been linked together for a public event. ESO PR Photo 13a/09 Map of Participating Observatories ESO PR Photo 13b/09 100 Hours of Astronomy logo Viewers will see new images of the cosmos, find out what observatories in their home countries or on the other side of the planet are discovering, send in questions and messages, and discover what astronomers are doing right now. Participating telescopes include those at observatories in Chile such as ESO's Very Large Telescope and La Silla, the Hawaii-based telescopes Gemini North and Keck, the Anglo-Australian Telescope, telescopes in the Canary Islands, the Southern African Large Telescope, space-based telescopes such as the NASA/ESA Hubble Space Telescope, ESA XMM-Newton and Integral, and many more. "Around the World in 80 Telescopes" will take viewers to every continent, including Antarctica! The webcast production will be hosted at ESO's headquarters near Munich, Germany, with live internet streaming by Ustream.tv. Anyone with a web browser supporting Adobe Flash will be able to follow the show, free of charge, from the website www.100hoursofastronomy.org and be a part of the project by sending messages and questions. The video player can be freely embedded on other websites. TV stations, web portals and science centres can also use the high quality feed. Representatives of the media who wish to report from the "front-line" and interview the team should get in touch. "Around the World in 80 Telescopes" is a major component of the 100 Hours of Astronomy (100HA), a Cornerstone project of the International Year of Astronomy 2009. 100HA is on track to be the largest single science public outreach event ever, with more than 1500 events registered in over 130 countries. 100HA will take place over four days and nights, from 2-5 April 2009. It is a worldwide celebration composed of a broad range of activities aimed at involving the public. During this period, people from around the globe will share the experience and wonder of observing the sky. For many, it will be their first glimpse of the marvels of the heavens through a telescope. For others, it is the perfect opportunity to impart their knowledge and excitement, helping unveil the cosmos to fresh and eager eyes. Astronomers at ESO are also organising local public events near their headquarters in Garching, near Munich. In the Munich city centre, ESO astronomers, together with colleagues from the Excellence Cluster Universe, will share their views of the cosmos with members of the public. ESO in Chile is also participating in a series of events to celebrate the 100 Hours of Astronomy. In Antofagasta, an exhibition by international and local astrophotographers will be unveiled at the main mall in the city. Star parties will be organised for the public in the desert outside Antofagasta, in coordination with the local university UCN. In Santiago, ESO is offering, along with other international observatories and the Chilean astronomical community, a complete set of programmes, including public talks, night observations and interactive exhibitions. In San Pedro de Atacama, the ALMA project will install an inflatable planetarium for the local community, and astronomy workshops and star parties will be offered to the public. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO plays also a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in the Atacama Desert region of Chile: La Silla, Paranal and Chajnantor. The vision of the IYA2009 is to help the citizens of the world rediscover their place in the Universe through the day and night-time skies the impact of astronomy and basic sciences on our daily lives, and understand better how scientific knowledge can contribute to a more equitable and peaceful society. Ustream.TV is the live interactive video broadcast platform that enables anyone with a camera and an internet connection to quickly and easily broadcast to a global audience of unlimited size. In less than two minutes, anyone can become a broadcaster by creating their own channel on Ustream or by broadcasting through their own site, empowering them to engage with their audience and further build their brand.

  19. Discarded candidate companions to low-mass members of Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Comerón, F.

    2012-01-01

    Context. Direct detections of brown dwarfs and planetary-mass companions to members of nearby star-forming regions provide important clues about the process of star formation, core fragmentation, and protoplanetary disk evolution. Aims: We study two faint objects at a very small angular distance from the low-mass star ESO-Hα-558 and the possible massive brown dwarf ESO-Hα-566, both of which are members of the Chamaeleon I star-forming region, to establish whether they are physical companions to those sources. If they are, their low luminosities should imply L or T spectral types, which have clearly detectable spectral features. Methods: Adaptive optics-assisted imaging and spectroscopy of both faint candidate companions has been obtained with the NACO instrument at the Very Large Telescope (VLT). Results: Photometry shows that the colors of both objects are compatible with them being moderately reddened, normal stars in the background of the Chamaeleon I clouds. This interpretation is confirmed spectroscopically, as the spectrum between 1.4 and 2.4 μm of both objects has a featureless, monotonic slope lacking the strong H2O absorption features that dominate cool stellar and substellar spectra in that domain. Conclusions: We demonstrate that the two faint sources seen very close to ESO-Hα-558 and ESO-Hα-566 are unrelated background stars, instead of giant planetary-mass companions as might be expected based on their faintness and angular proximity. Based on observations collected with the Very Large Telescope (VLT) at the European Southern Observatory, Paranal, Chile, under observing programmes 075.C-0809(B) and 078.C-0429(C).

  20. Free from the Atmosphere

    NASA Astrophysics Data System (ADS)

    2007-06-01

    An artificial, laser-fed star now shines regularly over the sky of Paranal, home of ESO's Very Large Telescope, one of the world's most advanced large ground-based telescopes. This system provides assistance for the adaptive optics instruments on the VLT and so allows astronomers to obtain images free from the blurring effect of the atmosphere, regardless of the brightness and the location on the sky of the observed target. Now that it is routinely offered by the observatory, the skies seem much sharper to astronomers. In order to counteract the blurring effect of Earth's atmosphere, astronomers use the adaptive optics technique. This requires, however, a nearby reference star that has to be relatively bright, thereby limiting the area of the sky that can be surveyed. To surmount this limitation, astronomers now use at Paranal a powerful laser that creates an artificial star, where and when they need it. Two of the Adaptive Optics (AO) science instruments at the Paranal observatory, NACO and SINFONI, have been upgraded to work with the recently installed Laser Guide Star (LGS; see ESO 07/06) and have delivered their first scientific results. This achievement opens astronomers' access to a wealth of new targets to be studied under the sharp eyes of AO. "These unique results underline the advantage of using a Laser Guide Star with Adaptive Optics instruments, since they could not be obtained with Natural Guide Stars," says Norbert Hubin, head of the Adaptive Optics group at ESO. "This is also a crucial milestone towards the multi-laser systems ESO is designing for the VLT and the future E-ELT" (see e.g. ESO 19/07). ESO PR Photo 27a/07 ESO PR Photo 27a/07 An Ultra Luminous Merger (NACO-LGS/VLT) The Laser Guide Star System installed at Paranal uses the PARSEC dye laser developed by MPE-Garching and MPIA-Heidelberg, while the launch telescope and the laser laboratory was developed by ESO. "It is great to see the whole system working so well together," emphasises Richard Davies, project manager of the PARSEC laser. "To test the laser guide star adaptive optics system to its limits, and even beyond, we observed a number of galaxies, ranging from a close neighbour to one that is seen when the universe was very young," explains Markus Kasper, the NACO Instrument Scientist at ESO. The first objects that were observed are interacting galaxies. The images obtained reveal exquisite details, and have a resolution comparable to that of the Hubble Space Telescope. In one case, it was possible to derive for the first time the motion of the stars in two merging galaxies, showing that there are two counter-rotating discs of stars. "The enhanced resolution that laser guide star adaptive optics provides is certain to bring important new discoveries in this exciting area," says Davies ESO PR Photo 27c/07 ESO PR Photo 27c/07 Merging System Arp 220 (SINFONI-LGS/VLT) The astronomers then turned the laser to a galaxy called K20-ID5 which is at a redshift of 2.2 - we are seeing this galaxy when the universe was less than 1/3 of its current age. The image obtained with NACO shows that the stars are concentrated in a much more compact region than the gas. "These observations are both remarkable and exciting," declares Kasper. "They are the first time that it has been possible to trace in such detail the distributions of both the stars and the gas at an epoch where we are witnessing the formation of galaxies similar to our own Milky Way." At the opposite extreme, much nearer to home, LGS-AO observations were made of the active galaxy NGC 4945. The new LGS observations with NACO resolved the central parts into a multitude of individual stars. "It is in galaxies such as these where we can really quantify the star formation history in the vicinity of the nucleus, that we can start to piece together the puzzle of how gas is accreted onto the supermassive black hole, and understand how and when these black holes light up so brightly," says Davies. ESO PR Photo 27e/07 ESO PR Photo 27e/07 Active Galaxy NGC 4945 (NACO-LGS/VLT) Still closer to home, the LGS system can also be applied to solar system objects, such as asteroids or satellites, but also to the study of particular regions of spatially extended bodies like the polar regions of giant planets, where aurora activity is concentrated. During their science verification, the scientists turned the SINFONI instrument with the LGS to a Trans-Neptunian Object, 2003 EL 61. The high image contrast and sensitivity obtained with the use of the LGS mode permit the detection of the two faint satellites known to orbit the TNO. "From such observations one can study the chemical composition of the surface material of the TNO and its satellites (mainly crystalline water ice), estimate their surface properties and constrain their internal structure," explains Christophe Dumas, from ESO. The VLT Laser Guide System is the result of a collaborative work by a team of scientists and engineers from ESO and the Max Planck Institutes for Extraterrestrial Physics in Garching and for Astronomy in Heidelberg, Germany. NACO was built by a Consortium of French and German institutes and ESO. SINFONI was built by a Consortium of German and Dutch Institutes and ESO. More Information Normally, the achievable image sharpness of a ground-based telescope is limited by the effect of atmospheric turbulence. This drawback can be surmounted with adaptive optics, allowing the telescope to produce images that are as sharp as if taken from space. This means that finer details in astronomical objects can be studied, and also that fainter objects can be observed. In order to work, adaptive optics needs a nearby reference star that has to be relatively bright, thereby limiting the area of the sky that can be surveyed to a few percent only. To overcome this limitation, astronomers use a powerful laser that creates an artificial star, where and when they need it. The laser beam takes advantage of the layer of sodium atoms that is present in Earth's atmosphere at an altitude of 90 kilometres. Shining at a well-defined wavelength the laser makes it glow. The laser is launched from Yepun, the fourth 8.2-m Unit Telescope of the Very Large Telescope, producing an artificial star. Despite this star being about 20 times fainter than the faintest star that can be seen with the unaided eye, it is bright enough for the adaptive optics to measure and correct the atmosphere's blurring effect. Compared to a normal star, this artificial star has some differing properties that the associated Laser Guide Star (LGS) Adaptive Optics (AO) system has to be able to cope with. A press release, in English and German, is also available from the Max-Planck Institute.

  1. Back on Track

    NASA Astrophysics Data System (ADS)

    2007-06-01

    An artificial, laser-fed star now shines regularly over the sky of Paranal, home of ESO's Very Large Telescope, one of the world's most advanced large ground-based telescopes. This system provides assistance for the adaptive optics instruments on the VLT and so allows astronomers to obtain images free from the blurring effect of the atmosphere, regardless of the brightness and the location on the sky of the observed target. Now that it is routinely offered by the observatory, the skies seem much sharper to astronomers. In order to counteract the blurring effect of Earth's atmosphere, astronomers use the adaptive optics technique. This requires, however, a nearby reference star that has to be relatively bright, thereby limiting the area of the sky that can be surveyed. To surmount this limitation, astronomers now use at Paranal a powerful laser that creates an artificial star, where and when they need it. Two of the Adaptive Optics (AO) science instruments at the Paranal observatory, NACO and SINFONI, have been upgraded to work with the recently installed Laser Guide Star (LGS; see ESO 07/06) and have delivered their first scientific results. This achievement opens astronomers' access to a wealth of new targets to be studied under the sharp eyes of AO. "These unique results underline the advantage of using a Laser Guide Star with Adaptive Optics instruments, since they could not be obtained with Natural Guide Stars," says Norbert Hubin, head of the Adaptive Optics group at ESO. "This is also a crucial milestone towards the multi-laser systems ESO is designing for the VLT and the future E-ELT" (see e.g. ESO 19/07). ESO PR Photo 27a/07 ESO PR Photo 27a/07 An Ultra Luminous Merger (NACO-LGS/VLT) The Laser Guide Star System installed at Paranal uses the PARSEC dye laser developed by MPE-Garching and MPIA-Heidelberg, while the launch telescope and the laser laboratory was developed by ESO. "It is great to see the whole system working so well together," emphasises Richard Davies, project manager of the PARSEC laser. "To test the laser guide star adaptive optics system to its limits, and even beyond, we observed a number of galaxies, ranging from a close neighbour to one that is seen when the universe was very young," explains Markus Kasper, the NACO Instrument Scientist at ESO. The first objects that were observed are interacting galaxies. The images obtained reveal exquisite details, and have a resolution comparable to that of the Hubble Space Telescope. In one case, it was possible to derive for the first time the motion of the stars in two merging galaxies, showing that there are two counter-rotating discs of stars. "The enhanced resolution that laser guide star adaptive optics provides is certain to bring important new discoveries in this exciting area," says Davies ESO PR Photo 27c/07 ESO PR Photo 27c/07 Merging System Arp 220 (SINFONI-LGS/VLT) The astronomers then turned the laser to a galaxy called K20-ID5 which is at a redshift of 2.2 - we are seeing this galaxy when the universe was less than 1/3 of its current age. The image obtained with NACO shows that the stars are concentrated in a much more compact region than the gas. "These observations are both remarkable and exciting," declares Kasper. "They are the first time that it has been possible to trace in such detail the distributions of both the stars and the gas at an epoch where we are witnessing the formation of galaxies similar to our own Milky Way." At the opposite extreme, much nearer to home, LGS-AO observations were made of the active galaxy NGC 4945. The new LGS observations with NACO resolved the central parts into a multitude of individual stars. "It is in galaxies such as these where we can really quantify the star formation history in the vicinity of the nucleus, that we can start to piece together the puzzle of how gas is accreted onto the supermassive black hole, and understand how and when these black holes light up so brightly," says Davies. ESO PR Photo 27e/07 ESO PR Photo 27e/07 Active Galaxy NGC 4945 (NACO-LGS/VLT) Still closer to home, the LGS system can also be applied to solar system objects, such as asteroids or satellites, but also to the study of particular regions of spatially extended bodies like the polar regions of giant planets, where aurora activity is concentrated. During their science verification, the scientists turned the SINFONI instrument with the LGS to a Trans-Neptunian Object, 2003 EL 61. The high image contrast and sensitivity obtained with the use of the LGS mode permit the detection of the two faint satellites known to orbit the TNO. "From such observations one can study the chemical composition of the surface material of the TNO and its satellites (mainly crystalline water ice), estimate their surface properties and constrain their internal structure," explains Christophe Dumas, from ESO. The VLT Laser Guide System is the result of a collaborative work by a team of scientists and engineers from ESO and the Max Planck Institutes for Extraterrestrial Physics in Garching and for Astronomy in Heidelberg, Germany. NACO was built by a Consortium of French and German institutes and ESO. SINFONI was built by a Consortium of German and Dutch Institutes and ESO. More Information Normally, the achievable image sharpness of a ground-based telescope is limited by the effect of atmospheric turbulence. This drawback can be surmounted with adaptive optics, allowing the telescope to produce images that are as sharp as if taken from space. This means that finer details in astronomical objects can be studied, and also that fainter objects can be observed. In order to work, adaptive optics needs a nearby reference star that has to be relatively bright, thereby limiting the area of the sky that can be surveyed to a few percent only. To overcome this limitation, astronomers use a powerful laser that creates an artificial star, where and when they need it. The laser beam takes advantage of the layer of sodium atoms that is present in Earth's atmosphere at an altitude of 90 kilometres. Shining at a well-defined wavelength the laser makes it glow. The laser is launched from Yepun, the fourth 8.2-m Unit Telescope of the Very Large Telescope, producing an artificial star. Despite this star being about 20 times fainter than the faintest star that can be seen with the unaided eye, it is bright enough for the adaptive optics to measure and correct the atmosphere's blurring effect. Compared to a normal star, this artificial star has some differing properties that the associated Laser Guide Star (LGS) Adaptive Optics (AO) system has to be able to cope with. A press release, in English and German, is also available from the Max-Planck Institute.

  2. Comet Tempel 1 Went Back to Sleep

    NASA Astrophysics Data System (ADS)

    2005-07-01

    Astronomers Having Used ESO Telescopes Start Analysing Unique Dataset on the Comet Following the Deep Impact Mission Ten days after part of the Deep Impact spacecraft plunged onto Comet Tempel 1 with the aim to create a crater and expose pristine material from beneath the surface, astronomers are back in the ESO Offices in Santiago, after more than a week of observing at the ESO La Silla Paranal Observatory. In this unprecedented observing campaign - among the most ambitious ever conducted by a single observatory - the astronomers have collected a large amount of invaluable data on this comet. The astronomers have now started the lengthy process of data reduction and analysis. Being all together in a single place, and in close contacts with the space mission' scientific team, they will try to assemble a clear picture of the comet and of the impact. The ESO observations were part of a worldwide campaign to observe this unique experiment. During the campaign, ESO was connected by phone, email, and videoconference with colleagues in all major observatories worldwide, and data were freely exchanged between the different groups. This unique collaborative spirit provides astronomers with data taken almost around the clock during several days and this, with the largest variety of instruments, making the Deep Impact observing campaign one of the most successful of its kind, and thereby, ensuring the greatest scientific outcome. From the current analysis, it appears most likely that the impactor did not create a large new zone of activity and may have failed to liberate a large quantity of pristine material from beneath the surface. ESO PR Photo 22/05 ESO PR Photo 22/05 Evolution of Comet Tempel 1 (FORS2/VLT) [Preview - JPEG: 400 x 701 pix - 128k] [Normal - JPEG: 800 x 1401 pix - 357k] ESO PR Photo 22/05 Animated Gif Caption: ESO PR Photo 22/05 shows the evolution of Comet Tempel 1 as observed with the FORS2 instrument on Antu (VLT). The images obtained at the VLT show that after the impact, the morphology of Comet Tempel 1 had changed, with the appearance of a new plume-like structure, produced by matter being ejected with a speed of about 700 to 1000 km/h (see ESO PR Photo 23/05). This structure, however, diffused away in the following days, being more and more diluted and less visible, the comet taking again the appearance it had before the impact. Further images obtained with, among others, the adaptive optics NACO instrument on the Very Large Telescope, showed the same jets that were visible prior to impact, demonstrating that the comet activity survived widely unaffected by the spacecraft crash. The study of the gas in Comet Tempel 1 (see "Looking for Molecules"), made with UVES on Kueyen (UT2 of the VLT), reveals a small flux increase the first night following the impact. At that time, more than 17 hours after the impact, the ejected matter was fading away but still measurable thanks to the large light collecting power of the VLT. The data accumulated during 10 nights around the impact have provided the astronomers with the best ever time series of optical spectra of a Jupiter Family comet, with a total of more than 40 hours of exposure time. This unique data set has already allowed the astronomers to characterize the normal gas activity of the comet and also to detect, to their own surprise, an active region. This active region is not related to the impact as it was also detected in data collected in June. It shows up about every 41 hours, the rotation period of the comet nucleus determined by the Deep Impact spacecraft. Exciting measurements of the detailed chemical composition (such as the isotopic ratios) of the material released by the impact as well as the one coming from that source will be performed by the astronomers in the next weeks and months. Further spectropolarimetric observations with FORS1 have confirmed the surface of the comet to be rather evolved - as expected - but more importantly, that the dust is not coming from beneath the surface. These data constitute another unique high-quality data set on comets. Comet Tempel 1 may thus be back to sleep but work only starts for the astronomers. More information On July 4, 2005, the NASA Deep Impact spacecraft launched a 360 kg impactor onto Comet 9P/Tempel 1. This experiment is seen by many as the first opportunity to study the crust and the interior of a comet, revealing new information on the early phases of the Solar System. ESO actively participated in pre- and post-impact observations. Apart from a long-term monitoring of the comet, for two days before and six days after, all major ESO telescopes - i.e. the four Unit Telescopes of the Very Large Telescope Array at Paranal, as well as the 3.6m, 3.5m NTT and the 2.2m ESO/MPG telescopes at La Silla - have been observing Comet 9P/Tempel 1, in a coordinated fashion and in very close collaboration with the space mission' scientific team. The simultaneous use of all ESO telescopes with all together 10 instruments has an enormous potential, since it allows for observation of the comet at different wavelengths in the visible and infrared by imaging, spectroscopy and polarimetry. Such multiplexing capabilities of the instrumentation do not exist at any other observatory in the world. More information is available at the dedicated Deep Impact at ESO web site.

  3. Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT

    NASA Astrophysics Data System (ADS)

    Osborn, J.; Wilson, R. W.; Sarazin, M.; Butterley, T.; Chacón, A.; Derie, F.; Farley, O. J. D.; Haubois, X.; Laidlaw, D.; LeLouarn, M.; Masciadri, E.; Milli, J.; Navarrete, J.; Townson, M. J.

    2018-07-01

    Knowledge of the Earth's atmospheric optical turbulence is critical for astronomical instrumentation. Not only does it enable performance verification and optimization of the existing systems, but it is required for the design of future instruments. As a minimum this includes integrated astro-atmospheric parameters such as seeing, coherence time, and isoplanatic angle, but for more sophisticated systems such as wide-field adaptive optics enabled instrumentation the vertical structure of the turbulence is also required. Stereo-SCIDAR (Scintillation Detection and Ranging) is a technique specifically designed to characterize the Earth's atmospheric turbulence with high-altitude resolution and high sensitivity. Together with ESO (European Southern Observatory), Durham University has commissioned a Stereo-SCIDAR instrument at Cerro Paranal, Chile, the site of the Very Large Telescope (VLT), and only 20 km from the site of the future Extremely Large Telescope (ELT). Here we provide results from the first 18 months of operation at ESO Paranal including instrument comparisons and atmospheric statistics. Based on a sample of 83 nights spread over 22 months covering all seasons, we find the median seeing to be 0.64″ with 50 per cent of the turbulence confined to an altitude below 2 km and 40 per cent below 600 m. The median coherence time and isoplanatic angle are found as 4.18 ms and 1.75″, respectively. A substantial campaign of inter-instrument comparison was also undertaken to assure the validity of the data. The Stereo-SCIDAR profiles (optical turbulence strength and velocity as a function of altitude) have been compared with the Surface-Layer Slope Detection And Ranging, Multi-Aperture Scintillation Sensor-Differential Image Motion Monitor, and the European Centre for Medium Range Weather Forecasts model. The correlation coefficients are between 0.61 (isoplanatic angle) and 0.84 (seeing).

  4. 32 New Exoplanets Found

    NASA Astrophysics Data System (ADS)

    2009-10-01

    oday, at an international ESO/CAUP exoplanet conference in Porto, the team who built the High Accuracy Radial Velocity Planet Searcher, better known as HARPS, the spectrograph for ESO's 3.6-metre telescope, reports on the incredible discovery of some 32 new exoplanets, cementing HARPS's position as the world's foremost exoplanet hunter. This result also increases the number of known low-mass planets by an impressive 30%. Over the past five years HARPS has spotted more than 75 of the roughly 400 or so exoplanets now known. "HARPS is a unique, extremely high precision instrument that is ideal for discovering alien worlds," says Stéphane Udry, who made the announcement. "We have now completed our initial five-year programme, which has succeeded well beyond our expectations." The latest batch of exoplanets announced today comprises no less than 32 new discoveries. Including these new results, data from HARPS have led to the discovery of more than 75 exoplanets in 30 different planetary systems. In particular, thanks to its amazing precision, the search for small planets, those with a mass of a few times that of the Earth - known as super-Earths and Neptune-like planets - has been given a dramatic boost. HARPS has facilitated the discovery of 24 of the 28 planets known with masses below 20 Earth masses. As with the previously detected super-Earths, most of the new low-mass candidates reside in multi-planet systems, with up to five planets per system. In 1999, ESO launched a call for opportunities to build a high resolution, extremely precise spectrograph for the ESO 3.6-metre telescope at La Silla, Chile. Michel Mayor, from the Geneva Observatory, led a consortium to build HARPS, which was installed in 2003 and was soon able to measure the back-and-forward motions of stars by detecting small changes in a star's radial velocity - as small as 3.5 km/hour, a steady walking pace. Such a precision is crucial for the discovery of exoplanets and the radial velocity method, which detects small changes in the radial velocity of a star as it wobbles slightly under the gentle gravitational pull from an (unseen) exoplanet, has been most prolific method in the search for exoplanets. In return for building the instrument, the HARPS consortium was granted 100 observing nights per year during a five-year period to carry out one of the most ambitious systematic searches for exoplanets so far implemented worldwide by repeatedly measuring the radial velocities of hundreds of stars that may harbour planetary systems. The programme soon proved very successful. Using HARPS, Mayor's team discovered - among others - in 2004, the first super-Earth (around µ Ara; in 2006, the trio of Neptunes around HD 69830; in 2007, Gliese 581d, the first super Earth in the habitable zone of a small star (eso0722); and in 2009, the lightest exoplanet so far detected around a normal star, Gliese 581e (eso0915). More recently, they found a potentially lava-covered world, with density similar to that of the Earth's (eso0933). "These observations have given astronomers a great insight into the diversity of planetary systems and help us understand how they can form," says team member Nuno Santos. The HARPS consortium was very careful in their selection of targets, with several sub-programmes aimed at looking for planets around solar-like stars, low-mass dwarf stars, or stars with a lower metal content than the Sun. The number of exoplanets known around low-mass stars - so-called M dwarfs - has also dramatically increased, including a handful of super Earths and a few giant planets challenging planetary formation theory. "By targeting M dwarfs and harnessing the precision of HARPS we have been able to search for exoplanets in the mass and temperature regime of super-Earths, some even close to or inside the habitable zone around the star," says co-author Xavier Bonfils. The team found three candidate exoplanets around stars that are metal-deficient. Such stars are thought to be less favourable for the formation of planets, which form in the metal-rich disc around the young star. However, planets up to several Jupiter masses have been found orbiting metal-deficient stars, setting an important constraint for planet formation models. Although the first phase of the observing programme is now officially concluded, the team will pursue their effort with two ESO Large Programmes looking for super-Earths around solar-type stars and M dwarfs and some new announcements are already foreseen in the coming months, based on the last five years of measurements. There is no doubt that HARPS will continue to lead the field of exoplanet discoveries, especially pushing towards the detection of Earth-type planets. More information This discovery was announced today at the ESO/CAUP conference "Towards Other Earths: perspectives and limitations in the ELT era", taking place in Porto, Portugal, on 19-23 October 2009. This conference discusses the new generation of instruments and telescopes that is now being conceived and built by different teams around the world to allow the discovery of other Earths, especially for the European Extremely Large Telescope (E-ELT). The new planets are simultaneously presented by Michel Mayor at the international symposium "Heirs of Galileo: Frontiers of Astronomy" in Madrid, Spain. This research was presented in a series of eight papers submitted - or soon to be submitted - to the Astronomy and Astrophysics journal. The team is composed of * Geneva Observatory: M. Mayor, S. Udry, D. Queloz, F. Pepe, C. Lovis, D. Ségransan, X. Bonfils * LAOG Grenoble: X. Delfosse, T. Forveille, X. Bonfils, C. Perrier * CAUP Porto: N.C. Santos * ESO: G. Lo Curto, D. Naef * University of Bern: W. Benz, C. Mordasini * IAP Paris: F. Bouchy, G. Hébrard * LAM Marseille: C. Moutou * Service d'aéronomie, Paris: J.-L. Bertaux ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky". * The web page of the conference "Towards Other Earths: perspectives and limitations in the ELT era" is at http://www.astro.up.pt/investigacao/conferencias/toe2009/

  5. VIMOS Instrument Control Software Design: an Object Oriented Approach

    NASA Astrophysics Data System (ADS)

    Brau-Nogué, Sylvie; Lucuix, Christian

    2002-12-01

    The Franco-Italian VIMOS instrument is a VIsible imaging Multi-Object Spectrograph with outstanding multiplex capabilities, allowing to take spectra of more than 800 objects simultaneously, or integral field spectroscopy mode in a 54x54 arcsec area. VIMOS is being installed at the Nasmyth focus of the third Unit Telescope of the European Southern Observatory Very Large Telescope (VLT) at Mount Paranal in Chile. This paper will describe the analysis, the design and the implementation of the VIMOS Instrument Control System, using UML notation. Our Control group followed an Object Oriented software process while keeping in mind the ESO VLT standard control concepts. At ESO VLT a complete software library is available. Rather than applying waterfall lifecycle, ICS project used iterative development, a lifecycle consisting of several iterations. Each iteration consisted in : capture and evaluate the requirements, visual modeling for analysis and design, implementation, test, and deployment. Depending of the project phases, iterations focused more or less on specific activity. The result is an object model (the design model), including use-case realizations. An implementation view and a deployment view complement this product. An extract of VIMOS ICS UML model will be presented and some implementation, integration and test issues will be discussed.

  6. Astrometric confirmation of young low-mass binaries and multiple systems in the Chamaeleon star-forming regions

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Schmidt, T. O. B.; Neuhäuser, R.; Bedalov, A.; Roell, T.; Seifahrt, A.; Mugrauer, M.

    2012-10-01

    Context. The star-forming regions in Chamaeleon (Cha) are one of the nearest (distance ~ 165 pc) and youngest (age ~ 2 Myr) conglomerates of recently formed stars and the ideal target for population studies of star formation. Aims: We investigate a total of 16 Cha targets that have been suggested, but not confirmed, to be binaries or multiple systems in previous literature. Methods: We used the adaptive optics instrument Naos-Conica (NACO) at the Very Large Telescope Unit Telescope (UT) 4 / YEPUN of the Paranal Observatory, at 2-5 different epochs, in order to obtain relative and absolute astrometric measurements, as well as differential photometry in the J, H, and K band. On the basis of known proper motions and these observations, we analyse the astrometric results in our proper motion diagram (PMD: angular separation / position angle versus time), to eliminate possible (non-moving) background stars, establish co-moving binaries and multiples, and search for curvature as indications for orbital motion. Results: All previously suggested close components are co-moving and no background stars are found. The angular separations range between 0.07 and 9 arcsec, corresponding to projected distances between the components of 6-845 AU. Thirteen stars are at least binaries and the remaining three (RX J0919.4-7738, RX J0952.7-7933, VW Cha) are confirmed high-order multiple systems with up to four components. In 13 cases, we found significant slopes in the PMDs, which are compatible with orbital motion whose periods (estimated from the observed gradients in the position angles) range from 60 to 550 years. However, in only four cases there are indications of a curved orbit, the ultimate proof of a gravitational bond. Conclusions: A statistical study based on the 2MASS catalogue confirms the high probability of all 16 stellar systems being gravitationally bound. Most of the secondary components are well above the mass limit of hydrogen burning stars (0.08 M⊙), and have masses twice as high as this value or more. Massive primary components appear to avoid the simultaneous formation of equal-mass secondary components, while extremely low-mass secondary components are hard to find for both high and low mass primaries owing to the much higher dynamic range and the faintness of the secondaries. Based on observations made with ESO telescopes at the Paranal Observatory under program IDs 076.C-0292(A), 078.C-0535(A), 080.C-0424(A), 082.C-0489(A), 084.C-0364(B), 086.C-0638(A) & 086.C-0600(B), the Hubble Space Telescope under program ID GO-8716 and data obtained from the ESO/ST-ECF Science Archive Facility from the Paranal Observatory under program IDs 075.C-0042(A), 076.C-0579(A), 278.C-5070(A) and from the Hubble Space Telescope under programme IDs SNAP-7387, GO-11164. Appendix A is available in electronic form at http://www.aanda.org

  7. Europe Agrees on Common Strategy to Initiate Study of LSA/MMA

    NASA Astrophysics Data System (ADS)

    1998-09-01

    Council Specifies ESO's Role in Planning In an extraordinary meeting at the ESO Headquarters, the ESO Council today endorsed ESO's involvement in the planning of a major new astronomical facility in the southern hemisphere. Some years from now, the Large Southern Array/Millimetre Array (LSA/MMA) may become the world's prime sub-mm/mm radio observatory [1] at a pristine site at 5000 m altitude in the Chilean Andes, not very far from the VLT Paranal Observatory. Background One of the highest-priority items in astronomy today is a large millimetre-wavelength array. This would be a millimetre counterpart to the ESO VLT and the NASA/ESA Hubble Space Telescope (HST), with similar scientific objectives and comparable high angular resolution and sensitivity. An antenna array with about 10,000 m 2 area would provide very high sensitivity and angular resolution, compatible with that of the VLT and HST. Such a large collecting area implies an array with many antennas and baselines, which give the added advantage of fast, high-quality images. The site must be high, dry, large, and flat - a high plateau in the Atacama desert is ideal, and has the great advantage of being in the southern hemisphere, important for compatibility with the VLT. Thus, discussions in Europe have focussed on a "Large Southern Array" (LSA) . The scientific case for such a telescope is overwhelming. It would be able to study the origins of galaxies and stars: the epoch of first galaxy formation and the evolution of galaxies at later stages, including the dust-obscured star-forming galaxies that the HST and VLT cannot see, and all phases of star formation hidden away in dusty molecular clouds. But the LSA will go far beyond these main science drivers - it will have a major impact on virtually all areas of astronomy, and make millimetre astronomy accessible to all astronomers. It may well have as big a user community as the VLT itself. European involvement in millimetre astronomy Europe already has a strong involvement in millimetre astronomy: the 5 x 15-m IRAM array on Plateau de Bure (France), the 30-m IRAM antenna (Spain), the 20-m at Onsala (Sweden), the 15-m Swedish-ESO Submillimetre Telescope (SEST, La Silla), the 15-m JCMT (Mauna Kea, Hawaii), the 10-m HHT (Arizona), and others. Over 60 research institutes around Europe use these facilities. Many of them have developed technical expertise and leadership in this area together with European industry, so it is natural that a European collaboration should be looking to the future. The idea of a large European southern millimetre array has been discussed since 1991. In 1995, an LSA Project collaboration was established between ESO, the Institut de Radio Astronomie Millimetrique (IRAM), the Onsala Space Observatory, and the Netherlands Foundation for Research in Astronomy (NFRA). This consortium of observatories agreed to pool resources to study critical technical areas and conduct site surveys in Chile. Details are available in a Messenger article (March 98). Possibilities of intercontinental collaboration An important step was taken in June 1997. A similar project is under study in the United States of America (the "Millimeter Array", MMA ). An agreement was entered into between ESO and the U.S. National Radio Astronomy Observatory (NRAO) to explore the possibility of merging the two projects into one. Until then the emphasis in Europe had been on the large collecting area provided by 16-m antennas operating at purely millimetre wavelengths, while in the U.S. the concept was a smaller array of 8-m antennas with good submillimetre performance. However, as there is also considerable interest in Europe in submillimetre observations, and in the U.S. in a larger collecting area, a compromise seemed feasible. Several joint working groups formed under the ESO-NRAO agreement were set up to explore the possibility of a collaborative project. It was concluded that a homogeneous array of 64 x 12-m antennas, providing submillimetre performance with a total collecting area of 7,000 m 2 , could be built at the high (5000 m) Chajnantor site , an hour from the array control center at the town of San Pedro de Atacama. It is this collaborative facility that is presently referred to as the Large Southern Array/Millimetre Array (LSA/MMA) . The decision by the ESO Council The ESO Council today passed a resolution that emphasizes the great potential of this proposed astronomical facility for scientific discoveries. It will operate in a relatively unexplored waveband region and with imaging and spectral resolution vastly better than anything now available. The ESO Council requests the ESO Executive to develop a proposal for ESO's role in the design and development phase of the new facility to be submitted to Council in its December 1998 meeting. This phase (Phase I) will cover the technical, financial, human resources, scheduling and organizational aspects for the development, construction, commissioning and operation of the LSA/MMA. The ESO Council supports the intention to create a European Coordinating Committee with participation of ESO that will discuss related policy and technical matters. A European Negotiating Team will then be established that will discuss with the U.S. and other interested nations the conditions of the union of the LSA and MMA as a single common enterprise. Note: [1] The corresponding wavelength interval is about 0.3 to 10 mm. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  8. VizieR Online Data Catalog: COSMOS field variability-selected AGN nuclei (De Cicco+, 2015)

    NASA Astrophysics Data System (ADS)

    de Cicco, D.; Paolillo, M.; Covone, G.; Falocco, S.; Longo, G.; Grado, A.; Limatola, L.; Botticella, M. T.; Pignata, G.; Cappellaro, E.; Vaccari, M.; Trevese, D.; Vagnetti, F.; Salvato, M.; Radovich, M.; Brandt, W. N.; Capaccioli, M.; Napolitano, N. R.; Schipani, P.

    2015-03-01

    The VLT Survey Telescope (VST) is located at Cerro Paranal Observatory; it is a joint venture between the European Southern Observatory (ESO) and the INAF-Osservatorio Astronomico di Capodimonte (OAC) in Napoli. The telescope is 2.65m in diameter and is equipped with the single focal plane detector OmegaCAM: a mosaic of 32 CCD detectors made up of 268 megapixels in total, corresponding to a 26cmx26cm area and a 1°x1° FoV, the resolution being 0.214"/pixel. The VST is dedicated to surveys in the wavelength range 0.3-1.0um. The survey provides data in the g, r, and i bands, with an observing frequency of approximately ten days for the g and i bands and three days for the r band, depending on the various observational constraints. We discuss here the analysis of 28 epochs in the r band, for which we have the best temporal sampling. The observations cover the period from December 2011 to May 2012. (1 data file).

  9. With the VLT Interferometer towards Sharper Vision

    NASA Astrophysics Data System (ADS)

    2000-05-01

    The Nova-ESO VLTI Expertise Centre Opens in Leiden (The Netherlands) European science and technology will gain further strength when the new, front-line Nova-ESO VLTI Expertise Centre (NEVEC) opens in Leiden (The Netherlands) this week. It is a joint venture of the Netherlands Research School for Astronomy (NOVA) (itself a collaboration between the Universities of Amsterdam, Groningen, Leiden, and Utrecht) and the European Southern Observatory (ESO). It is concerned with the Very Large Telescope Interferometer (VLTI). The Inauguration of the new Centre will take place on Friday, May 26, 2000, at the Gorlaeus Laboratory (Lecture Hall no. 1), Einsteinweg 55 2333 CC Leiden; the programme is available on the web. Media representatives who would like to participate in this event and who want further details should contact the Nova Information Centre (e-mail: jacques@astro.uva.nl; Tel: +31-20-5257480 or +31-6-246 525 46). The inaugural ceremony is preceded by a scientific workshop on ground and space-based optical interferometry. NEVEC: A Technology Centre of Excellence As a joint project of NOVA and ESO, NEVEC will develop in the coming years the expertise to exploit the unique interferometric possibilities of the Very Large Telescope (VLT) - now being built on Paranal mountain in Chile. Its primary goals are the * development of instrument modeling, data reduction and calibration techniques for the VLTI; * accumulation of expertise relevant for second-generation VLTI instruments; and * education in the use of the VLTI and related matters. NEVEC will develop optical equipment, simulations and software to enable interferometry with VLT [1]. The new Center provides a strong impulse to Dutch participation in the VLTI. With direct involvement in this R&D work, the scientists at NOVA will be in the front row to do observations with this unique research facility, bound to produce top-level research and many exciting new discoveries. The ESO VLTI at Paranal ESO PR Photo 14a/00 ESO PR Photo 14a/00 [Preview - JPEG: 359 x 400 pix - 120k] [Normal - JPEG: 717 x 800 pix - 416k] [High-Res - JPEG: 2689 x 3000 pix - 6.7M] Caption : A view of the Paranal platform with the four 8.2-m VLT Unit Telescopes (UTs) and the foundations for the 1.8-m VLT Auxiliary Telescopes (ATs) that together will be used as the VLT Interferometer (VLTI). The three ATs will move on rails (yet to be installed) between the thirty observing stations above the holes that provide access to the underlying tunnel system. The light beams from the individual telescopes will be guided towards the centrally located, partly underground Interferometry Laboratory in which the VLTI instruments will be set up. This photo was obtained in December 1999 at which time some construction materials were still present on the platform; they were electronically removed in this reproduction. The ESO VLT facility at Paranal (Chile) consists of four Unit Telescopes with 8.2-m mirrors and several 1.8-m auxiliary telescopes that move on rails, cf. PR Photo 14a/00 . While each of the large telescopes can be used individually for astronomical observations, a prime feature of the VLT is the possibility to combine all of these telescopes into the Very Large Telescope Interferometer (VLTI) . In the interferometric mode, the light beams from the VLT telescopes are brought together at a common focal point in the Interferometry Laboratory that is placed at the centre of the observing platform on top of Paranal. In principle, this can be done in such a way that the resulting (reconstructed) image appears to come from a virtual telescope with a diameter that is equal to the largest distance between two of the individual telescopes, i.e., up to about 200 metres. The theoretically achievable image sharpness of an astronomical telescope is proportional to its diameter (or, for an interferometer, the largest distance between two of its component telescopes). The interferometric observing technique will thus allow the VLTI to produce images as sharp as 0.001 arcsec (at wavelength 1 µm) - this corresponds to viewing the shape of a golfball at more than 8,000 km distance. The VLTI will do even better when this technique is later extended to shorter wavelengths in the visible part of the spectrum - it may ultimately distinguish human-size objects on the surface of the Moon (a 2-metre object at this distance, about 400,000 km, subtends an angle of about 0.001 arcsec). However, interferometry with the VLT demands that the wavefronts of light from the individual telescopes that are up to 200 meters apart must be matched exactly, with less than 1 wavelength of difference. This demands continuous mechanical stability to a fraction of 1 µm (0.001 mm) for the heavy components over such large distances, and is a technically formidable challenge. This is achieved by electronic feed-back loops that measure and adjust the distances during the observations. In addition, continuous and automatic correction of image distortions from air turbulence in the telescopes' field of view is performed by means of adaptive optics [2]. VLTI technology at ESO, industry and institutes The VLT Interferometer is based on front-line technologies introduced and advanced by ESO, and its many parts are now being constructed at various sites in Europe. ESO PR Photo 14b/00 ESO PR Photo 14b/00 [Preview - JPEG: 359 x 400 pix - 72k] [Normal - JPEG: 717 x 800 pix - 200k] [High-Res - JPEG: 2687 x 3000 pix - 1.3M] Caption : Schematic lay-out of the VLT Interferometer. The light from a distant celestial objects enters two of the VLT telescopes and is reflected by the various mirrors into the Interferometric Tunnel, below the observing platform on the top of Paranal. Two Delay Lines with moveable carriages continuously adjust the length of the paths so that the two beams interfere constructively and produce fringes at the interferometric focus in the laboratory. In 1998, Fokker Space (also in Leiden, The Netherlands) was awarded a contract for the delivery of the three Delay Lines of the VLTI. This mechanical-optical system will compensate the optical path differences of the light beams from the individual telescopes. It is necessary to ensure that the light from all telescopes arrives in the same phase at the focal point of the interferometer. Otherwise, the very sharp interferometric images cannot be obtained. More details are available in the corresponding ESO PR 04/98 and recent video sequences, included in ESO Video News Reel No. 9 and Video Clip 04a/00 , cf. below. Also in 1998, the company AMOS (Liège, Belgium) was awarded an ESO contract for the delivery of the three 1.8-m Auxiliary Telescopes (ATs) and of the full set of on-site equipment for the 30 AT observing stations, cf. ESO PR Photos 25a-b/98. This work is now in progress at the factory - various scenes are incorporated into ESO Video News Reel No. 9 and Video Clip 04b/00 . Several instruments for imaging and spectroscopy are currently being developed for the VLTI. The first will be the VLT Interferometer Commissioning Instrument (VINCI) that is the test and first-light instrument for the VLT Interferometer. It is being built by a consortium of French and German institutes under ESO contract. The VLTI Near-Infrared / Red Focal Instrument (AMBER) is a collaborative project between five institutes in France, Germany and Italy, under ESO contract. It will operate with two 8.2-m UTs in the wavelength range between 1 and 2.5 µm during a first phase (2001-2003). The wavelength coverage will be extended in a second phase down to 0.6 µm (600 nm) at the time the ATs become operational. Main scientific objectives are the investigation at very high-angular resolution of disks and jets around young stellar objects and dust tori at active galaxy nuclei with spectroscopic observations. The Phase-Referenced Imaging and Microarcsecond Astrometry (PRIMA) device is managed by ESO and will allow simultaneous interferometric observations of two objects - each with a maximum size of 2 arcsec - and provide exceedingly accurate positional measurements. This will be of importance for many different kinds of astronomical investigations, for instance the search for planetary companions by means of accurate astrometry. The MID-Infrared interferometric instrument (MIDI) is a project collaboration between eight institutes in France, Germany and the Netherlands [1], under ESO contract. The actual design of MIDI is optimized for operation at 10 µm and a possible extension to 20 µm is being considered. Notes [1] The NEVEC Centre is involved in the MIDI project for the VLTI. Another joint project between ESO and NOVA is the Wide-Field Imager OMEGACAM for the VLT Survey Telescope (VST) that will be placed at Paranal. [2] Adaptive Optics systems allow to continuously "re-focus" an astronomical telescope in order to compensate for the atmospheric turbulence and thus to obtain the sharpest possible images. The work at ESO is described on the Adaptive Optics Team Homepage. VLTI-related videos now available In conjunction with the Inauguration of the NEVEC Centre (Leiden, The Netherlands) on May 26, 2000, ESO has issued ESO Video News Reel No. 9 (May 2000) ( "The Sharpest Vision - Interferometry with the VLT" ). Tapes with this VNR, suitable for transmission and in full professional quality (Betacam, etc.), are now available for broadcasters upon request; please contact the ESO EPR Department for more details. Extracts from this VNR are available as ESO Video Clips 04a/00 and 04b/00 . ESO PR Video Clip 04a/00 [160x120 pix MPEG-version] ESO PR Video Clip 04a/00 (2600 frames/1:44 min) [MPEG Video+Audio; 160x120 pix; 2.4Mb] [MPEG Video+Audio; 320x240 pix; 4.8 Mb] [RealMedia; streaming; 33kps] [RealMedia; streaming; 200kps] ESO Video Clip 04a/00 shows some recent tests with the prototype VLT Delay Line carriage at FOKKER Space (Leiden, The Netherlands. This device is crucial for the proper functioning of the VLTI and will be mounted in the main interferometric tunnel at Paranal. Contents: Outside view of the FOKKER site. The carriage on rails. The protecting cover is removed. View towards the cat's eye. The carriage moves on the rails. ESO PR Video Clip 04b/00 [160x120 pix MPEG-version] ESO PR Video Clip 04b/00 (3425 frames/2:17 min) [MPEG Video+Audio; 160x120 pix; 3.2Mb] [MPEG Video+Audio; 320x240 pix; 6.3 Mb] [RealMedia; streaming; 33kps] [RealMedia; streaming; 200kps] ESO Video Clip 04b/00 shows the construction of the 1.8-m VLT Auxiliary Telescopes at AMOS (Liège, Belgium). Contents: External view of the facility. Computer drawing of the mechanics. The 1.8-m mirror (graphics). Construction of the centerpiece of the telescope tube. Mechanical parts. Checking the optical shape of an 1.8-m mirror. Mirror cell with supports for the 1.8-m mirror. Test ramp with rails on which the telescope moves and an "observing station" (the hole). The telescope yoke that will support the telescope tube. Both clips are available in four versions: two MPEG files and two streamer-versions of different sizes; the latter require RealPlayer software. They may be freely reproduced if ESO is mentioned as source. Most of the ESO PR Video Clips at the ESO website provide "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clip 03/00 with a trailer for "Physics on Stage" (2 May 2000). Information is also available on the web about other ESO videos.

  10. ESO Demonstration Project with the NRAO 12-m Antenna

    NASA Astrophysics Data System (ADS)

    Heald, R.; Karban, R.

    2000-03-01

    During the months of September through November 1999, an ALMA joint demonstration project between the European Southern Observatory (ESO) and the National Radio Astronomy Observatory (NRAO) was carried out in Socorro/New Mexico. During this period, Robert Karban (ESO) and Ron Heald (NRAO) worked together on the ESO Demonstration Project. The project integrated ESO software and existing NRAO software (a prototype for the future ALMA control software) to control the motion of the Kitt Peak 12-m antenna. ESO software from the VLT provided the operator interface and coordinate transformation software, while Pat Wallace's TPOINT provided the pointing- model software.

  11. On Cross-talk Correction of Images from Multiple-port CCDs

    NASA Astrophysics Data System (ADS)

    Freyhammer, L. M.; Andersen, M. I.; Arentoft, T.; Sterken, C.; Nørregaard, P.

    Multi-channel CCD read-out, which is an option offered at most optical observatories, can significantly reduce the time spent on reading the detector. The penalty of using this option is the so-called amplifier cross-talk, which causes contamination across the output amplifiers, typically at the level of 1:10 000. This can be a serious problem for applications where high precision and/or high contrast is of importance. We represent an analysis of amplifier cross-talk for two instruments - FORS1 at the ESO VLT telescope Antu (Paranal) and DFOSC at the Danish 1.54 m telescope (La Silla) - and present a post-processing method for removing the imprint of cross-talk. It is found that cross-talk may significantly contaminate high-precision photometry in crowded fields, but it can be effectively eliminated during data reduction.

  12. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help astronomers understand the similarity between small black holes formed from exploded stars and the supermassive black holes at the centres of galaxies. Very powerful jets have been seen from supermassive black holes, but are thought to be less frequent in the smaller microquasar variety. The new discovery suggests that many of them may simply have gone unnoticed so far. The gas-blowing black hole is located 12 million light-years away, in the outskirts of the spiral galaxy NGC 7793 (eso0914b). From the size and expansion velocity of the bubble the astronomers have found that the jet activity must have been ongoing for at least 200 000 years. Note: [1] Astronomers do not have yet any means of measuring the size of the black hole itself. The smallest stellar black hole discovered so far has a radius of about 15 km. An average stellar black hole of about 10 solar masses has a radius of about 30 km, while a "big" stellar black hole may have a radius of up to 300 km. This is still much smaller than the jets, which extend out to 1000 light-years, or about 9000 million million km! More Information: This result appears in a paper published in this week's issue of the journal Nature (A 300 parsec long jet-inflated bubble around a powerful microquasar in the galaxy NGC 7793, by Manfred W. Pakull, Roberto Soria and Christian Motch). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  13. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help astronomers understand the similarity between small black holes formed from exploded stars and the supermassive black holes at the centres of galaxies. Very powerful jets have been seen from supermassive black holes, but are thought to be less frequent in the smaller microquasar variety. The new discovery suggests that many of them may simply have gone unnoticed so far. The gas-blowing black hole is located 12 million light-years away, in the outskirts of the spiral galaxy NGC 7793 (eso0914b). From the size and expansion velocity of the bubble the astronomers have found that the jet activity must have been ongoing for at least 200 000 years. Notes [1] Astronomers do not have yet any means of measuring the size of the black hole itself. The smallest stellar black hole discovered so far has a radius of about 15 km. An average stellar black hole of about 10 solar masses has a radius of about 30 km, while a "big" stellar black hole may have a radius of up to 300 km. This is still much smaller than the jets, which extend out to several hundreds light years on each side of the black hole, or about several thousand million million km! More information This result appears in a paper published in this week's issue of the journal Nature (A 300 parsec long jet-inflated bubble around a powerful microquasar in the galaxy NGC 7793, by Manfred W. Pakull, Roberto Soria and Christian Motch). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  14. Watching a Cannibal Galaxy Dine

    NASA Astrophysics Data System (ADS)

    2009-11-01

    A new technique using near-infrared images, obtained with ESO's 3.58-metre New Technology Telescope (NTT), allows astronomers to see through the opaque dust lanes of the giant cannibal galaxy Centaurus A, unveiling its "last meal" in unprecedented detail - a smaller spiral galaxy, currently twisted and warped. This amazing image also shows thousands of star clusters, strewn like glittering gems, churning inside Centaurus A. Centaurus A (NGC 5128) is the nearest giant, elliptical galaxy, at a distance of about 11 million light-years. One of the most studied objects in the southern sky, by 1847 the unique appearance of this galaxy had already caught the attention of the famous British astronomer John Herschel, who catalogued the southern skies and made a comprehensive list of nebulae. Herschel could not know, however, that this beautiful and spectacular appearance is due to an opaque dust lane that covers the central part of the galaxy. This dust is thought to be the remains of a cosmic merger between a giant elliptical galaxy and a smaller spiral galaxy full of dust. Between 200 and 700 million years ago, this galaxy is indeed believed to have consumed a smaller spiral, gas-rich galaxy - the contents of which appear to be churning inside Centaurus A's core, likely triggering new generations of stars. First glimpses of the "leftovers" of this meal were obtained thanks to observations with the ESA Infrared Space Observatory , which revealed a 16 500 light-year-wide structure, very similar to that of a small barred galaxy. More recently, NASA's Spitzer Space Telescope resolved this structure into a parallelogram, which can be explained as the remnant of a gas-rich spiral galaxy falling into an elliptical galaxy and becoming twisted and warped in the process. Galaxy merging is the most common mechanism to explain the formation of such giant elliptical galaxies. The new SOFI images, obtained with the 3.58-metre New Technology Telescope at ESO's La Silla Observatory, allow astronomers to get an even sharper view of the structure of this galaxy, completely free of obscuring dust. The original images, obtained by observing in the near-infrared through three different filters (J, H, K) were combined using a new technique that removes the dark, screening effect of the dust, providing a clear view of the centre of this galaxy. What the astronomers found was surprising: "There is a clear ring of stars and clusters hidden behind the dust lanes, and our images provide an unprecedentedly detailed view toward it," says Jouni Kainulainen, lead author of the paper reporting these results. "Further analysis of this structure will provide important clues on how the merging process occurred and what has been the role of star formation during it." The research team is excited about the possibilities this new technique opens: "These are the first steps in the development of a new technique that has the potential to trace giant clouds of gas in other galaxies at high resolution and in a cost-effective way," explains co-author João Alves. "Knowing how these giant clouds form and evolve is to understand how stars form in galaxies." Looking forward to the new, planned telescopes, both on the ground and in space, "this technique is very complementary to the radio data ALMA will collect on nearby galaxies, and at the same time it poses interesting avenues of research for extragalactic stellar populations with the future European Extremely Large Telescope and the James Webb Space Telescope, as dust is omnipresent in galaxies," says co-author Yuri Beletsky. Previous observations done with ISAAC on the VLT have revealed that a supermassive black hole lurks inside Centaurus A. Its mass is about 200 million times the mass of our Sun, or 50 times more massive than the one that lies at the centre of our Milky Way. In contrast to our own galaxy, the supermassive black hole in Centaurus A is continuously fed by material falling onto into it, making the giant galaxy a very active one. Centaurus A is in fact one of the brightest radio sources in the sky (hence the "A" in its name). Jets of high energy particles from the centre are also observed in radio and X-ray images. The new image of Centaurus A is a wonderful example of how frontier science can be combined with aesthetic aspects. Fine images of Centaurus A have been obtained in the past with ESO's Very Large Telescope and with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at La Silla. More information This research was presented in a paper in Astronomy and Astrophysics (vol. 502): "Uncovering the kiloparsec-scale stellar ring of NGC5128", by J.T. Kainulainen et al. The team is composed of J. T. Kainulainen (University of Helsinki, Finland, and MPIA, Germany), J. F. Alves (Calar Alto Observatory, Spain and University of Vienna, Austria), Y. Beletsky (ESO), J. Ascenso (Harvard-Smithsonian Center for Astrophysics, USA), J. M. Kainulainen (TKK/Department of Radio Science and Engineering, Finland), A. Amorim, J. Lima, F. D. Santos, and A. Moitinho (SIM-IDL, University of Lisbon, Portugal), R. Marques and J. Pinhão (University of Coimbra, Portugal), and J. Rebordão (INETI, Amadora, Portugal). SOFI (Son of ISAAC) is an infrared spectro-imager attached to ESO's 3.58-metre New Technology Telescope (NTT) and a simplified version of the Short Wavelength arm of ISAAC on the Very Large Telescope. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  15. The Gaia-ESO Survey: A globular cluster escapee in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Lind, K.; Koposov, S. E.; Battistini, C.; Marino, A. F.; Ruchti, G.; Serenelli, A.; Worley, C. C.; Alves-Brito, A.; Asplund, M.; Barklem, P. S.; Bensby, T.; Bergemann, M.; Blanco-Cuaresma, S.; Bragaglia, A.; Edvardsson, B.; Feltzing, S.; Gruyters, P.; Heiter, U.; Jofre, P.; Korn, A. J.; Nordlander, T.; Ryde, N.; Soubiran, C.; Gilmore, G.; Randich, S.; Ferguson, A. M. N.; Jeffries, R. D.; Vallenari, A.; Allende Prieto, C.; Pancino, E.; Recio-Blanco, A.; Romano, D.; Smiljanic, R.; Bellazzini, M.; Damiani, F.; Hill, V.; de Laverny, P.; Jackson, R. J.; Lardo, C.; Zaggia, S.

    2015-03-01

    A small fraction of the halo field is made up of stars that share the light element (Z ≤ 13) anomalies characteristic of second generation globular cluster (GC) stars. The ejected stars shed light on the formation of the Galactic halo by tracing the dynamical history of the clusters, which are believed to have once been more massive. Some of these ejected stars are expected to show strong Al enhancement at the expense of shortage of Mg, but until now no such star has been found. We search for outliers in the Mg and Al abundances of the few hundreds of halo field stars observed in the first eighteen months of the Gaia-ESO public spectroscopic survey. One halo star at the base of the red giant branch, here referred to as 22593757-4648029 is found to have [ Mg/Fe ] = -0.36 ± 0.04 and [ Al/Fe ] = 0.99 ± 0.08, which is compatible with the most extreme ratios detected in GCs so far. We compare the orbit of 22593757-4648029 to GCs of similar metallicity andfind it unlikely that this star has been tidally stripped with low ejection velocity from any of the clusters. However, both chemical and kinematic arguments render it plausible that the star has been ejected at high velocity from the anomalous GC ω Centauri within the last few billion years. We cannot rule out other progenitor GCs, because some may have disrupted fully, and the abundance and orbital data are inadequate for many of those that are still intact. Based on data acquired by the Gaia-ESO Survey, programme ID 188.B-3002. Observations were made with ESO Telescopes at the La Silla Paranal Observatory.Appendix A is available in electronic form at http://www.aanda.org

  16. Happy Anniversary, VLT !

    NASA Astrophysics Data System (ADS)

    2004-04-01

    Five years at the service of Europe's astronomers VLT 5 Years One of the world's most advanced astronomical research facilities, the ESO Very Large Telescope (VLT) at the Paranal Observatory in the Chilean Atacama desert, celebrates an important anniversary today. On April 1, 1999, and following almost one year of extensive tests and careful trimming of its numerous high-tech parts, the first 8.2-m VLT Unit Telescope, Antu (UT1), was "handed over" to the astronomers. Since that date, science operations with this marvellous research tool have been continuous and intensive. Kueyen (UT2) started normal operations exactly one year later. Yepun (UT4) was offered to the scientific community in June 2001, while Melipal (UT3) followed in August 2001 [1]. Ever since, all four VLT Unit Telescopes, with an ever-growing suite of highly specialised, extremely powerful astronomical instruments have been in full operation, 365 nights a year. And this with unequalled success, as demonstrated by a long list of important scientific results, including a substantial number of exciting discoveries that are now opening new horizons in astrophysics. Moreover, thanks to heroic and persistent efforts by the dedicated teams of ESO scientists and engineers, the "downtime" due to technical problems has been very small, about 3 per cent, a number that is unequalled among the world's large telescope facilities. In addition, the weather conditions at the Paranal site in the dry Atacama desert in Northern Chile are truly excellent - this is indeed one of the best locations for astronomical observations on the surface of the Earth - and the corresponding "weather downtime" has only been around 10 per cent. This has resulted in an unbelievably low value of total downtime, most likely a new world record for ground-based 8-10 m class telescopes. VLT strong points The Very Large Telescope (VLT) is the world's largest and most advanced optical telescope. It comprises four 8.2-m reflecting Unit Telescopes (UTs) and will in due time also include four moving 1.8-m Auxiliary Telescopes (ATs), the first one of which successfully passed its first tests in January of this year (see ESO PR 01/04). With unprecedented optical resolution and unsurpassed surface area, the VLT produces extremely sharp images and can record light from the faintest and most remote objects in the Universe. It works at the limit of modern technology, regularly allowing the scientists to peer into new and unknown territories in the immense Universe. Contrary to other large astronomical telescopes, the VLT was designed from the beginning with the use of interferometry as a major goal. For this reason, the four 8.2-m Unit Telescopes were positioned in a quasi-trapezoidal configuration. The light beams from these telescopes, at this moment two-by-two, can be combined in the VLT Interferometer (VLTI). It provides the European scientific community with a ground-based telescope array with collecting power significantly greater than any other facilities available at present or being planned, offering imaging and spectroscopy capabilities at visible and infrared wavelengths. Seven of the planned ten first-generation astronomical instruments are now in operation at the VLT. They cover all major observing modes required to tackle current "hot", front-line research topics: * the multi-mode instrument FORS1 (FOcal Reducer and Spectrograph) and its twin, FORS2, * the Infrared Spectrometer And Array Camera (ISAAC) cryogenic infrared imager and spectrometer, * the UVES (Ultra-violet and Visible Echelle Spectrograph) high-dispersion spectrograph, * the NAOS-CONICA Adaptive Optics facility producing images as sharp as if taken in space [2], * the VIsible Multi-Object Spectrograph (VIMOS) four-channel multiobject spectrograph and imager - allowing to obtain low-resolution spectra of up to 1000 galaxies at a time * the Fibre Large Array Multi-Element Spectrograph (FLAMES) that offers the unique capability to study simultaneously and at high spectral resolution 100 individual stars in nearby galaxies. The remaining instruments - the high-resolution infrared spectrograph CRIRES, the Mid Infrared Spectrometer/Imager VISIR and the integral field spectrograph SINFONI - will be installed in 2004-2005. The observational statistics prove that these instruments are extremely efficient - they have some of the highest "shutter-open times" (i.e. percentage of the maximum possible observing time during which the instruments are collecting light from the astronomical objects) ever achieved. The astronomers are well served in this respect: the ISAAC instrument, for example, continues to be in the highest demand and has now performed smoothly during more than 1000 nights and two others, UVES and FORS, are now approaching the same number. Working together with astronomers and engineers at many research institutes in the ten ESO member countries, ESO is now in the process of defining second generation instruments and feasibility studies are well under way. Among the prime projects in this direction are a cryogenic multi-object spectrometer in the near-infrared 1 to 2.4 μm range ("KMOS"), a medium-resolution wide-band (0.32 to 2.4 μm) spectrometer ("X-shooter"), as well as a wide-field 3D optical spectrometer ("3D deep-field surveyor") and a high-contrast, adaptive optics assisted, imager ("planet finder"). In addition to these highly innovative instruments for the VLT UTs, specific instruments that will work with the combined light from several of the telescopes have also been conceived. The interferometric instrument MIDI will be offered to the astronomical community from today (April 1, 2004), fulfilling the VLTI promise. Great efforts have indeed gone into making observations with this very complex science machine as user-friendly as possible. Contrary to what is normally the case in this technically demanding branch of astronomy, scientists will find interferometric work at the VLTI quite similar to that of using the many other, more conventional VLT instruments. Science with the VLT The impressive battery of top-ranking instruments, coupled with the enormous light-collecting power of the VLT, has already provided a real research bonanza with many outstanding scientific results, some of which have been true breakthroughs. They include the amazing new knowledge about the Black Hole at the Galactic Centre, the farthest galaxy known, the most metal-poor and hence, oldest stars, accurate cosmochronological dating by means of Uranium and Thorium spectral lines, high-redshift galaxy rotation curves, micro-quasars, properties of the optical counterparts of gamma-ray bursts, high-redshift supernovae, etc. [3]. All of these advances attest to the power of the VLT and its mode of operational. Not to be forgotten is also the beauty of many of the stunning images obtained with this telescope, one of which was voted amongst the 10 most inspirational astronomical images of the past century [4]. Look at the numerous and detailed ESO Press Releases for more examples of research achievements from the VLT. This trend is also apparent in the productivity of the telescopes. The number of research publications resulting from VLT work in top ranking astronomical journals is steadily increasing with a total close to 700, hereof 250 in 2003 alone. Moreover, research articles based on VLT data are in the mean quoted twice as often as the average. The very high efficiency of the VLT "science machine" now generates huge amounts of data at a very high rate. These are stored in a permanent Science Archive Facility at ESO headquarters, which is jointly operated by ESO and the Space Telescope European Coordinating Facility (ST-ECF). From here, data are distributed daily to astronomers on DVDs and over the World Wide Web. The archive facility has been conceived and developed to enable astronomers to "mine" very efficiently the enormous volumes of data that is collected from the VLT. The archive now contains more than 1 million images or spectra taken by the four UTs with a total volume of about 50 Terabytes (50,000,000,000,000 bytes) of data. This corresponds to the content of about 25 million books of 1000 pages each; they would occupy more than 1000 kilometres of bookshelves! Looking towards the future Says Catherine Cesarsky, ESO Director General since 1999: " The Paranal Observatory has already given rise to an impressive number of scientific results, many of which could not have been obtained elsewhere. Overall, the VLT has been a most remarkable success, and will contribute to science at the highest level for years to come - a fantastic achievement of which we can all be justifiably proud." The work is now underway at full power to provide second-generation instruments for the VLT, to add three more Auxiliary Telescopes to the VLTI and to complement this unique research facility with the two wide-field survey ("pathfinding") telescopes - one to work in the visible part of the spectrum (the 2.5-m VST), the other in the infrared (the 4-m VISTA) - now being constructed at Paranal. Roberto Gilmozzi, director of Paranal Observatory, looks forward: " Ever more exciting times lie ahead for Paranal with new instruments like VISIR and SINFONI and the laser guide star, all of them coming this year. Five years after the start of operations on UT1, the observatory operates its telescopes with very little time set aside for engineering (less than 10%) and very low technical down time. Combined with excellent weather and great image quality, we provide the European community with unsurpassed observing capabilities. As director of this observatory since 1999, I have been privileged to be part of this adventure." The VLT is a fine example of the vast benefits of pooling resources from several countries and it is a flagship of contemporary European research. There is little doubt that for many years to come, ESO's Paranal Observatory with its powerful and efficient facilities will continue to play a leading role in astronomical research. Information for the media Associated material can be found on the corresponding Press Events webpage.

  17. VizieR Online Data Catalog: L-σ relation for massive star formation (Chavez+, 2014)

    NASA Astrophysics Data System (ADS)

    Chavez, R.; Terlevich, R.; Terlevich, E.; Bresolin, F.; Melnick, J.; Plionis, M.; Basilakos, S.

    2015-03-01

    We observed 128 HIIGx selected from the SDSS DR7 spectroscopic catalogue (Abazajian et al., 2009ApJS..182..543A) for having the strongest emission lines relative to the continuum (i.e. largest equivalent widths) and in the redshift range 0.01

  18. VizieR Online Data Catalog: Selection function of Milky Way field stars (Stonkute+, 2016)

    NASA Astrophysics Data System (ADS)

    Stonkute, E.; Koposov, S. E.; Howes, L. M.; Feltzing, S.; Worley, C. C.; Gilmore, G.; Ruchti, G. R.; Kordopatis, G.; Randich, S.; Zwitter, T.; Bensby, T.; Bragaglia, A.; Smiljanic, R.; Costado, M. T.; Tautvaisiene, G.; Casey, A. R.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Franciosini, E.; Hourihane, A.; Jofre, P.; Lardo, C.; Lewis, J.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.

    2017-10-01

    The observations are conducted with the FLAMES (Pasquini et al., 2002Msngr.110....1P) at the Very Large Telescope (VLT) array operated by the European Southern Observatory on Cerro Paranal, Chile. FLAMES is a fibre facility of the VLT and is mounted at the Nasmyth A platform of the second Unit Telescope of VLT. In this paper, we present the Gaia-ESO Survey selection function only for the Milky Way field stars observed with the GIRAFFE and UVES spectrographs at VLT, not including the bulge. All targets were selected according to their colours and magnitudes, using photometry from the VISTA Hemisphere Survey (VHS; McMahon et al. 2013Msngr.154...35M) and the Two Micron All-Sky Survey (2MASS; Skrutskie et al., 2006, Cat. VII/233). Selected potential target lists were generated at the Cambridge Astronomy Survey Unit (CASU) centre. (3 data files).

  19. Lightest exoplanet yet discovered

    NASA Astrophysics Data System (ADS)

    2009-04-01

    Well-known exoplanet researcher Michel Mayor today announced the discovery of the lightest exoplanet found so far. The planet, "e", in the famous system Gliese 581, is only about twice the mass of our Earth. The team also refined the orbit of the planet Gliese 581 d, first discovered in 2007, placing it well within the habitable zone, where liquid water oceans could exist. These amazing discoveries are the outcome of more than four years of observations using the most successful low-mass-exoplanet hunter in the world, the HARPS spectrograph attached to the 3.6-metre ESO telescope at La Silla, Chile. ESO PR Photo 15a/09 Artist's impression of Gliese 581 e ESO PR Photo 15b/09 A planet in the habitable zone ESO PR Video 15a/09 ESOcast 6 ESO PR Video 15b/09 VNR A-roll ESO PR Video 15c/09 Zoom-in on Gliese 581 e ESO PR Video 15d/09 Artist's impression of Gliese 581 e ESO PR Video 15e/09 Artist's impression of Gliese 581 d ESO PR Video 15f/09 Artist's impression of Gliese 581 system ESO PR Video 15g/09 The radial velocity method ESO PR Video 15h/09 Statement in English ESO PR Video 15i/09 Statement in French ESO PR Video 15j/09 La Silla Observatory "The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone' -- a region around the host star with the right conditions for water to be liquid on a planet's surface", says Michel Mayor from the Geneva Observatory, who led the European team to this stunning breakthrough. Planet Gliese 581 e orbits its host star - located only 20.5 light-years away in the constellation Libra ("the Scales") -- in just 3.15 days. "With only 1.9 Earth-masses, it is the least massive exoplanet ever detected and is, very likely, a rocky planet", says co-author Xavier Bonfils from Grenoble Observatory. Being so close to its host star, the planet is not in the habitable zone. But another planet in this system appears to be. From previous observations -- also obtained with the HARPS spectrograph at ESO's La Silla Observatory and announced two years ago -- this star was known to harbour a system with a Neptune-sized planet (ESO 30/05) and two super-Earths (ESO 22/07). With the discovery of Gliese 581 e, the planetary system now has four known planets, with masses of about 1.9 (planet e), 16 (planet b), 5 (planet c), and 7 Earth-masses (planet d). The planet furthest out, Gliese 581 d, orbits its host star in 66.8 days. "Gliese 581 d is probably too massive to be made only of rocky material, but we can speculate that it is an icy planet that has migrated closer to the star," says team member Stephane Udry. The new observations have revealed that this planet is in the habitable zone, where liquid water could exist. "‘d' could even be covered by a large and deep ocean -- it is the first serious 'water world' candidate," continued Udry. The gentle pull of an exoplanet as it orbits the host star introduces a tiny wobble in the star's motion -- only about 7 km/hour, corresponding to brisk walking speed -- that can just be detected on Earth with today's most sophisticated technology. Low-mass red dwarf stars such as Gliese 581 are potentially fruitful hunting grounds for low-mass exoplanets in the habitable zone. Such cool stars are relatively faint and their habitable zones lie close in, where the gravitational tug of any orbiting planet found there would be stronger, making the telltale wobble more pronounced. Even so, detecting these tiny signals is still a challenge, and the discovery of Gliese 581 e and the refinement of Gliese 581 d's orbit were only possible due to HARPS's unique precision and stability. "It is amazing to see how far we have come since we discovered the first exoplanet around a normal star in 1995 -- the one around 51 Pegasi," says Mayor. "The mass of Gliese 581 e is 80 times less than that of 51 Pegasi b. This is tremendous progress in just 14 years." The astronomers are confident that they can still do better. "With similar observing conditions an Earth-like planet located in the middle of the habitable zone of a red dwarf star could be detectable," says Bonfils. "The hunt continues." Notes This discovery was announced today at the JENAM conference during the European Week of Astronomy & Space Science, which is taking place at the University of Hertfordshire, UK. The results have also been submitted for publication in the research journal Astronomy & Astrophysics ("The HARPS search for southern extra-solar planets: XVIII. An Earth-mass planet in the GJ 581 planetary system", by Mayor et al., 2009). The team is composed of M. Mayor, S. Udry, C. Lovis, F. Pepe and D. Queloz (Geneva Observatory, Switzerland), X. Bonfils, T. Forveille , X. Delfosse, H. Beust and C. Perrier (LAOG, France), N. C. Santos (Centro de Astrofisica,Universidade de Porto), F. Bouchy (IAP, Paris, France) and J.-L. Bertaux (Service d'Aéronomie du CNRS, Verrières-le-Buisson, France). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in the Atacama Desert region of Chile: La Silla, Paranal and Chajnantor.

  20. VLT Detects First Superstorm on Exoplanet

    NASA Astrophysics Data System (ADS)

    2010-06-01

    Astronomers have measured a superstorm for the first time in the atmosphere of an exoplanet, the well-studied "hot Jupiter" HD209458b. The very high-precision observations of carbon monoxide gas show that it is streaming at enormous speed from the extremely hot day side to the cooler night side of the planet. The observations also allow another exciting "first" - measuring the orbital speed of the exoplanet itself, providing a direct determination of its mass. The results appear this week in the journal Nature. "HD209458b is definitely not a place for the faint-hearted. By studying the poisonous carbon monoxide gas with great accuracy we found evidence for a super wind, blowing at a speed of 5000 to 10 000 km per hour" says Ignas Snellen, who led the team of astronomers. HD209458b is an exoplanet of about 60% the mass of Jupiter orbiting a solar-like star located 150 light-years from Earth towards the constellation of Pegasus (the Winged Horse). Circling at a distance of only one twentieth the Sun-Earth distance, the planet is heated intensely by its parent star, and has a surface temperature of about 1000 degrees Celsius on the hot side. But as the planet always has the same side to its star, one side is very hot, while the other is much cooler. "On Earth, big temperature differences inevitably lead to fierce winds, and as our new measurements reveal, the situation is no different on HD209458b," says team member Simon Albrecht. HD209458b was the first exoplanet to be found transiting: every 3.5 days the planet moves in front of its host star, blocking a small portion of the starlight during a three-hour period. During such an event a tiny fraction of the starlight filters through the planet's atmosphere, leaving an imprint. A team of astronomers from the Leiden University, the Netherlands Institute for Space Research (SRON), and MIT in the United States, have used ESO's Very Large Telescope and its powerful CRIRES spectrograph to detect and analyse these faint fingerprints, observing the planet for about five hours, as it passed in front of its star. "CRIRES is the only instrument in the world that can deliver spectra that are sharp enough to determine the position of the carbon monoxide lines at a precision of 1 part in 100 000," says another team member Remco de Kok. "This high precision allows us to measure the velocity of the carbon monoxide gas for the first time using the Doppler effect." The astronomers achieved several other firsts. They directly measured the velocity of the exoplanet as it orbits its home star. "In general, the mass of an exoplanet is determined by measuring the wobble of the star and assuming a mass for the star, according to theory. Here, we have been able to measure the motion of the planet as well, and thus determine both the mass of the star and of the planet," says co-author Ernst de Mooij. Also for the first time, the astronomers measured how much carbon is present in the atmosphere of this planet. "It seems that H209458b is actually as carbon-rich as Jupiter and Saturn. This could indicate that it was formed in the same way," says Snellen. "In the future, astronomers may be able to use this type of observation to study the atmospheres of Earth-like planets, to determine whether life also exists elsewhere in the Universe." More information This research was presented in a paper that appears this week in the journal Nature: "The orbital motion, absolute mass, and high-altitude winds of exoplanet HD209458b", by I. Snellen et al. The team is composed of Ignas A. G. Snellen and Ernst J. W. de Mooij, (Leiden Observatory, The Netherlands), Remco J. de Kok (SRON, Utrecht, The Netherlands), and Simon Albrecht (Massachusetts Institute of Technology, USA). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  1. New and updated stellar parameters for 71 evolved planet hosts. On the metallicity-giant planet connection

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Santos, N. C.; Sousa, S. G.; Adibekyan, V. Zh.; Delgado Mena, E.; Tsantaki, M.; Israelian, G.; Mayor, M.

    2013-09-01

    Context. It is still being debated whether the well-known metallicity-giant planet correlation for dwarf stars is also valid for giant stars. For this reason, having precise metallicities is very important. Precise stellar parameters are also crucial to planetary research for several other reasons. Different methods can provide different results that lead to discrepancies in the analysis of planet hosts. Aims: To study the impact of different analyses on the metallicity scale for evolved stars, we compare different iron line lists to use in the atmospheric parameter derivation of evolved stars. Therefore, we use a sample of 71 evolved stars with planets. With these new homogeneous parameters, we revisit the metallicity-giant planet connection for evolved stars. Methods: A spectroscopic analysis based on Kurucz models in local thermodynamic equilibrium (LTE) was performed through the MOOG code to derive the atmospheric parameters. Two different iron line list sets were used, one built for cool FGK stars in general, and the other for giant FGK stars. Masses were calculated through isochrone fitting, using the Padova models. Kolmogorov-Smirnov tests (K-S tests) were then performed on the metallicity distributions of various different samples of evolved stars and red giants. Results: All parameters compare well using a line list set, designed specifically for cool and solar-like stars to provide more accurate temperatures. All parameters derived with this line list set are preferred and are thus adopted for future analysis. We find that evolved planet hosts are more metal-poor than dwarf stars with giant planets. However, a bias in giant stellar samples that are searched for planets is present. Because of a colour cut-off, metal-rich low-gravity stars are left out of the samples, making it hard to compare dwarf stars with giant stars. Furthermore, no metallicity enhancement is found for red giants with planets (log g < 3.0 dex) with respect to red giants without planets. The data presented here are based on observations collected at the La Silla Paranal Observatory, ESO (Chile) with the FEROS spectrograph at the 2.2 m telescope (ESO runs ID 70.C-0084, 088.C-0892, 089.C-0444, and 090.C-0146) and the HARPS spectrograph at the 3.6 m telescope (ESO run ID 72.C-0488); at the Paranal Observatory, ESO (Chile) with the UVES spectrograph at the VLT Kueyen telescope (ESO runs ID 074.C-0134, 079.C-0131, 380.C-0083, and 083.C-0174); at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with the FIES spectrograph at the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden (program ID 44-210); and at the Observatoire de Haute-Provence (OHP, CNRS/OAMP), France with the SOPHIE spectrographs at the 1.93 m telescope (program ID 11B.DISC.SOUS).Tables 1, 5, 6 and Appendix A are available in electronic form at http://www.aanda.orgTables 5, 6, and A.1 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A70

  2. Stellar students win fantastic prizes

    NASA Astrophysics Data System (ADS)

    2008-05-01

    School students and teachers across Europe and around the world are discovering today who has won fantastic prizes in "Catch a Star", the international astronomical competition run by ESO and the European Association for Astronomy Education (EAAE). CAS2008 artwork ESO PR Photo 14/08 One of the winning artworks "We were extremely impressed by the high quality of the entries, and the number of participants was even higher than last year. We wish to congratulate everybody who took part," said Douglas Pierce-Price, Education Officer at ESO. "'Catch a Star' clearly shows astronomy's power to inspire and excite students of all ages," added Fernand Wagner, President of the EAAE. The top prize, of a week-long trip to Chile to visit the ESO Very Large Telescope (VLT) on Paranal, was won by students Roeland Heerema, Liesbeth Schenkels, and Gerben Van Ranst from the Instituut Spijker in Hoogstraten, Belgium, together with their teacher Ann Verstralen. With their "story of aged binary stars... Live and Let Die", they take us on a vivid tour of the amazing zoo of binary stars, and the life and death of stars like our Sun. The students show how state-of-the-art telescopes, particularly those at ESO's sites of La Silla and Paranal, help us understand these stars. They take as an illustrative example the binary star system V390 Velorum. In the last phases of its life, V390 Velorum will shed its outer shell of gas and dust, turning from a celestial chrysalis into a beautiful cosmic butterfly. The students also involved other pupils from their school, showing them how to test their eyesight by observing the binary star system of Alcor and Mizar. But perhaps the most important discovery they made is that, as they write in their report, "Astronomy lives! Discoveries are being made each day and there is still very much to be found and learned by astronomers!" The team will travel to Chile and visit the ESO VLT - the world's most advanced optical/infrared telescope. At Paranal, they will meet astronomers and be present during a night of observations. Learning that they won, the team was enthusiastic: "We are very pleased to hear this fantastic news and are looking forward to the trip!" Another winner was Marta Kotarba, with her teacher Grzegorz Sęk, from the school IV Liceum Ogólnokształcące im. Tadeusza Kościuszki, Poland. Her prize is a trip to the Hispano-German Astronomical Observatory of Calar Alto in Almeria, Spain, kindly donated by the Spanish Council for Scientific Research. Marta's project "Galaxy Zoo and I" tells how she joined the website "Galaxy Zoo" to study galaxies and help astronomical researchers understand the structure of the Universe. Galaxy Zoo volunteers classify galaxies into different types, such as spiral or elliptical - a task much more easily done by humans than computers. Marta explains that the project "is like an adventure to me. Galaxy Zoo gives me abilities to enlarge my knowledge about the Universe and to gain new skills." Her winning entry also shows how anyone can get involved in the world of real astronomical research, simply by using the Internet. A third winner, of a trip to Königsleiten Observatory in Austria, is Andreia Nascimento with her teacher Leonor Cabral, from Escola Secundária da Cidadela in Portugal. Her project, on "Hunting for Open Star Clusters" near young stars, used data from the robotic Faulkes Telescope in Hawaii, which is used for research-based science education. "Catch a Star" also includes an artwork competition, for which students created artwork with an astronomical theme. This competition, through which students can get involved with astronomy even outside of science classes, has become increasingly popular, with over one thousand entries this year from around the world. Not only were prizes awarded by public votes in a web gallery, but special prizes were awarded by Garry Harwood, a Fellow and life member of the International Association of Astronomy Artists. Harwood said: "It was a real pleasure to discover such a varied and impressive collection of art from so many young people representing almost every corner of the globe. I was extremely impressed with the quality of art on display which made judging all the competition entries a difficult but thoroughly enjoyable task." Other prizes in "Catch a Star" include astronomical software, posters of breathtaking astronomical images from ESO telescopes, and exclusive "Catch a Star" T-shirts. The full list of winners is available on the competition website.

  3. Exoplanets Clue to Sun's Curious Chemistry

    NASA Astrophysics Data System (ADS)

    2009-11-01

    A ground-breaking census of 500 stars, 70 of which are known to host planets, has successfully linked the long-standing "lithium mystery" observed in the Sun to the presence of planetary systems. Using ESO's successful HARPS spectrograph, a team of astronomers has found that Sun-like stars that host planets have destroyed their lithium much more efficiently than "planet-free" stars. This finding does not only shed light on the lack of lithium in our star, but also provides astronomers with a very efficient way of finding stars with planetary systems. "For almost 10 years we have tried to find out what distinguishes stars with planetary systems from their barren cousins," says Garik Israelian, lead author of a paper appearing this week in the journal Nature. "We have now found that the amount of lithium in Sun-like stars depends on whether or not they have planets." Low levels of this chemical element have been noticed for decades in the Sun, as compared to other solar-like stars, and astronomers have been unable to explain the anomaly. The discovery of a trend among planet-bearing stars provides a natural explanation to this long-standing mystery. "The explanation of this 60 year-long puzzle is for us rather simple," adds Israelian. "The Sun lacks lithium because it has planets." This conclusion is based on the analysis of 500 stars, including 70 planet-hosting stars. Most of these stars were monitored for several years with ESO's High Accuracy Radial Velocity Planet Searcher. This spectrograph, better known as HARPS, is attached to ESO's 3.6-metre telescope and is the world's foremost exoplanet hunter. "This is the best possible sample available to date to understand what makes planet-bearing stars unique," says co-author Michel Mayor. The astronomers looked in particular at Sun-like stars, almost a quarter of the whole sample. They found that the majority of stars hosting planets possess less than 1% of the amount of lithium shown by most of the other stars. "Like our Sun, these stars have been very efficient at destroying the lithium they inherited at birth," says team member Nuno Santos. "Using our unique, large sample, we can also prove that the reason for this lithium reduction is not related to any other property of the star, such as its age." Unlike most other elements lighter than iron, the light nuclei of lithium, beryllium and boron are not produced in significant amounts in stars. Instead, it is thought that lithium, composed of just three protons and four neutrons, was mainly produced just after the Big Bang, 13.7 billion years ago. Most stars will thus have the same amount of lithium, unless this element has been destroyed inside the star. This result also provides the astronomers with a new, cost-effective way to search for planetary systems: by checking the amount of lithium present in a star astronomers can decide which stars are worthy of further significant observing efforts. Now that a link between the presence of planets and curiously low levels of lithium has been established, the physical mechanism behind it has to be investigated. "There are several ways in which a planet can disturb the internal motions of matter in its host star, thereby rearrange the distribution of the various chemical elements and possibly cause the destruction of lithium. It is now up to the theoreticians to figure out which one is the most likely to happen," concludes Mayor. More information This research was presented in a paper that appears in the 12 November 2009 issue of Nature (Enhanced lithium depletion in Sun-like stars with orbiting planets, by G. Israelian et al.). The team is composed of Garik Israelian, Elisa Delgado Mena, Carolina Domínguez Cerdeña, and Rafael Rebolo (Instituto de Astrofisíca de Canarias, La Laguna, Tenerife, Spain), Nuno Santos and Sergio Sousa (Centro de Astrofisica, Universidade de Porto, Portugal), Michel Mayor and Stéphane Udry (Observatoire de Genève, Switzerland), and Sofia Randich (INAF, Osservatorio di Arcetri, Firenze, Italy). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. Australia to Build Fibre Positioner for the Very Large Telescope

    NASA Astrophysics Data System (ADS)

    1998-06-01

    The Anglo-Australian Observatory (AAO) at Epping (New South Wales, Australia) has been awarded the contract to build a fibre positioner for the European Southern Observatory's Very Large Telescope (VLT). This new, large astronomical facility is located at the Paranal Observatory in Chile and will feature four Unit Telescopes, each with a main mirror of 8.2-m diameter. This positioner, (affectionately) known as the OzPoz , will form part of the FLAMES facility (the F ibre L arge A rea M ulti- E lement S pectrograph), to be mounted on the second Unit Telescope (UT2) of the VLT in 2001. The construction of this facility includes other institutes in Europe, e.g. Observatoire de Genève (Switzerland) and Observatoire de Meudon (France). The ESO Instrument Division will coordinate the entire project that will result in an observational capability that is unique in the world. Optical fibres at astronomical telescopes Optical fibres have come to play an increasingly important role as transmitters of information, for instance in telephone and computer networks. It may be less known that they can be used in a similar way to transmit visible and infrared light in astronomical telescopes. Over the past decade, the AAO has been refining its skills in building optical-fibre instruments for its own telescopes, the 3.9-metre Anglo-Australian Telescope and the 1.2-m UK Schmidt Telescope (a telescope dedicated to wide-field surveys). These instruments enable astronomers to study many celestial objects simultaneously, increasing the effectiveness and productivity by enormous factors. The OzPoz positioner sets up to 560 optical fibres (developed in collaboration with the Observatoire de Meudon in France) very precisely by a robotic arm to match the positions of galaxies and quasars in the telescope's focal plane. The positional accuracy is about 50 µm (0.05 mm), or 0.08 arcsec on the sky. The fibres siphon the light from these very faint and distant astronomical objects and guide it to very efficient, custom designed, spectrographs. Here the light is dispersed into its characteristic colours and analysed to determine the object's type, distance and chemical composition, etc. ESO PR Photo 18/98 ESO PR Photo 18/98 Reduced resolution 1024 x 1024 pix [JPEG, 860k] Full resolution 1500 x 1500 pix [GIF, 2.1 Mb] This image illustrates the use of the new Fibre Positioner (OzPoz). It shows an example of the 25 arcmin field-of-view of the VLT with the FLAMES facility, as recorded during the ESO Imaging Survey (EIS) with the 3.5-m New Technology Telescope (NTT) at La Silla. Within only one night, FLAMES with the OzPoz positioner will be capable of obtaining optical and infrared spectra for no less than 1/3 of the approx. 9000 objects (many of which are distant galaxies) seen in this image! They can then be used to determine their redshift, chemical composition and dynamics. This will increase enormously the observational efficiency of the VLT. In just one night, it is possible to observe and analyse thousands of objects, a task that would have taken years in the past. The contract Dr. Brian Boyle , Director of the AAO, is very pleased with the new ESO contract: "The AAO has been recognised many times in the past as being a world-leader in astronomy, but this contract marks a new era. Up until now, we have built instruments for our own telescopes to ensure we stay ahead. Now we have expanded into instrument making for other telescopes. Our engineers, computer programmers and scientists have formed a productive and innovative team which is the envy of many observatories around the world." The Director General of ESO, Professor Riccardo Giacconi , is also happy: "The Anglo-Australian Observatory has excellent credentials in instrument making, and we have no doubt about their ability to build the critical optical fibre positioner for the VLT. The spectacular success of the AAO 2dF instrument (see below) reinforced our decision." The contract will take about 3 years to build and will involve the work of at least 10 AAO engineers and technicians over this period. The AAO 2dF optical fibre positioner The 2dF (two-degree field) optical fibre positioner has taken more than seven years to perfect, and is now fully operational at the 3.9 m Anglo-Australian Telescope. With it, two very ambitious survey projects are now well underway. The 2dF Galaxy Redshift Survey and the 2dF Quasar Redshift Survey aim at analysing more than 250 000 galaxies and 3000 quasars over the next few years to give a three-dimensional picture of the Universe on a large scale. A few nights of early observations yielded spectra from 4000 galaxies and 1000 quasars; a massive data set which, through expert, dedicated software, was analysed on-line and distributed to the international science team by email within minutes of the completion of the observations. Note: [1] This Press Release is issued jointly by ESO and the Anglo-Australian Observatory (AAO). This Press Release is accompanied by ESO PR Photo 18/98 . It is available in two versions: Reduced resolution 1024 x 1024 pix [JPEG, 860k] and Full resolution 1500 x 1500 pix [GIF, 2.1 Mb]. It may be reproduced, if credit is given to the European Southern Observatory. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  5. Investigation of a sample of carbon-enhanced metal-poor stars observed with FORS and GMOS

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Gallagher, A. J.; Bonifacio, P.; Spite, M.; Duffau, S.; Spite, F.; Monaco, L.; Sbordone, L.

    2018-06-01

    Aims: Carbon-enhanced metal-poor (CEMP) stars represent a sizeable fraction of all known metal-poor stars in the Galaxy. Their formation and composition remains a significant topic of investigation within the stellar astrophysics community. Methods: We analysed a sample of low-resolution spectra of 30 dwarf stars, obtained using the visual and near UV FOcal Reducer and low dispersion Spectrograph for the Very Large Telescope (FORS/VLT) of the European Southern Observatory (ESO) and the Gemini Multi-Object Spectrographs (GMOS) at the GEMINI telescope, to derive their metallicity and carbon abundance. Results: We derived C and Ca from all spectra, and Fe and Ba from the majority of the stars. Conclusions: We have extended the population statistics of CEMP stars and have confirmed that in general, stars with a high C abundance belonging to the high C band show a high Ba-content (CEMP-s or -r/s), while stars with a normal C abundance or that are C-rich, but belong to the low C band, are normal in Ba (CEMP-no). Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 099.D-0791.Based on observations obtained at the Gemini Observatory (processed using the Gemini IRAF package), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).Tables 1 and 2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A68

  6. A direct imaging search for close stellar and sub-stellar companions to young nearby stars

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Mugrauer, M.; Neuhäuser, R.; Schmidt, T. O. B.; Contreras-Quijada, A.; Schmidt, J. G.

    2015-01-01

    A total of 28 young nearby stars (ages {≤ 60} Myr) have been observed in the K_s-band with the adaptive optics imager Naos-Conica of the Very Large Telescope at the Paranal Observatory in Chile. Among the targets are ten visual binaries and one triple system at distances between 10 and 130 pc, all previously known. During a first observing epoch a total of 20 faint stellar or sub-stellar companion-candidates were detected around seven of the targets. These fields, as well as most of the stellar binaries, were re-observed with the same instrument during a second epoch, about one year later. We present the astrometric observations of all binaries. Their analysis revealed that all stellar binaries are co-moving. In two cases (HD 119022 AB and FG Aqr B/C) indications for significant orbital motions were found. However, all sub-stellar companion candidates turned out to be non-moving background objects except PZ Tel which is part of this project but whose results were published elsewhere. Detection limits were determined for all targets, and limiting masses were derived adopting three different age values; they turn out to be less than 10 Jupiter masses in most cases, well below the brown dwarf mass range. The fraction of stellar multiplicity and of the sub-stellar companion occurrence in the star forming regions in Chamaeleon are compared to the statistics of our search, and possible reasons for the observed differences are discussed. Based on observations made with ESO telescopes at Paranal Observatory under programme IDs 083.C-0150(B), 084.C-0364(A), 084.C-0364(B), 084.C-0364(C), 086.C-0600(A) and 086.C-0600(B).

  7. Seeing a Stellar Explosion in 3D

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers using ESO's Very Large Telescope have for the first time obtained a three-dimensional view of the distribution of the innermost material expelled by a recently exploded star. The original blast was not only powerful, according to the new results. It was also more concentrated in one particular direction. This is a strong indication that the supernova must have been very turbulent, supporting the most recent computer models. Unlike the Sun, which will die rather quietly, massive stars arriving at the end of their brief life explode as supernovae, hurling out a vast quantity of material. In this class, Supernova 1987A (SN 1987A) in the rather nearby Large Magellanic Cloud occupies a very special place. Seen in 1987, it was the first naked-eye supernova to be observed for 383 years (eso8704), and because of its relative closeness, it has made it possible for astronomers to study the explosion of a massive star and its aftermath in more detail than ever before. It is thus no surprise that few events in modern astronomy have been met with such an enthusiastic response by scientists. SN 1987A has been a bonanza for astrophysicists (eso8711 and eso0708). It provided several notable observational 'firsts', like the detection of neutrinos from the collapsing inner stellar core triggering the explosion, the localisation on archival photographic plates of the star before it exploded, the signs of an asymmetric explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material (eso0708). New observations making use of a unique instrument, SINFONI [1], on ESO's Very Large Telescope (VLT) have provided even deeper knowledge of this amazing event, as astronomers have now been able to obtain the first-ever 3D reconstruction of the central parts of the exploding material. This view shows that the explosion was stronger and faster in some directions than others, leading to an irregular shape with some parts stretching out further into space. The first material to be ejected from the explosion travelled at an incredible 100 million km per hour, which is about a tenth of the speed of light or around 100 000 times faster than a passenger jet. Even at this breakneck speed it has taken 10 years to reach a previously existing ring of gas and dust puffed out from the dying star. The images also demonstrate that another wave of material is travelling ten times more slowly and is being heated by radioactive elements created in the explosion. "We have established the velocity distribution of the inner ejecta of Supernova 1987A," says lead author Karina Kjær. "Just how a supernova explodes is not very well understood, but the way the star exploded is imprinted on this inner material. We can see that this material was not ejected symmetrically in all directions, but rather seems to have had a preferred direction. Besides, this direction is different to what was expected from the position of the ring." Such asymmetric behaviour was predicted by some of the most recent computer models of supernovae, which found that large-scale instabilities take place during the explosion. The new observations are thus the first direct confirmation of such models. SINFONI is the leading instrument of its kind, and only the level of detail it affords allowed the team to draw their conclusions. Advanced adaptive optics systems counteracted the blurring effects of the Earth's atmosphere while a technique called integral field spectroscopy allowed the astronomers to study several parts of the supernova's chaotic core simultaneously, leading to the build-up of the 3D image. "Integral field spectroscopy is a special technique where for each pixel we get information about the nature and velocity of the gas," says Kjær. "This means that besides the normal picture we also have the velocity along the line of sight. Because we know the time that has passed since the explosion, and because the material is moving outwards freely, we can convert this velocity into a distance. This gives us a picture of the inner ejecta as seen straight on and from the side." Notes [1] The team used the SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument mounted on ESO's Very Large Telescope (VLT). SINFONI is a near-infrared (1.1-2.45 µm) integral field spectrograph fed by an adaptive optics module. More information This research will appear in Astronomy and Astrophysics ("The 3-D Structure of SN 1987A's inner Ejecta", by K. Kjær et al.). The team is composed of Karina Kjær (Queen's University Belfast, UK), Bruno Leibundgut and Jason Spyromilio (ESO), and Claes Fransson and Anders Jerkstrand (Stockholm University, Sweden). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  8. A Survey for Planetary-mass Brown Dwarfs in the Chamaeleon I Star-forming Region

    NASA Astrophysics Data System (ADS)

    Esplin, T. L.; Luhman, K. L.; Faherty, J. K.; Mamajek, E. E.; Bochanski, J. J.

    2017-08-01

    We have performed a search for planetary-mass brown dwarfs in the Chamaeleon I star-forming region using proper motions and photometry measured from optical and infrared images from the Spitzer Space Telescope, the Hubble Space Telescope, and ground-based facilities. Through near-IR spectroscopy at Gemini Observatory, we have confirmed six of the candidates as new late-type members of Chamaeleon I (≥M8). One of these objects, Cha J11110675-7636030, has the faintest extinction-corrected M K among known members, which corresponds to a mass of 3-6 {M}{Jup} according to evolutionary models. That object and two other new members have redder mid-IR colors than young photospheres at ≤M9.5, which may indicate the presence of disks. However, since those objects may be later than M9.5 and the mid-IR colors of young photospheres are ill-defined at those types, we cannot determine conclusively whether color excesses from disks are present. If Cha J11110675-7636030 does have a disk, it would be a contender for the least-massive known brown dwarf with a disk. Since the new brown dwarfs that we have found extend below our completeness limit of 6-10 M {}{Jup}, deeper observations are needed to measure the minimum mass of the initial mass function in Chamaeleon I. Based on observations made with the Spitzer Space Telescope, the NASA/ESA Hubble Space Telescope, Gemini Observatory, the ESO Telescopes at Paranal Observatory, Magellan Observatory, the Cerro Tololo Inter-American Observatory, and the ESA Gaia mission.

  9. Li depletion in solar analogues with exoplanets. Extending the sample

    NASA Astrophysics Data System (ADS)

    Delgado Mena, E.; Israelian, G.; González Hernández, J. I.; Sousa, S. G.; Mortier, A.; Santos, N. C.; Adibekyan, V. Zh.; Fernandes, J.; Rebolo, R.; Udry, S.; Mayor, M.

    2014-02-01

    Aims: We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods: In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600-5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results: We confirm significant differences in the Li distribution of solar twins (Teff = T⊙ ± 80 K, log g = log g⊙ ± 0.2 and [Fe/H] = [Fe/H]⊙ ± 0.2): the full sample of planet host stars (22) shows Li average values lower than "single" stars with no detected planets (60). If we focus on subsamples with narrower ranges in metallicity and age, we observe indications of a similar result though it is not so clear for some of the subsamples. Furthermore, we compare the observed spectra of several couples of stars with very similar parameters that show differences in Li abundances up to 1.6 dex. Therefore we show that neither age, mass, nor metallicity of a parent star is the only cause for enhanced Li depletion in solar analogues. Conclusions: We conclude that another variable must account for that difference and suggest that this could be the presence of planets that causes additional rotationally induced mixing in the external layers of planet host stars. Moreover, we find indications that the amount of depletion of Li in planet-host solar-type stars is higher when the planets are more massive than Jupiter. Based on observations collected at the La Silla Observatory, ESO (Chile), with the HARPS spectrograph at the 3.6 m ESO telescope, with CORALIE spectrograph at the 1.2 m Euler Swiss telescope and with the FEROS spectrograph at the 1.52 m ESO telescope; at the Paranal Observatory, ESO (Chile), using the UVES spectrograph at the VLT/UT2 Kueyen telescope, and with the FIES, SARG, and UES spectrographs at the 2.5 m NOT, the 3.6 m TNG and the 4.2 WHT, respectively, operated on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos.Table 6 is available in electronic form at http://www.aanda.org

  10. The sudden appearance of CO emission in LHA 115-S 65

    NASA Astrophysics Data System (ADS)

    Oksala, M. E.; Kraus, M.; Arias, M. L.; Borges Fernandes, M.; Cidale, L.; Muratore, M. F.; Curé, M.

    2012-10-01

    Molecular emission has been detected in several Magellanic Cloud B[e] supergiants. In this Letter, we report on the detection of CO band head emission in the B[e] supergiant LHA 115-S 65, and present a K-band near-infrared spectrum obtained with the Spectrograph for INtegral Field Observation in the Near-Infrared (SINFONI; R= 4500) on the ESO VLT UT4 telescope. The observed molecular band head emission in S65 is quite surprising in the light of a previous non-detection by McGregor, Hyland & McGinn, as well as a high-resolution (R= 50 000) Gemini/Phoenix spectrum of this star taken nine months earlier showing no emission. Based on analysis of the optical spectrum by Kraus, Borges Fernandes & de Araújo, we suspect that the sudden appearance of molecular emission could be due to density build-up in an outflowing viscous disc, as seen for Be stars. This new discovery, combined with variability in two other similar evolved massive stars, indicates an evolutionary link between B[e] supergiants and luminous blue variables. Based on observations obtained with ESO telescopes at the La Silla Paranal Observatory under programme ID 088.D-044 and at the Gemini Observatory which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), under programme ID GS-2010B-Q-31.

  11. On the origin of stars with and without planets. Tc trends and clues to Galactic evolution

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; González Hernández, J. I.; Delgado Mena, E.; Sousa, S. G.; Santos, N. C.; Israelian, G.; Figueira, P.; Bertran de Lis, S.

    2014-04-01

    We explore a sample of 148 solar-like stars to search for a possible correlation between the slopes of the abundance trends versus condensation temperature (known as the Tc slope) with stellar parameters and Galactic orbital parameters in order to understand the nature of the peculiar chemical signatures of these stars and the possible connection with planet formation. We find that the Tc slope significantly correlates (at more than 4σ) with the stellar age and the stellar surface gravity. We also find tentative evidence that the Tc slope correlates with the mean galactocentric distance of the stars (Rmean), suggesting that those stars that originated in the inner Galaxy have fewer refractory elements relative to the volatiles. While the average Tc slope for planet-hosting solar analogs is steeper than that of their counterparts without planets, this difference probably reflects the difference in their age and Rmean. We conclude that the age and probably the Galactic birth place are determinant to establish the star's chemical properties. Old stars (and stars with inner disk origin) have a lower refractory-to-volatile ratio. Based on observations collected with the HARPS spectrograph at the 3.6-m telescope (072.C-0488(E)), installed at the La Silla Observatory, ESO (Chile), with the UVES spectrograph at the 8-m Very Large Telescope program IDs: 67.C-0206(A), 074.C-0134(A), 075.D-0453(A), installed at the Cerro Paranal Observatory, ESO (Chile), and with the UES spectrograph at the 4.2-m William Herschel Telescope, installed at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma.Appendix A is available in electronic form at http://www.aanda.org

  12. First Giant Mirror for the ESO VLT Ready at REOSC

    NASA Astrophysics Data System (ADS)

    1995-11-01

    The REOSC Contract In 1989, the European Southern Observatory (ESO), the European Organisation for Astronomy, awarded to REOSC, a subsidiary of the SFIM Group and located in Saint Pierre du Perray (France), a comprehensive contract for the polishing of four 8.2-metre diameter mirrors for the unit telescopes of the ESO Very Large Telescope (VLT) project. These mirrors are the largest ever manufactured and polished. This contract comprises not only the polishing and high-precision optical testing of each giant mirror, but also the safe condition of transportation of the blanks which were manufactured by Schott Glaswerke in Mainz (Germany). In order to fulfill the contract, REOSC conceived, built and equipped a novel, high-tech workshop which would allow to polish and test the mirrors, each of which has a surface area of more than 50 square metres. First 8.2-Metre Mirror is Ready and within Specifications The REOSC polishing facility for giant mirrors was built in Saint Pierre du Perray, just south of Paris. It is equipped with two machines: one for grinding and the other for polishing the mirrors, and both with 150-actuator systems that support the thin and flexible mirrors. All equipment is computer controlled. State-of-the-art interferometers probe the accuracy of the mirror surface as the polishing proceeds; they are installed at the top level of the facility in a 30-metre high tower, at the centre of the mirror's radius of curvature. The success of the work at REOSC is now evident by the fact that careful measurements of the first mirror earlier this month have shown that the final optical surface is correct to within 0.00005 millimetres. For illustration, this corresponds to an accuracy of only 1 millimetre deviation over a surface with a diameter of 165 kilometres (equivalent to the entire Paris area)! ESO Receives the First VLT Mirror After having been carefully placed in a special transport box designed by REOSC, the first mirror blank, weighing 23.5 tons and with a replacement value of about 20 million DEM, was transported from Mainz to Saint Pierre du Perray in July 1993. The shaping and polishing phases lasted two years and were completed in October 1995. After one month's hard work, dedicated to optical and mechanical verifications by ESO and REOSC, the mirror's various characteristics have now been found to be in accordance with the contract specifications. Following the technical acceptance, the first mirror was re-installed in its transport container on November 13, 1995. It will thereafter be formally handed over to ESO during a ceremony at REOSC on Tuesday, November 21, 1995. The mirror will be stored at the REOSC facility until its future departure to ESO's VLT Observatory on Cerro Paranal, a 2650 m high summit in the Andean Cordillera in northern Chile. Here it will be installed in the first VLT unit telescope, soon after the assembly of the mechanical parts has been completed. Future Plans at REOSC The polishing of the second VLT mirror, as well as the grinding of the third mirror which was transported from Mainz to Saint Pierre du Perray at the beginning of October 1995, have already started. The transport of the fourth blank will take place in March 1996. With the construction, in a subsequent phase, of a workshop of more than 6000 square metres and mostly dedicated to space and astronomy, the SFIM group will have invested more than 50 million French Francs at the Saint Pierre du Perray site alone. The group is also involved in the contract related to the actuator support system; this is a clear indication of its determination to maintain its position within this scientific-technological market. In addition to the ESO VLT mirrors, REOSC will also polish the two 8.2-metre diameter mirrors of the Gemini programme of the Association of Universities for Research in Astronomy (AURA) in the United States. This important work was entrusted REOSC, following an international call for tenders, in which also US firms participated. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  13. World's fastest and most sensitive astronomical camera

    NASA Astrophysics Data System (ADS)

    2009-06-01

    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these corrections to be done at an even higher rate, more than one thousand times a second, and this is where OCam is essential. "The quality of the adaptive optics correction strongly depends on the speed of the camera and on its sensitivity," says Philippe Feautrier from the LAOG, France, who coordinated the whole project. "But these are a priori contradictory requirements, as in general the faster a camera is, the less sensitive it is." This is why cameras normally used for very high frame-rate movies require extremely powerful illumination, which is of course not an option for astronomical cameras. OCam and its CCD220 detector, developed by the British manufacturer e2v technologies, solve this dilemma, by being not only the fastest available, but also very sensitive, making a significant jump in performance for such cameras. Because of imperfect operation of any physical electronic devices, a CCD camera suffers from so-called readout noise. OCam has a readout noise ten times smaller than the detectors currently used on the VLT, making it much more sensitive and able to take pictures of the faintest of sources. "Thanks to this technology, all the new generation instruments of ESO's Very Large Telescope will be able to produce the best possible images, with an unequalled sharpness," declares Jean-Luc Gach, from the Laboratoire d'Astrophysique de Marseille, France, who led the team that built the camera. "Plans are now underway to develop the adaptive optics detectors required for ESO's planned 42-metre European Extremely Large Telescope, together with our research partners and the industry," says Hubin. Using sensitive detectors developed in the UK, with a control system developed in France, with German and Spanish participation, OCam is truly an outcome of a European collaboration that will be widely used and commercially produced. More information The three French laboratories involved are the Laboratoire d'Astrophysique de Marseille (LAM/INSU/CNRS, Université de Provence; Observatoire Astronomique de Marseille Provence), the Laboratoire d'Astrophysique de Grenoble (LAOG/INSU/CNRS, Université Joseph Fourier; Observatoire des Sciences de l'Univers de Grenoble), and the Observatoire de Haute Provence (OHP/INSU/CNRS; Observatoire Astronomique de Marseille Provence). OCam and the CCD220 are the result of five years work, financed by the European commission, ESO and CNRS-INSU, within the OPTICON project of the 6th Research and Development Framework Programme of the European Union. The development of the CCD220, supervised by ESO, was undertaken by the British company e2v technologies, one of the world leaders in the manufacture of scientific detectors. The corresponding OPTICON activity was led by the Laboratoire d'Astrophysique de Grenoble, France. The OCam camera was built by a team of French engineers from the Laboratoire d'Astrophysique de Marseille, the Laboratoire d'Astrophysique de Grenoble and the Observatoire de Haute Provence. In order to secure the continuation of this successful project a new OPTICON project started in June 2009 as part of the 7th Research and Development Framework Programme of the European Union with the same partners, with the aim of developing a detector and camera with even more powerful functionality for use with an artificial laser star. This development is necessary to ensure the image quality of the future 42-metre European Extremely Large Telescope. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  14. Bavarian Prime Minister to Visit la Silla

    NASA Astrophysics Data System (ADS)

    1997-03-01

    The Bavarian Prime Minister, Dr. Edmund Stoiber , is currently visiting a number of countries in South America. He is accompanied by a high-ranking delegation of representatives of Bavarian politics and industry. During this trip, the Bavarian delegation will visit the Republic of Chile, arriving in Santiago de Chile on Sunday, March 9, 1997. On the same day, Dr. Stoiber and most other members of the delegation, on the invitation of the Director General of ESO, Professor Riccardo Giacconi, will visit the ESO La Silla Observatory , located in an isolated area in the Atacama desert some 600 km north of the Chilean capital. ESO, the European Organisation for Astronomy, with Headquarters in Garching near Munich in Bavaria, welcomes this opportunity to present its high-tech research facilities to Dr. Stoiber and leaders of the Bavarian industry. During the visit, the delegation will learn about the various front-line research projects, now being carried out by astronomers from Germany and other ESO member countries with the large telescopes at La Silla. There will also be a presentation of the ESO VLT project , which will become the world's largest optical astronomical telescope, when it is ready a few years from now. The delegation will be met by the Director of the La Silla Observatory, Dr. Jorge Melnick and his scientific-technical staff which includes several members of German nationality. Also present will be ESO's Head of Administration, Dr. Norbert König (Garching) and the General Manager of ESO in Chile, Mr. Daniel Hofstadt. More information about this visit and the ESO facilities is available from the ESO Education and Public Relations Department (Tel.: +49-89-32006-276; Fax.: +49-89-3202362; email: ips@eso.org; Web: http://www.eso.org../../../epr/ ). Diese Pressemitteilung ist auch in einer Deutschen Fassung vorhanden. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  15. The First School for Young Astronomers Organized by ESO and the Astronomical Council of the USSR Acadeny of Sciences

    NASA Astrophysics Data System (ADS)

    D'Odorico, S.

    1987-12-01

    The first international school for young astronomers organized jointly by ESO and the Astronomical Council of the USSR Academy of Sciences took place from the 22nd to the 29th of September at the Byurakan Astrophysical Observatory of the Academy of Sciences of Armenia and was dedicated to "Observations with Large Telescopes". It was appropriately closed with a oneday visit to the Special Astrophysical Observatory at Zelenchukskaja, in northern Caucasus, home of the 6-m telescope, the largest in the world. The lecturers came from ESO and from the Soviet Union; the 45 participants were from ESO member states, from Bulgaria, Czechoslovakia, the German Democratic Republic, Poland, Spain and the USSR. After the welcome addresses by Academician V.A. Ambartsumian and by E. Ye Khachikian, Chairman of the Local Organizing Committee, the school was opened by M. Tarenghi of ESO who spoke on the characteristics of existing ESO telescopes and on the innovative features of the ESO 3.5-m New Technology Telescope, to be erected at La Silla next year. H. A. Abrahamian and J.A. Stepanian of the Byurakan Observatory presented the Byurakan 2.6-m telescope and the 1-m Schmidt respectively, illustrating the scientific programmes carried out in the recent past and presently at these two facilities.

  16. VizieR Online Data Catalog: GOODS-S CANDELS multiwavelength catalog (Guo+, 2013)

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Ferguson, H. C.; Giavalisco, M.; Barro, G.; Willner, S. P.; Ashby, M. L. N.; Dahlen, T.; Donley, J. L.; Faber, S. M.; Fontana, A.; Galametz, A.; Grazian, A.; Huang, K.-H.; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; McGrath, E. J.; Peth, M.; Salvato, M.; Wuyts, S.; Castellano, M.; Cooray, A. R.; Dickinson, M. E.; Dunlop, J. S.; Fazio, G. G.; Gardner, J. P.; Gawiser, E.; Grogin, N. A.; Hathi, N. P.; Hsu, L.-T.; Lee, K.-S.; Lucas, R. A.; Mobasher, B.; Nandra, K.; Newman, J. A.; van der Wel, A.

    2014-04-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS; Grogin et al. 2011ApJS..197...35G; Koekemoer et al. 2011ApJS..197...36K) is designed to document galaxy formation and evolution over the redshift range of z=1.5-8. The core of CANDELS is to use the revolutionary near-infrared HST/WFC3 camera, installed on HST in 2009 May, to obtain deep imaging of faint and faraway objects. The GOODS-S field, centered at RAJ2000=03:32:30 and DEJ2000=-27:48:20 and located within the Chandra Deep Field South (CDFS; Giacconi et al. 2002, Cat. J/ApJS/139/369), is a sky region of about 170arcmin2 which has been targeted for some of the deepest observations ever taken by NASA's Great Observatories, HST, Spitzer, and Chandra as well as by other world-class telescopes. The field has been (among others) imaged in the optical wavelength with HST/ACS in F435W, F606W, F775W, and F850LP bands as part of the HST Treasury Program: the Great Observatories Origins Deep Survey (GOODS; Giavalisco et al. 2004, Cat. II/261); in the mid-IR (3.6-24um) wavelength with Spitzer as part of the GOODS Spitzer Legacy Program (PI: M. Dickinson). The CDF-S/GOODS field was observed by the MOSAIC II imager on the CTIO 4m Blanco telescope to obtain deep U-band observations in 2001 September. Another U-band survey in GOODS-S was carried out using the VIMOS instrument mounted at the Melipal Unit Telescope of the VLT at ESO's Cerro Paranal Observatory, Chile. This large program of ESO (168.A-0485; PI: C. Cesarsky) was obtained in service mode observations in UT3 between 2004 August and fall 2006. In the ground-based NIR, imaging observations of the CDFS were carried out in J, H, Ks bands using the ISAAC instrument mounted at the Antu Unit Telescope of the VLT. Data were obtained as part of the ESO Large Programme 168.A-0485 (PI: C. Cesarsky) as well as ESO Programmes 64.O-0643, 66.A-0572, and 68.A-0544 (PI: E. Giallongo) with a total allocation time of ~500 hr from 1999 October to 2007 January. The CANDELS/GOODS-S field was also observed in the NIR as part of the ongoing HAWK-I UDS and GOODS-S survey (HUGS; VLT large program ID 186.A-0898; PI: A. Fontana; A. Fontana et al., in preparation) using the High Acuity Wide field K-band Imager (HAWK-I) on VLT. (1 data file).

  17. First Temperate Exoplanet Sized Up

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Combining observations from the CoRoT satellite and the ESO HARPS instrument, astronomers have discovered the first "normal" exoplanet that can be studied in great detail. Designated Corot-9b, the planet regularly passes in front of a star similar to the Sun located 1500 light-years away from Earth towards the constellation of Serpens (the Snake). "This is a normal, temperate exoplanet just like dozens we already know, but this is the first whose properties we can study in depth," says Claire Moutou, who is part of the international team of 60 astronomers that made the discovery. "It is bound to become a Rosetta stone in exoplanet research." "Corot-9b is the first exoplanet that really does resemble planets in our solar system," adds lead author Hans Deeg. "It has the size of Jupiter and an orbit similar to that of Mercury." "Like our own giant planets, Jupiter and Saturn, the planet is mostly made of hydrogen and helium," says team member Tristan Guillot, "and it may contain up to 20 Earth masses of other elements, including water and rock at high temperatures and pressures." Corot-9b passes in front of its host star every 95 days, as seen from Earth [1]. This "transit" lasts for about 8 hours, and provides astronomers with much additional information on the planet. This is fortunate as the gas giant shares many features with the majority of exoplanets discovered so far [2]. "Our analysis has provided more information on Corot-9b than for other exoplanets of the same type," says co-author Didier Queloz. "It may open up a new field of research to understand the atmospheres of moderate- and low-temperature planets, and in particular a completely new window in our understanding of low-temperature chemistry." More than 400 exoplanets have been discovered so far, 70 of them through the transit method. Corot-9b is special in that its distance from its host star is about ten times larger than that of any planet previously discovered by this method. And unlike all such exoplanets, the planet has a temperate climate. The temperature of its gaseous surface is expected to be between 160 degrees and minus twenty degrees Celsius, with minimal variations between day and night. The exact value depends on the possible presence of a layer of highly reflective clouds. The CoRoT satellite, operated by the French space agency CNES [3], identified the planet after 145 days of observations during the summer of 2008. Observations with the very successful ESO exoplanet hunter - the HARPS instrument attached to the 3.6-metre ESO telescope at La Silla in Chile - allowed the astronomers to measure its mass, confirming that Corot-9b is indeed an exoplanet, with a mass about 80% the mass of Jupiter. This finding is being published in this week's edition of the journal Nature. Notes [1] A planetary transit occurs when a celestial body passes in front of its host star and blocks some of the star's light. This type of eclipse causes changes in the apparent brightness of the star and enables the planet's diameter to be measured. Combined with radial velocity measurements made by the HARPS spectrograph, it is also possible to deduce the mass and, hence, the density of the planet. It is this combination that allows astronomers to study this object in great detail. The fact that it is transiting - but nevertheless not so close to its star to be a "hot Jupiter" - is what makes this object uniquely well suited for further studies. [2] Temperate gas giants are, so far, the largest known group of exoplanets discovered. [3] The CoRoT (Convection, Rotation and Transits) space telescope was constructed by CNES, with contributions from Austria, Germany, Spain, Belgium, Brazil and the European Space Agency (ESA). It was specifically designed to detect transiting exoplanets and carry out seismological studies of stars. Its results are supplemented by observations with several ground-based telescopes, among them the IAC-80 (Teide Observatory), the Canada France Hawaii Telescope (Hawaii), the Isaac Newton Telescope (Roque de los Muchachos Observatory), Wise Observatory (Israel), the Faulkes North Telescope of the Las Cumbres Observatory Global Telescope Network (Hawaii) and the ESO 3.6-metre telescope (Chile). More information This research was presented in a paper published this week in Nature ("A transiting giant planet with a temperature between 250 K and 430 K"), by H. J. Deeg et al. The team is composed of H.J. Deeg, B. Tingley, J.M. Almenara, and M. Rabus (Instituto de Astrofısica de Canarias, Tenerife, Spain), C. Moutou, P. Barge, A. S. Bonomo, M. Deleuil, J.-C. Gazzano, L. Jorda, and A. Llebaria (Laboratoire d'Astrophysique de Marseille, Université de Provence, CNRS, OAMP, France), A. Erikson, Sz. Csizmadia, J. Cabrera, P. Kabath, H. Rauer (Institute of Planetary Research, German Aerospace Center, Berlin, Germany), H. Bruntt, M. Auvergne, A. Baglin, D. Rouan, and J. Schneider (Observatoire de Paris-Meudon, France), S. Aigrain and F. Pont (University of Exeter, UK), R. Alonso, C. Lovis, M. Mayor, F. Pepe, D. Queloz, and S. Udry (Observatoire de l'Université de Genève, Switzerland), M. Barbieri (Università di Padova, Italia), W. Benz (Universität Bern, Switzerland), P. Bordé, A. Léger, M. Ollivier, and B. Samuel (Institut d'Astrophysique Spatiale, Université Paris XI, Orsay, France), F. Bouchy and G. Hébrard (IAP, Paris, France), L. Carone and M. Pätzold (Rheinisches Institut für Umweltforschung an der Universität zu Köln, Germany), S. Carpano, M. Fridlund, P. Gondoin, and R. den Hartog (ESTEC/ESA, Noordwijk, The Netherlands), D. Ciardi (NASA Exoplanet Science Institute/Caltech, USA), R. Dvorak (University of Vienna, Austria), S. Ferraz-Mello (Universidade de São Paulo, Brasil), D. Gandolfi, E. Guenther, A. Hatzes, G. Wuchterl, B. Stecklum (Thüringer Landessternwarte, Tautenburg, Germany), M. Gillon (University of Liège, Belgium), T. Guillot and M. Havel (Observatoire de la Côte d' Azur, Nice, France), M. Hidas, T. Lister, and R. Street (Las Cumbres Observatory Global Telescope Network, Santa Barbara, USA), H. Lammer and J. Weingrill (Space Research Institute, Austrian Academy of Science), and T. Mazeh and A. Shporer (Tel Aviv University, Israel). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  18. Double Planet Meets Triple Star

    NASA Astrophysics Data System (ADS)

    2002-08-01

    High-Resolution VLT Image of Pluto Event on July 20, 2002 A rare celestial phenomenon involving the distant planet Pluto has occurred twice within the past month. Seen from the Earth, this planet moved in front of two different stars on July 20 and August 21, respectively, providing observers at various observatories in South America and in the Pacific area with a long awaited and most welcome opportunity to learn more about the tenuous atmosphere of that cold planet. On the first date, a series of very sharp images of a small sky field with Pluto and the star was obtained with the NAOS-CONICA (NACO) adaptive optics (AO) camera mounted on the ESO VLT 8.2-m YEPUN telescope at the Paranal Observatory. With a diameter of about 2300 km, Pluto is about six times smaller than the Earth. Like our own planet, it possesses a relatively large moon, Charon , measuring 1200 km across and circling Pluto at a distance of about 19,600 km once every 6.4 days. In fact, because of the similarity of the two bodies, the Pluto-Charon system is often referred to as a double planet . At the current distance of nearly 4,500 million km from the Earth, Pluto's disk subtends a very small angle in the sky, 0.107 arcsec. It is therefore very seldom that Pluto - during its orbital motion - passes exactly in front of a comparatively bright star. Such events are known as "occultations" , and it is difficult to predict exactly when and where on the Earth's surface they are visible. Stellar occultations When Pluto moves in front of a star, it casts a "shadow" on the Earth's surface within which an observer cannot see the star, much like the Earth's Moon hides the Sun during a total solar eclipse. During the occultation event, Pluto's "shadow" also moves across the Earth's surface. The width of this shadow is equal to Pluto's diameter, i.e. about 2300 km. One such occultation event was observed in 1988, and two others were expected to occur in 2002, according to predictions published in 2000 by American astronomers Steve W. McDonald and James L. Elliot (Massachussetts Institute of Technology [MIT], Cambridge, USA). Further refinements provided by other observers later showed that the first event would be visible from South America on July 20, 2002 , while a second one on August 21 was expected to be observable in the Pacific basin, from the western coast of North America down to Hawaii and New Zealand. A stellar occultation provides a useful opportunity to study the planetary atmosphere, by means of accurate photometric measurements of the dimming of the stellar light, as the planet moves in front of the star. The observed variation of the light intensity and colour provides crucial information about the structure (atmospheric layers) and composition of different gases and aerosols. More information is available in the Appendix below. The July 20 occultation ESO PR Photo 21a/02 ESO PR Photo 21a/02 [Preview - JPEG: 400 x 477 pix - 65k] [Normal - JPEG: 800 x 953 pix - 224k] Caption : PR Photo 21c/02 shows the path of Pluto's shadow (grey region) during the July 20, 2002 occultation. The shadow has a diameter of about 2300 km and moves from right to left; the timings along the central line are indicated in one-minute intervals (Universal Time - UT). The width of the gray area corresponds to the regions where more than 50% of the light from the star P126 A was attenuated by Pluto's atmosphere. The dotted lines indicate where the stellar flux was attenuated by more than 10%. The maximum duration of the occultation (for observers located at the middle of the shadow track) was about 3 min. The plot is based on astrometric measurements posted at the MIT site. Once completely analyzed, the VLT NACO images will provide significantly better accuracy on the location of this track and therefore a solid basis for the interpretation of the photometric observations obtained with other telescopes. In order to profit from the rare opportunity to learn more about Pluto and its atmosphere, a large campaign involving more than twenty scientists and engineers from the Paris Observatory and associated institutions [1] was organized to observe the July 20, 2002, event involving an occultation of a star of visual magnitude 11 (i.e., about 100 times fainter than what can be perceived with then unaided eye), referred to as "P126" in McDonald and Elliot's catalogue. In May 2002, preparatory observations showed that star to be double, with the brighter component of the system ( "P126 A" ) being likely to be occulted by Pluto, as seen from South America. However, because of the duplicity, the predictions of exactly where the shadow of Pluto would sweep the ground were uncertain by about 0.1 arcsec in the sky, corresponding to more than 2000 km on the ground. The NACO images ESO PR Photo 21b/02 ESO PR Photo 21b/02 [Preview - JPEG: 400 x 469 pix - 47k] [Normal - JPEG: 800 x 937 pix - 208k] ESO PR Photo 21c/02 ESO PR Photo 21c/02 [Preview - JPEG: 400 x 467 pix - 53k] [Normal - JPEG: 800 x 933 pix - 232k] Caption : PR Photo 21b/02 shows one of the images obtained with the NAOS-CONICA (NACO) adaptive optics (AO) camera mounted on the ESO VLT 8.2-m YEPUN telescope at the Paranal Observatory in connection with a stellar occultation by Pluto on July 20, 2002. The star was found to be triple - the three components (A, B and C), as well as Pluto and its moon, Charon, are indicated in PR Photo 21c/02 for easy orientation. The images are based on data available from the NACO data webpage. See the text for details. In the end, the close approach (an "appulse" in astronomical terminology) of Pluto and P126 A was indeed observed from various sites in South America, with several mobile telescopes and also including major facilities at the ESO La Silla and Paranal Observatories. In particular, unique and very sharp images were obtained with the NAOS-CONICA (NACO) adaptive optics (AO) camera mounted on the ESO VLT 8.2-m YEPUN telescope . One of the NACO images is shown in PR Photos 21b-c/02 . These images were made during the final adjustments of the NACO instrument and in anticipation of the upcoming science verification observations. All frames are now publicly available from the NACO data webpage on the ESO site. The NACO image shown was obtained in infrared light (in the K-band at wavelength 2.2 µm) on July 20, 2002, some 45 min before Pluto's shadow passed north of Paranal ( Photo 21a/02) . The orientation is such that North is up, and East is left. The small sky field measures about 7 x 7 arcsec 2. The pixel size is 0.027 arcsec, and the achieved image sharpness corresponds to the theoretical limit (the diffraction limit) with a telescope of this size and at this wavelength (0.07 arcsec). The object at the centre is the star P126 A of K-magnitude 9.5 (see also Photo 21c/02 where the objects are identified), while the brighter object at the right is the companion star P126 B , 2.25 arcsec away. As P126 B is very red (of stellar type M), it appears brighter than P126 A at this infrared wavelength - the opposite is true in visible light. The intensity of the left part of the image has been multiplied by a factor of approximately 35 in order to better display Pluto and its moon Charon , located some 0.5 arcsec to the lower left (SE) of the planet. Note also the faint star "P126 C" , at this moment very close to Pluto; it is probably a (physical) member of the P126 system. A closer inspection of the original image shows that the disk of Pluto (with a diameter of 0.107 arscec and covering 16 NACO pixels) is (barely) resolved. Many images were taken by NACO prior to the occultation. They will allow to retrace the precise motion of Pluto relative to P126 A, thereby improving the mapping of the motion of Pluto's shadow on the ground, cf. Photo 21a/02 . This is important in order to apply the correct geometrical circumstances for the interpretation of the photometric observations. A first evaluation of the NACO data indicates that the Paranal site "missed" the upper layers of Pluto's atmosphere by a mere 200 km or so - this is equivalent to no more than one hundredth of an arcsec as projected on the sky. More information A full report on the NACO observations and other results by the present group of astronomers, also from the subsequent occultation of another star on August 21, 2002, that was extensively observed with the Canada-France-Hawaii Telescope (CFHT) on Mauna Kea (Hawaii, USA), is available at this URL: http://despa.obspm.fr/~sicardy/pluton/results.html Other sharp NACO images have been published recently, e.g. ESO PR 25/01 , ESO PR Photos 04a-c/02 and ESO PR Photos 19a-c/02. Note [1]: The group from the Observatoire de Paris and other observatories is lead by Bruno Sicardy and also includes François Colas, Thomas Widemann, Françoise Roques, Christian Veillet, Jean-Charles Cuillandre, Wolfgang Beisker, Cyril Birnbaum, Kate Brooks, Audrey Delsanti, Pierre Drossart, Agnès Fienga, Eric Gendron, Mike Kretlow, Anne-Marie Lagrange, Jean Lecacheux, Emmanuel Lellouch, Cédric Leyrat, Alain Maury, Elisabeth Raynaud, Michel Rapaport, Stefan Renner and Mathias Schultheis . From ESO participated Nancy Ageorges, Olivier Hainaut, Chris Lidman and Jason Spyromilio . Contact Bruno Sicardy LESIA - Observatoire de Paris France Phone: +33-1-45 07 71 15 email: bruno.sicardy@obspm.fr Appendix: Stellar occultations and Pluto's atmosphere Stellar occultations are presently the only way to probe Pluto's tenuous atmosphere . When the star moves behind the planet, the stellar rays suffer minute deviations as they are refracted (i.e., bent and defocussed) by the planet's atmospheric layers. This effect, together with the large distance to the planet, manifests itself as a gradual decline of observed intensity of the stellar light, rather than an abrupt drop as this would be the case if the planet had no atmosphere. Pluto's atmosphere was first detected on August 19, 1985, during a stellar occultation observed from Israel and then studied in more detail from Australia and from the Kuiper Airborne Observatory (KAO) during another such event on July 9, 1988. However, Pluto's atmosphere is still not well understood. It appears to be mostly composed of a dominant gas of atomic weight 28, probably molecular nitrogen (N 2 ). Near-IR solar reflection spectra have since shown a small presence of methane (CH 4 ), probably at a level of about 1% relative to nitrogen. The 1988 occultation clearly revealed two different layers in Pluto's atmosphere, a rather smooth and isothermal outer part, and a more complex one near the planet's surface, with the possible presence of an inversion layer (in which the temperature increases with altitude) or possibly haze of photochemical origin. The present observations aimed at discriminating between the current theoretical models of Pluto's atmosphere by means of detailed measurements of the changing intensity and colour of the stellar light, as the star is seen through progressively lower layers of the planet's atmosphere. Another important issue is the question of whether Pluto's atmosphere has changed since 1988. In the intervening 14 years, the planet has moved away from the Sun in its elliptic orbit, whereby there has been a change in the insolation (solar flux) of about 6%. This effect might possibly have caused changes in the surface temperature and in the overall atmospheric structure of Pluto. However, any firm conclusions will have to await a complete and careful evaluation of all available observations. ESO PR Photos 21a-c/02 may be reproduced, if credit is given to the European Southern Observatory (ESO).

  19. The First X-shooter Observations of Jets from Young Stars

    NASA Astrophysics Data System (ADS)

    Bacciotti, F.; Whelan, E. T.; Alcalá, J. M.; Nisini, B.; Podio, L.; Randich, S.; Stelzer, B.; Cupani, G.

    2011-08-01

    We present the first pilot study of jets from young stars conducted with X-shooter, on the ESO/Very Large Telescope. As it offers simultaneous, high-quality spectra in the range 300-2500 nm, X-shooter is uniquely important for spectral diagnostics in jet studies. We chose to probe the accretion/ejection mechanisms at low stellar masses examining two targets with well-resolved continuous jets lying on the plane of the sky: ESO-HA 574 in Chameleon I and Par-Lup3-4 in Lupus III. The mass of the latter is close to the sub-stellar boundary (M sstarf = 0.13 M sun). A large number of emission lines probing regions of different excitation are identified, position-velocity diagrams are presented, and mass outflow/accretion rates are estimated. Comparison between the two objects is striking. ESO-HA 574 is a weakly accreting star for which we estimate a mass accretion rate of log (\\dot{M}_{acc}) = -10.8 +/- 0.5 (in M sun yr-1), yet it drives a powerful jet with \\dot{M}_{out} ~ 1.5-2.7 × 10-9 M sun yr-1. These values can be reconciled with a magneto-centrifugal jet acceleration mechanism assuming that the presence of the edge-on disk severely depresses the luminosity of the accretion tracers. In comparison, Par-Lup3-4, with stronger mass accretion (log (\\dot{M}_{acc}) = -9.1 +/- 0.4 M sun yr-1), drives a low-excitation jet with about \\dot{M}_{out} ~ 3.2 × 10-10 M sun yr-1 in both lobes. Despite the low stellar mass, \\dot{M}_{out}/\\dot{M}_{acc} for Par-Lup3-4 is at the upper limit of the range usually measured for young objects, but still compatible with a steady magneto-centrifugal wind scenario if all uncertainties are considered. Based on Observations collected with X-shooter at the Very Large Telescope on Cerro Paranal (Chile), operated by the European Southern Observatory (ESO). Program ID: 085.C-0238(A).

  20. X-shooter observations of low-mass stars in the η Chamaeleontis association

    NASA Astrophysics Data System (ADS)

    Rugel, Michael; Fedele, Davide; Herczeg, Gregory

    2018-01-01

    The nearby η Chamaeleontis association is a collection of 4-10 Myr old stars with a disk fraction of 35-45%. In this study, the broad wavelength coverage of VLT/X-shooter is used to measure the stellar and mass accretion properties of 15 low-mass stars in the η Chamaeleontis association. For each star, the observed spectrum is fitted with a non-accreting stellar template and an accretion spectrum obtained from assuming a plane-parallel hydrogen slab. Five of the eight stars with an IR disk excess show excess UV emission, indicating ongoing accretion. The accretion rates measured here are similar to those obtained from previous measurements of excess UV emission, but tend to be higher than past measurements from Hα modeling. The mass accretion rates are consistent with those of other young star forming regions. This work is based on observations made with ESO Telescopes at the Paranal Observatory under program ID 084.C-1095.

  1. News and Views: Diamond is new head of SKA; Did you read our `A&G' mobile issue? BBC writer wins astro journalism prize; Kavli prize recognizes work on Kuiper Belt objects

    NASA Astrophysics Data System (ADS)

    2012-10-01

    Philip Diamond will become director general of the Square Kilometre Array this month, moving from Australia to the new SKA headquarters at Jodrell Bank Radio Observatory. Technology writer Katia Moskvitch has won the first European Astronomy Journalism Prize for her series of articles on the Very Large Telescope at Paranal, Chile. Moskvitch will be the guest of the ESO at the inauguration of the Atacama Large Millimeter/submillimeter Array (ALMA) in the Atacama desert in March 2013. The 2012 Kavli Prize in Astrophysics is shared between David C Jewitt (University of California, USA), Jane X Luu (Massachusetts Institute of Technology, Lincoln Laboratory, USA), and Michael E Brown (California Institute of Technology, USA) “for discovering and characterizing the Kuiper Belt and its largest members, work that led to a major advance in the understanding of the history of our planetary system”.

  2. ARES v2: new features and improved performance

    NASA Astrophysics Data System (ADS)

    Sousa, S. G.; Santos, N. C.; Adibekyan, V.; Delgado-Mena, E.; Israelian, G.

    2015-05-01

    Aims: We present a new upgraded version of ARES. The new version includes a series of interesting new features such as automatic radial velocity correction, a fully automatic continuum determination, and an estimation of the errors for the equivalent widths. Methods: The automatic correction of the radial velocity is achieved with a simple cross-correlation function, and the automatic continuum determination, as well as the estimation of the errors, relies on a new approach to evaluating the spectral noise at the continuum level. Results: ARES v2 is totally compatible with its predecessor. We show that the fully automatic continuum determination is consistent with the previous methods applied for this task. It also presents a significant improvement on its performance thanks to the implementation of a parallel computation using the OpenMP library. Automatic Routine for line Equivalent widths in stellar Spectra - ARES webpage: http://www.astro.up.pt/~sousasag/ares/Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 075.D-0800(A).

  3. ALMA telescope reaches new heights

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The ALMA (Atacama Large Millimeter/submillimeter Array) astronomical observatory has taken another step forward - and upwards. One of its state-of-the-art antennas was carried for the first time to the 5000m plateau of Chajnantor, in the Chilean Andes, on the back of a custom-built giant transporter. The antenna, which weighs about 100 tons and has a diameter of 12 metres, was transported up to the high-altitude Array Operations Site, where the extremely dry and rarefied air is ideal for ALMA's observations of the Universe. The conditions at the Array Operations Site on Chajnantor, while excellent for astronomy, are also very harsh. Only half as much oxygen is available as at sea level, making it very difficult to work there. This is why ALMA's antennas are assembled and tested at the lower 2900 m altitude of the ALMA Operations Support Facility. It was from this relatively hospitable base camp that the ALMA antenna began its journey to the high Chajnantor site. "This is an important moment for ALMA. We are very happy that the first transport of an antenna to the high site went flawlessly. This achievement was only possible through contributions from all international ALMA partners: this particular antenna is provided by Japan, the heavy-lift transporter by Europe, and the receiving electronics inside the antenna by North America, Europe, and Asia", said Wolfgang Wild, European ALMA Project Manager. The trip began when one of the two ALMA transporters, named Otto, lifted the antenna onto its back. It then carried its heavy load along the 28 km road from the Operations Support Facility up to the Array Operations Site. While the transporter is capable of speeds of up to 12 km/hour when carrying an antenna, this first journey was made more slowly to ensure that everything worked as expected, taking about seven hours. The ALMA antennas are the most advanced submillimetre-wavelength antennas ever made. They are designed to operate fully exposed in the harsh conditions of the Array Operations Site. This means surviving strong winds and temperatures between +20 and -20 Celsius whilst being able to point precisely enough that they could pick out a golf ball at a distance of 15 km, and to keep their smooth reflecting surfaces accurate to better than 25 micrometres (less than the typical thickness of a human hair). Once the transporter reached the high plateau it carried the antenna to a concrete pad - a docking station with connections for power and fibre optics - and positioned it with an accuracy of a few millimetres. The transporter is guided by a laser steering system and, just like some cars today, also has ultrasonic collision detectors. These sensors ensure the safety of the state-of-the-art antennas as the transporter drives them across what will soon be a rather crowded plateau. Ultimately, ALMA will have at least 66 antennas distributed over about 200 pads, spread over distances of up to 18.5 km and operating as a single, giant telescope. Even when ALMA is fully operational, the transporters will be used to move the antennas between pads to reconfigure the telescope for different kinds of observations. "Transporting our first antenna to the Chajnantor plateau is a epic feat which exemplifies the exciting times in which ALMA is living. Day after day, our global collaboration brings us closer to the birth of the most ambitious ground-based astronomical observatory in the world", said Thijs de Graauw, ALMA Director. This first ALMA antenna at the high site will soon be joined by others and the ALMA team looks forward to making their first observations from the Chajnantor plateau. They plan to link three antennas by early 2010, and to make the first scientific observations with ALMA in the second half of 2011. ALMA will help astronomers answer important questions about our cosmic origins. The telescope will observe the Universe using light with millimetre and submillimetre wavelengths, between infrared light and radio waves in the electromagnetic spectrum. Light at these wavelengths comes from some of the coldest, but also from some of the most distant objects in the cosmos. These include cold clouds of gas and dust where new stars are being born and remote galaxies towards the edge of the observable universe. The Universe is relatively unexplored at submillimetre wavelengths, as the telescopes need extremely dry atmospheric conditions, such as those at Chajnantor, and advanced detector technology. More information The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ESO is the European partner in ALMA. ALMA, the largest astronomical project in existence, is a revolutionary telescope, comprising an array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. ALMA will start scientific observations in 2011. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. Confirmation of the binary status of Chamaeleon Hα 2 - a very young low-mass binary in Chamaeleon

    NASA Astrophysics Data System (ADS)

    Schmidt, T. O. B.; Neuhäuser, R.; Vogt, N.; Seifahrt, A.; Roell, T.; Bedalov, A.

    2008-06-01

    Context: Neuhäuser & Comerón (1998, Science, 282, 83; 1999, A&A, 350, 612) presented direct imaging evidence, as well as first spectra, of several young stellar and sub-stellar M6- to M8-type objects in the Cha I dark cloud. One of these objects is Cha Hα 2, classified as brown dwarf candidate in several publications and suggested as possible binary in Neuhäuser et al. (2002, A&A, 384, 999). Aims: We have searched around Cha Hα 2 for close and faint companions with adaptive optics imaging. Methods: Two epochs of direct imaging data were taken with the Very Large Telescope (VLT) Adaptive Optics instrument NACO in February 2006 and March 2007 in Ks-band together with a Hipparcos binary for astrometric calibration. Moreover, we took a J-band image in March 2007 to get color information. We retrieved an earlier image from 2005 from the European Southern Observatory (ESO) Science Archive Facility, increasing the available time coverage. After confirmation of common proper motion, we deduce physical parameters of the objects by spectroscopy, like temperature and mass. Results: We find Cha Hα 2 to be a very close binary of 0.16 arcsec separation, having a flux ratio of 0.91, thus having almost equal brightness and indistinguishable spectral types within the errors. We show that the two tentative components of Cha Hα 2 form a common proper motion pair, and that neither component is a non-moving background object. We even find evidence for orbital motion. A combined spectrum of both stars spanning optical and near-infrared parts of the spectral energy distribution yields a temperature of 3000 ± 100 K, corresponding to a spectral type of M6 ± 1 and a surface gravity of log{g} = 4.0+0.75-0.5, both from a comparison with GAIA model atmospheres. Furthermore, we obtained an optical extinction of AV ≃ 4.3 mag from this comparison. Conclusions: We derive masses of 0.110 M⊙ (≥0.070 M⊙) and 0.124 M⊙ (≥0.077 M⊙) for the two components of Cha Hα 2, i.e., probably low-mass stars, but one component could possibly be a brown dwarf. Based on observations made with ESO telescopes at the Paranal Observatory under programme IDs 076.C-0292A, 076.C-0339B, 078.C-0535A, at the La Silla Observatory under programme ID 065.L-0144B, the Hubble Space Telescope under programme ID GO-8716 and on observations made with the European Southern Observatory telescopes obtained from the ESO/ST-ECF Science Archive Facility. Color version of Fig. [see full textsee full text] is only available in electronic form at http://www.aanda.org

  5. A Look into the Hellish Cradles of Suns and Solar Systems

    NASA Astrophysics Data System (ADS)

    2009-09-01

    New images released today by ESO delve into the heart of a cosmic cloud, called RCW 38, crowded with budding stars and planetary systems. There, young stars bombard fledgling suns and planets with powerful winds and blazing light, helped in their task by short-lived, massive stars that explode as supernovae. In some cases, this onslaught cooks away the matter that may eventually form new solar systems. Scientists think that our own Solar System emerged from such an environment. The dense star cluster RCW 38 glistens about 5500 light years away in the direction of the constellation Vela (the Sails). Like the Orion Nebula Cluster, RCW 38 is an "embedded cluster", in that the nascent cloud of dust and gas still envelops its stars. Astronomers have determined that most stars, including the low mass, reddish ones that outnumber all others in the Universe, originate in these matter-rich locations. Accordingly, embedded clusters provide scientists with a living laboratory in which to explore the mechanisms of star and planetary formation. "By looking at star clusters like RCW 38, we can learn a great deal about the origins of our Solar System and others, as well as those stars and planets that have yet to come", says Kim DeRose, first author of the new study that appears in the Astronomical Journal. DeRose did her work on RCW 38 as an undergraduate student at the Harvard-Smithsonian Center for Astrophysics, USA. Using the NACO adaptive optics instrument on ESO's Very Large Telescope [1], astronomers have obtained the sharpest image yet of RCW 38. They focused on a small area in the centre of the cluster that surrounds the massive star IRS2, which glows in the searing, white-blue range, the hottest surface colour and temperatures possible for stars. These dramatic observations revealed that IRS2 is actually not one, but two stars - a binary system consisting of twin scorching stars, separated by about 500 times the Earth-Sun distance. In the NACO image, the astronomers found a handful of protostars - the faintly luminous precursors to fully realised stars - and dozens of other candidate stars that have eked out an existence here despite the powerful ultraviolet light radiated by IRS2. Some of these gestating stars may, however, not get past the protostar stage. IRS2's strong radiation energises and disperses the material that might otherwise collapse into new stars, or that has settled into so-called protoplanetary discs around developing stars. In the course of several million years, the surviving discs may give rise to the planets, moons and comets that make up planetary systems like our own. As if intense ultraviolet rays were not enough, crowded stellar nurseries like RCW 38 also subject their brood to frequent supernovae when giant stars explode at the ends of their lives. These explosions scatter material throughout nearby space, including rare isotopes - exotic forms of chemical elements that are created in these dying stars. This ejected material ends up in the next generation of stars that form nearby. Because these isotopes have been detected in our Sun, scientists have concluded that the Sun formed in a cluster like RCW 38, rather than in a more rural portion of the Milky Way. "Overall, the details of astronomical objects that adaptive optics reveals are critical in understanding how new stars and planets form in complex, chaotic regions like RCW 38", says co-author Dieter Nürnberger. Notes [1] The name "NACO" is a combination of the Nasmyth Adaptive Optics System (NAOS) and the Near-Infrared Imager and Spectrograph (CONICA). Adaptive optics cancels out most of the image-distorting turbulence in Earth's atmosphere caused by temperature variations and wind. More information This research was presented in a paper that appeared in the Astronomical Journal: A Very Large Telescope / NACO study of star formation in the massive embedded cluster RCW 38, by DeRose et al. (2009, AJ, 138, 33-45). The team is composed of K.L. DeRose, T.L. Bourke, R.A. Gutermuth and S.J. Wolk (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), S.T. Megeath (Department of Physics and Astronomy, The University of Toledo, USA), J. Alves (Centro Astronómico Hispano Alemán, Almeria, Spain), and D. Nürnberger (ESO). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  6. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    NASA Astrophysics Data System (ADS)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; Hansen, T. T.; Simon, J. D.; Bernstein, R. A.; Balbinot, E.; Drlica-Wagner, A.; Pace, A. B.; Strigari, L. E.; Pellegrino, C. M.; DePoy, D. L.; Suntzeff, N. B.; Bechtol, K.; Walker, A. R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; March, M.; Miquel, R.; Nord, B.; Roodman, A.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Wechsler, R. H.; Wolf, R. C.; Yanny, B.

    2018-01-01

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ∼ ‑2.6 and are not α-enhanced ([α/Fe] ∼ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility of a different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This paper also includes data based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 096.D-0967(B); PI: E. Balbinot).

  7. Man-made Star Shines in the Southern Sky

    NASA Astrophysics Data System (ADS)

    2006-02-01

    Scientists celebrate another major milestone at Cerro Paranal in Chile, home of ESO's Very Large Telescope array. Thanks to their dedicated efforts, they were able to create the first artificial star in the Southern Hemisphere, allowing astronomers to study the Universe in the finest detail. This artificial laser guide star makes it possible to apply adaptive optics systems, that counteract the blurring effect of the atmosphere, almost anywhere in the sky. ESO PR Photo 07a/06 ESO PR Photo 07a/06 First Light of the VLT Laser Guide Star On 28 January 2006, at 23:07 local time, a laser beam of several watts was launched from Yepun, the fourth 8.2m Unit Telescope of the Very Large Telescope, producing an artificial star, 90 km up in the atmosphere. Despite this star being about 20 times fainter than the faintest star that can be seen with the unaided eye, it is bright enough for the adaptive optics to measure and correct the atmosphere's blurring effect. The event was greeted with much enthusiasm and happiness by the people in the control room of one of the most advanced astronomical facilities in the world. It was the culmination of five years of collaborative work by a team of scientists and engineers from ESO and the Max Planck Institutes for Extraterrestrial Physics in Garching and for Astronomy in Heidelberg, Germany. After more than one month of integration on site with the invaluable support of the Paranal Observatory staff, the VLT Laser Guide Star Facility saw First Light and propagated into the sky a 50cm wide, vivid, beautifully yellow beam. ESO PR Photo 07b/06 ESO PR Photo 07b/06 An Artificial Star Above Paranal "This event tonight marks the beginning of the Laser Guide Star Adaptive Optics era for ESO's present and future telescopes", said Domenico Bonaccini Calia, Head of the Laser Guide Star group at ESO and LGSF Project Manager. Normally, the achievable image sharpness of a ground-based telescope is limited by the effect of atmospheric turbulence. This drawback can be surmounted with adaptive optics, allowing the telescope to produce images that are as sharp as if taken from space. This means that finer details in astronomical objects can be studied, and also that fainter objects can be observed. In order to work, adaptive optics needs a nearby reference star that has to be relatively bright, thereby limiting the area of the sky that can be surveyed. To overcome this limitation, astronomers use a powerful laser that creates an artificial star, where and when they need it. ESO PR Photo 07c/06 ESO PR Photo 07c/06 The Laser Guide Star Laboratory The laser beam, shining at a well-defined wavelength, makes the layer of sodium atoms that is present in Earth's atmosphere at an altitude of 90 kilometres glow. The laser is hosted in a dedicated laboratory under the platform of Yepun. A custom-made fibre carries the high power laser to the launch telescope situated on top of the large Unit Telescope. An intense and exhilarating twelve days of tests followed the First Light of the Laser Guide Star (LGS), during which the LGS was used to improve the resolution of astronomical images obtained with the two adaptive optics instruments in use on Yepun: the NAOS-CONICA imager and the SINFONI spectrograph. In the early hours of 9 February, the LGS could be used together with the SINFONI instrument, while in the early morning of 10 February, it was with the NAOS-CONICA system. ESO PR Video 07/06 ESO PR Video 07/06 Learn more with the video! "To have succeeded in such a short time is an outstanding feat and is a tribute to all those who have together worked so hard over the last few years," said Richard Davies, project manager for the laser source development at the Max Planck Institute for Extraterrestrial Physics. A second phase of commissioning will take place in the spring with the aim of optimizing the operations and refining the performances before the instrument is made available to the astronomers, later this year. The experience gained with this Laser Guide Star is also a key milestone in the design of the next generation of Extremely Large Telescope in the 30 to 60 metre range that is now being studied by ESO together with the European astronomical community. High resolution images and their captions are available on this page. This press release is also accompanied by Broadcast quality material. Notes The Laser Guide Star Facility is a collaborative project between ESO, the Max Planck Institute for Extraterrestrial Physics in Garching, Germany (MPE) and the Max Planck Institut for Astronomy in Heidelberg, Germany (MPIA). The team members are D. Bonaccini Calia, W. Hackenberg, M. Cullum, M. Dimmler, I. Guidolin, C. Araujo, E. Allaert, D. Popovic, M. Comin, M. Quattri, E. Brunetto, F. Koch, A. Silber, J-L. Alvarez, M. Tapia, E. Bendek, J. Quentin, G. Fischer, M. Tarenghi, G.Monnet, and R.Gilmozzi (ESO), R. Davies, S. Rabien, T. Ott, R. Genzel, S.Kellner, S. Huber, W. Zaglauer, A. Goldbrunner, and J. Li (MPE), and S. Hippler, U. Neumann, D. Butler, R.-R. Rohloff, and B.Grimm (MPIA). Members of ESO's Adaptive Optics team also participated to First Light: M. Kasper, S. Stroebele, E. Fedrigo, R. Donaldson, S. Oberti, and C. Soenke. This press release is issued in coordination between ESO and the Max Planck Society. A German version is available at http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2006/

  8. Planet Formation in Action? - Astronomers may have found the first object clearing its path in the natal disc surrounding a young star

    NASA Astrophysics Data System (ADS)

    2011-02-01

    Using ESO's Very Large Telescope an international team of astronomers has been able to study the short-lived disc of material around a young star that is in the early stages of making a planetary system. For the first time a smaller companion could be detected that may be the cause of the large gap found in the disc. Future observations will determine whether this companion is a planet or a brown dwarf. Planets form from the discs of material around young stars, but the transition from dust disc to planetary system is rapid and few objects are caught during this phase [1]. One such object is T Chamaeleontis (T Cha), a faint star in the small southern constellation of Chamaeleon that is comparable to the Sun, but very near the beginning of its life [2]. T Cha lies about 350 light-years from the Earth and is only about seven million years old. Up to now no forming planets have been found in these transitional discs, although planets in more mature discs have been seen before (eso0842, heic0821). "Earlier studies had shown that T Cha was an excellent target for studying how planetary systems form," notes Johan Olofsson (Max Planck Institute for Astronomy, Heidelberg, Germany), one of the lead authors of two papers in the journal Astronomy & Astrophysics that describe the new work. "But this star is quite distant and the full power of the Very Large Telescope Interferometer (VLTI) was needed to resolve very fine details and see what is going on in the dust disc." The astronomers first observed T Cha using the AMBER instrument and the VLT Interferometer (VLTI) [3]. They found that some of the disc material formed a narrow dusty ring only about 20 million kilometres from the star. Beyond this inner disc, they found a region devoid of dust with the outer part of the disc stretching out into regions beyond about 1.1 billion kilometres from the star. Nuria Huélamo (Centro de Astrobiología, ESAC, Spain), the lead author of the second paper takes up the story: "For us the gap in the dust disc around T Cha was a smoking gun, and we asked ourselves: could we be witnessing a companion digging a gap inside its protoplanetary disc?" However, finding a faint companion so close to a bright star is a huge challenge and the team had to use the VLT instrument NACO in a novel and powerful way, called sparse aperture masking, to reach their goal [4]. After careful analysis they found the clear signature of an object located within the gap in the dust disc, about one billion kilometres from the star - slightly further out than Jupiter is within our Solar System and close to the outer edge of the gap. This is the first detection of an object much smaller than a star within a gap in the planet-forming dust disc around a young star. The evidence suggests that the companion object cannot be a normal star [5] but it could be either a brown dwarf [6] surrounded by dust or, most excitingly, a recently formed planet. Huélamo concludes: "This is a remarkable joint study that combines two different state-of-the-art instruments at ESO's Paranal Observatory. Future observations will allow us to find out more about the companion and the disc, and also understand what fuels the inner dusty disc." Notes [1] The transitional discs can be spotted because they give off less radiation at mid-infrared wavelengths. The clearing of the dust close to the star and the creation of gaps and holes can explain this missing radiation. Recently formed planets may have created these gaps, although there are also other possibilities. [2] T Cha is a T Tauri star, a very young star that is still contracting towards the main sequence. [3] The astronomers used the AMBER instrument (Astronomical Multi-BEam combineR) and the VLTI to combine the light from all four of the 8.2-metre VLT Unit Telescopes and create a "virtual telescope" 130 metres across. [4] NACO (or NAOS-CONICA in full) is an adaptive optics instrument attached to ESO's Very Large Telescope. Thanks to adaptive optics, astronomers can remove most of the blurring effect of the atmosphere and obtain very sharp images. The team used NACO in a novel way, called sparse aperture masking (SAM) to search for the companion. This is a type of interferometry that, rather than combining the light from multiple telescopes as the VLTI does, uses different parts of the mirror of a single telescope (in this case, the mirror of the VLT Unit Telescope 4). This new technique is particularly good for finding faint objects very close to bright ones. VLTI/AMBER is better suited to studying the structure of the inner disc and is less sensitive to the presence of a distant companion. [5] The astronomers searched for the companion using NACO in two different spectral bands - at around 2.2 microns and at 3.8 microns. The companion is only seen at the longer wavelength, which means that the object is either cool, like a planet, or a dust-shrouded brown dwarf. [6] Brown dwarfs are objects between stars and planets in size. They are not massive enough to fuse hydrogen in their cores but are larger than giant planets such as Jupiter. More information This research was presented in two papers: Olofsson et al. 2011, "Warm dust resolved in the cold disk around TCha with VLTI/AMBER", and Huélamo et al. 2011, "A companion candidate in the gap of the T Cha transitional disk", to appear in the journal Astronomy & Astrophysics. The team is composed of J. Olofsson (Max-Planck-Institut für Astronomie [MPIA], Heidelberg, Germany), M. Benisty (MPIA), J.-C. Augereau (Institut de Planétologie et d'Astrophysique de Grenoble [IPAG], France) C. Pinte (IPAG), F. Ménard (IPAG), E. Tatulli (IPAG), J.-P. Berger (ESO, Santiago, Chile), F. Malbet (IPAG), B. Merín (Herschel Science Centre, Madrid, Spain), E. F. van Dishoeck (Leiden University, Holland), S. Lacour (Observatoire de Paris, France), K. M. Pontoppidan (California Institute of Technology, USA), J.-L. Monin (IPAG), J. M. Brown (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), G. A. Blake (California Institute of Technology), N. Huélamo (Centro de Astrobiología, ESAC, Spain), P. Tuthill (University of Sydney, Australia), M. Ireland (University of Sydney), A. Kraus (University of Hawaii) and G. Chauvin (Université Joseph Fourier, Grenoble, France). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  9. Late Afternoon at Taruntius

    NASA Astrophysics Data System (ADS)

    2002-08-01

    Thirty-three years after the first manned landing on the Moon, the ESO Very Large Telescope (VLT) has obtained what may be the sharpest image of the lunar surface ever recorded from the ground, cf. PR Photo 19a/02 . It was made with the NAOS-CONICA (NACO) adaptive optics camera mounted on the ESO VLT 8.2-m YEPUN telescope at the Paranal Observatory. The photo shows an area about 700 km from the Apollo XI landing site. The location is in the Eastern hemisphere, just North of the lunar equator, and right between two of the major "seas", Mare Tranquillitatis (Sea of Tranquillity) and Mare Foecunditatis (Sea of Fertility). The field-of-view measures about 60 x 45 km 2 (taking into account the foreshortening because of the viewing angle [2]), with part of a sunlit, 10-km wide crater named Cameron [1] surrounded by a comparatively level terrain, bordered by some hills and, not least, with an incredible number of smaller craters. The site of this NACO photo is situated at the rim of an older, rather eroded 56-km crater, Taruntius [1]. A small part of the multiple walls of that crater are seen in the upper right corner and also to the left of the bottom centre of PR Photo 19a/02 . The centre of Taruntius is near the lower right corner of the photo. The rather flat terrain to the left in the photo corresponds to an "opening" in the crater walls. At the time of the exposure, the Sun was approximately 7° above the Western horizon to the left [2], and the shadows are therefore quite prominent, approx. 8 times longer than the elevation of the corresponding peaks and hills. The nominal image sharpness is 0.07 arcsec, or about 130 metres on the lunar surface (in the N-S direction). Elevation differences of a few tens of metres only are therefore visible by the shadows they cast. The VLT image represents what an astronaut (with normal eye acuity of 1 arcmin) would see from 400 km above the surface. Lunar surface formations ESO PR Photo 19b/02 ESO PR Photo 19b/02 [Preview - JPEG: 462 x 400 pix - 66k] [Full-Res - JPEG: 1250 x 1082 pix - 656k] Caption : PR Photo 19b/02 is a computer-processed version of PR Photo 19a/02 , in which the lunar surface is now viewed directly "from above". Located at 46° East lunar longitude, 6° North lunar latitude, this area is viewed from the VLT at an inclined angle and the craters therefore all appear as ellipses in the NACO image. However, taking into account the direction of the line-of-sight at the time of the observation [2], this view can be "rectified" by simple image processing. The corresponding "view from above" is shown in PR Photo 19b/02 ; most of the craters in the field now appear quite round. Many different types of lunar surface formations are visible in the VLT photo. In addition to the numerous impact craters of all sizes, there are also hills and ridges of a great variety of shapes, as well as a prominent "valley" (a "Rima", or fissure) that stretches nearly 50 km through the photo in East-West direction. It has been identified on earlier photos and as it is situated inside that crater, it was given the name "Rimae Taruntius" in 1985. It is very well resolved in this photo and resembles "Rima Hadley" that was visited by the Apollo 15 astronauts in 1971, but is much smaller. The mean width is about 600 metres (12 pixels). The bottom is in the shadows and the depth is therefore unknown. It is overlapped by several smaller craters that must have been caused by impacts after this depression was formed. Measuring the length of the shadows, it is possible to infer the height of some of the formations. For instance, the shadows of the two peaks at the lower centre of the photo are about 4 km long, indicating that these formations are about 500 metres tall. The surroundings ESO PR Photo 19c/02 ESO PR Photo 19c/02 [Preview - JPEG: 482 x 400 pix - 77k] [Normal - JPEG: 964 x 800 pix - 440k] [Full-Res - JPEG: 2408 x 1998 pix - 1.6M] Caption : Where is the NACO field at the Taruntius crater located on the Moon? A 400 x 400 km 2 area surrounding this crater is shown in the right panel of PR Photo 19c/02 ; it has been reproduced from a photo mosaique with 500-metre resolution based on exposures made in 1994 by NASA's "Clementine" spacecraft in lunar orbit [3]. Taruntius , Cameron and other craters in this area are identified in the diagram at the lower left. The area covered by the Clementine photo is outlined on a photo of the entire Moon (upper left), obtained at nearly the same phase as when the NACO image was made [4]. This area around Taruntius was imaged in 1994 by the NASA Clementine spacecraft when it mapped the entire lunar surface at 125-250 metres per pixel. The data led to the first complete map of the mineralogy (rock types) of the Moon. The Clementine image shown here ( PR Photo 19c/02 ) helps to identify the small area depicted by NACO. It is part of the Clementine Basemap Mosaic and has been observed with the onboard Ultraviolet/Visible camera through an optical filter centred at 750 nm [3]. It covers a field-of-view of about 400 x 400 km 2 , with a nominal resolution of about 500 metres. Many craters are well visible, including Taruntius with Cameron on the upper left sector of the multiple rim. Testing the NAOS-CONICA instrument This splendid VLT image is a by-product of the ongoing, thorough testing of the NAOS-CONICA (NACO) Adaptive Optics facility , recently installed at the 8.2-m YEPUN telescope, the fourth unit of the Very Large Telescope (VLT) at the ESO Paranal Observatory. This major astronomical instrument has already delivered other impressive views of the Universe, cf. ESO PR 25/01 and ESO PR Photos 04a-c/02. Normally, NACO functions by "locking" on a point-like guide star, correcting the image smearing caused in the turbulent terrestrial atmophere by measuring the deformation of the recorded image of that star. However, in the morning of April 30, 2002, shortly before sunrise, the astronomers and engineers working with NACO decided to do a test of wavefront sensing on an extended celestial object . For this, the giant telescope was turned towards the Moon, at that moment seen in the southern constellation of Ophiuchus, high above the western horizon at Paranal [2]. Guiding the advanced instrument on a sunlit lunar peak in the area between Mare Tranquillitatis and Mare Foecunditatis, a short exposure (0.22 seconds) was made through a narrow-band near-infrared filter (at wavelength 2.3 µm), with the adaptive optics (AO) activated in closed-loop mode. The telescope was set to track on that lunar mountain and the flexible AO mirror in NACO superbly "refocussed" the 25 x 25 arcsec 2 field-of-view. Although the atmosphere above Paranal was rather turbulent that morning - the nominal seeing was measured as 1.5 arcsec - and despite the use of an extended feature for the guiding, the NACO adaptive optics compensation achieved nearly theoretical image sharpness, about 0.068 arcsec for this waveband. Images of other areas on the lunar surface may be attempted in the future with the VLT and NACO. Other lunar images An impressive ESO photo of the waning Moon was obtained in 1999 with the WFI camera at the La Silla Observatory, cf. ESO PR 02/99. Many websites display fine images of the Moon, obtained with professional and amateur telescopes. Many links are available at the dedicated page maintained by the Centre de Données Planétaires at the Institut d'Astrophysique Spatiale (Paris, France). The Hubble Space Telescope (HST) did not photograph the Taruntius area, but an excellent photo of the Copernicus crater was published in 1999. Notes [1]: The lunar crater Taruntius (lunar co-ordinates: 5.6° N; 46.5° E) was named in 1935 by the International Astronomical Union (IAU) after the Roman philosopher Lucius Firmanus Taruntius (? - 86 B.C.). It measures about 56 km across. The 10-km crater Cameron (6.2° N; 45.9° E) was named by the IAU in 1972 after the American astronomer Robert Curry Cameron (1925 - 1972). Names of surface features on planets and their natural satellites, including the Earth's Moon, are allocated by the "IAU Working Group for Planetary System Nomenclature" and published on the web in the "Gazetteer of Planetary Nomenclature". [2]: The NACO image was exposed on April 30, 2002, at 09:42 hrs UT. The geometrical circumstances of this observation were the following: the Moon was located at (Azimuth Az = 266° Elevation h = +62°) in the sky above the VLT at the Paranal Observatory; the Earth (Paranal) was located at ( Az = 263° h = +50°) and the Sun at ( Az = 268° h = +7°) in the lunar sky above the Cameron crater. The distance from Paranal to the Moon was about 370,000 km. [3]: Acknowledgment: The Clementine Basemap Mosaic was compiled for the National Aeronautics and Space Administration (NASA) by the United States Geological Survey (USGS) under the direction of Dr. Alfred S. McEwen, principal Investigator (now with the University of Arizona). The DoD/BMDO Clementine spacecraft was built and operated by the Naval Research Laboratory, with remote-sensing instruments from the Lawrence Livermore National Laboratory. The field shown in PR Photo 19c/02 was reproduced from a 0.5-km full resolution frame (BM14N045) for which a browse page is available on the web; the file itself is at: http://pdsimage.wr.usgs.gov/CDROMS/cl_3015/bm90_90/bm14n045.img. Another image of the Taruntius area with 100-metre pixels is available at http://pdsimage.wr.usgs.gov/CDROMS/cl_3003/bi00_35n/bi03n045.img. A comprehensive collection of data gathered by the instruments onboard Clementine may be found via the Clementine Navigator of the Jet Propulsion Laboratory Planetary Data System. Clementine also obtained images of a small fraction of the lunar surface by means of a High Resolution Camera (HRC) with a nominal resolution of 7 to 20 metres. However, none of these covered the area shown in the NACO photo. [4]: Acknowledgment: The image of the entire Moon shown at the upper left of PR Photo 19c/02 was obtained with a 12-inch refractor when the Moon was "aged" 17.9 days, i.e. almost the same phase as when the NACO image was taken. It is reproduced from the Berliner Mond-Atlas (3rd edition, 1989), published by the Wilhelm-Foerster-Sternwarte - Berlin (Germany). ESO PR Photos 19a-c/02 may be reproduced, if credit is given to the European Southern Observatory (ESO). Please note the additional credits needed for PR Photo 19c/02 , as stated in Notes 3 and 4.

  10. "Physics on Stage" Festival Video Now Available

    NASA Astrophysics Data System (ADS)

    2001-01-01

    ESO Video Clip 01/01 is issued on the web in conjunction with the release of an 18-min documentary video from the Science Festival of the "Physics On Stage" programme. This unique event took place during November 6-11, 2000, on the CERN premises at the French-Swiss border near Geneva, and formed part of the European Science and Technology Week 2000, an initiative by the European Commission to raise the public awareness of science in Europe. Physics On Stage and the Science Festival were jointly organised by CERN, ESA and ESO, in collaboration with the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE) and national organisations in about 25 European countries. During this final phase of the yearlong Physics On Stage programme, more than 500 physics teachers, government officials and media representatives gathered at CERN to discuss different aspects of physics education. The meeting was particular timely in view of the current decline of interest in physics and technology by Europe's citizens, especially schoolchildren. It included spectacular demonstrations of new educational materials and methods. An 18-min video is now available that documents this event. It conveys the great enthusiasm of the many participants who spent an extremely fruitful week, meeting and exchanging information with colleagues from all over the continent. It shows the various types of activities that took place, from the central "fair" with national and organisational booths to the exciting performances and other dramatic presentations. Based of the outcome of 13 workshops that focussed on different subject matters, a series of very useful recommendations was passed at the final session. The Science Festival was also visited by several high-ranking officials, including the European Commissioner for Research, Phillipe Busquin. Full reports from the Festival will soon become available from the International Steering Committee..More information is available on the "Physics on Stage" webpages at CERN , ESA and ESO ). Note also the brief account published in the December 2000 issue of the ESO Messenger. The present video clip is available in four versions: two MPEG files and two streamer-versions of different sizes; the latter require RealPlayer software. Video Clip 01/01 may be freely reproduced. Tapes of this video clip and the 18-min video, suitable for transmission and in full professional quality (Betacam, etc.), are available for broadcasters upon request ; please contact the ESO EPR Department for more details. Most of the ESO PR Video Clips at the ESO website provide "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clip 06/00 about Fourth Light at Paranal! (4 September 2000) . General information is available on the web about ESO videos.

  11. A Multi-instrument and Multi-wavelength High Angular Resolution Study of MWC 614: Quantum Heated Particles Inside the Disk Cavity

    NASA Astrophysics Data System (ADS)

    Kluska, Jacques; Kraus, Stefan; Davies, Claire L.; Harries, Tim; Willson, Matthew; Monnier, John D.; Aarnio, Alicia; Baron, Fabien; Millan-Gabet, Rafael; Ten Brummelaar, Theo; Che, Xiao; Hinkley, Sasha; Preibisch, Thomas; Sturmann, Judit; Sturmann, Laszlo; Touhami, Yamina

    2018-03-01

    High angular resolution observations of young stellar objects are required to study the inner astronomical units of protoplanetary disks in which the majority of planets form. As they evolve, gaps open up in the inner disk regions and the disks are fully dispersed within ∼10 Myr. MWC 614 is a pretransitional object with a ∼10 au radius gap. We present a set of high angular resolution observations of this object including SPHERE/ZIMPOL polarimetric and coronagraphic images in the visible, Keck/NIRC2 near-infrared (NIR) aperture masking observations, and Very Large Telescope Interferometer (AMBER, MIDI, and PIONIER) and Center for High Angular Resolution Astronomy (CLASSIC and CLIMB) long-baseline interferometry at infrared wavelengths. We find that all the observations are compatible with an inclined disk (i ∼ 55° at a position angle of ∼20°–30°). The mid-infrared data set confirms that the disk inner rim is at 12.3 ± 0.4 au from the central star. We determined an upper mass limit of 0.34 M ⊙ for a companion inside the cavity. Within the cavity, the NIR emission, usually associated with the dust sublimation region, is unusually extended (∼10 au, 30 times larger than the theoretical sublimation radius) and indicates a high dust temperature (T ∼ 1800 K). As a possible result of companion-induced dust segregation, quantum heated dust grains could explain the extended NIR emission with this high temperature. Our observations confirm the peculiar state of this object where the inner disk has already been accreted onto the star, exposing small particles inside the cavity to direct stellar radiation. Based on observations made with the Keck observatory (NASA program ID N104N2) and with ESO telescopes at the Paranal Observatory (ESO program IDs 073.C-0720, 077.C-0226, 077.C-0521, 083.C-0984, 087.C-0498(A), 190.C-0963, 095.C-0883) and with the Center for High Angular Resolution Astronomy observatory.

  12. Finland to Join ESO

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Finland will become the eleventh member state of the European Southern Observatory. In a ceremony at the ESO Headquarters in Garching on 9 February 2004, an Agreement to this effect was signed by the Finnish Minister of Education and Science, Ms. Tuula Haatainen and the ESO Director General, Dr. Catherine Cesarsky, in the presence of other high officials from Finland and the ESO member states.

  13. Instrumentation at Paranal Observatory: maintaining the instrument suite of five large telescopes and its interferometer alive

    NASA Astrophysics Data System (ADS)

    Gillet, Gordon; Alvarez, José Luis; Beltrán, Juan; Bourget, Pierre; Castillo, Roberto; Diaz, Álvaro; Haddad, Nicolás; Leiva, Alfredo; Mardones, Pedro; O'Neal, Jared; Ribes, Mauricio; Riquelme, Miguel; Robert, Pascal; Rojas, Chester; Valenzuela, Javier

    2010-07-01

    This presentation provides interesting miscellaneous information regarding the instrumentation activities at Paranal Observatory. It introduces the suite of 23 instruments and auxiliary systems that are under the responsibility of the Paranal Instrumentation group, information on the type of instruments, their usage and downtime statistics. The data is based on comprehensive data recorded in the Paranal Night Log System and the Paranal Problem Reporting System whose principles are explained as well. The work organization of the 15 team members around the high number of instruments is laid out, which includes: - Maintaining older instruments with obsolete components - Receiving new instruments and supporting their integration and commissioning - Contributing to future instruments in their developing phase. The assignments of the Instrumentation staff to the actual instruments as well as auxiliary equipment (Laser Guide Star Facility, Mask Manufacturing Unit, Cloud Observation Tool) are explained with respect to responsibility and scheduling issues. The essential activities regarding hardware & software are presented, as well as the technical and organizational developments within the group towards its present and future challenges.

  14. A Forceful Demonstration by FORS

    NASA Astrophysics Data System (ADS)

    1998-09-01

    New VLT Instrument Provides Impressive Images Following a tight schedule, the ESO Very Large Telescope (VLT) project forges ahead - full operative readiness of the first of the four 8.2-m Unit Telescopes will be reached early next year. On September 15, 1998, another crucial milestone was successfully passed on-time and within budget. Just a few days after having been mounted for the first time at the first 8.2-m VLT Unit Telescope (UT1), the first of a powerful complement of complex scientific instruments, FORS1 ( FO cal R educer and S pectrograph), saw First Light . Right from the beginning, it obtained some excellent astronomical images. This major event now opens a wealth of new opportunities for European Astronomy. FORS - a technological marvel FORS1, with its future twin (FORS2), is the product of one of the most thorough and advanced technological studies ever made of a ground-based astronomical instrument. This unique facility is now mounted at the Cassegrain focus of the VLT UT1. Despite its significant dimensions, 3 x 1.5 metres and 2.3 tonnes, it appears rather small below the giant 53 m 2 Zerodur main mirror. Profiting from the large mirror area and the excellent optical properties of the UT1, FORS has been specifically designed to investigate the faintest and most remote objects in the universe. This complex VLT instrument will soon allow European astronomers to look beyond current observational horizons. The FORS instruments are "multi-mode instruments" that may be used in several different observation modes. It is, e.g., possible to take images with two different image scales (magnifications) and spectra at different resolutions may be obtained of individual or multiple objects. Thus, FORS may first detect the images of distant galaxies and immediately thereafter obtain recordings of their spectra. This allows for instance the determination of their stellar content and distances. As one of the most powerful astronomical instruments of its kind, FORS1 is a real workhorse for the study of the distant universe. How FORS was built The FORS project is being carried out under ESO contract by a consortium of three German astronomical institutes, namely the Heidelberg State Observatory and the University Observatories of Göttingen and Munich. When this project is concluded, the participating institutes will have invested about 180 man-years of work. The Heidelberg State Observatory was responsible for directing the project, for designing the entire optical system, for developing the components of the imaging, spectroscopic, and polarimetric optics, and for producing the special computer software needed for handling and analysing the measurements obtained with FORS. Moreover, a telescope simulator was built in the shop of the Heidelberg observatory that made it possible to test all major functions of FORS in Europe, before the instrument was shipped to Paranal. The University Observatory of Göttingen performed the design, the construction and the installation of the entire mechanics of FORS. Most of the high-precision parts, in particular the multislit unit, were manufactured in the observatory's fine-mechanical workshops. The procurement of the huge instrument housings and flanges, the computer analysis for mechanical and thermal stability of the sensitive spectrograph and the construction of the handling, maintenance and aligning equipment as well as testing the numerous opto- and electro-mechanical functions were also under the responsibility of this Observatory. The University of Munich had the responsibility for the management of the project, the integration and test in the laboratory of the complete instrument, for design and installation of all electronics and electro-mechanics, and for developing and testing the comprehensive software to control FORS in all its parts completely by computers (filter and grism wheels, shutters, multi-object slit units, masks, all optical components, electro motors, encoders etc.). In addition, detailed computer software was provided to prepare the complex astronomical observations with FORS in advance and to monitor the instrument performance by quality checks of the scientific data accumulated. In return for building FORS for the community of European astrophysicists, the scientists in the three institutions of the FORS Consortium have received a certain amount of Guaranteed Observing Time at the VLT. This time will be used for various research projects concerned, among others, with minor bodies in the outer solar system, stars at late stages of their evolution and the clouds of gas they eject, as well as galaxies and quasars at very large distances, thereby permitting a look-back towards the early epoch of the universe. First tests of FORS1 at the VLT UT1: a great success After careful preparation, the FORS consortium has now started the so-called commissioning of the instrument. This comprises the thorough verification of the specified instrument properties at the telescope, checking the correct functioning under software control from the Paranal control room and, at the end of this process, a demonstration that the instrument fulfills its scientific purpose as planned. While performing these tests, the commissioning team at Paranal were able to obtain images of various astronomical objects, some of which are shown here. Two of these were obtained on the night of "FORS First Light". The photos demonstrate some of the impressive posibilities with this new instrument. They are based on observations with the FORS standard resolution collimator (field size 6.8 x 6.8 armin = 2048 x 2048 pixels; 1 pixel = 0.20 arcsec). Spiral galaxy NGC 1288 ESO PR Photo 37a/98 ESO PR Photo 37a/98 [Preview - JPEG: 800 x 908 pix - 224k] [High-Res - JPEG: 3000 x 3406 pix - 1.5Mb] A colour image of spiral galaxy NGC 1288, obtained on the night of "FORS First Light". The first photo shows a reproduction of a colour composite image of the beautiful spiral galaxy NGC 1288 in the southern constellation Fornax. PR Photo 37a/98 covers the entire field that was imaged on the 2048 x 2048 pixel CCD camera. It is based on CCD frames in different colours that were taken under good seeing conditions during the night of First Light (15 September 1998). The distance to this galaxy is about 300 million light-years; it recedes with a velocity of 4500 km/sec. Its diameter is about 200,000 light-years. Technical information : Photo 37a/98 is based on a composite of three images taken behind three different filters: B (420 nm; 6 min), V (530 nm; 3 min) and I (800 nm; 3min) during a period of 0.7 arcsec seeing. The field shown measures 6.8 x 6.8 arcmin. North is left; East is down. Distant cluster of galaxies ESO PR Photo 37b/98 ESO PR Photo 37b/98 [Preview - JPEG: 657 x 800 pix - 248k] [High-Res - JPEG: 2465 x 3000 pix - 1.9Mb] A peculiar cluster of galaxies in a sky field near the quasar PB5763 . ESO PR Photo 37c/98 ESO PR Photo 37c/98 [Preview - JPEG: 670 x 800 pix - 272k] [High-Res - JPEG: 2512 x 3000 pix - 1.9Mb] Enlargement from PR Photo 37b/98, showing the peculiar cluster of galaxies in more detail. The next photos are reproduced from a 5-min near-infrared exposure, also obtained during the night of First Light of the FORS1 instrument (September 15, 1998). PR Photo 37b/98 shows a sky field near the quasar PB5763 in which is also seen a peculiar, quite distant cluster of galaxies. It consists of a large number of faint and distant galaxies that have not yet been thoroughly investigated. Many other fainter galaxies are seen in other areas, for instance in the right part of the field. This cluster is a good example of a type of object to which much observing time with FORS will be dedicated, once it enters into regular operation. An enlargement of the same field is reproduced in PR Photo 37c/98. It shows the individual members of this cluster of galaxies in more detail. Note in particular the interesting spindle-shaped galaxy that apparently possesses an equatorial ring. There is also a fine spiral galaxy and many fainter galaxies. They may be dwarf members of the cluster or be located in the background at even larger distances. Technical information : PR Photos 37b/98 (negative) and 37c/98 (positive) are based on a monochrome image taken in 0.8 arcsec seeing through a near-infrared (I; 800 nm) filtre. The exposure time was 5 minutes and the image was flat-fielded. The fields shown measure 6.8 x 6.8 arcmin and 2.5 x 2.3 arcmin, respectively. North is to the upper left; East is to the lower left. Spiral galaxy NGC 1232 ESO PR Photo 37d/98 ESO PR Photo 37d/98 [Preview - JPEG: 800 x 912 pix - 760k] [High-Res - JPEG: 3000 x 3420 pix - 5.7Mb] A colour image of spiral galaxy NGC 1232, obtained on September 21, 1998. ESO PR Photo 37e/98 ESO PR Photo 37e/98 [Preview - JPEG: 800 x 961 pix - 480k] [High-Res - JPEG: 3000 x 3602 pix - 3.5Mb] Enlargement of central area of PR Photo 37d/98. This spectacular image (Photo 37d/98) of the large spiral galaxy NGC 1232 was obtained on September 21, 1998, during a period of good observing conditions. It is based on three exposures in ultra-violet, blue and red light, respectively. The colours of the different regions are well visible: the central areas (Photo 37e/98) contain older stars of reddish colour, while the spiral arms are populated by young, blue stars and many star-forming regions. Note the distorted companion galaxy on the left side of Photo 37d/98, shaped like the greek letter "theta". NGC 1232 is located 20 o south of the celestial equator, in the constellation Eridanus (The River). The distance is about 100 million light-years, but the excellent optical quality of the VLT and FORS allows us to see an incredible wealth of details. At the indicated distance, the edge of the field shown in PR Photo 37d/98 corresponds to about 200,000 lightyears, or about twice the size of the Milky Way galaxy. Technical information : PR Photos 37d/98 and 37e/98 are based on a composite of three images taken behind three different filters: U (360 nm; 10 min), B (420 nm; 6 min) and R (600 nm; 2:30 min) during a period of 0.7 arcsec seeing. The fields shown measure 6.8 x 6.8 arcmin and 1.6 x 1.8 arcmin, respectively. North is up; East is to the left. Note: [1] This Press Release is published jointly (in English and German) by the European Southern Observatory, the Heidelberg State Observatory and the University Observatories of Goettingen and Munich. Eine Deutsche Fassung dieser Pressemitteilung steht ebenfalls zur Verfügung. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  15. Obituary: ESO Astronomer, Alphonse Florsch (Zeekoegat 1962)

    NASA Astrophysics Data System (ADS)

    Swanepoel, Eric

    2015-10-01

    In June 1962 Alphonse Florsch, his wife Marguerite and their two sons Bruno (7) and Nicolas (5), came from France to work at the European Southern Observatory (ESO) at Zeekoegat (Florsch 2005-2006). This was during the time of site testing to find the best location for ESO.

  16. The Gaia-ESO Survey: open clusters in Gaia-DR1 . A way forward to stellar age calibration

    NASA Astrophysics Data System (ADS)

    Randich, S.; Tognelli, E.; Jackson, R.; Jeffries, R. D.; Degl'Innocenti, S.; Pancino, E.; Re Fiorentin, P.; Spagna, A.; Sacco, G.; Bragaglia, A.; Magrini, L.; Prada Moroni, P. G.; Alfaro, E.; Franciosini, E.; Morbidelli, L.; Roccatagliata, V.; Bouy, H.; Bravi, L.; Jiménez-Esteban, F. M.; Jordi, C.; Zari, E.; Tautvaišiene, G.; Drazdauskas, A.; Mikolaitis, S.; Gilmore, G.; Feltzing, S.; Vallenari, A.; Bensby, T.; Koposov, S.; Korn, A.; Lanzafame, A.; Smiljanic, R.; Bayo, A.; Carraro, G.; Costado, M. T.; Heiter, U.; Hourihane, A.; Jofré, P.; Lewis, J.; Monaco, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2018-05-01

    Context. Determination and calibration of the ages of stars, which heavily rely on stellar evolutionary models, are very challenging, while representing a crucial aspect in many astrophysical areas. Aims: We describe the methodologies that, taking advantage of Gaia-DR1 and the Gaia-ESO Survey data, enable the comparison of observed open star cluster sequences with stellar evolutionary models. The final, long-term goal is the exploitation of open clusters as age calibrators. Methods: We perform a homogeneous analysis of eight open clusters using the Gaia-DR1 TGAS catalogue for bright members and information from the Gaia-ESO Survey for fainter stars. Cluster membership probabilities for the Gaia-ESO Survey targets are derived based on several spectroscopic tracers. The Gaia-ESO Survey also provides the cluster chemical composition. We obtain cluster parallaxes using two methods. The first one relies on the astrometric selection of a sample of bona fide members, while the other one fits the parallax distribution of a larger sample of TGAS sources. Ages and reddening values are recovered through a Bayesian analysis using the 2MASS magnitudes and three sets of standard models. Lithium depletion boundary (LDB) ages are also determined using literature observations and the same models employed for the Bayesian analysis. Results: For all but one cluster, parallaxes derived by us agree with those presented in Gaia Collaboration (2017, A&A, 601, A19), while a discrepancy is found for NGC 2516; we provide evidence supporting our own determination. Inferred cluster ages are robust against models and are generally consistent with literature values. Conclusions: The systematic parallax errors inherent in the Gaia DR1 data presently limit the precision of our results. Nevertheless, we have been able to place these eight clusters onto the same age scale for the first time, with good agreement between isochronal and LDB ages where there is overlap. Our approach appears promising and demonstrates the potential of combining Gaia and ground-based spectroscopic datasets. Based on observations collected with the FLAMES instrument at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-ESO Large Public Spectroscopic Survey (188.B-3002, 193.B-0936).Additional tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A99

  17. The Diagnostic Potential of Fe Lines Applied to Protostellar Jets

    NASA Astrophysics Data System (ADS)

    Giannini, T.; Nisini, B.; Antoniucci, S.; Alcalá, J. M.; Bacciotti, F.; Bonito, R.; Podio, L.; Stelzer, B.; Whelan, E. T.

    2013-11-01

    We investigate the diagnostic capabilities of iron lines for tracing the physical conditions of shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 3000-25000 Å, X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Hα 574 and Par-Lup 3-4. Both spectra are very rich in [Fe II] lines over the whole spectral range; in addition, lines from [Fe III] are detected in the ESO-Hα 574 spectrum. Non-local thermal equilibrium codes solving the equations of the statistical equilibrium along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density and fractional ionization. An estimate of the iron gas-phase abundance is provided by comparing the iron lines emissivity with that of neutral oxygen at 6300 Å. The [Fe II] line analysis indicates that the jet driven by ESO-Hα 574 is, on average, colder (T e ~ 9000 K), less dense (n e ~ 2 × 104 cm-3), and more ionized (x e ~ 0.7) than the Par-Lup 3-4 jet (T e ~ 13,000 K, n e ~ 6 × 104 cm-3, x e < 0.4), even if the existence of a higher density component (n e ~ 2 × 105 cm-3) is probed by the [Fe III] and [Fe II] ultra-violet lines. The physical conditions derived from the iron lines are compared with shock models suggesting that the shock at work in ESO-Hα 574 is faster and likely more energetic than the Par-Lup 3-4 shock. This latter feature is confirmed by the high percentage of gas-phase iron measured in ESO-Hα 574 (50%-60% of its solar abundance in comparison with less than 30% in Par-Lup 3-4), which testifies that the ESO-Hα 574 shock is powerful enough to partially destroy the dust present inside the jet. This work demonstrates that a multiline Fe analysis can be effectively used to probe the excitation and ionization conditions of the gas in a jet without any assumption on ionic abundances. The main limitation on the diagnostics resides in the large uncertainties of the atomic data, which, however, can be overcome through a statistical approach involving many lines. Based on observations collected with X-shooter at the Very Large Telescope on Cerro Paranal (Chile), operated by the European Southern Observatory (ESO). Program ID: 085.C-0238(A).

  18. Planet from another galaxy discovered - Galactic cannibalism brings an exoplanet of extragalactic origin within astronomers' reach

    NASA Astrophysics Data System (ADS)

    2010-11-01

    An exoplanet orbiting a star that entered our Milky Way from another galaxy has been detected by a European team of astronomers using the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. The Jupiter-like planet is particularly unusual, as it is orbiting a star nearing the end of its life and could be about to be engulfed by it, giving tantalising clues about the fate of our own planetary system in the distant future. Over the last 15 years, astronomers have detected nearly 500 planets orbiting stars in our cosmic neighbourhood, but none outside our Milky Way has been confirmed [1]. Now, however, a planet with a minimum mass 1.25 times that of Jupiter [2] has been discovered orbiting a star of extragalactic origin, even though the star now finds itself within our own galaxy. It is part of the so-called Helmi stream [3] - a group of stars that originally belonged to a dwarf galaxy that was devoured by our galaxy, the Milky Way, in an act of galactic cannibalism about six to nine billion years ago. The results are published today in Science Express. "This discovery is very exciting," says Rainer Klement of the Max-Planck-Institut für Astronomie (MPIA), who was responsible for the selection of the target stars for this study. "For the first time, astronomers have detected a planetary system in a stellar stream of extragalactic origin. Because of the great distances involved, there are no confirmed detections of planets in other galaxies. But this cosmic merger has brought an extragalactic planet within our reach." The star is known as HIP 13044, and it lies about 2000 light-years from Earth in the southern constellation of Fornax (the Furnace). The astronomers detected the planet, called HIP 13044 b, by looking for the tiny telltale wobbles of the star caused by the gravitational tug of an orbiting companion. For these precise observations, the team used the high-resolution spectrograph FEROS [4] attached to the 2.2-metre MPG/ESO telescope [5] at ESO's La Silla Observatory in Chile. Adding to its claim to fame, HIP 13044 b is also one of the few exoplanets known to have survived the period when its host star expanded massively after exhausting the hydrogen fuel supply in its core - the red giant phase of stellar evolution. The star has now contracted again and is burning helium in its core. Until now, these so-called horizontal branch stars have remained largely uncharted territory for planet-hunters. "This discovery is part of a study where we are systematically searching for exoplanets that orbit stars nearing the end of their lives," says Johny Setiawan, also from MPIA, who led the research. "This discovery is particularly intriguing when we consider the distant future of our own planetary system, as the Sun is also expected to become a red giant in about five billion years." HIP 13044 b is near to its host star. At the closest point in its elliptical orbit, it is less than one stellar diameter from the surface of the star (or 0.055 times the Sun-Earth distance). It completes an orbit in only 16.2 days. Setiawan and his colleagues hypothesise that the planet's orbit might initially have been much larger, but that it moved inwards during the red giant phase. Any closer-in planets may not have been so lucky. "The star is rotating relatively quickly for an horizontal branch star," says Setiawan. "One explanation is that HIP 13044 swallowed its inner planets during the red giant phase, which would make the star spin more quickly." Although HIP 13044 b has escaped the fate of these inner planets so far, the star will expand again in the next stage of its evolution. HIP 13044 b may therefore be about to be engulfed by the star, meaning that it is doomed after all. This could also foretell the demise of our outer planets - such as Jupiter - when the Sun approaches the end of its life. The star also poses interesting questions about how giant planets form, as it appears to contain very few elements heavier than hydrogen and helium - fewer than any other star known to host planets. "It is a puzzle for the widely accepted model of planet formation to explain how such a star, which contains hardly any heavy elements at all, could have formed a planet. Planets around stars like this must probably form in a different way," adds Setiawan. Notes [1] There have been tentative claims of the detection of extragalactic exoplanets through "gravitational microlensing" events, in which the planet passing in front of an even more distant star leads to a subtle, but detectable "flash". However, this method relies on a singular event - the chance alignment of a distant light source, planetary system and observers on Earth - and no such extragalactic planet detection has been confirmed. [2] Using the radial velocity method, astronomers can only estimate a minimum mass for a planet, as the mass estimate also depends on the tilt of the orbital plane relative to the line of sight, which is unknown. From a statistical point of view, this minimum mass is however often close to the real mass of the planet. [3] Astronomers can identify members of the Helmi stream as they have motions (velocity and orbits) that are rather different from the average Milky Way stars. [4] FEROS stands for Fibre-fed Extended Range Optical Spectrograph. [5] The 2.2-metre telescope has been in operation at La Silla since early 1984 and is on indefinite loan to ESO from the Max-Planck Society (Max Planck Gesellschaft or MPG in German). Telescope time is shared between MPG and ESO observing programmes, while the operation and maintenance of the telescope are ESO's responsibility. More information This research was presented in a paper, "A Giant Planet Around a Metal-poor Star of Extragalactic Origin", by J. Setiawan et al., to appear in Science Express on 18 November 2010. The team is composed of J. Setiawan, R. J. Klement, T. Henning, H.-W. Rix, and B. Rochau (Max-Planck-Institut für Astronomie, Heidelberg, Germany), J. Rodmann (European Space Agency, Noordwijk, the Netherlands), and T. Schulze-Hartung (Max-Planck-Institut für Astronomie, Heidelberg, Germany). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  19. First Super-Earth Atmosphere Analysed

    NASA Astrophysics Data System (ADS)

    2010-12-01

    The atmosphere around a super-Earth exoplanet has been analysed for the first time by an international team of astronomers using ESO's Very Large Telescope. The planet, which is known as GJ 1214b, was studied as it passed in front of its parent star and some of the starlight passed through the planet's atmosphere. We now know that the atmosphere is either mostly water in the form of steam or is dominated by thick clouds or hazes. The results will appear in the 2 December 2010 issue of the journal Nature. The planet GJ 1214b was confirmed in 2009 using the HARPS instrument on ESO's 3.6-metre telescope in Chile (eso0950) [1]. Initial findings suggested that this planet had an atmosphere, which has now been confirmed and studied in detail by an international team of astronomers, led by Jacob Bean (Harvard-Smithsonian Center for Astrophysics), using the FORS instrument on ESO's Very Large Telescope. "This is the first super-Earth to have its atmosphere analysed. We've reached a real milestone on the road toward characterising these worlds," said Bean. GJ 1214b has a radius of about 2.6 times that of the Earth and is about 6.5 times as massive, putting it squarely into the class of exoplanets known as super-Earths. Its host star lies about 40 light-years from Earth in the constellation of Ophiuchus (the Serpent Bearer). It is a faint star [2], but it is also small, which means that the size of the planet is large compared to the stellar disc, making it relatively easy to study [3]. The planet travels across the disc of its parent star once every 38 hours as it orbits at a distance of only two million kilometres: about seventy times closer than the Earth orbits the Sun. To study the atmosphere, the team observed the light coming from the star as the planet passed in front of it [4]. During these transits, some of the starlight passes through the planet's atmosphere and, depending on the chemical composition and weather on the planet, specific wavelengths of light are absorbed. The team then compared these precise new measurements with what they would expect to see for several possible atmospheric compositions. Before the new observations, astronomers had suggested three possible atmospheres for GJ 1214b. The first was the intriguing possibility that the planet was shrouded by water, which, given the close proximity to the star, would be in the form of steam. The second possibility was that this is a rocky world with an atmosphere consisting mostly of hydrogen, but with high clouds or hazes obscuring the view. The third option was that this exoplanet was like a mini-Neptune, with a small rocky core and a deep hydrogen-rich atmosphere. The new measurements do not show the telltale signs of hydrogen and hence rule out the third option. Therefore, the atmosphere is either rich in steam, or it is blanketed by clouds or hazes, similar to those seen in the atmospheres of Venus and Titan in our Solar System, which hide the signature of hydrogen.. "Although we can't yet say exactly what that atmosphere is made of, it is an exciting step forward to be able to narrow down the options for such a distant world to either steamy or hazy," says Bean. "Follow-up observations in longer wavelength infrared light are now needed to determine which of these atmospheres exists on GJ 1214b." Notes [1] The number of confirmed exoplanets reached 500 on 19 November 2010. Since then, more exoplanets have been confirmed. For the latest count, please visit: http://exoplanet.eu/catalog.php [2] If GJ 1214 were seen at the same distance from us as our Sun, it would appear 300 times fainter. [3] Because the star GJ1214 itself is quite faint - more than 100 times fainter in visible light than the host stars of the two most widely studied hot Jupiter exoplanets - the large collecting area of the Very Large Telescope was critical for acquiring enough signal for these measurements. [4] GJ 1214b's atmospheric composition was studied using the FORS instrument on the Very Large Telescope, which can perform very sensitive spectroscopy of multiple objects in the near-infrared part of the spectrum. FORS was one of the first instruments installed on the Very Large Telescope. More information This research is presented in a paper to appear in Nature on 2 December 2010. The team is composed of Jacob Bean (Harvard-Smithsonian Center for Astrophysics, USA), Eliza Miller-Ricci Kempton (University of California, Santa Cruz, USA) and Derek Homeier (Institute for Astrophysics, Göttingen, Germany). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  20. Awesome Universe: an exhibition with images that showcase celestial objects as seen by ESO's observatories and associated activities

    NASA Astrophysics Data System (ADS)

    Marin-Farrona, A. M.

    2015-05-01

    In September 2013, an ESO exhibition was shown in Santander: ``Awesome Universe -- the Cosmos through the eyes of the European Southern Observatory". Around the exhibition, were proposed several activities: guide tours for children, younger and adults, workshops, film projections... In this way, the exhibition was visited by more than two thousand persons. We must keep in mind that Santander is a small city and its population does not usually take part in outreach activity. With this contribution, we want to teach the way in which it is possible to take advantage of science exhibitions. It made possible to show stunning images that showcase celestial objects as seen by ESO's observatories to the great majority of Santander population, and to awaken their interest in or enthusiasm for science.

  1. Sharpest views of Betelgeuse reveal how supergiant stars lose mass-Unveiling the true face of a behemoth

    NASA Astrophysics Data System (ADS)

    2009-07-01

    Using different state-of-the-art techniques on ESO's Very Large Telescope, two independent teams of astronomers have obtained the sharpest ever views of the supergiant star Betelgeuse. They show that the star has a vast plume of gas almost as large as our Solar System and a gigantic bubble boiling on its surface. These discoveries provide important clues to help explain how these mammoths shed material at such a tremendous rate. Betelgeuse - the second brightest star in the constellation of Orion (the Hunter) - is a red supergiant, one of the biggest stars known, and almost 1000 times larger than our Sun [1]. It is also one of the most luminous stars known, emitting more light than 100000 Suns. Such extreme properties foretell the demise of a short-lived stellar king. With an age of only a few million years, Betelgeuse is already nearing the end of its life and is soon doomed to explode as a supernova. When it does, the supernova should be seen easily from Earth, even in broad daylight. Red supergiants still hold several unsolved mysteries. One of them is just how these behemoths shed such tremendous quantities of material - about the mass of the Sun - in only 10 000 years. Two teams of astronomers have used ESO's Very Large Telescope (VLT) and the most advanced technologies to take a closer look at the gigantic star. Their combined work suggests that an answer to the long-open mass-loss question may well be at hand. The first team used the adaptive optics instrument, NACO, combined with a so-called "lucky imaging" technique, to obtain the sharpest ever image of Betelgeuse, even with Earth's turbulent, image-distorting atmosphere in the way. With lucky imaging, only the very sharpest exposures are chosen and then combined to form an image much sharper than a single, longer exposure would be. The resulting NACO images almost reach the theoretical limit of sharpness attainable for an 8-metre telescope. The resolution is as fine as 37 milliarcseconds, which is roughly the size of a tennis ball on the International Space Station (ISS), as seen from the ground. "Thanks to these outstanding images, we have detected a large plume of gas extending into space from the surface of Betelgeuse," says Pierre Kervella from the Paris Observatory, who led the team. The plume extends to at least six times the diameter of the star, corresponding to the distance between the Sun and Neptune. "This is a clear indication that the whole outer shell of the star is not shedding matter evenly in all directions," adds Kervella. Two mechanisms could explain this asymmetry. One assumes that the mass loss occurs above the polar caps of the giant star, possibly because of its rotation. The other possibility is that such a plume is generated above large-scale gas motions inside the star, known as convection - similar to the circulation of water heated in a pot. To arrive at a solution, astronomers needed to probe the behemoth in still finer detail. To do this Keiichi Ohnaka from the Max Planck Institute for Radio Astronomy in Bonn, Germany, and his colleagues used interferometry. With the AMBER instrument on ESO's Very Large Telescope Interferometer, which combines the light from three 1.8-metre Auxiliary Telescopes of the VLT, the astronomers obtained observations as sharp as those of a giant, virtual 48-metre telescope. With such superb resolution, the astronomers were able to detect indirectly details four times finer still than the amazing NACO images had already allowed (in other words, the size of a marble on the ISS, as seen from the ground). "Our AMBER observations are the sharpest observations of any kind ever made of Betelgeuse. Moreover, we detected how the gas is moving in different areas of Betelgeuse's surface ― the first time this has been done for a star other than the Sun", says Ohnaka. The AMBER observations revealed that the gas in Betelgeuse's atmosphere is moving vigorously up and down, and that these bubbles are as large as the supergiant star itself. Their unrivalled observations have led the astronomers to propose that these large-scale gas motions roiling under Betelgeuse's red surface are behind the ejection of the massive plume into space. Notes 1] If Betelgeuse were at the centre of our Solar System it would extend out almost to the orbit of Jupiter, engulfing Mercury, Venus, Earth, Mars and the main asteroid belt. More information This research was presented in two papers to appear in Astronomy and Astrophysics: The close circumstellar environment of Betelgeuse: Adaptive optics spectro-imaging in the near-IR with VLT/NACO, by Pierre Kervella et al., and Spatially resolving the inhomogeneous structure of the dynamical atmosphere of Betelgeuse with VLTI/AMBER, by Keiichi Ohnaka et al. The teams are composed of P. Kervella, G. Perrin, S. Lacour, and X. Haubois (LESIA, Observatoire de Paris, France), T. Verhoelst (K. U. Leuven, Belgium), S. T. Ridgway (National Optical Astronomy Observatories, USA), and J. Cami (University of Western Ontario, Canada), and of K. Ohnaka, K.-H. Hofmann, T. Driebe, F. Millour, D. Schertl, and G. Weigelt (Max-Planck-Institute for Radio Astronomy, Bonn, Germany), M. Benisty (INAF-Osservatorio Astrofisico di Arcetri, Firenze, Italy), A. Chelli (LAOG, Grenoble, France), R. Petrov and F. Vakili (Lab. H. Fizeau, OCA, Nice, France), and Ph. Stee (Lab. H. Fizeau, OCA, Grasse, France). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  2. ESO PR Highlights in 2007

    NASA Astrophysics Data System (ADS)

    2008-01-01

    Another great year went by for ESO, the European Organisation for Astronomical Research in the Southern Hemisphere. From 1 January 2007, with the official joining of the Czech Republic, ESO has 13 member states, and since September, ESO has a new Director General, Tim de Zeeuw (ESO 03/07 and 38/07). Many scientific discoveries were made possible with ESO's telescopes. Arguably, the most important is the discovery of the first Earth-like planet in the habitable zone of a low-mass red dwarf (ESO 22/07). If there is water on this planet, then it should be liquid! ESO PR Highlights 2007 This is a clickable map. These are only some of the press releases issued by ESO in 2007. For a full listing, please go to ESO 2007 page. In our own Solar System also, astronomers made stunning breakthroughs with ESO's telescopes, observing the effect of the light from the Sun on an asteroid's rotation (ESO 11/07), describing in unprecedented detail the double asteroid Antiope (ESO 18/07), peering at the rings of Uranus (ESO 37/07), discovering a warm south pole on Neptune (ESO 41/07), showing a widespread and persistent morning drizzle of methane over the western foothills of Titan's major continent (ESO 47/07), and studying in the greatest details the wonderful Comet McNaught (ESO 05/07 and 07/07). In the study of objects slightly more massive than planets, the VLT found that brown dwarfs form in a similar manner to normal stars (ESO 24/07). The VLT made it also possible to measure the age of a fossil star that was clearly born at the dawn of time (ESO 23/07). Other discoveries included reconstructing the site of a flare on a solar-like star (ESO 53/07), catching a star smoking (ESO 34/07), revealing a reservoir of dust around an elderly star (ESO 43/07), uncovering a flat, nearly edge-on disc of silicates in the heart of the magnificent Ant Nebula (ESO 42/07), finding material around a star before it exploded (ESO 31/07), fingerprinting the Milky Way (ESO 15/07), revealing a rich circular cluster of stars (ESO 12/07), hunting galaxies (ESO 40/07), discovering teenage galaxies (ESO 52/07), and finding the first known triplet of supermassive black holes (ESO 02/07). On the instrumentation side, the VLT has been equipped with a new 'eye' to study the Universe in the near-infrared, Hawk-I (ESO 36/07), while the Laser Guide Star used at the VLT to create an artificial star appears to fulfil all its promises (ESO 27/07 and 33/07). Successful tests were also done of a crucial technology for Extremely Large Telescopes (ESO 19/07). The VLT Rapid Response Mode showed it unique capabilities in the study of gamma-ray bursts (ESO 17/07), as did the REM, a robotic telescope at La Silla, that allowed astronomers to measure for the first time the speed of matter ejected in these tremendous explosions (ESO 26/07). The world's largest bolometer camera for submillimetre astronomy, LABOCA, is now in service at the 12-m APEX telescope (ESO 35/07), while the construction of ALMA moves forwards. Two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object (ESO 10/07), the ALMA Operations Support Facility is almost completed (ESO 13/07), and the ALMA transporters were shipped to Chile (ESO 32/07 and 45/07). ESO is also present on the educational front with, for example, its annual international contest for students, Catch a Star (ESO 21/07 and 46/07). In April 2007, ESO organised with its partners the second EIROforum Science on Stage festival, a unique event, showcasing the very best of today's science education and to which participated the European Commissioner for Science and Research, Janez Potočnik. The Commissioner also visited the Paranal observatory (ESO 48/07) and took part in the observation of a beautiful galaxy (ESO 49/07). This was not the only nice image coming out from ESO telescopes. A rather amazing Cosmic Bird - or a gigantic Tinker Bell - was photographed (ESO 55/07), as well as a Purple Rose (ESO 16/07) and a stellar firework (ESO 39/07). And last but least, at the end of the year, the United Nations passed a resolution proclaiming 2009 the International Year of Astronomy (ESO 54/07).

  3. Giant Galaxy Messier 87 finally sized up

    NASA Astrophysics Data System (ADS)

    2009-05-01

    Using ESO's Very Large Telescope, astronomers have succeeded in measuring the size of giant galaxy Messier 87 and were surprised to find that its outer parts have been stripped away by still unknown effects. The galaxy also appears to be on a collision course with another giant galaxy in this very dynamic cluster. ESO PR Photo 19a/09 The Intercluster Light ESO PR Photo 19b/09 Intergalactic Planetary Nebulae ESO PR Photo 19c/09 The Virgo Cluster The new observations reveal that Messier 87's halo of stars has been cut short, with a diameter of about a million light-years, significantly smaller than expected, despite being about three times the extent of the halo surrounding our Milky Way [1]. Beyond this zone only few intergalactic stars are seen. "This is an unexpected result," says co-author Ortwin Gerhard. "Numerical models predict that the halo around Messier 87 should be several times larger than our observations have revealed. Clearly, something must have cut the halo off early on." The team used FLAMES, the super-efficient spectrograph at ESO's Very Large Telescope at the Paranal Observatory in Chile, to make ultra-precise measurements of a host of planetary nebulae in the outskirts of Messier 87 and in the intergalactic space within the Virgo Cluster of galaxies, to which Messier 87 belongs. FLAMES can simultaneously take spectra many sources, spread over an area of the sky about the size of the Moon. The new result is quite an achievement. The observed light from a planetary nebula in the Virgo Cluster is as faint as that from a 30-Watt light bulb at a distance of about 6 million kilometres (about 15 times the Earth-Moon distance). Furthermore, planetary nebulae are thinly spread through the cluster, so even FLAMES's wide field of view could only capture a few tens of nebulae at a time. "It is a little bit like looking for a needle in a haystack, but in the dark", says team member Magda Arnaboldi. "The FLAMES spectrograph on the VLT was the best instrument for the job". At a distance of approximately 50 million light-years, the Virgo Cluster is the nearest galaxy cluster. It is located in the constellation of Virgo (the Virgin) and is a relatively young and sparse cluster. The cluster contains many hundreds of galaxies, including giant and massive elliptical galaxies, as well as more homely spirals like our own Milky Way. The astronomers have proposed several explanations for the discovered "cut-off" of Messier 87's, such as collapse of dark matter nearby in the galaxy cluster. It might also be that another galaxy in the cluster, Messier 84, came much closer to Messier 87 in the past and dramatically perturbed it about a billion years ago. "At this stage, we can't confirm any of these scenarios," says Arnaboldi. "We will need observations of many more planetary nebulae around Messier 87". One thing the astronomers are sure about, however, is that Messier 87 and its neighbour Messier 86 are falling towards each other. "We may be observing them in the phase just before the first close pass", says Gerhard. "The Virgo Cluster is still a very dynamic place and many things will continue to shape its galaxies over the next billion years." More Information Planetary nebulae (PNe) are the spectacular final phase in the life of Sun-like stars, when the star ejects its outer layers into the surrounding space. Their name is a relic of an earlier era: early observers, using only small telescopes, thought that some of these nearby objects, such as the "Helix Nebula" resembled the discs of the giant planets in the Solar System. Planetary nebulae have strong emission lines, which make them relatively easy to detect at great distances, and also allow their radial velocities to be measured precisely. So planetary nebulae can be used to investigate the motions of stars in the faint outer regions of distant galaxies where velocity measurements are otherwise not possible. Moreover, planetary nebulae are representative of the stellar population in general. As they are relatively short-lived (a few tens of thousands of years -- a mere blip on astronomical timescales), astronomers can estimate that one star in about 8000 million of Sun-like stars is visible as a planetary nebula at any given moment. Thus planetary nebulae can provide a unique handle on the number, types of stars and their motions in faint outer galaxy regions that may harbour a substantial amount of mass. These motions contain the fossil record of the history of galaxy interaction and the formation of the galaxy cluster. This research is presented in a paper to appear in Astronomy and Astrophysics: "The Edge of the M87 Halo and the Kinematics of the Diffuse Light in the Virgo Cluster Core," by Michelle Doherty et al. The team is composed of Michelle Doherty and Magda Arnaboldi (ESO), Payel Das and Ortwin Gerhard (Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany), J. Alfonso L. Aguerri (IAC, Tenerife, Spain), Robin Ciardullo (Pennsylvania State University, USA), John J. Feldmeier (Youngstown State University, USA), Kenneth C. Freeman (Mount Stromlo Observatory, Australia), George H. Jacoby (WIYN Observatory, Tucson, AZ, USA), and Giuseppe Murante (INAF, Osservatorio Astronomico di Pino Torinese, Italy). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in the Atacama Desert region of Chile: La Silla, Paranal and Chajnantor.

  4. Discovery of Massive, Mostly Star Formation Quenched Galaxies with Extremely Large Lyα Equivalent Widths at z ˜ 3

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yoshiaki; Kajisawa, Masaru; Kobayashi, Masakazu A. R.; Nagao, Tohru; Shioya, Yasuhiro; Scoville, Nick Z.; Sanders, David B.; Capak, Peter L.; Koekemoer, Anton M.; Toft, Sune; McCracken, Henry J.; Le Fèvre, Olivier; Tasca, Lidia; Sheth, Kartik; Renzini, Alvio; Lilly, Simon; Carollo, Marcella; Kovač, Katarina; Ilbert, Olivier; Schinnerer, Eva; Fu, Hai; Tresse, Laurence; Griffiths, Richard E.; Civano, Francesca

    2015-08-01

    We report a discovery of six massive galaxies with both extremely large Lyα equivalent widths (EWs) and evolved stellar populations at z ˜ 3. These MAssive Extremely STrong Lyα emitting Objects (MAESTLOs) have been discovered in our large-volume systematic survey for strong Lyα emitters (LAEs) with 12 optical intermediate-band data taken with Subaru/Suprime-Cam in the COSMOS field. Based on the spectral energy distribution fitting analysis for these LAEs, it is found that these MAESTLOs have (1) large rest-frame EWs of EW0 (Lyα) ˜ 100-300 Å, (2) M⋆ ˜ 1010.5-1011.1 M⊙, and (3) relatively low specific star formation rates of SFR/M⋆ ˜ 0.03-1 Gyr-1. Three of the six MAESTLOs have extended Lyα emission with a radius of several kiloparsecs, although they show very compact morphology in the HST/ACS images, which correspond to the rest-frame UV continuum. Since the MAESTLOs do not show any evidence for active galactic nuclei, the observed extended Lyα emission is likely to be caused by a star formation process including the superwind activity. We suggest that this new class of LAEs, MAESTLOs, provides a missing link from star-forming to passively evolving galaxies at the peak era of the cosmic star formation history. Based on observations with NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555; also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; and also based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under ESO programme ID 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium.

  5. Complete identification of the Parkes half-Jansky sample of GHz peaked spectrum radio galaxies

    NASA Astrophysics Data System (ADS)

    de Vries, N.; Snellen, I. A. G.; Schilizzi, R. T.; Lehnert, M. D.; Bremer, M. N.

    2007-03-01

    Context: Gigahertz Peaked Spectrum (GPS) radio galaxies are generally thought to be the young counterparts of classical extended radio sources. Statistically complete samples of GPS sources are vital for studying the early evolution of radio-loud AGN and the trigger of their nuclear activity. The "Parkes half-Jansky" sample of GPS radio galaxies is such a sample, representing the southern counterpart of the 1998 Stanghellini sample of bright GPS sources. Aims: As a first step of the investigation of the sample, the host galaxies need to be identified and their redshifts determined. Methods: Deep R-band VLT-FORS1 and ESO 3.6 m EFOSC II images and long slit spectra have been taken for the unidentified sources in the sample. Results: We have identified all twelve previously unknown host galaxies of the radio sources in the sample. Eleven have host galaxies in the range 21.0 < RC < 23.0, while one object, PKS J0210+0419, is identified in the near infrared with a galaxy with Ks = 18.3. The redshifts of 21 host galaxies have been determined in the range 0.474 < z < 1.539, bringing the total number of redshifts to 39 (80%). Analysis of the absolute magnitudes of the GPS host galaxies show that at z>1 they are on average a magnitude fainter than classical 3C radio galaxies, as found in earlier studies. However their restframe UV luminosities indicate that there is an extra light contribution from the AGN, or from a population of young stars. Based on observations collected at the European Southern Observatory Very Large Telescope, Paranal, Chile (ESO prog. ID No. 073.B-0289(B)) and the European Southern Observatory 3.6 m Telescope, La Silla, Chile (prog. ID No. 073.B-0289(A)). Appendices are only available in electronic form at http://www.aanda.org

  6. Centrosymmetric molecules as possible carriers of diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, M.; Schmidt, M. R.; Galazutdinov, G. A.; Musaev, F. A.; Betelesky, Y.; Krełowski, J.

    2010-11-01

    In this paper, we present new data with interstellar C2 (Phillips bands A 1 Πu-X1 Σ+g), from observations made with the Ultraviolet-Visual Echelle Spectrograph of the European Southern Observatory. We have determined the interstellar column densities and excitation temperatures of C2 for nine Galactic lines. For seven of these, C2 has never been observed before, so in this case the still small sample of interstellar clouds (26 lines of sight), where a detailed analysis of C2 excitation has been made, has increased significantly. This paper is a continuation of previous works where interstellar molecules (C2 and diffuse interstellar bands) have been analysed. Because the sample of interstellar clouds with C2 has increased, we can show that the width and shape of the profiles of some diffuse interstellar bands (6196 and 5797 Å) apparently depend on the gas kinetic and rotational temperatures of C2; the profiles are broader because of the higher values of the gas kinetic and rotational temperatures of C2. There are also diffuse interstellar bands (4964 and 5850 Å) for which this effect does not exist. Based on observations made with ESO telescopes at the Paranal Observatory under programme IDs 266.D-5655(A), 67.C-0281(A), 71.C-0513(C), 67.D-0439(A) and 082.C-0566(A) and at La Silla under programme IDs 078.C-0403(A), 076.C-0164(A) and 073.C-0337(A). Also based on observations made with the 1.8-m telescope in South Korea and the 2-m telescope at the International Centre for Astronomical and Medico-Ecological Research, Terskol, Russia. E-mail: kazmierczak@astri.uni.torun.pl (MK); schmidt@ncac.torun.pl (MRS); runizag@gmail.com (GAG); ybialets@eso.org (YB); jacek@astri.uni.torun.pl (JK)

  7. Three Good Reasons for Celebrating at the ESO/ST-ECF Science Archive Facility

    NASA Astrophysics Data System (ADS)

    2000-12-01

    Great Demand for Data from New "Virtual Observatory" Summary Due to a happy coincidence, the ESO/ST-ECF Science Archive Facility is celebrating three different milestones at the same time: * its 10th anniversary since the establishment in 1991 * the 10,000th request for data , and * the signing-up of active user number 2000 . This Archive contains over 8 Terabytes (1 Terabyte = 1 million million bytes) of valuable observational data from the NASA/ESA Hubble Space Telescope (HST), the ESO Very Large Telescope (VLT) and other ESO telescopes . Its success paves the way for the establishment of "Virtual Observatories" from which first-class data can be obtained by astronomers all over the world. This greatly enhances the opportunities for more (young) scientists to participate in front-line research. PR Photo 34/00 : Front-page of a new brochure, describing the ESO/ST-ECF Science Archive Facility. Just 10 years ago, on the 1st of January 1991, the ESO/ST-ECF (European Southern Observatory/Space Telescope-European Coordinating Facility) Science Archive Facility opened. It has since served the astronomical community with gigabyte after gigabyte of high-quality astronomical data from some of the world's leading telescopes. The Archive, which is located in Garching, just outside Munich (Germany), contains data from the 2.4-m NASA/ESA Hubble Space Telescope , as well as from several ESO telescopes: the four 8.2-m Unit Telescopes of the Very Large Telescope (VLT) at the Paranal Observatory , and the 3.5-m New Technology Telescope (NTT) , the 3.6-m telescope and the MPG/ESO 2.2-m telescope at La Silla. The Archive is a continuously developing project - in terms of amounts of data stored, the number of users and in particular because of the current dramatic development of innovative techniques for data handling and storage. In the year 2000 more than 2 Terabytes (2000 Gigabytes) of data were distributed to users worldwide. The archiving of VLT data has been described in ESO PR 10/99. Celebrating the 10th anniversary Due to a happy coincidence, the Archive passes two other milestones almost exactly at the time of its ten-year anniversary: the 10,000th request for data has just arrived, and active user number 2000 has just signed up to start using the Archive . Dataset number 10000 was requested by Danish astronomer Søren Larsen who works at the University of California (USA). He asked for images of galaxies taken with the Hubble Space Telescope and expressed great satisfaction with the material: "The extremely sharp images from Hubble have provided a quantum leap forward in our ability to study star clusters in external galaxies. We now know that some galaxies contain extremely bright young star clusters. These might constitute a "link" between open and globular clusters as we know them in the Milky Way galaxy in which we live. We are now trying to understand whether all these clusters really form in the same basic way." Active user number 2000 is Swiss astronomer Frédéric Pont , working at the Universidad de Chile: "We use observations from the ESO VLT Unit Telescopes to map the chemical and star-formation history of dwarf galaxies in the Local Group. The stars we are looking at are very faint and we simply need the large size and excellent quality of VLT to observe them in detail. With the new data, we can really move forward in this fundamental research field." ESO PR Photo 34/00 ESO PR Photo 34/00 [Preview - JPEG: 400 x 281 pix - 63k] [Normal - JPEG: 800 x 562 pix - 224k] [Full-Res - JPEG: 1024 x 714 pix - 336k] Caption : PR Photo 34/00 shows the frontpage of the new brochure that describes the ESO/ST-ECF Science Archive Facility (available in PDF version on the web). The collage shows the Hubble Space Telescope above the world's largest optical/infrared telescope, the Very Large Telescope (VLT). To celebrate this special occasion, a 4-page brochure has been prepared that describes the Archive and its various services. The brochure can be requested from ESO or ST-ECF and is now available in PDF format on the web. As a small token, the two astronomers will receive a commemorative version of the photo that accompanies this release. The ASTROVIRTEL initiative One of the major new initiatives undertaken by ESO and ST-ECF in connection with the ESO/ST-ECF Science Archive is ASTROVIRTEL (Accessing Astronomical Archives as Virtual Telescopes) , cf. ESO PR 09/00. It is a project aimed at helping scientists to cope efficiently with the massive amounts of data now becoming available from the world's leading telescopes and so to exploit the true potential of the Archive treasures. ASTROVIRTEL represents the European effort in an area that many astronomers considers one of the most important developments within observing astronomy in the past decade. The future The head of the ESO/ST-ECF Science Archive Facility , Benoît Pirenne , believes that the future holds exciting challenges: "Due to the many improvements of the ESO, NASA and ESA telescopes and instruments expected in the coming years, we anticipate a tremendous increase in the amount of data to be archived and re-distributed. It will not be too long before we will have to start counting storage space in Petabytes (1 Petabyte = 1,000 Terabytes). We are now trying to figure out how to best prepare for this new era." But he is also concerned with maintaining and further enhancing the astronomical value of the data that are made available to the users: "Apart from improving the data storage, we need to invest much effort in building automatic software that will help users with the tedious pre-processing and 'cleaning' of the data, thereby allowing them to focus more on scientific than technical problems."

  8. VirGO: A Visual Browser for the ESO Science Archive Facility

    NASA Astrophysics Data System (ADS)

    Hatziminaoglou, Evanthia; Chéreau, Fabien

    2009-03-01

    VirGO is the next generation Visual Browser for the ESO Science Archive Facility (SAF) developed in the Virtual Observatory Project Office. VirGO enables astronomers to discover and select data easily from millions of observations in a visual and intuitive way. It allows real-time access and the graphical display of a large number of observations by showing instrumental footprints and image previews, as well as their selection and filtering for subsequent download from the ESO SAF web interface. It also permits the loading of external FITS files or VOTables, as well as the superposition of Digitized Sky Survey images to be used as background. All data interfaces are based on Virtual Observatory (VO) standards that allow access to images and spectra from external data centres, and interaction with the ESO SAF web interface or any other VO applications.

  9. VISION - Vienna survey in Orion. I. VISTA Orion A Survey

    NASA Astrophysics Data System (ADS)

    Meingast, Stefan; Alves, João; Mardones, Diego; Teixeira, Paula Stella; Lombardi, Marco; Großschedl, Josefa; Ascenso, Joana; Bouy, Herve; Forbrich, Jan; Goodman, Alyssa; Hacar, Alvaro; Hasenberger, Birgit; Kainulainen, Jouni; Kubiak, Karolina; Lada, Charles; Lada, Elizabeth; Moitinho, André; Petr-Gotzens, Monika; Rodrigues, Lara; Román-Zúñiga, Carlos G.

    2016-03-01

    Context. Orion A hosts the nearest massive star factory, thus offering a unique opportunity to resolve the processes connected with the formation of both low- and high-mass stars. Here we present the most detailed and sensitive near-infrared (NIR) observations of the entire molecular cloud to date. Aims: With the unique combination of high image quality, survey coverage, and sensitivity, our NIR survey of Orion A aims at establishing a solid empirical foundation for further studies of this important cloud. In this first paper we present the observations, data reduction, and source catalog generation. To demonstrate the data quality, we present a first application of our catalog to estimate the number of stars currently forming inside Orion A and to verify the existence of a more evolved young foreground population. Methods: We used the European Southern Observatory's (ESO) Visible and Infrared Survey Telescope for Astronomy (VISTA) to survey the entire Orion A molecular cloud in the NIR J,H, and KS bands, covering a total of ~18.3 deg2. We implemented all data reduction recipes independently of the ESO pipeline. Estimates of the young populations toward Orion A are derived via the KS-band luminosity function. Results: Our catalog (799 995 sources) increases the source counts compared to the Two Micron All Sky Survey by about an order of magnitude. The 90% completeness limits are 20.4, 19.9, and 19.0 mag in J,H, and KS, respectively. The reduced images have 20% better resolution on average compared to pipeline products. We find between 2300 and 3000 embedded objects in Orion A and confirm that there is an extended foreground population above the Galactic field, in agreement with previous work. Conclusions: The Orion A VISTA catalog represents the most detailed NIR view of the nearest massive star-forming region and provides a fundamental basis for future studies of star formation processes toward Orion. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 090.C-0797(A).Image data and full Table B.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A153

  10. Measuring the Size of a Small, Frost World

    NASA Astrophysics Data System (ADS)

    2006-01-01

    Observing a very rare occultation of a star by Pluto's satellite Charon from three different sites, including Paranal, home of the VLT, astronomers were able to determine with great accuracy the radius and density of the satellite to the farthest planet. The density, 1.71 that of water, is indicative of an icy body with about slightly more than half of rocks. The observations also put strong constraints on the existence of an atmosphere around Charon. ESO PR Photo 02a/06 ESO PR Photo 02a/06 Artist's Impression of the Pluto-Charon system Since its discovery in 1978, Charon and Pluto have appeared to form a double planet, rather than a planet-satellite couple. Actually, Charon is about twice as small as Pluto in size, and about eight times less massive. However, there have been considerable discussions concerning the precise radii of Pluto and Charon, as well as about the presence of a tenuous atmosphere around Charon. In August 2004, Australian amateur astronomer Dave Herald predicted that the 15-magnitude star UCAC2 26257135 should be occulted by Charon on 11 July 2005. The occultation would be observable from some parts of South America, including Cerro Paranal, in the northern Atacama Desert, the location of ESO's Very Large Telescope (VLT). Stellar occultations have proved to be powerful tools to both measure sizes - at km-level accuracy, i.e. a factor ten better than what is feasible with other techniques - and detect very tenuous atmosphere - at microbar levels or less. Unfortunately, in the case of Charon, such occultations are extremely rare, owing to the very small angular diameter of the satellite on the sky: 55 milli-arcsec, i.e. the size of a one Euro coin observed from 100 km away! This explains why only one occultation by Charon was ever observed before 2005, namely on 7 April 1980 by Alistair Walker, from the South Africa Astronomical Observatory. Similarly, only in 1985, 1988 and 2002 could astronomers observe stellar occultations by Pluto. Quite surprisingly, the 2002 event showed that Pluto's atmospheric pressure had increased by a factor of two in four years (ESO PHOT 21/02). "Several factors, however, have boosted our odds for witnessing occultations of Charon," said Bruno Sicardy, from Paris Observatory (France) and lead author of the paper reporting the results. "First, larger telescopes now give access to fainter stars, thus multiplying the candidates for occultations. Secondly, stellar catalogues have become much more precise, allowing us to do better predictions. And, finally, the Pluto-Charon system is presently crossing the Milky Way, thereby increasing the likelihood of an occultation." ESO PR Photo 02b/06 ESO PR Photo 02b/06 The Pluto-Charon System (NACO/VLT) The July 2005 event was eventually observed from Paranal with Yepun, the fourth Unit Telescope of the VLT, equipped with the adaptive optics instrument NACO, as well as with the 0.5m "Campo Catino Austral Telescope" at San Pedro de Atacama (Chile), and with the 2.15m "Jorge Sahade" telescope at Cerro El Leoncito (Argentina). An accurate timing of the occultation seen at the three sites provides the most accurate measurement of Charon's size: its radius is found to be 603.6 km, with an error of the order of 5 km. This accuracy now allows astronomers to pin Charon's density down to 1.71 that of water, indicative of an icy body with about slightly more than half of rocks. Quite remarkably, Charon's density is now measured with much more precision than Pluto's. ESO PR Photo 02c/06 ESO PR Photo 02c/06 Charon's Occultation on July 11, 2005 Thanks to these observations, Sicardy and his collaborators could determine that if an tenuous atmosphere exists on Charon, linking it to the freezing ­-220­ degrees centigrade or so surface, its pressure has to be less than one tenth of a millionth that at the surface of the Earth, or 0.1 microbar, assuming that it is constituted entirely of nitrogen. A similar upper limit is derived for a gas like carbon monoxide. This is more than a factor one hundred smaller than Pluto's surface pressure, which is estimated to be in the range 10-15 microbars. "Comparing Pluto and Charon, we seem to cross a borderline between bodies which may have bound atmospheres - like Pluto - and airless bodies like Charon", said Olivier Hainaut, from ESO and member of the team. The observations also indicate that methane ice, if present, should be restricted to very cold regions of the surface. Similarly, nitrogen ice would be confined at best to high northern latitudes or permanently shadowed regions of Charon. As Pluto and its satellite sweep across the Milky Way, observations of more occultations will be tempted from the ground, while the NASA's Pluto-Kuiper Belt Mission, to be launched in January 2006, will be travelling towards the planet, that it should reach in July 2015. A report of these results is to be published in the January 5, 2006 issue of Nature ("Charon's size and upper limit on its atmosphere from a stellar occultation", by B. Sicardy, A. Bellucci, E. Gendron, F. Lacombe, S. Lacour, J. Lecacheux, E. Lellouch, S. Renner, S. Pau, F. Roques, T. Widemann, F. Colas, F. Vachier, N. Ageorges, O. Hainaut, O. Marco, W. Beisker, E. Hummel, C. Feinstein, H. Levato, A. Maury, E. Frappa, B. Gaillard, M. Lavayssière, M. Di Sora, F. Mallia, G. Masi, R. Behrend, F. Carrier, O. Mousis, P. Rousselot, A. Alvarez-Candal, D. Lazzaro, C. Veiga, A.H. Andrei, M. Assafin, D.N. da Silva Neto, R. Vieira Martins, C. Jacques, E. Pimentel, D. Weaver, J.-F Lecampion, F. Doncel, T. Momiyama, and G. Tancredi). High resolution images and their captions are available on this page.

  11. APEX Snaps First Close-up of Star Factories in Distant Universe

    NASA Astrophysics Data System (ADS)

    2010-03-01

    For the first time, astronomers have made direct measurements of the size and brightness of regions of star-birth in a very distant galaxy, thanks to a chance discovery with the APEX telescope. The galaxy is so distant, and its light has taken so long to reach us, that we see it as it was 10 billion years ago. A cosmic "gravitational lens" is magnifying the galaxy, giving us a close-up view that would otherwise be impossible. This lucky break reveals a hectic and vigorous star-forming life for galaxies in the early Universe, with stellar nurseries forming one hundred times faster than in more recent galaxies. The research is published online today in the journal Nature. Astronomers were observing a massive galaxy cluster [1] with the Atacama Pathfinder Experiment (APEX) telescope, using submillimetre wavelengths of light, when they found a new and uniquely bright galaxy, more distant than the cluster and the brightest very distant galaxy ever seen at submillimetre wavelengths. It is so bright because the cosmic dust grains in the galaxy are glowing after being heated by starlight. The new galaxy has been given the name SMM J2135-0102. "We were stunned to find a surprisingly bright object that wasn't at the expected position. We soon realised it was a previously unknown and more distant galaxy being magnified by the closer galaxy cluster," says Carlos De Breuck from ESO, a member of the team. De Breuck was making the observations at the APEX telescope on the plateau of Chajnantor at an altitude of 5000 m in the Chilean Andes. The new galaxy SMM J2135-0102 is so bright because of the massive galaxy cluster that lies in the foreground. The vast mass of this cluster bends the light of the more distant galaxy, acting as a gravitational lens [2]. As with a telescope, it magnifies and brightens our view of the distant galaxy. Thanks to a fortuitous alignment between the cluster and the distant galaxy, the latter is strongly magnified by a factor of 32. "The magnification reveals the galaxy in unprecedented detail, even though it is so distant that its light has taken about 10 billion years to reach us," explains Mark Swinbank from Durham University, lead author of the paper reporting the discovery. "In follow-up observations with the Submillimeter Array telescope, we've been able to study the clouds where stars are forming in the galaxy with great precision." The magnification means that the star-forming clouds can be picked out in the galaxy, down to a scale of only a few hundred light-years - almost down to the size of giant clouds in our own Milky Way. To see this level of detail without the help of the gravitational lens would need future telescopes such as ALMA (the Atacama Large Millimeter/submillimeter Array), which is currently under construction on the same plateau as APEX. This lucky discovery has therefore given astronomers a unique preview of the science that will be possible in a few years time. These "star factories" are similar in size to those in the Milky Way, but one hundred times more luminous, suggesting that star formation in the early life of these galaxies is a much more vigorous process than typically found in galaxies that lie nearer to us in time and space. In many ways, the clouds look more similar to the densest cores of star-forming clouds in the nearby Universe. "We estimate that SMM J2135-0102 is producing stars at a rate that is equivalent to about 250 Suns per year," says de Breuck. "The star formation in its large dust clouds is unlike that in the nearby Universe, but our observations also suggest that we should be able to use similar underlying physics from the densest stellar nurseries in nearby galaxies to understand star birth in these more distant galaxies." Notes [1] Galaxy clusters are among the most massive objects in the Universe kept together by gravity. They are composed of hundreds to thousands of galaxies, which make up to only about a tenth of their total mass. The bulk of their mass, which amounts to up to a million billion [1015] times the mass of our Sun, is composed of hot gas and dark matter. In this case, the cluster being observed has the designation MACS J2135-010217 (or MACS J213512.10-010258.5), and is at a distance of about four billion light-years. [2] Gravitational lensing is an effect forecast by Albert Einstein's theory of general relativity. Due to their gigantic mass and their intermediate position between us and very distant galaxies, galaxy clusters act as extremely efficient gravitational lenses, bending the light coming from background galaxies. Depending on the cluster mass distribution a host of interesting effects are produced, such as magnification, shape distortions, giant arcs, and multiple images of the same source. More information This research was presented in a paper, "Intense star formation within resolved compact regions in a galaxy at z=2.3" (A. M. Swinbank et al., DOI 10.1038/nature08880) to appear online in Nature today. The team is composed of A. M. Swinbank, I. Smail, J. Richard, A. C. Edge, and K. E. K. Coppin (Institute for Computational Cosmology, Durham University, UK), S. Longmore, R. Blundell, M. Gurwell, and D. Wilner (Harvard-Smithsonian Center For Astrophysics, USA), A. I. Harris and L. J. Hainline (Department of Astronomy, University of Maryland, USA), A.J. Baker (Department of Physics and Astronomy, Rutgers, University of New Jersey, USA), C. De Breuck, A. Lundgren and G. Siringo (ESO), R. J. Ivison (UKATC and Royal Observatory of Edinburgh, UK), P. Cox, M. Krips and R. Neri (Institut de Radio Astronomie Millimétrique, France), B. Siana (California Institute of Technology, USA), D. P. Stark (Institute of Astronomy, University of Cambridge, UK), and J. D. Younger (Institute for Advanced Study, USA). The Atacama Pathfinder Experiment (APEX) telescope is a 12-metre telescope, located at 5100 m altitude on the arid plateau of Chajnantor in the Chilean Andes. APEX operates at millimetre and submillimetre wavelengths. This wavelength range is a relatively unexplored frontier in astronomy, requiring advanced detectors and an extremely high and dry observatory site, such as Chajnantor. APEX, the largest submillimetre-wave telescope operating in the southern hemisphere, is a collaboration between the Max Planck Institute for Radio Astronomy, the Onsala Space Observatory and ESO. Operation of APEX at Chajnantor is entrusted to ESO. APEX is a "pathfinder" for ALMA - it is based on a prototype antenna constructed for the ALMA project, it is located on the same plateau and will find many targets that ALMA will be able to study in extreme detail. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  12. Finland Becomes Eleventh ESO Member State

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Finland has become the eleventh member state of the European Southern Observatory (ESO) [1]. The formal accession procedure was carried through as planned and has now been completed. Following the signing of the corresponding Agreement earlier this year (ESO PR 02/04), acceptance by the Finnish Parliament and ratification by the Finnish President of the Agreement as well as the ESO Convention and the associated protocols in June [2] and the deposit of the instruments of accession today, Finland has now officially joined ESO. ESO warmly welcomes the new member country and its scientific community that is renowned for their expertise in many frontline areas. The related opportunities will contribute to strenghtening of pioneering research with the powerful facilities at ESO's observatories, to the benefit of Astronomy and Astrophysics as well as European science in general. ESO also looks forward to collaboration with the Finnish high-tech industry. For Finland, the membership in ESO is motivated by scientific and technological objectives as well as by the objective of improving the public understanding of science. The Finnish Government is committed to increasing the public research funding in order to improve the quality, impact and internationalisation of research. Membership in ESO offers unique facilities for astronomical research which would not otherwise be available for Finnish astronomers. Finland is also very interested in taking part in technological development projects in fields like ICT, optics and instrumentation. For young scientists and engineers, ESO is a challenging, international working and learning environment. Finland has already taken part in the educational programmes of ESO, and as a member this activity will be broadened and intensified. In Finland there are also several science journalists and a large community of amateur astronomers who will be very happy to take part in ESO's outreach activities.

  13. VizieR Online Data Catalog: Radial velocity curve of 51 Peg (Birkby+, 2017)

    NASA Astrophysics Data System (ADS)

    Birkby, J. L.; de Kok, R. J.; Brogi, M.; Schwarz, H.; Snellen, I. A. G.

    2017-07-01

    We observed the bright star 51 Peg (G2.5V, V=5.46mag, K=3.91mag) for 3.7hr during the night beginning 2010 October 21, using the CRyogenic InfraRed Echelle Spectrograph (CRIRES) mounted at Nasmyth A at the VLT (8.2 m UT1/Antu), Cerro Paranal, Chile. The observations were collected as part of the ESO large program 186.C-0289. The instrument setup consisted of a 0.2 arcsec slit centred on 3236nm (order 17), in combination with the Multi-Application Curvature Adaptive Optic system (MACAO). The CRIRES infrared detector is comprised of four Aladdin III InSb-arrays, each with 1024*512 pixels, and separated by a gap of 280 pixels. The resulting wavelength coverage of the observations was 3.1806<λ(μm)<3.2659 with a resolution of R{approx}100000 per resolution element. We observed 51 Peg continuously while its hot Jupiter companion passed through orbital phases 0.55<~{Phi}<~0.58, corresponding to an expected change in the planet's radial velocity of ΔRVP=-23km/s (15 pixels on the CRIRES detectors). In total, we obtained 42 spectra, with the first 20 spectra each consisting of two sets of 5*20s exposures, and the remainder each consisting of two sets of 5*30s exposures. The increase in the exposure time was aimed at maintaining a constant signal-to-noise ratio (S/N) in the continuum of the observed stellar spectra after a sudden and significant deterioration of the seeing (increasing from 0.75 to 1.4 arcsec between one set of frames, see Section 2.3). To enable accurate sky-background subtraction, the telescope was nodded along the slit by 10 arcsec between each set of exposures in a classic ABBA sequence, with each of the final 42 extracted spectra consisting of an AB or BA pair. A standard set of CRIRES calibration frames was taken the following morning. To ensure we had its most up-to-date orbital solution, we compiled an extensive repository of literature and archival radial velocity measurements of the star 51 Peg from multiple observatories. These data are given in Table 1 and span observing dates from 1994 September 15 to 2014 July 9, resulting in 639 radial velocity measurements over 20 years. The table includes the discovery measurements from the ELODIE spectrograph at Observatoire Haute Provence and subsequent additional monitoring. We took these radial velocity measurements from the Naef et al. 2004 (Cat. J/A+A/414/351) compilation. We also included the legacy data set from Lick Observatory observed with the Hamilton spectrograph, taking measurements from the self-consistent reprocessing of all the Lick spectra presented by Fischer et al. 2014 (Cat. J/ApJS/210/5). Finally, we included more recent additional monitoring from the High Resolution Echelle Spectrometer (HIRES) at the Keck Observatory, and extracted RVs from observations with the High Accuracy Radial velocity Planet Searcher (HARPS) at the ESO-3.6m telescope in 2013 (ESO program ID 091.C-0271, PI: Santos). The reduced HARPS spectra were obtained from the ESO Science Archive (http://archive.eso.org/wdb/wdb/adp/phase3_spectral/query). (1 data file).

  14. Large dust grains in the wind of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Scicluna, P.; Siebenmorgen, R.; Wesson, R.; Blommaert, J. A. D. L.; Kasper, M.; Voshchinnikov, N. V.; Wolf, S.

    2015-12-01

    Massive stars live short lives, losing large amounts of mass through their stellar wind. Their mass is a key factor determining how and when they explode as supernovae, enriching the interstellar medium with heavy elements and dust. During the red supergiant phase, mass-loss rates increase prodigiously, but the driving mechanism has proven elusive. Here we present high-contrast optical polarimetric-imaging observations of the extreme red supergiant VY Canis Majoris and its clumpy, dusty, mass-loss envelope, using the new extreme-adaptive-optics instrument SPHERE at the VLT. These observations allow us to make the first direct and unambiguous detection of submicron dust grains in the ejecta; we derive an average grain radius ~0.5 μm, 50 times larger than in the diffuse ISM, large enough to receive significant radiation pressure by photon scattering. We find evidence for varying grain sizes throughout the ejecta, highlighting the dynamical nature of the envelope. Grains with 0.5 μm sizes are likely to reach a safe distance from the eventual explosion of VY Canis Majoris; hence it may inject upwards of 10-2 M⊙ of dust into the ISM. Based on observations made with European Southern Observatory (ESO) telescopes at the La Silla Paranal Observatory under program 60.A-9368(A).Appendix A is available in electronic form at http://www.aanda.org

  15. Turning Planetary Theory Upside Down

    NASA Astrophysics Data System (ADS)

    2010-04-01

    The discovery of nine new transiting exoplanets is announced today at the RAS National Astronomy Meeting (NAM2010). When these new results were combined with earlier observations of transiting exoplanets astronomers were surprised to find that six out of a larger sample of 27 were found to be orbiting in the opposite direction to the rotation of their host star - the exact reverse of what is seen in our own Solar System. The new discoveries provide an unexpected and serious challenge to current theories of planet formation. They also suggest that systems with exoplanets of the type known as hot Jupiters are unlikely to contain Earth-like planets. "This is a real bomb we are dropping into the field of exoplanets," says Amaury Triaud, a PhD student at the Geneva Observatory who, with Andrew Cameron and Didier Queloz, leads a major part of the observational campaign. Planets are thought to form in the disc of gas and dust encircling a young star. This proto-planetary disc rotates in the same direction as the star itself, and up to now it was expected that planets that form from the disc would all orbit in more or less the same plane, and that they would move along their orbits in the same direction as the star's rotation. This is the case for the planets in the Solar System. After the initial detection of the nine new exoplanets [1] with the Wide Angle Search for Planets (WASP, [2]), the team of astronomers used the HARPS spectrograph on the 3.6-metre ESO telescope at the La Silla observatory in Chile, along with data from the Swiss Euler telescope, also at La Silla, and data from other telescopes to confirm the discoveries and characterise the transiting exoplanets [3] found in both the new and older surveys. Surprisingly, when the team combined the new data with older observations they found that more than half of all the hot Jupiters [4] studied have orbits that are misaligned with the rotation axis of their parent stars. They even found that six exoplanets in this extended study (of which two are new discoveries) have retrograde motion: they orbit their star in the "wrong" direction. "The new results really challenge the conventional wisdom that planets should always orbit in the same direction as their stars spin," says Andrew Cameron of the University of St Andrews, who presented the new results at the RAS National Astronomy Meeting (NAM2010) in Glasgow this week. In the 15 years since the first hot Jupiters were discovered, their origin has been a puzzle. These are planets with masses similar to or greater than that of Jupiter, but that orbit very close to their suns. The cores of giant planets are thought to form from a mix of rock and ice particles found only in the cold outer reaches of planetary systems. Hot Jupiters must therefore form far from their star and subsequently migrate inwards to orbits much closer to the parent star. Many astronomers believed this was due to gravitational interactions with the disc of dust from which they formed. This scenario takes place over a few million years and results in an orbit aligned with the rotation axis of the parent star. It would also allow Earth-like rocky planets to form subsequently, but unfortunately it cannot account for the new observations. To account for the new retrograde exoplanets an alternative migration theory suggests that the proximity of hot Jupiters to their stars is not due to interactions with the dust disc at all, but to a slower evolution process involving a gravitational tug-of-war with more distant planetary or stellar companions over hundreds of millions of years. After these disturbances have bounced a giant exoplanet into a tilted and elongated orbit it would suffer tidal friction, losing energy every time it swung close to the star. It would eventually become parked in a near circular, but randomly tilted, orbit close to the star. "A dramatic side-effect of this process is that it would wipe out any other smaller Earth-like planet in these systems," says Didier Queloz of Geneva Observatory. Two of the newly discovered retrograde planets have already been found to have more distant, massive companions that could potentially be the cause of the upset. These new results will trigger an intensive search for additional bodies in other planetary systems. This research was presented at the Royal Astronomical Society National Astronomy Meeting (NAM2010) that is taking place this week in Glasgow, Scotland. Nine publications submitted to international journals will be released on this occasion, four of them using data from ESO facilities. On the same occasion, the WASP consortium was awarded the 2010 Royal Astronomical Society Group Achievement Award. Notes [1] The current count of known exoplanets is 454. [2] The nine newly found exoplanets were discovered by the Wide Angle Search for Planets (WASP). WASP comprises two robotic observatories, each consisting of eight wide-angle cameras that simultaneously monitor the sky continuously for planetary transit events. A transit occurs when a planet passes in front of its parent star, temporarily blocking some of the light from it. The eight wide-angle cameras allow millions of stars to be monitored simultaneously to detect these rare transit events. The WASP cameras are operated by a consortium including Queen's University Belfast, the Universities of Keele, Leicester and St Andrews, the Open University, the Isaac Newton Group on La Palma and the Instituto Astrofisica Canarias. [3] To confirm the discovery and characterise a new transiting planet, it is necessary to do radial velocity follow-up to detect the wobble of the host star around its common centre of mass with the planet. This is done with a worldwide network of telescopes equipped with sensitive spectrometers. In the northern hemisphere, the Nordic Optical Telescope in the Canary Islands and the SOPHIE instrument on the 1.93-metre telescope at Haute-Provence in France lead the search. In the south, the HARPS exoplanet hunter attached to the 3.6-metre ESO telescope and the CORALIE spectrometer on the Euler Swiss telescope, both at La Silla, were used to confirm the new planets and measure the angle through which each planet's orbit is tilted relative to its star's equator. The robotic Faulkes Telescopes of the Las Cumbres Observatory, located in Hawaii and Australia, provided the brightness measurements that determined the sizes of the planets. Follow-up observations of WASP exoplanet candidates are obtained at the Swiss Euler Telescope at La Silla, Chile (in collaboration with colleagues at Geneva Observatory), at the Nordic Optical Telescope on La Palma, and at the 1.93-metre telescope of the Observatoire de Haute-Provence in France (in collaboration with colleagues at the Institut d'Astrophysique de Paris and the Laboratoire d'Astrophysique de Marseille). The studies of the orbital tilt angles of the WASP planets were made with the HARPS instrument on the ESO 3.6-metre telescope and with the CORALIE instrument on the Euler Swiss telescope, both at La Silla in the southern hemisphere, and at Tautenburg Observatory, McDonald Observatory and the Nordic Optical Telescope in the northern hemisphere. [4] Hot Jupiters are planets orbiting other stars that have masses similar to, or greater than, that of Jupiter, but that orbit their parent stars much more closely than any of the planets in our own Solar System. Because they are both large and close they are easier to detect from their gravitational effect on their stars and also more likely to transit the disc of the star. Most of the first exoplanets to be found were of this class. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  16. GIRAFFE Reaches towards the Stars

    NASA Astrophysics Data System (ADS)

    2002-07-01

    "First Light" of New Powerful Spectrograph at the VLT Summary The first observations of stellar spectra have just been performed with the new GIRAFFE multi-object spectrograph on the ESO Very Large Telescope (VLT) at the Paranal Observatory in Chile. This milestone event was achieved in the early morning of July 3, 2002. It signifies another important step towards the full implementation of the extremely powerful Fibre Large Array Multi-Element Spectrograph (FLAMES) , one of the main instruments for the ESO VLT. This project is co-ordinated by ESO and incorporates many complex components that have been constructed at various research institutions in Europe and Australia. The GIRAFFE spectrograph provides unique possibilities for detailed observations of the properties of individual stars located in our Milky Way galaxy ( PR 16b/02 ) as well as in other galaxies of the Local Group. PR Photo 16a/02 : A series of stellar spectra recorded by GIRAFFE during "First Light" . PR Photo 16b/02 : Details of some of these stellar spectra . FLAMES and GIRAFFE ESO PR Photo 16a/02 ESO PR Photo 16a/02 [Preview - JPEG: 756 x 400 pix - 363k] [Normal - JPEG: 1511 x 800 pix - 1.2M] ESO PR Photo 16b/02 ESO PR Photo 16b/02 [Preview - JPEG: 461 x 400 pix - 196k] [Normal - JPEG: 921 x 800 pix - 606k] Caption : PR Photo 16a/02 : "First Light" test observation with the GIRAFFE spectrograph of about 50 high-quality spectra (10 min exposure at spectral resolution 7,000) of stars in the Milky Way disk, in the early morning of July 3, 2002. The stars have magnitudes of 12 - 16 and are all of solar type. The photo shows part of the image recorded with a 2000 x 4000 pixel CCD detector at the focal plane of the spectrograph. Each stellar spectrum is seen as one vertical line - some of the absorption lines can be seen as dark horizontal features. PR Photo 16b/02 shows a small part of this image. The three strong absorption lines that are visible as horizontal, dark lines in the lower part of the photo are due to the common element Magnesium in the atmospheres of these stars (the Mg b triplet at wavelength 517 nm). The different intensity of the spectra is due to the different brightness of the stars. The multi-object GIRAFFE spectrograph , now installed on the 8.2-m KUEYEN Unit Telescope of ESO's Very Large Telescope (VLT) at the Paranal Observatory (Chile), achieved "First Light" in the early morning hours of July 3, 2002. This complex instrument allows to obtain high-quality spectra of a large variety of celestial objects, from individual stars in the Milky Way and other nearby galaxies, to very distant galaxies. It functions by means of multiple optical fibres that guide the light from the telescope's focal plane into the entry slit of the spectrograph. Here the light is dispersed into its different colours. Anticipating already at this early moment the future, highly effective operation of the new facility, the first data were immediately prepared for astronomical interpretation ("reduced") by means of a dedicated software package ("pipeline"). GIRAFFE and these fibres are an integral part of the advanced Fibre Large Array Multi-Element Spectrograph (FLAMES) facility which also includes the OzPoz positioner and an optical field corrector . It is the outcome of a collaboration between ESO, Observatoire de Paris-Meudon Observatoire de Genève-Lausanne and the Anglo Australian Observatory (AAO) . More details are available in ESO PR 01/02. The principle of this instrument involves the positioning in the telescope's focal plane of a large number of optical fibres. This is done in such a way that each of them guides the light from one particular celestial object towards the spectrograph that records the spectra of all these objects simultaneously. The size of the available field-of-view is no less than about 25 arcmin across, i.e. almost as large as the full moon. The individual fibres are moved and positioned "on the objects" in the field by means of the OzPoz positioner. Different observational modes FLAMES has several different modes of operation. Two of these are of the simple "multi-object" type: each fibre collects the light from one star or galaxy - up to 132 objects can be observed simultaneously, cf. PR 16a/02 . In this respect, GIRAFFE provides absolutely unique possibilities for detailed observations of the properties (age, chemical composition, rotation and space velocity) of individual stars located in the main disk, central bulge or halo of our Milky Way galaxy ( PR 16b/02 ), and also of stars in other galaxies of the Local Group. Another observational mode is known as "3-D spectroscopy" or "integrated field". This consists of obtaining simultaneous spectra of smaller areas of extended objects like galaxies or nebulae. For this, 15 deployable fibre bundles, the so-called Integral Field Units (IFUs) , cf. ESO PR 01/02 , are used. Each IFU is a microscopic, state-of-the-art two-dimensional lens array with an aperture of 3 x 2 arcsec 2 on the sky. It is like an insect's eye, with twenty micro-lenses coupled with optical fibres leading the light recorded at each point in the field to the entry slit of the spectrograph. Unique research opportunities opening The FLAMES facility, once in full operation after further testing and fine-tuning later this year, will enormously increase the possibilities to study stellar physics and the evolution of galaxies , two of the cornerstones in our understanding of the structure and evolution of the Universe. With the great light-gathering capacity of the VLT, FLAMES will be able to gather very comprehensive information about even rather faint objects, enabling the astronomers to study them in a degree of detail so far reserved for brighter, nearby stars. The quality of the first spectra from GIRAFFE, although far from exploiting the ultimate potential of the new facility, fully confirm these expectations. Note [1]: This is a joint Press Release of ESO and the Observatoire de Paris.

  17. Stellar Family Portrait Takes Imaging Technique to New Extremes

    NASA Astrophysics Data System (ADS)

    2009-12-01

    The young star cluster Trumpler 14 is revealed in another stunning ESO image. The amount of exquisite detail seen in this portrait, which beautifully reveals the life of a large family of stars, is due to the Multi-conjugate Adaptive optics Demonstrator (MAD) on ESO's Very Large Telescope. Never before has such a large patch of sky been imaged using adaptive optics [1], a technique by which astronomers are able to remove most of the atmosphere's blurring effects. Noted for harbouring Eta Carinae - one of the wildest and most massive stars in our galaxy - the impressive Carina Nebula also houses a handful of massive clusters of young stars. The youngest of these stellar families is the Trumpler 14 star cluster, which is less than one million years old - a blink of an eye in the Universe's history. This large open cluster is located some 8000 light-years away towards the constellation of Carina (the Keel). A team of astronomers, led by Hugues Sana, acquired astounding images of the central part of Trumpler 14 using the Multi-conjugate Adaptive optics Demonstrator (MAD, [2]) mounted on ESO's Very Large Telescope (VLT). Thanks to MAD, astronomers were able to remove most of the blurring effects of the atmosphere and thus obtain very sharp images. MAD performs this correction over a much larger patch of the sky than any other current adaptive optics instrument, allowing astronomers to make wider, crystal-clear images. Thanks to the high quality of the MAD images, the team of astronomers could obtain a very nice family portrait. They found that Trumpler 14 is not only the youngest - with a refined, newly estimated age of just 500 000 years - but also one of the most populous star clusters within the nebula. The astronomers counted about 2000 stars in their image, spanning the whole range from less than one tenth up to a factor of several tens of times the mass of our own Sun. And this in a region which is only about six light-years across, that is, less than twice the distance between the Sun and its closest stellar neighbour! The most prominent star is the supergiant HD 93129A, one of the most luminous stars in the Galaxy. This titan has an estimated mass of about 80 times that of the Sun and is approximately two and a half million times brighter! It makes a stellar couple - a binary star - with another bright, massive star. The astronomers found that massive stars tend to pair up more often than less massive stars, and preferably with other more massive stars. The Trumpler 14 cluster is undoubtedly a remarkable sight to observe: this dazzling patch of sky contains several white-blue, hot, massive stars, whose fierce ultraviolet light and stellar winds are blazing and heating up the surrounding dust and gas. Such massive stars rapidly burn their vast hydrogen supplies - the more massive the star, the shorter its lifespan. These giants will end their brief lives dramatically in convulsive explosions called supernovae, just a few million years from now. A few orange stars are apparently scattered through Trumpler 14, in charming contrast to their bluish neighbours. These orange stars are in fact stars located behind Trumpler 14. Their reddened colour is due to absorption of blue light in the vast veils of dust and gas in the cloud. The technology used in MAD to correct for the effect of the Earth's atmosphere over large areas of sky will play a crucial role in the success of the next generation European Extremely Large Telescope (E-ELT). Notes [1] Telescopes on the ground suffer from a blurring effect introduced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets but frustrates astronomers, since it smears out the fine details of the images. However, with adaptive optics techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e. approaching conditions in space. Adaptive optics systems work by means of a computer-controlled deformable mirror that counteracts the image distortion introduced by atmospheric turbulence. It is based on real-time optical corrections computed at very high speed (several hundreds of times each second) from image data obtained by a wavefront sensor (a special camera) that monitors light from a reference star. [2] Present adaptive optics systems can only correct the effect of atmospheric turbulence in a very small region of the sky - typically 15 arcseconds or less - the correction degrading very quickly when moving away from the reference star. Engineers have therefore developed new techniques to overcome this limitation, one of which is multi-conjugate adaptive optics. MAD uses up to three stars instead of one as references to remove the blur caused by atmospheric turbulence over a field of view thirty times larger than that available to existing techniques (eso0719). More information This research has been presented in a paper submitted to Astronomy and Astrophysics ("A MAD view of Trumpler 14", by H. Sana et al.). The team is composed of H. Sana, Y. Momany, M. Gieles, G. Carraro, Y. Beletsky, V. Ivanov, G. De Silva and G. James (ESO). H. Sana is now working at the Amsterdam University, The Netherlands. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  18. A Cluster and a Sea of Galaxies

    NASA Astrophysics Data System (ADS)

    2010-05-01

    A new wide-field image released today by ESO displays many thousands of distant galaxies, and more particularly a large group belonging to the massive galaxy cluster known as Abell 315. As crowded as it may appear, this assembly of galaxies is only the proverbial "tip of the iceberg", as Abell 315 - like most galaxy clusters - is dominated by dark matter. The huge mass of this cluster deflects light from background galaxies, distorting their observed shapes slightly. When looking at the sky with the unaided eye, we mostly only see stars within our Milky Way galaxy and some of its closest neighbours. More distant galaxies are just too faint to be perceived by the human eye, but if we could see them, they would literally cover the sky. This new image released by ESO is both a wide-field and long-exposure one, and reveals thousands of galaxies crowding an area on the sky roughly as large as the full Moon. These galaxies span a vast range of distances from us. Some are relatively close, as it is possible to distinguish their spiral arms or elliptical halos, especially in the upper part of the image. The more distant appear just like the faintest of blobs - their light has travelled through the Universe for eight billion years or more before reaching Earth. Beginning in the centre of the image and extending below and to the left, a concentration of about a hundred yellowish galaxies identifies a massive galaxy cluster, designated with the number 315 in the catalogue compiled by the American astronomer George Abell in 1958 [1]. The cluster is located between the faint, red and blue galaxies and the Earth, about two billion light-years away from us. It lies in the constellation of Cetus (the Whale). Galaxy clusters are some of the largest structures in the Universe held together by gravity. But there is more in these structures than the many galaxies we can see. Galaxies in these giants contribute to only ten percent of the mass, with hot gas in between galaxies accounting for another ten percent [2]. The remaining 80 percent is made of an invisible and unknown ingredient called dark matter that lies in between the galaxies. The presence of dark matter is revealed through its gravitational effect: the enormous mass of a galaxy cluster acts on the light from galaxies behind the cluster like a cosmic magnifying glass, bending the trajectory of the light and thus making the galaxies appear slightly distorted [3]. By observing and analysing the twisted shapes of these background galaxies, astronomers can infer the total mass of the cluster responsible for the distortion, even when this mass is mostly invisible. However, this effect is usually tiny, and it is necessary to measure it over a huge number of galaxies to obtain significant results: in the case of Abell 315, the shapes of almost 10 000 faint galaxies in this image were studied in order to estimate the total mass of the cluster, which amounts to over a hundred thousand billion times the mass of our Sun [4]. To complement the enormous range of cosmic distances and sizes surveyed by this image, a handful of objects much smaller than galaxies and galaxy clusters and much closer to Earth are scattered throughout the field: besides several stars belonging to our galaxy, many asteroids are also visible as blue, green or red trails [5]. These objects belong to the main asteroid belt, located between the orbits of Mars and Jupiter, and their dimensions vary from some tens of kilometres, for the brightest ones, to just a few kilometres in the case of the faintest ones. This image has been taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. It is a composite of several exposures acquired using three different broadband filters, for a total of almost one hour in the B filter and about one and a half hours in the V and R filters. The field of view is 34 x 33 arcminutes. Notes [1] The Abell catalogue from 1958 comprised 2712 clusters of galaxies, and was integrated with an additional 1361 clusters in 1989. Abell put together this impressive collection by visual inspection of photographic plates of the sky, seeking those areas where more galaxies than average were found at approximately the same distance from us. [2] Ten percent of a galaxy cluster's mass consists of a very hot mixture of protons and electrons (a plasma), with temperatures as high as ten million degrees or more, which makes it visible to X-ray telescopes. [3] Astronomers refer to these slight distortions as weak gravitational lensing, as opposed to strong gravitational lensing, characterised by more spectacular phenomena such as giant arcs, rings and multiple images. [4] A weak lensing study of the galaxy cluster Abell 315 has been published in a paper that appeared in Astronomy & Astrophysics in 2009 ("Weak lensing observations of potentially X-ray underluminous galaxy clusters", by J. Dietrich et al.). [5] The blue, green or red tracks indicate that each asteroid has been detected through one of the three filters, respectively. Each track is composed of several, smaller sub-tracks, reflecting the sequence of several exposures performed in each of the filters; from the length of these sub-tracks, the distance to the asteroid can be calculated. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  19. No Place to Hide: Missing Primitive Stars Outside Milky Way Uncovered

    NASA Astrophysics Data System (ADS)

    2010-02-01

    After years of successful concealment, the most primitive stars outside our Milky Way galaxy have finally been unmasked. New observations using ESO's Very Large Telescope have been used to solve an important astrophysical puzzle concerning the oldest stars in our galactic neighbourhood - which is crucial for our understanding of the earliest stars in the Universe. "We have, in effect, found a flaw in the forensic methods used until now," says Else Starkenburg, lead author of the paper reporting the study. "Our improved approach allows us to uncover the primitive stars hidden among all the other, more common stars." Primitive stars are thought to have formed from material forged shortly after the Big Bang, 13.7 billion years ago. They typically have less than one thousandth the amount of chemical elements heavier than hydrogen and helium found in the Sun and are called "extremely metal-poor stars" [1]. They belong to one of the first generations of stars in the nearby Universe. Such stars are extremely rare and mainly observed in the Milky Way. Cosmologists think that larger galaxies like the Milky Way formed from the merger of smaller galaxies. Our Milky Way's population of extremely metal-poor or "primitive" stars should already have been present in the dwarf galaxies from which it formed, and similar populations should be present in other dwarf galaxies. "So far, evidence for them has been scarce," says co-author Giuseppina Battaglia. "Large surveys conducted in the last few years kept showing that the most ancient populations of stars in the Milky Way and dwarf galaxies did not match, which was not at all expected from cosmological models." Element abundances are measured from spectra, which provide the chemical fingerprints of stars [2]. The Dwarf galaxies Abundances and Radial-velocities Team [3] used the FLAMES instrument on ESO's Very Large Telescope to measure the spectra of over 2000 individual giant stars in four of our galactic neighbours, the Fornax, Sculptor, Sextans and Carina dwarf galaxies. Since the dwarf galaxies are typically 300 000 light years away - which is about three times the size of our Milky Way - only strong features in the spectrum could be measured, like a vague, smeared fingerprint. The team found that none of their large collection of spectral fingerprints actually seemed to belong to the class of stars they were after, the rare, extremely metal-poor stars found in the Milky Way. The team of astronomers around Starkenburg has now shed new light on the problem through careful comparison of spectra to computer-based models. They found that only subtle differences distinguish the chemical fingerprint of a normal metal-poor star from that of an extremely metal-poor star, explaining why previous methods did not succeed in making the identification. The astronomers also confirmed the almost pristine status of several extremely metal-poor stars thanks to much more detailed spectra obtained with the UVES instrument on ESO's Very Large Telescope. "Compared to the vague fingerprints we had before, this would be as if we looked at the fingerprint through a microscope," explains team member Vanessa Hill. "Unfortunately, just a small number of stars can be observed this way because it is very time consuming." "Among the new extremely metal-poor stars discovered in these dwarf galaxies, three have a relative amount of heavy chemical elements between only 1/3000 and 1/10 000 of what is observed in our Sun, including the current record holder of the most primitive star found outside the Milky Way," says team member Martin Tafelmeyer. "Not only has our work revealed some of the very interesting, first stars in these galaxies, but it also provides a new, powerful technique to uncover more such stars," concludes Starkenburg. "From now on there is no place left to hide!" Notes [1] According to the definition used in astronomy, "metals" are all the elements other than hydrogen and helium. Such metals, except for a very few minor light chemical elements, have all been created by the various generations of stars. [2] As every rainbow demonstrates, white light can be split up into different colours. Astronomers artificially split up the light they receive from distant objects into its different colours (or wavelengths). However, where we distinguish seven rainbow colours, astronomers map hundreds of finely nuanced colours, producing a spectrum - a record of the different amounts of light the object emits in each narrow colour band. The details of the spectrum - more light emitted at some colours, less light at others - provide tell-tale signs about the chemical composition of the matter producing the light. [3] The Dwarf galaxies Abundances and Radial-velocities Team (DART) has members from institutes in nine different countries. More information This research was presented in a paper to appear in Astronomy and Astrophysics ("The NIR Ca II triplet at low metallicity", E. Starkenburg et al.). Another paper is also in preparation (Tafelmeyer et al.) that presents the UVES measurements of several primitive stars. The team is composed of Else Starkenburg, Eline Tolstoy, Amina Helmi, and Thomas de Boer (Kapteyn Astronomical Institute, University of Groningen, the Netherlands), Vanessa Hill (Laboratoire Cassiopée, Université de Nice Sophia Antipolis, Observatoire de la Côte d'Azur, CNRS, France), Jonay I. González Hernández (Observatoire de Paris, CNRS, Meudon, France and Universidad Complutense de Madrid, Spain), Mike Irwin (University of Cambridge, UK), Giuseppina Battaglia (ESO), Pascale Jablonka and Martin Tafelmeyer (Université de Genève, Ecole Polytechnique Fédérale de Lausanne, Switzerland), Matthew Shetrone (University of Texas, McDonald Observatory, USA), and Kim Venn (University of Victoria, Canada). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  20. The 1.17 Day Orbit of the Double-degenerate (DA+DQ) NLTT 16249

    NASA Astrophysics Data System (ADS)

    Vennes, S.; Kawka, A.; O'Toole, S. J.; Thorstensen, J. R.

    2012-09-01

    New spectroscopic observations show that the double-degenerate system NLTT 16249 is in a close orbit (a = 5.6 ± 0.3 R ⊙) with a period of 1.17 days. The total mass of the system is estimated between 1.47 and 2.04 M ⊙ but it is not expected to merge within a Hubble timescale (t merge ≈ 1011 yr). Vennes & Kawka originally identified the system because of the peculiar composite hydrogen (DA class) and molecular (C2-DQ class and CN) spectra and the new observations establish this system as the first DA plus DQ close double degenerate. Also, the DQ component was the first of its class to show nitrogen dredged up from the core in its atmosphere. The star may be viewed as the first known DQ descendant of the born-again PG1159 stars. Alternatively, the presence of nitrogen may be the result of past interactions and truncated evolution in a close binary system. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program ID 86.D-0562.

  1. VizieR Online Data Catalog: VVV Survey RR Lyr stars in Southern Galactic plane (Minniti+, 2017)

    NASA Astrophysics Data System (ADS)

    Minniti, D.; Dekany, I.; Majaess, D.; Palma, T.; Pullen, J.; Rejkuba, M.; Alonso-Garcia, J.; Catelan, M.; Contreras Ramos, R.; Gonzalez, O. A.; Hempel, M.; Irwin, M.; Lucas, P. W.; Saito, R. K.; Tissera, P.; Valenti, E.; Zoccali, M.

    2017-08-01

    The NIR VISTA Variables in the Via Lactea (VVV) Survey observations were acquired with the VIRCAM camera at the VISTA 4.1m telescope at ESO Paranal Observatory. In the disk fields typically 70 epochs of observations were acquired in the Ks-band between the years 2010 and 2015, in addition to complementary single-epoch observations in the ZYJH bands. The 16 NIR detectors of VIRCAM produce an image of 11.6'*11.6' and a pixel scale of 0.34''/pixel. The deep multi-epoch Ks band photometry allows us to unveil faint variable sources deep in the disk regions of our Galaxy. A search for RRab stars was made throughout tiles d001 to d038 of the VVV survey's disk field, which is a thin slice through the Galactic plane spanning 295

  2. Search for spectroscopical signatures of transiting HD 209458b's exosphere

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Coustenis, A.; Schneider, J.; St Gilles, R.; Mayor, M.; Queloz, D.; Kaufer, A.

    2001-05-01

    Following recent attempts to detect the exosphere of the extra-solar planet 51 Pegb in the infrared (Coustenis et al. \\cite{cou97}, \\cite{cou98}; Rauer et al. \\cite{rau00a}), we discuss here a search for optical spectroscopic signatures from a gaseous extended envelope (called exosphere) surrounding the planet HD 209458b. This planet has a demonstrated photometric transit (Charbonneau et al. \\cite{cha00a}; Henry et al. \\cite{hen00}), thus offering an increased probability for the spectroscopic detection of such an envelope. Therefore it is the best known candidate for probing the exospheric composition of a giant planet, orbiting a Sun-like star at a short distance. The observations were performed with UVES at the VLT and cover most of the 328-669 nm range. We did not detect HD 209458b's exosphere at a level of 1%, a value close to the predictions. We discuss here the first results obtained and their limitations, as well as future prospective. Based on public data from the UVES Commissioning at the ESO 8.2~m Kueyen telescope operated on Paranal Observatory, Chile.

  3. Black Hole Hunters Set New Distance Record

    NASA Astrophysics Data System (ADS)

    2010-01-01

    Astronomers using ESO's Very Large Telescope have detected, in another galaxy, a stellar-mass black hole much farther away than any other previously known. With a mass above fifteen times that of the Sun, this is also the second most massive stellar-mass black hole ever found. It is entwined with a star that will soon become a black hole itself. The stellar-mass black holes [1] found in the Milky Way weigh up to ten times the mass of the Sun and are certainly not be taken lightly, but, outside our own galaxy, they may just be minor-league players, since astronomers have found another black hole with a mass over fifteen times the mass of the Sun. This is one of only three such objects found so far. The newly announced black hole lies in a spiral galaxy called NGC 300, six million light-years from Earth. "This is the most distant stellar-mass black hole ever weighed, and it's the first one we've seen outside our own galactic neighbourhood, the Local Group," says Paul Crowther, Professor of Astrophysics at the University of Sheffield and lead author of the paper reporting the study. The black hole's curious partner is a Wolf-Rayet star, which also has a mass of about twenty times as much as the Sun. Wolf-Rayet stars are near the end of their lives and expel most of their outer layers into their surroundings before exploding as supernovae, with their cores imploding to form black holes. In 2007, an X-ray instrument aboard NASA's Swift observatory scrutinised the surroundings of the brightest X-ray source in NGC 300 discovered earlier with the European Space Agency's XMM-Newton X-ray observatory. "We recorded periodic, extremely intense X-ray emission, a clue that a black hole might be lurking in the area," explains team member Stefania Carpano from ESA. Thanks to new observations performed with the FORS2 instrument mounted on ESO's Very Large Telescope, astronomers have confirmed their earlier hunch. The new data show that the black hole and the Wolf-Rayet star dance around each other in a diabolic waltz, with a period of about 32 hours. The astronomers also found that the black hole is stripping matter away from the star as they orbit each other. "This is indeed a very 'intimate' couple," notes collaborator Robin Barnard. "How such a tightly bound system has been formed is still a mystery." Only one other system of this type has previously been seen, but other systems comprising a black hole and a companion star are not unknown to astronomers. Based on these systems, the astronomers see a connection between black hole mass and galactic chemistry. "We have noticed that the most massive black holes tend to be found in smaller galaxies that contain less 'heavy' chemical elements," says Crowther [2]. "Bigger galaxies that are richer in heavy elements, such as the Milky Way, only succeed in producing black holes with smaller masses." Astronomers believe that a higher concentration of heavy chemical elements influences how a massive star evolves, increasing how much matter it sheds, resulting in a smaller black hole when the remnant finally collapses. In less than a million years, it will be the Wolf-Rayet star's turn to go supernova and become a black hole. "If the system survives this second explosion, the two black holes will merge, emitting copious amounts of energy in the form of gravitational waves as they combine [3]," concludes Crowther. However, it will take some few billion years until the actual merger, far longer than human timescales. "Our study does however show that such systems might exist, and those that have already evolved into a binary black hole might be detected by probes of gravitational waves, such as LIGO or Virgo [4]." Notes [1] Stellar-mass black holes are the extremely dense, final remnants of the collapse of very massive stars. These black holes have masses up to around twenty times the mass of the Sun, as opposed to supermassive black holes, found in the centre of most galaxies, which can weigh a million to a billion times as much as the Sun. So far, around 20 stellar-mass black holes have been found. [2] In astronomy, heavy chemical elements, or "metals", are any chemical elements heavier than helium. [3] Predicted by Einstein's theory of general relativity, gravitational waves are ripples in the fabric of space and time. Significant gravitational waves are generated whenever there are extreme variations of strong gravitational fields with time, such as during the merger of two black holes. The detection of gravitational waves, never directly observed to date, is one of the major challenges for the next few decades. [4] The LIGO and Virgo experiments have the goal of detecting gravitational waves using sensitive interferometers in Italy and the United States. More information This research was presented in a letter to appear in the Monthly Notices of the Royal Astronomical Society (NGC 300 X-1 is a Wolf-Rayet/Black Hole binary, P.A. Crowther et al.). The team is composed of Paul Crowther and Vik Dhillon (University of Sheffield, UK), Robin Barnard and Simon Clark (The Open University, UK), and Stefania Carpano and Andy Pollock (ESAC, Madrid, Spain). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory, and VISTA, the largest survey telescope in the world. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. The Gaia-ESO Survey Astrophysical Calibration

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Gaia-ESO Survey Consortium

    2016-05-01

    The Gaia-ESO Survey is a wide field spectroscopic survey recently started with the FLAMES@VLT in Cerro Paranal, Chile. It will produce radial velocities more accurate than Gaia's for faint stars (down to V ≃ 18), and astrophysical parameters and abundances for approximately 100 000 stars, belonging to all Galactic populations. 300 nights were assigned in 5 years (with the last year subject to approval after a detailed report). In particular, to connect with other ongoing and planned spectroscopic surveys, a detailed calibration program — for the astrophysical parameters derivation — is planned, including well known clusters, Gaia benchmark stars, and special equatorial calibration fields designed for wide field/multifiber spectrographs.

  5. VirGO: A Visual Browser for the ESO Science Archive Facility

    NASA Astrophysics Data System (ADS)

    Chéreau, F.

    2008-08-01

    VirGO is the next generation Visual Browser for the ESO Science Archive Facility developed by the Virtual Observatory (VO) Systems Department. It is a plug-in for the popular open source software Stellarium adding capabilities for browsing professional astronomical data. VirGO gives astronomers the possibility to easily discover and select data from millions of observations in a new visual and intuitive way. Its main feature is to perform real-time access and graphical display of a large number of observations by showing instrumental footprints and image previews, and to allow their selection and filtering for subsequent download from the ESO SAF web interface. It also allows the loading of external FITS files or VOTables, the superimposition of Digitized Sky Survey (DSS) background images, and the visualization of the sky in a `real life' mode as seen from the main ESO sites. All data interfaces are based on Virtual Observatory standards which allow access to images and spectra from external data centers, and interaction with the ESO SAF web interface or any other VO applications supporting the PLASTIC messaging system. The main website for VirGO is at http://archive.eso.org/cms/virgo.

  6. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as they age," says Paul Crowther. "Being a little over a million years old, the most extreme star R136a1 is already 'middle-aged' and has undergone an intense weight loss programme, shedding a fifth of its initial mass over that time, or more than fifty solar masses." If R136a1 replaced the Sun in our Solar System, it would outshine the Sun by as much as the Sun currently outshines the full Moon. "Its high mass would reduce the length of the Earth's year to three weeks, and it would bathe the Earth in incredibly intense ultraviolet radiation, rendering life on our planet impossible," says Raphael Hirschi from Keele University, who belongs to the team. These super heavyweight stars are extremely rare, forming solely within the densest star clusters. Distinguishing the individual stars - which has now been achieved for the first time - requires the exquisite resolving power of the VLT's infrared instruments [2]. The team also estimated the maximum possible mass for the stars within these clusters and the relative number of the most massive ones. "The smallest stars are limited to more than about eighty times more than Jupiter, below which they are 'failed stars' or brown dwarfs," says team member Olivier Schnurr from the Astrophysikalisches Institut Potsdam. "Our new finding supports the previous view that there is also an upper limit to how big stars can get, although it raises the limit by a factor of two, to about 300 solar masses." Within R136, only four stars weighed more than 150 solar masses at birth, yet they account for nearly half of the wind and radiation power of the entire cluster, comprising approximately 100 000 stars in total. R136a1 alone energises its surroundings by more than a factor of fifty compared to the Orion Nebula cluster, the closest region of massive star formation to Earth. Understanding how high mass stars form is puzzling enough, due to their very short lives and powerful winds, so that the identification of such extreme cases as R136a1 raises the challenge to theorists still further. "Either they were born so big or smaller stars merged together to produce them," explains Crowther. Stars between about 8 and 150 solar masses explode at the end of their short lives as supernovae, leaving behind exotic remnants, either neutron stars or black holes. Having now established the existence of stars weighing between 150 and 300 solar masses, the astronomers' findings raise the prospect of the existence of exceptionally bright, "pair instability supernovae" that completely blow themselves apart, failing to leave behind any remnant and dispersing up to ten solar masses of iron into their surroundings. A few candidates for such explosions have already been proposed in recent years. Not only is R136a1 the most massive star ever found, but it also has the highest luminosity too, close to 10 million times greater than the Sun. "Owing to the rarity of these monsters, I think it is unlikely that this new record will be broken any time soon," concludes Crowther. Notes [1] The star A1 in NGC 3603 is a double star, with an orbital period of 3.77 days. The two stars in the system have, respectively, 120 and 92 times the mass of the Sun, which means that they have formed as stars weighing, respectively, 148 and 106 solar masses. [2] The team used the SINFONI, ISAAC and MAD instruments, all attached to ESO's Very Large Telescope at Paranal, Chile. [3] (note added on 26 July 2010) The "bigger" in the title does not imply that these stars are the biggest observed. Such stars, called red supergiants, can have radii up to about a thousand solar radii, while R136a1, which is blue, is about 35 times as large as the Sun. However, R136a1 is the star with the greatest mass known to date. More information This work is presented in an article published in the Monthly Notices of the Royal Astronomical Society ("The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 Msun stellar mass limit", by P. Crowther et al.). The team is composed of Paul A. Crowther, Richard J. Parker, and Simon P. Goodwin (University of Sheffield, UK), Olivier Schnurr (University of Sheffield and Astrophysikalisches Institut Potsdam, Germany), Raphael Hirschi (Keele University, UK), and Norhasliza Yusof and Hasan Abu Kassim (University of Malaya, Malaysia). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  7. A Very Cool Pair of Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    2011-03-01

    Observations with the European Southern Observatory's Very Large Telescope, along with two other telescopes, have shown that there is a new candidate for the coldest known star: a brown dwarf in a double system with about the same temperature as a freshly made cup of tea - hot in human terms, but extraordinarily cold for the surface of a star. This object is cool enough to begin crossing the blurred line dividing small cold stars from big hot planets. Brown dwarfs are essentially failed stars: they lack enough mass for gravity to trigger the nuclear reactions that make stars shine. The newly discovered brown dwarf, identified as CFBDSIR 1458+10B, is the dimmer member of a binary brown dwarf system located just 75 light-years from Earth [1]. The powerful X-shooter spectrograph on ESO's Very Large Telescope (VLT) was used to show that the composite object was very cool by brown dwarf standards. "We were very excited to see that this object had such a low temperature, but we couldn't have guessed that it would turn out to be a double system and have an even more interesting, even colder component," said Philippe Delorme of the Institut de planétologie et d'astrophysique de Grenoble (CNRS/Université Joseph Fourier), a co-author of the paper. CFBDSIR 1458+10 is the coolest brown dwarf binary found to date. The dimmer of the two dwarfs has now been found to have a temperature of about 100 degrees Celsius - the boiling point of water, and not much different from the temperature inside a sauna [2]. "At such temperatures we expect the brown dwarf to have properties that are different from previously known brown dwarfs and much closer to those of giant exoplanets - it could even have water clouds in its atmosphere," said Michael Liu of the University of Hawaii's Institute for Astronomy, who is lead author of the paper describing this new work. "In fact, once we start taking images of gas-giant planets around Sun-like stars in the near future, I expect that many of them will look like CFBDSIR 1458+10B." Unravelling the secrets of this unique object involved exploiting the power of three different telescopes. CFBDSIR 1458+10 was first found to be a binary using the Laser Guide Star (LGS) Adaptive Optics system on the Keck II Telescope in Hawaii [3]. Liu and his colleagues then employed the Canada-France-Hawaii Telescope, also in Hawaii, to determine the distance to the brown dwarf duo using an infrared camera [4]. Finally the ESO VLT was used to study the object's infrared spectrum and measure its temperature. The hunt for cool objects is a very active astronomical hot topic. The Spitzer Space Telescope has recently identified two other very faint objects as other possible contenders for the coolest known brown dwarfs, although their temperatures have not been measured so precisely. Future observations will better determine how these objects compare to CFBDSIR 1458+10B. Liu and his colleagues are planning to observe CFBDSIR 1458+10B again to better determine its properties and to begin mapping the binary's orbit, which, after about a decade of monitoring, should allow astronomers to determine the binary's mass. Notes [1] CFBDSIR 1458+10 is the name of the binary system. The two components are known as CFBDSIR 1458+10A and CFBDSIR 1458+10B, with the latter the fainter and cooler of the two. They seem to be orbiting each other at a separation of about three times the distance between the Earth and the Sun in a period of about thirty years. [2] By comparison the temperature of the surface of the Sun is about 5500 degrees Celsius. [3] Adaptive optics cancels out much of Earth's atmospheric interference, improving the image sharpness by a factor of ten and enabling the very small separation binary to be resolved. [4] The astronomers measured the apparent motion of the brown dwarfs against the background of more distant stars caused by Earth's changing position in its orbit around the Sun. The effect, known as parallax, allowed them to determine the distance to the brown dwarfs. More information This research was presented in a paper, "CFBDSIR J1458+1013B: A Very Cold (>T10) Brown Dwarf in a Binary System", Liu et al. to appear in the Astrophysical Journal. The team is composed of Michael C. Liu (Institute for Astronomy [IfA], University of Hawaii, USA), Philippe Delorme (Institut de planétologie et d'astrophysique de Grenoble, CNRS/Université Joseph Fourier, France [IPAG]), Trent J. Dupuy (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), Brendan P. Bowler (IfA), Loic Albert (Canada-France-Hawaii Telescope Corporation, Hawaii, USA), Etienne Artigau (Université de Montréal, Canada), Celine Reylé (Observatoire de Besançon, France), Thierry Forveille (IPAG) and Xavier Delfosse (IPAG). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  8. The X-shooter pipeline

    NASA Astrophysics Data System (ADS)

    Modigliani, Andrea; Goldoni, Paolo; Royer, Frédéric; Haigron, Regis; Guglielmi, Laurent; François, Patrick; Horrobin, Matthew; Bristow, Paul; Vernet, Joel; Moehler, Sabine; Kerber, Florian; Ballester, Pascal; Mason, Elena; Christensen, Lise

    2010-07-01

    The X-shooter data reduction pipeline, as part of the ESO-VLT Data Flow System, provides recipes for Paranal Science Operations, and for Data Product and Quality Control Operations at Garching headquarters. At Paranal, it is used for the quick-look data evaluation. The pipeline recipes can be executed either with EsoRex at the command line level or through the Gasgano graphical user interface. The recipes are implemented with the ESO Common Pipeline Library (CPL). X-shooter is the first of the second generation of VLT instruments. It makes possible to collect in one shot the full spectrum of the target from 300 to 2500 nm, subdivided in three arms optimised for UVB, VIS and NIR ranges, with an efficiency between 15% and 35% including the telescope and the atmosphere, and a spectral resolution varying between 3000 and 17,000. It allows observations in stare, offset modes, using the slit or an IFU, and observing sequences nodding the target along the slit. Data reduction can be performed either with a classical approach, by determining the spectral format via 2D-polynomial transformations, or with the help of a dedicated instrument physical model to gain insight on the instrument and allowing a constrained solution that depends on a few parameters with a physical meaning. In the present paper we describe the steps of data reduction necessary to fully reduce science observations in the different modes with examples on typical data calibrations and observations sequences.

  9. ESO Reflex: a graphical workflow engine for data reduction

    NASA Astrophysics Data System (ADS)

    Hook, Richard; Ullgrén, Marko; Romaniello, Martino; Maisala, Sami; Oittinen, Tero; Solin, Otto; Savolainen, Ville; Järveläinen, Pekka; Tyynelä, Jani; Péron, Michèle; Ballester, Pascal; Gabasch, Armin; Izzo, Carlo

    ESO Reflex is a prototype software tool that provides a novel approach to astronomical data reduction by integrating a modern graphical workflow system (Taverna) with existing legacy data reduction algorithms. Most of the raw data produced by instruments at the ESO Very Large Telescope (VLT) in Chile are reduced using recipes. These are compiled C applications following an ESO standard and utilising routines provided by the Common Pipeline Library (CPL). Currently these are run in batch mode as part of the data flow system to generate the input to the ESO/VLT quality control process and are also exported for use offline. ESO Reflex can invoke CPL-based recipes in a flexible way through a general purpose graphical interface. ESO Reflex is based on the Taverna system that was originally developed within the UK life-sciences community. Workflows have been created so far for three VLT/VLTI instruments, and the GUI allows the user to make changes to these or create workflows of their own. Python scripts or IDL procedures can be easily brought into workflows and a variety of visualisation and display options, including custom product inspection and validation steps, are available. Taverna is intended for use with web services and experiments using ESO Reflex to access Virtual Observatory web services have been successfully performed. ESO Reflex is the main product developed by Sampo, a project led by ESO and conducted by a software development team from Finland as an in-kind contribution to joining ESO. The goal was to look into the needs of the ESO community in the area of data reduction environments and to create pilot software products that illustrate critical steps along the road to a new system. Sampo concluded early in 2008. This contribution will describe ESO Reflex and show several examples of its use both locally and using Virtual Observatory remote web services. ESO Reflex is expected to be released to the community in early 2009.

  10. Professor Tim de Zeeuw Takes Up Duty as New ESO Director General

    NASA Astrophysics Data System (ADS)

    2007-09-01

    On 1 September, Tim de Zeeuw became the new ESO Director General, succeeding Catherine Cesarsky. In his first day in office, he kindly agreed to answer a few questions. ESO PR Photo 38/07 ESO PR Video 38/07 Watch the Video! How would you describe the current period for astronomy? Tim de Zeeuw: We are in an extremely exciting time for astronomy and I think this is understood worldwide and not just by astronomers. The technology is now available to look not only at the farthest objects in the Universe, where the light left a long time ago, allowing us to see how the Universe evolved and developed, but we can even detect signatures of planets around other stars, and that answers an age-old question which is a fundamental question in all of science, and really excites the general public. How do you see the role of ESO in this context? Tim de Zeeuw: ESO has a very important role in the context of European and worldwide astronomy because it is one of the leading organisations for ground-based astronomy. You may even say it is the pre-eminent organisation. Therefore, we have both an opportunity and a responsibility to lead the further developments in astronomy. Where do you see ESO developing in the coming years? Tim de Zeeuw: I see three main goals for ESO in the coming years. The first one is to get the best possible science out of the Very Large Telescope, the interferometer and the survey telescopes, all of them on Paranal. The second is to build ALMA, the new observatory at 5 000 metres in the high Andes. Together with our North American and East Asian partners, we need to deliver this on budget and on time, and prepare the European astronomers for leading the science. The third main goal is to design a world-leading Extremely Large Telescope (ELT), which may have a main mirror with a diameter larger than 40 metres and will enable wonderful science. And of course, we don't only want to design it, we also want to construct it. And what about La Silla? Tim de Zeeuw: La Silla is the cornerstone of the existence of ESO in Chile, and it is home to some wonderful telescopes, including the one that is discovering so many exoplanets. I see no reason why this could not continue for many years into the future. And on top of that, La Silla is one of the potential sites for the future ELT. What made you take up this position? Tim de Zeeuw: I took up this position because ESO is the most exciting astronomy organisation in the world, with highly qualified staff and long-term and stable support by the member countries. It will be a pleasure and a privilege to come and work here. What will you do in your first days in office? Tim de Zeeuw: First, I will further familiarise myself with the organisation but then I will very quickly travel to Chile. After all, the crown jewels of ESO are in Chile and it is very important that I meet not only the ESO staff in Chile, but also the Chilean astronomers and authorities.

  11. The Gaia-ESO Survey: Calibration strategy

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Lardo, C.; Altavilla, G.; Marinoni, S.; Ragaini, S.; Cocozza, G.; Bellazzini, M.; Sabbi, E.; Zoccali, M.; Donati, P.; Heiter, U.; Koposov, S. E.; Blomme, R.; Morel, T.; Símon-Díaz, S.; Lobel, A.; Soubiran, C.; Montalban, J.; Valentini, M.; Casey, A. R.; Blanco-Cuaresma, S.; Jofré, P.; Worley, C. C.; Magrini, L.; Hourihane, A.; François, P.; Feltzing, S.; Gilmore, G.; Randich, S.; Asplund, M.; Bonifacio, P.; Drew, J. E.; Jeffries, R. D.; Micela, G.; Vallenari, A.; Alfaro, E. J.; Allende Prieto, C.; Babusiaux, C.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Hambly, N.; Korn, A. J.; Lanzafame, A. C.; Smiljanic, R.; Van Eck, S.; Walton, N. A.; Bayo, A.; Carraro, G.; Costado, M. T.; Damiani, F.; Edvardsson, B.; Franciosini, E.; Frasca, A.; Lewis, J.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Zaggia, S.; Koch, A.

    2017-02-01

    The Gaia-ESO survey (GES) is now in its fifth and last year of observations and has produced tens of thousands of high-quality spectra of stars in all Milky Way components. This paper presents the strategy behind the selection of astrophysical calibration targets, ensuring that all GES results on radial velocities, atmospheric parameters, and chemical abundance ratios will be both internally consistent and easily comparable with other literature results, especially from other large spectroscopic surveys and from Gaia. The calibration of GES is particularly delicate because of (I) the large space of parameters covered by its targets, ranging from dwarfs to giants, from O to M stars; these targets have a large wide of metallicities and also include fast rotators, emission line objects, and stars affected by veiling; (II) the variety of observing setups, with different wavelength ranges and resolution; and (III) the choice of analyzing the data with many different state-of-the-art methods, each stronger in a different region of the parameter space, which ensures a better understanding of systematic uncertainties. An overview of the GES calibration and homogenization strategy is also given, along with some examples of the usage and results of calibrators in GES iDR4, which is the fourth internal GES data release and will form the basis of the next GES public data release. The agreement between GES iDR4 recommended values and reference values for the calibrating objects are very satisfactory. The average offsets and spreads are generally compatible with the GES measurement errors, which in iDR4 data already meet the requirements set by the main GES scientific goals. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 188.B-3002 and 193.B-0936.Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A5

  12. A Proper Motions Study of the Globular Cluster NGC 3201

    NASA Astrophysics Data System (ADS)

    Sariya, Devesh P.; Jiang, Ing-Guey; Yadav, R. K. S.

    2017-03-01

    With a high value of heliocentric radial velocity, a retrograde orbit, and suspected to have an extragalactic origin, NGC 3201 is an interesting globular cluster for kinematical studies. Our purpose is to calculate the relative proper motions (PMs) and membership probability for the stars in the wide region of globular cluster NGC 3201. PM based membership probabilities are used to isolate the cluster sample from the field stars. The membership catalog will help address the question of chemical inhomogeneity in the cluster. Archive CCD data taken with a wide-field imager (WFI) mounted on the ESO 2.2 m telescope are reduced using the high-precision astrometric software developed by Anderson et al. for the WFI images. The epoch gap between the two observational runs is ˜14.3 years. To standardize the BVI photometry, Stetson’s secondary standard stars are used. The CCD data with an epoch gap of ˜14.3 years enables us to decontaminate the cluster stars from field stars efficiently. The median precision of PMs is better than ˜0.8 mas yr-1 for stars having V< 18 mag that increases up to ˜1.5 mas yr-1 for stars with 18< V< 20 mag. Kinematic membership probabilities are calculated using PMs for stars brighter than V˜ 20 mag. An electronic catalog of positions, relative PMs, BVI magnitudes, and membership probabilities in the ˜19.7 × 17 arcmin2 region of NGC 3201 is presented. We use our membership catalog to identify probable cluster members among the known variables and X-ray sources in the direction of NGC 3201. Based on observations with the MPG/ESO 2.2 m and ESO/VLT telescopes, located at La Silla and Paranal Observatory, Chile, under DDT programs 164.O-0561(F), 093.A-9028(A), and the archive material.

  13. Fast ray-tracing algorithm for circumstellar structures (FRACS). II. Disc parameters of the B[e] supergiant CPD-57°,2874 from VLTI/MIDI data

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Bendjoya, P.; Niccolini, G.; Chesneau, O.; Borges Fernandes, M.; Carciofi, A. C.; Spang, A.; Stee, P.; Driebe, T.

    2011-01-01

    Context. B[e] supergiants are luminous, massive post-main sequence stars exhibiting non-spherical winds, forbidden lines, and hot dust in a disc-like structure. The physical properties of their rich and complex circumstellar environment (CSE) are not well understood, partly because these CSE cannot be easily resolved at the large distances found for B[e] supergiants (typically ⪆1 kpc). Aims: From mid-IR spectro-interferometric observations obtained with VLTI/MIDI we seek to resolve and study the CSE of the Galactic B[e] supergiant CPD-57° 2874. Methods: For a physical interpretation of the observables (visibilities and spectrum) we use our ray-tracing radiative transfer code (FRACS), which is optimised for thermal spectro-interferometric observations. Results: Thanks to the short computing time required by FRACS (<10 s per monochromatic model), best-fit parameters and uncertainties for several physical quantities of CPD-57° 2874 were obtained, such as inner dust radius, relative flux contribution of the central source and of the dusty CSE, dust temperature profile, and disc inclination. Conclusions: The analysis of VLTI/MIDI data with FRACS allowed one of the first direct determinations of physical parameters of the dusty CSE of a B[e] supergiant based on interferometric data and using a full model-fitting approach. In a larger context, the study of B[e] supergiants is important for a deeper understanding of the complex structure and evolution of hot, massive stars. Based on VLTI/MIDI observations collected at the European Southern Observatory (ESO), Paranal, Chile under ESO Programmes 074.D-0101 and 078.D-0213. Also based on observations at the ESO 2.2-m telescope, La Silla, Chile, under agreement with the Observatório Nacional-MCT (Brazil).Figure 5 is only available in electronic form at http://www.aanda.org

  14. VirGO: A Visual Browser for the ESO Science Archive Facility

    NASA Astrophysics Data System (ADS)

    Chéreau, Fabien

    2012-04-01

    VirGO is the next generation Visual Browser for the ESO Science Archive Facility developed by the Virtual Observatory (VO) Systems Department. It is a plug-in for the popular open source software Stellarium adding capabilities for browsing professional astronomical data. VirGO gives astronomers the possibility to easily discover and select data from millions of observations in a new visual and intuitive way. Its main feature is to perform real-time access and graphical display of a large number of observations by showing instrumental footprints and image previews, and to allow their selection and filtering for subsequent download from the ESO SAF web interface. It also allows the loading of external FITS files or VOTables, the superimposition of Digitized Sky Survey (DSS) background images, and the visualization of the sky in a `real life' mode as seen from the main ESO sites. All data interfaces are based on Virtual Observatory standards which allow access to images and spectra from external data centers, and interaction with the ESO SAF web interface or any other VO applications supporting the PLASTIC messaging system.

  15. Keck and VLT Observations of Super-Damped Lyman-Alpha Absorbers at z 2- 2.5: Constraints on Chemical Compositions and Physical Conditions

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha P.; Som, Debopam; Morrison, Sean; Péroux, Celine; Quiret, Samuel; York, Donald G.

    2015-12-01

    We report Keck/Echellette Spectrograph and Imager and Very Large Telescope/Ultraviolet-Visual Echelle Spectrograph observations of three super-damped Lyα quasar absorbers with H i column densities log NH i ≥ 21.7 at redshifts 2 ≲ z ≲ 2.5. All three absorbers show similar metallicities (˜-1.3 to -1.5 dex), and dust depletion of Fe, Ni, and Mn. Two of the absorbers show supersolar [S/Zn] and [Si/Zn]. We combine our results with those for other damped Lyα a absorbers (DLAs) to examine trends between NH i, metallicity, and dust depletion. A larger fraction of the super-DLAs lie close to or above the line [X/H] = 20.59 - log NH i in the metallicity versus NH i plot, compared to the less gas-rich DLAs, suggesting that super-DLAs are more likely to be rich in molecules. Unfortunately, our data for Q0230-0334 and Q0743+1421 do not cover H2 absorption lines. For Q1418+0718, some H2 lines are covered, but not detected. CO is not detected in any of our absorbers. For DLAs with log NH i < 21.7, we confirm strong correlation between metallicity and Fe depletion, and find a correlation between metallicity and Si depletion. For super-DLAs, these correlations are weaker or absent. The absorbers toward Q0230-0334 and Q1418+0718 show potential detections of weak Lyα emission, implying star formation rates of ˜1.6 and ˜0.7 M⊙ yr-1, respectively (ignoring dust extinction). Upper limits on the electron densities from C ii*/C ii or Si ii*/Si ii are low, but are higher than the median values in less gas-rich DLAs. Finally, systems with log NH i > 21.7 may have somewhat narrower velocity dispersions Δv90 than the less gas-rich DLAs, and may arise in cooler and/or less turbulent gas. Includes observations collected during program ESO 93.A-0422 at the European Southern Observatory (ESO) Very Large Telescope (VLT) with the Ultraviolet-Visual Echelle Spectrograph (UVES) on the 8.2 m telescopes operated at the Paranal Observatory, Chile. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  16. Light Dawns on Dark Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    2010-12-01

    Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, using the GROND instrument on the 2.2-metre MPG/ESO telescope at La Silla in Chile, has found that these gigantic explosions don't require exotic explanations. Their faintness is now fully explained by a combination of causes, the most important of which is the presence of dust between the Earth and the explosion. Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the rest remaining mysteriously dark. Some astronomers suspected that these dark afterglows could be examples of a whole new class of gamma-ray bursts, while others thought that they might all be at very great distances. Previous studies had suggested that obscuring dust between the burst and us might also explain why they were so dim. "Studying afterglows is vital to further our understanding of the objects that become gamma-ray bursts and what they tell us about star formation in the early Universe," says the study's lead author Jochen Greiner from the Max-Planck Institute for Extraterrestrial Physics in Garching bei München, Germany. NASA launched the Swift satellite at the end of 2004. From its orbit above the Earth's atmosphere it can detect gamma-ray bursts and immediately relay their positions to other observatories so that the afterglows could be studied. In the new study, astronomers combined Swift data with new observations made using GROND [2] - a dedicated gamma-ray burst follow-up observation instrument, which is attached to the 2.2-metre MPG/ESO telescope at La Silla in Chile. In doing so, astronomers have conclusively solved the puzzle of the missing optical afterglow. What makes GROND exciting for the study of afterglows is its very fast response time - it can observe a burst within minutes of an alert coming from Swift using a special system called the Rapid Response Mode - and its ability to observe simultaneously through seven filters covering both the visible and near-infrared parts of the spectrum. By combining GROND data taken through these seven filters with Swift observations, astronomers were able to accurately determine the amount of light emitted by the afterglow at widely differing wavelengths, all the way from high energy X-rays to the near-infrared. The astronomers used this information to directly measure the amount of obscuring dust that the light passed through en route to Earth. Previously, astronomers had to rely on rough estimates of the dust content [3]. The team used a range of data, including their own measurements from GROND, in addition to observations made by other large telescopes including the ESO Very Large Telescope, to estimate the distances to nearly all of the bursts in their sample. While they found that a significant proportion of bursts are dimmed to about 60-80 percent of the original intensity by obscuring dust, this effect is exaggerated for the very distant bursts, letting the observer see only 30-50 percent of the light [4]. The astronomers conclude that most dark gamma-ray bursts are therefore simply those that have had their small amount of visible light completely stripped away before it reaches us. "Compared to many instruments on large telescopes, GROND is a low cost and relatively simple instrument, yet it has been able to conclusively resolve the mystery surrounding dark gamma-ray bursts," says Greiner. Notes [1] Gamma-ray bursts lasting longer than two seconds are referred to as long bursts and those with a shorter duration are known as short bursts. Long bursts, which were observed in this study, are associated with the supernova explosions of massive young stars in star-forming galaxies. Short bursts are not well understood, but are thought to originate from the merger of two compact objects such as neutron stars. [2] The Gamma-Ray burst Optical and Near-infrared Detector (GROND) was designed and built at the Max-Planck Institute for Extraterrestrial Physics in collaboration with the Tautenburg Observatory, and has been fully operational since August 2007. [3] Other studies relating to dark gamma-ray bursts have been released. Early this year, astronomers used the Subaru Telescope to observe a single gamma-ray burst, from which they hypothesised that dark gamma-ray bursts may indeed be a separate sub-class that form through a different mechanism, such as the merger of binary stars. In another study published last year using the Keck Telescope, astronomers studied the host galaxies of 14 dark GRBs, and based on the derived low redshifts they infer dust as the likely mechanism to create the dark bursts. In the new work reported here, 39 GRBs were studied, including nearly 20 dark bursts, and it is the only study in which no prior assumptions have been made and the amount of dust has been directly measured. [4] Because the afterglow light of very distant bursts is redshifted due to the expansion of the Universe, the light that left the object was originally bluer than the light we detect when it gets to Earth. Since the reduction of light intensity by dust is greater for blue and ultraviolet light than for red, this means that the overall dimming effect of dust is greater for the more distant gamma-ray bursts. This is why GROND's ability to observe near-infrared radiation makes such a difference. More information This research is presented in a paper to appear in the journal Astronomy & Astrophysics on 16 December 2010 The team is composed of: J. Greiner (Max-Planck-Institut für extraterrestrische Physik [MPE], Germany), T. Krühler (MPE, Universe Cluster, Technische Universität München), S. Klose (Thüringer Landessternwarte, Germany), P. Afonso (MPE), C. Clemens (MPE), R. Filgas (MPE), D.H. Hartmann (Clemson University, USA), A. Küpcü Yoldaş¸ (University of Cambridge, UK), M. Nardini (MPE), F. Olivares E. (MPE), A. Rau (MPE), A. Rossi (Thüringer Landessternwarte, Germany), P. Schady (MPE), and A. Updike (Clemson University, USA) ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  17. Early German Plans for a Southern Observatory

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century the Heidelberg astronomer Max Wolf (1863-1932) proposed a southern observatory. In 1907 Hermann Carl Vogel (1841-1907), director of the Astrophysical Observatory Potsdam, suggested a southern station in Spain. His ideas for building an observatory in Windhuk for photographing the sky and measuring the solar constant were taken over by the Göttingen astronomers. In 1910 Karl Schwarzschild (1873-1916), after having visited the observatories in America, pointed out the usefulness of an observatory in South West Africa, where it would have better weather than in Germany and also give access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhuk to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963, as is well described by Blaauw (1991). Blaauw, Adriaan: ESO's Early History. The European Southern Observatory from Concept to Reality. Garching bei München: ESO 1991.

  18. Into the Epoch of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    2000-02-01

    Infrared VLT Observations Identify Hidden Galaxies in the Early Universe Working with the ESO Very Large Telescope (VLT) at the Paranal Observatory , a group of European astronomers [1] has just obtained one of the deepest looks into the distant Universe ever made by an optical telescope. These observations were carried out in the near-infrared spectral region and are part of an attempt to locate very distant galaxies that have so far escaped detection in the visual bands. The first results are very promising and some concentrations of galaxies at very large distances were uncovered. Some early galaxies may be in hiding Current theories hypothesize that more than 80% of all stars ever formed were assembled in galaxies during the latter half of the elapsed lifetime of the Universe, i.e., during the past 7-8 billion years. However, doubts have arisen about these ideas. There are now observational indications that a significant number of those galaxies that formed during the first 20% of the age of the Universe, i.e. within about 3 billion years after the Big Bang, may not be visible to optical telescopes. In some cases, we do not see them, because their light is obscured by dust. Other distant galaxies may escape detection by optical telescopes because star formation in them has ceased and their light is mainly emitted in the red and infrared spectral bands. This is because, while very young galaxies mostly contain hot and blue stars, older galaxies have substantial numbers of cool and red stars. They are then dominated by an older, "evolved" stellar population that is cooler and redder. The large cosmic velocities of these galaxies further enhance this effect by causing their light to be "redshifted" towards longer wavelengths, i.e. into the near-infrared spectral region. Observations in the infrared needed Within the present programme, long exposures in near-infrared wavebands were made with the Infrared Spectrometer And Array Camera (ISAAC) , mounted on ANTU , the first of the four 8.2-m VLT Unit Telescopes. A first analysis of the new observations indicates that "evolved" galaxies were already present when the Universe was only 4 billion years old. This information is of great importance to our understanding of how the matter in the early Universe condensed and the first galaxies and stars came into being. While in the nearby Universe evolved galaxies are preferentially located in denser environments such as groups and clusters of galaxies, little is currently known about the distribution in space of such objects at early cosmic epochs. In order to be able to see such obscured and/or "evolved" galaxies in the early Universe, and to look for hitherto unknown galaxies beyond the limits of "deep-field" imaging in visible spectral bands, it is necessary to employ other observing techniques. The astronomers must search for such objects on large-field, very long-exposure sky images obtained in the near-infrared (NIR, wavelength 1-2 µm) region of the electromagnetic spectrum and at even longer wavelengths (> 10 µm) in the far-IR and in the sub-mm range. Such observations are beyond the capability of the infrared cameras installed on the world's 4-m class telescopes. However, the advent of the ISAAC instrument at the 8.2-m ANTU telescope has now opened new and exciting research opportunities in this direction for European astronomers. With ISAAC , it is possible to obtain "deep" NIR images in an unprecedentedly wide field of view, covering a sky area about 7 times larger than with the best instruments previously available on very large telescopes. Such observations also benefit greatly from the very good optical quality provided by the active optics control of the VLT, as well as the excellent Paranal site. The ISAAC/ANTU observations ESO PR Photo 06a/00 ESO PR Photo 06a/00 [Preview - JPEG: 400 x 427pix - 69k] [Normal - JPEG: 800 x 853 pix - 195k] [Full-Res - JPEG: 942 x 1004 pix - 635k] Caption : ESO PR Photo 06a/00 displays a 4.5 arcmin 2 area of the "AXAF Deep Field" , as observed with the ISAAC multi-mode instrument at VLT ANTU in the near-IR K band (at wavelength 2.x µm). The total integration time is 8.5 hours and the limiting magnitude is K = 23.5 per arcsec 2 (at S/N-ratio = 3). The pixel size is 0.15 arcsec. North is up and east is left. The "Full-Res" version maintains the original pixels and is of the highest reproduction quality (least file compression). The reproduction is "negative", with dark objects on a light sky, in order to better show the faintest objects. See also the technical note below. ESO PR Photo 06b/00 ESO PR Photo 06b/00 [Preview - JPEG: 400 x 451 pix - 103k] [Normal - JPEG: 800 x 902 pix - 270k] [Full-Res - JPEG: 924 x 1042 pix - 704k] Caption : ESO PR Photo 06b/00 is a composite colour image of the field shown in PR Photo 06a/00 . It is a combination of the K-band image from ANTU/ISAAC shown in PR Photo 06a/00 with two images obtained in the B and R bands with the SUSI-2 optical imager at the New Technology Telescope (NTT) on La Silla in the framework of the ESO-EIS survey. Note the relatively high density of red galaxies, visible in the upper right part of this image. The colours of most of these galaxies are consistent with those of "evolved" galaxies, already present when the Universe was only 4 billions years old. The "Full-Res" version maintains the original pixels and is of the highest reproduction quality (least file compression). The group of European astronomers recently obtained a first "ultra-deep" 4.5 arcmin 2 image in the near-infrared J (wavelength 1.2 µm) and K (2.2 µm) bands, centered in the so-called "AXAF Deep Field", cf. PR Photos 06a-b/00 . This area of the sky is remarkably devoid of bright stars and provides a clear view towards the remote Universe, as there is little obscuring dust in our own Galaxy, the Milky Way, in this direction. It is therefore uniquely suited to probe the depth of the Universe. It is exactly for this reason that it was selected for a deep survey to be conducted with the Chandra X-Ray Observatory (CXO) during the guaranteed observing time of the former ESO Director General, Professor Riccardo Giacconi , and as a deep field of the ESO Imaging Survey (EIS, cf. ESO Press Photos 46a-j/99 ). The sky field observed with ISAAC and shown above is near the centre of the WFI image (ESO PR Photo 46a/99); it is displaced about 3.6 arcmin towards West and 1.0 armin towards North. As seen on the photos, there are great numbers of faint galaxies in this direction. Those of very red colour emit most of their light in the infrared spectral region and are particularly interesting since they may either be highly obscured or contain mostly old stars, as described above. New research possibilities With observations as these, ISAAC is now opening a new window towards the distant Universe. The comparison of the new NIR observations with earlier exposures at other wavelengths provides unique research opportunities. It is possible to measure the average star formation rate and the total stellar mass content in galaxies that are heavily obscured and are therefore not observable in the optical bands and which may constitute a substantial fraction of the primeval galaxy population. Such measurements will also allow to test current theories of galaxy formation that predict stars to be gradually assembled into galaxies, and hence envisage a progressive decline in the galaxy population towards very early cosmic times, in particular within 1-2 billion years after the Big Bang. Moreover, a comparison of NIR, optical and X-ray images will make it possible to gain new insights into the nuclear activity at the center of star-forming galaxies. It will become possible to study the distinct effects due to massive black holes and bursts of star formation. Concentrations of galaxies at large distances The relatively large field-of-view of ISAAC allows to gain information about the distribution in space of the faintest and most distant, evolved galaxies and also about the existence of associations of distant galaxies. A first clear example is the concentration of galaxies that appear uniformly yellow in PR Photo 06b/00 , apparently tracing a group of galaxies that was already assembled when the Universe was only 6 billion years old. A confirmation of the distance of a few of these galaxies has already been obtained by means of spectral observations in the framework of an ESO Large Programme , entitled "A Stringent Test on the Formation of Early Type and Massive Galaxies" and carried out by another group of astronomers [2]. A further clear example of a concentration of distant galaxies is seen in the upper right part of PR Photo 06b/00 . The very red colours of several galaxies in this sky area indicate that they are even more distant, "evolved" galaxies, already present when the Universe was only 1/3 of the current age. Notes [1] The European team consists of Emanuele Giallongo (Principal Investigator), Adriano Fontana , Nicola Menci and Francesco Poli (all at Rome Observatory), Stephane Arnouts and Sandro D'Odorico (European Southern Observatory, Garching), Stefano Cristiani (ST European Coordinating Facility, Garching) and Paolo Saracco (Milan Observatory). The data analysis was performed at the Milan ( P. Saracco ) and Rome ( A. Fontana , F. Poli ) Observatories. [2] This programme is conducted Andrea Cimatti (Principal Investigator) and Emanuele Daddi (both at Arcetri Observatory), Tom Broadhurst , Sandro D'Odorico , Roberto Gilmozzi and Alvio Renzini (European Southern Observatory), Stefano Cristiani (ST European Coordinating Facility, Garching), Adriano Fontana , Emanuele Giallongo , Nicola Menci and Francesco Poli (Rome Observatory), Marco Mignoli , Lucia Pozzetti and Giovanni Zamorani (Bologna Observatory) and Paolo Saracco (Milan Observatory). Technical note : The K-band image ( PR Photo 06a/00 ) is the result of 510 min of integration time with ISAAC at VLT ANTU. The 3-sigma magnitude limit is about K = 23.5 per arcsec 2. A J-band image was also obtained during 200 min of integration, with a 3-sigma limit of J = 25 per arcsec 2. The seeing FWHM (Full Width at Half Maximum) is 0.65 arcsec for both bands. The redshift, estimated on the basis of the measured colours of the mentioned over-density of yellow galaxies (cf. PR Photo 06b/00 ), is between 0.6 and 0.7 and that of the red galaxies is between 1 and 1.4. ESO PR Photos may be reproduced, if credit is given to the European Southern Observatory.

  19. Little Brother Joins the Large Family

    NASA Astrophysics Data System (ADS)

    2006-12-01

    On the night of 15 December 2006, the fourth and last-to-be-installed VLTI Auxiliary Telescope (AT4) obtained its 'First Light'. The first images demonstrate that AT4 will be able to deliver the excellent image quality already delivered by the first three ATs. It will soon join its siblings to perform routinely interferometric measurements. ESO PR Photo 51a/06 ESO PR Photo 51a/06 VLT Auxiliary Telescope The VLT is composed of four 8.2-m Unit Telescope (Antu, Kueyen, Melipal and Yepun). They have been progressively put into service together with a vast suite of the most advanced astronomical instruments and are operated every night in the year. Contrary to other large astronomical telescopes, the VLT was designed from the beginning with the use of interferometry as a major goal. The VLT Interferometer (VLTI) combines starlight captured by two or three 8.2- VLT Unit Telescopes, dramatically increasing the spatial resolution and showing fine details of a large variety of celestial objects. ESO PR Photo 51b/06 ESO PR Photo 51b/06 One AT Under the Sky However, most of the time the large telescopes are used for other research purposes. They are therefore only available for interferometric observations during a limited number of nights every year. Thus, in order to exploit the VLTI each night and to achieve the full potential of this unique setup, some other (smaller), dedicated telescopes were included into the overall VLT concept. These telescopes, known as the VLTI Auxiliary Telescopes (ATs), are mounted on tracks and can be placed at precisely defined "parking" observing positions on the observatory platform. From these positions, their light beams are fed into the same common focal point via a complex system of reflecting mirrors mounted in an underground system of tunnels. The Auxiliary Telescopes are real technological jewels. They are placed in ultra-compact enclosures, complete with all necessary electronics, an air conditioning system and cooling liquid for thermal control, compressed air for enclosure seals, a hydraulic plant for opening the dome shells, etc. Each AT is also fitted with a transporter that lifts the telescope and relocates it from one station to another. It moves around with its own housing on the top of Paranal, almost like a snail. The VLTI is arguably the world's most advanced optical device of this type. It has already demonstrated its powerful capabilities by addressing several key scientific issues, such as determining the size and the shape of a variety of stars (ESO PR 22/02, PR 14/03, PR 31/03, and PR 09/06), measuring distances to stars (ESO PR 25/04), probing the innermost regions of the proto-planetary discs around young stars (ESO PR 27/04 and PR 35/06) or making the first detection by infrared interferometry of an extragalactic object (ESO PR 17/03).

  20. Cosmic "Dig" Reveals Vestiges of the Milky Way's Building Blocks

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Peering through the thick dust clouds of our galaxy's "bulge" (the myriads of stars surrounding its centre), and revealing an amazing amount of detail, a team of astronomers has unveiled an unusual mix of stars in the stellar grouping known as Terzan 5. Never observed anywhere in the bulge before, this peculiar "cocktail" of stars suggests that Terzan 5 is in fact one of the bulge's primordial building blocks, most likely the relic of a proto-galaxy that merged with the Milky Way during its very early days. "The history of the Milky Way is encoded in its oldest fragments, globular clusters and other systems of stars that have witnessed the entire evolution of our galaxy," says Francesco Ferraro from the University of Bologna, lead author of a paper appearing in this week's issue of the journal Nature. "Our study opens a new window on yet another piece of our galactic past." Like archaeologists, who dig through the dust piling up on top of the remains of past civilisations and unearth crucial pieces of the history of mankind, astronomers have been gazing through the thick layers of interstellar dust obscuring the bulge of the Milky Way and have unveiled an extraordinary cosmic relic. The target of the study is the star cluster Terzan 5. The new observations show that this object, unlike all but a few exceptional globular clusters, does not harbour stars which are all born at the same time - what astronomers call a "single population" of stars. Instead, the multitude of glowing stars in Terzan 5 formed in at least two different epochs, the earliest probably some 12 billion years ago and then again 6 billion years ago. "Only one globular cluster with such a complex history of star formation has been observed in the halo of the Milky Way: Omega Centauri," says team member Emanuele Dalessandro. "This is the first time we see this in the bulge." The galactic bulge is the most inaccessible region of our galaxy for astronomical observations: only infrared light can penetrate the dust clouds and reveal its myriads of stars. "It is only thanks to the outstanding instruments mounted on ESO's Very Large Telescope," says co-author Barbara Lanzoni, "that we have finally been able to 'disperse the fog' and gain a new perspective on the origin of the galactic bulge itself." A technical jewel lies behind the scenes of this discovery, namely the Multi-conjugate Adaptive Optics Demonstrator (MAD), a cutting-edge instrument that allows the VLT to achieve superbly detailed images in the infrared. Adaptive optics is a technique through which astronomers can overcome the blurring that the Earth's turbulent atmosphere inflicts on astronomical images obtained from ground-based telescopes; MAD is a prototype of even more powerful, next-generation adaptive optics instruments [1]. Through the sharp eye of the VLT, the astronomers also found that Terzan 5 is more massive than previously thought: along with the complex composition and troubled star formation history of the system, this suggests that it might be the surviving remnant of a disrupted proto-galaxy, which merged with the Milky Way during its very early stages and thus contributed to form the galactic bulge. "This could be the first of a series of further discoveries shedding light on the origin of bulges in galaxies, which is still hotly debated," concludes Ferraro. "Several similar systems could be hidden behind the bulge's dust: it is in these objects that the formation history of our Milky Way is written." Notes [1] Telescopes on the ground suffer from a blurring effect introduced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets but frustrates astronomers, since it smears out the fine details of the images. However, with adaptive optics (AO) techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e. approaching conditions in space. Adaptive optics systems work by means of a computer-controlled deformable mirror that counteracts the image distortion introduced by atmospheric turbulence. It is based on real-time optical corrections computed at very high speed (many hundreds of times each second) from image data obtained by a wavefront sensor (a special camera) that monitors light from a reference star, Present AO systems can only correct the effect of atmospheric turbulence in a very small region of the sky - typically 15 arcseconds or less - the correction degrading very quickly when moving away from the reference star. Engineers have therefore developed new techniques to overcome this limitation, one of which is multi-conjugate adaptive optics. MAD uses up to three guide stars instead of one as references to remove the blur caused by atmospheric turbulence over a field of view thirty times larger than existing techniques (eso0719). More information This research was presented in a paper that appears in the 26 November 2009 issue of Nature , "The cluster Terzan 5 as a remnant of a primordial building block of the Galactic bulge", by F. R. Ferraro et al.. The team is composed of Francesco Ferraro, Emanuele Dalessandro, Alessio Mucciarelli and Barbara Lanzoni (Department of Astronomy, University of Bologna, Italy), Giacomo Beccari (ESA, Space Science Department, Noordwijk, Netherlands), Mike Rich (Department of Physics and Astronomy, UCLA, Los Angeles, USA), Livia Origlia, Michele Bellazzini and Gabriele Cocozza (INAF - Osservatorio Astronomico di Bologna, Italy), Robert T. Rood (Astronomy Department, University of Virginia, Charlottesville, USA), Elena Valenti (ESO and Pontificia Universidad Catolica de Chile, Departamento de Astronomia, Santiago, Chile) and Scott Ransom (National Radio Astronomy Observatory, Charlottesville, USA). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  1. Eighty nights up a mountain

    NASA Astrophysics Data System (ADS)

    Ellison, Sara

    2002-12-01

    A version of this article first appeared in August 2002 in the online publication Next Wave (www.nextwave.org), published by Science Magazine on the occasion of the UK joining ESO. As Sara Ellison describes, she has been a Paranal Fellow for the past two years and is currently in her third year at the Pontificia Universidad Católica de Chile in Santiago.

  2. VizieR Online Data Catalog: BV light curves of WX Eridani (Arentoft+, 2004)

    NASA Astrophysics Data System (ADS)

    Arentoft, T.; Lampens, P.; van Cauteren, P.; Duerbeck, H. W.; Garcia-Melendo, E.; Sterken, C.

    2004-04-01

    Photometric V and B CCD time-series observations of WX Eri, obtained at the South African Astronomical Observatory (SAAO), Beersel Hills Observatory (BH), Las Campanas Observatory (LCO), European Southern Observatory (ESO), Sternwarte Hoher List (HOLI/HOLIr) and at Esteve Duran Observatory (EDO) during 2001 and early 2002. The measurements from the different observatories was merged and shifted to standard values. (1 data file).

  3. VLBA Teams With Optical Interferometer to Study Star's Layers

    NASA Astrophysics Data System (ADS)

    2007-05-01

    Two of the World's Largest Interferometric Facilities Team-up to Study a Red Giant Star Using ESO's VLTI on Cerro Paranal and the VLBA facility operated by NRAO, an international team of astronomers has made what is arguably the most detailed study of the environment of a pulsating red giant star. They performed, for the first time, a series of coordinated observations of three separate layers within the star's tenuous outer envelope: the molecular shell, the dust shell, and the maser shell, leading to significant progress in our understanding of the mechanism of how, before dying, evolved stars lose mass and return it to the interstellar medium. S Orionis (S Ori) belongs to the class of Mira-type variable stars. It is a solar-mass star that, as will be the fate of our Sun in 5 billion years, is nearing its gloomy end as a white dwarf. Mira stars are very large and lose huge amounts of matter. Every year, S Ori ejects as much as the equivalent of Earth's mass into the cosmos. ESO PR Photo 25a/07 ESO PR Photo 25a/07 Evolution of the Mira-type Star S Orionis "Because we are all stardust, studying the phases in the life of a star when processed matter is sent back to the interstellar medium to be used for the next generation of stars, planets... and humans, is very important," said Markus Wittkowski, lead author of the paper reporting the results. A star such as the Sun will lose between a third and half of its mass during the Mira phase. S Ori pulsates with a period of 420 days. In the course of its cycle, it changes its brightness by a factor of the order of 500, while its diameter varies by about 20%. Although such stars are enormous - they are typically larger than the current Sun by a factor of a few hundred, i.e. they encompass the orbit of the Earth around the Sun - they are also distant and to peer into their deep envelopes requires very high resolution. This can only be achieved with interferometric techniques. ESO PR Photo 25b/07 ESO PR Photo 25b/07 Structure of S Ori (Artist's Impression) "Astronomers are like medical doctors, who use various instruments to examine different parts of the human body," said co-author David Boboltz. "While the mouth can be checked with a simple light, a stethoscope is required to listen to the heart beat. Similarly the heart of the star can be observed in the optical, the molecular and dust layers can be studied in the infrared and the maser emission can be probed with radio instruments. Only the combination of the three gives us a more complete picture of the star and its envelope." The maser emission comes from silicon monoxide (SiO) molecules and can be used to image and track the motion of gas clouds in the stellar envelope roughly 10 times the size of the Sun. The astronomers observed S Ori with two of the largest interferometric facilities available: the ESO Very Large Telescope Interferometer (VLTI) at Paranal, observing in the near- and mid-infrared, and the NRAO-operated Very Long Baseline Array (VLBA), that takes measurements in the radio wave domain. Because the star's luminosity changes periodically, the astronomers observed it simultaneously with both instruments, at several different epochs. The first epoch occurred close to the stellar minimum luminosity and the last just after the maximum on the next cycle. ESO PR Photo 25c/07 ESO PR Photo 25c/07 S Ori to Scale (Artist's Impression) The astronomers found the star's diameter to vary between 7.9 milliarcseconds and 9.7 milliarcseconds. At the distance of S Ori, this corresponds to a change of the radius from about 1.9 to 2.3 times the distance between the Earth and the Sun, or between 400 and 500 solar radii! As if such sizes were not enough, the inner dust shell is found to be about twice as big. The maser spots, which also form at about twice the radius of the star, show the typical structure of partial to full rings with a clumpy distribution. Their velocities indicate that the gas is expanding radially, moving away at a speed of about 10 km/s. The multi-wavelength analysis indicates that near the minimum there is more dust production and mass ejection: in these phases indeed the amount of dust is significantly higher than in the others. After this intense matter production and ejection the star continues its pulsation and when it reaches the maximum luminosity, it displays a much more expanded dust shell. This clearly supports a strong connection between the Mira pulsation and the dust production and expulsion. Furthermore, the astronomers found that grains of aluminum oxide - also called corundum - constitute most of S Ori's dust shell: the grain size is estimated to be of the order of 10 millionths of a centimetre, that is one thousand times smaller than the diameter of a human hair. "We know one chapter of the secret life of a Mira star, but much more can be learned in the near future, when we add near-infrared interferometry with the AMBER instrument on the VLTI to our (already broad) observational approach," said Wittkowski. More Information The research presented here is reported in a paper in press in the journal Astronomy and Astrophysics ("The Mira variable S Ori: Relationships between the photosphere, molecular layer, dust shell, and SiO maser shell at 4 epochs", by M. Wittkowski et al.). It is available in PDF format from the publisher's web site. The team consists of Markus Wittkowski (ESO), David A. Boboltz (U.S. Naval Observatory, USA), Keiichi Ohnaka and Thomas Driebe (MPIfR Bonn, Germany), and Michael Scholz (University of Heidelberg, Germany and University of Sydney, Australia). Notes A maser is the microwave equivalent to a laser, which emits visible light. A maser emits powerful microwave radiation instead and its study requires radio telescopes. An astrophysical maser is a naturally occurring source of stimulated emission that may arise in molecular clouds, comets, planetary atmospheres, stellar atmospheres, or from various conditions in interstellar space. ESO operates the Very Large Telescope Interferometer at Paranal Observatory, Chile, with four fixed 8.2-m telescopes and four relocatable 1.8-m telescopes, working at optical/infrared wavelengths. NRAO operates the Very Long Baseline Array with 10 stations across the U.S. working at radio wavelengths between 3 mm and 90 cm (0.3-90 GHz). ESO, NRAO and other partners will operate the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, working at millimetre wavelengths between 0.3 and 10 mm (30-950 GHz)

  4. Participant Perspectives on the ESO Astronomy Camp Programme

    NASA Astrophysics Data System (ADS)

    Olivotto, C.; Cenadelli, D.; Gamal, M.; Grossmann, D.; Teller, L. A. I.; Marta, A. S.; Matoni, C. L.; Taillard, A.

    2015-09-01

    This article describes the experience of attending the European Southern Observatory (ESO) Astronomy Camp from the perspective of its participants - students aged between 16 and 18 years old from around the world. The students shared a week together during the winter of 2014 in the Alpine village of Saint-Barthelemy, Italy. The camp was organised by ESO in collaboration with Sterrenlab and the Astronomical Observatory of the Autonomous Region of the Aosta Valley and offered a rich programme of astronomy and leisure activities. This article focuses on the concept of astronomy camps, and their role as a unique tool to complement formal classroom education, rather than on the astronomy activities and the scientific programme. Thus, it is not an academic review of the implemented methodologies, but rather a reflection on the overall experience. The article was brought together from collaborative accounts by some of the participants who were asked to reflect on the experience. The participants who contributed to this article represent the diversity of the ESO Astronomy Camp's alumni community.

  5. Czech Republic to Become Member of ESO

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Today, an agreement was signed in Prague between ESO and the Czech Republic, aiming to make the latter become a full member of ESO as of 1 January 2007. "The future membership of the Czech Republic in ESO opens for the Czech astronomers completely new opportunities and possibilities. It will foster this discipline on the highest quality level and open new opportunities for Czech industry to actively cooperate in research and development of high-tech instruments for astronomical research," said Miroslava Kopicová, Minister of Education, Youth and Sports of the Czech Republic. ESO PR Photo 52/06 ESO PR Photo 52/06 Signing Ceremony "We warmly welcome the Czech Republic as the thirteenth member of ESO," said Catherine Cesarsky, ESO's Director General. "The timing couldn't be better chosen: with the Very Large Telescope, Europe is now at the forefront of ground-based astronomy, and with the construction of ALMA and the final studies for the European Extremely Large Telescope, we will ensure that this will remain so for several decades. We look forward to working together with our Czech colleagues towards these successes." The signing event took place at the Czech Ministry of Education, Youth and Sports in Prague. Following ratification by the Czech Parliament, the Czech Republic with thus join the twelve present member states of ESO, the European Organisation for Astronomical Research in the Southern Hemisphere: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. The Czech Republic is the first country from Central and Eastern Europe to join ESO. Astronomy in the Czech Republic has a very long tradition that dates from as far back as 3500 BC. Four centuries ago, Tycho Brahe and Johannes Kepler established themselves in Prague at the invitation of the emperor Rudolph II, laying the ground for the first golden age in astronomy. Later, eminent scientists such as Christian Doppler, Ernst Mach and Albert Einstein stayed in the famous city for periods of time. The Czech capital also played host to the General Assembly of the International Astronomical Union, first in 1967 and, more recently, in August 2006. Astronomy in the Czech Republic is shared between the Astronomical Institute of the Academy of Sciences and several leading universities, in Prague, Brno and Opava, among others. The Astronomical Institute operates the Ondrejov Observatory, with a 2-m optical telescope and a 10-m radio telescope. Czech astronomers are very active in many fields of this science, such as solar and stellar physics, and the study of interstellar matter, galaxies and planetary systems. Created in 1962, ESO, which quite fittingly means 'ace' in the Czech language, provides state-of-the-art research facilities to European astronomers and astrophysicists. ESO's activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member-state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced technologies, furthering European co-operation and carrying out European educational programmes. Whilst the Headquarters are located in Garching near Munich, Germany, ESO operates three observational sites in the Chilean Atacama desert. The Very Large Telescope (VLT) is located on Paranal, a 2 600m high mountain south of Antofagasta. At La Silla, 600 km north of Santiago de Chile at 2 400m altitude, ESO operates several medium-sized optical telescopes. The third site is the 5 000m high Llano de Chajnantor, near San Pedro de Atacama. Here a new submillimetre telescope (APEX) is in operation, and a giant array of 12-m submillimetre antennas (ALMA) is under development. Over 1 600 proposals are made each year for the use of the ESO telescopes.

  6. Titanic Weather Forecasting

    NASA Astrophysics Data System (ADS)

    2004-04-01

    New Detailed VLT Images of Saturn's Largest Moon Optimizing space missions Titan, the largest moon of Saturn was discovered by Dutch astronomer Christian Huygens in 1655 and certainly deserves its name. With a diameter of no less than 5,150 km, it is larger than Mercury and twice as large as Pluto. It is unique in having a hazy atmosphere of nitrogen, methane and oily hydrocarbons. Although it was explored in some detail by the NASA Voyager missions, many aspects of the atmosphere and surface still remain unknown. Thus, the existence of seasonal or diurnal phenomena, the presence of clouds, the surface composition and topography are still under debate. There have even been speculations that some kind of primitive life (now possibly extinct) may be found on Titan. Titan is the main target of the NASA/ESA Cassini/Huygens mission, launched in 1997 and scheduled to arrive at Saturn on July 1, 2004. The ESA Huygens probe is designed to enter the atmosphere of Titan, and to descend by parachute to the surface. Ground-based observations are essential to optimize the return of this space mission, because they will complement the information gained from space and add confidence to the interpretation of the data. Hence, the advent of the adaptive optics system NAOS-CONICA (NACO) [1] in combination with ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile now offers a unique opportunity to study the resolved disc of Titan with high sensitivity and increased spatial resolution. Adaptive Optics (AO) systems work by means of a computer-controlled deformable mirror that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a special camera at very high speed, many hundreds of times each second (see e.g. ESO Press Release 25/01 , ESO PR Photos 04a-c/02, ESO PR Photos 19a-c/02, ESO PR Photos 21a-c/02, ESO Press Release 17/02, and ESO Press Release 26/03 for earlier NACO images, and ESO Press Release 11/03 for MACAO-VLTI results.) The southern smile ESO PR Photo 08a/04 ESO PR Photo 08a/04 Images of Titan on November 20, 25 and 26, 2002 Through Five Filters (VLT YEPUN + NACO) [Preview - JPEG: 522 x 400 pix - 40k] [Normal - JPEG: 1043 x 800 pix - 340k] [Hires - JPEG: 2875 x 2205 pix - 1.2M] Caption: ESO PR Photo 08a/04 shows Titan (apparent visual magnitude 8.05, apparent diameter 0.87 arcsec) as observed with the NAOS/CONICA instrument at VLT Yepun (Paranal Observatory, Chile) on November 20, 25 and 26, 2003, between 6.00 UT and 9.00 UT. The median seeing values were 1.1 arcsec and 1.5 arcsec respectively for the 20th and 25th. Deconvoluted ("sharpened") images of Titan are shown through 5 different narrow-band filters - they allow to probe in some detail structures at different altitudes and on the surface. Depending on the filter, the integration time varies from 10 to 100 seconds. While Titan shows its leading hemisphere (i.e. the one observed when Titan moves towards us) on Nov. 20, the trailing side (i.e the one we see when Titan moves away from us in its course around Saturn) - which displays less bright surface features - is observed on the last two dates. ESO PR Photo 08b/04 ESO PR Photo 08b/04 Titan Observed Through Nine Different Filters on November 26, 2002 [Preview - JPEG: 480 x 400 pix - 36k] [Normal - JPEG: 960 x 800 pix - 284k] Caption: ESO PR Photo 08b/04: Images of Titan taken on November 26, 2002 through nine different filters to probe different altitudes, ranging from the stratosphere to the surface. On this night, a stable "seeing" (image quality before adaptive optics correction) of 0.9 arcsec allowed the astronomers to attain the diffraction limit of the telescope (0.032 arcsec resolution). Due to these good observing conditions, Titan's trailing hemisphere was observed with contrasts of about 40%, allowing the detection of several bright features on this surface region, once thought to be quite dark and featureless. ESO PR Photo 08c/04 ESO PR Photo 08c/04 Titan Surface Projections [Preview - JPEG: 601 x 400 pix - 64k] [Normal - JPEG: 1201 x 800 pix - 544k] Caption: ESO PR Photo 08c/04 : Titan images obtained with NACO on November 26th, 2002. Left: Titan's surface projection on the trailing hemisphere as observed at 1.3 μm, revealing a complex brightness structure thanks to the high image contrast of about 40%. Right: a new, possibly meteorological, phenomenon observed at 2.12 μm in Titan's atmosphere, in the form of a bright feature revolving around the South Pole. A team of French astronomers [2] have recently used the NACO state-of-the-art adaptive optics system on the fourth 8.2-m VLT unit telescope, Yepun, to map the surface of Titan by means of near-infrared images and to search for changes in the dense atmosphere. These extraordinary images have a nominal resolution of 1/30th arcsec and show details of the order of 200 km on the surface of Titan. To provide the best possible views, the raw data from the instrument were subjected to deconvolution (image sharpening). Images of Titan were obtained through 9 narrow-band filters, sampling near-infrared wavelengths with large variations in methane opacity. This permits sounding of different altitudes ranging from the stratosphere to the surface. Titan harbours at 1.24 and 2.12 μm a "southern smile", that is a north-south asymmetry, while the opposite situation is observed with filters probing higher altitudes, such as 1.64, 1.75 and 2.17 μm. A high-contrast bright feature is observed at the South Pole and is apparently caused by a phenomenon in the atmosphere, at an altitude below 140 km or so. This feature was found to change its location on the images from one side of the south polar axis to the other during the week of observations. Outlook An additional series of NACO observations of Titan is foreseen later this month (April 2004). These will be a great asset in helping optimize the return of the Cassini/Huygens mission. Several of the instruments aboard the spacecraft depend on such ground-based data to better infer the properties of Titan's surface and lower atmosphere. Although the astronomers have yet to model and interpret the physical and geophysical phenomena now observed and to produce a full cartography of the surface, this first analysis provides a clear demonstration of the marvellous capabilities of the NACO imaging system. More examples of the exciting science possible with this facility will be found in a series of five papers published today in the European research journal Astronomy & Astrophysics (Vol. 47, L1 to L24).

  7. Enabling Virtual Access to Latin-American Southern Observatories

    NASA Astrophysics Data System (ADS)

    Filippi, G.

    2010-12-01

    EVALSO (Enabling Virtual Access to Latin-American Southern Observatories) is an international consortium of nine astronomical organisations and research network operators, part-funded under the European Commission FP7, to create and exploit high-speed bandwidth connections to South American observatories. A brief description of the project is presented. The EVALSO Consortium inaugurated a fibre link between the Paranal Observatory and international networks on 4 November 2010 capable of 10 Gigabit per second.

  8. ESO Successfully Tests Automation of Telescope Operations

    NASA Astrophysics Data System (ADS)

    1997-02-01

    This week astronomers at the European Southern Observatory have tested a novel approach of doing astronomy from the ground. Inaugurating a new era, the ESO 3.5-metre New Technology Telescope (NTT) at La Silla successfully performed a series of observations under automatic control by advanced computer software developed by the ESO Data Management Division (DMD) for use with the ESO Very Large Telescope (VLT). This move has been made necessary by technological improvements in telescopes and the increasing competition among scientists for these valuable resources. Caption to ESO PR Photo 05/97 [JPG, 184k] This Press Release is accompanied by ESO Press Photo 05/97 of the NTT. New telescopes produce more data Over the past few years, astronomical telescopes and the amount of data they produce have grown rapidly in size. With the advent of increasingly efficient, large digital cameras, the new telescopes with mirrors as large as 8 to 10 metres in diameter will deliver Gigabytes of valuable information each night. There is little doubt that scientific breakthroughs will be made with these telescopes and it should be no surprise that there is fierce competition for precious observing nights among the international astronomical community. Automated observations In order to make sure that the available observing time at the VLT will be used in the best and most efficient way, ESO has been developing advanced computer systems which will automatically schedule observations according to the scientific priorities of astronomers and the prevailing conditions of weather and equipment at the observatory. Once the astronomical data is gathered it is processed automatically at the telescope to provide the astronomer with immediately useful astronomical images and other pertinent information. No longer will the astronomer be required to spend weeks processing data into a form where results can be extracted. The continuous flow of astronomical data made possible with this system is referred to as the VLT Data Flow System , now being perfected by the ESO Data Management Division for use on ESO's Very Large Telescope project. First tests at the NTT On February 5, a team of software engineers and astronomers from ESO used a first version of the new VLT Data Flow System to perform observations on ESO's New Technology Telescope (NTT) at the La Silla Observatory in Chile. A computer file containing a complete description of an observation (for instance, object position in the sky, filtres and exposure time, and other relevant information) prepared in advance by an astronomer was transferred via the satellite link from the ESO Headquarters in Germany to the NTT computers at La Silla and executed on the control system of the telescope. The telescope then moved to the correct position in the sky, the camera was activated and a few minutes later, a processed image a distant galaxy appeared on the screen in front of the observers. The image was saved in an automatic archive system that writes the astronomical data on CD-ROM. The entire process took place automatically and demonstrated that this system is capable of taking high quality data from the sky at the best possible time and delivering the results to the astronomer, efficiently and in the most convenient form. Further developments This is the first time that a ground-based telescope has been operated under the new system. This successful initial test bodes well for the start-up of the VLT. During 1997, ESO will further develop the data flow system in preparation for the beginning of commissioning of the first VLT 8.2-metre unit, less then 12 months from now. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  9. Production of the 4.1-m Zerodur mirror blank for the VISTA Telescope

    NASA Astrophysics Data System (ADS)

    Doehring, Thorsten; Jedamzik, Ralf; Wittmer, Volker; Thomas, Armin

    2004-09-01

    VISTA (Visible and Infrared Survey Telescope for Astronomy) is designed to be the world's largest wide field telescope. After finishing of the construction the telescope will be part of ESO and located in Chile close to the VLT observatory at Cerro Paranal. In November 2001 SCHOTT was selected by the VISTA project office at the Royal Observatory of Edinburgh to deliver the 4.1 m diameter primary mirror blank. The manufacturing of the mirror blank made from the zero expansion material Zerodur was challenging especially due to the f/1 design. Several tons of the glass ceramic material were removed during the grinding operation. A meniscus blank with a diameter of 4100 mm and a thickness of 171.5 mm was generated, having a large central hole of 1200 mm and an aspherical shape of the concave surface. Also the handling and turning operations needed special effort and were performed by a skilled team. This paper presents details and pictures of the corresponding production and inspection sequence at SCHOTT. The geometrical parameters were measured during manufacturing by help of a laser tracker system and the achieved parameters were compared with the initial technical specification. The final quality inspection verified the excellent quality of the mirror blank. The close co-operation between the astronomers and industry resulted in a project management without problems. In April 2003 the VISTA blank was delivered successfully within a ceremony dedicated to the anniversary of "100 years of astronomical mirror blanks from SCHOTT."

  10. New spectro-photometric characterization of the substellar object HR 2562 B using SPHERE

    NASA Astrophysics Data System (ADS)

    Mesa, D.; Baudino, J.-L.; Charnay, B.; D'Orazi, V.; Desidera, S.; Boccaletti, A.; Gratton, R.; Bonnefoy, M.; Delorme, P.; Langlois, M.; Vigan, A.; Zurlo, A.; Maire, A.-L.; Janson, M.; Antichi, J.; Baruffolo, A.; Bruno, P.; Cascone, E.; Chauvin, G.; Claudi, R. U.; De Caprio, V.; Fantinel, D.; Farisato, G.; Feldt, M.; Giro, E.; Hagelberg, J.; Incorvaia, S.; Lagadec, E.; Lagrange, A.-M.; Lazzoni, C.; Lessio, L.; Salasnich, B.; Scuderi, S.; Sissa, E.; Turatto, M.

    2018-05-01

    Aims: HR 2562 is an F5V star located at 33 pc from the Sun hosting a substellar companion that was discovered using the Gemini planet imager (GPI) instrument. The main objective of the present paper is to provide an extensive characterization of the substellar companion, by deriving its fundamental properties. Methods: We observed HR 2562 with the near-infrared branch composed by the integral field spectrograph (IFS) and the infrared dual band spectrograph (IRDIS) of the spectro-polarimetric high-contrast exoplanet research (SPHERE) instrument at the very large telescope (VLT). During our observations IFS was operating in the Y J band, while IRDIS was observing with the H broadband filter. The data were reduced with the dedicated SPHERE GTO pipeline, which is custom designed for this instrument. On the reduced images, we then applied the post-processing procedures that are specifically prepared to subtract the speckle noise. Results: The companion is clearly detected in both IRDIS and IFS datasets. We obtained photometry in three different spectral bands. The comparison with template spectra allowed us to derive a spectral type of T2-T3 for the companion. Using both evolutionary and atmospheric models we inferred the main physical parameters of the companion obtaining a mass of 32 ± 14 MJup, Teff = 1100 ± 200 K, and log g = 4.75 ± 0.41. Based on observations made with European Southern Observatory (ESO) telescopes at Paranal Observatory in Chile, under program ID 198.C-0209(D).

  11. First Light with a 67-Million-Pixel WFI Camera

    NASA Astrophysics Data System (ADS)

    1999-01-01

    The newest astronomical instrument at the La Silla observatory is a super-camera with no less than sixty-seven million image elements. It represents the outcome of a joint project between the European Southern Observatory (ESO) , the Max-Planck-Institut für Astronomie (MPI-A) in Heidelberg (Germany) and the Osservatorio Astronomico di Capodimonte (OAC) near Naples (Italy), and was installed at the 2.2-m MPG/ESO telescope in December 1998. Following careful adjustment and testing, it has now produced the first spectacular test images. With a field size larger than the Full Moon, the new digital Wide Field Imager is able to obtain detailed views of extended celestial objects to very faint magnitudes. It is the first of a new generation of survey facilities at ESO with which a variety of large-scale searches will soon be made over extended regions of the southern sky. These programmes will lead to the discovery of particularly interesting and unusual (rare) celestial objects that may then be studied with large telescopes like the VLT at Paranal. This will in turn allow astronomers to penetrate deeper and deeper into the many secrets of the Universe. More light + larger fields = more information! The larger a telescope is, the more light - and hence information about the Universe and its constituents - it can collect. This simple truth represents the main reason for building ESO's Very Large Telescope (VLT) at the Paranal Observatory. However, the information-gathering power of astronomical equipment can also be increased by using a larger detector with more image elements (pixels) , thus permitting the simultaneous recording of images of larger sky fields (or more details in the same field). It is for similar reasons that many professional photographers prefer larger-format cameras and/or wide-angle lenses to the more conventional ones. The Wide Field Imager at the 2.2-m telescope Because of technological limitations, the sizes of detectors most commonly in use in optical astronomical instruments - the "Charge-Coupled Devices (CCD's)" - are currently restricted to about 4000 x 4000 pixels. For the time being, the only possible way towards even larger detector areas is by assembling mosaics of CCD's. ESO , MPI-A and OAC have therefore undertaken a joint project to build a new and large astronomical camera with a mosaic of CCD's. This new Wide Field Imager (WFI) comprises eight CCD's with high sensitivity from the ultraviolet to the infrared spectral domain, each with 2046 x 4098 pixels. Mounted behind an advanced optical system at the Cassegrain focus of the 2.2-m telescope of the Max-Planck-Gesellschaft (MPG) at ESO's La Silla Observatory in Chile, the combined 8184 x 8196 = 67,076,064 pixels cover a square field-of-view with an edge of more than half a degree (over 30 arcmin) [1]. Compared to the viewing field of the human eye, this may still appear small, but in the domain of astronomical instrumentation, it is indeed a large step forward. For comparison, the largest field-of-view with the FORS1 instrument at the VLT is about 7 arcmin. Moreover, the level of detail detectable with the WFI (theoretical image sharpness) exceeds what is possible with the naked eye by a factor of about 10,000. The WFI project was completed in only two years in response to a recommendation to ESO by the "La Silla 2000" Working Group and the Scientific-Technical Committee (STC) to offer this type of instrument to the community. The MPI-A proposed to build such an instrument for the MPG/ESO 2.2-m telescope and a joint project was soon established. A team of astronomers from the three institutions is responsible for the initial work with the WFI at La Silla. A few other Cameras of this size are available, e.g. at Hawaii, Kitt Peak (USA) and Cerro Tololo (Chile), but this is the first time that a telescope this large has been fully dedicated to wide-field imaging with an 8kx8k CCD. The first WFI images Various exposures were obtained during the early tests with the WFI in order to arrive at the optimum adjustment of the camera at the telescope. We show here two of these that illustrate the great potential of this new facility. Spiral Galaxy NGC 253 ESO PR Photo 02a/99 ESO PR Photo 02a/99 [Preview - JPEG: 800x850 pix - 205k] [High-Res - JPEG: 4000 x 4252 pix - 3.0Mb] ESO PR Photo 02b/99 ESO PR Photo 02b/99 [Preview - JPEG: 800x870 pix - 353k] [High-Res - JPEG: 2200 x 2393 pix - 2.0Mb] Caption to PR Photos 02a/99 and 02b/99 : These photos show a sky field around the Spiral Galaxy NGC 253 (Type Sc) seen nearly edge-on. It is located in the southern constellation Sculptor at a distance of about 8 million light-years. The image is the sum of five 5-min exposures through a blue (B-band) optical filtre. They were slightly offset with respect to each other so that the small gaps between the eight CCD's of the mosaic are no longer visible. This image also shows the faint trails of 2 artificial satellites. In PR Photo 02a/99 , the full WFI field-of-view is reproduced, while the sub-field in PR Photo 02b/99 contains some fainter and smaller background galaxies. Many of the quite numerous and small, slightly fuzzy objects are undoubtedly globular clusters of NGC 253. Technical information: The image processing consisted of de-biassing, flat-fielding, and removal (by interpolation) of some bad columns. The full-width-half-maximum (FWHM) of stellar images is about 1.0 arcsec. PR Photo 02a/99 was rebinned (2x2) to 4kx4k size and sampling 0.48 arcsec/pixel. PR Photo 02b/99 is a subimage of the former, but at the full original sampling of 0.24 arcsec/pixel. It covers about 2kx2k, or about 1/16 of the full field. North is up and East is left. The observations were made on December 17, 1998. The Waning Moon ESO PR Photo 02c/99 ESO PR Photo 02c/99 [Preview - JPEG: 800 x 1245 pix - 242k] [High-Res - JPEG: 3000 x 4667 pix - 2.3Mb] ESO PR Photo 02d/99 ESO PR Photo 02d/99 [Preview - JPEG: 800 x 1003 pix - 394k] [High-Res - JPEG: 3000 x 3760 pix - 2.1Mb] ESO PR Photo 02e/99 ESO PR Photo 02e/99 [Preview - JPEG: 800 x 706 pix - 274k] [High-Res - JPEG: 3000 x 2648 pix - 1.5Mb] Caption to PR Photos 02c-e/99 : A series of short exposures through a near-infrared filtre was obtained of the waning Moon at sunrise on January 12 (at about 10 hrs UT), i.e. about 5 days before New Moon (24.3 days "old"). As can be seen in PR Photo 02c/99 , the edge of the full field-of-view is about the size of the diameter of the Moon. In addition, two impressive views were extracted from this frame and are here shown at full resolution; 1 pixel is about 470 metres on the surface of the Moon at a distance of just over 400,000 km. PR Photo 02d/99 displays the Mare Humorum area in the south-east quadrant with the crater Gassendi overlapping the northern rim. PR Photo 02d/99 is a view of the plains near the Moon's north-east rim, just eastwards of Sinus Iridum (the large crater in the shadows at the upper right), on the rim of which the crater Bianchini is located. The crater just below the centre is Mairan and the one about halfway between these two and of about the same size is Sharp . Technical information: Several 0.1 sec exposures were made through a near-infrared filtre (856 nm; FWHM 14 nm) with small offsets were recombined (to cover the gaps between the individual CCD's); otherwise, the image is raw. PR Photo 02c/99 was rebinned (2x2) to 4kx4k size and sampling 0.48 arcsec/pixel. The right-hand side of the picture was cropped in this reproduction to reduce the file size. PR Photos 02d/99 and 02e/99 are subimages of the former, but at the full original sampling of 0.24 arcsec/pixel; they covers about 1000x800 and 900x1050 pixels, or about 1/80 and 1/70 of the full field, respectively. North is up and East is left. The virtues of wide-angle imaging Wide-angle imaging is one of the most fundamental applications of observational astronomy. Only from (multi-band) observations over large areas of the sky can large-scale structures and rare objects be detected and put in a proper statistical perspective with other objects. Some typical examples of future survey work: very distant quasars and galaxies, clusters of galaxies, small bodies orbiting the Sun, brown dwarfs, low-surface brightness galaxies, peculiar stars, objects with emission-line spectra, gravitational lenses, etc. Other important applications include the search for supernovae in distant clusters of galaxies and the optical identification of the rapidly fading gamma-ray bursters which are detected by space observatories, but for which only very crude positional determinations are available. Once "promising objects" have been found and accurately located on the sky by the WFI, the enormous light collecting power of the VLT is then available to study them at much higher spectral and spatial detail and over a much wider range of wavelengths. In particular, the continuation of the ESO Imaging Survey (EIS) depends heavily on use of the WFI and will identify and classify all objects seen in a number of selected sky fields. The resulting database is made available as a special service to the community for dedicated follow-up work with the VLT. The advantage of modern digital detectors Traditionally, wide-field observations were made with Schmidt telescopes which, by means of to special optics, are able to image sharply a field with a diameter of 5-15 deg. These telescopes use photographic plates that, however, detect no more than about 3% of all incoming photons. In comparison, the photon detecting efficiency of the CCD's in the WFI exceeds 90%. Moreover, these CCD's supply digital data ready for computer analysis, whereas photographic plates must be digitized with a sophisticated scanning engine in a laborious and expensive manner which nevertheless cannot fully extract all the information. The price to be paid, until even larger CCD's become available, is the smaller field. The field, however, will not exceed 1-2 square degrees with the currently planned, new wide-field telescopes. The FIERA CCD controller The entire detector array of the WFI can be read out in only 27 seconds. Since one WFI image contains 0.14 Gbytes of data, this corresponds to the reading of a book at a rate of almost 1000 pages per second! Even for the most powerful PC's presently available, this can be a real challenge. However, much more remarkable is that FIERA , the high-tech CCD controller developed by ESO engineers, sustains this speed without adding noise or artifacts that exceed the extremely faint signal from the night-sky background on a moonless night at a completely dark site such as La Silla. In addition to the eight large CCD's of the mosaic, FIERA simultaneously commands a ninth CCD of the same type in which a small window centered on a bright star is read out continuously, up to 2 times every second. The fast-rate measurement of the instantaneous position of the star enables the telescope control system to track very accurately the apparent motion of the observed field in the sky so that the images remain perfectly sharp, even during long exposures. Future survey work at ESO In terms of bytes, it is expected that the WFI alone will acquire more observational data than all the rest of the La Silla Observatory and the UT1 of the VLT on Paranal together! This impressively illustrates the ever-accelerating pace at which astronomical facilities are developing. In the meantime, a Dutch/German/Italian consortium is preparing for the construction of the successor to WFI camera. The OmegaCam will have no less than 16,000 x 16,000 pixels and the field-of-view is four times as large, one square degree. It will be attached to the 2.6-m VLT Survey Telescope (VST) to be installed jointly by OAC and ESO on Paranal at the end of the year 2001. Note: [1]: Some technical details of the new camera: The WFI field-of-view measures 0.54 x 0.54 deg 2 (32.4 x 32.4 arcmin 2 ) and the image scale is 0.24 arcsec/pixel. An advanced optical system is indispensible to focus correctly a field of this large size - 0.8 degree diameter - on the flat CCD mosaic (12 x 12 cm 2 ). The WFI achromatic corrector consists of 6 lenses of up to 28 cm diameter and is able to concentrate 80% of the light of a point source into the area of one pixel in a flat focal plane. Up to 50 filters will be permanently mounted in the camera. A unique facility is provided by a set of 26 interference filters which cover the entire optical range from 380 - 930 nm and thus allows a rough analysis of the spectra of the typically 100,000 objects that are recorded in one field of view. The CCD's possess a very high sensitivity to ultraviolet light and the WFI is only the second UV-sensitive wide-field imager in service in the world. The camera mechanics was designed and built at the MPI-A which also provided the filters. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  12. Exoplanet Caught on the Move

    NASA Astrophysics Data System (ADS)

    2010-06-01

    For the first time, astronomers have been able to directly follow the motion of an exoplanet as it moves from one side of its host star to the other. The planet has the smallest orbit so far of all directly imaged exoplanets, lying almost as close to its parent star as Saturn is to the Sun. Scientists believe that it may have formed in a similar way to the giant planets in the Solar System. Because the star is so young, this discovery proves that gas giant planets can form within discs in only a few million years, a short time in cosmic terms. Only 12 million years old, or less than three-thousandths of the age of the Sun, Beta Pictoris is 75% more massive than our parent star. It is located about 60 light-years away towards the constellation of Pictor (the Painter) and is one of the best-known examples of a star surrounded by a dusty debris disc [1]. Earlier observations showed a warp of the disc, a secondary inclined disc and comets falling onto the star. "Those were indirect, but tell-tale signs that strongly suggested the presence of a massive planet, and our new observations now definitively prove this," says team leader Anne-Marie Lagrange. "Because the star is so young, our results prove that giant planets can form in discs in time-spans as short as a few million years." Recent observations have shown that discs around young stars disperse within a few million years, and that giant planet formation must occur faster than previously thought. Beta Pictoris is now clear proof that this is indeed possible. The team used the NAOS-CONICA instrument (or NACO [2]), mounted on one of the 8.2-metre Unit Telescopes of ESO's Very Large Telescope (VLT), to study the immediate surroundings of Beta Pictoris in 2003, 2008 and 2009. In 2003 a faint source inside the disc was seen (eso0842), but it was not possible to exclude the remote possibility that it was a background star. In new images taken in 2008 and spring 2009 the source had disappeared! The most recent observations, taken during autumn 2009, revealed the object on the other side of the disc after a period of hiding either behind or in front of the star (in which case it is hidden in the glare of the star). This confirmed that the source indeed was an exoplanet and that it was orbiting its host star. It also provided insights into the size of its orbit around the star. Images are available for approximately ten exoplanets, and the planet around Beta Pictoris (designated "Beta Pictoris b") has the smallest orbit known so far. It is located at a distance between 8 and 15 times the Earth-Sun separation - or 8-15 Astronomical Units - which is about the distance of Saturn from the Sun. "The short period of the planet will allow us to record the full orbit within maybe 15-20 years, and further studies of Beta Pictoris b will provide invaluable insights into the physics and chemistry of a young giant planet's atmosphere," says student researcher Mickael Bonnefoy. The planet has a mass of about nine Jupiter masses and the right mass and location to explain the observed warp in the inner parts of the disc. This discovery therefore bears some similarity to the prediction of the existence of Neptune by astronomers Adams and Le Verrier in the 19th century, based on observations of the orbit of Uranus. "Together with the planets found around the young, massive stars Fomalhaut and HR8799, the existence of Beta Pictoris b suggests that super-Jupiters could be frequent byproducts of planet formation around more massive stars," explains Gael Chauvin, a member of the team. Such planets disturb the discs around their stars, creating structures that should be readily observable with the Atacama Large Millimeter/submillimeter Array (ALMA), the revolutionary telescope being built by ESO together with international partners. A few other planetary candidates have been imaged, but they are all located further from their host star than Beta Pictoris b. If located in the Solar System, they all would lie close to or beyond the orbit of the furthest planet, Neptune. The formation processes of these distant planets are likely to be quite different from those in our Solar System and in Beta Pictoris. "The recent direct images of exoplanets - many made by the VLT - illustrate the diversity of planetary systems," says Lagrange. "Among those, Beta Pictoris b is the most promising case of a planet that could have formed in the same way as the giant planets in our Solar System." Notes [1] Debris discs are composed of dust resulting from collisions among larger bodies such as planetary embryos or asteroids. They are larger versions of the zodiacal dust band in our Solar System. The disc around Beta Pictoris was the first to be imaged and is now known to extend up to about 1000 times the distance between the Earth and the Sun. [2] NACO is an adaptive optics instrument attached to ESO's Very Large Telescope, located in Chile. Thanks to adaptive optics, astronomers can remove most of the blurring effect of the atmosphere and obtain very sharp images. More information This research was presented in a paper to appear this week in Science Express ("A Giant Planet Imaged in the disk of the Young Star Beta Pictoris," by A.-M. Lagrange et al.). The team is composed of A.-M. Lagrange, M. Bonnefoy, G. Chauvin, D. Ehrenreich, and D. Mouillet (Laboratoire d'Astrophysique de l'Observatoire de Grenoble, Université Joseph Fourier, CNRS, France), D. Apai (Space Telescope Science Institute, Baltimore, USA), A. Boccaletti, D. Gratadour, D. Rouan, and S. Lacour (LESIA, Observatoire de Paris-Meudon, France), and M. Kasper (ESO). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  13. VizieR Online Data Catalog: Light curves of WASP-52 (Mancini+, 2017)

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Southworth, J.; Raia, G.; Tregloan-Reed, J.; Molliere, P.; Bozza, V.; Bretton, M.; Bruni, I.; Ciceri, S.; D'Ago, G.; Dominik, M.; Hinse, T. C.; Hundertmark, M.; Jorgensen, U. G.; Korhonen, H.; Rabus, M.; Rahvar, S.; Starkey, D.; Calchi Novati, S.; Figuera Jaimes, R.; Henning, T.; Juncher, D.; Haugbolle, T.; Kains, N.; Popovas, A.; Schmidt, R. W.; Skottfelt, J.; Snodgrass, C.; Surdej, J.; Wertz, O.

    2018-03-01

    Light curves of transit events of the extrasolar planet WASP-52b. One of the datasets was obtained using the Cassini 1.52m Telescope (Gunn r) at the Astronomical Observatory of Bologna in Loiano (Italy). Three of the datasets were obtained using the Zeiss 1.23m telescope (Cousins R and Cousins I) at the German-Spanish Astronomical Centre at Calar Alto (Spain). Four of the datasets were obtained using the MPG 2.2m telescope (Sloan g, Sloan r, Sloan i, Sloan z) at the ESO Observatory in La Silla (Chile). Four of the datasets were obtained using the 1.54m Danish Telescope at the ESO Observatory in La Silla (Chile). (2 data files).

  14. Triton's Summer Sky of Methane and Carbon Monoxide

    NASA Astrophysics Data System (ADS)

    2010-04-01

    According to the first ever infrared analysis of the atmosphere of Neptune's moon Triton, summer is in full swing in its southern hemisphere. The European observing team used ESO's Very Large Telescope and discovered carbon monoxide and made the first ground-based detection of methane in Triton's thin atmosphere. These observations revealed that the thin atmosphere varies seasonally, thickening when warmed. "We have found real evidence that the Sun still makes its presence felt on Triton, even from so far away. This icy moon actually has seasons just as we do on Earth, but they change far more slowly," says Emmanuel Lellouch, the lead author of the paper reporting these results in Astronomy & Astrophysics. On Triton, where the average surface temperature is about minus 235 degrees Celsius, it is currently summer in the southern hemisphere and winter in the northern. As Triton's southern hemisphere warms up, a thin layer of frozen nitrogen, methane, and carbon monoxide on Triton's surface sublimates into gas, thickening the icy atmosphere as the season progresses during Neptune's 165-year orbit around the Sun. A season on Triton lasts a little over 40 years, and Triton passed the southern summer solstice in 2000. Based on the amount of gas measured, Lellouch and his colleagues estimate that Triton's atmospheric pressure may have risen by a factor of four compared to the measurements made by Voyager 2 in 1989, when it was still spring on the giant moon. The atmospheric pressure on Triton is now between 40 and 65 microbars - 20 000 times less than on Earth. Carbon monoxide was known to be present as ice on the surface, but Lellouch and his team discovered that Triton's upper surface layer is enriched with carbon monoxide ice by about a factor of ten compared to the deeper layers, and that it is this upper "film" that feeds the atmosphere. While the majority of Triton's atmosphere is nitrogen (much like on Earth), the methane in the atmosphere, first detected by Voyager 2, and only now confirmed in this study from Earth, plays an important role as well. "Climate and atmospheric models of Triton have to be revisited now, now that we have found carbon monoxide and re-measured the methane," says co-author Catherine de Bergh. Of Neptune's 13 moons, Triton is by far the largest, and, at 2700 kilometres in diameter (or three quarters the Earth's Moon), is the seventh largest moon in the whole Solar System. Since its discovery in 1846, Triton has fascinated astronomers thanks to its geologic activity, the many different types of surface ices, such as frozen nitrogen as well as water and dry ice (frozen carbon dioxide), and its unique retrograde motion [1]. Observing the atmosphere of Triton, which is roughly 30 times further from the Sun than Earth, is not easy. In the 1980s, astronomers theorised that the atmosphere on Neptune's moon might be as thick as that of Mars (7 millibars). It wasn't until Voyager 2 passed the planet in 1989 that the atmosphere of nitrogen and methane, at an actual pressure of 14 microbars, 70 000 times less dense than the atmosphere on Earth, was measured. Since then, ground-based observations have been limited. Observations of stellar occultations (a phenomenon that occurs when a Solar System body passes in front of a star and blocks its light) indicated that Triton's surface pressure was increasing in the 1990's. It took the development of the Cryogenic High-Resolution Infrared Echelle Spectrograph (CRIRES) at the Very Large Telescope (VLT) to provide the team the chance to perform a far more detailed study of Triton's atmosphere. "We needed the sensitivity and capability of CRIRES to take very detailed spectra to look at the very tenuous atmosphere," says co-author Ulli Käufl. The observations are part of a campaign that also includes a study of Pluto [eso0908]. Pluto, often considered a cousin of Triton and with similar conditions, is receiving renewed interest in the light of the carbon monoxide discovery, and astronomers are racing to find this chemical on the even more distant dwarf planet. This is just the first step for astronomers using CRIRES to understand the physics of distant bodies in the Solar System. "We can now start monitoring the atmosphere and learn a lot about the seasonal evolution of Triton over decades," Lellouch says. Notes [1] Triton is the only large moon in the Solar System with a retrograde motion, which is a motion in the opposite direction to its planet's rotation. This is one of the reasons why Triton is thought to have been captured from the Kuiper Belt, and thus shares many features with the dwarf planets, such as Pluto. More information This research was presented in a paper to appear in Astronomy & Astrophysics ("Detection of CO in Triton's atmosphere and the nature of surface-atmosphere interactions", by E. Lellouch et al.), reference DOI : 10.1051/0004-6361/201014339. The team is composed of E. Lellouch, C. de Bergh, B. Sicardy (LESIA, Observatoire de Paris, France), S. Ferron (ACRI-ST, Sophia-Antipolis, France), and H.-U. Käufl (ESO). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  15. VLT instruments: industrial solutions for non-scientific detector systems

    NASA Astrophysics Data System (ADS)

    Duhoux, P.; Knudstrup, J.; Lilley, P.; Di Marcantonio, P.; Cirami, R.; Mannetta, M.

    2014-07-01

    Recent improvements in industrial vision technology and products together with the increasing need for high performance, cost efficient technical detectors for astronomical instrumentation have led ESO with the contribution of INAF to evaluate this trend and elaborate ad-hoc solutions which are interoperable and compatible with the evolution of VLT standards. The ESPRESSO spectrograph shall be the first instrument deploying this technology. ESO's Technical CCD (hereafter TCCD) requirements are extensive and demanding. A lightweight, low maintenance, rugged and high performance TCCD camera product or family of products is required which can operate in the extreme environmental conditions present at ESO's observatories with minimum maintenance and minimal downtime. In addition the camera solution needs to be interchangeable between different technical roles e.g. slit viewing, pupil and field stabilization, with excellent performance characteristics under a wide range of observing conditions together with ease of use for the end user. Interoperability is enhanced by conformance to recognized electrical, mechanical and software standards. Technical requirements and evaluation criteria for the TCCD solution are discussed in more detail. A software architecture has been adopted which facilitates easy integration with TCCD's from different vendors. The communication with the devices is implemented by means of dedicated adapters allowing usage of the same core framework (business logic). The preference has been given to cameras with an Ethernet interface, using standard TCP/IP based communication. While the preferred protocol is the industrial standard GigE Vision, not all vendors supply cameras with this interface, hence proprietary socket-based protocols are also acceptable with the provision of a validated Linux compliant API. A fundamental requirement of the TCCD software is that it shall allow for a seamless integration with the existing VLT software framework. ESPRESSO is a fiber-fed, cross-dispersed echelle spectrograph that will be located in the Combined-Coudé Laboratory of the VLT in the Paranal Observatory in Chile. It will be able to operate either using the light of any of the UT's or using the incoherently combined light of up to four UT's. The stabilization of the incoming beam is achieved by dedicated piezo systems controlled via active loops closed on 4 + 4 dedicated TCCD's for the stabilization of the pupil image and of the field with a frequency goal of 3 Hz on a 2nd to 3rd magnitude star. An additional 9th TCCD system shall be used as an exposure-meter. In this paper we will present the technical CCD solution for future VLT instruments.

  16. Production of Previews and Advanced Data Products for the ESO Science Archive

    NASA Astrophysics Data System (ADS)

    Rité, C.; Slijkhuis, R.; Rosati, P.; Delmotte, N.; Rino, B.; Chéreau, F.; Malapert, J.-C.

    2008-08-01

    We present a project being carried out by the Virtual Observatory Systems Department/Advanced Data Products group in order to populate the ESO Science Archive Facility with image previews and advanced data products. The main goal is to provide users of the ESO Science Archive Facility with the possibility of viewing pre-processed images associated with instruments like WFI, ISAAC and SOFI before actually retrieving the data for full processing. The image processing is done by using the ESO/MVM image reduction software developed at ESO, to produce astrometrically calibrated FITS images, ranging from simple previews of single archive images, to fully stacked mosaics. These data products can be accessed via the ESO Science Archive Query Form and also be viewed with the browser VirGO {http://archive.eso.org/cms/virgo}.

  17. The Gaia-ESO Survey. Mg-Al anti-correlation in iDR4 globular clusters

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Romano, D.; Tang, B.; Tautvaišienė, G.; Casey, A. R.; Gruyters, P.; Geisler, D.; San Roman, I.; Randich, S.; Alfaro, E. J.; Bragaglia, A.; Flaccomio, E.; Korn, A. J.; Recio-Blanco, A.; Smiljanic, R.; Carraro, G.; Bayo, A.; Costado, M. T.; Damiani, F.; Jofré, P.; Lardo, C.; de Laverny, P.; Monaco, L.; Morbidelli, L.; Sbordone, L.; Sousa, S. G.; Villanova, S.

    2017-05-01

    We use Gaia-ESO (GES) Survey iDR4 data to explore the Mg-Al anti-correlation in globular clusters that were observed as calibrators, as a demonstration of the quality of Gaia-ESO Survey data and analysis. The results compare well with the available literature, within 0.1 dex or less, after a small (compared to the internal spreads) offset between the UVES and GIRAFFE data of 0.10-0.15 dex was taken into account. In particular, for the first time we present data for NGC 5927, which is one of the most metal-rich globular clusters studied in the literature so far with [ Fe / H ] = - 0.39 ± 0.04 dex; this cluster was included to connect with the open cluster regime in the Gaia-ESO Survey internal calibration. The extent and shape of the Mg-Al anti-correlation provide strong constraints on the multiple population phenomenon in globular clusters. In particular, we studied the dependency of the Mg-Al anti-correlation extension with metallicity, present-day mass,and age of the clusters, using GES data in combination with a large set of homogenized literature measurements.We find a dependency with both metallicity and mass, which is evident when fitting for the two parameters simultaneously, but we do not find significant dependency with age. We confirm that the Mg-Al anti-correlation is not seen in all clusters, but disappears for the less massive or most metal-rich clusters. We also use our data set to see whether a normal anti-correlation would explain the low [Mg/α] observed in some extragalactic globular clusters, but find that none of the clusters in our sample can reproduce it; a more extreme chemical composition, such as that of NGC 2419, would be required. We conclude that GES iDR4 data already meet the requirements set by the main survey goals and can be used to study globular clusters in detail, even if the analysis procedures were not specifically designed for them. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 188.B-3002.Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A112

  18. Observational calibration of the projection factor of Cepheids. I. The type II Cepheid κ Pavonis

    NASA Astrophysics Data System (ADS)

    Breitfelder, J.; Kervella, P.; Mérand, A.; Gallenne, A.; Szabados, L.; Anderson, R. I.; Willson, M.; Le Bouquin, J.-B.

    2015-04-01

    Context. The distance of pulsating stars, in particular Cepheids, are commonly measured using the parallax of pulsation technique. The different versions of this technique combine measurements of the linear diameter variation (from spectroscopy) and the angular diameter variation (from photometry or interferometry) amplitudes, to retrieve the distance in a quasi-geometrical way. However, the linear diameter amplitude is directly proportional to the projection factor (hereafter p-factor), which is used to convert spectroscopic radial velocities (i.e., disk integrated) into pulsating (i.e., photospheric) velocities. The value of the p-factor and its possible dependence on the pulsation period are still widely debated. Aims: Our goal is to measure an observational value of the p-factor of the type-II Cepheid κ Pavonis. Methods: The parallax of the type-II Cepheid κ Pav was measured with an accuracy of 5% using HST/FGS. We used this parallax as a starting point to derive the p-factor of κ Pav, using the SPIPS technique (Spectro-Photo-Interferometry of Pulsating Stars), which is a robust version of the parallax-of-pulsation method that employs radial velocity, interferometric and photometric data. We applied this technique to a combination of new VLTI/PIONIER optical interferometric angular diameters, new CORALIE and HARPS radial velocities, as well as multi-colour photometry and radial velocities from the literature. Results: We obtain a value of p = 1.26 ± 0.07 for the p-factor of κ Pav. This result agrees with several of the recently derived Period-p-factor relationships from the literature, as well as previous observational determinations for Cepheids. Conclusions: Individual estimates of the p-factor are fundamental to calibrating the parallax of pulsation distances of Cepheids. Together with previous observational estimates, the projection factor we obtain points to a weak dependence of the p-factor on period. Based on observations realized with ESO facilities at Paranal Observatory under program IDs 091.D-0020 and 093.D-0316.Based on observations collected at ESO La Silla Observatory using the Coralie spectrograph mounted to the Swiss 1.2 m Euler telescope, under program CNTAC2014A-5.

  19. OmegaWINGS: OmegaCAM-VST observations of WINGS galaxy clusters

    NASA Astrophysics Data System (ADS)

    Gullieuszik, M.; Poggianti, B.; Fasano, G.; Zaggia, S.; Paccagnella, A.; Moretti, A.; Bettoni, D.; D'Onofrio, M.; Couch, W. J.; Vulcani, B.; Fritz, J.; Omizzolo, A.; Baruffolo, A.; Schipani, P.; Capaccioli, M.; Varela, J.

    2015-09-01

    Context. Wide-field observations targeting galaxy clusters at low redshift are complementary to field surveys and provide the local benchmark for detailed studies of the most massive haloes in the local Universe. The Wide-field Nearby Galaxy-cluster Survey (WINGS) is a wide-field multi-wavelength survey of X-ray selected clusters at z = 0.04-0.07. The original 34' × 34' WINGS field of view has now been extended to cover a 1 deg2 field with both photometry and spectroscopy. Aims: We present the Johnson B- and V-band OmegaCAM at the VST observations of 46 WINGS clusters together with the data reduction, data quality, and Sextractor photometric catalogues. Methods: The data reduction was carried out with a modified version of the ESO-MVM (also known as ALAMBIC) reduction package, adding a cross-talk correction, the gain harmonisation, and a control procedure for problematic CCDs. The stray-light component was corrected for by employing our own observations of populated stellar fields. Results: With a median seeing of 1″ in both bands, our 25-min exposures in each band typically reach the 50% completeness level at V = 23.1 mag. The quality of the astrometric and photometric accuracy has been verified by comparison with the 2MASS and SDSS astrometry, and SDSS and previous WINGS imaging. Star-to-galaxy separation and sky-subtraction procedure were tested comparing them with previous WINGS data. Conclusions: The Sextractor photometric catalogues are publicly available at the CDS and will be included in the next release of the WINGS database on the Virtual Observatory together with the OmegaCAM reduced images. These data form the basis for a large ongoing spectroscopic campaign with AAOmega at the AAT and are being employed for a variety of studies. Based on observations made with VST at ESO Paranal Observatory under program ID 88.A-4005, 089.A-0023, 090.A-0074, 091.A-0059, and 093.A-0041.The photometric catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A41

  20. Orbit of the mercury-manganese binary 41 Eridani

    NASA Astrophysics Data System (ADS)

    Hummel, C. A.; Schöller, M.; Duvert, G.; Hubrig, S.

    2017-04-01

    Context. Mercury-manganese (HgMn) stars are a class of slowly rotating chemically peculiar main-sequence late B-type stars. More than two-thirds of the HgMn stars are known to belong to spectroscopic binaries. Aims: By determining orbital solutions for binary HgMn stars, we will be able to obtain the masses for both components and the distance to the system. Consequently, we can establish the position of both components in the Hertzsprung-Russell diagram and confront the chemical peculiarities of the HgMn stars with their age and evolutionary history. Methods: We initiated a program to identify interferometric binaries in a sample of HgMn stars, using the PIONIER near-infrared interferometer at the VLTI on Cerro Paranal, Chile. For the detected systems, we intend to obtain full orbital solutions in conjunction with spectroscopic data. Results: The data obtained for the SB2 system 41 Eridani allowed the determination of the orbital elements with a period of just five days and a semi-major axis of under 2 mas. Including published radial velocity measurements, we derived almost identical masses of 3.17 ± 0.07 M⊙ for the primary and 3.07 ± 0.07 M⊙ for the secondary. The measured magnitude difference is less than 0.1 mag. The orbital parallax is 18.05 ± 0.17 mas, which is in good agreement with the Hipparcos trigonometric parallax of 18.33 ± 0.15 mas. The stellar diameters are resolved as well at 0.39 ± 0.03 mas. The spin rate is synchronized with the orbital rate. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 088.C-0111, 189.C-0644, 090.D-0291, and 090.D-0917.

  1. Engineering aspects of the Large Binocular Telescope Observatory adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Brusa, Guido; Ashby, Dave; Christou, Julian C.; Kern, Jonathan; Lefebvre, Michael; McMahon, Tom J.; Miller, Douglas; Rahmer, Gustavo; Sosa, Richard; Taylor, Gregory; Vogel, Conrad; Zhang, Xianyu

    2016-07-01

    Vertical profiles of the atmospheric optical turbulence strength and velocity is of critical importance for simulating, designing, and operating the next generation of instruments for the European Extremely Large Telescope. Many of these instruments are already well into the design phase meaning these profies are required immediately to ensure they are optimised for the unique conditions likely to be observed. Stereo-SCIDAR is a generalised SCIDAR instrument which is used to characterise the profile of the atmospheric optical turbulence strength and wind velocity using triangulation between two optical binary stars. Stereo-SCIDAR has demonstrated the capability to resolve turbulent layers with the required vertical resolution to support wide-field ELT instrument designs. These high resolution atmospheric parameters are critical for design studies and statistical evaluation of on-sky performance under real conditions. Here we report on the new Stereo-SCIDAR instrument installed on one of the Auxillary Telescope ports of the Very Large Telescope array at Cerro Paranal. Paranal is located approximately 20 km from Cerro Armazones, the site of the E-ELT. Although the surface layer of the turbulence will be different for the two sites due to local geography, the high-altitude resolution profiles of the free atmosphere from this instrument will be the most accurate available for the E-ELT site. In addition, these unbiased and independent profiles are also used to further characterise the site of the VLT. This enables instrument performance calibration, optimisation and data analysis of, for example, the ESO Adaptive Optics facility and the Next Generation Transit Survey. It will also be used to validate atmospheric models for turbulence forecasting. We show early results from the commissioning and address future implications of the results.

  2. Training telescope operators and support astronomers at Paranal

    NASA Astrophysics Data System (ADS)

    Boffin, Henri M. J.; Gadotti, Dimitri A.; Anderson, Joe; Pino, Andres; de Wit, Willem-Jan; Girard, Julien H. V.

    2016-07-01

    The operations model of the Paranal Observatory relies on the work of efficient staff to carry out all the daytime and nighttime tasks. This is highly dependent on adequate training. The Paranal Science Operations department (PSO) has a training group that devises a well-defined and continuously evolving training plan for new staff, in addition to broadening and reinforcing courses for the whole department. This paper presents the training activities for and by PSO, including recent astronomical and quality control training for operators, as well as adaptive optics and interferometry training of all staff. We also present some future plans.

  3. The Gaia-ESO Survey: the present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters

    NASA Astrophysics Data System (ADS)

    Spina, L.; Randich, S.; Magrini, L.; Jeffries, R. D.; Friel, E. D.; Sacco, G. G.; Pancino, E.; Bonito, R.; Bravi, L.; Franciosini, E.; Klutsch, A.; Montes, D.; Gilmore, G.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Frasca, A.; Hourihane, A.; Jofré, P.; Lewis, J.; Lind, K.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    Context. The radial metallicity distribution in the Galactic thin disc represents a crucial constraint for modelling disc formation and evolution. Open star clusters allow us to derive both the radial metallicity distribution and its evolution over time. Aims: In this paper we perform the first investigation of the present-day radial metallicity distribution based on [Fe/H] determinations in late type members of pre-main-sequence clusters. Because of their youth, these clusters are therefore essential for tracing the current interstellar medium metallicity. Methods: We used the products of the Gaia-ESO Survey analysis of 12 young regions (age < 100 Myr), covering Galactocentric distances from 6.67 to 8.70 kpc. For the first time, we derived the metal content of star forming regions farther than 500 pc from the Sun. Median metallicities were determined through samples of reliable cluster members. For ten clusters the membership analysis is discussed in the present paper, while for other two clusters (I.e. Chamaeleon I and Gamma Velorum) we adopted the members identified in our previous works. Results: All the pre-main-sequence clusters considered in this paper have close-to-solar or slightly sub-solar metallicities. The radial metallicity distribution traced by these clusters is almost flat, with the innermost star forming regions having [Fe/H] values that are 0.10-0.15 dex lower than the majority of the older clusters located at similar Galactocentric radii. Conclusions: This homogeneous study of the present-day radial metallicity distribution in the Galactic thin disc favours models that predict a flattening of the radial gradient over time. On the other hand, the decrease of the average [Fe/H] at young ages is not easily explained by the models. Our results reveal a complex interplay of several processes (e.g. star formation activity, initial mass function, supernova yields, gas flows) that controlled the recent evolution of the Milky Way. Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey).Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A70

  4. Gaia-ESO Survey: Global properties of clusters Trumpler 14 and 16 in the Carina nebula ⋆⋆

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Klutsch, A.; Jeffries, R. D.; Randich, S.; Prisinzano, L.; Maíz Apellániz, J.; Micela, G.; Kalari, V.; Frasca, A.; Zwitter, T.; Bonito, R.; Gilmore, G.; Flaccomio, E.; Francois, P.; Koposov, S.; Lanzafame, A. C.; Sacco, G. G.; Bayo, A.; Carraro, G.; Casey, A. R.; Alfaro, E. J.; Costado, M. T.; Donati, P.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Magrini, L.; Monaco, L.; Morbidelli, L.; Worley, C. C.; Vink, J. S.; Zaggia, S.

    2017-07-01

    Aims: We present the first extensive spectroscopic study of the global population in star clusters Trumpler 16, Trumpler 14, and Collinder 232 in the Carina nebula, using data from the Gaia-ESO Survey, down to solar-mass stars. Methods: In addition to the standard homogeneous survey data reduction, a special processing was applied here because of the bright nebulosity surrounding Carina stars. Results: We find about 400 good candidate members ranging from OB types down to slightly subsolar masses. About 100 heavily reddened early-type Carina members found here were previously unrecognized or poorly classified, including two candidate O stars and several candidate Herbig Ae/Be stars. Their large brightness makes them useful tracers of the obscured Carina population. The spectroscopically derived temperatures for nearly 300 low-mass members enables the inference of individual extinction values and the study of the relative placement of stars along the line of sight. Conclusions: We find a complex spatial structure with definite clustering of low-mass members around the most massive stars and spatially variable extinction. By combining the new data with existing X-ray data, we obtain a more complete picture of the three-dimensional spatial structure of the Carina clusters and of their connection to bright and dark nebulosity and UV sources. The identification of tens of background giants also enables us to determine the total optical depth of the Carina nebula along many sightlines. We are also able to put constraints on the star formation history of the region with Trumpler 14 stars found to be systematically younger than stars in other subclusters. We find a large percentage of fast-rotating stars among Carina solar-mass members, which provide new constraints on the rotational evolution of pre-main-sequence stars in this mass range. Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-ESO Large Public Survey (program 188.B-3002). Full Tables 1, 2, and 7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A81

  5. The Gaia-ESO Survey: Probes of the inner disk abundance gradient

    NASA Astrophysics Data System (ADS)

    Jacobson, H. R.; Friel, E. D.; Jílková, L.; Magrini, L.; Bragaglia, A.; Vallenari, A.; Tosi, M.; Randich, S.; Donati, P.; Cantat-Gaudin, T.; Sordo, R.; Smiljanic, R.; Overbeek, J. C.; Carraro, G.; Tautvaišienė, G.; San Roman, I.; Villanova, S.; Geisler, D.; Muñoz, C.; Jiménez-Esteban, F.; Tang, B.; Gilmore, G.; Alfaro, E. J.; Bensby, T.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Pancino, E.; Recio-Blanco, A.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-06-01

    Context. The nature of the metallicity gradient inside the solar circle (RGC < 8 kpc) is poorly understood, but studies of Cepheids and a small sample of open clusters suggest that it steepens in the inner disk. Aims: We investigate the metallicity gradient of the inner disk using a sample of inner disk open clusters that is three times larger than has previously been studied in the literature to better characterize the gradient in this part of the disk. Methods: We used the Gaia-ESO Survey (GES) [Fe/H] values and stellar parameters for stars in 12 open clusters in the inner disk from GES-UVES data. Cluster mean [Fe/H] values were determined based on a membership analysis for each cluster. Where necessary, distances and ages to clusters were determined via comparison to theoretical isochrones. Results: The GES open clusters exhibit a radial metallicity gradient of -0.10 ± 0.02 dex kpc-1, consistent with the gradient measured by other literature studies of field red giant stars and open clusters in the range RGC ~ 6-12 kpc. We also measure a trend of increasing [Fe/H] with increasing cluster age, as has also been found in the literature. Conclusions: We find no evidence for a steepening of the inner disk metallicity gradient inside the solar circle as earlier studies indicated. The age-metallicity relation shown by the clusters is consistent with that predicted by chemical evolution models that include the effects of radial migration, but a more detailed comparison between cluster observations and models would be premature. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 188.B-3002 and 193.B-0936. These data products have been processed by the Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A37

  6. First Images from VLT Science Verification Programme

    NASA Astrophysics Data System (ADS)

    1998-09-01

    Two Weeks of Intensive Observations Successfully Concluded After a period of technical commissioning tests, the first 8.2-m telescope of the ESO VLT (UT1) has successfully performed an extensive series of "real science" observations , yielding nearly 100 hours of precious data. They concern all possible types of astronomical objects, from distant galaxies and quasars to pulsars, star clusters and solar system objects. This intensive Science Verification (SV) Programme took place as planned from August 17 to September 1, 1998, and was conducted by the ESO SV Team at the VLT Observatory on Paranal (Chile) and at the ESO Headquarters in Garching (Germany). The new giant telescope lived fully up to the high expectations and worked with spectacular efficiency and performance through the entire period. All data will be released by September 30 via the VLT archive and the web (with some access restrictions - see below). The Science Verification period Just before the beginning of the SV period, the 8.2-m primary mirror in its cell was temporarily removed in order to install the "M3 tower" with the tertiary mirror [1]. The reassembly began on August 15 and included re-installation at the Cassegrain focus of the VLT Test Camera that was also used for the "First Light" images in May 1998. After careful optical alignment and various system tests, the UT1 was handed over to the SV Team on August 17 at midnight local time. The first SV observations began immediately thereafter and the SV Team was active 24 hours a day throughout the two-week period. Video-conferences between Garching and Paranal took place every day at about noon Garching time (6 o'clock in the morning on Paranal). Then, while the Paranal observers were sleeping, data from the previous night were inspected and reduced in Garching, with feedback on what was best to do during the following night being emailed to Paranal several hours in advance of the beginning of the observations. The campaign ended in the morning of September 1 when the telescope was returned to the Commissioning Team that has since continued its work. The FORS instrument is now being installed and the first images from this facility are expected shortly. Observational circumstances During the two-week SV period, a total of 154 hours were available for astronomical observations. Of these, 95 hours (62%) were used to collect scientific data, including calibrations, e.g. flat-fielding and photometric standard star observations. 15 hours (10%) were spent to solve minor technical problems, while another 44 hours (29%) were lost due to adverse meteorological conditions (clouds or wind exceeding 15 m/sec). The amount of telescope technical downtime is very small at this moment of the UT1 commissioning. This fact provides an impressive indication of high technical reliability that has been achieved and which will be further consolidated during the next months. The meteorological conditions that were encountered at Paranal during this period were unfortunately below average, when compared to data from the same calendar period in earlier years. There was an excess of bad seeing and fewer good seeing periods than normal; see, however, ESO PR Photo 35c/98 with 0.26 arcsec image quality. Nevertheless, the measured image quality on the acquired frames was often better than the seeing measured outside the enclosure by the Paranal seeing monitor. Part of this very positive effect is due to "active field stabilization" , now performed during all observations by rapid motion (10 - 70 times per second) of the 1.1-m secondary mirror of beryllium (M2) and compensating for the "twinkling" of stars. Science Verification data soon to be released A great amount of valuable data was collected during the SV programme. The available programme time was distributed as follows: Hubble Deep Field - South [HDF-S; NICMOS and STIS Fields] (37.1 hrs); Lensed QSOs (3.2 hrs); High-z Clusters (6.2 hrs); Host Galaxies of Gamma-Ray Bursters (2.1 hrs); Edge-on Galaxies (7.4 hrs); Globular cluster cores (6.7 hrs); QSO Hosts (4.4 hrs); TNOs (3.4 hrs); Pulsars (1.3 hrs); Calibrations (22.7 hrs). All of the SV data are now in the process of being prepared for public release by September 30, 1998 to the ESO and Chilean astronomical communities. It will be possible to retrieve the data from the VLT archive, and a set of CDs will be distributed to all astronomical research institutes within the ESO member states and Chile. Moreover, data obtained on the HDF-S will become publicly available worldwide, and retrievable from the VLT archive. Updated information on this data release can be found on the ESO web site at http://www.eso.org/vltsv/. It is expected that the first scientific results based on the SV data will become available in the course of October and November 1998. First images from the Science Verification programme This Press Release is accompanied by three photos that reproduce some of the images obtained during the SV period. ESO PR Photo 35a/98 ESO PR Photo 35a/98 [Preview - JPEG: 671 x 800 pix - 752k] [High-Res - JPEG: 2518 x 3000 pix - 5.8Mb] This colour composite was constructed from the U+B, R and I Test Camera Images of the Hubble Deep Field South (HDF-S) NICMOS field. These images are displayed as blue, green and red, respectively. The first photo is a colour composite of the HDF-S NICMOS sky field that combines exposures obtained in different wavebands: ultraviolet (U) + blue (B), red (R) and near-infrared (I). For all of them, the image quality is better than 0.9 arcsec. Most of the objects seen in the field are distant galaxies. The image is reproduced in such a way that it shows the faintest features scaled, while rendering the image of the star below the large spiral galaxy approximately white. The spiral galaxy is displayed in such a way that the internal structure is visible. A provisional analysis has shown that limiting magnitudes that were predicted for the HDF-S observations (27.0 - 28.5, depending on the band), were in fact reached. Technical information : Photo 35a/98 is based on 16 U-frames (~370 nm; total exposure time 17800 seconds; mean seeing 0.71 arcsec) and 15 B-frames (~430 nm; 10200 seconds; 0.71 arcsec) were added and combined with 8 R frames (~600 nm; 7200 seconds; 0.49 arcsec) and 12 I-frames (~800 nm; 10150 seconds; 0.59 arcsec) to make this colour composite. Individual frames were flat-fielded and cleaned for cosmics before combination. The field shown measures 1.0 x 1.0 arcmin. North is up; East is to the left. ESO PR Photo 35b/98 ESO PR Photo 35b/98 [Preview - JPEG: 679 x 800 pix - 760k] [High-Res - JPEG: 2518 x 3000 pix - 5.7Mb] The colour composite of the HDF-S NICMOS field constructed by combining VLT Test Camera images in U+B and R bands with a HST NICMOS near-IR H-band exposure. These images are displayed as blue, green and red, respectively. The NICMOS image was smoothed to match the angular resolution of the R-band VLT image. The boundary of the NICMOS image is also shown. The next photo is similar to the first one, but uses a near-IR frame obtained with the Hubble Space Telescope NICMOS instrument instead of the VLT I-frame. The HST image has nearly the same total exposure time as the VLT images. Their combination is meaningful since the VLT and NICMOS images reach similar depths and show more or less the same faint objects. This is the result of several effects compensating each other: while more distant galaxies are redder and therefore better visible at the infrared waveband of the NICMOS image and this image has a better angular resolution than those from the VLT, the collecting area of the UT1 mirror is over 11 times larger than that of the HST. It is interesting to note that all objects in the NICMOS image are also visible in the VLT images, with the exception of the very red object just left of the face-on spiral. The bright red object near the bottom has not before been detected in optical images (to the limit of R ~ 26 mag), but is clearly present in all the VLT Test Camera coadded images, with the exception of the U-band image. Both of these very red objects are possibly extremely distant, elliptical galaxies [2]. The additional information that can be obtained from the combination of the VLT and the infrared NICMOS images has an immediate bearing on the future work with the VLT. When the infrared, multi-mode ISAAC instrument enters into operation in early 1999, it will be able to obtain spectra of such objects and, in general, to deliver very deep infrared images. Thus, the combination of visual (from FORS) and infrared (from ISAAC) images and spectra promises to become an extremely powerful tool that will allow the detection of very red and therefore exceedingly distant galaxies. Moreover, it is obvious that this sky field is not very crowded - much longer exposure times will thus be possible without encountering serious problems of overlapping objects at the "confusion limit". Technical information : Photo 35b/98 is based on 16 U-frames (~370 nm; total exposure time 17800 seconds; mean seeing 0.71 arcsec) and 15 B-frames (~430 nm; 10200 seconds; 0.71 arcsec) were added and combined with 8 R frames (~600 nm; 7200 seconds; 0.49 arcsec) as well as a HST/NICMOS H-band frame(a H-band HST/NICMOS image from the ST-ECF public archive) (~1600 nm; 7040 seconds; 0.2 arcsec) to make this colour composite. Individual frames were flat-fielded and cleaned for cosmics before combination. The field shown measures 1.0 x 1.0 arcmin. North is up; East is to the left. ESO PR Photo 35c/98 ESO PR Photo 35c/98 [Preview - JPEG: 654 x 800 pix - 280k] [High-Res - JPEG: 2489 x 3000 pix - 2.6Mb] Coaddition of two R-band images of edge-on galaxy ESO342-G017 , obtained with 0.26 arcsec image quality. The galaxy ESO342-G017 was observed on August 19, 1998 during a spell of excellent observing conditions. Two exposures, each lasting 120 seconds, were taken through a red filtre to produce this photo. The quality of the original images is excellent, with seeing (FWHM) of only 0.26 arcsec measured on the stars in the frame. ESO342-G017 is an Sc-type spiral galaxy seen edge-on, and the Test Camera was rotated so that the disk of the galaxy appears horizontal in the figure. Thanks to the image quality, the photo shows much detail in the rather flat disk, including a very thin, obscuring dust band and some brighter knots, most probably star-forming regions. This galaxy is located well outside the Milky Way band in the southern constellation of Sagittarius. Its distance is about 400 million light-years (recession velocity about 7,700 km/sec). A number of more distant galaxies are seen in the background on this short exposure. Technical information : Photo 35c/98 is a reproduced from a composite of two 120-second exposures in the red R-band (~600 nm) of the edge-on galaxy ESO342-G017, both with 0.26 arcsec image quality. The frames were flat-fielded and cleaned for cosmics before combination. The field shown measures 1.5 x 1.5 arcmin. North is inclined 38 o clockwise from the top, East is to the left. Notes: [1] The flat and elliptically shaped, tertiary mirror M3 is mounted on top of the M3 Tower that is fixed in the center of the M1 Cell. The tower can rotate along its axis and deflects the light coming from the M2 mirror to the astronomical instruments on either Nasmyth platform. A mechanism at the top of the M3 Tower is used to move the M3 mirror away from the optical path when the instrument at the Cassegrain focus is used, e.g. the Test Camera during the SV observations. [2] This effect is due to the fact that the more distant a galaxy is, the larger is the velocity with which it recedes from us (Hubble's law). The larger the velocity, the further its emitted light will be shifted redwards in the observed spectrum (the Doppler effect) and the redder its image will appear to us. By comparing the brightness of a distant galaxy in different wavebands (measuring its colour), it is therefore in practice possible to estimate its redshift and thus its distance (the " photometric redshift" method). How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  7. Pulsating Star Mystery Solved

    NASA Astrophysics Data System (ADS)

    2010-11-01

    By discovering the first double star where a pulsating Cepheid variable and another star pass in front of one another, an international team of astronomers has solved a decades-old mystery. The rare alignment of the orbits of the two stars in the double star system has allowed a measurement of the Cepheid mass with unprecedented accuracy. Up to now astronomers had two incompatible theoretical predictions of Cepheid masses. The new result shows that the prediction from stellar pulsation theory is spot on, while the prediction from stellar evolution theory is at odds with the new observations. The new results, from a team led by Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), appear in the 25 November 2010 edition of the journal Nature. Grzegorz Pietrzyński introduces this remarkable result: "By using the HARPS instrument on the 3.6-metre telescope at ESO's La Silla Observatory in Chile, along with other telescopes, we have measured the mass of a Cepheid with an accuracy far greater than any earlier estimates. This new result allows us to immediately see which of the two competing theories predicting the masses of Cepheids is correct." Classical Cepheid Variables, usually called just Cepheids, are unstable stars that are larger and much brighter than the Sun [1]. They expand and contract in a regular way, taking anything from a few days to months to complete the cycle. The time taken to brighten and grow fainter again is longer for stars that are more luminous and shorter for the dimmer ones. This remarkably precise relationship makes the study of Cepheids one of the most effective ways to measure the distances to nearby galaxies and from there to map out the scale of the whole Universe [2]. Unfortunately, despite their importance, Cepheids are not fully understood. Predictions of their masses derived from the theory of pulsating stars are 20-30% less than predictions from the theory of the evolution of stars. This embarrassing discrepancy has been known since the 1960s. To resolve this mystery, astronomers needed to find a double star containing a Cepheid where the orbit happened to be seen edge-on from Earth. In these cases, known as eclipsing binaries, the brightness of the two stars dims as one component passes in front of the other, and again when it passes behind the other star. In such pairs astronomers can determine the masses of the stars to high accuracy [3]. Unfortunately neither Cepheids nor eclipsing binaries are common, so the chance of finding such an unusual pair seemed very low. None are known in the Milky Way. Wolfgang Gieren, another member of the team, takes up the story: "Very recently we actually found the double star system we had hoped for among the stars of the Large Magellanic Cloud. It contains a Cepheid variable star pulsating every 3.8 days. The other star is slightly bigger and cooler, and the two stars orbit each other in 310 days. The true binary nature of the object was immediately confirmed when we observed it with the HARPS spectrograph on La Silla." The observers carefully measured the brightness variations of this rare object, known as OGLE-LMC-CEP0227 [4], as the two stars orbited and passed in front of one another. They also used HARPS and other spectrographs to measure the motions of the stars towards and away from the Earth - both the orbital motion of both stars and the in-and-out motion of the surface of the Cepheid as it swelled and contracted. This very complete and detailed data allowed the observers to determine the orbital motion, sizes and masses of the two stars with very high accuracy - far surpassing what had been done before for a Cepheid. The mass of the Cepheid is now known to about 1% and agrees exactly with predictions from the theory of stellar pulsation. However, the larger mass predicted by stellar evolution theory was shown to be significantly in error. The much-improved mass estimate is only one outcome of this work, and the team hopes to find other examples of these remarkably useful pairs of stars to exploit the method further. They also believe that from such binary systems they will eventually be able to pin down the distance to the Large Magellanic Cloud to 1%, which would mean an extremely important improvement of the cosmic distance scale. Notes [1] The first Cepheid variables were spotted in the 18th century and the brightest ones can easily be seen to vary from night to night with the unaided eye. They take their name from the star Delta Cephei in the constellation of Cepheus (the King), which was first seen to vary by John Goodricke in England in 1784. Remarkably, Goodricke was also the first to explain the light variations of another kind of variable star, eclipsing binaries. In this case two stars are in orbit around each other and pass in front of each other for part of their orbits and so the total brightness of the pair drops. The very rare object studied by the current team is both a Cepheid and an eclipsing binary. Classical Cepheids are massive stars, distinct from similar pulsating stars of lower mass that do not share the same evolutionary history. [2] The period luminosity relation for Cepheids, discovered by Henrietta Leavitt in 1908, was used by Edwin Hubble to make the first estimates of the distance to what we now know to be galaxies. More recently Cepheids have been observed with the Hubble Space Telescope and with the ESO VLT on Paranal to make highly accurate distance estimates to many nearby galaxies. [3] In particular, astronomers can determine the masses of the stars to high accuracy if both stars happen to have a similar brightness and therefore the spectral lines belonging to each of the two stars can be seen in the observed spectrum of the two stars together, as is the case for this object. This allows the accurate measurement of the motions of both stars towards and away from Earth as they orbit, using the Doppler effect. [4] The name OGLE-LMC-CEP0227 arises because the star was first discovered to be a variable during the OGLE search for gravitational microlensing. More details about OGLE are available at: http://ogle.astrouw.edu.pl/. More information This research was presented in a paper to appear in the journal Nature on 25 November 2010. The team is composed of G. Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), I. B. Thompson (Carnegie Observatories, USA), W. Gieren (Universidad de Concepción, Chile), D. Graczyk (Universidad de Concepción, Chile), G. Bono (INAF-Osservatorio Astronomico di Roma, Universita' di Roma, Italy), A. Udalski (Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), I. Soszyński (Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), D. Minniti (Pontificia Universidad Católica de Chile) and B. Pilecki (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  8. Sharpest Ever VLT Images at NAOS-CONICA "First Light"

    NASA Astrophysics Data System (ADS)

    2001-12-01

    Very Promising Start-Up of New Adaptive Optics Instrument at Paranal Summary A team of astronomers and engineers from French and German research institutes and ESO at the Paranal Observatory is celebrating the successful accomplishment of "First Light" for the NAOS-CONICA Adaptive Optics facility . With this event, another important milestone for the Very Large Telescope (VLT) project has been passed. Normally, the achievable image sharpness of a ground-based telescope is limited by the effect of atmospheric turbulence. However, with the Adaptive Optics (AO) technique, this drawback can be overcome and the telescope produces images that are at the theoretical limit, i.e., as sharp as if it were in space . Adaptive Optics works by means of a computer-controlled, flexible mirror that counteracts the image distortion induced by atmospheric turbulence in real time. The larger the main mirror of the telescope is, and the shorter the wavelength of the observed light, the sharper will be the images recorded. During a preceding four-week period of hard and concentrated work, the expert team assembled and installed this major astronomical instrument at the 8.2-m VLT YEPUN Unit Telescope (UT4). On November 25, 2001, following careful adjustments of this complex apparatus, a steady stream of photons from a southern star bounced off the computer-controlled deformable mirror inside NAOS and proceeded to form in CONICA the sharpest image produced so far by one of the VLT telescopes. With a core angular diameter of only 0.07 arcsec, this image is near the theoretical limit possible for a telescope of this size and at the infrared wavelength used for this demonstration (the K-band at 2.2 µm). Subsequent tests reached the spectacular performance of 0.04 arcsec in the J-band (wavelength 1.2 µm). "I am proud of this impressive achievement", says ESO Director General Catherine Cesarsky. "It shows the true potential of European science and technology and it provides a fine demonstration of the value of international collaboration. ESO and its partner institutes and companies in France and Germany have worked a long time towards this goal - with the first, extremely promising results, we shall soon be able to offer a new and fully tuned instrument to our wide research community." The NAOS adaptive optics corrector was built, under an ESO contract, by Office National d'Etudes et de Recherches Aérospatiales (ONERA) , Laboratoire d'Astrophysique de Grenoble (LAOG) and the DESPA and DASGAL laboratories of the Observatoire de Paris in France, in collaboration with ESO. The CONICA infra-red camera was built, under an ESO contract, by the Max-Planck-Institut für Astronomie (MPIA) (Heidelberg) and the Max-Planck Institut für Extraterrestrische Physik (MPE) (Garching) in Germany, in collaboration with ESO. The present event happens less than four weeks after "First Fringes" were achieved for the VLT Interferometer (VLTI) with two of the 8.2-m Unit Telescopes. No wonder that a spirit of great enthusiasm reigns at Paranal! Information for the media: ESO is producing a Video News Release ( ESO Video News Reel No. 13 ) with sequences from the NAOS-CONICA "First Light" event at Paranal, a computer animation illustrating the principle of adaptive optics in NAOS-CONICA, as well as the first astronomical images obtained. In addition to the usual distribution, this VNR will also be transmitted via satellite Friday 7 December 2001 from 09:00 to 09:15 CET (10:00 to 10:15 UT) on "Europe by Satellite" . These video images may be used free of charge by broadcasters. Satellite details, the script and the shotlist will be on-line from 6 December on the ESA TV Service Website http://television.esa.int. Also a pre-view Real Video Stream of the video news release will be available as of that date from this URL. Video Clip 07/01 : Various video scenes related to the NAOS-CONICA "First Light" Event ( ESO Video News Reel No. 13 ). PR Photo 33a/01 : NAOS-CONICA "First light" image of an 8-mag star. PR Photo 33b/01 : The moment of "First Light" at the YEPUN Control Consoles. PR Photo 33c/01 : Image of NGC 3603 (K-band) area (NAOS-CONICA) . PR Photo 33d/01 : Image of NGC 3603 wider field (ISAAC) PR Photo 33e/01 : I-band HST-WFPC2 image of NGC 3603 field . PR Photo 33f/01 : Animated GIF, with NAOS-CONICA (K-band) and HST-WFPC2 (I-band) images of NGC 3603 area PR Photo 33g/01 : Image of the Becklin-Neugebauer Object . PR Photo 33h/01 : Image of a very close double star . PR Photo 33i/01 : Image of a 17-magnitude reference star PR Photo 33j/01 : Image of the central area of the 30 Dor star cluster . PR Photo 33k/01 : The top of the Paranal Mountain (November 25, 2001). PR Photo 33l/01 : The NAOS-CONICA instrument attached to VLT YEPUN.. A very special moment at Paranal! First light for NAOS-CONICA at the VLT - PR Video Clip 07/01] ESO PR Video Clip 07/01 "First Light for NAOS-CONICA" (25 November 2001) (3850 frames/2:34 min) [MPEG Video+Audio; 160x120 pix; 3.6Mb] [MPEG Video+Audio; 320x240 pix; 8.9Mb] [RealMedia; streaming; 34kps] [RealMedia; streaming; 200kps] ESO Video Clip 07/01 provides some background scenes and images around the NAOS-CONICA "First Light" event on November 25, 2001 (extracted from ESO Video News Reel No. 13 ). Contents: NGC 3603 image from ISAAC and a smaller field as observed by NAOS-CONICA ; the Paranal platform in the afternoon, before the event; YEPUN and NAOS-CONICA with cryostat sounds; Tension is rising in the VLT Control Room; Wavefront Sensor display; the "Loop is Closed"; happy team members; the first corrected image on the screen; Images of NGC 3603 by HST and VLT; 30 Doradus central cluster; BN Object in Orion; Statement by the Head of the ESO Instrument Division. ESO PR Photo 33a/01 ESO PR Photo 33a/01 [Preview - JPEG: 317 x 400 pix - 27k] [Normal - JPEG: 800 x 634 pix - 176k] ESO PR Photo 33b/01 ESO PR Photo 33b/01 [Preview - JPEG: 400 x 322 pix - 176k] [Normal - JPEG: 800 x 644 pix - 360k] ESO PR Photo 33a/01 shows the first image in the infrared K-band (wavelength 2.2 µm) of a star (visual magnitude 8) obtained - before (left) and after (right) the adaptive optics was switched on (see the text). The middle panel displays the 3-D intensity profiles of these images, demonstrating the tremendous gain, both in image sharpness and central intensity. ESO PR Photo 33b/01 shows some of the NAOS-CONICA team members in the VLT Control Room at the moment of "First Light" in the night between November 25-26, 2001. From left to right: Thierry Fusco (ONERA), Clemens Storz (MPIA), Robin Arsenault (ESO), Gerard Rousset (ONERA). The numerous boxes with the many NAOS and CONICA parts arrived at the ESO Paranal Observatory on October 24, 2001. Astronomers and engineers from ESO and the participating institutes and organisations then began the painstaking assembly of these very complex instruments on one of the Nasmyth platforms on the fourth VLT 8.2-m Unit Telescope, YEPUN . Then followed days of technical tests and adjustments, working around the clock. In the afternoon of Sunday, November 25, the team finally declared the instrument fit to attempt its "First Light" observation. The YEPUN dome was opened at sunset and a small, rather apprehensive group gathered in the VLT Control Room, peering intensively at the computer screens over the shoulders of their colleagues, the telescope and instrument operators. Time passed imperceptibly to those present, as the basic calibrations required at this early stage to bring NAOS-CONICA to full operational state were successfully completed. Everybody sensed the special moment approaching when, finally, the telescope operator pushed a button and the giant telescope started to turn smoothly towards the first test object, an otherwise undistinguished star in our Milky Way. Its non-corrected infra-red image was recorded by the CONICA detector array and soon appeared on the computer screen. It was already very good by astronomical standards, with a diameter of only 0.50 arsec (FWHM), cf. PR Photo 33a/01 (left) . Then, by another command, the instrument operator switched on the NAOS adaptive optics system , thereby "closing the loop" for the first time on a sky field, by using that ordinary star as a reference light source to measure the atmospheric turbulence. Obediently, the deformable mirror in NAOS began to follow the "orders" that were issued 500 times per second by its powerful control computer.... As if by magics, that stellar image on the computer screen pulled itself together....! What seconds before had been a jumping, rather blurry patch of light suddenly became a rock-steady, razor-sharp and brilliant spot of light. The entire room burst into applause - there were happy faces and smiles all over, and then the operator announced the measured image diameter - a truly impressive 0.068 arcsec, already at this first try, cf. PR Photo 33a/01 (right) ! All the team members who were lucky to be there sent a special thought to those many others who had also put in over four years' hard and dedicated work to make this event a reality. The time of this historical moment was November 25, 2001, 23:00 Chilean time (November 26, 2001, 02:00 am UT) . During this and the following nights, more images were made of astronomcal objects, opening a new chapter of the long tradition of Adaptive Optics at ESO. More information about the NAOS-CONICA international collaboration , technical details about this instrument and its special advantages are available below. The first images The star-forming region around NGC 3603 ESO PR Photo 33c/01 ESO PR Photo 33c/01 [Preview - JPEG: 326 x 400 pix - 200k] [Normal - JPEG: 651 x 800 pix - 480k] ESO PR Photo 33d/01 ESO PR Photo 33d/01 [Preview - JPEG: 348 x 400 pix - 240k] [Normal - JPEG: 695 x 800 pix - 592k] Caption : PR Photo 33c/01 displays a NAOS-CONICA image of the starburst cluster NGC 3603, obtained during the second night of NAOS-CONICA operation. The sky region shown is some 20 arcsec to the North of the centre of the cluster. NAOS was compensating atmospheric disturbances by analyzing light from the central star with its visual wavefront sensor, while CONICA was observing in the K-band. The image is nearly diffraction-limited and has a Full-Width-Half-Maximum (FWHM) diameter of 0.07 arcsec, with a central Strehl ratio of 56% (a measure of the degree of concentration of the light). The exposure lasted 300 seconds. North is up and East is left. The field measures 27 x 27 arcsec. On PR Photo 33d/01 , the sky area shown in this NAOS-CONICA high-resolution image is indicated on an earlier image of a much larger area, obtained in 1999 with the ISAAC multi-mode instrument on VLT ANTU ( ESO PR 16/99 ) Among the first images to be obtained of astronomical objects was one of the stellar cluster NGC 3603 that is located in the Carina spiral arm in the Milky Way at a distance of about 20,000 light-years, cf. PR Photo 33c/01 . With its central starburst cluster, it is one of the densest and most massive star forming regions in our Galaxy. Some of the most massive stars - with masses up to 120 times the mass of our Sun - can be found in this cluster. For a long time astronomers have suspected that the formation of low-mass stars is suppressed by the presence of high-mass stars, but two years ago, stars with masses as low as 10% of the mass of our Sun were detected in NGC 3603 with the ISAAC multi-mode instrument at VLT ANTU, cf. PR Photo 33d/01 and ESO PR 16/99. The high stellar density in this region, however, prevented the search for objects with still lower masses, so-called Brown Dwarfs. The new, high-resolution K-band images like PR Photo 33c/01 , obtained with NAOS-CONICA at YEPUN, now for the first time facilitate the study of the elusive class of brown dwarfs in such a starburst environment. This will, among others, offer very valuable insight into the fundamental problem about the total amount of matter that is deposited into stars in star-forming regions. An illustration of the potential of Adaptive Optics ESO PR Photo 33e/01 ESO PR Photo 33e/01 [Preview - JPEG: 376 x 400 pix - 128k] [Normal - JPEG: 752 x 800 pix - 336k] ESO PR Photo 33f/01 ESO PR Photo 33f/01 [Animated GIF: 400 x 425 pix - 71k] Caption : PR Photo 33e/01 was obtained with the WFPC2 camera on the Hubble Space Telescope (HST) in the I-band (800nm). It is a 400-sec exposure and shows the same sky region as in the NAOS-CONICA image shown in PR Photo 33c/01. PR Photo 33f/01 provides a direct comparison of the two images (animated GIF). The HST image was extracted from archival data. HST is operated by NASA and ESA. Normally, the achievable image sharpness of a ground-based telescope is limited by the effect of atmospheric turbulence . However, the Adaptive Optics (AO) technique overcomes this problem and when the AO instrument is optimized, the telescope produces images that are at the theoretical limit, i.e., as sharp as if it were in space . The theoretical image diameter is inversely proportional to the diameter of the main mirror of the telescope and proportional to the wavelength of the observed light. Thus, the larger the telescope and the shorter the wavelength, the sharper will be the images recorded . To illustrate this, a comparison of the NAOS-CONICA image of NGC 3603 ( PR Photo 33c/01 ) is here made with a near-infrared image obtained earlier by the Hubble Space Telescope (HST) covering the same sky area ( PR Photo 33e/01 ). Both images are close to the theoretical limit ("diffraction limited"). However, the diameter of the VLT YEPUN mirror (8.2-m) is somewhat more than three times that of that of HST (2.4-m). This is "compensated" by the fact that the wavelength of the NAOS-CONICA image (2.2 µm) is about two-and-a-half times longer that than of the HST image (0.8 µm). The measured image diameters are therefore not too different, approx. 0.085 arcsec (HST) vrs. approx. 0.068 arcsec (VLT). Although the exposure times are similar (300 sec for the VLT image; 400 sec for the HST image), the VLT image shows considerably fainter objects. This is partly due to the larger mirror, partly because by observing at a longer wavelength, NAOS-CONICA can detect a host of cool low-mass stars. The Becklin-Neugebauer object and its associated nebulosity ESO PR Photo 33g/01 ESO PR Photo 33g/01 [Preview - JPEG: 299 x 400 pix - 128k] [Normal - JPEG: 597 x 800 pix - 272k] Caption : PR Photo 33g/01 is a composite (false-) colour image obtained by NAOS-CONICA of the region around the Becklin-Neugebauer object that is deeply embedded in the Orion Nebula. It is based on two exposures, one in the light of shock-excited molecular hydrogen line (H 2 ; wavelength 2.12 µm; here rendered as blue) and one in the broader K-band (2.2 µm; red) from ionized hydrogen. A third (green) image was produced as an "average" of the H 2 and K-band images. The field-of-view measures 20 x 25 arcsec 2 , cf. the 1 x 1 arcsec 2 square. North is up and east to the left. PR Photo 33g/01 is a composite image of the region around the Becklin-Neugebauer object (generally refered to as "BN" ). With its associated Kleinmann-Low nebula, it is located in the Orion star forming region at a distance of approx. 1500 light-years. It is the nearest high-mass star-forming complex. The immediate vicinity of BN (the brightest star in the image) is highly dynamic with outflows and cloudlets glowing in the light of shock-excited molecular hydrogen. While many masers and outflows have been detected, the identification of their driving sources is still lacking. Deep images in the infrared K and H bands, as well as in the light of molecular hydrogen emission were obtained with NAOS-CONICA at VLT YEPUN during the current tests. The new images facilitate the detection of fainter and smaller structures in the cloud than ever before. More details on the embedded star cluster are revealed as well. These observations were only made possible by the infrared wavefront sensor of NAOS. The latter is a unique capability of NAOS and allows to do adaptive optics on highly embedded infrared sources, which are practically invisible at optical wavelengths. Exploring the limits ESO PR Photo 33h/01 ESO PR Photo 33h/01 [Preview - JPEG: 400 x 260 pix - 44k] [Normal - JPEG: 800 x 520 pix - 112k] Caption : PR Photo 33h/01 shows a NAOS-CONICA image of the double star GJ 263 for which the angular distance between the two components is only 0.030 arcsec . The raw image, as directly recorded by CONICA, is shown in the middle, with a computer-processed (using the ONERA MISTRAL myopic deconvolution algorithm) version to the right. The recorded Point-Spread-Function (PSF) is shown to the left. For this, the C50S camera (0.01325 arcsec/pixel) was used, with an FeII filter at the near-infrared wavelength 1.257 µm. The exposure time was 10 seconds. ESO PR Photo 33i/01 ESO PR Photo 33i/01 [Preview - JPEG: 400 x 316 pix - 82k] [Normal - JPEG: 800 x 631 pix - 208k] Caption : PR Photo 33i/01 shows the near-diffraction-limited image of a 17-mag reference star , as recorded with NAOS-CONICA during a 200-second exposure in the K-band under 0.60 arcsec seeing. The 3D-profile is also shown. ESO PR Photo 33j/01 ESO PR Photo 33j/01 [Preview - JPEG: 342 x 400 pix - 83k] [Normal - JPEG: 684 x 800 pix - 200k] Caption : PR Photo 33j/01 shows the central cluster in the 30 Doradus HII region in the Large Magellanic Cloud (LMC), a satellite of our Milky Way Galaxy. It was obtained by NAOS-CONICA in the infrared K-band during a 600 second exposure. The field shown here measures 15 x 15 arcsec 2. PR Photos 33h-j/01 provide three examples of images obtained during specific tests where the observers pushed NAOS-CONICA towards the limits to explore the potential of the new instrument. Although, as expected, these images are not "perfect", they bear clear witness to the impressive performance, already at this early stage of the commissioning programme. The first PR Photo 33h/01 shows how diffraction-limited imaging with NAOS-CONICA at a wavelength of 1.257 µm allows to view the individual components of a close double star, here the binary star GJ 263 for which the angular distance between the two stars is only 0.030 arcsec (i.e., the angle subtended by a 1 Euro coin at a distance of 160 km). Spatially resolved observations of binary stars like this one will allow the determination of orbital parameters, and ultimately of the masses of the individual binary star components. After few days of optimisation and calibration, NAOS-CONICA was able to "close the loop" on a reference star as faint as visual magnitude 17 and to provide a fine diffraction-limited K-band image with Strehl ratio 19% under 0.6 arcsec seeing. PR Photo 33i/01 provides a view of this image, as seen in the recorder frame and as a 3D-profile. The exposure time was 200 seconds. The ability to use reference stars as faint as this is an enormous asset for NAOS-CONICA - it will be first to offer this capability to non-specialist users with an instrument on an 8-10 m class telescope . This permits to access many sky fields and already get significant AO corrections, without having to wait for the artificial laser guide star now being constructed for the VLT, see below. 30 Doradus in the Large Magellanic Cloud (LMC - a satellite of our Galaxy) is the most luminous, giant HII region in the Local Group of Galaxies. It is powered by a massive star cluster with more than 100 ultra-luminous stars (of the "Wolf-Rayet"-type and O-stars). The NAOS CONICA K-band image PR Photo 33x/01 resolves the dense stellar core of high-mass stars at the centre of the cluster, revealing thousands of lower mass cluster members. Due to the lack of a sufficiently bright, isolated and single reference star in this sky field, the observers used instead the bright central star complex (R136a) to generate the corrective signals to the flexible mirror, needed to compensate for the atmospheric turbulence. However, R136a is not a round object; it is strongly elongated in the "5 hour"-direction. As a result, all star images seen in this photo are slightly elongated in the same direction as R136a. Nevertheless, this is a small penalty to pay for the large improvement obtained over a direct (seeing-limited) image! Adaptive Optics at ESO - a long tradition ESO PR Photo 33k/01 ESO PR Photo 33k/01 [Preview - JPEG: 400 x 320 pix - 144k] [Normal - JPEG: 800 x 639 pix - 344k] [Hi-Res - JPEG: 3000 x 2398 pix - 3.0M] ESO PR Photo 33l/01 ESO PR Photo 33l/01 [Preview - JPEG: 400 x 367 pix - 47k] [Normal - JPEG: 800 x 734 pix - 592k] [Hi-Res - JPEG: 3000 x 2754 pix - 3.9M] Caption : PR Photo 33k/01 is a view of the upper platform at the ESO Paranal Observatory with the four enclosures for the VLT 8.2-m Unit Telescopes and the partly subterranean Interferometric Laboratory (at centre). YEPUN (UT4) is housed in the enclosure to the right. This photo was obtained in the evening of November 25, 2001, some hours before "First Light" was achieved for the new NAOS-CONICA instrument, mounted at that telescope. PR Photo 33l/01 NAOS-CONICA installed on the Nasmyth B platform of the 8.2-m VLT YEPUN Unit Telescope. From left to right: the telescope adapter/rotator (dark blue), NAOS (light blue) and the CONICA cryostat (red). The control electronics is housed in the white cabinet. "Adaptive Optics" is a modern buzzword of astronomy. It embodies the seemingly magic way by which ground-based telescopes can overcome the undesirable blurring effect of atmospheric turbulence that has plagued astronomers for centuries. With "Adaptive Optics", the images of stars and galaxies captured by these instruments are now as sharp as theoretically possible. Or, as the experts like to say, "it is as if a giant ground-based telescope is 'lifted' into space by a magic hand!" . Adaptive Optics works by means of a computer-controlled, flexible mirror that counteracts the image distortion induced by atmospheric turbulence in real time. The concept is not new. Already in 1989, the first Adaptive Optics system ever built for Astronomy (aptly named "COME-ON" ) was installed on the 3.6-m telescope at the ESO La Silla Observatory, as the early fruit of a highly successful continuing collaboration between ESO and French research institutes (ONERA and Observatoire de Paris). Ten years ago, ESO initiated an Adaptive Optics program , to serve the needs for its frontline VLT project. In 1993, the Adaptive Optics facility (ADONIS) was offered to Europe's astronomers, as the first instrument of its kind, available for non-specialists. It is still in operation and continues to produce frontline results, cf. ESO PR 22/01. In 1997, ESO launched a collaborative effort with a French Consortium ( see below) for the development of the NAOS Nasmyth Adaptive Optics System . With its associated CONICA IR high angular resolution camera , developed with a German Consortium ( see below), it provides a full high angular resolution capability on the VLT at Paranal. With the successful "First Light" on November 25, 2001, this project is now about to enter into the operational phase. The advantages of NAOS-CONICA NAOS-CONICA belongs to a new generation of sophisticated adaptive optics (AO) devices. They have certain advantages over past systems. In particular, NAOS is unique in being equipped with an infrared-sensitive Wavefront Sensor (WFS) that permits to look inside regions that are highly obscured by interstellar dust and therefore unobservable in visible light. With its other WFS for visible light , NAOS should be able to achieve the highest degree of light concentration (the so-called "Strehl ratio") obtained at any existing 8-m class telescope. It also provides partially corrected images, using reference stars (see PR Photo 33e/01 ) as faint as visual magnitude 18, fainter than demonstrated so far at any other AO system at such large telescope. A major advantage of CONICA is to offer the large format and very high image quality required to fully match NAOS' performance , as well as a variety of observing modes. Moreover, NAOS-CONICA is the first astronomical AO instrument to be offered with a full end-to-end observing capability. It is completely integrated into the VLT dataflow system , with a seamless process from the preparation of the observations, including optimization of the instrument, to their execution at the telescope and on to automatic data quality assessment and storage in the VLT Archive. Collaboration and Institutes The Nasmyth Adaptive Optics System (NAOS) has been developed, with the support of INSU-CNRS, by a French Consortium in collaboration with ESO. The French consortium consists of Office National d'Etudes et de Recherches Aérospatiales (ONERA) , Laboratoire d'Astrophysique de Grenoble (LAOG) and Observatoire de Paris (DESPA and DASGAL). The Project Manager is Gérard Rousset (ONERA), the Instrument Responsible is François Lacombe (Observatoire de Paris) and the Project Scientist is Anne-Marie Lagrange (Laboratoire d'Astrophysique de Grenoble). The CONICA Near-Infrared CAmera has been developed by a German Consortium, with an extensive ESO collaboration. The Consortium consists of Max-Planck-Institut für Astronomie (MPIA) (Heidelberg) and the Max-Planck-Institut für Extraterrestrische Physik (MPE) (Garching). The Principal Investigator (PI) is Rainer Lenzen (MPIA), with Reiner Hofmann (MPE) as Co-Investigator. Contacts Norbert Hubin European Southern Observatory Garching, Germany Tel.: +4989-3200-6517 email: nhubin@eso.org Alan Moorwood European Southern Observatory Garching, Germany Tel.: +4989-3200-6294 email: amoorwoo@eso.org Appendix: Technical Information about NAOS and CONICA Once fully tested, NAOS-CONICA will provide adaptive optics assisted imaging, polarimetry and spectroscopy in the 1 - 5 µm waveband. NAOS is an adaptive optics system equipped with both visible and infrared, Shack-Hartmann type, wavefront sensors. Provided a reference source (e.g., a star) with visual magnitude V brighter than 18 or K-magnitude brighter than 13 mag is available within 60 arcsec of the science target, NAOS-CONICA will ultimately offer diffraction limited resolution at the level of 0.030 arcsec at a wavelength of 1 µm, albeit with a large halo around the image core for the faint end of the reference source brightness. This may be compared with VLT median seeing images of 0.65 arcsec at a wavelength of 1 µm and exceptionally good images around 0.30 arcsec. NAOS-CONICA is installed at Nasmyth Focus B at VLT YEPUN (UT4). In about two years' time, this instrument will benefit from a sodium Laser Guide Star (LGS) facility. The creation of an artificial guide star is then possible in any sky field of interest, thereby providing a much better sky coverage than what is possible with natural guide stars only. NAOS is equipped with two wavefront sensors, one in the visible part of the spectrum (0.45 - 0.95 µm) and one in the infrared part (1 - 2.5 µm); both are based on the Shack-Hartmann principle. The maximum correction frequency is about 500 Hz. There are 185 deformable mirror actuators plus a tip-tilt mirror correction. Together, they should permit to obtain a high Strehl ratio in the K-band (2.2 µm), up to 70%, depending on the actual seeing and waveband. Both the visible and IR wavefront sensors (WFS) have been optimized to provide AO correction for faint objects/stars. The visible WFS provides a low-order correction for objects as faint as visual magnitude ~ 18. The IR WFS will provide a low-order correction for objects as faint as K-magnitude 13. CONICA is a high performant instrument in terms of image quality and detector sensitivity. It has been designed so that it is able to make optimal use of the AO system. Inherent mechanical flexures are corrected on-line by NAOS through a pointing model. It offers a variety of modes, e.g., direct imaging, polarimetry, slit spectroscopy, coronagraphy and spectro-imaging. The ESO PR Video Clips service to visitors to the ESO website provides "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clip 06/01 about observations of a binary star (8 October 2001). Information is also available on the web about other ESO videos.

  9. How Much Mass Makes a Black Hole? - Astronomers Challenge Current Theories

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Using ESO's Very Large Telescope, European astronomers have for the first time demonstrated that a magnetar - an unusual type of neutron star - was formed from a star with at least 40 times as much mass as the Sun. The result presents great challenges to current theories of how stars evolve, as a star as massive as this was expected to become a black hole, not a magnetar. This now raises a fundamental question: just how massive does a star really have to be to become a black hole? To reach their conclusions, the astronomers looked in detail at the extraordinary star cluster Westerlund 1 [1], located 16 000 light-years away in the southern constellation of Ara (the Altar). From previous studies (eso0510), the astronomers knew that Westerlund 1 was the closest super star cluster known, containing hundreds of very massive stars, some shining with a brilliance of almost one million suns and some two thousand times the diameter of the Sun (as large as the orbit of Saturn). "If the Sun were located at the heart of this remarkable cluster, our night sky would be full of hundreds of stars as bright as the full Moon," says Ben Ritchie, lead author of the paper reporting these results. Westerlund 1 is a fantastic stellar zoo, with a diverse and exotic population of stars. The stars in the cluster share one thing: they all have the same age, estimated at between 3.5 and 5 million years, as the cluster was formed in a single star-formation event. A magnetar (eso0831) is a type of neutron star with an incredibly strong magnetic field - a million billion times stronger than that of the Earth, which is formed when certain stars undergo supernova explosions. The Westerlund 1 cluster hosts one of the few magnetars known in the Milky Way. Thanks to its home in the cluster, the astronomers were able to make the remarkable deduction that this magnetar must have formed from a star at least 40 times as massive as the Sun. As all the stars in Westerlund 1 have the same age, the star that exploded and left a magnetar remnant must have had a shorter life than the surviving stars in the cluster. "Because the lifespan of a star is directly linked to its mass - the heavier a star, the shorter its life - if we can measure the mass of any one surviving star, we know for sure that the shorter-lived star that became the magnetar must have been even more massive," says co-author and team leader Simon Clark. "This is of great significance since there is no accepted theory for how such extremely magnetic objects are formed." The astronomers therefore studied the stars that belong to the eclipsing double system W13 in Westerlund 1 using the fact that, in such a system, masses can be directly determined from the motions of the stars. By comparison with these stars, they found that the star that became the magnetar must have been at least 40 times the mass of the Sun. This proves for the first time that magnetars can evolve from stars so massive we would normally expect them to form black holes. The previous assumption was that stars with initial masses between about 10 and 25 solar masses would form neutron stars and those above 25 solar masses would produce black holes. "These stars must get rid of more than nine tenths of their mass before exploding as a supernova, or they would otherwise have created a black hole instead," says co-author Ignacio Negueruela. "Such huge mass losses before the explosion present great challenges to current theories of stellar evolution." "This therefore raises the thorny question of just how massive a star has to be to collapse to form a black hole if stars over 40 times as heavy as our Sun cannot manage this feat," concludes co-author Norbert Langer. The formation mechanism preferred by the astronomers postulates that the star that became the magnetar - the progenitor - was born with a stellar companion. As both stars evolved they would begin to interact, with energy derived from their orbital motion expended in ejecting the requisite huge quantities of mass from the progenitor star. While no such companion is currently visible at the site of the magnetar, this could be because the supernova that formed the magnetar caused the binary to break apart, ejecting both stars at high velocity from the cluster. "If this is the case it suggests that binary systems may play a key role in stellar evolution by driving mass loss - the ultimate cosmic 'diet plan' for heavyweight stars, which shifts over 95% of their initial mass," concludes Clark. Notes [1] The open cluster Westerlund 1 was discovered in 1961 from Australia by Swedish astronomer Bengt Westerlund, who later moved from there to become ESO Director in Chile (1970-74). This cluster is behind a huge interstellar cloud of gas and dust, which blocks most of its visible light. The dimming factor is more than 100 000, and this is why it has taken so long to uncover the true nature of this particular cluster. Westerlund 1 is a unique natural laboratory for the study of extreme stellar physics, helping astronomers to find out how the most massive stars in our Milky Way live and die. From their observations, the astronomers conclude that this extreme cluster most probably contains no less than 100 000 times the mass of the Sun, and all of its stars are located within a region less than 6 light-years across. Westerlund 1 thus appears to be the most massive compact young cluster yet identified in the Milky Way galaxy. All stars so far analysed in Westerlund 1 have masses at least 30-40 times that of the Sun. Because such stars have a rather short life - astronomically speaking - Westerlund 1 must be very young. The astronomers determine an age somewhere between 3.5 and 5 million years. So, Westerlund 1 is clearly a "newborn" cluster in our galaxy. More information The research presented in this ESO Press Release will soon appear in the research journal Astronomy and Astrophysics ("A VLT/FLAMES survey for massive binaries in Westerlund 1: II. Dynamical constraints on magnetar progenitor masses from the eclipsing binary W13", by B. Ritchie et al.). The same team published a first study of this object in 2006 ("A Neutron Star with a Massive Progenitor in Westerlund 1", by M.P. Muno et al., Astrophysical Journal, 636, L41). The team is composed of Ben Ritchie and Simon Clark (The Open University, UK), Ignacio Negueruela (Universidad de Alicante, Spain), and Norbert Langer (Universität Bonn, Germany, and Universiteit Utrecht, the Netherlands). The astronomers used the FLAMES instrument on ESO's Very Large Telescope at Paranal, Chile to study the stars in the Westerlund 1 cluster. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  10. The ESO astronomical site monitor upgrade

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Sommer, Heiko; Sarazin, Marc; Bierwirth, Thomas; Dorigo, Dario; Vera Sequeiros, Ignacio; Navarrete, Julio; Del Valle, Diego

    2016-08-01

    Monitoring and prediction of astronomical observing conditions are essential for planning and optimizing observations. For this purpose, ESO, in the 90s, developed the concept of an Astronomical Site Monitor (ASM), as a facility fully integrated in the operations of the VLT observatory[1]. Identical systems were installed at Paranal and La Silla, providing comprehensive local weather information. By now, we had very good reasons for a major upgrade: • The need of introducing new features to satisfy the requirements of observing with the Adaptive Optics Facility and to benefit other Adaptive Optics systems. • Managing hardware and software obsolescence. • Making the system more maintainable and expandable by integrating off-the-shelf hardware solutions. The new ASM integrates: • A new Differential Image Motion Monitor (DIMM) paired with a Multi Aperture Scintillation Sensor (MASS) to measure the vertical distribution of turbulence in the high atmosphere and its characteristic velocity. • A new SLOpe Detection And Ranging (SLODAR) telescope, for measuring the altitude and intensity of turbulent layers in the low atmosphere. • A water vapour radiometer to monitor the water vapour content of the atmosphere. • The old weather tower, which is being refurbished with new sensors. The telescopes and the devices integrated are commercial products and we have used as much as possible the control system from the vendors. The existing external interfaces, based on the VLT standards, have been maintained for full backward compatibility. All data produced by the system are directly fed in real time into a relational database. A completely new web-based display replaces the obsolete plots based on HP-UX RTAP. We analyse here the architectural and technological choices and discuss the motivations and trade-offs.

  11. Pluto's Atmosphere from the 2015 June 29 Ground-based Stellar Occultation at the Time of the New Horizons Flyby

    NASA Astrophysics Data System (ADS)

    Sicardy, B.; Talbot, J.; Meza, E.; Camargo, J. I. B.; Desmars, J.; Gault, D.; Herald, D.; Kerr, S.; Pavlov, H.; Braga-Ribas, F.; Assafin, M.; Benedetti-Rossi, G.; Dias-Oliveira, A.; Gomes-Júnior, A. R.; Vieira-Martins, R.; Bérard, D.; Kervella, P.; Lecacheux, J.; Lellouch, E.; Beisker, W.; Dunham, D.; Jelínek, M.; Duffard, R.; Ortiz, J. L.; Castro-Tirado, A. J.; Cunniffe, R.; Querel, R.; Yock, P. C.; Cole, A. A.; Giles, A. B.; Hill, K. M.; Beaulieu, J. P.; Harnisch, M.; Jansen, R.; Pennell, A.; Todd, S.; Allen, W. H.; Graham, P. B.; Loader, B.; McKay, G.; Milner, J.; Parker, S.; Barry, M. A.; Bradshaw, J.; Broughton, J.; Davis, L.; Devillepoix, H.; Drummond, J.; Field, L.; Forbes, M.; Giles, D.; Glassey, R.; Groom, R.; Hooper, D.; Horvat, R.; Hudson, G.; Idaczyk, R.; Jenke, D.; Lade, B.; Newman, J.; Nosworthy, P.; Purcell, P.; Skilton, P. F.; Streamer, M.; Unwin, M.; Watanabe, H.; White, G. L.; Watson, D.

    2016-03-01

    We present results from a multi-chord Pluto stellar occultation observed on 2015 June 29 from New Zealand and Australia. This occurred only two weeks before the NASA New Horizons flyby of the Pluto system and serves as a useful comparison between ground-based and space results. We find that Pluto's atmosphere is still expanding, with a significant pressure increase of 5 ± 2% since 2013 and a factor of almost three since 1988. This trend rules out, as of today, an atmospheric collapse associated with Pluto's recession from the Sun. A central flash, a rare occurrence, was observed from several sites in New Zealand. The flash shape and amplitude are compatible with a spherical and transparent atmospheric layer of roughly 3 km in thickness whose base lies at about 4 km above Pluto's surface, and where an average thermal gradient of about 5 K km-1 prevails. We discuss the possibility that small departures between the observed and modeled flash are caused by local topographic features (mountains) along Pluto's limb that block the stellar light. Finally, using two possible temperature profiles, and extrapolating our pressure profile from our deepest accessible level down to the surface, we obtain a possible range of 11.9-13.7 μbar for the surface pressure. Partly based on observations made with the ESO WFI camera at the 2.2 m Telescope (La Silla), under program ID 079.A-9202(A) within the agreement between the ON/MCTI and the Max Planck Society, with the ESO camera NACO at the Very Large Telescope (Paranal), under program ID 089.C-0314(C), and at the Pico dos Dias Observatory/LNA, Brazil.

  12. ESPRESSO: the ultimate rocky exoplanets hunter for the VLT

    NASA Astrophysics Data System (ADS)

    Mégevand, Denis; Zerbi, Filippo M.; Cabral, Alexandre; Di Marcantonio, Paolo; Amate, Manuel; Pepe, Francesco; Cristiani, Stefano; Rebolo, Rafael; Santos, Nuno C.; Dekker, Hans; Abreu, Manuel; Affolter, Michael; Avila, Gerardo; Baldini, Veronica; Bristow, Paul; Broeg, Christopher; Carvas, Pedro; Cirami, Roberto; Coelho, João.; Comari, Maurizio; Conconi, Paolo; Coretti, Igor; Cupani, Guido; D'Odorico, Valentina; De Caprio, Vincenzo; Delabre, Bernard; Figueira, Pedro; Fleury, Michel; Fragoso, Ana; Genolet, Ludovic; Gomes, Ricardo; Gonzalez Hernandez, Jonay; Hughes, Ian; Iwert, Olaf; Kerber, Florian; Landoni, Marco; Lima, Jorge; Lizon, Jean-Louis; Lovis, Christophe; Maire, Charles; Mannetta, Marco; Martins, Carlos; Moitinho, André; Molaro, Paolo; Monteiro, Manuel; Rasilla, José Luis; Riva, Marco; Santana Tschudi, Samuel; Santin, Paolo; Sosnowska, Danuta; Sousa, Sergio; Spanò, Paolo; Tenegi, Fabio; Toso, Giorgio; Vanzella, Eros; Viel, Matteo; Zapatero Osorio, Maria Rosa

    2012-09-01

    ESPRESSO, the VLT rocky exoplanets hunter, will combine the efficiency of modern echelle spectrograph with extreme radial-velocity precision. It will be installed at Paranal on ESO's VLT in order to achieve a gain of two magnitudes with respect to its predecessor HARPS, and the instrumental radial-velocity precision will be improved to reach 10 cm/s level. We have constituted a Consortium of astronomical research institutes to fund, design and build ESPRESSO on behalf of and in collaboration with ESO, the European Southern Observatory. The project has passed the preliminary design review in November 2011. The spectrograph will be installed at the so-called "Combined Coudé Laboratory" of the VLT, it will be linked to the four 8.2 meters Unit Telescopes (UT) through four optical "Coudé trains" and will be operated either with a single telescope or with up to four UTs. In exchange of the major financial and human effort the building Consortium will be awarded with guaranteed observing time (GTO), which will be invested in a common scientific program. Thanks to its characteristics and the ability of combining incoherently the light of 4 large telescopes, ESPRESSO will offer new possibilities in many fields of astronomy. Our main scientific objectives are, however, the search and characterization of rocky exoplanets in the habitable zone of quiet, near-by G to M-dwarfs, and the analysis of the variability of fundamental physical constants. In this paper, we present the ambitious scientific objectives, the capabilities of ESPRESSO, the technical solutions for the system and its subsystems, enlightening the main differences between ESPRESSO and its predecessors. The project aspects of this facility are also described, from the consortium and partnership structure to the planning phases and milestones.

  13. Guiding the Giant

    NASA Astrophysics Data System (ADS)

    1998-08-01

    New ESO Survey Provides Targets for the VLT Giant astronomical telescopes like the ESO Very Large Telescope (VLT) must be used efficiently. Observing time is expensive and there are long waiting lines of excellent research programmes. Thus the work at the telescope must be very well prepared and optimized as much as possible - mistakes should be avoided and no time lost! Astronomers working with the new 8-m class optical/infrared telescopes must base their observations on detailed lists of suitable target objects if they want to perform cutting-edge science. This is particularly true for research programmes that depend on observations of large samples of comparatively rare, distant objects. This type of work requires that extensive catalogues of such objects must be prepared in advance. One such major catalogue - that will serve as a very useful basis for future VLT observations - has just become available from the new ESO Imaging Survey (EIS). The Need for Sky Surveys Astronomers have since long recognized the need to carry out preparatory observations with other telescopes in order to "guide" large telescopes. To this end, surveys of smaller or larger parts of the sky have been performed by wide-field telescopes, paving the way for subsequent work at the limits of the largest available ground-based telescopes. For instance, a complete photographic survey of the sourthern sky (declination < -17.5°) was carried out in the 1970's with the ESO 1-metre Schmidt Telescope in support of the work at the 3.6-m telescope at the ESO La Silla observatory. However, while until recently most observational programmes could rely on samples of objects found on photographic plates, this is no longer possible. New image surveys must match the fainter limiting magnitudes reached by the new and larger telescopes. Modern digital, multi-colour, deep imaging surveys have thus become an indispensable complement to the 8-m telescopes. The new generation of imaging surveys will, without doubt, be the backbone of future research and are likely to be as long-lived as their earlier counterparts, which have served the astronomical community so well over the past decades. The new surveys are now becoming possible, thanks to the new, extremely light-sensitive CCD-mosaics mounted on wide-field telescopes. The ESO Imaging Survey (EIS) A very successful, major step in this direction has recently been taken at ESO. It concerns an imaging survey with the 3.5-m New Technology Telescope (NTT) at La Silla, aimed at defining targets for the first year of operation of the VLT. In addition to serving the future observers, this survey is also public , i.e., the resulting data are made available to all interested parties. The project is known as the ESO Imaging Survey (EIS). It is supervised by a Working Group with members from the European astronomical community ( [1]) that has been responsible for defining the survey strategy and for monitoring the progress. It has been a major challenge to carry out such a public survey in the very short time available. The work by the EIS Team has involved the survey observations at the NTT, development of a pipeline to process the raw data, advanced data reduction, identification of large samples of astronomically "interesting" targets and, not least, the distribution of images and other survey products before the start of operation of the VLT. To cope with the ambitious one-year timetable, a novel type of collaboration between ESO and the astronomical communities in the ESO Member States was set up. It has allowed to combine efficiently the scientific and technical expertise of the community with ESO in-house know-how and infrastructure. This model has been very successful and may well set the example for future surveys. Science Goals of EIS EIS is in many aspects a novel approach for large-scale, ground-based optical observations, in support of large-telescope science. The speed with which raw EIS data have been converted to deliverable products is quite unprecedented, given the nature and scope of this project. This is a key ingredient for imaging surveys, the main goal of which is to provide target lists for 8-m class telescopes. EIS consists of two parts: a wide-angle survey ( "EIS-wide" ) and a deep, multi-colour survey in four optical and two infrared bands ( "EIS-deep" ). EIS-wide covers four pre-selected patches of sky (spanning the R.A. range from 22 h to 9 h ). The main science goals of EIS-wide include the search for distant clusters of galaxies and quasars. In addition, there are important spin-offs in terms of bright and distant galaxies, as well as new information about galactic structure and stellar populations. The observations were conducted in 10 runs in the period July 1997 - March 1998. A total of 36 nights were used for this part of the project. The images obtained cover a total area of 17 square degrees in the near-infrared I-band, reaching limiting magnitude of I ~ 23 and, furthermore, an area of 1.7 square degrees in the B- (blue), V- (green-yellow) and I-bands to a comparable depth. Altogether, the EIS data set consists of about 6000 science and calibration frames, totaling 96 Gbytes of raw data and over 200 Gbytes of reduced images and derived products. Some results from EIS ESO PR Photo 29/98 ESO PR Photo 29/98 [Preview - JPEG: 800 x 417 pix - 160k] [High-Res - JPEG: 3000 x 1562 pix - 1.2Mb] This photo shows three views of a small field in the so-called EIS Patch-B . They were obtained during this survey in different colours: B - blue; V - green-yellow; I - near-infrared. At the centre is located a (candidate) cluster of galaxies at very large distance. This conclusion is based upon the different appearance of this cluster in the three frames: it is not seen in B; it is hardly visible in V and it is most obvious in I. This indicates that the galaxies in the cluster have very red colours. The effect is most likely due to high redshift (and therefore large distance) that has shifted the bulk of their emission from the visual to the near-infrared region of the spectrum. The other objects in the field - which are nearer - can be seen in all three frames. On these images, over one million galaxies were detected and about 250 distant clusters of galaxies were identified, with estimated redshifts in the range 0.2 < z < 1.3 [2]. This is by far the largest sample of distant clusters of galaxies currently available. In addition, white dwarfs, very-low mass stars/brown dwarfs and high-redshift quasar candidates were identified in the field that lies in the direction of the South Galactic Pole. All the calibrated images and derived catalogs are now publicly available. They can be examined and/or retrieved through an interface in the EIS release WWW-page built in collaboration with the ESO Science Archive, a prototype for future distribution of data to the ESO community. A photo of a 25 arcmin wide field from EIS is available on the web as ESO PR Photo 18/98 ; the two versions may be accessed via ESO PR 07/98. Future surveys at ESO The EIS project has been conceived as a pilot project for more ambitious, future wide-field imaging surveys to be conducted by ESO. Together, they will provide the basic framework and infrastructure for the gradual development of the required capabilities for pipeline processing, archiving and data mining. By January 1999, the ESO/MPIA 2.2-m telescope at La Silla will start regular observations with a wide-field camera capable of imaging in one shot an area of the sky that is larger than the full moon. This telescope will be fully dedicated to wide-field imaging and will be approximately 6 times more efficient than is the NTT for imaging surveys such as EIS. An even more powerful survey telescope is now planned for the Paranal Observatory , next to the VLT. A Memorandum of Understanding has recently been signed by the Director General of ESO, Professor Riccardo Giaconni and the Director of the Capodimonte Observatory (Naples, Italy), Professor Massimo Capaccioli . According to this, the Capodimonte Observatory will deliver to ESO a wide-field 2.6-m telescope, referred to as the VLT Survey Telescope (VST). The VST will be over 12 times more efficient than the 2.2-m telescope for survey work. When it goes into operation some years from now, ESO will consolidate its front-line position in wide-field imaging capabilities. Another survey, the DEep Near Infrared Southern Sky Survey (DENIS) , is now being carried out at La Silla. It is a joint European project that is conducted at the 1-m ESO telescope by a consortium of 20 astronomical institutes. More information Further information about EIS is available at http://www.eso.org/eis. From this site, it is possible to visit the EIS release page and to browse through pictures of the distant Universe and of individual objects, some of which will be observed with the VLT in the future. Notes [1] The home institutes of the astronomers involved in EIS include the European Southern Observatory, Osservatorio Astronomico di Trieste (Italy), Leiden Observatory (The Netherlands), Institut d'Astrophysique de Paris (France), Max-Planck Institut für Astrophysik (Germany), Astronomisk Observatorium (Copenhagen, Denmark), Istituto di Radioastronomia del CNR (Bologna, Italy), Landensternwarte Heidelberg-Königstuhl (Heidelberg, Germany), DAEC, Observatoire de Paris-Meudon (France), ESA/ESO Space Telescope-European Coordinating Facility (Garching, Germany), Osservatorio Astronomico di Pino Torinese, Torino (Italy) and Osservatorio Astronomico di Capodimonte (Napoli, Italy). [2] In astronomy, the redshift (z) denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant galaxy or quasar gives a direct estimate of the universal expansion (i.e. the `recession velocity'). Since this expansion rate increases with the distance, the velocity (and thus the redshift) is itself a function (the Hubble relation) of the distance to the object. The indicated redshift interval (0.2 < z < 1.3) corresponds to a distance interval of approx. 3,000 to 7,000 million light-years. This Press Release is accompanied by ESO PR Photo 29/98 , available in two versions. It may be reproduced, if credit is given to the European Southern Observatory. © ESO Education & Public Relations Department Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ).

  14. Deepest Wide-Field Colour Image in the Southern Sky

    NASA Astrophysics Data System (ADS)

    2003-01-01

    LA SILLA CAMERA OBSERVES CHANDRA DEEP FIELD SOUTH ESO PR Photo 02a/03 ESO PR Photo 02a/03 [Preview - JPEG: 400 x 437 pix - 95k] [Normal - JPEG: 800 x 873 pix - 904k] [HiRes - JPEG: 4000 x 4366 pix - 23.1M] Caption : PR Photo 02a/03 shows a three-colour composite image of the Chandra Deep Field South (CDF-S) , obtained with the Wide Field Imager (WFI) camera on the 2.2-m MPG/ESO telescope at the ESO La Silla Observatory (Chile). It was produced by the combination of about 450 images with a total exposure time of nearly 50 hours. The field measures 36 x 34 arcmin 2 ; North is up and East is left. Technical information is available below. The combined efforts of three European teams of astronomers, targeting the same sky field in the southern constellation Fornax (The Oven) have enabled them to construct a very deep, true-colour image - opening an exceptionally clear view towards the distant universe . The image ( PR Photo 02a/03 ) covers an area somewhat larger than the full moon. It displays more than 100,000 galaxies, several thousand stars and hundreds of quasars. It is based on images with a total exposure time of nearly 50 hours, collected under good observing conditions with the Wide Field Imager (WFI) on the MPG/ESO 2.2m telescope at the ESO La Silla Observatory (Chile) - many of them extracted from the ESO Science Data Archive . The position of this southern sky field was chosen by Riccardo Giacconi (Nobel Laureate in Physics 2002) at a time when he was Director General of ESO, together with Piero Rosati (ESO). It was selected as a sky region towards which the NASA Chandra X-ray satellite observatory , launched in July 1999, would be pointed while carrying out a very long exposure (lasting a total of 1 million seconds, or 278 hours) in order to detect the faintest possible X-ray sources. The field is now known as the Chandra Deep Field South (CDF-S) . The new WFI photo of CDF-S does not reach quite as deep as the available images of the "Hubble Deep Fields" (HDF-N in the northern and HDF-S in the southern sky, cf. e.g. ESO PR Photo 35a/98 ), but the field-of-view is about 200 times larger. The present image displays about 50 times more galaxies than the HDF images, and therefore provides a more representative view of the universe . The WFI CDF-S image will now form a most useful basis for the very extensive and systematic census of the population of distant galaxies and quasars, allowing at once a detailed study of all evolutionary stages of the universe since it was about 2 billion years old . These investigations have started and are expected to provide information about the evolution of galaxies in unprecedented detail. They will offer insights into the history of star formation and how the internal structure of galaxies changes with time and, not least, throw light on how these two evolutionary aspects are interconnected. GALAXIES IN THE WFI IMAGE ESO PR Photo 02b/03 ESO PR Photo 02b/03 [Preview - JPEG: 488 x 400 pix - 112k] [Normal - JPEG: 896 x 800 pix - 1.0M] [Full-Res - JPEG: 2591 x 2313 pix - 8.6M] Caption : PR Photo 02b/03 contains a collection of twelve subfields from the full WFI Chandra Deep Field South (WFI CDF-S), centred on (pairs or groups of) galaxies. Each of the subfields measures 2.5 x 2.5 arcmin 2 (635 x 658 pix 2 ; 1 pixel = 0.238 arcsec). North is up and East is left. Technical information is available below. The WFI CDF-S colour image - of which the full field is shown in PR Photo 02a/03 - was constructed from all available observations in the optical B- ,V- and R-bands obtained under good conditions with the Wide Field Imager (WFI) on the 2.2-m MPG/ESO telescope at the ESO La Silla Observatory (Chile), and now stored in the ESO Science Data Archive. It is the "deepest" image ever taken with this instrument. It covers a sky field measuring 36 x 34 arcmin 2 , i.e., an area somewhat larger than that of the full moon. The observations were collected during a period of nearly four years, beginning in January 1999 when the WFI instrument was first installed (cf. ESO PR 02/99 ) and ending in October 2002. Altogether, nearly 50 hours of exposure were collected in the three filters combined here, cf. the technical information below. Although it is possible to identify more than 100,000 galaxies in the image - some of which are shown in PR Photo 02b/03 - it is still remarkably "empty" by astronomical standards. Even the brightest stars in the field (of visual magnitude 9) can hardly be seen by human observers with binoculars. In fact, the area density of bright, nearby galaxies is only half of what it is in "normal" sky fields. Comparatively empty fields like this one provide an unsually clear view towards the distant regions in the universe and thus open a window towards the earliest cosmic times . Research projects in the Chandra Deep Field South ESO PR Photo 02c/03 ESO PR Photo 02c/03 [Preview - JPEG: 400 x 513 pix - 112k] [Normal - JPEG: 800 x 1026 pix - 1.2M] [Full-Res - JPEG: 1717 x 2201 pix - 5.5M] ESO PR Photo 02d/03 ESO PR Photo 02d/03 [Preview - JPEG: 400 x 469 pix - 112k] [Normal - JPEG: 800 x 937 pix - 1.0M] [Full-Res - JPEG: 2545 x 2980 pix - 10.7M] Caption : PR Photo 02c-d/03 shows two sky fields within the WFI image of CDF-S, reproduced at full (pixel) size to illustrate the exceptional information richness of these data. The subfields measure 6.8 x 7.8 arcmin 2 (1717 x 1975 pixels) and 10.1 x 10.5 arcmin 2 (2545 x 2635 pixels), respectively. North is up and East is left. Technical information is available below. Astronomers from different teams and disciplines have been quick to join forces in a world-wide co-ordinated effort around the Chandra Deep Field South. Observations of this area are now being performed by some of the most powerful astronomical facilities and instruments. They include space-based X-ray and infrared observations by the ESA XMM-Newton , the NASA CHANDRA , Hubble Space Telescope (HST) and soon SIRTF (scheduled for launch in a few months), as well as imaging and spectroscopical observations in the infrared and optical part of the spectrum by telescopes at the ground-based observatories of ESO (La Silla and Paranal) and NOAO (Kitt Peak and Tololo). A huge database is currently being created that will help to analyse the evolution of galaxies in all currently feasible respects. All participating teams have agreed to make their data on this field publicly available, thus providing the world-wide astronomical community with a unique opportunity to perform competitive research, joining forces within this vast scientific project. Concerted observations The optical true-colour WFI image presented here forms an important part of this broad, concerted approach. It combines observations of three scientific teams that have engaged in complementary scientific projects, thereby capitalizing on this very powerful combination of their individual observations. The following teams are involved in this work: * COMBO-17 (Classifying Objects by Medium-Band Observations in 17 filters) : an international collaboration led by Christian Wolf and other scientists at the Max-Planck-Institut für Astronomie (MPIA, Heidelberg, Germany). This team used 51 hours of WFI observing time to obtain images through five broad-band and twelve medium-band optical filters in the visual spectral region in order to measure the distances (by means of "photometric redshifts") and star-formation rates of about 10,000 galaxies, thereby also revealing their evolutionary status. * EIS (ESO Imaging Survey) : a team of visiting astronomers from the ESO community and beyond, led by Luiz da Costa (ESO). They observed the CDF-S for 44 hours in six optical bands with the WFI camera on the MPG/ESO 2.2-m telescope and 28 hours in two near-infrared bands with the SOFI instrument at the ESO 3.5-m New Technology Telescope (NTT) , both at La Silla. These observations form part of the Deep Public Imaging Survey that covers a total sky area of 3 square degrees. * GOODS (The Great Observatories Origins Deep Survey) : another international team (on the ESO side, led by Catherine Cesarsky ) that focusses on the coordination of deep space- and ground-based observations on a smaller, central area of the CDF-S in order to image the galaxies in many differerent spectral wavebands, from X-rays to radio. GOODS has contributed with 40 hours of WFI time for observations in three broad-band filters that were designed for the selection of targets to be spectroscopically observed with the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile), for which over 200 hours of observations are planned. About 10,000 galaxies will be spectroscopically observed in order to determine their redshift (distance), star formation rate, etc. Another important contribution to this large research undertaking will come from the GEMS project. This is a "HST treasury programme" (with Hans-Walter Rix from MPIA as Principal Investigator) which observes the 10,000 galaxies identified in COMBO-17 - and eventually the entire WFI-field with HST - to show the evolution of their shapes with time. Great questions With the combination of data from many wavelength ranges now at hand, the astronomers are embarking upon studies of the many different processes in the universe. They expect to shed more light on several important cosmological questions, such as: * How and when was the first generation of stars born? * When exactly was the neutral hydrogen in the universe ionized the first time by powerful radiation emitted from the first stars and active galactic nuclei? * How did galaxies and groups of galaxies evolve during the past 13 billion years? * What is the true nature of those elusive objects that are only seen at the infrared and submillimetre wavelengths (cf. ESO PR 23/02 )? * Which fraction of galaxies had an "active" nucleus (probably with a black hole at the centre) in their past, and how long did this phase last? Moreover, since these extensive optical observations were obtained in the course of a dozen observing periods during several years, it is also possible to perform studies of certain variable phenomena: * How many variable sources are seen and what are their types and properties? * How many supernovae are detected per time interval, i.e. what is the supernovae frequency at different cosmic epochs? * How do those processes depend on each other? This is just a short and very incomplete list of questions astronomers world-wide will address using all the complementary observations. No doubt that the coming studies of the Chandra Deep Field South - with this and other data - will be most exciting and instructive! Other wide-field images Other wide-field images from the WFI have been published in various ESO press releases during the past four years - they are also available at the WFI Photo Gallery . A collection of full-resolution files (TIFF-format) is available on a WFI CD-ROM . Technical Information The very extensive data reduction and colour image processing needed to produce these images were performed by Mischa Schirmer and Thomas Erben at the "Wide Field Expertise Center" of the Institut für Astrophysik und Extraterrestrische Forschung der Universität Bonn (IAEF) in Germany. It was done by means of a software pipeline specialised for reduction of multiple CCD wide-field imaging camera data. This pipeline is mainly based on publicly available software modules and algorithms ( EIS , FLIPS , LDAC , Terapix , Wifix ). The image was constructed from about 150 exposures in each of the following wavebands: B-band (centred at wavelength 456 nm; here rendered as blue, 15.8 hours total exposure time), V-band (540 nm; green, 15.6 hours) and R-band (652 nm; red, 17.8 hours). Only images taken under sufficiently good observing conditions (defined as seeing less than 1.1 arcsec) were included. In total, 450 images were assembled to produce this colour image, together with about as many calibration images (biases, darks and flats). More than 2 Terabyte (TB) of temporary files were produced during the extensive data reduction. Parallel processing of all data sets took about two weeks on a four-processor Sun Enterprise 450 workstation and a 1.8 GHz dual processor Linux PC. The final colour image was assembled in Adobe Photoshop. The observations were performed by ESO (GOODS, EIS) and the COMBO-17 collaboration in the period 1/1999-10/2002.

  15. Press Meeting 20 January 2003: First Light for Europe's Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Imagine you are an astronomer with instant, fingertip access to all existing observations of a given object and the opportunity to sift through them at will. In just a few moments, you can have information on all kinds about objects out of catalogues all over the world, including observations taken at different times. Over the next two years this scenario will become reality as Europe's Astrophysical Virtual Observatory (AVO) develops. Established only a year ago (cf. ESO PR 26/01), the AVO already offers astronomers a unique, prototype research tool that will lead the way to many outstanding new discoveries. Journalists are invited to a live demonstration of the capabilities of this exciting new initiative in astronomy. The demonstration will take place at the Jodrell Bank Observatory in Manchester, in the United Kingdom, on 20 January 2003, starting at 11:00. Sophisticated AVO tools will help scientists find the most distant supernovae - objects that reveal the cosmological makeup of our Universe. The tools are also helping astronomers measure the rate of birth of stars in extremely red and distant galaxies. Journalists will also have the opportunity to discuss the project with leading astronomers from across Europe. The new AVO website has been launched today, explaining the progress being made in this European Commission-funded project: URL: http://www.euro-vo.org/ To register your intention to attend the AVO First Light Demonstration, please provide your name and affiliation by January 13, 2003, to: Ian Morison, Jodrell Bank Observatory (full contact details below). Information on getting to the event is included on the webpage above. Programme for the AVO First Light Demonstration 11:00 Welcome, Phil Diamond (University of Manchester/Jodrell Bank Observatory) 11:05 Short introduction to Virtual Observatories, Piero Benvenuti (ESA/ST-ECF) 11:15 Q&A 11:20 Short introduction to the Astrophysical Virtual Observatory, Peter Quinn (ESO) 11:30 Q&A 11:35 Screening of Video News Release 11:40 Demonstration of the AVO prototype, Nicholas Walton (University of Cambridge) 12:00 Q&A, including interview possibilities with the scientists 12:30-13:45 Buffet lunch, including individual hands-on demos 14:00 Science Demo (also open to interested journalists) For more information about Virtual Observatories and the AVO, see the website or the explanation below. Notes to editors The AVO involves several partner organisations led by the European Southern Observatory (ESO). The other partner organisations are the European Space Agency (ESA), AstroGrid (funded by PPARC as part of the UK's E-Science programme), the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS), the University Louis Pasteur in Strasbourg, France, the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris, France, and the Jodrell Bank Observatory of the Victoria University of Manchester, United Kingdom. Note [1]: This is a joint Press Release issued by the European Southern Observatory (ESO), the Hubble European Space Agency Information Centre, AstroGrid, CDS, TERAPIX/CNRS and the University of Manchester. Science Contacts Peter J. Quinn European Southern Observatory (ESO) Garching, Germany Tel: +49-89-3200 -6509 email: pjq@eso.org Phil Diamond University of Manchester/Jodrell Bank Observatory United Kingdom Tel: +44-147-757-26-25 (0147 in the United Kingdom) email: pdiamond@jb.man.ac.uk Press contacts Ian Morison University of Manchester/Jodrell Bank Observatory United Kingdom Tel: +44-147-757-26-10 (0147 in the United Kingdom) E-mail: email: im@jb.man.ac.uk Lars Lindberg Christensen Hubble European Space Agency Information Centre Garching, Germany Tel: +49-89-3200-6306 (089 in Germany) Cellular (24 hr): +49-173-3872-621 (0173 in Germany) email: lars@eso.org Richard West (ESO EPR Dept.) ESO EPR Dept. Garching, Germany Phone: +49-89-3200-6276 email: rwest@eso.org Background information What is a Virtual Observatory? - A short introduction The Virtual Observatory is an international astronomical community-based initiative. It aims to allow global electronic access to the available astronomical data archives of space and ground-based observatories, sky survey databases. It also aims to enable data analysis techniques through a coordinating entity that will provide common standards, wide-network bandwidth, and state-of-the-art analysis tools. It is now possible to have powerful and expensive new observing facilities at wavelengths from the radio to the X-ray and gamma-ray regions. Together with advanced instrumentation techniques, a vast new array of astronomical data sets will soon be forthcoming at all wavelengths. These very large databases must be archived and made accessible in a systematic and uniform manner to realise the full potential of the new observing facilities. The Virtual Observatory aims to provide the framework for global access to the various data archives by facilitating the standardisation of archiving and data-mining protocols. The AVO will also take advantage of state-of-the-art advances in data-handling software in astronomy and in other fields. The Virtual Observatory initiative is currently aiming at a global collaboration of the astronomical communities in Europe, North and South America, Asia, and Australia under the auspices of the recently formed International Virtual Observatory Alliance. The Astrophysical Virtual Observatory - An Introduction The breathtaking capabilities and ultrahigh efficiency of new ground and space observatories have led to a 'data explosion' calling for innovative ways to process, explore, and exploit these data. Researchers must now turn to the GRID paradigm of distributed computing and resources to solve complex, front-line research problems. To implement this new IT paradigm, you have to join existing astronomical data centres and archives into an interoperating and single unit. This new astronomical data resource will form a Virtual Observatory (VO) so that astronomers can explore the digital Universe in the new archives across the entire spectrum. Similarly to how a real observatory consists of telescopes, each with a collection of unique astronomical instruments, the VO consists of a collection of data centres each with unique collections of astronomical data, software systems, and processing capabilities. The Astrophysical Virtual Observatory Project (AVO) will conduct a research and demonstration programme on the scientific requirements and technologies necessary to build a VO for European astronomy. The AVO has been jointly funded by the European Commission (under FP5 - Fifth Framework Programme) with six European organisations participating in a three year Phase-A work programme, valued at 5 million Euro. The partner organisations are the European Southern Observatory (ESO) in Munich, Germany, the European Space Agency (ESA), AstroGrid (funded by PPARC as part of the UK's E-Science programme), the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS), the University Louis Pasteur in Strasbourg, France, the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris, France, and the Jodrell Bank Observatory of the Victoria University of Manchester, United Kingdom. The Phase A program will focus its effort in the following areas: * A detailed description of the science requirements for the AVO will be constructed, following the experience gained in a smaller-scale science demonstration program called ASTROVIRTEL (Accessing Astronomical Archives as Virtual Telescopes). * The difficult issue of data and archive interoperability will be addressed by new standards definitions for astronomical data and trial programmes of "joins" between specific target archives within the project team. * The necessary GRID and database technologies will be assessed and tested for use within a full AVO implementation. The AVO project is currently working in conjunction with other international VO efforts in the United States and Asia-Pacific region. This is part of an International Virtual Observatory Alliance to define essential new data standards so that the VO concept can have a global dimension. The AVO partners will join with all astronomical data centres in Europe to put forward an FP6 IST (Sixth Framework Programme - Information Society Technologies Programme) Integrated Project proposal to make a European VO fully operational by the end of 2007.

  16. Extremely Large Telescope Project Selected in ESFRI Roadmap

    NASA Astrophysics Data System (ADS)

    2006-10-01

    In its first Roadmap, the European Strategy Forum on Research Infrastructures (ESFRI) choose the European Extremely Large Telescope (ELT), for which ESO is presently developing a Reference Design, as one of the large scale projects to be conducted in astronomy, and the only one in optical astronomy. The aim of the ELT project is to build before the end of the next decade an optical/near-infrared telescope with a diameter in the 30-60m range. ESO PR Photo 40/06 The ESFRI Roadmap states: "Extremely Large Telescopes are seen world-wide as one of the highest priorities in ground-based astronomy. They will vastly advance astrophysical knowledge allowing detailed studies of inter alia planets around other stars, the first objects in the Universe, super-massive Black Holes, and the nature and distribution of the Dark Matter and Dark Energy which dominate the Universe. The European Extremely Large Telescope project will maintain and reinforce Europe's position at the forefront of astrophysical research." Said Catherine Cesarsky, Director General of ESO: "In 2004, the ESO Council mandated ESO to play a leading role in the development of an ELT for Europe's astronomers. To that end, ESO has undertaken conceptual studies for ELTs and is currently also leading a consortium of European institutes engaged in studying enabling technologies for such a telescope. The inclusion of the ELT in the ESFRI roadmap, together with the comprehensive preparatory work already done, paves the way for the next phase of this exciting project, the design phase." ESO is currently working, in close collaboration with the European astronomical community and the industry, on a baseline design for an Extremely Large Telescope. The plan is a telescope with a primary mirror between 30 and 60 metres in diameter and a financial envelope of about 750 m Euros. It aims at more than a factor ten improvement in overall performance compared to the current leader in ground based astronomy: the ESO Very Large Telescope at the Paranal Observatory. The draft Baseline Reference Design will be presented to the wider scientific community on 29 - 30 November 2006 at a dedicated ELT Workshop Meeting in Marseille (France) and will be further reiterated. The design is then to be presented to the ESO Council at the end of 2006. The goal is to start the detailed E-ELT design work by the first half of 2007. Launched in April 2002, the European Strategy Forum on Research Infrastructures was set-up following a recommendation of the European Union Council, with the role to support a coherent approach to policy-making on research infrastructures in Europe, and to act as an incubator for international negotiations about concrete initiatives. In particular, ESFRI has prepared a European Roadmap identifying new Research Infrastructure of pan-European interest corresponding to the long term needs of the European research communities, covering all scientific areas, regardless of possible location and likely to be realised in the next 10 to 20 years. The Roadmap was presented on 19 October. It is the result of an intensive two-year consultation and peer review process involving over 1000 high level European and international experts. The Roadmap identifies 35 large scale infrastructure projects, at various stages of development, in seven key research areas including Environmental Sciences; Energy; Materials Sciences; Astrophysics, Astronomy, Particle and Nuclear Physics; Biomedical and Life Sciences; Social Sciences and the Humanities; Computation and data Treatment.

  17. Astronomers Break Ground on Atacama Large Millimeter Array (ALMA) - World's Largest Millimeter Wavelength Telescope

    NASA Astrophysics Data System (ADS)

    2003-11-01

    Scientists and dignitaries from Europe, North America and Chile are breaking ground today (Thursday, November 6, 2003) on what will be the world's largest, most sensitive radio telescope operating at millimeter wavelengths . ALMA - the "Atacama Large Millimeter Array" - will be a single instrument composed of 64 high-precision antennas located in the II Region of Chile, in the District of San Pedro de Atacama, at the Chajnantor altiplano, 5,000 metres above sea level. ALMA 's primary function will be to observe and image with unprecedented clarity the enigmatic cold regions of the Universe, which are optically dark, yet shine brightly in the millimetre portion of the electromagnetic spectrum. The Atacama Large Millimeter Array (ALMA) is an international astronomy facility. ALMA is an equal partnership between Europe and North America, in cooperation with the Republic of Chile, and is funded in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Europe by the European Southern Observatory (ESO) and Spain. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO. " ALMA will be a giant leap forward for our studies of this relatively little explored spectral window towards the Universe" , said Dr. Catherine Cesarsky , Director General of ESO. "With ESO leading the European part of this ambitious and forward-looking project, the impact of ALMA will be felt in wide circles on our continent. Together with our partners in North America and Chile, we are all looking forward to the truly outstanding opportunities that will be offered by ALMA , also to young scientists and engineers" . " The U.S. National Science Foundation joins today with our North American partner, Canada, and with the European Southern Observatory, Spain, and Chile to prepare for a spectacular new instrument, " stated Dr. Rita Colwell , director of the U.S. National Science Foundation. " ALMA will expand our vision of the Universe with "eyes" that pierce the shrouded mantles of space through which light cannot penetrate." On the occasion of this groundbreaking, the ALMA logo was unveiled. [ALMA Logo] Science with ALMA ALMA will capture millimetre and sub-millimetre radiation from space and produce images and spectra of celestial objects as they appear at these wavelengths. This particular portion of the electromagnetic spectrum, which is less energetic than visible and infrared light, yet more energetic than most radio waves, holds the key to understanding a great variety of fundamental processes, e.g., planet and star formation and the formation and evolution of galaxies and galaxy clusters in the early Universe. The possibility to detect emission from organic and other molecules in space is of particularly high interest. The millimetre and sub-millimetre radiation that ALMA will study is able to penetrate the vast clouds of dust and gas that populate interstellar (and intergalactic) space, revealing previously hidden details about astronomical objects. This radiation, however, is blocked by atmospheric moisture (water molecules) in the Earth's atmosphere. To conduct research with ALMA in this critical portion of the spectrum, astronomers thus need an exceptional observation site that is very dry, and at a very high altitude where the atmosphere above is thinner. Extensive tests showed that the sky above the high-altitude Chajnantor plain in the Atacama Desert has the unsurpassed clarity and stability needed to perform efficient observations with ALMA . ALMA operation ALMA will be the highest-altitude, full-time ground-based observatory in the world, at some 250 metres higher than the peak of Mont Blanc, Europe's tallest mountain. Work at this altitude is difficult. To help ensure the safety of the scientists and engineers at ALMA , operations will be conducted from the Operations Support Facility ( ALMA OSF) , a compound located at a more comfortable altitude of 2,900 metres, between the cities of Toconao and San Pedro de Atacama. Phase 1 of the ALMA Project, which included the design and development, was completed in 2002. The beginning of Phase 2 happened on February 25, 2003, when the European Southern Observatory (ESO) and the US National Science Foundation (NSF) signed a historic agreement to construct and operate ALMA , cf. ESO PR 04/03 . Construction will continue until 2012; however, initial scientific observations are planned already from 2007, with a partial array of the first antennas. ALMA 's operation will progressively increase until 2012 with the installation of the remaining antennas. The entire project will cost approximately 600 million Euros. Earlier this year, the ALMA Board selected Professor Massimo Tarenghi , formerly manager of ESO's VLT Project, to become ALMA Director. He is confident that he and his team will succeed: "We may have a lot of hard work in front of us" , he said, "but all of us in the team are excited about this unique project. We are ready to work for the international astronomical community and to provide them in due time with an outstanding instrument allowing trailblazing research projects in many different fields of modern astrophysics" . How ALMA will work ALMA will be composed of 64 high-precision antennas, each 12 metres in diameter. The ALMA antennas can be repositioned, allowing the telescope to function much like the zoom lens on a camera. At its largest, ALMA will be 14 kilometers across. This will allow the telescope to observe fine-scale details of astronomical objects. At its smallest configuration, approximately 150 meters across, ALMA will be able to study the large-scale structures of these same objects. ALMA will function as an interferometer (according to the same basic principle as the VLT Interferometer (VLTI) at Paranal). This means that it will combine the signals from all its antennas (one pair of antennas at a time) to simulate a telescope the size of the distance between the antennas. With 64 antennas, ALMA will generate 2016 individual antenna pairs ("baselines") during the observations. To handle this enormous amount of data, ALMA will rely on a very powerful, specialized computer (a "correlator"), which will perform 16,000 million million (1.6 x 10 16 ) operations per second. Currently, two prototype ALMA antennas are undergoing rigorous testing at the NRAO's Very Large Array site, near Socorro, New Mexico, USA. International collaboration For this ambitious project, ALMA has become a joint effort among many nations and scientific institutions. In Europe, ESO leads on behalf of its ten member countries (Belgium, Denmark, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland and the United Kingdom) and Spain. Japan may join in 2004, bringing enhancements to the project. Given the participation of North America, this will be the first truly global project of ground-based astronomy, an essential development in view of the increasing technological sophistication and the high costs of front-line astronomy installations. The first submillimeter telescope in the southern hemisphere was the 15-m Swedish-ESO Submillimetre Telescope (SEST) which was installed at the ESO La Silla Observatory in 1987. It has since been used extensively by astronomers, mostly from ESO's member states. SEST has now been decommissioned and a new submillimetre telescope, APEX, is about to commence operations at Chajnantor. APEX, which is a joint project between ESO, the Max Planck Institute for Radio Astronomy in Bonn (Germany), and the Onsala Space Observatory (Sweden), is an antenna comparable to the ALMA antennas.

  18. Growing Galaxies Gently

    NASA Astrophysics Data System (ADS)

    2010-10-01

    New observations from ESO's Very Large Telescope have, for the first time, provided direct evidence that young galaxies can grow by sucking in the cool gas around them and using it as fuel for the formation of many new stars. In the first few billion years after the Big Bang the mass of a typical galaxy increased dramatically and understanding why this happened is one of the hottest problems in modern astrophysics. The results appear in the 14 October issue of the journal Nature. The first galaxies formed well before the Universe was one billion years old and were much smaller than the giant systems - including the Milky Way - that we see today. So somehow the average galaxy size has increased as the Universe has evolved. Galaxies often collide and then merge to form larger systems and this process is certainly an important growth mechanism. However, an additional, gentler way has been proposed. A European team of astronomers has used ESO's Very Large Telescope to test this very different idea - that young galaxies can also grow by sucking in cool streams of the hydrogen and helium gas that filled the early Universe and forming new stars from this primitive material. Just as a commercial company can expand either by merging with other companies, or by hiring more staff, young galaxies could perhaps also grow in two different ways - by merging with other galaxies or by accreting material. The team leader, Giovanni Cresci (Osservatorio Astrofisico di Arcetri) says: "The new results from the VLT are the first direct evidence that the accretion of pristine gas really happened and was enough to fuel vigorous star formation and the growth of massive galaxies in the young Universe." The discovery will have a major impact on our understanding of the evolution of the Universe from the Big Bang to the present day. Theories of galaxy formation and evolution may have to be re-written. The group began by selecting three very distant galaxies to see if they could find evidence of the flow of pristine gas from the surrounding space and the associated formation of new stars. They were very careful to make sure that their specimen galaxies had not been disturbed by interactions with other galaxies. The selected galaxies were very regular, smoothly rotating discs, similar to the Milky Way, and they were seen about two billion years after the Big Bang (at a redshift of around three). In galaxies in the modern Universe the heavy elements [1] are more abundant close to the centre. But when Cresci's team mapped their selected distant galaxies with the SINFONI spectrograph on the VLT [2] they were excited to see that in all three cases there was a patch of the galaxy, close to the centre, with fewer heavy elements, but hosting vigorously forming stars, suggesting that the material to fuel the star formation was coming from the surrounding pristine gas that is low in heavy elements. This was the smoking gun that provided the best evidence yet of young galaxies accreting primitive gas and using it to form new generations of stars. As Cresci concludes: "This study has only been possible because of the outstanding performance of the SINFONI instrument on the VLT. It has opened a new window for studying the chemical properties of very distant galaxies. SINFONI provides information not only in two spatial dimensions, but also in a third, spectral dimension, which allows us to see the internal motions inside galaxies and study the chemical composition of the interstellar gas." Notes [1] The gas filling the early Universe was almost all hydrogen and helium. The first generations of stars processed this primitive material to create heavier elements such as oxygen, nitrogen and carbon by nuclear fusion. When this material was subsequently spewed back into space by intense particle winds from massive young stars and supernova explosions the amounts of heavy elements in the galaxy gradually increased. Astronomers refer to elements other than hydrogen and helium as "heavy elements". [2] By carefully splitting up the faint light coming from a galaxy into its component colours using powerful telescopes and spectrographs, astronomers can identify the fingerprints of different chemicals in remote galaxies, and measure the amounts of heavy elements present. With the SINFONI instrument on the VLT astronomers can go one better and get a separate spectrum for each part of an object. This allows them to make a map that shows the quantity of heavy elements present in different parts of a galaxy and also determine where in the galaxy star formation is occurring most vigorously. More information This research was presented in a paper, Gas accretion in distant galaxies as the origin of chemical abundance gradients, by Cresci et al., to appear in Nature on 14 October 2010. The team is composed of G. Cresci (Osservatorio Astrofisico di Arcetri, Italy), F. Mannucci (Osservatorio Astrofisico di Arcetri, Italy), R. Maiolino (INAF, Osservatorio Astronomico di Roma, Italy), A. Marconi (Universitá di Firenze, Italy), A. Gnerucci (Universitá di Firenze, Italy) and L. Magrini (Osservatorio Astrofisico di Arcetri, Italy). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  19. ESO Advanced Data Products for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Retzlaff, J.; Delmotte, N.; Rite, C.; Rosati, P.; Slijkhuis, R.; Vandame, B.

    2006-07-01

    Advanced Data Products, that is, completely reduced, fully characterized science-ready data sets, play a crucial role for the success of the Virtual Observatory as a whole. We report on on-going work at ESO towards the creation and publication of Advanced Data Products in compliance with present VO standards on resource metadata. The new deep NIR multi-color mosaic of the GOODS/CDF-S region is used to showcase different aspects of the entire process: data reduction employing our MVM-based reduction pipeline, calibration and data characterization procedures, standardization of metadata content, and, finally, a prospect of the scientific potential illustrated by new results on deep galaxy number counts.

  20. ESO PR Highlights in 2000

    NASA Astrophysics Data System (ADS)

    2001-01-01

    At the beginning of the new millennium, ESO and its staff are facing the future with confidence. The four 8.2-m Unit Telescopes of the Very Large Telescope (VLT) are in great shape and the VLT Interferometer (VLTI) will soon have "first fringes". The intercontinental ALMA project is progressing well and concepts for extremely large optical/infrared telescopes are being studied. They can also look back at a fruitful and rewarding past year. Perhaps the most important, single development has been the rapid transition of the Very Large Telescope (VLT). From being a "high-tech project under construction" it has now become a highly proficient, world-class astronomical observatory. This trend is clearly reflected in ESO's Press Releases , as more and more front-line scientific results emerge from rich data obtained at this very efficient facility. There were also exciting news from several of the instruments at La Silla. At the same time, the ESO community may soon grow, as steps towards membership are being taken by various European countries. Throughout 2000, a total of 54 PR communications were made, with a large number of Press Photos and Video Clips, cf. the 2000 PR Index. Some of the ESO PR highlights may be accessed directly via the clickable image on the present page. ESO PR Photo 01/01 is also available in a larger (non-clickable) version [ JPEG: 566 x 566 pix - 112k]. It may be reproduced, if credit is given to the European Southern Observatory.

  1. Life in the Universe - Is there anybody out there?

    NASA Astrophysics Data System (ADS)

    2001-07-01

    The Universe is indescribably huge. Can it be possible that Humanity is the only form of intelligent life which exists in all this immensity? Are we really alone ? Throughout history there have been sightings of creatures from elsewhere. Science fiction novels and films with flying saucers and bizarre looking aliens are part of our general culture. Perhaps the Earth is really only an experiment designed by mice and soon we will all be destroyed to make way for a new interstellar highway ! The possibility that there is life in the Universe has always excited the general public and scientists are equally enthusiastic. Physicists, biologists, chemists, cosmologists, astronomers are researching all over Europe to try to answer this age-old question : Is there life in the Universe ? Our current understanding What is our understanding at the beginning of the 21st century? Is there any scientific evidence for other forms of life? How can you define life? What signs are they looking for? What would the reaction be if other forms of life were discovered? The European Organisation for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO) , in cooperation with the European Association for Astronomy Education (EAAE) have organised a competition to find out what the young people in Europe think. The European Molecular Biology Laboratory (EMBL) and the European Synchrotron Radiation Facility (ESRF) are also associated with the programme. The "Life in the Universe" programme ESO PR Video Clip 05/01 [192x144 pix MPEG-version] ESO PR Video Clip 05/01 (13300 frames/8:52 min) [MPEG Video+Audio; 192x144 pix; 12.1Mb] [RealMedia; streaming; 56kps] ESO Video Clip 05/01 is a trailer for the Europe-wide "Life in the Universe" programme. It touches upon some of the main issues and includes statements by members of the Experts' Panel. The "Life in the Universe" programme is being mounted in collaboration with the research directorate of the European Commission for the "European Week of Science and Technology" in November 2001. Competitions are already underway in 23 European countries [2] to find the best projects from school students between 14 and 18. The projects can be scientific or a piece of art, a theatrical performance, poetry or even a musical performance. The only restriction is that the final work must be based on scientific evidence. Two winning teams from each country will be invited to a final event at CERN's headquarters, in Geneva on 8-11 November, 2001 to present their projects to a panel of International Experts at a special three day event devoted to understanding the possibility of other life forms existing in our Universe. This final event will be broadcast all over the world via the Internet. The website The home base of the 'Life in the Universe" project is a vibrant web space http://www.lifeinuniverse.org where details of the programme can be found. It is still under development but already has a wealth of information and links to the national websites, where all entries are posted. Is there other life in the Universe? We do not know - but the search is on! To find out what is happening for "Life in the Universe" in each country, contact the National Steering Committees ! Notes [1] This is a joint Press Release by the European Organization for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO). These European intergovernmental research organisations organised the highly successful Physics On Stage programme during the European Week of Science and Technology in 2000. [2] The 23 countries are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom. CERN , the European Organization for Nuclear Research , has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland and the United Kingdom. Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have observer status. The European Space Agency (ESA) is an international/intergovernmental organisation made of 15 member states: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. ESA provides and promotes, for peaceful purposes only, cooperation among its member states in space research, technology and their applications. With ESA, Europe shapes and shares space for people, companies and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Portugal, Sweden and Switzerland. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO La Silla Observatory (Chile) is one of the largest and best-equipped in the world. Of ESO's Very Large Telescope Array (VLT) at Cerro Paranal (Chile), the four 8.2-m telescopes, ANTU, KUEYEN, MELIPAL and YEPUN are already in operation; the VLT Interferometer (VLTI) follows next.

  2. NASA and ESA astronauts visit ESO. Hubble repair team meets European astronomers in Garching.

    NASA Astrophysics Data System (ADS)

    1994-02-01

    On Wednesday, February 16, 1994, seven NASA and ESA astronauts and their spouses will spend a day at the Headquarters of the European Southern Observatory. They are the members of the STS-61 crew that successfully repaired the Hubble Space Telescope during a Space Shuttle mission in December 1993. This will be the only stop in Germany during their current tour of various European countries. ESO houses the Space Telescope European Coordinating Facility (ST/ECF), a joint venture by the European Space Agency and ESO. This group of astronomers and computer specialists provide all services needed by European astronomers for observations with the Space Telescope. Currently, the European share is about 20 of the total time available at this telescope. During this visit, a Press Conference will be held on Wednesday, February 16, 11:45 - 12:30 at the ESO Headquarters Karl-Schwarzschild-Strasse 2 D-85748 Garching bei Munchen. Please note that participation in this Press Conference is by invitation only. Media representatives may obtain invitations from Mrs. E. Volk, ESO Information Service at this address (Tel.: +49-89-32006276; Fax.: +49-89-3202362), until Friday, February 11, 1994. After the Press Conference, between 12:30 - 14:00, a light refreshment will be served at the ESO Headquarters to all participants. >From 14:00 - 15:30, the astronauts will meet with students and teachers from the many scientific institutes in Garching in the course of an open presentation at the large lecture hall of the Physics Department of the Technical University. It is a 10 minute walk from ESO to the hall. Later the same day, the astronauts will be back at ESO for a private discussion of various space astronomy issues with their astronomer colleagues, many of whom are users of the Hubble Space Telescope, as well as ground-based telescopes at the ESO La Silla Observatory and elsewhere. The astronauts continue to Switzerland in the evening.

  3. First detection of rotational CO line emission in a red giant branch star

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.

    2014-01-01

    Context. For stars with initial masses below ~1 M⊙, the mass loss during the first red giant branch (RGB) phase dominates mass loss in the later asymptotic giant branch (AGB) phase. Nevertheless, mass loss on the RGB is still often parameterised by a simple Reimers law in stellar evolution models. Aims: To try to detect CO thermal emission in a small sample of nearby RGB stars with reliable Hipparcos parallaxes that were shown to have infrared excess in an earlier paper. Methods: A sample of five stars was observed in the CO J = 2-1 and J = 3-2 lines with the IRAM and APEX telescopes. Results: One star, the one with the largest mass-loss rate based on the previous analysis of the spectral energy distribution, was detected. The expansion velocity is unexpectedly large at 12 km s-1. The line profile and intensity are compared to the predictions from a molecular line emission code. The standard model predicts a double-peaked profile, while the observations indicate a flatter profile. A model that does fit the data has a much smaller CO envelope (by a factor of 3), and a CO abundance that is two times larger and/or a larger mass-loss rate than the standard model. This could indicate that the phase of large mass loss has only recently started. Conclusions: The detection of CO in an RGB star with a luminosity of only ~1300 L⊙ and a mass-loss rate as low as a few 10-9M⊙ yr-1 is important and the results also raise new questions. However, ALMA observations are required in order to study the mass-loss process of RGB stars in more detail, both for reasons of sensitivity (6 h of integration in superior weather at IRAM were needed to get a 4σ detection in the object with the largest detection probability), and spatial resolution (to determine the size of the CO envelope). Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme ID 091.D-0073 (ESO time) and 091.F-9322 (Swedish time). Based on observations with the Atacama Pathfinder EXperiment (APEX) telescope. APEX is a collaboration between the Max Planck Institute for Radio Astronomy, the European Southern Observatory, and the Onsala Space Observatory. Based on observations carried out with the IRAM 30 m Telescope under programme 183-11. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  4. The DAFT/FADA survey. I. Photometric redshifts along lines of sight to clusters in the z = [0.4, 0.9] interval

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Adami, C.; Ulmer, M. P.; Lebrun, V.; Durret, F.; Johnston, D.; Ilbert, O.; Clowe, D.; Gavazzi, R.; Murphy, K.; Schrabback, T.; Allam, S.; Annis, J.; Basa, S.; Benoist, C.; Biviano, A.; Cappi, A.; Kubo, J. M.; Marshall, P.; Mazure, A.; Rostagni, F.; Russeil, D.; Slezak, E.

    2010-11-01

    Context. As a contribution to the understanding of the dark energy concept, the Dark energy American French Team (DAFT, in French FADA) has started a large project to characterize statistically high redshift galaxy clusters, infer cosmological constraints from weak lensing tomography, and understand biases relevant for constraining dark energy and cluster physics in future cluster and cosmological experiments. Aims: The purpose of this paper is to establish the basis of reference for the photo-z determination used in all our subsequent papers, including weak lensing tomography studies. Methods: This project is based on a sample of 91 high redshift (z ≥ 0.4), massive (⪆3 × 1014 M_⊙) clusters with existing HST imaging, for which we are presently performing complementary multi-wavelength imaging. This allows us in particular to estimate spectral types and determine accurate photometric redshifts for galaxies along the lines of sight to the first ten clusters for which all the required data are available down to a limit of IAB = 24./24.5 with the LePhare software. The accuracy in redshift is of the order of 0.05 for the range 0.2 ≤ z ≤ 1.5. Results: We verified that the technique applied to obtain photometric redshifts works well by comparing our results to with previous works. In clusters, photo-z accuracy is degraded for bright absolute magnitudes and for the latest and earliest type galaxies. The photo-z accuracy also only slightly varies as a function of the spectral type for field galaxies. As a consequence, we find evidence for an environmental dependence of the photo-z accuracy, interpreted as the standard used spectral energy distributions being not very well suited to cluster galaxies. Finally, we modeled the LCDCS 0504 mass with the strong arcs detected along this line of sight. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute and the Space Telescope European Coordinating Facility. STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. Also based on observations made with ESO Telescopes at Paranal and La Silla Observatories under programme ESO LP 166.A-0162. Also based on visiting astronomer observations, at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, under contract with the National Science Foundation.

  5. Proper motions and membership probabilities of stars in the region of globular cluster NGC 6366

    NASA Astrophysics Data System (ADS)

    Sariya, Devesh P.; Yadav, R. K. S.

    2015-12-01

    Context. NGC 6366 is a metal-rich globular cluster that is relatively unstudied. It is a kinematically interesting cluster, reported as belonging to the slowly rotating halo system, which is unusual given its metallicity and spatial location in the Galaxy. Aims: The purpose of this research is to determine the relative proper motion and membership probability of the stars in the region of globular cluster NGC 6366. To target cluster members reliably during spectroscopic surveys without including field stars, a good proper motion and membership probability catalogue of NGC 6366 is needed. Methods: To derive relative proper motions, the archival data from the Wide Field Imager mounted on the ESO 2.2 m telescope have been reduced using a high precision astrometric software. The images used are in the B,V, and I photometric bands with an epoch gap of ~3.2 yr. The calibrated BVI magnitudes have been determined using recent data for secondary standard stars. Results: We determined relative proper motions and cluster membership probabilities for 2530 stars in the field of globular cluster NGC 6366. The median proper motion rms errors for stars brighter than V ~ 18 mag is ~2 mas yr-1, which gradually increases to ~5 mas yr-1 for stars having magnitudes V ~ 20 mag. Based on the membership catalogue, we checked the membership status of the X-ray sources and variable stars of NGC 6366 mentioned in the literature. We also provide the astronomical community with an electronic catalogue that includes B, V, and I magnitudes; relative proper motions; and membership probabilities of the stars in the region of NGC 6366. Based on observations with the MPG/ESO 2.2 m and ESO/VLT telescopes, located at La Silla and Paranal Observatory, Chile, under DDT programs 164.O-0561(F), 71.D-0220(A) and the archive material.Full Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A59

  6. ESO Receives Computerworld Honors Program 21st Century Achievement Award in Science Category

    NASA Astrophysics Data System (ADS)

    2005-06-01

    In a ceremony held in Washington, D.C. (USA) on June 6, 2005, ESO, the European Organisation for Astronomical Research in the southern Hemisphere, received the coveted 21st Century Achievement Award from the Computerworld Honors Program for its visionary use of information technology in the Science category. Sybase, a main database server vendor and member of the Chairmen's Committee, nominated ESO's Data Flow System in recognition of its contributions to the global information technology revolution and its positive impact on society. The citations reads: "ESO has revolutionized the operations of ground-based astronomical observatories with a new end-to-end data flow system, designed to improve the transmission and management of astronomical observations and data over transcontinental distances." This year's awards, in 10 categories, were presented at a gala event at the National Building Museum, attended by over 250 guests, including leaders of the information technology industry, former award recipients, judges, scholars, and diplomats representing many of the 54 countries from which the 17-year-old program's laureates have come. "The Computerworld Honors Program 21st Century Achievement Awards are presented to companies from around the world whose visionary use of information technology promotes positive social, economic and educational change," said Bob Carrigan, president and CEO of Computerworld and chairman of the Chairmen's Committee of the Computerworld Honors Program. "The recipients of these awards are the true heroes of the information age and have been appropriately recognized by the leading IT industry chairmen as true revolutionaries in their fields." ESO PR Photo 18/05 ESO PR Photo 18/05 ESO Receives the Award in the Science Category [Preview - JPEG: 400 x 496 pix - 53k] [Normal - JPEG: 800 x 992 pix - 470k] [Full Res - JPEG: 1250 x 1550 pix - 1.1M] Caption: ESO PR Photo 18/05: Receiving the Computerworld 21st Century Achievement Award for Science on behalf of ESO: Drs Preben Grosbøl, Michele Péron, Peter Quinn (Head of the ESO Data Management Division) and David Silva. Traditionally, ground based astronomical observatories have been used as facilities where scientists apply for observing time, eventually travel to the remote sites where telescopes are located, carry out their observations by themselves and finally take their data back to their home institutes to do the final scientific analysis. As observatories become more complex and located in ever more remote locations (to reduce light pollution), this operational concept (coupled with the weather lottery effect [1]) becomes less and less effective. In particular, the lack of data re-use has been increasingly seen as scientifically unproductive. Such thoughts guided the design and implementation of the ESO Data Flow System (DFS). The DFS allows both traditional on-site observing as well as service observing, where data is collected by observatory staff on behalf of the ESO user community based on user submitted descriptions and requirements [2]. In either case, the data is captured by DFS and saved in the ESO science archive [3]. After a one-year proprietary period during which the original investigators have private access to their data, researchers can access the data for their own use. ESO was the first ground-based observatory to implement these operational concepts and tools within a complete system. It was also the first ground-based observatory to build and maintain such an extensive science archive that does not only contain observational data, but also auxiliary information describing the operation process. In both areas, ESO remains the world-leader in end-to-end observatory operations on the ground. "The result of our strategy has been a significant increase in the scientific productivity of the ESO user community", said Peter Quinn, Head of ESO's Data Management and Operations Division, responsible for DFS. "As measured by the number of papers in peer-reviewed journals, ESO is now one of the leading astronomical facilities in the world. Coupled with cutting edge optical telescopes and astronomical instruments at the Chile sites, the DFS has contributed to this success by providing the fundamental IT infrastructure for observation and data management." The case study about ESO, together with the case studies from the other winners and laureates of the 2005 Collection, is available on the Computerworld Honors Program Archives On-Line, www.cwheroes.org, and also distributed to more than 134 members of the Computerworld Honors Global Archives. According to Dan Morrow, a founding director and chief historian for the Honors Program, "This year's award recipients exemplify the very best in the creative use of IT in service to mankind. Their work and their stories are outstanding contributions to the history of the information technology revolution in every sense of the word, and, for the archives we serve all over the world, they are, truly, priceless." From more than 250 nominations submitted this year by the industry chairmen and CEO's who serve on the program's Chairmen's Committee, 162 were honoured as laureates at ceremonies in San Francisco, on April 3, 2005, when their case studies officially became part of the Computerworld Honors 2005 Collection. Of these, 48 finalists were chosen by an academy of distinguished judges to attend the June 6 gala in Washington, D.C., at which 10 were announced recipients of the award, one in each of the following categories: Business and Related Services; Education and Academia; Environment, Energy and Agriculture; Finance, Insurance and Real Estate; Government and Non-Profit Organizations; Manufacturing; Media, Arts and Entertainment; Medicine; Science; and Transportation. Additional information about the 2005 Collection is available at www.cwheroes.org, where the entire collection is available to scholars, researchers and the general public. The ESO Data Management and Operations Division web page is at http://www.eso.org/org/dmd/. More information About the Computerworld Honors Program: Governed by the Computerworld Information Technology Awards Foundation, a Massachusetts not-for-profit corporation founded by International Data Group (IDG) in 1988, the Computerworld Honors Program searches for and recognizes individuals and organizations who have demonstrated vision and leadership as they strive to use information technology in innovative ways across 10 categories: Business and Related Services; Education and Academia; Environment, Energy and Agriculture; Finance, Insurance and Real Estate; Government and Non-Profit Organizations; Manufacturing; Media, Arts and Entertainment; Medicine; Science; and Transportation. Each year, the Computerworld Honors Chairmen's Committee nominates organizations that are using information technology to improve society for inclusion in the Computerworld Honors Online Archive and the Collections of the Global Archives. The Global Archives represents the 100-plus institutions from more than 30 countries that include the Computerworld Honors Collection in their archives and libraries.

  7. Obituary: Adriaan Blaauw, 1914-2010

    NASA Astrophysics Data System (ADS)

    de Zeeuw, Tim

    2011-12-01

    Professor Adriaan Blaauw, one of the most influential astronomers of the twentieth century, passed away on 1 December 2010. Adriaan Blaauw was born in Amsterdam, the Netherlands, on 12 April 1914. He studied astronomy at Leiden University, under de Sitter, Hertzsprung and Oort, and obtained his doctorate (cum laude) with van Rhijn at the Kapteyn Laboratory in Groningen in 1946, on a PhD thesis entitled: A study of the Scorpio-Centaurus Cluster. In this work he used the proper motions of the stars on the sky, deduced by very careful comparison of position measurements taken more than 50 years apart, and demonstrated that most of the bright hot O and B stars in the constellations Scorpius and Centaurus have nearly identical space motions and hence constitute a physical group of stars. This work laid the basis for a career of groundbreaking studies of the properties of these OB associations which still contain the fossil imprint of their star formation history. Perhaps Blaauw's most famous work explained why some OB stars are found in isolation and are traveling unusually rapidly: the so-called run-away stars. During his time at Yerkes, he and Morgan had discovered curious examples such as the OB stars μ Columbae and AE Aurigae which are moving very fast in opposite directions, putting both of them at the location of the Orion Nebula at approximately the same time, 2.6 million years earlier. Blaauw proposed in 1961 that run-away stars had originally been members of binary stars, and when one star in the binary experiences a supernova explosion, its companion suddenly ceases to feel the gravitational pull that keeps it in its orbit and hence it "runs away" at its orbital velocity and rapidly leaves the group it was born in. In addition to his distinguished research career, Blaauw played a decisive role in the creation of the intergovernmental European Organization for Astronomical Research in the Southern Hemisphere, often referred to as the European Southern Observatory, or simply as ESO. In 1953, Baade and Oort proposed the idea of combining European resources to create an astronomical research organisation that could compete in the international arena. Blaauw had returned to Leiden in 1948 at Oort's invitation, had moved to Yerkes Observatory in 1953, becoming its associate director in 1956, and moved back to Groningen in 1957, where he revitalized the institute and initiated a new program in radio astronomy together with van Woerden. Here he was also in a key position to contribute to transforming the idea of Baade and Oort into reality. He was Secretary of the ESO Committee (the proto ESO Council) from 1959 through 1963, a period which included the signing of the ESO Convention on 5 October 1962 by the five founding Member States Belgium, France, Germany, the Netherlands and Sweden. Blaauw became ESO's Scientific Director in 1968. In this position he also provided the decisive push to combine the various national journals for astronomy into Astronomy and Astrophysics, which today is one of the leading astronomy research publications in the world. Blaauw succeeded Heckman as Director General of ESO in 1970, for a five-year term. During this period several telescopes including the ESO 0.5-meter and 1-meter Schmidt telescopes began operating at ESO's first observatory site, La Silla, in Chile, and much work was done on the design and construction of the ESO 3.6-meter telescope, which saw first light in 1976. Blaauw decided that it was crucial for this challenging project to move ESO's Headquarters and the Technical Department from Hamburg to Geneva, to benefit from the presence of the experienced CERN engineering group. After his ESO period, Blaauw returned to Leiden, where he continued to play a very important role in international astronomy. He was President of the International Astronomical Union from 1976 to 1979. During his tenure he used his considerable diplomatic skills to convince China to rejoin the IAU even though Taiwan was also a member. He retired from his Leiden professorship in 1981 and moved back to Groningen, but stayed active in various areas. He organized the historical archives of ESO and of the IAU - a work which resulted in two books, ESO's Early History and History of the IAU. He also served as Chairman of the Scientific Evaluation Committee for the European Space Agency satellite HIPPARCOS, which would measure the proper motions of the 100,000 brightest stars with unprecedented accuracy, and advised on many aspects of its scientific programme. When the data became available in 1996, he was actively involved in the re-analysis of the young stellar groups he had studied during his PhD research, more than fifty years earlier. Blaauw remained keenly interested in developments at ESO. He drove himself from Groningen to Garching and back for a two-day stay in July 2009 in order to take another look at the historical documents in the ESO library. He visited Chile in February 2010 during which he was driven to La Silla and then Paranal by car to enjoy Chile's beautiful landscapes and 'inspect' the telescopes on both these sites. He actively engaged young people in interesting discussions and throughout the visit displayed a crystal clear perspective on the development of astronomy in general and of ESO's program in particular, including the exciting opportunities for the future. The characteristic twinkle in his eye was as bright as always. Blaauw won many academic distinctions, including membership in many academies of science, honorary doctorates from the University of Besancon and from l'Observatoire de Paris and the Bruce Medal of the Astronomical Society of the Pacific. He was well-known for his warm personality, wisdom, humour, legendary patience, and the very rare gift of being able to slow down when the pressure mounts. The personal account of his life entitled My Cruise Through the World of Astronomy, published in the 2004 Annual Reviews of Astronomy and Astrophysics, provides an accurate and inspiring picture of a truly remarkable person, who positively influenced the lives of many others.

  8. J, H, K Spectro-Interferometry of the Mira Variable S Orionis

    DTIC Science & Technology

    2008-01-01

    the Mira variable S Orionis M. Wittkowski1, D. A. Boboltz2, T. Driebe3, J.-B. Le Bouquin4 F. Millour3 K. Ohnaka3, and M. Scholz5,6 1 ESO, Karl ... Schwarzschild -Str. 2, 85748 Garching bei München, Germany e-mail: mwittkow@eso.org 2 US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC

  9. Ticking Stellar Time Bomb Identified - Astronomers find prime suspect for a Type Ia supernova

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Using ESO's Very Large Telescope and its ability to obtain images as sharp as if taken from space, astronomers have made the first time-lapse movie of a rather unusual shell ejected by a "vampire star", which in November 2000 underwent an outburst after gulping down part of its companion's matter. This enabled astronomers to determine the distance and intrinsic brightness of the outbursting object. It appears that this double star system is a prime candidate to be one of the long-sought progenitors of the exploding stars known as Type Ia supernovae, critical for studies of dark energy. "One of the major problems in modern astrophysics is the fact that we still do not know exactly what kinds of stellar system explode as a Type Ia supernova," says Patrick Woudt, from the University of Cape Town and lead author of the paper reporting the results. "As these supernovae play a crucial role in showing that the Universe's expansion is currently accelerating, pushed by a mysterious dark energy, it is rather embarrassing." The astronomers studied the object known as V445 in the constellation of Puppis ("the Stern") in great detail. V445 Puppis is the first, and so far only, nova showing no evidence at all for hydrogen. It provides the first evidence for an outburst on the surface of a white dwarf [1] dominated by helium. "This is critical, as we know that Type Ia supernovae lack hydrogen," says co-author Danny Steeghs, from the University of Warwick, UK, "and the companion star in V445 Pup fits this nicely by also lacking hydrogen, instead dumping mainly helium gas onto the white dwarf." In November 2000, this system underwent a nova outburst, becoming 250 times brighter than before and ejecting a large quantity of matter into space. The team of astronomers used the NACO adaptive optics instrument [2] on ESO's Very Large Telescope (VLT) to obtain very sharp images of V445 Puppis over a time span of two years. The images show a bipolar shell, initially with a very narrow waist, with lobes on each side. Two knots are also seen at both the extreme ends of the shell, which appear to move at about 30 million kilometres per hour. The shell - unlike any previously observed for a nova - is itself moving at about 24 million kilometres per hour. A thick disc of dust, which must have been produced during the last outburst, obscures the two central stars. "The incredible detail that we can see on such small scales - about hundred milliarcseconds, which is the apparent size of a one euro coin seen from about forty kilometres - is only possible thanks to the adaptive optics technology available on large ground-based telescopes such as ESO's VLT," says Steeghs. A supernova is one way that a star can end its life, exploding in a display of grandiose fireworks. One family of supernovae, called Type Ia supernovae, are of particular interest in cosmology as they can be used as "standard candles" to measure distances in the Universe [3] and so can be used to calibrate the accelerating expansion that is driven by dark energy. One defining characteristic of Type Ia supernovae is the lack of hydrogen in their spectrum. Yet hydrogen is the most common chemical element in the Universe. Such supernovae most likely arise in systems composed of two stars, one of them being the end product of the life of sun-like stars, or white dwarfs. When such white dwarfs, acting as stellar vampires that suck matter from their companion, become heavier than a given limit, they become unstable and explode [4]. The build-up is not a simple process. As the white dwarf cannibalises its prey, matter accumulates on its surface. If this layer becomes too dense, it becomes unstable and erupts as a nova. These controlled, mini-explosions eject part of the accumulated matter back into space. The crucial question is thus to know whether the white dwarf can manage to gain weight despite the outburst, that is, if some of the matter taken from the companion stays on the white dwarf, so that it will eventually become heavy enough to explode as a supernova. Combining the NACO images with data obtained with several other telescopes [5] the astronomers could determine the distance of the system - about 25 000 light-years from the Sun - and its intrinsic brightness - over 10 000 times brighter than the Sun. This implies that the vampire white dwarf in this system has a high mass that is near its fatal limit and is still simultaneously being fed by its companion at a high rate. "Whether V445 Puppis will eventually explode as a supernova, or if the current nova outburst has pre-empted that pathway by ejecting too much matter back into space is still unclear," says Woudt. "But we have here a pretty good suspect for a future Type Ia supernova!" Notes [1] White dwarfs represent the evolutionary end product of stars with initial masses up to a few solar masses. A white dwarf is the burnt-out stellar core that is left behind when a star like the Sun sheds its outer layers towards the end of its active life. It is composed essentially of carbon and oxygen. This process normally also leads to the formation of a surrounding planetary nebula. [2] Adaptive optics is a technique that allows astronomers to obtain an image of an object free from the blurring effect of the atmosphere. See the adaptive optics page at ESO: http://www.eso.org/public/astronomy/technology/adaptive_optics.html [3] See for example http://www.eso.org/~bleibund/papers/EPN/epn.html [4] This Chandrasekhar limit, named after the Indian physicist Subrahmanyan Chandrasekhar, is nearly 1.4 times the mass of the Sun. When a white dwarf reaches a mass above this limit, either by sucking matter from a companion or merging with another white dwarf, it will turn itself into a thermonuclear bomb that will burn carbon and oxygen explosively. [5] The team also used the SOFI instrument on ESO's New Technology Telescope, the IMACS spectrograph on the 6.5-metre Magellan Baade telescope, and the Infrared Survey Facility and the SIRIUS camera at the Sutherland station of the South African Astronomical Observatory. More information This research was presented in a paper to appear in the 20 November 2009 issue of the Astrophysical Journal, vol. 706, p. 738 ("The expanding bipolar shell of the helium nova V445 Puppis", by P. A. Woudt et al.). The team is composed of P. A. Woudt and B. Warner (University of Cape Town, South Africa), D. Steeghs and T. R. Marsh (University of Warwick, UK), M. Karovska and G. H. A. Roelofs (Harvard-Smithsonian Center for Astrophysics, Cambridge MA, USA), P. J. Groot and G. Nelemans (Radboud University Nijmegen, the Netherlands), T. Nagayama (Kyoto University, Japan), D. P. Smits (University of South Africa, South Africa), and T. O'Brien (University of Manchester, UK). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  10. Cosmological Results from High-z Supernovae

    NASA Astrophysics Data System (ADS)

    Tonry, John L.; Schmidt, Brian P.; Barris, Brian; Candia, Pablo; Challis, Peter; Clocchiatti, Alejandro; Coil, Alison L.; Filippenko, Alexei V.; Garnavich, Peter; Hogan, Craig; Holland, Stephen T.; Jha, Saurabh; Kirshner, Robert P.; Krisciunas, Kevin; Leibundgut, Bruno; Li, Weidong; Matheson, Thomas; Phillips, Mark M.; Riess, Adam G.; Schommer, Robert; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Stubbs, Christopher W.; Suntzeff, Nicholas B.

    2003-09-01

    The High-z Supernova Search Team has discovered and observed eight new supernovae in the redshift interval z=0.3-1.2. These independent observations, analyzed by similar but distinct methods, confirm the results of Riess and Perlmutter and coworkers that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed Type Ia supernovae (SNe Ia) to z~1, where the signature of cosmological effects has the opposite sign of some plausible systematic effects. Consequently, these measurements not only provide another quantitative confirmation of the importance of dark energy, but also constitute a powerful qualitative test for the cosmological origin of cosmic acceleration. We find a rate for SN Ia of (1.4+/-0.5)×10-4h3Mpc-3yr-1 at a mean redshift of 0.5. We present distances and host extinctions for 230 SN Ia. These place the following constraints on cosmological quantities: if the equation of state parameter of the dark energy is w=-1, then H0t0=0.96+/-0.04, and ΩΛ-1.4ΩM=0.35+/-0.14. Including the constraint of a flat universe, we find ΩM=0.28+/-0.05, independent of any large-scale structure measurements. Adopting a prior based on the Two Degree Field (2dF) Redshift Survey constraint on ΩM and assuming a flat universe, we find that the equation of state parameter of the dark energy lies in the range -1.48-1, we obtain w<-0.73 at 95% confidence. These constraints are similar in precision and in value to recent results reported using the WMAP satellite, also in combination with the 2dF Redshift Survey. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555. This research is primarily associated with proposal GO-8177, but also uses and reports results from proposals GO-7505, 7588, 8641, and 9118. Based in part on observations taken with the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, le Centre National de la Recherche Scientifique de France, and the University of Hawaii. CTIO: Based in part on observations taken at the Cerro Tololo Inter-American Observatory. Keck: Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. UH: Based in part on observations with the University of Hawaii 2.2 m telescope at Mauna Kea Observatory, Institute for Astronomy, University of Hawaii. UKIRT: Based in part on observations with the United Kingdom Infrared Telescope (UKIRT) operated by the Joint Astronomy Centre on behalf of the UK. Particle Physics and Astronomy Research Council. VLT: Based in part on observations obtained at the European Southern Observatory, Paranal, Chile, under programs ESO 64.O-0391 and ESO 64.O-0404. WIYN: Based in part on observations taken at the WIYN Observatory, a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories.

  11. First-Ever Census of Variable Mira-Type Stars in Galaxy Outside the Local Group

    NASA Astrophysics Data System (ADS)

    2003-05-01

    First-Ever Census of Variable Mira-Type Stars in Galaxy Outsidethe Local Group Summary An international team led by ESO astronomer Marina Rejkuba [1] has discovered more than 1000 luminous red variable stars in the nearby elliptical galaxy Centaurus A (NGC 5128) . Brightness changes and periods of these stars were measured accurately and reveal that they are mostly cool long-period variable stars of the so-called "Mira-type" . The observed variability is caused by stellar pulsation. This is the first time a detailed census of variable stars has been accomplished for a galaxy outside the Local Group of Galaxies (of which the Milky Way galaxy in which we live is a member). It also opens an entirely new window towards the detailed study of stellar content and evolution of giant elliptical galaxies . These massive objects are presumed to play a major role in the gravitational assembly of galaxy clusters in the Universe (especially during the early phases). This unprecedented research project is based on near-infrared observations obtained over more than three years with the ISAAC multi-mode instrument at the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory . PR Photo 14a/03 : Colour image of the peculiar galaxy Centaurus A . PR Photo 14b/03 : Location of the fields in Centaurus A, now studied. PR Photo 14c/03 : "Field 1" in Centaurus A (visual light; FORS1). PR Photo 14d/03 : "Field 2" in Centaurus A (visual light; FORS1). PR Photo 14e/03 : "Field 1" in Centaurus A (near-infrared; ISAAC). PR Photo 14f/03 : "Field 2" in Centaurus A (near-infrared; ISAAC). PR Photo 14g/03 : Light variation of six variable stars in Centaurus A PR Photo 14h/03 : Light variation of stars in Centaurus A (Animated GIF) PR Photo 14i/03 : Light curves of four variable stars in Centaurus A. Mira-type variable stars Among the stars that are visible in the sky to the unaided eye, roughly one out of three hundred (0.3%) displays brightness variations and is referred to by astronomers as a "variable star". The percentage is much higher among large, cool stars ("red giants") - in fact, almost all luminous stars of that type are variable. Such stars are known as Mira-variables ; the name comes from the most prominent member of this class, Omicron Ceti in the constellation Cetus (The Whale), also known as "Stella Mira" (The Wonderful Star). Its brightness changes with a period of 332 days and it is about 1500 times brighter at maximum (visible magnitude 2 and one of the fifty brightest stars in the sky) than at minimum (magnitude 10 and only visible in small telescopes) [2]. Stars like Omicron Ceti are nearing the end of their life. They are very large and have sizes from a few hundred to about a thousand times that of the Sun. The brightness variation is due to pulsations during which the star's temperature and size change dramatically. In the following evolutionary phase, Mira-variables will shed their outer layers into surrounding space and become visible as planetary nebulae with a hot and compact star (a "white dwarf") at the middle of a nebula of gas and dust (cf. the "Dumbbell Nebula" - ESO PR Photo 38a-b/98 ). Several thousand Mira-type stars are currently known in the Milky Way galaxy and a few hundred have been found in other nearby galaxies, including the Magellanic Clouds. The peculiar galaxy Centaurus A ESO PR Photo 14a/03 ESO PR Photo 14a/03 [Preview - JPEG: 400 x 451 pix - 53k [Normal - JPEG: 800 x 903 pix - 528k] [Hi-Res - JPEG: 3612 x 4075 pix - 8.4M] ESO PR Photo 14b/03 ESO PR Photo 14b/03 [Preview - JPEG: 570 x 400 pix - 52k [Normal - JPEG: 1140 x 800 pix - 392k] ESO PR Photo 14c/03 ESO PR Photo 14c/03 [Preview - JPEG: 400 x 451 pix - 61k [Normal - JPEG: 800 x 903 pix - 768k] ESO PR Photo 14d/03 ESO PR Photo 14d/03 [Preview - JPEG: 400 x 451 pix - 56k [Normal - JPEG: 800 x 903 pix - 760k] Captions : PR Photo 14a/03 is a colour composite photo of the peculiar galaxy Centaurus A (NGC 5128) , obtained with the Wide-Field Imager (WFI) camera at the ESO/MPG 2.2-m telescope on La Silla. It is based on a total of nine 3-min exposures made on March 25, 1999, through different broad-band optical filters (B(lue) - total exposure time 9 min - central wavelength 456 nm - here rendered as blue; V(isual) - 540 nm - 9 min - green; I(nfrared) - 784 nm - 9 min - red); it was prepared from files in the ESO Science Data Archive by ESO-astronomer Benoît Vandame . The elliptical shape and the central dust band, the imprint of a galaxy collision, are well visible. PR Photo 14b/03 identifies the two regions of Centaurus A (the rectangles in the upper left and lower right inserts) in which a search for variable stars was made during the present research project: "Field 1" is located in an area north-east of the center in which many young stars are present. This is also the direction in which an outflow ("jet") is seen on deep optical and radio images. "Field 2" is positioned in the galaxy's halo, south of the centre. High-resolution, very deep colour photos of these two fields and their immediate surroundings are shown in PR Photos 14c-d/03 . They were produced by means of CCD-frames obtained in July 1999 through U- and V-band optical filters with the VLT FORS1 multi-mode instrument at the 8.2-m VLT ANTU telescope on Paranal. Note the great variety of object types and colours, including many background galaxies which are seen through these less dense regions of Centaurus A . The total exposure time was 30 min in each filter and the seeing was excellent, 0.5 arcsec. The original pixel size is 0.196 arcsec and the fields measure 6.7 x 6.7 arcmin 2 (2048 x 2048 pix 2 ). North is up and East is left on all photos. Centaurus A (NGC 5128) is the nearest giant galaxy, at a distance of about 13 million light-years. It is located outside the Local Group of Galaxies to which our own galaxy, the Milky Way, and its satellite galaxies, the Magellanic Clouds, belong. Centaurus A is seen in the direction of the southern constellation Centaurus. It is of elliptical shape and is currently merging with a companion galaxy, making it one of the most spectacular objects in the sky, cf. PR Photo 14a/03 . It possesses a very heavy black hole at its centre (see ESO PR 04/01 ) and is a source of strong radio and X-ray emission. During the present research programme, two regions in Centaurus A were searched for stars of variable brightness; they are located in the periphery of this peculiar galaxy, cf. PR Photos 14b-d/03 . An outer field ("Field 1") coincides with a stellar shell with many blue and luminous stars produced by the on-going galaxy merger; it lies at a distance of 57,000 light-years from the centre. The inner field ("Field 2") is more crowded and is situated at a projected distance of about 30,000 light-years from the centre.. Three years of VLT observations ESO PR Photo 14e/03 ESO PR Photo 14e/03 [Preview - JPEG: 400 x 447 pix - 120k [Normal - JPEG: 800 x 894 pix - 992k] ESO PR Photo 14f/03 ESO PR Photo 14f/03 [Preview - JPEG: 400 x 450 pix - 96k [Normal - JPEG: 800 x 899 pix - 912k] Caption : PR Photos 14e-f/03 are colour composites of two small fields ("Field 1" and "Field 2") in the peculiar galaxy Centaurus A (NGC 5128) , based on exposures through three near-infrared filters (the J-, H- and K-bands at wavelengths 1.2, 1.6 and 2.2 µm, respectively) with the ISAAC multi-mode instrument at the 8.2-m VLT ANTU telescope at the ESO Paranal observatory. The corresponding areas are outlined within the two inserts in PR Photo 14b/03 and may be compared with the visual images from FORS1 ( PR Photos 14c-d/03 ). These ISAAC photos are the deepest near-infrared images ever obtained in this galaxy and show thousands of its stars of different colours. In the present colour-coding, the redder an image, the cooler is the star. The original pixel size is 0.15 arcsec and both fields measure 2.5 x 2.5 arcmin 2. North is up and East is left. Under normal circumstances, any team of professional astronomers will have access to the largest telescopes in the world for only a very limited number of consecutive nights each year. However, extensive searches for variable stars like the present require repeated observations lasting minutes-to-hours over periods of months-to-years. It is thus not feasible to perform such observations in the classical way in which the astronomers travel to the telescope each time. Fortunately, the operational system of the VLT at the ESO Paranal Observatory (Chile) is also geared to encompass this kind of long-term programme. Between April 1999 and July 2002, the 8.2-m VLT ANTU telescope on Cerro Paranal in Chile) was operated in service mode on many occasions to obtain K-band images of the two fields in Centaurus A by means of the near-infrared ISAAC multi-mode instrument. Each field was observed over 20 times in the course of this three-year period ; some of the images were obtained during exceptional seeing conditions of 0.30 arcsec. One set of complementary optical images was obtained with the FORS1 multi-mode instrument (also on VLT ANTU) in July 1999. Each image from the ISAAC instrument covers a sky field measuring 2.5 x 2.5 arcmin 2. The combined images, encompassing a total exposure of 20 hours are indeed the deepest infrared images ever made of the halo of any galaxy as distant as Centaurus A , about 13 million light-years. Discovering one thousand Mira variables ESO PR Photo 14g/03 ESO PR Photo 14g/03 [Preview - JPEG: 400 x 480 pix - 61k [Normal - JPEG: 800 x 961 pix - 808k] ESO PR Photo 14h/03 ESO PR Photo 14h/03 [Animated GIF: 263 x 267 pix - 56k ESO PR Photo 14i/03 ESO PR Photo 14i/03 [Preview - JPEG: 480 x 400 pix - 33k [Normal - JPEG: 959 x 800 pix - 152k] Captions : PR Photo 14g/03 shows a zoomed-in area within "Field 2" in Centaurus A , from the ISAAC colour image shown in PR Photo 14e/03 . Nearly all red stars in this area are of the variable Mira-type. The brightness variation of some stars (labelled A-D) is demonstrated in the animated-GIF image PR Photo 14h/03 . The corresponding light curves (brightness over the pulsation period) are shown in PR Photo 14i/03 . Here the abscissa indicates the pulsation phase (one full period corresponds to the interval from 0 to 1) and the ordinate unit is near-infrared K s -magnitude. One magnitude corresponds to a difference in brightness of a factor 2.5. Once the lengthy observations were completed, two further steps were needed to identify the variable stars in Centaurus A . First, each ISAAC frame was individually processed to identify the thousands and thousands of faint point-like images (stars) visible in these fields. Next, all images were compared using a special software package ("DAOPHOT") to measure the brightness of all these stars in the different frames, i.e., as a function of time. While most stars in these fields as expected were found to have constant brightness, more than 1000 stars displayed variations in brightness with time; this is by far the largest number of variable stars ever discovered in a galaxy outside the Local Group of Galaxies. The detailed analysis of this enormous dataset took more than a year. Most of the variable stars were found to be of the Mira-type and their light curves (brightness over the pulsation period) were measured, cf. PR Photo 14i/03 . For each of them, values of the characterising parameters, the period (days) and brightness amplitude (magnitudes) were determined. A catalogue of the newly discovered variable stars in Centaurus A has now been made available to the astronomical community via the European research journal Astronomy & Astrophysics. Marina Rejkuba is pleased and thankful: "We are really very fortunate to have carried out this ambitious project so successfully. It all depended critically on different factors: the repeated granting of crucial observing time by the ESO Observing Programmes Committee over different observing periods in the face of rigorous international competition, the stability and reliability of the telescope and the ISAAC instrument over a period of more than three years and, not least, the excellent quality of the service mode observations, so efficiently performed by the staff at the Paranal Observatory." What have we learned about Centaurus A? The present study of variable stars in this giant elliptical galaxy is the first-ever of its kind. Although the evaluation of the very large observational data material is still not finished, it has already led to a number of very useful scientific results. Confirmation of the presence of an intermediate-age population Based on earlier research (optical and near-IR colour-magnitude diagrams of the stars in the fields), the present team of astronomers had previously detected the presence of intermediate-age and young stellar populations in the halo of this galaxy. The youngest stars appear to be aligned with the powerful jet produced by the massive black hole at the centre. Some of the very luminous red variable stars now discovered confirm the presence of a population of intermediate-age stars in the halo of this galaxy. It also contributes to our understanding of how giant elliptical galaxies form. New measurement of the distance to Centaurus A The pulsation of Mira-type variable stars obeys a period-luminosity relation. The longer its period, the more luminous is a Mira-type star. This fact makes it possible to use Mira-type stars as "standard candles" (objects of known intrinsic luminosity) for distance determinations. They have in fact often been used in this way to measure accurate distances to more nearby objects, e.g., to individual clusters of stars and to the center in our Milky Way galaxy, and also to galaxies in the Local Group, in particular the Magellanic Clouds. This method works particularly well with infrared measurements and the astronomers were now able to measure the distance to Centaurus A in this new way. They found 13.7 ± 1.9 million light-years , in general agreement with and thus confirming other methods. Study of stellar population gradients in the halo of a giant elliptical galaxy The two fields here studied contain different populations of stars. A clear dependence on the location (a "gradient") within the galaxy is observed, which can be due to differences in chemical composition or age, or to a combination of both. Understanding the cause of this gradient will provide additional clues to how Centaurus A - and indeed all giant elliptical galaxies - was formed and has since evolved. Comparison with other well-known nearby galaxies Past searches have discovered Mira-type variable stars thoughout the Milky Way, our home galaxy, and in other nearby galaxies in the Local Group. However, there are no giant elliptical galaxies like Centaurus A in the Local Group and this is the first time it has been possible to identify this kind of stars in that type of galaxy. The present investigation now opens a new window towards studies of the stellar constituents of such galaxies .

  12. Multiple Eyes for the VLT

    NASA Astrophysics Data System (ADS)

    2002-01-01

    First System of Deployable Multi-Integral Field Units Ready Summary The ESO Very Large Telescope (VLT) at the Paranal Observatory is being equipped with many state-of-the-art astronomical instruments that will allow observations in a large number of different modes and wavebands. Soon to come is the Fibre Large Array Multi-Element Spectrograph (FLAMES) , a project co-ordinated by ESO. It incorporates several complex components, now being constructed at various research institutions in Europe and Australia. One of these, a true technological feat, is a unique system of 15 deployable fibre bundles, the so-called Integral Field Units (IFUs) . They can be accurately positioned within a sky field-of-view measuring no less that 25 arcmin in diameter, i.e., almost as large as the full Moon . Each of the IFUs looks like an insect's eye and images a small sky area (3 x 2 arcsec 2 ) with a multiple microlens. From each IFU, 20 narrow light beams are sent via optical fibres to an advanced spectrograph. All 300 spectra are recorded simultaneously by a sensitive digital camera. A major advantage of this technique is that, contrary usual spectroscopic observations in which spectral information is obtained along a (one-dimensional) line on the sky, it now allows (two-dimensional) area spectroscopy . This will permit extremely efficient spectral observations of many celestial objects, including faint galaxies, providing detailed information about their internal structure and motions. Such studies will have an important impact on our understanding, e.g., of the early evolution of galaxies , the main building blocks in the Universe. The IFUs have been developed by a team of astronomers and engineers [2] at the Observatoire de Paris-Meudon. All IFU components are now at the ESO Headquarters in Garching (Germany) where they are being checked and integrated into the instrument [3]. PR Photo 03a/02 : The GIRAFFE spectrograph in the ESO Assembly Hall (Garching, Germany) . PR Photo 03b/02 : Example of a future IFU observation in a sky field with galaxies. PR Photo 03c/02 : An illustration of how the IFUs function . PR Photo 03d/02 : The IFU design . PR Photo 03e/02 : Computer simulation of the motions in a galaxy , as deduced from IFU observations. The FLAMES instrument and its many parts ESO PR Photo 03a/02 ESO PR Photo 03a/02 [Preview - JPEG: 560 x 400 pix - 62k] [Normal - JPEG: 1120 x 800 pix - 544k] [Hi-Res - JPEG: 2885 x 2061 pix - 5.3M] Caption : PR Photo 03a/02 : The GIRAFFE spectrograph, a major component of the VLT Fibre Large Array Multi-Element Spectrograph (FLAMES) , during the present assembly at the ESO Headquarters in Garching (Germany). Late last year, the ESO Very Large Telescope (VLT) at the Paranal Observatory received its newest instrument, NAOS-CONICA . The first tests were very successful, cf. PR 25/01. But this is far from the last. Work is now underway at several European and overseas research institutes to complete the many other large astronomical instruments planned for the VLT. Over the next years, these new facilities will enter into operation one by one, further enhancing the capabilities of this true flagship of European science. One of these instruments is the Fibre Large Array Multi-Element Spectrograph (FLAMES) , to be installed at the 8.2-m VLT KUEYEN Unit Telescope. It will be able to observe the spectra of a large number of individual, faint objects (or small sky areas) simultaneously and incorporates several highly complex components, e.g., * a Nasmyth Corrector - an optical system to focus the light that is received from the telescope over a sky field of no less than 25 arcmin in diameter, i.e., almost as large as the full Moon . It was installed on KUEYEN in September 2001 * a Fibre Positioner (known as "OzPoz"). It is now being built by the AUSTRALIS Consortium, lead by the Anglo Australian Observatory (AAO) , cf. ESO PR 07/98 * a high- and intermediate-resolution optical spectrograph, GIRAFFE , with its own fibre system, developed by the Observatoire de Paris-Meudon in close collaboration with ESO . It is now in the process of being assembled in the ESO laboratories in Garching, cf. PR Photo 03a/01 . Work at the FLAMES facility will be supported by specialized data reduction software developed by Observatoire de Genève-Lausanne in collaboration with Observatoire de Paris-Meudon , and specialized observing software developed at ESO . There will also be a fibre link to the UVES high-dispersion spectrograph and there are plans for incorporating an intermediate resolution IR spectrograph in the future; the ITAL-FLAMES consortium is now preparing the associated instrument control and data reduction software packages. The Integral Field Units (IFUs) for FLAMES ESO PR Photo 03b/02 ESO PR Photo 03b/02 [Preview - JPEG: 573 x 400 pix - 94k] [Normal - JPEG: 1145 x 800 pix - 592k] ESO PR Photo 03c/02 ESO PR Photo 03c/02 [Preview - JPEG: 538 x 400 pix - 63k] [Normal - JPEG: 1076 x 800 pix - 256k] Caption : PR Photo 03b/02 : An example of observations with Integral Field Units (IFUs) at FLAMES (only 4 of the 15 units are shown here). Each IFU is placed so that it records the light from 20 small adjacent sky areas (each measuring about 3 x 2 arcsec 2 ). In this way, it is possible to register simultaneously the spectrum of as many different regions of a (distant) galaxy. PR Photo 03c/02 : How the IFUs work: each IFU consists of a microlens that guides the light from a small sky area, normally centred on a celestial object (e.g., a distant galaxy) and sends it on to the entry of the spectrograph (inside the dotted box). When it enters into operation later this year [3], GIRAFFE will become the most efficient instrument of its kind available at the world's large optical/infrared telescopes. It will be especially suited for the study of the dynamical properties of distant galaxies - their motion in space, as well as the internal motions of their stars and gas clouds. Indeed, observations of the velocity fields in a large variety of galaxies in the early Universe (when its age was only one third to one half of its current age) will be essential for a better understanding of those major building blocks of the Universe. This is first of all due to the unique system of 15 deployable fibre bundles, the Integral Field Units (IFUs) , that can be accurately positioned within a field-of-view measuring no less than 25 arcmin across, cf. PR Photo 03b/02 . Each IFU is a microscopic, state-of-the-art two-dimensional lens array with an aperture of 3 x 2 arcsec 2 on the sky. It contains twenty micro-lenses coupled with optical fibres leading the light recorded at each point in the field to the entry slit of the spectrograph, cf. PR Photo 03c/02 . A great advantage of this technique is that, contrary to usual spectroscopic observations in which spectral information is obtained along a (one-dimensional) line on the sky, it now allows (two-dimensional) area spectroscopy . It is therefore possible to obtain spectra of larger areas of a celestial object simultaneously, and not just along one particular diameter. With 15 IFUs at their disposal, the astronomers will be able to observe many galaxies at the same time - this will represent a tremendous gain of efficiency with many more astrophysical data collected within the available observation time! The IFU design ESO PR Photo 03d/02 ESO PR Photo 03d/02 [Preview - JPEG: 400 x 469 pix - 86k] [Normal - JPEG: 800 x 937 pix - 232k] Caption : PR Photo 03d/02 : Mechanical design of an IFU "button". Upper right: photo of an "IFU entrance" with the 20 square microlenses, each measuring 1.8 x 1.8 mm 2. PR Photo 03d/02 shows the mechanical design of the entrance of one IFU. An array of 20 square microlenses, each measuring 1.8 x 1.8 mm 2 is used to concentrate the light in the corresponding, small sky field onto a prism that passes the light on to 20 fibres. These are inserted and cemented into a mechanical holder and the entire assembly is then mounted in an IFU "button" that will be positioned in the focal plane by the OzPoz Positioner. A magnet is incorporated at the base of the button to ensure a stable position (a firm hold) on the focal plate during the observation. The optical cementing is ensured with an UV curing and the fibre bundle is cemented into the button with an epoxy glue in order to ensure excellent stiffness of the complete assembly. The external diameter of the button is about 6 mm, corresponding to about 11 arcsec on the sky, allowing quite close positioning of the buttons on the focal plate. An example of astronomical observations with IFUs ESO PR Photo 03e/02 ESO PR Photo 03e/02 [Preview - JPEG: 467 x 400 pix - 51k] [Normal - JPEG: 933 x 800 pix - 264k] Caption : PR Photo 03e/02 is a computer simulation of the velocity field in a galaxy , as deduced on the basis of IFU spectra. The blue area has negative velocities and is thus the approaching side of the galaxy, while the red area is receding. In this way, the direction of rotation can be determined. The velocity unit is km/s. During the astronomical observation with the IFUs , the spectrograph slit receives light from 15 sky areas simultaneously, each with 21 fibres (20 from the IFU and 1 that collects the light from the night sky in an adjacent sky field) or 22 fibres (with the addition of 1 fibre with light from a calibration lamp). Altogether, about 300 spectra are recorded simultaneously. By means of such observations, the astronomers can perform many different studies, e.g., of the dynamics of star clusters and motions of stars and interstellar clouds in galaxies. PR Photo 03e/02 provides an example of a computer simulation of a resulting diagramme in which the internal rotation of a distant spiral galaxy is clearly visible. Red and yellow areas have positive velocities that are approaching while the blue areas are receding). Of special interest will be the study of the often violent motions when two or more galaxies interact gravitationally. Notes [1]: This is a joint Press Release of ESO and the Observatoire de Paris (cf. http://www.obspm.fr/actual/nouvelle/jan02/flames.shtml ). [2]:The GIRAFFE team at the Observatoire de Paris that has developed the Integral Field Units (IFUs) discussed in this Press Release includes Jean-Pierre Aoustin, Sebastien Baratchart, Patrice Barroso, Veronique Cayatte, Laurent Chemin, Florence Cornu, Jean Cretenet, Jean-Paul Danton, Hector Flores, Francoise Gex, Fabien Guillon, Isabelle Guinouard, Francois Hammer, Jacques Hammes, David Horville, Jean-Michel Huet, Laurent Jocou, Pierre Kerlirzin, Serge Lebourg, Hugo Lenoir, Claude Lesqueren, Regis Marichal, Michel Marteaud, Thierry Melse, Fabrice Peltier, Francois Rigaud, Frederic Sayede and Pascal Vola . [3]: It is expected to ship the various components of the FLAMES instrument to the VLT Observatory at Paranal (Chile) during the next month. "First Light" is scheduled to take place some weeks thereafter, following installation at the telescope and extensive system tests. ESO will issue another Press Release with more details on that occasion.

  13. Ghosts of Milky Way's past: the globular cluster ESO 37-1 (E 3)

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, R.; de la Fuente Marcos, C.; Moni Bidin, C.; Ortolani, S.; Carraro, G.

    2015-09-01

    Context. In the Milky Way, most globular clusters are highly conspicuous objects that were found centuries ago. However, a few dozen of them are faint, sparsely populated systems that were identified largely during the second half of the past century. One of the faintest is ESO 37-1 (E 3) and as such it remains poorly studied, with no spectroscopic observations published so far although it was discovered in 1976. Aims: We investigate the globular cluster E 3 in an attempt to better constrain its fundamental parameters. Spectroscopy of stars in the field of E 3 is shown here for the first time. Methods: Deep, precise VI CCD photometry of E 3 down to V ~ 26 mag is presented and analysed. Low-resolution, medium signal-to-noise ratio spectra of nine candidate members are studied to derive radial velocity and metallicity. Proper motions from the UCAC4 catalogue are used to explore the kinematics of the bright members of E 3. Results: Isochrone fitting indicates that E 3 is probably very old, with an age of about 13 Gyr; its distance from the Sun is nearly 10 kpc. It is also somewhat metal rich with [Fe/H] = -0.7. Regarding its kinematics, our tentative estimate for the proper motions is (μα cosδ,μδ) = (-7.0 ± 0.8, 3.5 ± 0.3) mas yr-1 (or a tangential velocity of 382 ± 79 km s-1) and for the radial velocity 45 ± 5 km s-1 in the solar rest frame. Conclusions: E 3 is one of the most intriguing globular clusters in the Galaxy. Having an old age and being metal rich is clearly a peculiar combination, only seen in a handful of objects like the far more conspicuous NGC 104 (47 Tucanae). In addition, its low luminosity and sparse population make it a unique template for the study of the final evolutionary phases in the life of a star cluster. Unfortunately, E 3 is among the most elusive and challenging known globular clusters because field contamination severely hampers spectroscopic studies. This research note is based on observations made with the ESO VLT at the Paranal Observatory, under the program 078.D-0186 and includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile (program ID CHILE-2015A-029).Figure 6 and Appendix A are available in electronic form at http://www.aanda.orgTables of the individual photometric measurements are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A13

  14. VizieR Online Data Catalog: Abundances of metal-poor star HD 94028 (Roederer+, 2016)

    NASA Astrophysics Data System (ADS)

    Roederer, I. U.; Karakas, A. I.; Pignatari, M.; Herwig, F.

    2016-06-01

    We use two NUV spectroscopic data sets of HD 94028 available in the Mikulski Archive for Space Telescopes. These observations were made using STIS on board the HST. One spectrum (data sets O5CN01-03, GO-8197, PI. Duncan) has very high spectral resolution (R~110000). This spectrum covers ~1885-2147Å with signal-to-noise ratios (S/N)35/1 per pixel near 2140Å. The other spectrum (data sets O56D06-07, GO-7402, PI. Peterson) has high spectral resolution (R~30000). This spectrum covers 2280-3117Å with S/N ranging from ~20 near 2300Å to ~40 near 3100Å. Roederer et al. (2014, J/AJ/147/136) derived abundances from an optical spectrum of HD 94028 taken using the Robert G. Tull Coude Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, Texas. We rederive abundances from this spectrum. We also use an optical spectrum taken with the Ultraviolet and Visual Echelle Spectrograph (UVES) on the Very Large Telescope (VLT) Kueyen at Cerro Paranal, Chile. We obtained this spectrum from the ESO Science Archive. This spectrum covers 3050-3860Å at R~37000 with S/N ranging from ~40 near 3200Å to ~130 near 3800Å. (3 data files).

  15. MWC 297: a young high-mass star rotating at critical velocity

    NASA Astrophysics Data System (ADS)

    Acke, B.; Verhoelst, T.; van den Ancker, M. E.; Deroo, P.; Waelkens, C.; Chesneau, O.; Tatulli, E.; Benisty, M.; Puga, E.; Waters, L. B. F. M.; Verhoeff, A.; de Koter, A.

    2008-07-01

    Context: MWC 297 is a nearby young massive B[e] star. The central star is attenuated by 8 mag in the optical and has a high projected rotational velocity of 350 km s-1. Despite the wealth of published observations, the nature of this object and its circumstellar environment is not understood very well. Aims: With the present paper, we intend to shed light on the geometrical structure of the circumstellar matter that is responsible for the near- to mid-infrared flux excess. Methods: The H-band (1.6-2.0 μm), K-band (2.0-2.5 μm), and N-band (8-13 μm) brightness distribution of MWC 297 was probed with the ESO interferometric spectrographs AMBER and MIDI, mounted on the VLTI in Paranal, Chile. We obtained visibility measurements on 3 AMBER and 12 MIDI baselines, covering a wide range of spatial frequencies. Different models (parametrized circumstellar disks, a dusty halo) were invoked to fit the data, all of which fail to do so in a satisfying way. We approximated the brightness distribution in H, K, and N with a geometric model consisting of three Gaussian disks with different extents and brightness temperatures. This model can account for the entire near- to mid-IR emission of MWC 297. Results: The circumstellar matter around MWC 297 is resolved on all baselines. The near- and mid-IR emission, including the silicate emission at 10 micron, emanates from a very compact region (FWHM < 1.5 AU) around the central star. Conclusions: We argue that the extinction towards the MWC 297 star+disk system is interstellar and most likely due to remnants of the natal cloud from which MWC 297 was formed. Furthermore, we argue that the circumstellar matter in the MWC 297 system is organized in a circumstellar disk, seen under moderate (i < 40°) inclination. The disk displays no inner emission-free gap at the resolution of our interferometric observations. The low inclination of the disk implies that the already high projected rotational velocity of the star corresponds to an actual rotational velocity that exceeds the critical velocity of the star. This result shows that stars can obtain such high rotation rates at birth. We discuss the impact of this result in terms of the formation of high-mass stars and the main-sequence evolution of classical Be stars. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program IDs 077.D-0071(B-C), 077.D-0095(C-F), 079.C-0012(A-H) and 079.C-0207(A).

  16. The Gaia-ESO Survey: dynamics of ionized and neutral gas in the Lagoon nebula (M 8)

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Bonito, R.; Prisinzano, L.; Zwitter, T.; Bayo, A.; Kalari, V.; Jiménez-Esteban, F. M.; Costado, M. T.; Jofré, P.; Randich, S.; Flaccomio, E.; Lanzafame, A. C.; Lardo, C.; Morbidelli, L.; Zaggia, S.

    2017-08-01

    Aims: We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M 8), using VLT-FLAMES data from the Gaia-ESO Survey. The new data permit exploration of the physical connections between the nebular gas and the stellar population of the associated star cluster NGC 6530. Methods: We characterized through spectral fitting emission lines of Hα, [N II] and [S II] doublets, [O III], and absorption lines of sodium D doublet, using data from the FLAMES-Giraffe and UVES spectrographs, on more than 1000 sightlines toward the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [S II] doublet ratio, and ionization parameter from Hα/[N II] ratio. Although doubly-peaked emission profiles are rarely found, line asymmetries often imply multiple velocity components along the same line of sight. This is especially true for the sodium absorption, and for the [O III] lines. Results: Spatial maps for density and ionization are derived, and compared to other known properties of the nebula and of its massive stars 9 Sgr, Herschel 36 and HD 165052 which are confirmed to provide most of the ionizing flux. The detailed velocity fields across the nebula show several expanding shells, related to the cluster NGC 6530, the O stars 9 Sgr and Herschel 36, and the massive protostar M 8East-IR. The origins of kinematical expansion and ionization of the NGC 6530 shell appear to be different. We are able to put constrains on the line-of-sight (relative or absolute) distances between some of these objects and the molecular cloud. The data show that the large obscuring band running through the middle of the nebula is being compressed by both sides, which might explain its enhanced density. We also find an unexplained large-scale velocity gradient across the entire nebula. At larger distances, the transition from ionized to neutral gas is studied using the sodium lines. Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-ESO Large Public Survey (program 188.B-3002).Full Tables A.1 and A.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A135

  17. VLT interferometer upgrade for the 2nd generation of interferometric instruments

    NASA Astrophysics Data System (ADS)

    Gonté, Frederic; Woillez, Julien; Schuhler, Nicolas; Egner, Sebastian; Merand, Antoine; Abad, José Antonio; Abadie, Sergio; Abuter, Roberto; Acuña, Margarita; Allouche, Fatmé; Alonso, Jaime; Andolfalto, Luigi; Antonelli, Pierre; Avila, Gerardo; Barriga, Pablo José; Beltran, Juan; Berger, Jean-Philippe; Bolados, Carlos; Bonnet, Henri; Bourget, Pierre; Brast, Roland; Bristow, Paul; Caniguante, Luis; Castillo, Roberto; Conzelmann, Ralf; Cortes, Angela; Delplancke, Françoise; Del Valle, Diego; Derie, Frederic; Diaz, Alvaro; Donoso, Reinaldo; Dorn, Reinhold; Duhoux, Philippe; Dupuy, Christophe; Eisenhauer, Frank; Elao, Christian; Fuenteseca, Eloy; Fernandez, Ruben; Gaytan, Daniel; Glindemann, Andreas; Gonzales, Jaime; Guieu, Sylvain; Guisard, Stephane; Haguenauer, Pierre; Haimerl, Andreas; Heinz, Volker; Henriquez, Juan Pablo; van der Heyden, P.; Hubin, Norbert; Huerta, Rodrigo; Jochum, Lieselotte; Leiva, Alfredo; Lévêque, Samuel; Lizon, Jean-Louis; Luco, Fernando; Mardones, Pedro; Mellado, Angel; Osorio, Juan; Ott, Jürgen; Pallanca, Laurent; Pavez, Marcus; Pasquini, Luca; Percheron, Isabelle; Pirard, Jean-Francois; Than Phan, Duc; Pineda, Juan Carlos; Pino, Andres; Poupar, Sebastien; Ramírez, Andres; Reinero, Claudio; Riquelme, Miguel; Romero, Juan; Rivinius, Thomas; Rojas, Chester; Rozas, Felix; Salgado, Fernando; Scheithauer, Silvia; Schmid, Christian; Schöller, Markus; Siclari, Waldo; Stephan, Christian; Tamblay, Richard; Tapia, Mario; Tristram, Konrad; Valdes, Guillermo; de Wit, Willem-Jan; Wright, Andrew; Zins, Gerard

    2016-08-01

    ESO is undertaking a large upgrade of the infrastructure on Cerro Paranal in order to integrate the 2nd generation of interferometric instruments Gravity and MATISSE, and increase its performance. This upgrade started mid 2014 with the construction of a service station for the Auxiliary Telescopes and will end with the implementation of the adaptive optics system for the Auxiliary telescope (NAOMI) in 2018. This upgrade has an impact on the infrastructure of the VLTI, as well as its sub-systems and scientific instruments.

  18. A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems

    NASA Astrophysics Data System (ADS)

    Rauch, Michael; Haehnelt, Martin; Bunker, Andrew; Becker, George; Marleau, Francine; Graham, James; Cristiani, Stefano; Jarvis, Matt; Lacey, Cedric; Morris, Simon; Peroux, Celine; Röttgering, Huub; Theuns, Tom

    2008-07-01

    We have conducted a long-slit search for low surface brightness Lyα emitters at redshift 2.67 < z < 3.75. A 92 hr long exposure with the ESO VLT FORS2 instrument down to a 1 σ surface brightness detection limit of 8 × 10-20 erg cm-2 s-1 arcsec-2 per arcsec2 aperture yielded a sample of 27 single line emitters with fluxes of a few × 10-18 erg s-1 cm-2. We present arguments that most objects are indeed Lyα. The large comoving number density, 3 × 10-2 h370 Mpc-3, the large covering factor, dN/dz ~ 0.2-1, and the often extended Lyα emission suggest that the emitters can be identified with the elusive host population of damped Lyα systems (DLAS) and high column density Lyman limit systems (LLS). A small inferred star formation rate, perhaps supplemented by cooling radiation, appears to energetically dominate the Lyα emission, and is consistent with the low metallicity, low dust content, and theoretically inferred low masses of DLAS, and with the relative lack of success of earlier searches for their optical counterparts. Some of the line profiles show evidence for radiative transfer in galactic outflows. Stacking surface brightness profiles, we find emission out to at least 4''. The centrally concentrated emission of most objects appears to light up the outskirts of the emitters (where LLS arise) down to a column density where the conversion from UV to Lyα photon becomes inefficient. DLAS, high column density LLS, and the emitter population discovered in this survey appear to be different observational manifestations of the same low-mass, protogalactic building blocks of present-day L* galaxies. Based partly on observations made with ESO Telescopes at the Paranal Observatories under Program ID LP173.A-0440, and partly on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina).

  19. The VLT Opening Symposium

    NASA Astrophysics Data System (ADS)

    1999-02-01

    Scientists Meet in Antofagasta to Discuss Front-Line Astrophysics To mark the beginning of the VLT era, the European Southern Observatory is organizing a VLT Opening Symposium which will take place in Antofagasta (Chile) on 1-4 March 1999, just before the start of regular observations with the ESO Very Large Telescope on April 1, 1999. The Symposium occupies four full days and is held on the campus of the Universidad Catolica del Norte. It consists of plenary sessions on "Science in the VLT Era and Beyond" and three parallel Workshops on "Clusters of Galaxies at High Redshift" , "Star-way to the Universe" and "From Extrasolar Planets to Brown Dwarfs" . There will be many presentations of recent work at the major astronomical facilities in the world. The meeting provides a very useful forum to discuss the latest developments and, in this sense, contributes to the planning of future research with the VLT and other large telescopes. The symposium will be opened with a talk by the ESO Director General, Prof. Riccardo Giacconi , on "Paranal - an observatory for the 21st century". It will be followed by reports about the first scientific results from the main astronomical instruments on VLT UT1, FORS1 and ISAAC. The Symposium participants will see the VLT in operation during special visits to the Paranal Observatory. Press conferences are being arranged each afternoon to inform about the highlights of the conference. After the Symposium, there will be an Official Inauguration Ceremony at Paranal on 5 March Contributions from ESO ESO scientists will make several presentations at the Symposium. They include general reviews of various research fields as well as important new data and results from the VLT that show the great potential of this new astronomical facility. Some of the recent work is described in this Press Release, together with images and spectra of a large variety of objects. Note that all of these data will soon become publicly available via the VLT Archive. The text below summarizes the individual projects. Comprehensive texts with all photos and diagrammes are available in nine separate web documents ( ESO PR Photos 08/99 to 16/99 ) that may be accessed via the links at the top of each section. The degree of detail and level of complexity of the texts depend on the subject and the available materials. 1. Dwarf Galaxies in the Local Group ESO PR Photo 10a/99 ESO PR Photo 10a/99 The Antlia Galaxy (FORS1 colour composite) . Access full text and PR Photos 10a-d/99 In addition to large spiral galaxies like the Milky Way Galaxy, the Andromeda Galaxy and Messier 33, the Local Group of Galaxies contains many dwarf galaxies. The VLT has observed two of these, Antlia and NGC 6822 . Antlia is a low-surface brightness, spheroidal dwarf galaxy that was only discovered in 1997. While it contains a large amount of atomic hydrogen at its centre, no young stars are found, and it appears that most of its stars are old. This is unlike other dwarf galaxies in the Milky Way neighbourhood, as star formation is expected to occur within dense hydrogen clouds. Further observations will be necessary to understand this unusual characteristics. The VLT also obtained images of an irregular dwarf galaxy in the Local Group, NGC 6822, as well as spectra of some of its stars. This galaxy is of the "irregular" type and is situated at a distance of about 2 million light-years. A comparison of the spectra of supergiant stars in NGC 6822 shows that many spectral lines are much weaker than in stars of similar type in the Milky Way, but of similar strength as in stars in the Small Magellanic Cloud. This confirms an earlier finding that NGC 6822 has chemical composition (a lower "metallicity") that is different from what is observed in our Galaxy. 2. The Double Stellar Cluster NGC 1850 in the LMC ESO PR Photo 15/99 ESO PR Photo 15/99 NGC 1850 (FORS1 colour composite) . Access full text and PR Photo 15/99 NGC 1850 is a double cluster in the Large Magellanic Cloud, a satellite galaxy to the Milky Way Galaxy. This cluster is representative of a class of objects, young, globular-like stellar associations , that has no counterpart in our own Galaxy. The VLT images show faint nebulosity in this area, with filaments and various sharp "shocks". This offers support to the theory of supernova-induced star birth in the younger of the two clusters. It is estimated that about 1000 stars in the older of the clusters have exploded during the past 20 million years. 3. The Barred Galaxy NGC 1365 ESO PR Photo 08a/99 ESO PR Photo 08a/99 The Barred Galaxy NGC 1365 (FORS1 colour composite) . Access full text and PR Photos 08a-e/99 NGC 1365 is one of the most prominent "barred" galaxies in the sky. It is a supergiant galaxy and is a member of the Fornax Cluster of Galaxies, at a distance of about 60 million light-years. This galaxy has an intricate structure with a massive straight bar and two pronounced spiral arms. There are many dust lanes and emission nebulae in these and also a bright nuclear region at the center that may hide a black hole. Several images of NGC 1365 have recently been obtained with all three astronomical instruments, now installed at the VLT UT1. They show the overall structure of this magnificent galaxy, and also the fine details of the innermost region, close to the centre. An infrared ISAAC image penetrates deep into the obscuring dust clouds in this area. 4. The colours of NGC 1232 ESO PR Photo 13a/99 ESO PR Photo 13a/99 Differential (UV-B) image of NGC 1232 (FORS1) . Access full text and PR Photos 13a-b/99 NGC 1232 is a large spiral galaxy in the constellation Eridanus (The River). With a diameter of nearly 200,000 light-years, it is about twice the size of the Milky Way galaxy. The distance is about 100 million light-years, but the excellent optical quality of the VLT and FORS allows us to see an incredible wealth of details. Computer processed "colour-index images" have been prepared that show the "difference" between images of the galaxy, as seen in different wavebands. Since different types of objects have different brightness in different colours, this method is very useful to locate objects of a particular type and to obtain an overview of their distribution in the galaxy. The distribution of star-forming regions and dust lanes in NGC 1232 are shown on two such photos. 5. A Selection of ISAAC Spectra ESO PR Photo 11a/99 ESO PR Photo 11a/99 He I 1038 nm line in SN1987A (ISAAC spectrum) . Access full text and PR Photos 11a-c/99 Various observations were made with the ISAAC multi-mode instrument at the Nasmyth focus of VLT UT1 during the recent commissioning periods for this infrared multi-mode instrument. They impressively demonstrate the unique capabilities of this facility. The new data include several infrared spectra of faint objects with interesting features. A spectrum was obtained in the near-infrared region of the ring nebula around SN 1987A in the Large Magellanic Cloud. It consists of material blown off the progenitor star during its evolution. Of particular interest is a jet like structure in the dispersion direction which reveals the presence of a broad, blueshifted, HeI component which presumably originates in the shock ionized ejecta. Another spectrum shows emission features in two galaxies at redshift z = 0.6 [1] that allow the determination of a rotation curve at this large distance. The 1 - 2.5 µm infrared spectrum of the radio galaxy MRC0406 at z =2.42 is also included. 6. The Cluster of Galaxies MS1008.1-1224 ESO PR Photo 09b/99 ESO PR Photo 09b/99 Centre of the Cluster of Galaxies MS1008.1-122 (FORS1 colour composite) . Access full text and PR Photos 09a-b/99 The study of "Deep Fields" is becoming a common tool in astronomy. Among the various sky fields that have been selected for detailed investigation of the faint and distant objects therein, is the FORS Deep Field that will be observed during FORS1 "guaranteed time", available to astronomers from institutes that built this instrument. In preparation of this work, an imaging programme was carried out during the FORS1 Science Verification programme. Multicolour (UBVRI) deep images were obtained of the galaxy cluster MS1008.1-1224 , to be complemented with infrared (JHK) images with ISAAC of the cluster core. The redshift is z = 0.306 and many arclets from gravitational lensing are seen within the cluster area. Such observations serve many purposes, including the study of the distribution of mass and the associated gravitational field of the cluster, of individual cluster galaxies, and also of background objects whose images are amplified and distorted by gravitational lensing caused by the cluster. 7. Quasar Spectra ESO PR Photo 14a/99 ESO PR Photo 14c/99 Spectrum of Quasar at z = 5 Access full text and PR Photos 14a-c/99 The FORS1 multi-mode instrument is able to record images as well as spectra of even very distant objects. During the past months, data have been obtained that show the properties of some of the remotest known objects in the Universe. Three spectral tracings of very distant quasars are included, for which the redshifts have been determined as z = 3.11, 3.83 and 5.0. They were taken by the FORS Commissioning Team in September and December 1998 in the long-slit spectroscopy mode of FORS1. This instrument is very efficient; even for the most distant and faintest quasar, the exposure time was only 1 hour. All spectra show a wealth of details. 8. Spectrum of a Gravitationally Lensed Galaxy ESO PR Photo 16c/99 ESO PR Photo 16c/99 Spectrum of Gravitationally Lensed Galaxy at z = 3.23 (FORS1) . Access full text and PR Photos 16a-c/99 The galaxy cluster 1ES 0657-55 is located in the southern constellation Carina (The Keel), at redshift z = 0.29. It emits strong and very hot X-ray emission and has an asymmetric galaxy distribution, indicating a large mass and recent formation. Earlier images with the ESO NTT at La Silla have revealed the presence of a gravitational arc, i.e. a background galaxy at larger distance, whose image is strongly distorted by the gravitational field of this cluster. New images of this cluster have been obtained with FORS1 under good seeing conditions. They show that this arc is very thin and long. Other arcs and arclets are also visible. It was possible to obtain a spectrum of the arc. Several absorption lines are well visible and show that the arc is the highly distorted image of a young, background galaxy at redshift z = 3.23. 9. Spectra of Faint Primordial Objects ESO PR Photo 12d/99 ESO PR Photo 12d/99 Spectrum of Distant Galaxy EIS 107 at z = 3.92 (FORS1) . Access full text and PR Photos 12a-f/99 During the recent commissioning and science verification of FORS1, spectra were taken of several objects, thought to be high-redshift galaxies. These objects are extremely faint and their spectra can only be observed with very large telescopes like the VLT and a highly efficient spectrograph. The near-infrared (I) magnitudes of the objects studied during the present test observations ranged between 23.4 and 25.5, or between 10 and 65 million times fainter than what can be seen with the unaided eye. As predicted, a large fraction of the spectra obtained turned out to be those of extremely distant galaxies, in the redshift range between z = 2.8 - 4.0. Outlook These observations provide but a small demonstration of the great capability of the ESO VLT to provide front-line astronomical data. Many others will be discussed during the Symposium and contribute to the future planning of the best possible exploitation of this great new research facility. The first 8.2-m VLT Unit Telescope (UT1) with which the observations reported in this Press Release were made will soon be joined by UT2, for which "First Light" is expected shortly, cf. PR Photos 07/99. The first instrument to be mounted on this telescope will be UVES that will provide the capability of obtaining high-dispersion spectra; the next is FORS2. During the coming years, more instruments of different types and capabilities will become available on the four 8.2-m telescopes, together providing an unrivalled potential for astronomical investigations. Note: [1]: In astronomy, the redshift (z) denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant galaxy or quasar gives a direct estimate of the universal expansion (i.e. the `recession velocity'). Since this expansion rate increases with the distance, the velocity (and thus the redshift) is itself a function (the Hubble relation) of the distance to the object. The larger the distance, the longer it has taken the light from the object to reach us, and the larger is the "look-back" time, i.e. the fraction of the age of the Universe that has elapsed since the light we now receive, was emitted from the object. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory . Note also the comprehensive VLT Information site.

  20. Catching a Falling Star

    NASA Astrophysics Data System (ADS)

    2004-07-01

    ESO's Very Large Telescope Obtains Unique Spectrum of a Meteor Summary While observing a supernova in a distant galaxy with the FORS instrument on ESO's Very Large Telescope at the Paranal Observatory (Chile), astronomers were incredibly lucky to obtain serendipitously a high quality spectrum of a very large meteor in the terrestrial atmosphere. The VLT spectrograph provided a well calibrated spectrum, making it a reference in this field of research. From this spectrum, the temperature of the meteor trail was estimated to be about 4600 degrees centigrade. The serendipitous spectrum reveals the telltale meteor emissions of oxygen and nitrogen atoms and nitrogen molecules. The VLT spectrum was the first to reveal the far red range where carbon emission lines are predicted; the absence of the lines puts constraints on the role of atmospheric chemistry when life started on earth. Because the VLT is tuned to observe objects far out in space, it focuses at infinity. The meteor, being "only" 100 km above the telescope, therefore appears out of focus in the field of view. PR Photo 22a/04: Meteor Caught in the Act (MASCOT) PR Photo 22b/04: Spectrum of a Meteor (FORS1/VLT) PR Photo 22c/04: Details of the Meteor Spectrum (FORS1/VLT) Astronomers' luck ESO PR Photo 22a/04 ESO PR Photo 22a/04 Meteor Caught in the Act (MASCOT) [Preview - JPEG: 426 x 400 pix - 85k] [Normal - JPEG: 851 x 800 pix - 187k] [Full Res - JPEG: 2567 x 2413 pix - 908k] Captions: ESO PR Photo 22a/04 shows the trail of a bright meteor, photographed by the Mini All-Sky Cloud Observation Tool (MASCOT) at the ESO Paranal Observatory. MASCOT consists of a small CCD camera behind a fish-eye objective. It typically takes 90s exposures every 3 minutes and helps astronomers inside the VLT Control Room to keep an eye on the sky. The main purpose of MASCOT is to monitor the clouds over Paranal but it also observes from time to time serendipitous events like meteor showers, atmospheric phenomena, artificial satellites, etc. This image was obtained by MASCOT on August 25, 2002 and shows a meteor caught in the act. (Note that this is not the meteor whose spectrum was recorded). The Milky Way is also clearly visible in the centre. A popular saying states that when you see a meteor, you may make a wish. While astronomers cannot promise that it will be realised, a team of astronomers [1] have indeed seen a dream come true! On May 12, 2002, they were lucky to record the spectrum of a bright meteor when it happened - by sheer chance and against all reasonable odds - to cross the narrow slit of the FORS1 instrument on the ESO Very Large Telescope. At the time of this unlikely event, the telescope was performing a series of 20-minute spectroscopic exposures of a supernova in a distant galaxy in order to establish constraints on the dark energy content of the Universe (see e.g. ESO PR 21/98). Thanks to its enormous light-collecting and magnifying power, the VLT recorded the spectrum of the meteor trail perpendicular to its path on one of these exposures. "We really hit the jackpot", says ESO astronomer Emmanuel Jehin: "Chances of capturing a meteor in the narrow slit of the FORS1 spectrograph are about as big as for me winning the national lottery." Meteor spectra have on occasion been obtained serendipitously during photographic star spectra surveys. But this is now maybe the only meteor spectrum recorded with a large telescope and a modern spectrograph. The spectrum covers the wavelength range from 637 to 1050 nm, which is dominated by emissions from air atoms and molecules in the meteor path and teach us about the collision processes in the wake of a meteoroid. The rapid motion of the meteor across the sky resulted in a very brief exposure while crossing the narrow spectrograph slit - only 1/50 of a millisecond! - and despite the relative brightness of the meteor it was only thanks to the VLT's great light-gathering power that any record was procured. The meteor was estimated at magnitude -8, or nearly as bright as the first-quarter Moon. Although it is not possible to be sure from which shower this meteor belongs, a possible candidate is the Southern May Ophiuchid shower which appears from a direction just east of the bright star Antares. The shower contributes only one or two meteors per hour but was one of the stronger showers of that night. Telltale emissions ESO PR Photo 22b/04 ESO PR Photo 22b/04 Spectrum of a Meteor (FORS1/VLT) [Preview - JPEG: 426 x 400 pix - 91k] [Normal - JPEG: 851 x 800 pix - 232k] [Full Res - JPEG: 2567 x 2413 pix - 2.1M] ESO PR Photo 22c/04 ESO PR Photo 22c/04 Details of the Meteor Spectrum (FORS1/VLT) [Preview - JPEG: 1006 x 400 pix - 122k] [Normal - JPEG: 2011 x 800 pix - 236k] [Full Res - JPEG: 3414 x 1358 pix - 957k] Captions: ESO PR Photo 22b/04 shows the spectrum of a bright meteor, as observed serendipitously by the multi-mode FORS 1 instrument on the ESO Very Large Telescope during the night of May 12-13, 2002, in front of a photo of the VLT enclosures and with a meteor trail inserted in the sky (montage). The position of the meteor trail on the narrow slit of FORS (not to scale) is also indicated. The lower panel shows the spectrum of the meteor, following removal of the supernova spectrum and before (up) and after (down) removal of the spectrum of the night sky by image processing. Several emission lines from colliding Oxygen and Nitrogen atoms (sharp emissions) and molecules (broad emissions) are visible. ESO PR Photo 22c/04 illustrates details of the extracted VLT meteor spectrum (solid line): the intensity (in arbitrary units) is shown as a function of the wavelength. The dashed line is a theoretical model of the spectrum of air heated to a temperature of 4600 degrees at an altitude of 95 km. "At first, the bright trace across the supernova spectrum was a puzzle, but then I realized that the spectroscopic signature was that of our atmosphere being bombarded," says astronomer Remi Cabanac of the Catholic University of Santiago de Chile. "We asked around to see if others in our country had witnessed the meteor, but it seems we at the VLT were the only ones, perhaps not too surprising as Paranal is located in the middle of the empty desert." And unfortunately for the astronomers, the MASCOT all-sky camera (e.g. PR Photo 22a/04) was not yet in operation at that time. The VLT spectrograph provided a well calibrated spectrum of the meteor emission, making it a reference in this field of research. The meteor emission results from collisions between air molecules, knocked to high speeds after initial collision with the meteoroid. Closer inspection of the spectrum revealed about 20 telltale meteor emissions of oxygen and nitrogen atoms and nitrogen molecules (see PR Photo 22b/04 and 22c/04). The ratio of atomic and molecular emissions could be used as a "thermometer" to measure the conditions in the meteor-induced hot gas in the wake of the meteoroid, by means of laboratory measurements and meteor models that calibrate the VLT data. From here to infinity "To our surprise, we found the meteor trail to be wider than expected and also that the meteor's heat appeared evenly distributed in the trail, with the temperature varying only from about 4,570 to 4,650 degrees across the trail," says meteor specialist, astronomer Peter Jenniskens of the SETI Intitute, who analysed the data together with Christophe Laux of the Ecole Centrale Paris (France) and Iain Boyd of the University of Michigan at Ann Arbor (USA). "We later realised that this was due to the fact that, as seen by the VLT, the meteor trail was out of focus, even though it was 100 kilometres away!" The VLT is indeed focussed at infinity, which is perfect for most astronomical objects that it routinely observes. But not for meteoroids entering the atmosphere above Paranal. A point at 100 kilometres distance will appear as a small circle of diameter 15 arcsec at the VLT focal plane. This corresponds to roughly half of the maximum apparent diameter of Mars in the evening sky! It is the same effect as when you try to photograph your children with a forest in the background. If you focus your camera on the distant forest, then (in most cases) your children will be out of focus. Or to put this in another way, the VLT is clearly not very suited to observe ships passing by on the Pacific Ocean, just 12 km from Paranal! No Trace of Carbon The meteor spectrum also provided a first view of such an object in the near-infrared window between wavelengths 900 and 1050 nm. This spectral region contains relatively strong lines of atomic carbon, but no such emissions were detected. "We calculated that these lines should have been visible if all atmospheric carbon dioxide in the meteor path was dissociated into carbon and oxygen atoms," says Jenniskens, "but they were conspicuously absent". This observation is important because it sets new constraints on the efficiency of meteor-induced atmospheric chemistry at the time when life began on our planet. Appendix: Cosmic showers Meteoroids are small grains of rocks orbiting the Sun. Far smaller than asteroids, they make their presence known to us in a dramatic and beautiful way when they enter earth's atmosphere and burn up, producing a short glowing trail in the night sky, rarely lasting more than a second or two - a meteor. Most meteoroids are completely destroyed at altitudes between 80 and 110 km, but some of the bigger ones make it to the ground. Here they may be collected as meteorites. Many meteoroids originate as fragments of asteroids and appear to be unaltered since the formation of the Solar System, some 4500 million years ago. Based on the peculiar composition of some meteorites, we know that a small fraction of meteoroids originate from the Moon, Mars or the large asteroid Vesta. They obviously result from major impacts on these bodies which blasted rock fragments into space. These fragments then orbit the Sun and may eventually collide with the Earth. Comets are another important source of meteoroids and perhaps the most spectacular. After many visits near the Sun, a comet "dirty-snowball" nucleus of ice and dust decays and fragments, leaving a trail of meteoroids along its orbit. Some "meteoroid streams" cross the earth's orbit and when our planet passes through them, some of these particles will enter the atmosphere. The outcome is a meteor shower - the most famous being the "Perseids" in the month of August [2] and the "Leonids" in November. Thus, although meteors are referred to as "shooting" or "falling stars" in many languages, they are of a very different nature. More information The research presented in this paper is published in the journal Meteoritics and Planetary Science, Vol. 39, Nr. 4, p. 1, 2004 ("Spectroscopic anatomy of a meteor trail cross section with the ESO Very Large Telescope", by P. Jenniskens et al.). Notes [1] The team is composed of Peter Jenniskens (SETI Institute, USA), Emmanuël Jehin (ESO), Remi Cabanac (Pontificia Universidad Catolica de Chile), Christophe Laux (Ecole Centrale de Paris, France), and Iain Boyd (University of Michigan, USA). [2] The maximum of the Perseids is expected on August 12 after sunset and should be easily seen.

  1. A Great Moment for Astronomy

    NASA Astrophysics Data System (ADS)

    1998-05-01

    VLT First Light Successfully Achieved The European Southern Observatory announces that First Light has been achieved with the first VLT 8.2-m Unit Telescope at the Paranal Observatory. Scientifically useful images have been obtained as scheduled, on May 25 - 26, 1998. A first analysis of these images convincingly demonstrates the exceptional potential of the ESO Very Large Telescope. Just one month after the installation and provisional adjustment of the optics, the performance of this giant telescope meets or surpasses the design goals, in particular as concerns the achievable image quality. Exposures lasting up to 10 minutes confirm that the tracking, crucial for following the diurnal rotation of the sky, is very accurate and stable. It appears that the concept developed by ESO for the construction of the VLT, namely an actively controlled, single thin mirror, yields a very superior performance. In fact, the angular resolution achieved even at this early stage is unequalled by any large ground-based telescope . The combination of large area and fine angular resolution will ultimately result in a sensitivity for point sources (e.g. stars), which is superior to any yet achieved by existing telescopes on Earth. The present series of images demonstrate these qualities and include some impressive first views with Europe's new giant telescope. After further optimization of the optical, mechanical and electronic systems, and with increasing operational streamlining, this telescope will be able to deliver unique astronomical data of the highest quality. The commissioning and science verification phases of the complex facility including instruments will last until April 1, 1999, at which time the first visiting astronomers will be received. The full significance of this achievement for astronomy will take time to assess. For Europe, this is a triumph of the collaboration between nations, institutions and industries. For the first time in almost a century, European astronomers will have at their disposal the best optical/infrared telescope in the world. We can now look forward with great expectations to the realization of many exciting research projects. The First Light Images Images of various celestial objects were obtained with the VLT CCD Test Camera, some of which are included in a new series, First Astronomical Images from the VLT UT1. None have been subjected to image processing beyond flat-fielding (to remove variations of the digital detector sensitivity over the field) and cosmetic cleaning. They all display the recorded image structure, pixel by pixel. A detailed evaluation with accompanying explanations is presented in the figure captions. 1. Omega Centauri Tracking Tests This 10-minute image demonstrates that the telescope is able to track continuously with a very high precision and thus is able to take full advantage of the frequent, very good atmospheric conditions at Paranal. The images of the stars in this southern globular cluster are very sharp (0.43 arcsec) and are perfectly round, everywhere in the field. 2. The Quadruple Clover Leaf Quasar This 2-minute exposure of the well-known Clover Leaf quasar, a quadruple gravitational lens in which the largest distance between two components is only 1.3 arcsec, was obtained during a period of excellent seeing (0.32 arcsec) measured with a seeing monitor at the top of Paranal. The recorded angular resolution of just 0.38 arcsec demonstrates near-perfect optical quality of the telescope . 3. The Central Area of Globular Cluster M4 This is a colour composite of a field near the centre of the nearest globular cluster. At a seeing of 0.53 arcsec, the blue exposure reaches magnitude B = 24 in only 2 minutes (at signal-to-noise ratio = 5) in a bright sky. A simple extrapolation shows that B ~ 28 would be reached in a 1-hour exposure in a dark sky. The large mirror surface of the VLT UT1 and its ability to produce very sharp images, ensures that faint objects may be observed extremely efficiently. 4. Fine Structure of the Butterfly Nebula This beautiful colour picture is a composite of three exposures through broad-band blue, green and red filters, lasting a total of 25 minutes. It shows the great complexity of this planetary nebula. It also demonstrates the exceptional efficiency with which features of faint surface brightness can be recorded with the VLT . Strong radiation from a dying star in a binary system at the centre impacts on the surrounding material that has been thrown out earlier from the system. 5) High-velocity Ejecta in Eta Carinae This fine picture was obtained during an exposure lasting only 10 seconds. It shows fine structures around this very active object in a detail never before achieved with any ground-based telescope . In the lower insert, a short exposure of the central Homunculus Nebula (seeing 0.38 arcsec) provides a clear view of the three-dimensional structure of this bipolar object. 6. The Dust Band in Centaurus A An amazing amount of faint details is shown in this high-resolution exposure (0.49 arcsec) of the central dust band in the nearby, southern galaxy Centaurus A, obtained through a broad-band red filter and lasting only 10 seconds. The VLT Unit Telescopes will be able to image many other galaxies in similar detail. 7. The Energetic Jet in Messier 87 The First Light took place during the night of May 25 - 26, 1998. Following a short interval of reasonable observing conditions, less optimal atmospheric conditions were encountered. The present photo, a three-colour composite (ultraviolet, blue, green) of the central region of the giant elliptical galaxy Messier 87 in the Virgo Cluster, was obtained during this night. 8. Total Optical Control The 8.2-m main and the 1.1-m secondary mirrors of the VLT Unit Telescopes are completely computer-controlled by means of an Active Optics system. In this way, the shape of the mirror can be optimized very quickly for a given observational purpose. This sequence of 9 images illustrates how the appearance of a stellar image at the focal plane is fully controllable. Fast and thorough optical adjustment ensures the best possible optical quality at all times . 9. Image Quality of the VLT This diagram demonstrates that First Light specifications have been fully met and, more impressively, that the actual VLT performance is sometimes already within the more stringent specifications that were expected to be fulfilled only three years from now. The final steps before "First Light" The final, critical testing phase commenced with the installation of the 8.2-m primary (at that time still uncoated) Zerodur mirror and 1.1-m secondary Beryllium mirror during the second half of April. The optics were then gradually brought into position during carefully planned, successive adjustments. Due to the full integration of an advanced, active control system into the VLT concept, this delicate process went amazingly fast, especially when compared to other ground-based telescopes. It included a number of short test exposures in early May, first with the Guide Camera that is used to steer the telescope. Later, some exposures were made with the Test Camera mounted just below the main mirror at the Cassegrain Focus, in a central space inside the mirror cell. It will continue to be used during the upcoming Commissioning Phase, until the first major instruments (FORS and ISAAC) are attached to the UT1, later in 1998. The 8.2-m mirror was successfully aluminized at the Paranal Mirror Coating facility on May 20 and was reattached to the telescope tube the day thereafter, cf. ESO PR Photos 13a-e/98 and ESO PR Photos 14a-i/98. Further test exposures were then made to check the proper functioning of the telescope mechanics, optics and electronics. This has lead up to the moment of First Light , i.e. the time when the telescope is considered able to produce the first, astronomically useful images. Despite an intervening spell of bad atmospheric conditions, this important event took place during the night of May 25 - 26, 1998, right on the established schedule. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  2. Black Hole Caught Zapping Galaxy into Existence?

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Which come first, the supermassive black holes that frantically devour matter or the enormous galaxies where they reside? A brand new scenario has emerged from a recent set of outstanding observations of a black hole without a home: black holes may be "building" their own host galaxy. This could be the long-sought missing link to understanding why the masses of black holes are larger in galaxies that contain more stars. "The 'chicken and egg' question of whether a galaxy or its black hole comes first is one of the most debated subjects in astrophysics today," says lead author David Elbaz. "Our study suggests that supermassive black holes can trigger the formation of stars, thus 'building' their own host galaxies. This link could also explain why galaxies hosting larger black holes have more stars." To reach such an extraordinary conclusion, the team of astronomers conducted extensive observations of a peculiar object, the nearby quasar HE0450-2958 (see eso0523 for a previous study of this object), which is the only one for which a host galaxy has not yet been detected [1]. HE0450-2958 is located some 5 billion light-years away. Until now, it was speculated that the quasar's host galaxy was hidden behind large amounts of dust, and so the astronomers used a mid-infrared instrument on ESO's Very Large Telescope for the observations [2]. At such wavelengths, dust clouds shine very brightly, and are readily detected. "Observing at these wavelengths would allow us to trace dust that might hide the host galaxy," says Knud Jahnke, who led the observations performed at the VLT. "However, we did not find any. Instead we discovered that an apparently unrelated galaxy in the quasar's immediate neighbourhood is producing stars at a frantic rate." These observations have provided a surprising new take on the system. While no trace of stars is revealed around the black hole, its companion galaxy is extremely rich in bright and very young stars. It is forming stars at a rate equivalent to about 350 Suns per year, one hundred times more than rates for typical galaxies in the local Universe. Earlier observations had shown that the companion galaxy is, in fact, under fire: the quasar is spewing a jet of highly energetic particles towards its companion, accompanied by a stream of fast-moving gas. The injection of matter and energy into the galaxy indicates that the quasar itself might be inducing the formation of stars and thereby creating its own host galaxy; in such a scenario, galaxies would have evolved from clouds of gas hit by the energetic jets emerging from quasars. "The two objects are bound to merge in the future: the quasar is moving at a speed of only a few tens of thousands of km/h with respect to the companion galaxy and their separation is only about 22 000 light-years," says Elbaz. "Although the quasar is still 'naked', it will eventually be 'dressed' when it merges with its star-rich companion. It will then finally reside inside a host galaxy like all other quasars." Hence, the team have identified black hole jets as a possible driver of galaxy formation, which may also represent the long-sought missing link to understanding why the mass of black holes is larger in galaxies that contain more stars [3]. "A natural extension of our work is to search for similar objects in other systems," says Jahnke. Future instruments, such as the Atacama Large Millimeter/submillimeter Array, the European Extremely Large Telescope and the NASA/ESA/CSA James Webb Space Telescope will be able to search for such objects at even larger distances from us, probing the connection between black holes and the formation of galaxies in the more distant Universe. Notes [1] Supermassive black holes are found in the cores of most large galaxies; unlike the inactive and starving one sitting at the centre of the Milky Way, a fraction of them are said to be active, as they eat up enormous amounts of material. These frantic actions produce a copious release of energy across the whole electromagnetic spectrum; particularly spectacular is the case of quasars, where the active core is so overwhelmingly bright that it outshines the luminosity of the host galaxy. [2] This part of the study is based on observations performed at mid-infrared wavelengths, with the powerful VLT spectrometer and imager for the mid-infrared (VISIR) instrument at the VLT, combined with additional data including: spectra acquired using VLT-FORS, optical and infrared images from the NASA/ESA Hubble Space Telescope, and radio observations from the Australia Telescope National Facility. [3] Most galaxies in the local Universe contain a supermassive black hole with a mass about 1/700th the mass of the stellar bulge. The origin of this black hole mass versus stellar mass relation is one of the most debated subjects in modern astrophysics. More information This research was presented in papers published in the journal Astronomy & Astrophysics: "Quasar induced galaxy formation: a new paradigm?" by Elbaz et al., and in the Astrophysical Journal "The QSO HE0450-2958: Scantily dressed or heavily robed? A normal quasar as part of an unusual ULIRG" by Jahnke et al. The team is composed of David Elbaz (Service d'Astrophysique, CEA Saclay, France), Knud Jahnke (Max Planck Institute for Astronomy, Heidelberg, Germany), Eric Pantin (Service d'Astrophysique, CEA Saclay, France), Damien Le Borgne (Paris University 6 and CNRS, Institut d'Astrophysique de Paris, France) and Géraldine Letawe (Institut d'Astrophysique et de Géophysique, Université de Liège, Belgium). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  3. GRB 060605: multi-wavelength analysis of the first GRB observed using integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferrero, P.; Klose, S.; Kann, D. A.; Savaglio, S.; Schulze, S.; Palazzi, E.; Maiorano, E.; Böhm, P.; Grupe, D.; Oates, S. R.; Sánchez, S. F.; Amati, L.; Greiner, J.; Hjorth, J.; Malesani, D.; Barthelmy, S. D.; Gorosabel, J.; Masetti, N.; Roth, M. M.

    2009-04-01

    The long and relatively faint gamma-ray burst GRB 060605 detected by Swift/BAT lasted about 20 s. Its afterglow could be observed with Swift/XRT for nearly 1 day, while Swift/UVOT could detect the afterglow during the first 6 h after the event. Here, we report on integral field spectroscopy of its afterglow performed with PMAS/PPak mounted at the Calar Alto 3.5 m telescope. In addition, we report on a detailed analysis of XRT and UVOT data and on the results of deep late-time VLT observations that reveal the GRB host galaxy. We find that the burst occurred at a redshift of z = 3.773, possibly associated with a faint, RC = 26.4 ± 0.3 host. Based on the optical and X-ray data, we deduce information on the SED of the afterglow, the position of the cooling frequency in the SED, the nature of the circumburst environment, its collimation factor, and its energetics. We find that the GRB fireball was expanding into a constant-density medium and that the explosion was collimated with a narrow half-opening angle of about 2.4 degrees. The initial Lorentz factor of the fireball was about 250; however, its beaming-corrected energy release in the gamma-ray band was comparably low. The optical, X-ray afterglow, on the other hand, was rather luminous. Finally, we find that the data are consistent within the error bars with an achromatic evolution of the afterglow during the suspected jet break time at about 0.27 days after the burst. Based on observations collected at the German-Spanish Calar Alto Observatory in Spain (Programme F06-3.5-055) and at the European Southern Observatory, La Silla and Paranal, Chile (ESO Programme 177.D-0591).

  4. The "+" for CRIRES: enabling better science at infrared wavelength and high spectral resolution at the ESO VLT

    NASA Astrophysics Data System (ADS)

    Dorn, Reinhold J.; Follert, Roman; Bristow, Paul; Cumani, Claudio; Eschbaumer, Siegfried; Grunhut, Jason; Haimerl, Andreas; Hatzes, Artie; Heiter, Ulrike; Hinterschuster, Renate; Ives, Derek J.; Jung, Yves; Kerber, Florian; Klein, Barbara; Lavaila, Alexis; Lizon, Jean Louis; Löwinger, Tom; Molina-Conde, Ignacio; Nicholson, Belinda; Marquart, Thomas; Oliva, Ernesto; Origlia, Livia; Pasquini, Luca; Paufique, Jérôme; Piskunov, Nikolai; Reiners, Ansgar; Seemann, Ulf; Stegmeier, Jörg; Stempels, Eric; Tordo, Sebastien

    2016-08-01

    The adaptive optics (AO) assisted CRIRES instrument is an IR (0.92 - 5.2 μm) high-resolution spectrograph was in operation from 2006 to 2014 at the Very Large Telescope (VLT) observatory. CRIRES was a unique instrument, accessing a parameter space (wavelength range and spectral resolution) up to now largely uncharted. It consisted of a single-order spectrograph providing long-slit (40 arcsecond) spectroscopy with a resolving power up to R=100 000. However the setup was limited to a narrow, single-shot, spectral range of about 1/70 of the central wavelength, resulting in low observing efficiency for many scientific programmes requiring a broad spectral coverage. The CRIRES upgrade project, CRIRES+, transforms this VLT instrument into a cross-dispersed spectrograph to increase the simultaneously covered wavelength range by a factor of ten. A new and larger detector focal plane array of three Hawaii 2RG detectors with 5.3 μm cut-off wavelength will replace the existing detectors. For advanced wavelength calibration, custom-made absorption gas cells and an etalon system will be added. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. This upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities offered by CRIRES+. CRIRES+ has now entered its assembly and integration phase and will return with all new capabilities by the beginning of 2018 to the Very Large Telescope in Chile. This article will provide the reader with an update of the current status of the instrument as well as the remaining steps until final installation at the Paranal Observatory.

  5. Pressure shifts and abundance gradients in the atmosphere of the DAZ white dwarf GALEX J193156.8+011745

    NASA Astrophysics Data System (ADS)

    Vennes, S.; Kawka, A.; Németh, P.

    2011-06-01

    We present a detailed model atmosphere analysis of high-dispersion and high signal-to-noise ratio spectra of the heavily polluted DAZ white dwarf GALEX J1931+0117. The spectra obtained with the Very Large Telescope (VLT)-Kueyen/UV-Visual Echelle Spectrograph show several well-resolved Si II spectral lines enabling a study of pressure effects on line profiles. We observed large Stark shifts in silicon lines in agreement with theoretical predictions and laboratory measurements. Taking into account Stark shifts in the calculation of synthetic spectra, we reduced the scatter in individual line radial velocity measurements from ˜3 to ≲1 km s-1. We present revised abundances of O, Mg, Si, Ca and Fe based on a critical review of line-broadening parameters and oscillator strengths. The new measurements are generally in agreement with our previous analysis with the exception of magnesium with a revised abundance of a factor of 2 lower than previously estimated. The magnesium, silicon and iron abundances exceed solar abundances, but the oxygen and calcium abundances are below solar. Also, we compared the observed line profiles to synthetic spectra computed with variable accretion rates and vertical abundance distributions assuming diffusive steady state. The inferred accretion rates vary from ? for calcium to 2 × 109 g s-1 for oxygen. We find that the accretion flow must be oxygen rich while being deficient in calcium relative to solar abundances. The lack of radial velocity variations between two measurement epochs suggests that GALEX J1931+0117 is probably not in a close binary and that the source of the accreted material resides in a debris disc. Based on observations made with European Southern Observatory (ESO) telescopes at the La Silla Paranal Observatory under programme 283.D-5060.

  6. Dynamical Mass of the O-Type Supergiant in Zeta Orionis A

    DTIC Science & Technology

    2013-01-01

    A. Hummel1, Th. Rivinius2, M.-F. Nieva3,4, O. Stahl5, G. van Belle6, and R. T. Zavala7 1 European Southern Observatory, Karl - Schwarzschild -Str. 2...85748 Garching, Germany e-mail: chummel@eso.org 2 European Southern Observatory, Casilla 19001, Santiago 19, Chile 3 Dr. Karl Remeis–Sternwarte & ECAP

  7. Most Efficient Spectrograph to Shoot the Southern Skies

    NASA Astrophysics Data System (ADS)

    2009-05-01

    ESO's Very Large Telescope -- Europe's flagship facility for ground-based astronomy -- has been equipped with the first of its second generation instruments: X-shooter. It can record the entire spectrum of a celestial object in one shot -- from the ultraviolet to the near-infrared -- with high sensitivity. This unique new instrument will be particularly useful for the study of distant exploding objects called gamma-ray bursts. ESO PR Photo 20a/09 An X-shooter spectrum ESO PR Photo 20b/09 The X-shooter instrument ESO PR Photo 20c/09 First Light of X-shooter "X-shooter offers a capability that is unique among astronomical instruments installed at large telescopes," says Sandro D'Odorico, who coordinated the Europe-wide consortium of scientists and engineers that built this remarkable instrument. "Until now, different instruments at different telescopes and multiple observations were needed to cover this kind of wavelength range, making it very difficult to compare data, which, even though from the same object, could have been taken at different times and under different sky conditions." X-shooter collects the full spectrum from the ultraviolet (300 nm) to the near-infrared (2400 nm) in parallel, capturing up to half of all the light from an object that passes through the atmosphere and the various elements of the telescope. "All in all, X-shooter can save us a factor of three or more in terms of precious telescope time and opens a new window of opportunity for the study of many, still poorly understood, celestial sources," says D'Odorico. The name of the 2.5-ton instrument was chosen to stress its capacity to capture data highly efficiently from a source whose nature and energy distribution are not known in advance of the observation. This property is particularly crucial in the study of gamma-ray bursts, the most energetic explosions known to occur in the Universe (ESO 17/09). Until now, a rough estimate of the distance of the target was needed, so as to know which instrument to use for a detailed study. Thanks to X-shooter, astronomers won't have to go through this first observing step. This is particularly relevant for gamma-ray bursts, which fade away very quickly and where being fast is the key to understanding the nature of these elusive cosmic sources. "I am very confident that X-shooter will discover the most distant gamma-ray bursts in the Universe, or in other words, the first objects that formed in the young Universe," says François Hammer, who leads the French efforts in X-shooter. X-shooter was built by a consortium of 11 institutes in Denmark, France, Italy and the Netherlands, together with ESO. In total 68 person-years of work by engineers, technicians and astronomers and a global budget of six million Euros were required. The development time was remarkably fast for a project of this complexity, which was completed in just over five years, starting from the kick-off meeting held in December 2003. "The success of X-shooter and its relatively short completion time are a tribute to the quality and dedication of the many people involved in the project," says Alan Moorwood, ESO Director of Programmes. The instrument was installed at the telescope at the end of 2008 and the first observations in its full configuration were made on 14 March 2009, demonstrating that the instrument works efficiently over the full spectral range with unprecedented resolution and quality. X-shooter has already proved its full capability by obtaining the complete spectra of low metallicity stars, of X-ray binaries, of distant quasars and galaxies, of the nebulae associated with Eta Carinae and the supernova 1987A, as well as with the observation of a distant gamma-ray burst that coincidently exploded at the time of the commissioning run. X-shooter will be offered to the astronomical community from 1 October 2009. The instrument is clearly answering a need in the scientific community as about 150 proposals were received for the first runs of X-shooter, for a total of 350 observing nights, making it the second most requested instrument at the Very Large Telescope in this period. More information ESO's Very Large Telescope (VLT) is the world's most advanced optical instrument. It is an ensemble of four 8.2-metre telescopes located at the Paranal Observatory on an isolated mountain peak in the Atacama Desert in North Chile. The four 8.2-metre telescopes have a total of 12 focal stations where different instruments for imaging and spectroscopic observations are installed and a special station where the light of the four telescopes is combined for interferometric observations. The first VLT instrument was installed in 1998 and has been followed by 12 more in the last 10 years, distributed at the different focal stations. X-shooter is the first of the second generation of VLT instruments and replaces the workhorse-instrument FORS1, which has been successfully used for more than ten years by hundreds of astronomers. X-shooter operates at the Cassegrain focus of the Kueyen telescope (UT2). In response to an ESO Call for Proposals for second generation VLT instrumentation, ESO received three proposals for an intermediate resolution, high efficiency spectrograph. These were eventually merged into a single proposal around the present concept of X-shooter, which was approved for construction in November 2003. The Final Design Review, at which the instrument design is finalised and declared ready for construction, took place in April 2006. The first observations with the instrument at the telescope in its full configuration were on 14 March 2009. X-shooter is a joint project by Denmark, France, Italy, the Netherlands and ESO. The collaborating institutes in Denmark are the Niels Bohr and the DARK Institutes of the University of Copenhagen and the National Space Institute (Technical University of Denmark); in France GEPI at the Observatoire de Paris and APC at the Université D. Diderot, with contributions from the CEA and the CNRS; in Italy the Osservatorio di Brera, Trieste, Palermo and Catania; and in the Netherlands, the University of Amsterdam, the University of Nijmegen and ASTRON. Beside the participating institutes and ESO, the project was supported by the National Agencies of Italy (INAF), the Italian Ministry for Education, University and Research (MIUR), the Netherlands (NOVA and NWO) and by the Carlsberg Foundation in Denmark. The project was also supported in Denmark and the Netherlands with funds from the EU Descartes prize, the highest European prize for science, awarded in 2002 to the European collaboration on gamma-ray burst research headed by Professor Ed van den Heuvel. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in the Atacama Desert region of Chile: La Silla, Paranal and Chajnantor.

  8. Reliability culture at La Silla Paranal Observatory

    NASA Astrophysics Data System (ADS)

    Gonzalez, Sergio

    2010-07-01

    The Maintenance Department at the La Silla - Paranal Observatory has been an important base to keep the operations of the observatory at a good level of reliability and availability. Several strategies have been implemented and improved in order to cover these requirements and keep the system and equipment working properly when it is required. For that reason, one of the latest improvements has been the introduction of the concept of reliability, which implies that we don't simply speak about reliability concepts. It involves much more than that. It involves the use of technologies, data collecting, data analysis, decision making, committees concentrated in analysis of failure modes and how they can be eliminated, aligning the results with the requirements of our internal partners and establishing steps to achieve success. Some of these steps have already been implemented: data collection, use of technologies, analysis of data, development of priority tools, committees dedicated to analyze data and people dedicated to reliability analysis. This has permitted us to optimize our process, analyze where we can improve, avoid functional failures, reduce the failures range in several systems and subsystems; all this has had a positive impact in terms of results for our Observatory. All these tools are part of the reliability culture that allows our system to operate with a high level of reliability and availability.

  9. First Light for ASTROVIRTEL Project

    NASA Astrophysics Data System (ADS)

    2000-04-01

    Astronomical data archives increasingly resemble virtual gold mines of information. A new project, known as ASTROVIRTEL aims to exploit these astronomical treasure troves by allowing scientists to use the archives as virtual telescopes. The competition for observing time on large space- and ground-based observatories such as the ESA/NASA Hubble Space Telescope and the ESO Very Large Telescope (VLT) is intense. On average, less than a quarter of applications for observing time are successful. The fortunate scientist who obtains observing time usually has one year of so-called proprietary time to work with the data before they are made publicly accessible and can be used by other astronomers. Precious data from these large research facilities retain their value far beyond their first birthday and may still be useful decades after they were first collected. The enormous quantity of valuable astronomical data now stored in the archives of the European Southern Observatory (ESO) and the Space Telescope-European Coordinating Facility (ST-ECF) is increasingly attracting the attention of astronomers. Scientists are aware that one set of observations can serve many different scientific purposes, including some that were not considered at all when the observations were first made. Data archives as "gold mines" for research [ASTROVIRTEL Logo; JPEG - 184 k] Astronomical data archives increasingly resemble virtual gold mines of information. A new project, known as ASTROVIRTEL or "Accessing Astronomical Archives as Virtual Telescopes" aims to exploit these astronomical treasure troves. It is supported by the European Commission (EC) within the "Access to Research Infrastructures" action under the "Improving Human Potential & the Socio-economic Knowledge Base" of the EC (under EU Fifth Framework Programme). ASTROVIRTEL has been established on behalf of the European Space Agency (ESA) and the European Southern Observatory (ESO) in response to rapid developments currently taking place in the fields of telescope and detector construction, computer hardware, data processing, archiving, and telescope operation. Nowadays astronomical telescopes can image increasingly large areas of the sky. They use more and more different instruments and are equipped with ever-larger detectors. The quantity of astronomical data collected is rising dramatically, generating a corresponding increase in potentially interesting research projects. These large collections of valuable data have led to the useful concept of "data mining", whereby large astronomical databases are exploited to support original research. However, it has become obvious that scientists need additional support to cope efficiently with the massive amounts of data available and so to exploit the true potential of the databases. The strengths of ASTROVIRTEL ASTROVIRTEL is the first virtual astronomical telescope dedicated to data mining. It is currently being established at the joint ESO/Space Telescope-European Coordinating Facility Archive in Garching (Germany). Scientists from EC member countries and associated states will be able to apply for support for a scientific project based on access to and analysis of data from the Hubble Space Telescope (HST), Very Large Telescope (VLT), New Technology Telescope (NTT), and Wide Field Imager (WFI) archives, as well as a number of other related archives, including the Infrared Space Observatory (ISO) archive. Scientists will be able to visit the archive site and collaborate with the archive specialists there. Special software tools that incorporate advanced methods for exploring the enormous quantities of information available will be developed. Statements The project co-ordinator, Piero Benvenuti , Head of ST-ECF, elaborates on the advantages of ASTROVIRTEL: "The observations by the ESA/NASA Hubble Space Telescope and, more recently, by the ESO Very Large Telescope, have already been made available on-line to the astronomical community, once the proprietary period of one year has elapsed. ASTROVIRTEL is different, in that astronomers are now invited to regard the archive as an "observatory" in its own right: a facility that, when properly used, may provide an answer to their specific scientific questions. The architecture of the archives as well as their suite of software tools may have to evolve to respond to the new demand. ASTROVIRTEL will try to drive this evolution on the basis of the scientific needs of its users." Peter Quinn , the Head of ESO's Data Management and Operations Division, is of the same opinion: "The ESO/HST Archive Facility at ESO Headquarters in Garching is currently the most rapidly growing astronomical archive resource in the world. This archive is projected to contain more than 100 Terabytes (100,000,000,000,000 bytes) of data within the next four years. The software and hardware technologies for the archive will be jointly developed and operated by ESA and ESO staff and will be common to both HST and ESO data archives. The ASTROVIRTEL project will provide us with real examples of scientific research programs that will push the capabilities of the archive and allow us to identify and develop new software tools for data mining. The growing archive facility will provide the European astronomical community with new digital windows on the Universe." Note [1] This is a joint Press Release by the European Southern Observatory (ESO) and the Space Telescope European Coordinating Facility (ST-ECF). Additional information More information about ASTROVIRTEL can be found at the dedicated website at: http://www.stecf.org/astrovirtel The European Southern Observatory (ESO) is an intergovernmental organisation, supported by eight European countries: Belgium, Denmark, France, Germany, Italy, The Netherlands, Sweden and Switzerland. The European Space Agency is an intergovernmental organisation supported by 15 European countries: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom. The Space Telescope European Coordinating Facility (ST-ECF) is a co-operation between the European Space Agency and the European Southern Observatory. The Hubble Space Telescope (HST) is a project of international co-operation between NASA and ESA.

  10. The X-shooter pipeline

    NASA Astrophysics Data System (ADS)

    Goldoni, P.

    2011-03-01

    The X-shooter data reduction pipeline is an integral part of the X-shooter project, it allows the production of reduced data in physical quantities from the raw data produced by the instrument. The pipeline is based on the data reduction library developed by the X-shooter consortium with contributions from France, The Netherlands and ESO and it uses the Common Pipeline Library (CPL) developed at ESO. The pipeline has been developed for two main functions. The first function is to monitor the operation of the instrument through the reduction of the acquired data, both at Paranal, for a quick-look control, and in Garching, for a more thorough evaluation. The second function is to allow an optimized data reduction for a scientific user. In the following I will first outline the main steps of data reduction with the pipeline then I will briefly show two examples of optimization of the results for science reduction.

  11. Two VLT 8.2-m Unit Telescopes in Action

    NASA Astrophysics Data System (ADS)

    1999-04-01

    Visitors at ANTU - Astronomical Images from KUEYEN The VLT Control Room at the Paranal Observatory is becoming a busy place indeed. From here, two specialist teams of ESO astronomers and engineers now operate two VLT 8.2-m Unit Telescopes in parallel, ANTU and KUEYEN (formerly UT1 and UT2, for more information about the naming and the pronunciation, see ESO Press Release 06/99 ). Regular science observations have just started with the first of these giant telescopes, while impressive astronomical images are being obtained with the second. The work is hard, but the mood in the control room is good. Insiders claim that there have even been occasions on which the groups have had a friendly "competition" about which telescope makes the "best" images! The ANTU-team has worked with the FORS multi-mode instrument , their colleagues at KUEYEN use the VLT Test Camera for the ongoing tests of this new telescope. While the first is a highly developed astronomical instrument with a large-field CCD imager (6.8 x 6.8 arcmin 2 in the normal mode; 3.4 x 3.4 arcmin 2 in the high-resolution mode), the other is a less complex CCD camera with a smaller field (1.5 x 1.5 arcmin 2 ), suited to verify the optical performance of the telescope. As these images demonstrate, the performance of the second VLT Unit Telescope is steadily improving and it may not be too long before its optical quality will approach that of the first. First KUEYEN photos of stars and galaxies We present here some of the first astronomical images, taken with the second telescope, KUEYEN, in late March and early April 1999. They reflect the current status of the optical, electronic and mechanical systems, still in the process of being tuned. As expected, the experience gained from ANTU last year has turned out to be invaluable and has allowed good progress during this extremely delicate process. ESO PR Photo 19a/99 ESO PR Photo 19a/99 [Preview - JPEG: 400 x 433 pix - 160k] [Normal - JPEG: 800 x 866 pix - 457k] [High-Res - JPEG: 1985 x 2148 pix - 2.0M] ESO PR Photo 19b/99 ESO PR Photo 19b/99 [Preview - JPEG: 400 x 478 pix - 165k] [Normal - JPEG: 800 x 956 pix - 594k] [High-Res - JPEG: 3000 x 3583 pix - 7.1M] Caption to PR Photo 19a/99 : This photo was obtained with VLT KUEYEN on April 4, 1999. It is reproduced from an excellent 60-second R(ed)-band exposure of the innermost region of a globular cluster, Messier 68 (NGC 4590) , in the southern constellation Hydra (The Water-Snake). The distance to this 8-mag cluster is about 35,000 light years, and the diameter is about 140 light-years. The excellent image quality is 0.38 arcsec , demonstrating a good optical and mechanical state of the telescope, already at this early stage of the commissioning phase. The field measures about 90 x 90 arcsec 2. The original scale is 0.0455 pix/arcsec and there are 2048x2048 pixels in one frame. North is up and East is left. Caption to PR Photo 19b/99 : This photo shows the central region of spiral galaxy ESO 269-57 , located in the southern constellation Centaurus at a distance of about 150 million light-years. Many galaxies are seen in this direction at about the same distance, forming a loose cluster; there are also some fainter, more distant ones in the background. The designation refers to the ESO/Uppsala Survey of the Southern Sky in the 1970's during which over 15,000 southern galaxies were catalogued. ESO 269-57 is a tightly bound object of type Sar , the "r" referring to the "ring" that surrounds the bright centre, that is overexposed here. The photo is a composite, based on three exposures (Blue - 600 sec; Yellow-Green - 300 sec; Red - 300 sec) obtained with KUEYEN on March 28, 1999. The image quality is 0.7 arcsec and the field is 90 x 90 arcsec 2. North is up and East is left. ESO PR Photo 19c/99 ESO PR Photo 19c/99 [Preview - JPEG: 400 x 478 pix - 132k] [Normal - JPEG: 800 x 956 pix - 446k] [High-Res - JPEG: 3000 x 3583 pix - 4.6M] ESO PR Photo 19d/99 ESO PR Photo 19d/99 [Preview - JPEG: 400 x 454 pix - 86k] [Normal - JPEG: 800 x 907 pix - 301k] [High-Res - JPEG: 978 x 1109 pix - 282k] Caption to PR Photo 19c/99 : Somewhat further out in space, and right on the border between the southern constellations Hydra and Centaurus lies this knotty spiral galaxy, IC 4248 ; the distance is about 210 million light-years. It was imaged with KUEYEN on March 28, 1999, with the same filters and exposure times as used for Photo 19b/99. The image quality is 0.75 arcsec and the field is 90 x 90 arcsec 2. North is up and East is left. Caption to PR Photo 19d/99 : This is a close-up view of the double galaxy NGC 5090 (right) and NGC 5091 (left), in the southern constellation Centaurus. The first is a typical S0 galaxy with a bright diffuse centre, surrounded by a fainter envelope of stars (not resolved in this picture). However, some of the starlike objects seen in this region may be globular clusters (or dwarf galaxies) in orbit around NGC 5090. The other galaxy is of type Sa (the spiral structure is more developed) and is seen at a steep angle. The three-colour composite is based on frames obtained with KUEYEN on March 29, 1999, with the same filters and exposure times as used for Photo 19b/99. The image quality is 0.7 arcsec and the field is 90 x 90 arcsec 2. North is up and East is left. ( Note inserted on April 26: The original caption text identified the second galaxy as NGC 5090B - this error has now been corrected. ESO PR Photo 19e/99 ESO PR Photo 19e/99 [Preview - JPEG: 400 x 441 pix - 282k] [Normal - JPEG: 800 x 882 pix - 966k] [High-Res - JPEG: 3000 x 3307 pix - 6,4M] Caption to PR Photo 19e/99 : Wide-angle photo of the second 8.2-m VLT Unit Telescope, KUEYEN , obtained on March 10, 1999, with the main mirror and its cell in place at the bottom of the telescope structure. The Test Camera with which the astronomical images above were made, is positioned at the Cassegrain focus, inside this mirror cell. The Paranal Inauguration on March 5, 1999, took place under this telescope that was tilted towards the horizon to accommodate nearly 300 persons on the observing floor. Astronomical observations with ANTU have started On April 1, 1999, the first 8.2-m VLT Unit Telescope, ANTU , was "handed over" to the astronomers. Last year, about 270 observing proposals competed about the first, precious observing time at Europe's largest optical telescope and more than 100 of these were accommodated within the six-month period until the end of September 1999. The complete observing schedule is available on the web. These observations will be carried out in two different modes. During the Visitor Mode , the astronomers will be present at the telescope, while in the Service Mode , ESO observers perform the observations. The latter procedure allows a greater degree of flexibility and the possibility to assign periods of particularly good observing conditions to programmes whose success is critically dependent on this. The first ten nights at ANTU were allocated to service mode observations. After some initial technical problems with the instruments, these have now started. Already in the first night, programmes at ISAAC requiring 0.4 arcsec conditions could be satisfied, and some images better than 0.3 arcsec were obtained in the near-infrared . The first astronomers to use the telescope in visitors mode will be Professors Immo Appenzeller (Heidelberg, Germany; "Photo-polarimetry of pulsars") and George Miley (Leiden, The Netherlands; "Distant radio galaxies") with their respective team colleagues. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory. Note also the dedicated webarea with VLT Information.

  12. The KMOS3D Survey: Design, First Results, and the Evolution of Galaxy Kinematics from 0.7 <= z <= 2.7

    NASA Astrophysics Data System (ADS)

    Wisnioski, E.; Förster Schreiber, N. M.; Wuyts, S.; Wuyts, E.; Bandara, K.; Wilman, D.; Genzel, R.; Bender, R.; Davies, R.; Fossati, M.; Lang, P.; Mendel, J. T.; Beifiori, A.; Brammer, G.; Chan, J.; Fabricius, M.; Fudamoto, Y.; Kulkarni, S.; Kurk, J.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Seitz, S.; Tacconi, L. J.; van Dokkum, P. G.

    2015-02-01

    We present the KMOS3D survey, a new integral field survey of over 600 galaxies at 0.7 < z < 2.7 using KMOS at the Very Large Telescope. The KMOS3D survey utilizes synergies with multi-wavelength ground- and space-based surveys to trace the evolution of spatially resolved kinematics and star formation from a homogeneous sample over 5 Gyr of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (M *) and rest-frame (U - V) - M * planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first-year of data we detect Hα emission in 191 M * = 3 × 109-7 × 1011 M ⊙ galaxies at z = 0.7-1.1 and z = 1.9-2.7. In the current sample 83% of the resolved galaxies are rotation dominated, determined from a continuous velocity gradient and v rot/σ0 > 1, implying that the star-forming "main sequence" is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Hα kinematic maps indicate that at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous integral field spectroscopy studies at z >~ 0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km s-1at z ~ 2.3 to 25 km s-1at z ~ 0.9. Combined with existing results spanning z ~ 0-3, we show that disk velocity dispersions follow an evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally stable disk theory. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDS 092A-0091, 093.A-0079).

  13. VLT adaptive optics search for luminous substructures in the lens galaxy towards SDSS J0924+0219

    NASA Astrophysics Data System (ADS)

    Faure, C.; Sluse, D.; Cantale, N.; Tewes, M.; Courbin, F.; Durrer, P.; Meylan, G.

    2011-12-01

    The anomalous flux ratios between quasar images are suspected of being caused by substructures in lens galaxies. We present new deep and high-resolution H and Ks imaging of the strongly lensed quasar SDSS J0924+0219 obtained using the ESO VLT with adaptive optics and the laser guide star system. SDSS J0924+0219 is particularly interesting because the observed flux ratio between the quasar images vastly disagree with the predictions from smooth mass models. With our adaptive optics observations we find a luminous object, Object L, located ~0.3'' to the north of the lens galaxy, but we show that it cannot be responsible for the anomalous flux ratios. Object L as well as a luminous extension of the lens galaxy to the south are seen in the archival HST/ACS image in the F814W filter. This suggests that Object L is part of a bar in the lens galaxy, as also supported by the presence of a significant disk component in the light profile of the lens galaxy. Finally, we find no evidence of any other luminous substructure that may explain the quasar images flux ratios. However, owing to the persistence of the flux ratio anomaly over time (~7 years), a combination of microlensing and millilensing is the favorite explanation for the observations. Based on observations obtained with the ESO VLT at Paranal observatory (Prog ID 084.A-0762(A); PI: Meylan). Also based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with the CASTLES (Cfa-Arizona Space Telescope LEns Survey) survey (ID: 9744, PI: C. S. Kochanek).

  14. The KMOS Cluster Survey (KCS). III. Fundamental Plane of Cluster Galaxies at z ≃ 1.80 in JKCS 041

    NASA Astrophysics Data System (ADS)

    Prichard, Laura J.; Davies, Roger L.; Beifiori, Alessandra; Chan, Jeffrey C. C.; Cappellari, Michele; Houghton, Ryan C. W.; Mendel, J. Trevor; Bender, Ralf; Galametz, Audrey; Saglia, Roberto P.; Stott, John P.; Wilman, David J.; Lewis, Ian J.; Sharples, Ray; Wegner, Michael

    2017-12-01

    We present data for 16 galaxies in the overdensity JKCS 041 at z≃ 1.80 as part of the K-band Multi-Object Spectrograph (KMOS) Cluster Survey (KCS). With 20 hr integrations, we have obtained deep absorption-line spectra from which we derived velocity dispersions for seven quiescent galaxies. We combined photometric parameters derived from Hubble Space Telescope images with the dispersions to construct a fundamental plane (FP) for quiescent galaxies in JKCS 041. From the zero-point evolution of the FP, we derived a formation redshift for the galaxies of {z}{form}=3.0+/- 0.3, corresponding to a mean age of 1.4 ± 0.2 Gyr. We tested the effect of structural and velocity dispersion evolution on our FP zero-point and found a negligible contribution when using dynamical mass-normalized parameters (˜ 3 % ) but a significant contribution from stellar-mass-normalized parameters (˜ 42 % ). From the relative velocities of the galaxies, we probed the 3D structure of these 16 confirmed members of JKCS 041 and found that a group of galaxies in the southwest of the overdensity had systematically higher velocities. We derived ages for the galaxies in the different groups from the FP. We found that the east-extending group had typically older galaxies ({2.1}-0.2+0.3 Gyr) than those in the southwest group (0.3 ± 0.2 Gyr). Although based on small numbers, the overdensity dynamics, morphology, and age results could indicate that JKCS 041 is in formation and may comprise two merging groups of galaxies. This result could link large-scale structure to ages of galaxies for the first time at this redshift. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs: 095.A-0137(A) and 096.A-0189(A)).

  15. IFU simulator: a powerful alignment and performance tool for MUSE instrument

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Boudon, Didier; Daguisé, Eric; Dubois, Jean-Pierre; Jarno, Aurélien; Kosmalski, Johan; Piqueras, Laure; Remillieux, Alban; Renault, Edgard

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transferred in monolithic way without dismounting onto VLT telescope where the first light was overcame. This talk describes the IFU Simulator which is the main alignment and performance tool for MUSE instrument. The IFU Simulator mimics the optomechanical interface between the MUSE pre-optic and the 24 IFUs. The optomechanical design is presented. After, the alignment method of this innovative tool for identifying the pupil and image planes is depicted. At the end, the internal test report is described. The success of the MUSE alignment using the IFU Simulator is demonstrated by the excellent results obtained onto MUSE positioning, image quality and throughput. MUSE commissioning at the VLT is planned for September, 2014.

  16. ESO-Hα 574 and Par-Lup 3-4 jets: Exploring the spectral, kinematical, and physical properties

    NASA Astrophysics Data System (ADS)

    Whelan, E. T.; Bonito, R.; Antoniucci, S.; Alcalá, J. M.; Giannini, T.; Nisini, B.; Bacciotti, F.; Podio, L.; Stelzer, B.; Comerón, F.

    2014-05-01

    In this paper a comprehensive analysis of VLT/X-Shooter observations of two jet systems, namely ESO-Hα 574 a K8 classical T Tauri star and Par-Lup 3-4 a very low mass (0.13 M⊙) M5 star, is presented. Both stars are known to have near-edge on accretion disks. A summary of these first X-shooter observations of jets was given in a 2011 letter. The new results outlined here include flux tables of identified emission lines, information on the morphology, kinematics and physical conditions of both jets and, updated estimates of Ṁout/Ṁacc. Asymmetries in the ESO-Hα 574 flow are investigated while the Par-Lup 3-4 jet is much more symmetric. The density, temperature, and therefore origin of the gas traced by the Balmer lines are investigated from the Balmer decrements and results suggest an origin in a jet for ESO-Hα 574 while for Par-Lup 3-4 the temperature and density are consistent with an accretion flow. Ṁacc is estimated from the luminosity of various accretion tracers. For both targets, new luminosity relationships and a re-evaluation of the effect of reddening and grey extinction (due to the edge-on disks) allows for substantial improvements on previous estimates of Ṁacc. It is found that log(Ṁacc) = -9.15 ± 0.45M⊙ yr-1 and -9.30 ± 0.27M⊙ yr-1 for ESO-Hα 574 and Par-Lup 3-4 respectively. Additionally, the physical conditions in the jets (electron density, electron temperature, and ionisation) are probed using various line ratios and compared with previous determinations from iron lines. The results are combined with the luminosity of the [SII]λ6731 line to derive Ṁout through a calculation of the gas emissivity based on a 5-level atom model. As this method for deriving Ṁout comes from an exact calculation based on the jet parameters (measured directly from the spectra) rather than as was done previously from an approximate formula based on the value of the critical density at an assumed unknown temperature, values of Ṁout are far more accurate. Overall the accuracy of earlier measurements of Ṁout/Ṁacc is refined and Ṁout/Ṁacc = 0.5 (+1.0)(- 0.2) and 0.3 (+0.6)(- 0.1) for the ESO-Hα 574 red and blue jets, respectively, and 0.05 (+0.10)(- 0.02) for both the Par-Lup 3-4 red and blue jets. While the value for the total (two-sided) Ṁout/Ṁacc in ESO-Hα 574 lies outside the range predicted by magneto-centrifugal jet launching models, the errors are large and the effects of veiling and scattering on extinction measurements, and therefore the estimate of Ṁacc, should also be considered. ESO-Hα 574 is an excellent case study for understanding the impact of an edge-on accretion disk on the observed stellar emission. The improvements in the derivation of Ṁout/Ṁacc means that this ratio for Par-Lup 3-4 now lies within the range predicted by leading models, as compared to earlier measurements for very low mass stars. Par-Lup 3-4 is one of a small number of brown dwarfs and very low mass stars which launch jets. Therefore, this result is important in the context of understanding how Ṁout/Ṁacc and, thus, jet launching mechanisms for the lowest mass jet drivingsources, compare to the case of the well-studied low mass stars. Based on Observations collected with X-Shooter and UVES at the Very Large Telescope on Cerro Paranal (Chile), operated by the European Southern Observatory (ESO). Program ID's: 085.C-0238(A) and 078.C-0429(A).Appendix A is available in electronic form at http://www.aanda.org

  17. Extending ORAC-DR for Offline Processing of ESO, INGRID, and Classic Cam data

    NASA Astrophysics Data System (ADS)

    Currie, M. J.

    2004-07-01

    ORAC-DR--a flexible reduction pipeline---was originally developed by the Joint Astronomy Centre for real-time inspection of reduced data at its telescopes. Starlink is extending ORAC-DR to process at home institutions data from other observatories, notably ESO, whose instruments make no provision for ORAC-DR. I outline the problems encountered and solutions implemented or proposed to apply ORAC-DR to the infra-red instruments ISAAC, NACO, INGRID, and Classic~Cam.

  18. First Results from the VIRIAL Survey: The Stellar Content of UVJ-selected Quiescent Galaxies at 1.5 < z < 2 from KMOS

    NASA Astrophysics Data System (ADS)

    Mendel, J. Trevor; Saglia, Roberto P.; Bender, Ralf; Beifiori, Alessandra; Chan, Jeffrey; Fossati, Matteo; Wilman, David J.; Bandara, Kaushala; Brammer, Gabriel B.; Förster Schreiber, Natascha M.; Galametz, Audrey; Kulkarni, Sandesh; Momcheva, Ivelina G.; Nelson, Erica J.; van Dokkum, Pieter G.; Whitaker, Katherine E.; Wuyts, Stijn

    2015-05-01

    We investigate the stellar populations of 25 massive galaxies (log [{{M}*}/{{M}⊙ }]≥slant 10.9) at 1.5\\lt z\\lt 2 using data obtained with the K-band Multi-Object Spectrograph (KMOS) on the ESO VLT. Targets were selected to be quiescent based on their broadband colors and redshifts using data from the 3D-HST grism survey. The mean redshift of our sample is \\bar{z}=1.75, where KMOS YJ-band data probe age- and metallicity-sensitive absorption features in the rest-frame optical, including the G-band, Fe i, and high-order Balmer lines. Fitting simple stellar population models to a stack of our KMOS spectra, we derive a mean age of 1.03-0.08+0.13 Gyr. We confirm previous results suggesting a correlation between color and age for quiescent galaxies, finding mean ages of 1.22-0.19+0.56 Gyr and 0.85-0.05+0.08 Gyr for the reddest and bluest galaxies in our sample. Combining our KMOS measurements with those obtained from previous studies at 0.2\\lt z\\lt 2 we find evidence for a 2-3 Gyr spread in the formation epoch of massive galaxies. At z\\lt 1 the measured stellar ages are consistent with passive evolution, while at 1\\lt z≲ 2 they appear to saturate at ˜1 Gyr, which likely reflects changing demographics of the (mean) progenitor population. By comparing to star formation histories inferred for “normal” star-forming galaxies, we show that the timescales required to form massive galaxies at z≳ 1.5 are consistent with the enhanced α-element abundances found in massive local early-type galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092.A-0091, 093.A-0079, 093.A-0187, and 094.A-0287). This work is further based on observations taken by the 3D-HST Treasury Program (GO 12177 and 12328) with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  19. Distant Supernovae Indicate Ever-Expanding Universe

    NASA Astrophysics Data System (ADS)

    1998-12-01

    ESO Astronomers Contribute towards Resolution of Cosmic Puzzle Since the discovery of the expansion of the Universe by American astronomer Edwin Hubble in the 1920's, by measurement of galaxy velocities, astronomers have tried to learn how this expansion changes with time. Until now, most scientists have been considering two possibilities: the expansion rate is slowing down and will ultimately either come to a halt - whereafter the Universe would start to contract, or it will continue to expand forever. However, new studies by two independent research teams, based on observations of exploding stars ( supernovae ) by ESO astronomers [1] with astronomical telescopes at the La Silla Observatory as well as those of their colleagues at other institutions, appear to show that the expansion of the Universe is accelerating . The results take the discovery of the cosmological expansion one step further and challenge recent models of the Universe. If the new measurements are indeed correct, they show that the elusive "cosmological constant" , as proposed by Albert Einstein , contributes significantly to the evolution of the Universe. The existence of a non-zero cosmological constant implies that a repulsive force, counter-acting gravity, currently dominates the universal expansion , and consequently leads to an ever-expanding Universe. This new research is being named as the "Breakthrough of the Year" by the renowned US science journal Science in the December 18, 1998, issue. A Press Release is published by the journal on this occasion. "Fundamental Parameters" of the Universe Three fundamental parameters govern all cosmological models based on the theory of General Relativity. They are 1. the current expansion rate as described by Hubble's constant , i.e. the proportionality factor between expansion velocity and distance 2. the average matter density in the Universe, and 3. the amount of "other energy" present in space. From the measured values of these fundamental parameters, the age of the Universe and the geometry of space can be derived. They have been the focus of a large number of astronomical programmes over the past decades. Many aspects of the currently preferred cosmological model, the Hot Big Bang , have been impressively confirmed by observations of the expansion of the Universe, the cosmic background radiation, and also the explanation of the synthesis of light elements. Still, our knowledge about the dynamical state of the Universe, as well as the early formation of structures, i.e., of galaxies and stars, is far from complete - this remains a field of active research. Possibly, the simplest way to test our present assumptions in this direction is to measure accurate distances and compare them with the expected cosmic scale. This is where the recent results contribute to our understanding of the Universe. The key role of supernovae The two research teams, both with participation from ESO [1], have concentrated on the study of rare stellar explosions, during which certain old stars undergo internal incineration. In this process, explosive nuclear fusion burns matter into the most stable atomic nucleus, iron, and releases a gigantic amount of energy. ESO PR Photo 50a/98 ESO PR Photo 50a/98 [Preview - JPEG: 800 x 648 pix - 768k] [High-Res - JPEG: 3000 x 2431 pix - 8.5Mb] ESO PR Photo 50b/98 ESO PR Photo 50b/98 [Preview - JPEG: 800 x 649 pix - 784k] [High-Res - JPEG: 3000 x 2432 pix - 8.4Mb] These photos illustrate the follow-up observations on which the new results described in this Press Release are based. Sky fields with clusters of galaxies are monitored with the 4-m telescope at Cerro Tololo Interamerican Observatory (CTIO) in Chile and spectra are obtained of suddenly appearing star-like objects that may be supernovae. Confirmed Type Ia supernovae are then monitored by ESO telescopes at La Silla and at other observatories. In PR Photo 50a/98 , a supernova at redshift z = 0.51 [2] (corresponding to a distance of about 10,000 million light-years) is observed on five dates with the SUSI camera at the 3.6-m New Technology Telescope (NTT). The host galaxy is clearly visible and the supernova reaches its maximum brightness around 13 March 1997, after which it fades. In PR Photo 50b/98 of another supernova that was found at the same time, the image of the host galaxy is barely visible, most probably because it is a low surface brightness galaxy . Here, the redshift of the supernova is z = 0.40 (distance 6,000 million light-years) and the brightness peaks around 16 March 1997. Technical information: All images were obtained through an R (red) optical filtre. The image quality varies somewhat from image to image. Exposure times and seeing values: Photo 50a/98 - 11 March (300 sec; 0.73 arcsec); 13 March (600 sec; 0.79 arcsec); 16 March (600 sec; 0.72 arcsec); 29 March (1200 sec; 1.17 arcsec); 5 April (300 sec; 0.55 arcsec) and Photo 50b/98 - 11 March (300 sec; 0.50 arcsec); 13 March (600 sec; 0.81 arcsec); 16 March (600 sec; 0.90 arcsec); 29 March (1200 sec; 0.83 arcsec); 7 April (300 sec; 1.43 arcsec); 7 May (1800 sec; 1.22 arcsec). These explosions, known as Type Ia Supernovae , are distinguished by their very uniform properties, including their intrinsic brightness; this makes them ideal for the measurement of large distances, cf. ESO PR Photos 50a/98 and 50b/98 , as well as ESO Press Release 09/95. It is by means of observations of remote objects of this type that the all-important distances could be determined with sufficient accuracy. In particular, coordinated observing campaigns of Type Ia Supernovae were carried out at several of the world's major observatories. In this way it became possible to secure the crucial data that provide the basis of the new analysis. Distances to Type Ia Supernovae are larger than expected The new observations show that, compared to their nearby twins, distant supernovae appear too dim, even for a Universe which has been freely coasting (i.e. with no change of the expansion velocity) for the last several billion years (corresponding to redshifts of about 0.5). The only reasonable interpretation of these data implies that the measured distances are larger than what they would be in a "non-braking" Universe. This means that the distances to the supernovae must have increased over and above what they would have been if the rate of expansion did not change with time. This is only possible by the effect of additional acceleration , i.e., the rate of expansion of the Universe increases with time. The acceleration comes from a repulsive force . This concept was introduced by Albert Einstein , as the cosmological constant . Implications There are several important implications from this new result. The corresponding, deduced age of the Universe , now about 14,000 - 15,000 million years, no longer conflicts with that of the oldest known stellar objects in globular clusters. Moreover, the spatial geometry of the Universe appears to be "flat" - this is a strong confirmation of inflation (a short phase of very rapid expansion) in the very early Universe. Ordinary matter, which comprises everything we know - from the atom to the stars - is composed of baryonic matter . It has been realized over the last few years that the matter we observe directly is only a fraction of all mass that is actually present in galaxies and clusters of galaxies, as estimated from measurements of internal motions in these objects. This has been referred to as the "dark matter problem" . Following the new measurements, a new component, "dark energy" (i.e., energy of the vacuum), must be added. It appears that this form of energy is dominating the Universe at the current time. There is a profound philosophical repositioning of humankind implied by this result. This follows the first step which was taken by Copernicus who in the mid-sixteenth century dislodged us from the centre of the Universe. Not only does the material from which the visible galaxies, stars, the Earth and its inhabitants are made comprise only a small fration of the gravitating mass in the Universe. There is now a new component, the "dark energy" which joins the "dark matter" in shaping the large-scale geometric and dynamical structure. Clearly, more observations are needed to further support the findings described here. They will soon be forthcoming, especially from new and large telescopes like the ESO Very Large Telescope (VLT) , that has recently delivered its first, impressive results. But already now, on the verge of the new millenium, we are having a first glimpse of extremely exciting and fundamental aspects in the continuing human quest for the deep truths of nature. Notes: [1] The ESO members of the "High-z Supernova Search" team (see URL: http://cfa-www.harvard.edu/cfa/oir/Research/supernova/HighZ.html) are Bruno Leibundgut and Patrick Woudt (ESO HQ, Garching, Germany) and Jason Spyromilio (Paranal Observatory, Chile). Chris Lidman (La Silla Observatory, Chile) and Isobel Hook (formerly ESO HQ, now Royal Observatory, Edinburgh, UK) are members of the "Supernova Cosmology Project" (see URL: http://www-supernova.lbl.gov/). The astronomers mostly used the ESO 3.6-m and 3.6-m NTT telescopes at La Silla for these research programmes. [2] In astronomy, the redshift (z) denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant galaxy or quasar gives a direct estimate of the universal expansion (i.e. the "recession velocity"). Since this expansion rate increases with the distance, the velocity is itself a function (the Hubble relation) of the distance to the object. For instance, a redshift of z = 0.1 corresponds to a velocity of 30,000 km/sec, and assuming a Hubble constant of 20 km/sec per million light-years, to a distance of about 1,500 million light-years. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  20. André B. Muller (25.9.1918-1.4.2006)

    NASA Astrophysics Data System (ADS)

    West, R. M.

    2006-06-01

    With great sadness, we have learned about the death of André Muller on 1 April, at the age of 87. Living in retirement in his native Holland since 1983, he was one of ESOs true pioneers, an outstanding representative of the select group of European astronomers who succeeded in steering ESO through the difficult initial phases. André was close-ly associated with the entire process, from the first site monitoring programmes in South Africa to the subsequent search in Chile, the decision in favour of the La Silla site, as well as the management of ESOs early activities in Chile, includ-ing the construction of the headquarters and observatory and the installation of the first generation of ESO telescopes. Few persons, if any, have been so inti-mately connected to the setting-up of ESOs facilities and it would be impossible to list in detail all of the services André performed for the organisation with such great expertise and zeal during his long career.

  1. VLT Captures First Direct Spectrum of an Exoplanet

    NASA Astrophysics Data System (ADS)

    2010-01-01

    By studying a triple planetary system that resembles a scaled-up version of our own Sun's family of planets, astronomers have been able to obtain the first direct spectrum - the "chemical fingerprint" [1] - of a planet orbiting a distant star [2], thus bringing new insights into the planet's formation and composition. The result represents a milestone in the search for life elsewhere in the Universe. "The spectrum of a planet is like a fingerprint. It provides key information about the chemical elements in the planet's atmosphere," says Markus Janson, lead author of a paper reporting the new findings. "With this information, we can better understand how the planet formed and, in the future, we might even be able to find tell-tale signs of the presence of life." The researchers obtained the spectrum of a giant exoplanet that orbits the bright, very young star HR 8799. The system is at about 130 light-years from Earth. The star has 1.5 times the mass of the Sun, and hosts a planetary system that resembles a scaled-up model of our own Solar System. Three giant companion planets were detected in 2008 by another team of researchers, with masses between 7 and 10 times that of Jupiter. They are between 20 and 70 times as far from their host star as the Earth is from the Sun; the system also features two belts of smaller objects, similar to our Solar System's asteroid and Kuiper belts. "Our target was the middle planet of the three, which is roughly ten times more massive than Jupiter and has a temperature of about 800 degrees Celsius," says team member Carolina Bergfors. "After more than five hours of exposure time, we were able to tease out the planet's spectrum from the host star's much brighter light." This is the first time the spectrum of an exoplanet orbiting a normal, almost Sun-like star has been obtained directly. Previously, the only spectra to be obtained required a space telescope to watch an exoplanet pass directly behind its host star in an "exoplanetary eclipse", and then the spectrum could be extracted by comparing the light of the star before and after. However, this method can only be applied if the orientation of the exoplanet's orbit is exactly right, which is true for only a small fraction of all exoplanetary systems. The present spectrum, on the other hand, was obtained from the ground, using ESO's Very Large Telescope (VLT), in direct observations that do not depend on the orbit's orientation. As the host star is several thousand times brighter than the planet, this is a remarkable achievement. "It's like trying to see what a candle is made of, by observing it from a distance of two kilometres when it's next to a blindingly bright 300 Watt lamp," says Janson. The discovery was made possible by the infrared instrument NACO, mounted on the VLT, and relied heavily on the extraordinary capabilities of the instrument's adaptive optics system [3]. Even more precise images and spectra of giant exoplanets are expected both from the next generation instrument SPHERE, to be installed on the VLT in 2011, and from the European Extremely Large Telescope. The newly collected data show that the atmosphere enclosing the planet is still poorly understood. "The features observed in the spectrum are not compatible with current theoretical models," explains co-author Wolfgang Brandner. "We need to take into account a more detailed description of the atmospheric dust clouds, or accept that the atmosphere has a different chemical composition from that previously assumed." The astronomers hope to soon get their hands on the fingerprints of the other two giant planets so they can compare, for the first time, the spectra of three planets belonging to the same system. "This will surely shed new light on the processes that lead to the formation of planetary systems like our own," concludes Janson. Notes [1] As every rainbow demonstrates, white light can be split up into different colours. Astronomers artificially split up the light they receive from distant objects into its different colours (or "wavelengths"). However, where we distinguish five or six rainbow colours, astronomers map hundreds of finely nuanced colours, producing a spectrum - a record of the different amounts of light the object emits in each narrow colour band. The details of the spectrum - more light emitted at some colours, less light at others - provide tell-tale signs about the chemical composition of the matter producing the light. This makes spectroscopy, the recording of spectra, an important investigative tool in astronomy. [2] In 2004, astronomers used NACO on the VLT to obtain an image and a spectrum of a 5 Jupiter mass object around a brown dwarf - a "failed star". It is however thought that the pair probably formed together, like a petite stellar binary, instead of the companion forming in the disc around the brown dwarf, like a star-planet system (see eso0428, eso0515 and eso0619). [3] Telescopes on the ground suffer from a blurring effect introduced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets but frustrates astronomers, since it smears out the fine details of the images. However, with adaptive optics techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e. approaching conditions in space. Adaptive optics systems work by means of a computer-controlled deformable mirror that counteracts the image distortion introduced by atmospheric turbulence. It is based on real-time optical corrections computed at very high speed (several hundreds of times each second) from image data obtained by a wavefront sensor (a special camera) that monitors light from a reference star. More information This research was presented in a paper in press as a Letter to the Astrophysical Journal ("Spatially resolved spectroscopy of the exoplanet HR 8799 c", by M. Janson et al.). The team is composed of M. Janson (University of Toronto, Canada), C. Bergfors, M. Goto, W. Brandner (Max-Planck-Institute for Astronomy, Heidelberg, Germany) and D. Lafrenière (University of Montreal, Canada). Preparatory data were taken with the IRCS instrument at the Subaru telescope. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory, and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  2. The Gaia-ESO Survey: Separating disk chemical substructures with cluster models. Evidence of a separate evolution in the metal-poor thin disk

    NASA Astrophysics Data System (ADS)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Schultheis, M.; Guiglion, G.; Mikolaitis, Š.; Kordopatis, G.; Hill, V.; Gilmore, G.; Randich, S.; Alfaro, E. J.; Bensby, T.; Koposov, S. E.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.; Chiappini, C.

    2016-02-01

    Context. Recent spectroscopic surveys have begun to explore the Galactic disk system on the basis of large data samples, with spatial distributions sampling regions well outside the solar neighborhood. In this way, they provide valuable information for testing spatial and temporal variations of disk structure kinematics and chemical evolution. Aims: The main purposes of this study are to demonstrate the usefulness of a rigorous mathematical approach to separate substructures of a stellar sample in the abundance-metallicity plane, and provide new evidence with which to characterize the nature of the metal-poor end of the thin disk sequence. Methods: We used a Gaussian mixture model algorithm to separate in the [Mg/Fe] vs. [Fe/H] plane a clean disk star subsample (essentially at RGC< 10 kpc) from the Gaia-ESO survey (GES) internal data release 2 (iDR2). We aim at decomposing it into data groups highlighting number density and/or slope variations in the abundance-metallicity plane. An independent sample of disk red clump stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) was used to cross-check the identified features. Results: We find that the sample is separated into five groups associated with major Galactic components; the metal-rich end of the halo, the thick disk, and three subgroups for the thin disk sequence. This is confirmed with the sample of red clump stars from APOGEE. The three thin disk groups served to explore this sequence in more detail. The two metal-intermediate and metal-rich groups of the thin disk decomposition ([Fe/H] > -0.25 dex) highlight a change in the slope at solar metallicity. This holds true at different radial regions of the Milky Way. The distribution of Galactocentric radial distances of the metal-poor part of the thin disk ([Fe/H] < -0.25 dex) is shifted to larger distances than those of the more metal-rich parts. Moreover, the metal-poor part of the thin disk presents indications of a scale height intermediate between those of the thick and the rest of the thin disk, and it displays higher azimuthal velocities than the latter. These stars might have formed and evolved in parallel and/or dissociated from the inside-out formation taking place in the internal thin disk. Their enhancement levels might be due to their origin from gas pre-enriched by outflows from the thick disk or the inner halo. The smooth trends of their properties (their spatial distribution with respect to the plane, in particular) with [Fe/H] and [Mg/Fe] suggested by the data indicates a quiet dynamical evolution, with no relevant merger events. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 188.B-3002. These data products have been processed by the Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.

  3. ESO and Chile: 10 Years of Productive Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    2006-06-01

    ESO and the Government of Chile launched today the book "10 Years Exploring the Universe", written by the beneficiaries of the ESO-Chile Joint Committee. This annual fund provides grants for individual Chilean scientists, research infrastructures, scientific congresses, workshops for science teachers and astronomy outreach programmes for the public. In a ceremony held in Santiago on 19 June 2006, the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) and the Chilean Ministry of Foreign Affairs marked the 10th Anniversary of the Supplementary Agreement, which granted to Chilean astronomers up to 10 percent of the total observing time on ESO telescopes. This agreement also established an annual fund for the development of astronomy, managed by the so-called "ESO-Chile Joint Committee". ESO PR Photo 21/06 ESO PR Photo 21/06 Ten Years ESO-Chile Agreement Ceremony The celebration event was hosted by ESO Director General, Dr. Catherine Cesarsky, and the Director of Special Policy for the Chilean Ministry of Foreign Affairs, Ambassador Luis Winter. "ESO's commitment is, and always will be, to promote astronomy and scientific knowledge in the country hosting our observatories", said ESO Director General, Dr. Catherine Cesarsky. "We hope Chile and Europe will continue with great achievements in this fascinating joint adventure, the exploration of the universe." On behalf of the Government of Chile, Ambassador Luis Winter outlined the historical importance of the Supplementary Agreement, ratified by the Chilean Congress in 1996. "Such is the magnitude of ESO-Chile Joint Committee that, only in 2005, this annual fund represented 8 percent of all financing sources for Chilean astronomy, including those from Government and universities", Ambassador Winter said. The ESO Representative and Head of Science in Chile, Dr. Felix Mirabel, and the appointed Chilean astronomer for the ESO-Chile Joint Committee, Dr. Leonardo Bronfman, also took part in the ceremony, along with ambassadors in Chile of ESO members States, and representatives of the Chilean government and the scientific community. To review the impact of the numerous projects financed over the last decade, ESO presented the book "10 Years Exploring the Universe", based on the reports of the beneficiaries of the ESO-Chile fund. Since the beginning, the ESO-Chile fund has granted over 2.5 million euros to finance post-doc and astronomy professors for main Chilean universities, development of research infrastructure, organisation of scientific congresses, workshops for science teachers, and astronomy outreach programmes for the public. In addition to the 400,000 euros given annually by ESO to the ESO-Chile Joint Committee, around 550,000 euros are granted every year to finance regional collaboration programmes, fellowships for students in Chilean universities, and the development of radio astronomy through the ALMA-Chile Committee. In total, apart form the 10 percent of the observing time at all ESO telescopes, ESO contributes annually with 950,000 euros for the promotion of astronomy and scientific culture in Chile. The growth of astronomy and related sciences in Chile in the last years has been outstanding. According to a study by the Chilean Academy of Science in 2005, the number of astronomers has doubled over the last 20 years and there has been an 8-fold increase in the number of scientific publications. It is gratifying to see that 100 percent of the observing time granted by international observatories in Chile is actually used by the national community. The same study stated that astronomy could be the first scientific discipline in Chile with the standards of a developed country, with additional benefits in terms of technological improvement and growth of human resources. The English edition of the book "10 Years Exploring the Universe" is available here. The Spanish edition can be downloaded here.

  4. X-Shooter study of accretion in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Fedele, D.; Herczeg, G. J.; Teixeira, P. S.

    2016-01-01

    We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star-forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to ~700 nm. The dependence of accretion on stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are not influenced by sample selection. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 084.C-1095 and 094.C-0913.

  5. The warm-hot intergalactic medium at z ~ 2.2: Metal enrichment and ionization source

    NASA Astrophysics Data System (ADS)

    Bergeron, J.; Aracil, B.; Petitjean, P.; Pichon, C.

    2002-12-01

    Results are presented for our search for warm-hot gas towards the quasar Q 0329-385. We identify ten O VI systems of which two are within 5000 km s-1 of zem and a third one should be of intrinsic origin. The seven remaining systems have H I column densities 1013.7<=N (H I)<=1015.6 cm-2. At least ~ 1/3 of the individual O VI sub-systems have temperatures T < 1 x 105 K and cannot originate in collisionally ionized gas. Photoionization by a hard UV background field reproduces well the ionic ratios for metallicities in the range 10-2.5-10-0.5 solar, with possibly sub-solar N/C relative abundance. For [O/C]=0, the sizes inferred for the O VI clouds are in some cases larger than the maximum extent implied by the Hubble flow. This constraint is fulfilled assuming a moderate overabundance of oxygen relative to carbon. For a soft UV ionizing spectrum, an overabundance of O/C is required, [O/C]~ 0.0-1.3. For a hard(soft) U spectrum and [O/C]=0(1), the O VI regions have overdensities rho //lineρ ~ 10-40. Based on observations made at the European Southern Observatory (ESO), under prog. ID No. 166.A-0106(A), with the UVES spectrograph at the VLT, Paranal, Chile.

  6. The Araucaria Project: The Distance to the Fornax Dwarf Galaxy from Near-infrared Photometry of RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Górski, Marek; Gieren, Wolfgang; Bersier, David

    2017-12-01

    We have obtained single-phase near-infrared (NIR) magnitudes in the J and K bands for 77 RR Lyrae (RRL) stars in the Fornax Dwarf Spheroidal Galaxy. We have used different theoretical and empirical NIR period-luminosity-metallicity calibrations for RRL stars to derive their absolute magnitudes, and found a true, reddening-corrected distance modulus of 20.818+/- 0.015{{(statistical)}}+/- 0.116{{(systematic)}} mag. This value is in excellent agreement with the results obtained within the Araucaria Project from the NIR photometry of red clump stars (20.858 ± 0.013 mag), the tip of the red giant branch (20.84+/- 0.04+/- 0.14 mag), as well as with other independent distance determinations to this galaxy. The effect of metallicity and reddening is substantially reduced in the NIR domain, making this method a robust tool for accurate distance determination at the 5% level. This precision is expected to reach the level of 3% once the zero points of distance calibrations are refined thanks to the Gaia mission. NIR period-luminosity-metallicity relations of RRL stars are particularly useful for distance determinations to galaxies and globular clusters up to 300 kpc, that lack young standard candles, like Cepheids. Based on data collected with the VLT/HAWK-I instrument at ESO Paranal Observatory, Chile, as a part of programme 082.D-0123(B).

  7. The Three-body System δ Circini

    NASA Astrophysics Data System (ADS)

    Mayer, Pavel; Harmanec, Petr; Sana, Hugues; Le Bouquin, Jean-Baptiste

    2014-12-01

    Delta Cir is known as an O7.5 III eclipsing and spectroscopic binary with an eccentric orbit. Penny et al. discovered the presence of a third component in the IUE spectra. The eclipsing binary and the third body revolve around a common center of gravity with a period of 1644 days in an eccentric orbit with a semimajor axis of 10 AU. We demonstrate the presence of apsidal-line rotation with a period of ≈141 yr, which is considerably longer than its theoretically predicted value, based on the published radii of the binary components derived from the Hipparchos H p light curve. However, our new solution of the same light curve resulted in smaller radii and better agreement between the observed and predicted period of the apsidal-line advance. There are indications that the third body is a binary. The object was resolved by VLTI using the PIONIER combiner; in 2012 June, the separation was 3.78 mas with magnitude difference in the H region 1.ͫ75. This result means that (assuming a distance of 770 pc) the inclination of the long orbit is 87.°7. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programs ID 65.N-0577, 67.B-0504, 074D-0300, 178.D-0361, 182.D-0356, 083.D-0589, 185.D-0056, 086.D-0997, and 087D-0946.

  8. ESO and Fokker Space Sign Contract about VLTI Delay Line

    NASA Astrophysics Data System (ADS)

    1998-03-01

    The European Southern Observatory is building the world's largest optical telescope, the Very Large Telescope (VLT) , at the ESO Paranal Observatory in Chile. The VLT consists of four 8.2-m unit telescopes and several smaller, moveable Auxiliary Telescopes. When coupled as the giant VLT Interferometer (VLTI) , they will together provide the sharpest images ever obtained by any optical telescope. It will in principle be able to see an astronaut on the surface of the Moon, 400,000 km away. The VLTI Delay Lines Fokker Space (Leiden, The Netherlands) has been awarded a contract for the delivery of the Delay Line of the VLTI. This is a mechanical-optical system that will compensate the optical path differences of the light beams from the individual telescopes. Such a system is necessary to ensure that the light from all telescopes arrive in the same phase at the focal point of the interferometer. Otherwise, the very sharp interferometric images cannot be obtained. ESO PR Photo 08/98 [JPEG, 102k] Schematic representation of the VLTI Delay Line, showing the retro-reflector on its moving base. For more details, please consult the technical explanation below. This highly accurate system will be developed in close co-operation with the Dutch institute TNO-TPD (Netherlands Organization for Applied Scientific Research - Institute of Applied Physics) . The most innovative feature of the Delay Line is the new control strategy, a two-stage control system, based on linear motor technology, combined with high accuracy piezo-electric control elements. This enables the system to position the so-called cat's eye reflector system with an accuracy of only a few nanometers (millionth of a millimetre (nm)) over a stroke length of 60 metres. Within radio astronomy, interferometric techniques have been applied by Dutch astronomers since many years. They will now be able to contribute with their extensive knowledge of such systems to the next generation of astronomical interferometric instruments within the present collaboration. About Fokker Space Fokker Space is the largest company in the Dutch space industry. It is based in Leiden, has 481 employees and an operating income of 220 million Netherlands Guilders in 1996. Fokker Space is mainly active in the field of solar arrays, launcher structures, thermal products, instruments and simulators. It also plays a key role in the development of robotics and is responsible as a prime contractor for the European Robotics Arm (ERA) to be used on the International Space Station. Fokker Space is well embedded in the Dutch aerospace infrastructure, thanks to close relations with the Dutch Space Agency (NIVR) , the National Aerospace Laboratory (NLR) , the Delft University of Technology and other Dutch space industries and institutes like TNO-TPD (Netherlands Organization for Applied Scientific Research - Institute of Applied Physics) . Fokker Space has also entered into strategic partnerships in Europe, Russia and North America. These facts, combined with the long lasting relation with the European Space Agency ESA and with the Dutch Government imply that Fokker Space has secured a solid base for continuation of its business far into the next millennium. Some technical details about the VLTI Delay Line The VLT Delay Line forms an essential part of the VLT Interferometer (VLTI) . It represents the current limit of high technology in this field and includes many innovative features. Some of the technical details are given below. In order to enable a useful combination of the light beams from the individual telescopes of the VLT (that is, to produce interferometric fringes at the focal point), the optical path length differences must be corrected by the Delay Line system. These differences are caused by: * the static geometric path length difference between the telescopes in a certain configuration; * the diurnal motion of the astronomical source during observation due to Earth's rotation; and * the rapid path length variations due to atmospheric disturbances and/or mechanical vibrations along the optical path length. The VLTI Delay Line system consists of a retro-reflector mounted on a moving base. The optical design of this `Cat's Eye' is of the Ritchey-Chretien type that reflects the light very effectively. For this particular application, the `Cat's Eye' is not a corner cube with 3 perpendicular mirrors as is the case in the reflectors on cars and bicycles; it is in fact a telescope with a mirror at the focus that sends a light beam back in a direction parallel to the one it came from. The moving base enables the Cat's Eye to travel along a 60 metres long rail track, thereby providing optical path difference corrections of up to 120 metres, as required for the VLT telescope configurations at Paranal. The necessary, rapid path length corrections are performed by a fine positioning loop in which a piezo crystal (mounted on the backside of the Variable Curvature Mirror M3) is used to correct the fast optical path variations as measured by a Fringe Sensing Unit (FSU). The latter provides a signal to the Delay Line system via a fast link to the Delay Line Local Control Unit. An optical datalink to the Cat's Eye on the carriage ensures the transfer of data to the Piezo controller. The carriage is driven by a Linear Induction Motor. The coils for the motor are mounted on the floor of the Delay Line Long Support Bench and the magnets are mounted on the bottom of the carriage. The metrology system (to measure the carriage position) consists of a laser-interferometer whose beam follows the same path as the light beams from the telescopes via the Cat's Eye. The main design parameters are shown here: Optical Path range above 120 m Optical Path resolution better than 20 nm Optical Path stability better than 14 nm over any 0.01 sec (in the visible spectral range) better than 50 nm over any 0.05 sec (in Near-IR spectral range) better than 225 nm over any 0.3 sec (in Thermal-IR spectral range) Absolute position repeatability 50 micron (over full length - 60 metres) 1 micron (over observation length - 3 metres) Maximum velocity: 0.5 m/sec Maximum velocity errors 1 micron/sec Maximum power dissipation 15 Watts Note: [1] This Press Release is issued jointly by ESO and Fokker Space on the occasion of the signature of the contract for the VLTI Delay System which takes place at Fokker Space in Leiden (The Netherlands) today. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  9. FEROS Finds a Strange Star

    NASA Astrophysics Data System (ADS)

    1999-02-01

    New Spectrograph Explores the Skies from La Silla While a major effort is now spent on the Very Large Telescope and its advanced instruments at Paranal, ESO is also continuing to operate and upgrade the extensive research facilities at La Silla, its other observatory site. ESO PR Photo 03a/99 ESO PR Photo 03a/99 [Preview - JPEG: 800 x 1212 pix - 606k] [High-Res - JPEG: 1981 x 3000 pix - 3.6M] Caption to PR Photo 03a/99 : This photo shows the ESO 1.52-m telescope, installed since almost 30 years in its dome at the La Silla observatory in the southern Atacama desert. The new FEROS spectrograph is placed in an adjacent, thermally and humidity controlled room in the telescope building (where a classical coudé spectrograph was formerly located). The light is guided from the telescope to the spectrograph by 14-m long optical fibres. Within this programme, a new and powerful spectrograph, known as the Fibre-fed Extended Range Optical Spectrograph (FEROS) , has recently been built by a consortium of European institutes. It was commissioned in late 1998 at the ESO 1.52-m telescope by a small team of astronomers and engineers and has already produced the first, interesting scientific results. FEROS is able to record spectra of comparatively faint stars. For instance, it may be used to measure the chemical composition of stars similar to our Sun at distances of up to about 2,500 light-years, or to study motions in the atmospheres of supergiant stars in the Magellanic Clouds. These satellite galaxies to the Milky Way are more than 150,000 light-years away and can only be observed with telescopes located in the southern hemisphere. First FEROS observations uncover an unusual star ESO PR Photo 03b/99 ESO PR Photo 03b/99 [Preview - JPEG: 800 x 958 pix - 390k] [High-Res - JPEG: 3000 x 3594 pix - 1.7M] Caption to PR Photo 03b/99 : This diagramme shows the spectrum of the Lithium rich giant star S50 in the open stellar cluster Be21 , compared to that of a normal giant star ( S156 ) in the same cluster. The comparatively strong absorption line at the centre, at wavelength 6708 Å (671 nm), is caused by Lithium atoms (Li I) in the upper layers of the star's atmosphere. Lines from Iron (Fe I) and Calcium (Ca I) atoms are also present in this spectral region. While they are of about equal strength in the two stars, the Lithium line is not seen in the comparison spectrum of S156 . Stellar evolution theories do not predict the presence of Lithium in a giant star like S50 . Technical information: FEROS obtained two spectra (each of 90 min exposure) of S50 , both showing this strong Lithium line and thus proving that it cannot have been caused by an instrumental effect. These spectra also illustrate the great amount of information that may be obtained in each exposure with FEROS - the shown spectral interval is just 1/280 of the total range recorded. The (visual) magnitude of S50 is 15.6, i.e., about 7,000 times fainter than what can be seen with the unaided eye. During the first tests of FEROS at the 1.52-m telescope, spectra were obtained of many different stars. Some of these observational data could be used for scientific purposes and, in one case, led to the discovery of unusual properties of a giant star in a stellar cluster. Its spectrum shows an unexplained large amount of the cosmologically important, light element Lithium, cf. PR Photo 03b/99 . The star is thus an obvious object for further, even more detailed studies with ESO's Very Large Telescope (VLT). This giant star, designated as S50 , is a member of the open-type stellar cluster Be21 (less dense than globular clusters). This cluster is of special interest, since its stars contain few elements heavier than hydrogen and helium. It is located in the direction opposite to the Galactic Center and the distance has been measured as approximately 16,000 light-years. All of its stars were formed at the same time, about 2,000 - 2,500 million years ago; this corresponds to half of the age of the Solar System. The study of stars in this cluster provides important information about the chemical evolution of the Milky Way galaxy. The significance of Lithium Lithium is not a very common element in daily life (except in batteries and certain medical drugs), but it is of great interest in astronomy. It is the heaviest element that is supposed to have been created in measurable quantities in the early Universe, soon after the Big Bang. All stars destroy most of their Lithium soon after their formation, although some manage to produce this element again at a later stage of their evolution [1]. There may be a substantial loss of Lithium from evolved stars into the interstellar medium (ISM). This element is indeed observed in the ISM. Calculations have shown that the primordial (original) abundance of Lithium was about ten times less than what is now measured in the ISM. The present abundance of Lithium in the Sun is over 100 times less than in the ISM. Large quantities of this element would certainly not be expected in a star as old as S50, especially since violent motions in the atmospheres of such giant stars very efficiently mix the material in the upper layers with that from the star's inner regions where the ongoing nuclear processes quickly destroy any Lithium. Still, the FEROS spectra show the presence in S50 of Lithium in quantities similar to that in the ISM - or in the proto-solar nebula from which the Sun and the planets formed, about 4,600 million years ago! The spectra of many hundreds of giant stars in the solar neighbourhood have been recorded, but only a few have shown such an unusual presence of Lithium. This is the first time that a Lithium rich giant star has been found in a stellar cluster and for which a comparatively accurate age can be determined. In fact, S50 appears to contain more of this fragile element than any other giant star observed so far. What is the origin of the Lithium in S50? How can this unexpected observation be explained? The astronomers do not know, but suggest two possible causes. One might be the recent infall of a large planet or a brown dwarf star (an object too small to become a star and hence without nuclear processes, cf. ESO PR 07/97 ) into the atmosphere of S50 . Another is that the star experiences a very short evolutionary period very rarely observed [2] and during which Lithium is produced and brought to the upper atmosphere. According to our current knowledge of stellar evolution, S50 is due to lose much of its mass through a strong stellar wind during the next few million years. Its Lithium will then be returned to the ISM and thereby contribute to the above mentioned enrichment of this medium. Future observations There is little doubt that this star and many other giant stars in stellar clusters will be high on the list of objects that will soon be observed with the next large instrument to be installed at the VLT on Paranal. Some months after the First Light event of the second VLT 8.2-m Unit Telescope (UT2) in March 1999, the UVES high-dispersion spectrograph will be mounted on this large telescope. This powerful telescope/instrument combination will also be able to extend this type of astronomical studies to fainter and more distant stars, in the Milky Way as well as in the Magellanic Clouds. Still, the VLT UT2 will also have many other tasks to perform. It is therefore important that FEROS is available as an effective and dedicated spectroscopic facility that is bound to uncover many other unusual objects in the southern sky. FEROS - a high-dispersion spectrograph fed by optical fibres FEROS is a state-of-the-art high-resolution spectrograph, based on an advanced concept. The light from celestial objects is collected by the 1.52-m telescope and transferred to the new instrument through optical fibres. It was built in a collaboration between the Heidelberg State Observatory , the Copenhagen University Astronomical Observatory and ESO . The Heidelberg State Observatory was responsible for the overall design and construction, as well as the data reduction software; this institution was also involved in the construction of the first major instrument for the VLT, FORS. The Copenhagen University Observatory provided the detector controller and took care of the associated installation and tests. ESO supplied the first concept for the new spectrograph, its infrastructure, the fibre link between the telescope and the instrument, and the CCD detector by means of which the spectra are recorded. FEROS is a rather unique instrument. It combines a very large spectral coverage from the near-ultraviolet to the infrared region of the spectrum (360 to 920 nm, altogether 560 nm in one exposure) and a high resolving power. The full spectral range is divided into about 100,000 separate pixels, each of which corresponds to a velocity interval of about 3 km/sec. Moreover, FEROS is extremely light-efficient for an instrument of this complex type. Despite the large number of optical elements needed to produce exceedingly detailed spectra of very high quality, 46% of the light entering the spectrograph is actually recorded by the detector. FEROS is mounted on an optical bench in an isolated and thermally controlled room next to the telescope and is an extremely stable instrument. It is operated in a very user-friendly way, and the observing astronomer can obtain quick-look results directly at the telescope using the FEROS on-line data reduction pipeline that is integrated into the ESO-MIDAS image processing system. Notes: [1]: In addition to very young stars that have not yet destroyed their "original" Lithium, this element is also found in the upper atmospheres of some peculiar stars of the so-called Asymptotic Giant Branch (AGB) type. It is believed that this is the result of nuclear burning of the Helium isotope 3 He that has been produced inside such stars during an earlier evolutionary phase. The Lithium is then brought to the surface by means of "convection", i.e., strong turbulence in the star's thin gaseous layers. [2]: From the observed properties of S50 (magnitude, colour, spectrum), it is clear that this star is not of the AGB type . How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  10. VizieR Online Data Catalog: The PMM USNO-A1.0 Catalogue (Monet 1997)

    NASA Astrophysics Data System (ADS)

    Monet, D.; Canzian, B.; Harris, H.; Reid, N.; Rhodes, A.; Sell, S.

    1998-07-01

    USNO-A1.0 is a catalog of 488,006,860 sources whose positions can be used for astrometric references. These sources were detected by the Precision Measuring Machine (PMM) built and operated by the U. S. Naval Observatory Flagstaff Station during the scanning and processing of the Palomar Observatory Sky Survey I (POSS-I) O and E plates, the UK Science Research Council SRC-J survey plates, and the European Southern Observatory ESO-R survey plates. The PMM detects and processes at and beyond the nominal limiting magnitude of these surveys, but the large number of spurious detections requires that a filter be used to eliminate as many as possible. USNO-A's sole inclusion requirement was that there be spatially coincident detections (within a 2 arcsecond radius aperture) on the blue and red survey plate. For field centers of -30 degrees and above, data come from POSS-I plates, while data from field centers of -35 and below come from SRC-J and ESO-R plates. (1 data file).

  11. Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT

    NASA Astrophysics Data System (ADS)

    Osborn, J.; Wilson, R. W.; Sarazin, M.; Butterley, T.; Chacón, A.; Derie, F.; Farley, O. J. D.; Haubois, X.; Laidlaw, D.; LeLouarn, M.; Masciadri, E.; Milli, J.; Navarrete, J.; Townson, M. J.

    2018-04-01

    Knowledge of the Earth's atmospheric optical turbulence is critical for astronomical instrumentation. Not only does it enable performance verification and optimisation of existing systems but it is required for the design of future instruments. As a minimum this includes integrated astro-atmospheric parameters such as seeing, coherence time and isoplanatic angle, but for more sophisticated systems such as wide field adaptive optics enabled instrumentation the vertical structure of the turbulence is also required. Stereo-SCIDAR is a technique specifically designed to characterise the Earth's atmospheric turbulence with high altitude resolution and high sensitivity. Together with ESO, Durham University has commissioned a Stereo-SCIDAR instrument at Cerro Paranal, Chile, the site of the Very Large Telescope (VLT), and only 20 km from the site of the future Extremely Large Telescope (ELT). Here we provide results from the first 18 months of operation at ESO Paranal including instrument comparisons and atmospheric statistics. Based on a sample of 83 nights spread over 22 months covering all seasons, we find the median seeing to be 0.64" with 50% of the turbulence confined to an altitude below 2 km and 40% below 600 m. The median coherence time and isoplanatic angle are found as 4.18 ms and 1.75" respectively. A substantial campaign of inter-instrument comparison was also undertaken to assure the validity of the data. The Stereo-SCIDAR profiles (optical turbulence strength and velocity as a function of altitude) have been compared with the Surface-Layer SLODAR, MASS-DIMM and the ECMWF weather forecast model. The correlation coefficients are between 0.61 (isoplanatic angle) and 0.84 (seeing).

  12. Integration of the instrument control electronics for the ESPRESSO spectrograph at ESO-VLT

    NASA Astrophysics Data System (ADS)

    Baldini, V.; Calderone, G.; Cirami, R.; Coretti, I.; Cristiani, S.; Di Marcantonio, P.; Mégevand, D.; Riva, M.; Santin, P.

    2016-07-01

    ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations of the ESO - Very Large Telescope site, is now in its integration phase. The large number of functions of this complex instrument are fully controlled by a Beckhoff PLC based control electronics architecture. Four small and one large cabinets host the main electronic parts to control all the sensors, motorized stages and other analogue and digital functions of ESPRESSO. The Instrument Control Electronics (ICE) is built following the latest ESO standards and requirements. Two main PLC CPUs are used and are programmed through the TwinCAT Beckhoff dedicated software. The assembly, integration and verification phase of ESPRESSO, due to its distributed nature and different geographical locations of the consortium partners, is quite challenging. After the preliminary assembling and test of the electronic components at the Astronomical Observatory of Trieste and the test of some electronics and software parts at ESO (Garching), the complete system for the control of the four Front End Unit (FEU) arms of ESPRESSO has been fully assembled and tested in Merate (Italy) at the beginning of 2016. After these first tests, the system will be located at the Geneva Observatory (Switzerland) until the Preliminary Acceptance Europe (PAE) and finally shipped to Chile for the commissioning. This paper describes the integration strategy of the ICE workpackage of ESPRESSO, the hardware and software tests that have been performed, with an overall view of the experience gained during these project's phases.

  13. TCS and peripheral robotization and upgrade on the ESO 1-meter telescope at La Silla Observatory

    NASA Astrophysics Data System (ADS)

    Ropert, S.; Suc, V.; Jordán, A.; Tala, M.; Liedtke, P.; Royo, S.

    2016-07-01

    In this work we describe the robotization and upgrade of the ESO 1m telescope located at La Silla Observatory. The ESO 1m telescope was the first telescope installed in La Silla, in 1966. It now hosts as a main instrument the FIber Dual EchellE Optical Spectrograph (FIDEOS), a high resolution spectrograph designed for precise Radial Velocity (RV) measurements on bright stars. In order to meet this project's requirements, the Telescope Control System (TCS) and some of its mechanical peripherals needed to be upgraded. The TCS was also upgraded into a modern and robust software running on a group of single board computers interacting together as a network with the CoolObs TCS developed by ObsTech. One of the particularities of the CoolObs TCS is that it allows to fuse the input signals of 2 encoders per axis in order to achieve high precision and resolution of the tracking with moderate cost encoders. One encoder is installed on axis at the telescope and the other on axis at the motor. The TCS was also integrated with the FIDEOS instrument system so that all the system can be controlled through the same remote user interface. Our modern TCS unit allows the user to run observations remotely through a secured internet web interface, minimizing the need of an on-site observer and opening a new age in robotic astronomy for the ESO 1m telescope.

  14. How Old is the Milky Way ?

    NASA Astrophysics Data System (ADS)

    2004-08-01

    VLT Observations of Beryllium in Two Old Stars Clock the Beginnings Summary Observations by an international team of astronomers [1] with the UVES spectrometer on ESO's Very Large Telescope at the Paranal Observatory (Chile) have thrown new light on the earliest epoch of the Milky Way galaxy. The first-ever measurement of the Beryllium content in two stars in a globular cluster (NGC 6397) - pushing current astronomical technology towards the limit - has made it possible to study the early phase between the formation of the first generation of stars in the Milky Way and that of this stellar cluster. This time interval was found to amount to 200 - 300 million years. The age of the stars in NGC 6397, as determined by means of stellar evolution models, is 13,400 ± 800 million years. Adding the two time intervals gives the age of the Milky Way, 13,600 ± 800 million years. The currently best estimate of the age of the Universe, as deduced, e.g., from measurements of the Cosmic Microwave Background, is 13,700 million years. The new observations thus indicate that the first generation of stars in the Milky Way galaxy formed soon after the end of the ~200 million-year long "Dark Ages" that succeeded the Big Bang. PR Photo 23a/04: Globular cluster NGC 6397 PR Photo 23b/04: The stars A0228 and A2111 in NGC 6397. PR Photo 23c/04: UVES spectra of the stars A0228 and A2111 in NGC 6397 with Beryllium lines. The age of the Milky Way ESO PR Photo 23a/04 ESO PR Photo 23a/04 Globular Cluster NGC 6397 [Preview - JPEG: 400 x 472 pix - 316k] [Normal - JPEG: 800 x 943 pix - 943k] [Full Res - JPEG: 4000 x 4717 pix - 16.3M] Caption: ESO PR Photo 23a/04 shows the globular cluster NGC 6397, located at a distance of approx. 7,200 light-years in the southern constellation Ara. It has undergone a "core collapse" and the central area is very dense. It contains about 400,000 stars and its age (based on evolutionary models) is 13,400 ± 800 million years. The photo is a composite of exposures in the B- , V- and I-bands obtained in the frame of the Pilot Stellar Survey with the Wide-Field-Imager (WFI) camera at the 2.2-m ESO/MPI telescope at the ESO La Silla Observatory. It was prepared and provided by the ESO Imaging Survey team. The spikes seen at some of the brighter stars are caused by the effect of overexposure (CCD "bleeding"). How old is the Milky Way ? When did the first stars in our galaxy ignite ? A proper understanding of the formation and evolution of the Milky Way system is crucial for our knowledge of the Universe. Nevertheless, the related observations are among the most difficult ones, even with the most powerful telescopes available, as they involve a detailed study of old, remote and mostly faint celestial objects. Globular clusters and the ages of stars Modern astrophysics is capable of measuring the ages of certain stars, that is the time elapsed since they were formed by condensation in huge interstellar clouds of gas and dust. Some stars are very "young" in astronomical terms, just a few million years old like those in the nearby Orion Nebula. The Sun and its planetary system was formed about 4,560 million years ago, but many other stars formed much earlier. Some of the oldest stars in the Milky Way are found in large stellar clusters, in particular in "globular clusters" (PR Photo 23a/04), so called because of their spheroidal shape. Stars belonging to a globular cluster were born together, from the same cloud and at the same time. Since stars of different masses evolve at different rates, it is possible to measure the age of globular clusters with a reasonably good accuracy. The oldest ones are found to be more than 13,000 million years old. Still, those cluster stars were not the first stars to be formed in the Milky Way. We know this, because they contain small amounts of certain chemical elements which must have been synthesized in an earlier generation of massive stars that exploded as supernovae after a short and energetic life. The processed material was deposited in the clouds from which the next generations of stars were made, cf. ESO PR 03/01. Despite intensive searches, it has until now not been possible to find less massive stars of this first generation that might still be shining today. Hence, we do not know when these first stars were formed. For the time being, we can only say that the Milky Way must be older than the oldest globular cluster stars. But how much older? Beryllium to the rescue What astrophysicists would like to have is therefore a method to measure the time interval between the formation of the first stars in the Milky Way (of which many quickly became supernovae) and the moment when the stars in a globular cluster of known age were formed. The sum of this time interval and the age of those stars would then be the age of the Milky Way. New observations with the VLT at ESO's Paranal Observatory have now produced a break-through in this direction. The magic element is "Beryllium"! Beryllium is one of the lightest elements [2] - the nucleus of the most common and stable isotope (Beryllium-9) consists of four protons and five neutrons. Only hydrogen, helium and lithium are lighter. But while those three were produced during the Big Bang, and while most of the heavier elements were produced later in the interior of stars, Beryllium-9 can only be produced by "cosmic spallation". That is, by fragmentation of fast-moving heavier nuclei - originating in the mentioned supernovae explosions and referred to as energetic "galactic cosmic rays" - when they collide with light nuclei (mostly protons and alpha particles, i.e. hydrogen and helium nuclei) in the interstellar medium. Galactic cosmic rays and the Beryllium clock The galactic cosmic rays travelled all over the early Milky Way, guided by the cosmic magnetic field. The resulting production of Beryllium was quite uniform within the galaxy. The amount of Beryllium increased with time and this is why it might act as a "cosmic clock". The longer the time that passed between the formation of the first stars (or, more correctly, their quick demise in supernovae explosions) and the formation of the globular cluster stars, the higher was the Beryllium content in the interstellar medium from which they were formed. Thus, assuming that this Beryllium is preserved in the stellar atmosphere, the more Beryllium is found in such a star, the longer is the time interval between the formation of the first stars and of this star. The Beryllium may therefore provide us with unique and crucial information about the duration of the early stages of the Milky Way. A very difficult observation So far, so good. The theoretical foundations for this dating method were developed during the past three decades and all what is needed is then to measure the Beryllium content in some globular cluster stars. But this is not as simple as it sounds! The main problem is that Beryllium is destroyed at temperatures above a few million degrees. When a star evolves towards the luminous giant phase, violent motion (convection) sets in, the gas in the upper stellar atmosphere gets into contact with the hot interior gas in which all Beryllium has been destroyed and the initial Beryllium content in the stellar atmosphere is thus significantly diluted. To use the Beryllium clock, it is therefore necessary to measure the content of this element in less massive, less evolved stars in the globular cluster. And these so-called "turn-off (TO) stars" are intrinsically faint. In fact, the technical problem to overcome is three-fold: First, all globular clusters are quite far away and as the stars to be measured are intrinsically faint, they appear quite faint in the sky. Even in NGC6397, the second closest globular cluster, the TO stars have a visual magnitude of ~16, or 10000 times fainter than the faintest star visible to the unaided eye. Secondly, there are only two Beryllium signatures (spectral lines) visible in the stellar spectrum and as these old stars do contain comparatively little Beryllium, those lines are very weak, especially when compared to neighbouring spectral lines from other elements. And third, the two Beryllium lines are situated in a little explored spectral region at wavelength 313 nm, i.e., in the ultraviolet part of the spectrum that is strongly affected by absorption in the terrestrial atmosphere near the cut-off at 300 nm, below which observations from the ground are no longer possible. It is thus no wonder that such observations had never been made before, the technical difficulties were simply unsurmountable. VLT and UVES do the job ESO PR Photo 23b/04 ESO PR Photo 23b/04 Stars A0228 and A2111 in NGC 6397 [Preview - JPEG: 580 x 400 pix - 143k] [Normal - JPEG: 1160 x 800 pix - 33k] ESO PR Photo 23c/04 ESO PR Photo 23c/04 UVES spectra of the stars A0228 and A2111 in Globular Cluster NGC 6397 [Preview - JPEG: 400 x 468 pix - 115k] [Normal - JPEG: 800 x 925 pix - 272k] Captions: ESO PR Photo 23b/04 identifies the two stars in the globular cluster NGC 6397 for which spectra were obtained with the UVES spectrometer on the VLT (at the centre of the fields shown). The photos have been extracted from PR Photo 23a/04 by the Wide-Field-Imager (WFI) camera at the 2.2-m ESO/MPI telescope at the ESO La Silla Observatory. ESO PR Photo 23c/04 is a reproduction of a small wavelength region of the spectra obtained with the UVES spectrometer at the 8.2-m Kueyen telescope at Paranal of these stars (above), together with that of another nearby star, HD 218502, a field star in which the Beryllium lines are also visible (below). This star, however, is not a member of a cluster and its age is not well known. The achieved signal-to-noise ratios are indicated. The best-fitting synthetic spectra are show as red dots; in the spectrum of A2111, the blue dashed lines illustrate the accuracy of the fit - they correspond to a variation of the Beryllium content by approx. ± 50% (0.2 dex). Using the high-performance UVES spectrometer on the 8.2-m Kuyen telescope of ESO's Very Large Telescope at the Paranal Observatory (Chile) which is particularly sensitive to ultraviolet light, a team of ESO and Italian astronomers [1] succeeded in obtaining the first reliable measurements of the Beryllium content in two TO-stars (denoted "A0228" and "A2111") in the globular cluster NGC 6397 (PR Photo 23b/04). Located at a distance of about 7,200 light-years in the direction of a rich stellar field in the southern constellation Ara, it is one of the two nearest stellar clusters of this type; the other is Messier 4. The observations were done during several nights in the course of 2003. Totalling more than 10 hours of exposure on each of the 16th-magnitude stars, they pushed the VLT and UVES towards the technical limit. Reflecting on the technological progress, the leader of the team, ESO-astronomer Luca Pasquini, is elated: "Just a few years ago, any observation like this would have been impossible and just remained an astronomer's dream!" The resulting spectra (PR Photo 23c/04) of the faint stars show the weak signatures of Beryllium ions (Be II). Comparing the observed spectrum with a series of synthetic spectra with different Beryllium content (in astrophysics: "abundance") allowed the astronomers to find the best fit and thus to measure the very small amount of Beryllium in these stars: for each Beryllium atom there are about 2,224,000,000,000 hydrogen atoms. Beryllium lines are also seen in another star of the same type as these stars, HD 218052, cf. PR Photo 23c/04. However, it is not a member of a cluster and its age is by far not as well known as that of the cluster stars. Its Beryllium content is quite similar to that of the cluster stars, indicating that this field star was born at about the same time as the cluster. From the Big Bang until now According to the best current spallation theories, the measured amount of Beryllium must have accumulated in the course of 200 - 300 million years. Italian astronomer Daniele Galli, another member of the team, does the calculation: "So now we know that the age of the Milky Way is this much more than the age of that globular cluster - our galaxy must therefore be 13,600 ± 800 million years old. This is the first time we have obtained an independent determination of this fundamental value!". Within the given uncertainties, this number also fits very well with the current estimate of the age of the Universe, 13,700 million years, that is the time elapsed since the Big Bang. It thus appears that the first generation of stars in the Milky Way galaxy was formed at about the time the "Dark Ages" ended, now believed to be some 200 million years after the Big Bang. It would seem that the system in which we live may indeed be one of the "founding" members of the galaxy population in the Universe. More information The research presented in this press release is discussed in a paper entitled "Be in turn-off stars of NGC 6397: early Galaxy spallation, cosmochronology and cluster formation" by L. Pasquini and co-authors that will be published in the European research journal "Astronomy & Astrophysics" (astro-ph/0407524). Notes [1] The team is composed of Luca Pasquini (ESO), Piercarlo Bonifacio (INAF-Osservatorio di Trieste, Italy), Sofia Randich and Daniele Galli (INAF-Osservatorio di Arcetri, Firenze, Italy), and Raffaele G. Gratton (INAF-Osservatorio di Padova, Italy). [2] Interestingly, the secondary mirrors of the four VLT Unit Telescopes are made of Beryllium in order to make them as light as possible while retaining the necessary stiffness. Each of the four mirrors measures 1.1 metres across and weighs about 50 kilograms.

  15. New Vistas Open with MIDI at the VLT Interferometer

    NASA Astrophysics Data System (ADS)

    2002-12-01

    "First Fringes" in Mid-Infrared Spectral Region with Two Giant Telescopes Summary Following several weeks of around-the-clock work, a team of astronomers and engineers from Germany, the Netherlands, France and ESO [2] has successfully performed the first observations with the MID-Infrared interferometric instrument (MIDI), a new, extremely powerful instrument just installed in the underground laboratory of the VLT Interferometer (VLTI) at the Paranal Observatory (Chile). In the early morning of December 15, 2002, two of the 8.2 m VLT unit telescopes (ANTU and MELIPAL) were pointed towards the southern star eta Carinae and the two light beams were directed via the complex intervening optics system towards MIDI. After a few hours of tuning and optimization, strong and stable interferometric fringes were obtained, indicating that all VLTI components - from telescopes to the new instrument - were working together perfectly. Two more stars were observed before sunrise, further proving the stability of the entire system. The first observations with MIDI mark one more important step towards full and regular operation of the VLT Interferometer [3] . They are a result of five years of determined efforts within a concerted technology project, based on a close collaboration between ESO and several European research institutes (see below). Now opening great research vistas, they also represent several "firsts" in observational astrophysics, together amounting to a real breakthrough in the field of astronomical interferometry . New views at mid-infrared wavelengths : MIDI is sensitive to light of a wavelength near 10 µm, i.e., in the mid-infrared spectral region ("thermal infrared"). This provides rich opportunities to study a wide range of otherwise inaccessible, crucial astrophysical phenomena, e.g., the formation of planets in dusty disks around newborn stars and the innermost regions around black holes. However, it is a great technical challenge to perform mid-IR observations. This is first of all because the terrestrial atmosphere, the telescopes, their mounts and, not least, the complicated optics system needed to guide the beams the long way from the telescopes to the MIDI instrument all glow bright at mid-IR wavelengths. Thus, even the most luminous mid-IR stellar sources "drown" in this bright background, calling for highly refined observational methods and data reduction procedures. Fainter objects with large telescopes : This is the first time telescopes with mirrors as large as these have been used for mid-IR interferometry. The use of the VLT giants at Paranal now allows observing much fainter objects than before. Sharper images with Interferometry : The distance between ANTU and MELIPAL during these observations, 102 metres, is a new world record for interferometry at this wavelength. The achieved angular resolution is indeed the one theoretically possible with this instrumental configuration, about 0.01 arcsec, better than what has ever been achieved before from ground or space at this wavelength. MIDI is the first of two instruments that will be placed at the focus of the VLT Interferometer. It is a collaborative project between several European research institutes: * European Southern Observatory (ESO) * Max Planck Institut für Astronomie (MPIA) (Heidelberg, Germany) * Netherlands Graduate School for Astronomy (NOVA) (Leiden, The Netherlands) * Department of Astronomy - Leiden Observatory (The Netherlands) * Kapteyn Astronomical Institute (Groningen, The Netherlands) * Astronomical Institute, Utrecht University (The Netherlands) * Netherlands Foundation for Research in Astronomy (NFRA) (Dwingeloo, The Netherlands) * Space Research Organization Netherlands (SRON) (Utrecht, Groningen; The Netherlands) * Thüringer Landessternwarte Tautenburg (TLS) (Germany) * Kiepenheuer-Institut für Sonnenphysik (KIS) (Freiburg, Germany) * Observatoire de Paris (OBSPM) (Paris, Meudon, Nancay; France) * Observatoire de la Côte d'Azur (OCA) (Nice, France) The first observations with MIDI will now be followed up by thorough tests of the new instrument before it enters into regular service. It is planned that the first community observations will be performed at the VLTI in mid-2003. Great efforts have gone into making observations with this complex science machine as user-friendly as possible and, contrary to what is normally the case in this technically demanding branch of astronomy, scientists will find interferometric work at the VLTI quite similar to that of using the many other, more conventional VLT instruments. PR Photo 30a/02: MIDI " First Fringes " of eta Carinae. PR Photo 30b/02: The happy team at the moment of "First Fringes". PR Photo 30c/02: MIDI in the Interferometric Laboratory at Paranal. PR Video Clip 03/02: Optical path scan with "First Fringes" appearing on the computer screen. A wonderful moment ESO PR Video Clip 03/02 [384x288 pix MPEG-version] ESO PR Video Clip 03/02 (480 frames/0:19 min) [MPEG; 384x288 pix; 6.6M] [RealMedia; streaming; 56kps] [RealMedia; streaming; 200kps] Another vital step has been accomplished as planned towards full operation of the ESO Very Large Telescope (VLT) and the associated VLT Interferometer (VLTI) at the Paranal Observatory in Chile, one of the world's foremost astronomical facilities. Indeed, plans had been made more than one year ago for this milestone event to take place at the end of 2002. In the early morning of December 15, 2002, at 02:45 local time (05:45 UT), a team of astronomers and engineers from Germany, Netherlands, France and ESO celebrated the first successful combination of mid-infrared "light" beams from ANTU and MELIPAL, two of the four 8.2-m VLT Unit Telescopes . This special moment, referred to as the "First Fringes" , occurred when infrared radiation at a wavelength of 8.7 µm from the bright star eta Carinae was captured simultaneously by the two telescopes (situated 102 metres apart) and then directed via a complex optics system towards the MID-Infrared interferometric instrument (MIDI), a new, extremely sensitive and versatile instrument just installed in the underground VLT Interferometric Laboratory. Strong interferometric fringes, well visible on the computer screen to the delighted team, cf. PR Photo 30a-b/02 and PR Video Clip 03/02 , were obtained repeatedly by the MIDI instrument and the recorded data were of excellent quality. A great achievement This is the first time ever interferometry in the near-infrared 8.7 µm-band (technically: the "N"-band") with large telescopes has been accomplished and the first time at 100-m baselines. For this to happen, it was necessary to keep the difference in the length of the light paths from the two telescopes to the focus of the MIDI instrument stable and equal to within a small fraction of this wavelength during the observations, in practice to about 1 µm (0.001 mm). The team spent the first few hours of the night tuning the system, positioning the many optical components and optimizing the various feed-back mechanisms that involve precision-guided mirrors below the two telescopes and the so-called "delay lines" in the underground Interferometric Tunnel [3]. After a few attempts and successive on-line optimization, modulated "fringes" - the typical signature of interferometric measurements - became visible on the screens of the instrument computers, demonstrating conclusively the validity of the overall concept, cf. PR Video Clip 03/02 . The rest of the night was used to further trim the VLTI and MIDI. The team also observed two other objects before sunrise, the young binary star Z Canis Majoris and the enigmatic Eta Carinae - for both, interferometric fringes were convincingly obtained. The perfection of all of the 32 optical elements needed to guide the starlight towards MIDI for these observations contributed to this, as did the availability of advanced user-friendly control software, specially developed for the VLTI and its instruments in order to facilitate the future observations, also by non-specialists. Advantages of MIDI With its high sensitivity to thermal radiation, MIDI is ideally suited to study cosmic material (dust and gas) near a central hot object and heated by its radiation . In the case of astronomical observations in the visible spectral region, such material is usually hidden from view because of a strong obscuring effect that is caused by the dust it contains. Most optical observations of star-forming clouds only show the dark contours of the cloud and nothing about the complex processes that happen inside. Contrarily, this obscuring effect of the dust is often entirely insignificant at the longer mid-infrared wavelengths around 10 µm (0.01 mm) at which MIDI observes, allowing direct studies of what is going on inside. MIDI science targets Thanks to interferometry and the large collecting surface of the VLT telescopes, MIDI achieves unsurpassed image sharpness (about 0.01 arcsec) and sensitivity at these "revealing" wavelengths, promising extremely detailed views, also of faint and distant objects. Clearly, the associated opportunities for exciting research are almost unlimited. Some of the first targets for the fully operational MIDI instrument will thus include the enigmatic dust rings now believed to be located around giant black holes at the centers of quasars and strong radio galaxies. Equally interesting will be in-depth studies of those disks of matter that are known to accompany the creation of new stars and from which exoplanets are forming . And with MIDI, it will now be possible to investigate the outer zones of the extended atmospheres of giant stars where the dust grains form in the first place - those complex particles that, loaded with water ice, minerals and simple organic molecules, eventually move into interstellar space and later play a crucial role in the formation of stars and planets. MIDI - a new and powerful instrument for the VLT Interferometer The MIDI instrument has been developed by a European consortium of astronomical institutes, under the leadership of the Max-Planck-Institut für Astronomie (MPIA) in Heidelberg (Germany). Following the installation in 2001 by ESO of the VLTI test instrument, VINCI, to verify and tune the exceedingly complex optical system [3], MIDI is the first of two scientific instruments that will be devoted to interferometric observations with the VLT Interferometer during the coming decade. The other is AMBER which will combine three beams from different telescopes and will be sensitive in the wavelength region of 1-2.5 µm. The MIDI instrument weighs about 1.5 tons and is mounted on a 1.5 x 2.1 m precision optical table, placed at the centre of the underground VLT Interferometric Laboratory at the top of the Paranal mountain, cf. PR Photo 30c/02 . The large cube at the back of the table is a vacuum vessel that allows cooling of the infrared detector and the surrounding optics to temperatures of -270 to -240 °C (4K to 35K on the absolute temperature scale), which is necessary for observations at these infrared wavelengths. Despite its large dimensions, MIDI has to be very carefully adjusted to the light beams arriving from the telescopes, with initial precision exceeding 0.01° (angles) and 0.1 mm (position). The electronic equipment necessary to run the instrument is installed in a separate room in order to reduce any disturbances from heat, noise and vibrations to the lowest possible level. During the observations, the astronomers operate the entire instrument, as well as the VLT Interferometer, from a building below the mountain top, more than one hundred metres away. This state-of-the-art instrument is the outcome of a close collaboration between several European research institutes [1], greatly profiting from their combined expertise in many different technological areas. This involves the construction of large astronomical instruments for infrared observations, involving operation in vacuum and at low temperatures (MPIA in Heidelberg, Germany), designing and manufacturing optics for the extreme cryogenic environment (ASTRON in Dwingeloo, The Netherlands), designing and creating the complex software needed to run the instrument in a user-friendly way (NEVEC in Leiden, The Netherlands, and MPIA), as well as other specialised contributions from the Kiepenheuer-Institut für Sonnenphysik in Freiburg (Germany), Observatoire de Paris-Meudon and Observatoire de la Côte d'Azur in Nice (France), and Thüringer Landessternwarte in Tautenburg (Germany). This wide collaboration was carried out in close cooperation with and profiting from the professional experience of ESO that has built and now operates the Paranal Observatory, ensuring the proper interfacing between MIDI and the VLTI needed for high-performance interferometric measurements. Brief history of the MIDI project Work on the mid-infraredinterferometric instrument MIDI started in 1997 when MPIA proposed to ESO to build such a facility that would conform with ESO's plans for interferometric observations with the VLT telescopes and which would most probably become the first of its kind worldwide. Soon thereafter, the Netherlands Science Organization NOVA with ASTRON and NEVEC and the other partner institutes in France, the Netherlands and Germany joined the project. With Christoph Leinert and Uwe Graser from MPIA teaming up to lead the project, more than two dozen engineers, astronomers and students worked intensively for three and a half years on the planning, design and production, before the integration of this highly complex instrument could start at the Max-Planck-Institut für Astronomie in Heidelberg. This took place in September 2001 and was followed by a period of extensive instrumental tests. Much preparatory work had to be done at Paranal in parallel, to be ready for a smooth installation of MIDI [3]. After a positive, concluding status review of MIDI by ESO in September 2002, the many parts of the complex instrument were packed into 32 big wooden boxes, with a total weight of 8 tons, and sent from Heidelberg to Paranal by air freight. The installation of MIDI in the VLT Interferometric Laboratory began as scheduled in early November. The first test measurements were carried out during the first days of December with two 40-cm siderostats, the same that were used to obtain "first fringes" with the VINCI test instrument in March 2001, cf. ESO PR 06/01. These initial measurements led to stable, good-quality fringes on the bright stars Alpha Orionis (Betelgeuse) and Omicron Ceti (Mira). The total cost of MIDI is of the order of 6 million Euros. Of this, 1.8 million Euros are for equipment, materials and optical parts, with the remaining for salaries during the extensive planning, construction and testing of this front-line instrument. Some related technical achievements Astronomical observations of electromagnetic radiation at mid-infrared wavelengths near 10 µm are difficult, because this is the spectral region of thermal radiation from our environment . If our eyes were sensitive to that radiation, everything around us would be brilliantly bright, including the sky at night, and no stars would then be visible to the naked eye. Sensitive imaging detectors for these wavelengths have become available during the past years, but to work satisfactorily, they must be cooled to a very low temperature around -265 °C (4K - 10K) during operation. Also the optics in front of the detector must be cooled to about -240 °C - otherwise all images would be immediately overexposed, due to the added thermal radiation from those lenses and mirrors. In practice, the technical solution to this fundamental problem is a so-called closed-cycle cooler that works with high-pressure helium gas and achieves the required low temperatures on several "cold fingers" inside the instrument. However, the associated moving pistons cause vibrations which must be reduced to a minimum by means of special damping materials and connections for the cooler and the instrument. Otherwise this motion would be detrimental to the sensitive measurements, which require near-perfect mechanical stability, to within a fraction of the infrared wavelength, i.e., to 0.001 mm (1 µm) or better. Similarly, slight bending effects of the instrument parts during cool-down from room temperature would also compromise the measurements. This has been avoided by manufacturing the support of all optical parts near the detector from one single, carefully selected block of special aluminium. Still, as the light from the star being observed falls on the detector inside MIDI, it will be surrounded by strong thermal radiation from the terrestrial atmosphere in this direction and all uncooled ("warm") mirrors in the light path. The transfer of the digitally recorded images from the detector to the computer data storage must therefore occur at very high speed, one image per 0.001 sec, and always be strictly synchronized with a modulation inherent in the measurement process. This requires powerful, highly specialized and yet flexible electronics - this crucial part of the new instrument was developed over the past years at MPIA. With this and many other technical innovations successfully completed, and with the first on-the-sky observations just accomplished to the full satisfaction of the MIDI team, this new, powerful instrument will soon be ready to enter into new and unknown research territory. Hundreds of astronomers in the ESO members countries and their colleagues all over the world are now eagerly waiting to get their hands on this new facility.

  16. Messages from the Abyss

    NASA Astrophysics Data System (ADS)

    2003-10-01

    VLT Observes Infrared Flares from Black Hole at Galactic Centre [1] Summary An international team of astronomers led by researchers at the Max-Planck Institute for Extraterrestrial Physics (MPE) in Garching (Germany) [2] has discovered powerful infrared flares from the supermassive black hole at the heart of the Milky Way . The signals, rapidly flickering on a scale of minutes, must come from hot gas falling into the black hole, just before it disappears below the "event horizon" of the monster. The new observations strongly suggest that the Galactic Centre black hole rotates rapidly . Never before have scientists been able to study phenomena in the immediate neighbourhood of a black hole in such a detail. The new result is based on observations obtained with the NACO Adaptive Optics instrument on the 8.2-m VLT YEPUN telescope and is published in this week's edition of the research journal Nature. PR Photo 29a/03 : A powerful flare from the black hole at the galactic centre. PR Photo 29b/03 : Light curve of the flare . PR Video 01/03 : A powerful flare from the black hole at the galactic centre . Flashes of light from disappearing matter ESO PR Photo 29a/03 ESO PR Photo 29a/03 [Preview - JPEG: 650 x 400 pix - 118k [Normal - JPEG: 1300 x 800 pix - 370k] ESO PR Video Clip 01/03 [MPEG] ESO PR Video Clip 01/03 [MPEG Video; 29X k] Captions : PR Photo 29a/03 and PR Video Clip 01/03 show the detection of a powerful flare from the centre of the Milky Way galaxy. These and other adaptive optics (AO) images (with resolution 0.040 arcsec in the near-infrared H-band at wavelength 1.65 µm) of the central region of the Milky Way were obtained with the NACO imager on the 8.2-m VLT YEPUN telescope at the ESO Paranal Observatory on May 9, 2003. The image covers a sky area of about 1 x 1 arcsec, corresponding to about 45 light-days at the distance of the Galactic Centre. The time (in minutes from the beginning of the data set at 6h59m24s (UT) on May 9, 2003) is shown at the upper right of each image. North is up and East to the left. The position of the 15-year orbiting star S2 (cf. ESO Press Release 17/02 ) is marked by a cross and the astrometric location of the black hole is indicated by a circle. The scene was the usual one in the VLT Control Room at the Paranal Observatory in the early morning of May 9, 2003. Groups of astronomers from different nations were sitting in front of the computer screens, pointing the four giant telescopes in different directions and recording the sparse photons from the remotest corners of the Universe. There were the usual brief exchanges of information, numbers, wavelengths, strange acronyms, but then suddenly something happened at the YEPUN desk.... " What is that star doing there? " exclaimed Rainer Schödel , one of the MPE scientists in the team working with the NACO Adaptive Optics instrument [3] that delivers razor-sharp images. He and Reinhard Genzel, leader of the team and MPE Director, were observing the Milky Way Centre, when they saw the "new" object on the screen in front of them. The astronomers were puzzled and then became excited - something unusual must be going on, there at the centre of our galaxy! And then, a few minutes later, the "star" disappeared from view. Now the scientists had little doubt - they had just witnessed, for the first time, a powerful near-infrared flare from exactly the direction of the supermassive black hole at the heart of the Milky Way , cf. PR Photo 29a/03 and PR Video Clip 01/03 . " We had been looking for infrared emission from that black hole for more than a decade " recalls another team member, Andreas Eckart of the Cologne University. " We were certain that the black hole must be accreting matter from time to time. As this matter falls towards the surface of the black hole, it gets hotter and hotter and starts emitting infrared radiation ". But no such infrared radiation had been seen until that night at the VLT. This was the wonderful moment of breakthrough. Never before had anybody witnessed the last "scream" from matter in the deadly grip of a black hole, about to pass the point of no return towards an unknown fate. At the border ESO PR Photo 29b/03 ESO PR Photo 29b/03 [Preview - JPEG: 400 x 516 pix - 87k [Normal - JPEG: 800 x 1032 pix - 219k] Captions : PR Photo 29b/03 displays the "light curve" of a light flare from the galactic centre, as observed in the K-band (wavelength 2.2 µm) on June 16, 2003. This and a second flare discovered about 24 hours earlier show variability on a time scale of a few minutes and appear to show larger variations (arrows) with a 17-minute periodicity. The rapid variability implies that the infrared emission comes from just outside (the event horizon of) the black hole. If the periodicity is a fundamental property of the motion of gas orbiting the black hole, the Galactic Centre black hole must rotate with about half the maximum spin rate allowed by General Relativity. The present observations thus probe the space-time structure in the immediate vicinity of that event horizon. A careful analysis of the new observational data, reported in this week's issue of the Nature magazine, has revealed that the infrared emission originates from within a few thousandths of an arcsecond [4] from the position of the black hole (corresponding to a distance of a few light-hours) and that it varies on time scales of minutes ( PR Photo 29b/03 ). This proves that the infrared signals must come from just outside the so-called "event horizon" of the black hole, that is the "surface of no return" from which even light cannot escape. The rapid variability seen in all data obtained by the VLT clearly indicates that the region around this horizon must have chaotic properties - very much like those seen in thunderstorms or solar flares [5]. " Our data give us unprecedented information about what happens just outside the event horizon and let us test the predictions of General Relativity " explains Daniel Rouan , a team member from Paris-Meudon Observatory. " The most striking result is an apparent 17-minute periodicity in the light curves of two of the detected flares. If this periodicity is caused by the motion of gas orbiting the black hole, the inevitable conclusion is that the black hole must be rotating rapidly ". Reinhard Genzel is very pleased: " This is a major breakthrough. We know from theory that a black hole can only have mass, spin and electrical charge. Last year we were able to unambiguously prove the existence and determine the mass of the Galactic Centre black hole ( ESO Press Release 17/02 ). If our assumption is correct that the periodicity is the fundamental orbital time of the accreting gas, we now have also measured its spin for the first time . And that turns out to be about half of the maximum spin that General Relativity allows ". He adds: " Now the era of observational black hole physics has truly begun !" More information The results described in this ESO press release are presented in a report published today in the research journal "Nature" ("Near-IR Flares from Accreting Gas around the Supermassive Black Hole in the Galactic Centre", by Reinhard Genzel and co-authors).

  17. VizieR Online Data Catalog: Fornax Deep Survey with VST. III. LSB galaxies (Venhola+, 2017)

    NASA Astrophysics Data System (ADS)

    Venhola, A.; Peletier, R.; Laurikainen, E.; Salo, H.; Lisker, T.; Iodice, E.; Capaccioli, M.; Verdoes Kleijn, G.; Valentijn, E.; Mieske, S.; Hilker, M.; Wittmann, C.; van de Ven, G.; Grado, A.; Spavone, M.; Cantiello, M.; Napolitano, N.; Paolillo, M.; Falcon-Barroso, J.

    2018-02-01

    We use the ongoing Fornax Deep Survey (FDS), which consists of the combined data of the Guaranteed Time Observation Surveys FOCUS (P.I. R. Peletier) and VEGAS (P.I. E. Iodice), dedicated to the Fornax cluster. Both surveys are performed with the ESO VLT Survey Telescope (VST), which is a 2.6-m diameter optical telescope located at Cerro Paranal, Chile. The imaging is done with the OmegaCAM instrument, using the u', g', r' and i'-bands, and 1°x1° field of view. The observations used in this work were gathered in visitor mode runs during November 2013, 2014 and 2015 (ESO P92, P94 and P96, respectively). All the observations were performed in clear (photometric variations <10%) or photometric conditions. The observations in u' and g'-bands were obtained in dark time, and those of the other bands in gray or dark time. (1 data file).

  18. The active nucleus of the ULIRG IRAS F00183-7111 viewed by NuSTAR

    NASA Astrophysics Data System (ADS)

    Iwasawa, K.; Spoon, H. W. W.; Comastri, A.; Gilli, R.; Lanzuisi, G.; Piconcelli, E.; Vignali, C.; Brusa, M.; Puccetti, S.

    2017-10-01

    We present an X-ray study of the ultra-luminous infrared galaxy IRAS F00183-7111 (z = 0.327), using data obtained from NuSTAR, Chandra X-ray Observatory, Suzaku and XMM-Newton. The Chandra imaging shows that a point-like X-ray source is located at the nucleus of the galaxy at energies above 2 keV. However, the point source resolves into diffuse emission at lower energies, extending to the east, where the extranuclear [Oiii]λ5007 emission, presumably induced by a galactic-scale outflow, is present. The nuclear source is detected by NuSTAR up to the rest-frame 30 keV. The strong, high-ionization Fe K line, first seen by XMM-Newton, and subsequently by Suzaku and Chandra, is not detected in the NuSTAR data. The line flux appears to have been declining continuously between 2003 and 2016, while the continuum emission remained stable to within 30%. Further observations are needed to confirm this. The X-ray continuum below 10 keV is characterised by a hard spectrum caused by cold absorption of NH 1 × 1023 cm-2, compatible to that of the silicate absorption at 9.7 μm, and a broad absorption feature around 8 keV which we attribute to a high-ionization Fe K absorption edge. The latter is best described by a blueshifted, high-ionization (log ξ 3) absorber with a column density of NH 1 × 1024 cm-2, similar to the X-ray high-velocity outflows observed in a number of active nuclei. No extra hard component, which would arise from a strongly absorbed (I.e. Compton-thick) source, is seen in the NuSTAR data. While a pure reflection scenario (with a totally hidden central source) is viable, direct emission from the central source of L2-10 keV ≃ 2 × 1044 erg s-1, behind layers of cold and hot absorbing gas may be an alternative explanation. In this case, the relative X-ray quietness (Lx/Lbol,AGN ≤ 6 × 10-3), the high-ionization Fe line, strong outflows inferred from various observations, and other similarities to the well-studied ULIRG/QSO Mrk 231 point that the central source in this ULIRG might be accreting close to the Eddington limit. This research has also made use of data obtained from ESO telescopes at the La Silla Paranal Observatory. The ESO VLT data are under programme IDs 386.B-0346, 088.B-0405, and 090.B-0098.

  19. Report on the ''ESO Python Boot Camp — Pilot Version''

    NASA Astrophysics Data System (ADS)

    Dias, B.; Milli, J.

    2017-03-01

    The Python programming language is becoming very popular within the astronomical community. Python is a high-level language with multiple applications including database management, handling FITS images and tables, statistical analysis, and more advanced topics. Python is a very powerful tool both for astronomical publications and for observatory operations. Since the best way to learn a new programming language is through practice, we therefore organised a two-day hands-on workshop to share expertise among ESO colleagues. We report here the outcome and feedback from this pilot event.

  20. VizieR Online Data Catalog: SN2009ip UBVRI, UVOT and JHK light curves (Fraser+, 2013)

    NASA Astrophysics Data System (ADS)

    Fraser, M.; Inserra, C.; Jerkstrand, A.; Kotak, R.; Pignata, G.; Benetti, S.; Botticella, M.-T.; Bufano, F.; Childress, M.; Mattila, S.; Pastorello, A.; Smartt, S. J.; Turatto, M.; Yuan, F.; Anderson, J. P.; Bayliss, D. D. R.; Bauer, F. E.; Chen, T.-W.; Forster Buron, F.; Gal-Yam, A.; Haislip, J. B.; Knapic, C.; Le Guillou, L.; Marchi, S.; Mazzali, P.; Molinaro, M.; Moore, J. P.; Reichart, D.; Smareglia, R.; Smith, K. W.; Sternberg, A.; Sullivan, M.; Takats, K.; Tucker, B. E.; Valenti, S.; Yaron, O.; Young, D. R.; Zhou, G.

    2014-11-01

    Optical spectroscopic follow-up of SN 2009ip was chiefly obtained with the New Technology Telescope (NTT) + ESO Faint Object Spectrograph and Camera 2 (EFOSC2), as part of the Public European Southern Observatory (ESO) Spectroscopic Survey of Transient Objects (PESSTO). The PESSTO data were supplemented with data from the Telescopio Nazionale Galileo (TNG) + Device Optimized for the LOw RESolution (DOLORES), and the Australian National University (ANU) 2.3m telescope + Wide Field Spectrograph (WiFeS). (3 data files).

  1. Reflections on ESO, 1957 - 2002. Perspectives from the Directors General past and present: Adriaan Blaauw, ESO Director General, 1970 - 1974

    NASA Astrophysics Data System (ADS)

    Blaauw, Adriaan

    2002-09-01

    Nearly half a century ago, I witnessed Walter Baade and Jan Oort dreaming of a joint enterprise which would lift observational astronomy in Europe from the level of their modest national efforts to that of the leading observatories in the United States. I have been privileged to see, and to have been able to contribute to, the realization of that dream. This half century has left a wealth of recollections and sentiments from which it is difficult to select for this occasion.

  2. Exoplanets: The Hunt Continues!

    NASA Astrophysics Data System (ADS)

    2001-04-01

    Swiss Telescope at La Silla Very Successful Summary The intensive and exciting hunt for planets around other stars ( "exoplanets" ) is continuing with great success in both hemispheres. Today, an international team of astronomers from the Geneva Observatory and other research institutes [1] is announcing the discovery of no less than eleven new, planetary companions to solar-type stars, HD 8574, HD 28185, HD 50554, HD 74156, HD 80606, HD 82943, HD 106252, HD 141937, HD 178911B, HD 141937, among which two new multi-planet systems . The masses of these new objects range from slightly less than to about 10 times the mass of the planet Jupiter [2]. The new detections are based on measured velocity changes of the stars [3], performed with the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory , as well as with instruments on telescopes at the Haute-Provence Observatory and on the Keck telescopes on Mauna Kea (Hawaii, USA). Some of the new planets are unusual: * a two-planet system (around the star HD 82943) in which one orbital period is nearly exactly twice as long as the other - cases like this (refered to as "orbital resonance") are well known in our own solar system; * another two-planet system (HD 74156), with a Jupiter-like planet and a more massive planet further out; * a planet with the most elongated orbit detected so far (HD 80606), moving between 5 and 127 million kilometers from the central star; * a giant planet moving in an orbit around its Sun-like central star that is very similar to the one of the Earth and whose potential satellites (in theory, at least) might be "habitable". At this moment, there are 63 know exoplanet candidates with minimum masses below 10 Jupiter masses, and 67 known objects with minimum masses below 17 Jupiter masses. The present team of astronomers has detected about half of these. PR Photo 13a/01 : Radial-velocity measurements of HD 82943, a two-planet system . PR Photo 13b/01 : Radial-velocity measurements of HD 80606, a star with a planet in a very elongated orbit . A major international effort The discovery of eleven new exoplanets has resulted from three high-precision radial-velocity surveys now searching for such objects: * The CORALIE planet-search programme on La Silla [4], conducted by astronomers of the Geneva Observatory [1] * The ELODIE high-precision radial-velocity survey of solar-type stars at the Haute-Provence Observatory (OHP/France) conducted by a Swiss-French team, including the Geneva, Grenoble and Haute-Provence Observatories [1] * The G-dwarf project , an ELODIE-HIRES/Keck planet-search programme set up by a team of astronomers from the Geneva Observatory, the Center for Astrophysics (Cambridge, Mass., USA) and the Tel Aviv University (Israel) [1] The new results are the outcome of high-precision radial-velocity measurements . This fundamental observational method is based on the detection of changes in the velocity of the central star , due to the changing direction of the gravitational pull from an (unseen) exoplanet as it orbits the star. The evaluation of the measured velocity variations allows to deduce the planet's orbit , in particular the period and the distance from the star, as well as a minimum mass [3]. Four of the new planets were detected from La Silla and three ELODIE candidates were secured with CORALIE measurements. With the eleven new discoveries, the CORALIE/ELODIE programmes have contributed to the detection of about half (32) of the known (63) planetary candidates with minimum masses below 10 Jupiter masses, or 36 out of 67 known objects with minimum masses below 17 Jupiter masses [2]. Several unusual systems Among the present detections, there are two new planetary systems (HD 82943 and HD 74156), each with two planets. They bring to six the number of known multi-planet systems, four of which owe their detection to CORALIE/ELODIE measurements. This demonstrates the outstanding role that comparatively small telescopes can still play in modern astrophysics. Detailed information about all of the new planets are available on the dedicated web page at the Geneva Observatory web site: http://obswww.unige.ch/~udry/planet/new_planet.html. Of the systems discovered at La Silla, two are quite unusual: HD 82943: a "resonant" system ESO PR Photo 13a/01 ESO PR Photo 13a/01 [Preview - JPEG: 367 x 400 pix - 53k] [Normal - JPEG: 734 x 800 pix - 248k] Caption : PR Photo 13a/01 shows the radial-velocity measurements of the central star, 82493 , in a two-planet system, as observed with the CORALIE instrument at La Silla. The best-fit curve corresponds to expected variations, caused by the planets described in the text. The abscissa shows the date; the ordinate the velocity The detection of the outer planet that orbits the star HD 82943 was announced earlier ( ESO Press Release 13/00 ), together with seven CORALIE planet candidates at other stars. The follow-up observations at La Silla soon revealed a departure from the previously determined orbit. The accumulated measurements ( PR Photo 13a/01 ) now allow the detection of a second, inner planet in this system. Its orbital period (221 days) is about half of that of the outer one (444 days). Future observations should confirm the 1:2 ratio between the periods; this indicates a "resonance" that may result from the gravitational interaction between the two planets. Similar orbital resonances are known in the solar system, especially in case of the minor planets (asteroids). HD 28185: a giant planet in the "habitable" zone With the exception of the planet iota Hor b (cf. ESO PR 12/99 ), circular orbits among exoplanets have only been found for short-period systems, contrary to what is the case for the giant planets in our own Solar System. However, the orbit of the newly found planet near the sun-like star HD 28185 is very nearly circular and with a period of 385 days (close to 1 Earth year), its distance from the star, 150.6 million km, is almost equal to the distance betwen the Sun and the Earth (149.6 million km). This new planet is therefore located in the "habitable zone" where temperatures like those on the Earth are possible. Still, it is a giant, gaseous planet (with a minimum mass of 3.5 times that of Jupiter, or about 1000 times that of the Earth) and thus an unlikely place for the development of life. Nevertheless, it may be orbited by one or more moons on which a more bio-friendly environment has evolved. The presence of natural satellites ("moons") around giant extra-solar planets is not a far-fetched idea, just look at our own Solar System. HD 80606: a giant planet in an extremely elongated orbit ESO PR Photo 13b/01 ESO PR Photo 13b/01 [Preview - JPEG: 400 x 233 pix - 21k] [Normal - JPEG: 800 x 465 pix - 41k] Caption : PR Photo 13b/01 shows the radial-velocity measurements of the star HD 80606 that hosts a planet in a very eccentric orbit. A planet in an extremely elongated orbit around the star HD 80606 was found in the frame of the ELODIE/Keck collaboration. The measured, very large eccentricity (e = 0.93; PR Photo 13b/01 ) implies of factor of no less than 26 between the smallest and largest distance to the star. When the planet is closest to the star, it is only a few stellar radii away (about 5 million kilometres). Continuation of the programme Further progress within the current programme is expected soon, when the Very Large Telescope Interferometer (VLTI) at Paranal becomes available, cf. ESO PR 06/01. This new instrument will have the observational capability of very high-accuracy positional measurements (astrometry) and thus be able to detect even very small wobbles of stellar positions in the sky that are due to the pull of orbiting planets. This will provide a crucial contribution to the determination of the true repartition of exoplanetary masses, a hotly debated question. Important advancement in our understanding of the formation of planetary systems is also expected with the advent of HARPS. This new high-resolution spectrograph, capable of reaching the extremely high radial-velocity precision of 1 m/sec, will be installed on the ESO 3.6-m telescope at La Silla at the end of 2002. HARPS will extend the domain of planets accessible with the radial-velocity technique towards significantly lower masses - down to about ten Earth masses on short-period orbits . It will also greatly improve our capability of detecting planets with longer periods and multi-planet systems. More information More information on these discoveries may be found in a Press Release from the Tel Aviv University and on the Geneva planet-search web page. Notes [1] The team consists of: Geneva Observatory (Switzerland): Michel Mayor, Dominique Naef, Francesco Pepe, Didier Queloz, Nuno C. Santos, Stephane Udry, Michel Burnet Grenoble Observatory (France): Christian Perrier, Jean-Luc Beuzit Haute-Provence Observatory (France): Jean-Pierre Sivan Center for Astrophysics (Cambridge, Mass., USA): David Latham, Guillermo Torres Tel Aviv University (Israel): Tsevi Mazeh, Shay Zucker, G. Drukier [2] The mass units for the exoplanets used in this text are 1 Jupiter mass = 318 Earth masses. [3] A fundamental limitation of the radial-velocity method, currently used by all planet-hunting research teams, is that because of the uncertainty of the inclination of the planetary orbit, it only allows to determine a lower mass limit for the planet. However, statistical considerations indicate that in most cases, the true mass will not be much higher than this value. [4] Earlier accounts of this research programme have been published as ESO Press Release 18/98 and ESO Press Release 13/00. Views of the 1.2-m Leonard Euler telescope and its dome at La Silla are available as PR Photos 13a-c/00.

  3. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    Vast Databanks at the Astronomers' Fingertips Summary A new European initiative called the Astrophysical Virtual Observatory (AVO) is being launched to provide astronomers with a breathtaking potential for new discoveries. It will enable them to seamlessly combine the data from both ground- and space-based telescopes which are making observations of the Universe across the whole range of wavelengths - from high-energy gamma rays through the ultraviolet and visible to the infrared and radio. The aim of the Astrophysical Virtual Observatory (AVO) project, which started on 15 November 2001, is to allow astronomers instant access to the vast databanks now being built up by the world's observatories and which are forming what is, in effect, a "digital sky" . Using the AVO, astronomers will, for example, be able to retrieve the elusive traces of the passage of an asteroid as it passes near the Earth and so enable them to predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded so adding invaluable data to the study of the evolution of stars. Background information on the Astrophysical Virtual Observatory is available in the Appendix. PR Photo 34a/01 : The Astrophysical Virtual Observatory - an artist's impression. The rapidly accumulating database ESO PR Photo 34a/01 ESO PR Photo 34a/01 [Preview - JPEG: 400 x 345 pix - 90k] [Normal - JPEG: 800 x 689 pix - 656k] [Hi-Res - JPEG: 3000 x 2582 pix - 4.3M] ESO PR Photo 34a/01 shows an artist's impression of the Astrophysical Virtual Observatory . Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data - corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being digitally reconstructed in the databanks! The richness and complexity of data and information available to the astronomers is overwhelming. This has created a major problem as to how astronomers can manage, distribute and analyse this great wealth of data . The Astrophysical Virtual Observatory (AVO) will allow astronomers to overcome the challenges and enable them to "put the Universe online". AVO is supported by the European Commission The AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The European Commission awarded a contract valued at 4 million Euro for the AVO project , starting 15 November 2001. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the 'real' sky would, in comparison, be both costly and take far too long. Towards a Global Virtual Observatory The need for virtual observatories has also been recognised by other astronomical communities. The National Science Foundation in the USA has awarded 10 million Dollar (approx. 11.4 million Euro) for a National Virtual Observatory (NVO). The AVO project team has formed a close alliance with the NVO and both teams have representatives on their respective committees. It is clear to the NVO and AVO communities that there are no intrinsic boundaries to the virtual observatory concept and that all astronomers should be working towards a truly global virtual observatory that will enable new science to be carried out on the wealth of astronomical data held in the growing number of first class international astronomical archives. The AVO involves six partner organisations led by the European Southern Observatory (ESO) in Munich (Germany). The other partner organisations are the European Space Agency (ESA) , the United Kingdom's ASTROGRID consortium, the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS) at the University Louis Pasteur in Strasbourg (France), the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris and the Jodrell Bank Observatory of the Victoria University of Manchester (UK). Note [1]: This is a joint Press Release issued by the European Southern Observatory (ESO), the Hubble European Space Agency Information Centre, ASTROGRID, CDS, TERAPIX/CNRS and the University of Manchester. A 13 minute background video (broadcast PAL) is available from ESO PR and the Hubble European Space Agency Information Centre (addresses below). This will also be transmitted via satellite Wednesday 12 December 2001 from 12:00 to 12:15 CET on "ESA TV Service", cf. http://television.esa.int. An international conference, "Toward an International Virtual Observatory" will take place at ESO (Garching, Germany) on June 10 - 14, 2002. Contacts AVO Contacts Peter Quinn European Southern Observatory Garching, Germany Tel.: +4989-3200-6509 email: pjq@eso.org Piero Benvenuti Space Telescope-European Coordinating Facility Garching, Germany Tel.: +49-89-3200-6290 email: pbenvenu@eso.org Andy Lawrence (on behalf of The ASTROGRID Consortium) Institute for Astronomy University of Edinburgh United Kingdom Tel.: +44-131-668-8346/56 email: al@roe.ac.uk Francoise Genova Centre de Données Astronomiques de Strasbourg (CDS) France Tel.: +33-390-24-24-76 email: genova@astro.u-strasbg.fr Yannick Mellier CNRS, Delegation Paris A (CNRSDR01-Terapix)/IAP/INSU France Tel.: +33-1-44-32-81-40 email: mellier@iap.fr Phil Diamond University of Manchester/Jodrell Bank Observatory United Kingdom Tel.: +44-147-757-2625 email: pdiamond@jb.man.ac.uk PR Contacts Richard West European Southern Observatory Garching, Germany Tel.: +49-89-3200-6276 email: rwest@eso.org Lars Lindberg Christensen Hubble European Space Agency Information Centre Garching, Germany Tel.: +49-89-3200-6306 or +49-173-38-72-621 email: lars@eso.org Ray Footman The ASTROGRID Consortium/University of Edinburgh United Kingdom Tel.: +44-131-650-2249 email: r.footman@ed.ac.uk Philippe Chauvin Terapix/CDS CNRS, Delegation Paris A, IAP/INSU France Tel.: +33 1 44 96 43 36 email: philippe.chauvin@cnrs-dir.fr Agnes Villanueva University of Strasbourg France Tel.: +33 3 90 24 11 35 email: agnes.villanueva@adm-ulp.u-strasbg.fr Ian Morison University of Manchester/Jodrell Bank Observatory United Kingdom Tel.: +44 1477 572610 email: im@jb.man.ac.uk Appendix: Introduction to Europe's Astrophysical Virtual Observatory (AVO) The Digital Data Revolution Over the past thirty years, astronomers have moved from photographic and analogue techniques towards the use of high-speed, digital instruments connected to specialised telescopes to study the Universe. Whether these instruments are onboard spacecraft or located at terrestrial observatories, the data they produce are stored digitally on computer systems for later analysis. Two Challenges This data revolution has created two challenges for astronomers. Firstly, as the capability of digital detector systems has advanced, the volume of digital data that astronomical facilities are producing has expanded greatly. The rate of growth of the volume of stored data far exceeds the rate of increase in the performance of computer systems or storage devices. Secondly, astronomers have realised that many important insights into the deepest secrets in the Universe can come from combining information obtained at many wavelengths into a consistent and comprehensive physical picture . However, because the datasets from different parts of the spectrum come from different observatories using different instruments, the data are not easily combined. To unite data from different observatories, bridges must be built between digital archives to allow them to share data and "interoperate" - an important and challenging task. The Human Factor These challenges are not only technological. Our brains are not equipped to for instance analyse simultaneously the millions and millions of images available. Astronomers must adapt and learn to deal with such diverse and extensive sets of data. The "digital sky" has the potential to become a vital tool with novel and fascinating capabilities that are essential for astronomers to make progress in their understanding of the Cosmos. But astronomers must be able to find the relevant information quickly and efficiently. Currently the data needed by a particular research program may well be stored in the archives already, but the tools and methods have not yet been developed to extract the relevant information from the flood of images available. A new way of thinking, a new frame of mind and a new approach are needed. The Astrophysical Virtual Observatory The Astrophysical Virtual Observatory (AVO) will allow astronomers to overcome the challenges and extract data from the digital sky, thus "putting the Universe online" . Like a search engine helps us to find information on the Internet, astronomers need sophisticated "search engines" as well as other tools to find and interpret the information. "We're drowning in information and starving for knowledge", a Yale University librarian once said. Or to paraphrase a popular series on TV: "The information is out there, but you have to find it!" Using the latest in computer technology, data storage and analysis techniques, AVO will maximise the potential for new scientific insights from the stored data by making them available in a readily accessible and seamlessly unified form to professional researchers, amateur astronomers and students. Users of AVO will have immense multi-wavelength vistas of the digital Universe at their fingertips and the potential to make breathtaking new discoveries. Virtual observatories signal a new era, where data collected by a multitude of sophisticated telescopes can be used globally and repeatedly to achieve substantial progress in the quest for knowledge. The AVO project, funded by the European Commission, is a three-year study of the design and implementation of a virtual observatory for European astronomy. A virtual observatory is a collection of connected data archives and software tools that utilise the Internet to form a scientific research environment in which new multi-wavelength astronomical research programs can be conducted. In much the same way as a real observatory consists of telescopes, each with a collection of unique astronomical instruments, the virtual observatory consists of a collection of data centres each with unique collections of astronomical data, software systems and processing capabilities. The programme will implement and test a prototype virtual observatory , focussing on the key areas of scientific requirements, interoperability and new technologies such as the GRID, needed to link powerful computers to the newly formed large data repositories. The GRID and the Future of the Internet The technical problems astronomers have to solve are similar to those being worked on by particle physicists, by biologists, and by commercial companies who want to search and fill customer databases across the world. The emerging idea is that of the GRID where computers collaborate across the Internet. The World Wide Web made words and pictures available to anybody at the click of a mouse. The GRID will do the same for data, and for computer processing power. Anybody can have the power of a supercomputer sitting on their desktop. The Astrophysical Virtual Observatory, and GRID projects like the ASTROGRID project in the United Kingdom (funding 5 million UK Pounds or 8 million Euro), are closely linked to these developments.

  4. Lyα emitters in the GOODS-S field. A powerful pure nebular SED with N IV] emission at z = 5.563

    NASA Astrophysics Data System (ADS)

    Raiter, A.; Fosbury, R. A. E.; Teimoorinia, H.

    2010-02-01

    Context. The Great Observatories Origins Deep Survey (GOODS) has provided us with one of the deepest multi-wavelength views of the distant universe. The combination of multi-band photometry and optical spectroscopy has resulted in the identification of sources whose redshifts extend to values in excess of six. Amongst these distant sources are Lyα emitters whose nature must be deduced by clearly identifying the different components that contribute to the measured SED. Aims: From a sample of Lyα emitters in the GOODS-S field with uncontaminated photometry and optical (red) spectroscopy, we select a spatially compact object at a redshift of 5.563 (Lyα) that shows a second emission line, identified as N IV] 1486 Å. The SED is modelled in a way that accounts for both the N IV] line emission and the photometry in a self-consistent way. Methods: The photoionization code CLOUDY is used to calculate a range of nebular models as a function of stellar ionizing source temperature, ionization parameter, density and nebular metallicity. We compare the theoretical and observed magnitudes and search for the model parameters that also reproduce the observed N IV] luminosity and equivalent width. Results: A nebular model with a hot blackbody ionizing source of around 100 kK and a nebular metallicity of ~5% of solar is able to fit the observed SED and, in particular, explain the large apparent Balmer break which is inferred from the pure stellar population model fitting conventionally applied to multi-band photometric observations. In our model, an apparent spectral break is produced by strong [O III] 4959, 5007 Å emission falling in one of the IR bands (IRAC1 in this case). A lower limit on the total baryonic mass of a model of this type is 3.2 ×10^8~M⊙. Conclusions: It is argued that objects with Lyα emission at high redshift that show an apparent Balmer break may have their SED dominated by nebular emission and so could possibly be identified with very young starbursting galaxies rather than massive evolved stellar populations. Detailed studies of these emission nebulæ with large telescopes will provide a unique insight into very early chemical evolution. Based on observations made at the European Southern Observatory, Paranal, Chile (ESO programme 170.A-0788) The Great Observatories Origins Deep Survey: ESO Public Observations of the SIRTF Legacy/HST Treasury/Chandra Deep Field South.); on observations obtained with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc.; and on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  5. VizieR Online Data Catalog: Stellar mass of brightest cluster galaxies (Bellstedt+, 2016)

    NASA Astrophysics Data System (ADS)

    Bellstedt, S.; Lidman, C.; Muzzin, A.; Franx, M.; Guatelli, S.; Hill, A. R.; Hoekstra, H.; Kurinsky, N.; Labbe, I.; Marchesini, D.; Marsan, Z. C.; Safavi-Naeini, M.; Sifon, C.; Stefanon, M.; van de Sande, J.; van Dokkum, P.; Weigel, C.

    2017-11-01

    We utilize a sample of 98 newly imaged galaxy clusters from the RELICS (REd Lens Infrared Cluster Survey) survey within this study. The data were collected during six observing runs on three instruments over a period spanning from 2013 October to 2015 March. The instruments utilized were the SofI2 camera on the New Technology Telescope at the European Southern Observatory (ESO) La Silla Observatory in Chile, WHIRC3 on the WIYN telescope at the Kitt Peak National Observatory and LIRIS4 on the William Herschel Telescope (WHT) in La Palma, Spain. (2 data files).

  6. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Smiljanic, R.; Romano, D.; Bragaglia, A.; Donati, P.; Magrini, L.; Friel, E.; Jacobson, H.; Randich, S.; Ventura, P.; Lind, K.; Bergemann, M.; Nordlander, T.; Morel, T.; Pancino, E.; Tautvaišienė, G.; Adibekyan, V.; Tosi, M.; Vallenari, A.; Gilmore, G.; Bensby, T.; François, P.; Koposov, S.; Lanzafame, A. C.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-05-01

    Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~1.5-2.0 M⊙. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to very different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. Aims: We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey. Our aim is to obtain better observational constraints on the behavior of these elements using two samples: I) more than 600 dwarfs of the solar neighborhood and of open clusters and II) low- and intermediate-mass clump giants in six open clusters. Methods: Abundances were determined using high-resolution UVES spectra. The individual Na abundances were corrected for nonlocal thermodynamic equilibrium effects. For the Al abundances, the order of magnitude of the corrections was estimated for a few representative cases. For giants, the abundance trends with stellar mass are compared to stellar evolution models. For dwarfs, the abundance trends with metallicity and age are compared to detailed chemical evolution models. Results: Abundances of Na in stars with mass below ~2.0 M⊙, and of Al in stars below ~3.0 M⊙, seem to be unaffected by internal mixing processes. For more massive stars, the Na overabundance increases with stellar mass. This trend agrees well with predictions of stellar evolutionary models. For Al, our only cluster with giants more massive than 3.0 M⊙, NGC 6705, is Al enriched. However, this might be related to the environment where the cluster was formed. Chemical evolution models that well fit the observed [Na/Fe] vs. [Fe/H] trend in solar neighborhood dwarfs cannot simultaneously explain the run of [Al/Fe] with [Fe/H], and vice versa. The comparison with stellar ages is hampered by severe uncertainties. Indeed, reliable age estimates are available for only a half of the stars of the sample. We conclude that Al is underproduced by the models, except for stellar ages younger than about 7 Gyr. In addition, some significant source of late Na production seems to be missing in the models. Either current Na and Al yields are affected by large uncertainties, and/or some important Galactic source(s) of these elements has as yet not been taken into account. Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey), and on data obtained from the ESO Archive originally observed under programs 60.A-9143, 076.B-0263 and 082.D-0726.Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A115

  7. Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS)

    NASA Astrophysics Data System (ADS)

    Botticella, M. T.; Riello, M.; Cappellaro, E.; Benetti, S.; Altavilla, G.; Pastorello, A.; Turatto, M.; Greggio, L.; Patat, F.; Valenti, S.; Zampieri, L.; Harutyunyan, A.; Pignata, G.; Taubenberger, S.

    2008-02-01

    Aims:To measure the supernova (SN) rates at intermediate redshift we performed a search, the Southern inTermediate Redshift ESO Supernova Search (STRESS). Unlike most of the current high redshift SN searches, this survey was specifically designed to estimate the rate for both type Ia and core collapse (CC) SNe. Methods: We counted the SNe discovered in a selected galaxy sample measuring SN rate per unit blue band luminosity. Our analysis is based on a sample of 43 000 galaxies and on 25 spectroscopically confirmed SNe plus 64 selected SN candidates. Our approach is aimed at obtaining a direct comparison of the high redshift and local rates and at investigating the dependence of the rates on specific galaxy properties, most notably their colour. Results: The type Ia SN rate, at mean redshift z=0.3, is 0.22+0.10 +0.16-0.08 -0.14 h702 SNu, while the CC SN rate, at z=0.21, is 0.82+0.31 +0.30-0.24 -0.26 h702 SNu. The quoted errors are the statistical and systematic uncertainties. Conclusions: With respect to the local value, the CC SN rate at z=0.2 is higher by a factor of 2, whereas the type Ia SN rate remains almost constant. This implies that a significant fraction of SN Ia progenitors has a lifetime longer than 2{-}3 Gyr. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. SN rates per unit volume were found to be consistent with other measurements showing a steeper evolution with redshift for CC SNe than SNe Ia. We have exploited the link between SFH and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations. We conclude that in order to constrain the mass range of CC SN progenitors and SN Ia progenitor models it is necessary to reduce the uncertainties in the cosmic SFH. In addition it is important to apply a consistent dust extinction correction both to SF and to CC SN rate and to measure the SN Ia rate in star forming and in passively evolving galaxies over a wide redshift range. Based on observations collected at the European Southern Observatory, using the 2.2 m MPG/ESO telescope on the La Silla (ESO Programmes 62.H-0833, 63.H-0322, 64.H-0390, 67.D-0422, 68.D-0273, 69.D-0453, 72.D-0670, 72.D-0745, 73.D-0670, 74.A-9008, 75.D-0662) and using Very Large Telescope on the Cerro Paranal (ESO Programme 74.D-0714). Table [see full textsee full textsee full text], Figs. [see full textsee full textsee full text]-[see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  8. The Challenges in Metadata Management: 20+ Years of ESO Data

    NASA Astrophysics Data System (ADS)

    Vera, I.; Da Rocha, C.; Dobrzycki, A.; Micol, A.; Vuong, M.

    2015-09-01

    The European Southern Observatory Science Archive Facility has been in operations for more than 20 years. It contains data produced by ESO telescopes as well as the metadata needed for characterizing and distributing those data. This metadata is used to build the different archive services provided by the Archive. Over these years, services have been added, modified or even decommissioned creating a cocktail of new, evolved and legacy data systems. The challenge for the Archive is to harmonize the differences of those data systems to provide the community with a homogeneous experience when using ESO data. In this paper, we present ESO experience in three particular challenging areas. First discussion is dedicated to the problem of metadata quality over the time, second discusses how to integrate obsolete data models on the current services and finally we will present the challenges of ever growing databases. We describe our experience dealing with those issues and the solutions adopted to mitigate them.

  9. VizieR Online Data Catalog: CCD {Delta}a-photometry of 5 open clusters (Paunzen+, 2003)

    NASA Astrophysics Data System (ADS)

    Paunzen, E.; Pintado, O. I.; Maitzen, H. M.

    2004-01-01

    Observations of the five open clusters were performed with the Bochum 61cm (ESO-La Silla), the Helen-Sawyer-Hogg 61cm telescope (UTSO-Las Campanas Observatory), the 2.15m telescope at the Complejo Astronomico el Leoncito (CASLEO) and the L. Figl Observatory (FOA) with the 150cm telescope on Mt. Schopfl (Austria) using the multimode instrument OEFOSC (see the observation log in Table 1). (5 data files).

  10. ESO's VLT Helps ESA's Rosetta Spacecraft Prepare to Ride on a Cosmic Bullet

    NASA Astrophysics Data System (ADS)

    2002-02-01

    New Images of Comet Wirtanen's Nucleus [1] Summary New images of Comet Wirtanen's 1-km 'dirty snowball' nucleus have been obtained with the ESO Very Large Telescope at Paranal (Chile). They show this object at a distance of approx. 435 million km from the Sun, about the same as when the Rosetta spacecraft of the European Space Agency (ESA) arrives in 2011. The new observations indicate that the comet has a very low degree of activity at this point in its orbit - almost no material is seen around the nucleus. This means that there will not be so much dust near the nucleus as to make the planned landing dramatically difficult. PR Photo 06a/02 : The Nucleus of Comet Wirtanen (composite photo). PR Photo 06b/02 : Comet Wirtanen's motion in the sky (animated). A distant target ESO PR Photo 06a/02 ESO PR Photo 06a/02 [Preview - JPEG: 400 x 445 pix - 120k] [Normal - JPEG: 800 x 890 pix - 1.1M] ESO PR Photo 06b/02 ESO PR Photo 06b/02 [Animated GIF: 400 x 420 pix - 312k] Caption : PR Photo 06a/02 shows a (false-colour) composite image of the nucleus of Comet Wirtanen (the point of light at the centre), recorded on December 9, 2001, with the FORS2 multi-mode instrument at the 8.2-m VLT YEPUN Unit Telescope. It is based on four exposures and since the telescope was set to track the motion of the comet in the sky, the images of stars in the field are seen as four consecutive trails. The measured brightness and the fact that the image of the comet's 'dirty snowball' nucleus is almost star-like indicates that it is surrounded by a very small amount of gas or dust. The diameter of the nucleus is about 1 km and the distance to the comet from the Earth was approx. 534 million km. In PR Photo 06b/02 , the four exposures have been combined to show the motion of the comet during the four exposures. Technical information about the photos is available below. Chase a fast-moving comet, land on it and 'ride' it while it speeds up towards the Sun: not the script of a science-fiction movie, but the very real task of ESA's Rosetta spacecraft. New observations with the ESO Very Large Telescope (VLT) provide vital information about Comet Wirtanen - Rosetta's target - to help ESA reduce uncertainties in the mission, one of the most difficult ever to be performed. Every 5.5 years Comet Wirtanen completes an orbit around the Sun. Wirtanen has been seen during several apparitions since its discovery in 1948, but only recently have astronomers obtained detailed observations that have allowed them to estimate the comet's size and behaviour, cf. ESO PR Photos 27a-b/99. The most recent of these observations was performed in December 2001 with the ESO VLT at the Paranal Observatory in Northern Chile, cf. PR Photos 06a-b/02 , reproduced here. As a result of these observations ESA will be able to refine plans for its Rosetta mission. Good news for Rosetta Rosetta will be launched next year and it will reach Comet Wirtanen in 2011. By that time the comet will be nearly as far from the Sun as Jupiter, charging headlong towards the inner Solar System at speeds of up to 135,000 km/h. To get there and to be able to match the comet's orbit, Rosetta will need to be accelerated by several planetary swing-bys, after which the spacecraft - following a series of difficult manoeuvres - will get close to the comet, enter into orbit around it and release a lander from a height of about 1 km. The VLT observations were planned specifically to investigate the 'activity' of Wirtanen at about the same solar distance as at the time of the landing manoeuvres . Because of this timing requirement, they had to be carried out at a certain moment - unfortunately, when the comet was low in the twilight evening sky and descending rapidly towards the western horizon. However, even though the exposures therefore had to be quite short, the VLT with its superb light-gathering capability and opto-mechanical perfection was still able to produce excellent images of this rather faint, moving object (about 6 million times fainter than what can be perceived with the unaided eye). These observations have now confirmed that - at the same distance from the Sun at which the landing will take place (about 450 million km from the Sun) - the activity on Wirtanen is very low, cf. PR Photo 06a/02 . This is very good news for the mission, because it means that there will not be so much dust near the nucleus as to make the landing dramatically difficult . Landing on a 1-km snowball Cometary nuclei are small frozen bodies made of ice and dust ('dirty snowballs'). When they get close to the Sun the heat causes ices on the surface to 'evaporate'. Gas and dust grains are ejected into the surrounding space forming the comet's atmosphere (coma) and the tail. In addition to dropping a lander on Wirtanen's nucleus for detailed in-situ observations, Rosetta's task is to investigate the evolution of the comet on its way to the Sun: in fact, Rosetta will keep orbiting around Wirtanen up to the end of the mission in July 2013, at which time the comet is at its closest approach to the Sun, at about 160 million km from it. These and earlier VLT observations have also provided Rosetta mission planners with an accurate measurement of their target's size: Wirtanen's nucleus is only 1.2 km in diameter, a true cosmic bullet . "Rosetta is certainly a very challenging space mission. No one has ever tried to land on a comet before," says Gerhard Schwehm , Rosetta's Project Scientist. "We need to learn as much as possible about our target. The new VLT data will allow us to improve our models and make decisions once we get there." "It is a pleasure to help our colleagues at ESA", says ESO astronomer and comet specialist Hermann Boehnhardt . "We will continue to keep an eye on this comet, in particular when Rosetta is approaching its target. We can then provide the spacecraft controllers and the astronomers with very useful, regular updates, e.g., about the 'cometary weather' at the time of arrival." More about Rosetta Rosetta's prime scientific goal is to unravel the origin of the Solar System. The chemical composition of comets is known to reflect that of the primordial nebula that gave birth to the Solar System - in the planets, that primeval material has gone through complex processing, but not in the comets. Therefore, Rosetta will allow scientists to look back 4.6 billion years, to an epoch when the Solar System formed. Previous studies by ESA's Giotto spacecraft and by ground-based observatories have shown that comets contain complex organic molecules - compounds that are rich in carbon, hydrogen, oxygen and nitrogen. Intriguingly, these are the elements which make up nucleic acids and amino acids, essential ingredients for life as we know it. Did life on Earth begin with the help of comet seeding? Rosetta may help us to find the answer to this fundamental question. Rosetta carries 21 experiments in total. These are provided by scientific consortia from institutes across Europe and the United States. The Wirtanen observations by the VLT fall into a tradition of fruitful collaboration between the European Space Agency (ESA) and the European Southern Observatory (ESO). The two organizations, both members of the EIROFORUM collaboration ( ESO PR 12/01 ), are already combining their efforts in several strategic areas, in order to facilitate the synergy between space and ground facilities, where mutual sharing of technology and procedures can result in substantial gains and savings.

  11. Catch a Star 2008!

    NASA Astrophysics Data System (ADS)

    2007-10-01

    ESO and the European Association for Astronomy Education have just launched the 2008 edition of 'Catch a Star', their international astronomy competition for school students. Now in its sixth year, the competition offers students the chance to win a once-in-a-lifetime trip to ESO's flagship observatory in Chile, as well as many other prizes. CAS logo The competition includes separate categories - 'Catch a Star Researchers' and 'Catch a Star Adventurers' - to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. In teams, students investigate an astronomical topic of their choice and write a report about it. An important part of the project for 'Catch a Star Researchers' is to think about how ESO's telescopes such as the Very Large Telescope (VLT) or future telescopes such as the Atacama Large Millimeter/submillimeter Array (ALMA) and the European Extremely Large Telescope (E-ELT) could contribute to investigations of the topic. Students may also include practical activities such as observations or experiments. For the artistically minded, 'Catch a Star' also offers an artwork competition, 'Catch a Star Artists'. Last year, hundreds of students from across Europe and beyond took part in 'Catch a Star', submitting astronomical projects and artwork. "'Catch a Star' gets students thinking about the wonders of the Universe and the science of astronomy, with a chance of winning great prizes. It's easy to take part, whether by writing about astronomy or creating astronomically inspired artwork," said Douglas Pierce-Price, Education Officer at ESO. As well as the top prize - a trip to ESO's Very Large Telescope in Chile - visits to observatories in Austria and Spain, and many other prizes, can also be won. 'Catch a Star Researchers' winners will be chosen by an international jury, and 'Catch a Star Adventurers' will be awarded further prizes by lottery. Entries for 'Catch a Star Artists' will be displayed on the web and winners chosen with the help of a public online vote. Detailed entry information and rules can be found at http://www.eso.org/catchastar/cas2008/. The deadline for submitting an entry for the 2008 competition is Friday 29 February 2008, 17:00 Central European Time.

  12. Pulsation in the presence of a strong magnetic field: the roAp star HD166473

    NASA Astrophysics Data System (ADS)

    Mathys, G.; Kurtz, D. W.; Elkin, V. G.

    2007-09-01

    Phase-resolved high-resolution, high signal-to-noise ratio (S/N) observations of the strongly magnetic roAp star HD166473 are analysed. HD166473 was selected as the target of this study because it has one of the strongest magnetic fields of all the roAp stars known with resolved magnetically split lines. Indeed, we show that enhanced pulsation diagnosis can be achieved from consideration of the different pulsation behaviour of the π and σ Zeeman components of the resolved spectral lines. This study is based on a time-series of high spectral resolution observations obtained with the Ultraviolet and Visual Echelle Spectrograph of the Very Large Telescope of the European Southern Observatory. Radial velocity variations due to pulsation are observed in rare earth lines, with amplitudes up to 110ms-1. The variations occur with three frequencies, already detected in photometry, but which can in this work be determined with better precision: 1.833, 1.886 and 1.928mHz. The pulsation amplitudes and phases observed in the rare earth element lines vary with atmospheric height, as is the case in other roAp stars studied in detail. Lines of Fe and of other (mostly non-rare earth) elements do not show any variation to very high precision (1.5ms-1 in the case of Fe). The low amplitudes of the observed variations do not allow the original goal of studying differences between the behaviour of the resolved Zeeman line components to be reached; the S/N achieved in the radial velocity determinations is insufficient to establish definitely the possible existence of such differences. Yet the analysis provides a tantalizing hint at the occurrence of variations of the mean magnetic field modulus with the pulsation frequency, with an amplitude of 21 +/- 5G. Based on observations collected at the European Southern Observatory, Paranal, Chile, as part of programme 067.D-0272. E-mail: gmathys@eso.org

  13. Optical, Near-IR, and X-Ray Observations of SN 2015J and Its Host Galaxy

    NASA Astrophysics Data System (ADS)

    Nucita, A. A.; De Paolis, F.; Saxton, R.; Testa, V.; Strafella, F.; Read, A.; Licchelli, D.; Ingrosso, G.; Convenga, F.; Boutsia, K.

    2017-12-01

    SN 2015J was discovered on 2015 April 27th and is classified as an SN IIn. At first, it appeared to be an orphan SN candidate, I.e., without any clear identification of its host galaxy. Here, we present an analysis of the observations carried out by the VLT 8 m class telescope with the FORS2 camera in the R band and the Magellan telescope (6.5 m) equipped with the IMACS Short-Camera (V and I filters) and the FourStar camera (Ks filter). We show that SN 2015J resides in what appears to be a very compact galaxy, establishing a relation between the SN event and its natural host. We also present and discuss archival and new X-ray data centered on SN 2015J. At the time of the supernova explosion, Swift/XRT observations were made and a weak X-ray source was detected at the location of SN 2015J. Almost one year later, the same source was unambiguously identified during serendipitous observations by Swift/XRT and XMM-Newton, clearly showing an enhancement of the 0.3-10 keV band flux by a factor ≃ 30 with respect to the initial state. Swift/XRT observations show that the source is still active in the X-rays at a level of ≃ 0.05 counts s-1. The unabsorbed X-ray luminosity derived from the XMM-Newton slew and SWIFT observations, {L}x≃ 5× {10}41 erg s-1, places SN 2015J among the brightest young supernovae in X-rays. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, with ESO Telescopes at the La Silla-Paranal Observatory under program ID 298.D-5016(A), and with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. We also acknowledge the use of public data from the Swift data archive.

  14. Gemini Frontier Fields: Wide-field Adaptive Optics Ks-band Imaging of the Galaxy Clusters MACS J0416.1-2403 and Abell 2744

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Carrasco, E. R.; Pessev, P.; Garrel, V.; Winge, C.; Neichel, B.; Vidal, F.

    2015-04-01

    We have observed two of the six Frontier Fields galaxy clusters, MACS J0416.1-2403 and Abell 2744, using the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and the Gemini South Adaptive Optics Imager (GSAOI). With 0.″ 08-0.″ 10 FWHM our data are nearly diffraction-limited over a 100\\prime\\prime × 100\\prime\\prime wide area. GeMS/GSAOI complements the Hubble Space Telescope (HST) redwards of 1.6 μm with twice the angular resolution. We reach a 5σ depth of {{K}s}˜ 25.6 mag (AB) for compact sources. In this paper, we describe the observations, data processing, and initial public data release. We provide fully calibrated, co-added images matching the native GSAOI pixel scale as well as the larger plate scales of the HST release, adding to the legacy value of the Frontier Fields. Our work demonstrates that even for fields at high galactic latitude where natural guide stars are rare, current multi-conjugated adaptive optics technology at 8 m telescopes has opened a new window on the distant universe. Observations of a third Frontier Field, Abell 370, are planned. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile.

  15. A Pool of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    2008-11-01

    Anyone who has wondered what it might be like to dive into a pool of millions of distant galaxies of different shapes and colours, will enjoy the latest image released by ESO. Obtained in part with the Very Large Telescope, the image is the deepest ground-based U-band image of the Universe ever obtained. It contains more than 27 million pixels and is the result of 55 hours of observations with the VIMOS instrument. A Sea of Galaxies ESO PR Photo 39/08 A Pool of Distant Galaxies This uniquely beautiful patchwork image, with its myriad of brightly coloured galaxies, shows the Chandra Deep Field South (CDF-S), arguably the most observed and best studied region in the entire sky. The CDF-S is one of the two regions selected as part of the Great Observatories Origins Deep Survey (GOODS), an effort of the worldwide astronomical community that unites the deepest observations from ground- and space-based facilities at all wavelengths from X-ray to radio. Its primary purpose is to provide astronomers with the most sensitive census of the distant Universe to assist in their study of the formation and evolution of galaxies. The new image released by ESO combines data obtained with the VIMOS instrument in the U- and R-bands, as well as data obtained in the B-band with the Wide-Field Imager (WFI) attached to the 2.2 m MPG/ESO telescope at La Silla, in the framework of the GABODS survey. The newly released U-band image - the result of 40 hours of staring at the same region of the sky and just made ready by the GOODS team - is the deepest image ever taken from the ground in this wavelength domain. At these depths, the sky is almost completely covered by galaxies, each one, like our own galaxy, the Milky Way, home of hundreds of billions of stars. Galaxies were detected that are a billion times fainter than the unaided eye can see and over a range of colours not directly observable by the eye. This deep image has been essential to the discovery of a large number of new galaxies that are so far away that they are seen as they were when the Universe was only 2 billion years old. In this sea of galaxies - or island universes as they are sometimes called - only a very few stars belonging to the Milky Way are seen. One of them is so close that it moves very fast on the sky. This "high proper motion star" is visible to the left of the second brightest star in the image. It appears as a funny elongated rainbow because the star moved while the data were being taken in the different filters over several years. Notes Because the Universe looks the same in all directions, the number, types and distribution of galaxies is the same everywhere. Consequently, very deep observations of the Universe can be performed in any direction. A series of fields were selected where no foreground object could affect the deep space observations (such as a bright star in our galaxy, or the dust from our Solar System). These fields have been observed using a number of telescopes and satellites, so as to collect information at all possible wavelengths, and characterise the full spectrum of the objects in the field. The data acquired from these deep fields are normally made public to the whole community of astronomers, constituting the basis for large collaborations. Observations in the U-band, that is, at the boundary between visible light and ultraviolet are challenging: the Earth's atmosphere becomes more and more opaque out towards the ultraviolet, a useful property that protects people's skin, but limiting to ground-based telescopes. At shorter wavelengths, observations can only be done from space, using, for example, the Hubble Space Telescope. On the ground, only the very best sites, such as ESO's Paranal Observatory in the Atacama Desert, can perform useful observations in the U-band. Even with the best atmospheric conditions, instruments are at their limit at these wavelengths: the glass of normal lenses transmits less UV light, and detectors are less sensitive, so only instruments designed for UV observations, such as VIMOS on ESO's Very Large Telescope, can get enough light. The VIMOS U-band image, which was obtained as part of the ESO/GOODS public programme, is based on 40 hours of observations with the VLT. The VIMOS R-band image was obtained co-adding a large number of archival images totaling 15 hours of exposure. The WFI B-band image is part of the GABODS survey.

  16. The Shortest Period sdB Plus White Dwarf Binary CD-30 11223 (GALEX J1411-3053)

    NASA Astrophysics Data System (ADS)

    Vennes, S.; Kawka, A.; O'Toole, S. J.; Németh, P.; Burton, D.

    2012-11-01

    We report on the discovery of the shortest period binary comprising a hot subdwarf star (CD-30 11223, GALEX J1411-3053) and a massive unseen companion. Photometric data from the All Sky Automated Survey show ellipsoidal variations of the hot subdwarf primary and spectroscopic series revealed an orbital period of 70.5 minutes. The large velocity amplitude suggests the presence of a massive white dwarf in the system (M 2/M ⊙ >~ 0.77) assuming a canonical mass for the hot subdwarf (0.48 M ⊙), although a white dwarf mass as low as 0.75 M ⊙ is allowable by postulating a subdwarf mass as low as 0.44 M ⊙. The amplitude of ellipsoidal variations and a high rotation velocity imposed a high-inclination to the system (i >~ 68°) and, possibly, observable secondary transits (i >~ 74°). At the lowest permissible inclination and assuming a subdwarf mass of ~0.48 M ⊙, the total mass of the system reaches the Chandrasekhar mass limit at 1.35 M ⊙ and would exceed it for a subdwarf mass above 0.48 M ⊙. The system should be considered, like its sibling KPD 1930+2752, a candidate progenitor for a Type Ia supernova. The system should become semi-detached and initiate mass transfer within ≈30 Myr. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program IDs 83.D-0540, 85.D-0866, and 089.D-0864.

  17. Tracing the evolution of the Galactic bulge with chemodynamical modelling of alpha-elements

    NASA Astrophysics Data System (ADS)

    Friaça, A. C. S.; Barbuy, B.

    2017-02-01

    Context. Galactic bulge abundances can be best understood as indicators of bulge formation and nucleosynthesis processes by comparing them with chemo-dynamical evolution models. Aims: The aim of this work is to study the abundances of alpha-elements in the Galactic bulge, including a revision of the oxygen abundance in a sample of 56 bulge red giants. Methods: Literature abundances for O, Mg, Si, Ca and Ti in Galactic bulge stars are compared with chemical evolution models. For oxygen in particular, we reanalysed high-resolution spectra obtained using FLAMES+UVES on the Very Large Telescope, now taking each star's carbon abundances, derived from CI and C2 lines, into account simultaneously. Results: We present a chemical evolution model of alpha-element enrichment in a massive spheroid that represents a typical classical bulge evolution. The code includes multi-zone chemical evolution coupled with hydrodynamics of the gas. Comparisons between the model predictions and the abundance data suggest a typical bulge formation timescale of 1-2 Gyr. The main constraint on the bulge evolution is provided by the O data from analyses that have taken the C abundance and dissociative equilibrium into account. Mg, Si, Ca and Ti trends are well reproduced, whereas the level of overabundance critically depends on the adopted nucleosynthesis prescriptions. Observations collected both at the European Southern Observatory, Paranal, Chile (ESO programmes 71.B-0617A, 73.B0074A, and GTO 71.B-0196)

  18. 4MOST optical system: presentation and design details

    NASA Astrophysics Data System (ADS)

    Azaïs, Nicolas; Frey, Steffen; Bellido, Olga; Winkler, Roland

    2017-09-01

    The 4-meter Multi-Object Spectroscopic Telescope (4MOST) is a wide-field, high-multiplex spectroscopic survey facility under development for the Visible and Infrared Survey Telescope for Astronomy (VISTA) 4 meter telescope of the European Southern Observatory (ESO) at Cerro Paranal. The objective of 4MOST is to enable the simultaneous spectroscopy of a significant number of targets within a 2.5° diameter field of view, to allow high-efficiency all-sky spectroscopic surveys. A wide field corrector (WFC) is needed to couple targets across the 2.5° field diameter with the exit pupil concentric with the spherical focal surface where 2400 fibres are configured by a fibre positioner (AESOP). For optimal fibre optic coupling and active optics wavefront sensing the WFC will correct optical aberrations of the primary (M1) and secondary (M2) VISTA optics across the full field of view and provide a well-defined and stable focal surface to which the acquisition/guiding sensors, wavefront sensors, and fibre positioner are interfaced. It will also compensate for the effects of atmospheric dispersion, allowing good chromatic coupling of stellar images with the fibre apertures over a wide range of telescope zenith angles (ZD). The fibres feed three spectrographs; two thirds of the fibres will feed two low resolution spectrographs and the remaining 812 fibres will feed a high-resolution spectrograph. The three spectrographs are fixed-configuration with three channels each. We present the 4MOST optical system together with optical simulation of subsystems.

  19. The 13Carbon footprint of B[e] supergiants

    NASA Astrophysics Data System (ADS)

    Liermann, A.; Kraus, M.; Schnurr, O.; Fernandes, M. Borges

    2010-10-01

    We report on the first detection of 13C enhancement in two B[e] supergiants (B[e]SGs) in the Large Magellanic Cloud. Stellar evolution models predict the surface abundance in 13C to strongly increase during main-sequence and post-main-sequence evolution of massive stars. However, direct identification of chemically processed material on the surface of B[e]SGs is hampered by their dense, disc-forming winds, hiding the stars. Recent theoretical computations predict the detectability of enhanced 13C via the molecular emission in 13CO arising in the circumstellar discs of B[e]SGs. To test this potential method and to unambiguously identify a post-main-sequence B[e] SG by its 13CO emission, we have obtained high-quality K-band spectra of two known B[e] SGs in the Large Magellanic Cloud, using the Very Large Telescope's Spectrograph for INtegral Field Observation in the Near-Infrared (VLT/SINFONI). Both stars clearly show the 13CO band emission, whose strength implies a strong enhancement of 13C, in agreement with theoretical predictions. This first ever direct confirmation of the evolved nature of B[e]SGs thus paves the way to the first identification of a Galactic B[e]SG. Based on observations collected with the ESO VLT Paranal Observatory under programme 384.D-1078(A). E-mail: liermann@mpifr-bonn.mpg.de (AL); kraus@sunstel.asu.cas.cz (MK); oschnurr@aip.de (OS); borges@on.br (MBF)

  20. Searching for helium in the exosphere of HD 209458b

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Coustenis, A.; Schneider, J.; Queloz, D.; Mayor, M.

    2003-07-01

    Atmospheric models of the extrasolar, close-in giant planet HD 209458b predict strong absorption features from alkali metals (Seager & Sasselov \\cite{Seager00}; Brown 2001). This was confirmed by the discovery of NaI by HST observations (Charbonneau et al. \\cite{Charbonneau02}). In this study we focus on the search for the helium absorption feature at 10 830 Å, also predicted to be among the strongest ones. Helium is a major component of the planet's exosphere, for which models are yet not as robust as atmosphere models. One full transit was observed with the VLT/ISAAC instrument. We do not report the detection of the HeI feature. The data set is strongly affected by instrumental fringing, at a level up to 5% in the extracted spectra. After filtering, a residual noise of the order of 0.2% remains. An upper limit of the HeI line was derived, which further constrains future models of the HD 209458b planet exosphere. This upper limit, in terms of the feature depth, is 0.5% at 3sigma for a 3 Å bandwidth. Prospects are proposed to lower the detectability limit; the ultimate detectability limit with ISAAC in the absence of electronic fringing and in ideal atmospheric conditions could be as low as a line depth of 0.1% (3 Å width, 3sigma ). Based on data acquired on the Very Large Telescope at Paranal Observatory, ESO Chile.

  1. First two ALMA antennas successfully linked

    NASA Astrophysics Data System (ADS)

    2009-05-01

    Scientists and engineers working on the world's largest ground-based astronomical project, the Atacama Large Millimeter/submillimeter Array (ALMA), have achieved another milestone -- the successful linking of two ALMA astronomical antennas, synchronised with a precision of one millionth of a millionth of a second -- to observe the planet Mars. ALMA is under construction by an international partnership in the Chilean Andes. ESO PR Photo 18a/09 The two ALMA antennas On 30 April, the team observed the first "interferometric fringes" of an astronomical source by linking two 12-metre diameter ALMA antennas, together with the other critical parts of the system. Mars was chosen as a suitable target for the observations, which demonstrate ALMA's full hardware functionality and connectivity. This important milestone was achieved at the ALMA Operations Support Facility, high in Chile's Atacama region, at an altitude of 2900 metres. "We're very proud and excited to have made this crucial observation, as it proves that the various hardware components work smoothly together. This brings us another step closer to full operations for ALMA as an astronomical observatory," says Wolfgang Wild, the European ALMA Project Manager. The two antennas used in this test will be part of ALMA's array of 66 giant 12-metre and 7-metre diameter antennas that will observe in unison as a single giant telescope, under construction on the Chajnantor plateau above the Operations Support Facility, at an altitude of 5000 metres. ALMA will operate as an interferometer, capturing millimetre and submillimetre wavelength signals from the sky with multiple antennas, and combining them to create extremely high resolution images, similar to those that would be obtained by a single, giant antenna with a diameter equal to the distance between the antennas used. "This can only be achieved with the perfect synchronisation of the antennas and the electronic equipment: a precision much better than one millionth of a millionth of a second between equipment located many kilometers apart. The extreme environment where the ALMA observatory is located, with its strong winds, high altitude, and wide range of temperatures, just adds to the complexity of the observatory and to the fascinating engineering challenges we face", comments Richard Murowinski, ALMA Project Engineer. The astronomical target in this scientific milestone was the planet Mars. The astronomers measured the distinctive "fringes" -- a regular pattern of alternating strong and weak signals -- detected by the interferometer as the planet moved across the sky. The hardware used in this successful first test included two 12-metre diameter ALMA antennas as well as the complex series of electronic processing components needed to combine the signals. Such pairs of antennas are the basic building blocks of imaging systems that enable radio telescopes to deliver pictures that approach or even exceed the resolving power of visible light telescopes. Each antenna is combined electronically with every other antenna to form a multitude of antenna pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in early in the next decade, ALMA's 66 antennas will provide over a thousand such antenna pairings, with distances between antennas up to 16 kilometres. This will enable ALMA to see with a sharpness surpassing that of the best space telescopes, and to complement ground-based optical interferometers such as the ESO Very Large Telescope Interferometer (VLTI). "We are on target to do the first interferometry tests at the 5000-metre high-altitude site by the end of this year, and by the end of 2011 we plan to have at least 16 antennas working together as a single giant telescope," said Thijs de Graauw, ALMA Director. Notes for editors ALMA is a revolutionary astronomical telescope, comprising an array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. ALMA, which will start scientific observations in 2011, is the most powerful telescope for observing the cool Universe -- molecular gas and dust as well as the relic radiation of the Big Bang. ALMA will study the building blocks of stars, planetary systems, galaxies and life itself, and will address some of the deepest questions of our cosmic origins. ALMA will operate at wavelengths of 0.3 to 9.6 mm. At these wavelengths, a high, dry site is needed for the telescope to be able to see through the Earth's atmosphere. This is why ALMA is being built on the breathtaking 5000-metre-high plateau of Chajnantor in the Atacama region of Chile, the highest astronomy site in the world. ALMA will offer unprecedented sensitivity and resolution. The 12-metre antennas will have reconfigurable baselines ranging from 15 m to 16 km. ALMA will have a resolution ten times better than the Hubble Space Telescope. The ALMA project is a partnership between the scientific communities of East Asia, Europe and North America with Chile. ESO is the European partner in ALMA. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in the Atacama Desert region of Chile: La Silla, Paranal and Chajnantor.

  2. The Atacama Large Millimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    1999-06-01

    The Atacama Large Millimeter Array (ALMA) is the new name [2] for a giant millimeter-wavelength telescope project. As described in the accompanying joint press release by ESO and the U.S. National Science Foundation , the present design and development phase is now a Europe-U.S. collaboration, and may soon include Japan. ALMA may become the largest ground-based astronomy project of the next decade after VLT/VLTI, and one of the major new facilities for world astronomy. ALMA will make it possible to study the origins of galaxies, stars and planets. As presently envisaged, ALMA will be comprised of up to 64 12-meter diameter antennas distributed over an area 10 km across. ESO PR Photo 24a/99 shows an artist's concept of a portion of the array in a compact configuration. ESO PR Video Clip 03/99 illustrates how all the antennas will move in unison to point to a single astronomical object and follow it as it traverses the sky. In this way the combined telescope will produce astronomical images of great sharpness and sensitivity [3]. An exceptional site For such observations to be possible the atmosphere above the telescope must be transparent at millimeter and submillimeter wavelengths. This requires a site that is high and dry, and a high plateau in the Atacama desert of Chile, probably the world's driest, is ideal - the next best thing to outer space for these observations. ESO PR Photo 24b/99 shows the location of the chosen site at Chajnantor, at 5000 meters altitude and 60 kilometers east of the village of San Pedro de Atacama, as seen from the Space Shuttle during a servicing mission of the Hubble Space Telescope. ESO PR Photo 24c/99 and ESO PR Photo 24d/99 show a satellite image of the immediate vicinity and the site marked on a map of northern Chile. ALMA will be the highest continuously operated observatory in the world. The stark nature of this extreme site is well illustrated by the panoramic view in ESO PR Photo 24e/99. High sensitivity and sharp images ALMA will be extremely sensitive to radiation at milllimeter and submillimeter wavelengths. The large number of antennas gives a total collecting area of over 7000 square meters, larger than a football field. At the same time, the shape of the surface of each antenna must be extremely precise under all conditions; the overall accuracy over the entire 12-m diameter must be better than 0.025 millimeters (25µm), or one-third of the diameter of a human hair. The combination of large collecting area and high precision results in extremely high sensitivity to faint cosmic signals. The telescope must also be able to resolve the fine details of the objects it detects. In order to do this at millimeter wavelengths the effective diameter of the overall telescope must be very large - about 10 km. As it is impossible to build a single antenna with this diameter, an array of antennas is used instead, with the outermost antennas being 10 km apart. By combining the signals from all antennas together in a large central computer, it is possible to synthesize the effect of a single dish 10 km across. The resulting angular resolution is about 10 milli-arcseconds, less than one-thousandth the angular size of Saturn. Exciting research perspectives The scientific case for this revolutionary telescope is overwhelming. ALMA will make it possible to witness the formation of the earliest and most distant galaxies. It will also look deep into the dust-obscured regions where stars are born, to examine the details of star and planet formation. But ALMA will go far beyond these main science drivers, and will have a major impact on virtually all areas of astronomy. It will be a millimeter-wave counterpart to the most powerful optical/infrared telescopes such as ESO's Very Large Telescope (VLT) and the Hubble Space Telescope, with the additional advantage of being unhindered by cosmic dust opacity. The first galaxies in the Universe are expected to become rapidly enshrouded in the dust produced by the first stars. The dust can dim the galaxies at optical wavelengths, but the same dust radiates brightly at longer wavelengths. In addition, the expansion of the Universe causes the radiation from distant galaxies to be shifted to longer wavelengths. For both reasons, the earliest galaxies at the epoch of first light can be found with ALMA, and the subsequent evolution of galaxies can be mapped over cosmic time. ALMA will be of great importance for our understanding of the origins of stars and planetary systems. Stellar nurseries are completely obscured at optical wavelengths by dense "cocoons" of dust and gas, but ALMA can probe deep into these regions and study the fundamental processes by which stars are assembled. Moreover, it can observe the major reservoirs of biogenic elements (carbon, oxygen, nitrogen) and follow their incorporation into new planetary systems. A particularly exciting prospect for ALMA is to use its exceptionally sharp images to obtain evidence for planet formation by the presence of gaps in dusty disks around young stars, cleared by large bodies coalescing around the stars. Equally fundamental are observations of the dying gasps of stars at the other end of the stellar lifecycle, when they are often surrounded by shells of molecules and dust enriched in heavy elements produced by the nuclear fires now slowly dying. ALMA will offer exciting new views of our solar system. Studies of the molecular content of planetary atmospheres with ALMA's high resolving power will provide detailed weather maps of Mars, Jupiter, and the other planets and even their satellites. Studies of comets with ALMA will be particularly interesting. The molecular ices of these visitors from the outer reaches of the solar system have a composition that is preserved from ages when the solar system was forming. They evaporate when the comet comes close to the sun, and studies of the resulting gases with ALMA will allow accurate analysis of the chemistry of the presolar nebula. The road ahead The three-year design and development phase of the project is now underway as a collaboration between Europe and the U.S., and Japan may also join in this effort. Assuming the construction phase begins about two years from now, limited operations of the array may begin in 2005 and the full array may become operational by 2009. Notes [1] Press Releases about this event have also been issued by some of the other organisations participating in this project: * CNRS (in French) * MPG (in German) * NOVA (in Dutch) * NRAO * NSF (ASCII and HTML versions) * PPARC [2] "ALMA" means "soul" in Spanish. [3] Additional information about ALMA is available on the web: * Articles in the ESO Messenger - "The Large Southern Array" (March 1998), "European Site Testing at Chajnantor" (December 1998) and "The ALMA Project" (June 1999), cf. http://www.eso.org/gen-fac/pubs/messenger/ * ALMA website at ESO at http://www.eso.org/projects/alma/ * ALMA website at the U.S. National Radio Astronomy Observatory (NRAO) at http://www.mma.nrao.edu/ * ALMA website in The Netherlands about the detectors at http://www.sron.rug.nl/alma/ ALMA/Chajnantor Video Clip and Photos ESO PR Video Clip 03/99 [MPEG-version] ESO PR Video Clip 03/99 (2450 frames/1:38 min) [MPEG Video; 160x120 pix; 2.1Mb] [MPEG Video; 320x240 pix; 10.0Mb] [RealMedia; streaming; 700k] [RealMedia; streaming; 2.3M] About ESO Video Clip 03/99 : This video clip about the ALMA project contains two sequences. The first shows a panoramic scan of the Chajnantor plain from approx. north-east to north-west. The Chajnantor mountain passes through the field-of-view and the perfect cone of the Licancabur volcano (5900 m) on the Bolivian border is seen at the end (compare also with ESO PR 24e/99 below. The second is a 52-sec animation with a change of viewing perspective of the array and during which the antennas move in unison. For convenience, the clip is available in four versions: two MPEG files of different sizes and two streamer-versions of different quality that require RealPlayer software. There is no audio. Note that ESO Video News Reel No. 5 with more related scenes and in professional format with complete shot list is also available. ESO PR Photo 24b/99 ESO PR Photo 24b/99 [Preview - JPEG: 400 x 446 pix - 184k] [Normal - JPEG: 800 x 892 pix - 588k] [High-Res - JPEG: 3000 x 3345 pix - 5.4M] Caption to ESO PR Photo 24b/99 : View of Northern Chile, as seen from the NASA Space Shuttle during a servicing mission to the Hubble Space Telescope (partly visible to the left). The Atacama Desert, site of the ESO VLT at Paranal Observatory and the proposed location for ALMA at Chajnantor, is seen from North (foreground) to South. The two sites are only a few hundred km distant from each other. Few clouds are seen in this extremely dry area, due to the influence of the cold Humboldt Stream along the Chilean Pacific coast (right) and the high Andes mountains (left) that act as a barrier. Photo courtesy ESA astronaut Claude Nicollier. ESO PR Photo 24c/99 ESO PR Photo 24c/99 [Preview - JPEG: 400 x 318 pix - 212k] [Normal - JPEG: 800 x 635 pix - 700k] [High-Res - JPEG: 3000 x 2382 pix - 5.9M] Caption to ESO PR Photo 24c/99 : This satellite image of the Chajnantor area was produced in 1998 at Cornell University (USA), by Jennifer Yu, Jeremy Darling and Riccardo Giovanelli, using the Thematic Mapper data base maintained at the Geology Department laboratory directed by Bryan Isacks. It is a composite of three exposures in spectral bands at 1.6 µm (rendered as red), 1.0 µm (green) and 0.5 µm (blue). The horizontal resolution of the false-colour image is about 30 meters. North is at the top of the photo. ESO PR Photo 24d/99 ESO PR Photo 24d/99 [Preview - JPEG: 400 x 381 pix - 108k] [Normal - JPEG: 800 x 762 pix - 240k] [High-Res - JPEG: 2300 x 2191 pix - 984k] Caption to ESO PR Photo 24d/99 : Geographical map with the sites of the VLT and ALMA indicated. ESO PR Photo 24e/99 ESO PR Photo 24e/99 [Preview - JPEG: 400 x 238 pix - 93k] [Normal - JPEG: 800 x 475 pix - 279k] [High-Res - JPEG: 2862 x 1701 pix - 4.2M] Caption to ESO PR Photo 24e/99 : Panoramic view of the proposed site for ALMA at Chajnantor. This high-altitude plain (elevation 5000 m) in the Chilean Andes mountains is an ideal site for ALMA. In this view towards the north, the Chajnantor mountain (5600 m) is in the foreground, left of the centre. The perfect cone of the Licancabur volcano (5900 m) on the Bolivian border is in the background further to the left. This image is a wide-angle composite (140° x 70°) of three photos (Hasselblad 6x6 with SWC 1:4.5/38 mm Biogon), obtained in December 1998. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  3. The Cosmic Dance of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    2006-03-01

    GIRAFFE at VLT reveals the turbulent life of distant galaxies Studying several tens of distant galaxies, an international team of astronomers found that galaxies had the same amount of dark matter relative to stars 6 billion years ago as they have now. If confirmed, this suggests a much closer interplay between dark and normal matter than previously believed. The scientists also found that as many as 4 out of 10 galaxies are out of balance. These results shed a new light on how galaxies form and evolve since the Universe was only half its current age. ESO PR Photo 10a/06 ESO PR Photo 10a/06 Collision Between Galaxies (Artist's Impression) "This may imply that collisions and merging are important in the formation and evolution of galaxies", said François Hammer, Paris Observatory, France, and one of the leaders of the team [1]. The scientists were interested in finding out how galaxies that are far away - thus seen as they were when the Universe was younger - evolved into the ones nearby. In particular, they wanted to study the importance of dark matter in galaxies. "Dark matter, which composes about 25% of the Universe, is a simple word to describe something we really don't understand," said Hector Flores, co-leader. "From looking at how galaxies rotate, we know that dark matter must be present, as otherwise these gigantic structures would just dissolve." In nearby galaxies, and in our own Milky Way for that matter, astronomers have found that there exists a relation between the amount of dark matter and ordinary stars: for every kilogram of material within a star there is roughly 30 kilograms of dark matter. But does this relation between dark and ordinary matter still hold in the Universe's past? ESO PR Photo 10b/06 ESO PR Photo 10b/06 Mapping Distant Galaxies (FLAMES-GIRAFFE/VLT) This required measuring the velocity in different parts of distant galaxies, a rather tricky experiment: previous measurements were indeed unable to probe these galaxies in sufficient detail, since they had to select a single slit, i.e. a single direction, across the galaxy. Things changed with the availability of the multi-object GIRAFFE spectrograph [2], now installed on the 8.2-m Kueyen Unit Telescope of ESO's Very Large Telescope (VLT) at the Paranal Observatory (Chile). In one mode, known as "3-D spectroscopy" or "integral field", this instrument can obtain simultaneous spectra of smaller areas of extended objects like galaxies or nebulae. For this, 15 deployable fibre bundles, the so-called Integral Field Units (IFUs) , cf. ESO PR 01/02 , are used to make meticulous measurements of distant galaxies. Each IFU is a microscopic, state-of-the-art two-dimensional lens array with an aperture of 3 x 2 arcsec2 on the sky. It is like an insect's eye, with twenty micro-lenses coupled with optical fibres leading the light recorded at each point in the field to the entry slit of the spectrograph. ESO PR Photo 10c/06 ESO PR Photo 10c/06 Dark Matter and Stellar Mass in Distant Galaxies "GIRAFFE on ESO's VLT is the only instrument in the world that is able to analyze simultaneously the light coming from 15 galaxies covering a field of view almost as large as the full moon," said Mathieu Puech, lead author of one the papers presenting the results [3]. "Every galaxy observed in this mode is split into continuous smaller areas where spectra are obtained at the same time." The astronomers used GIRAFFE to measure the velocity fields of several tens of distant galaxies, leading to the surprising discovery that as much as 40% of distant galaxies were "out of balance" - their internal motions were very disturbed - a possible sign that they are still showing the aftermath of collisions between galaxies. When they limited themselves to only those galaxies that have apparently reached their equilibrium, the scientists found that the relation between the dark matter and the stellar content did not appear to have evolved during the last 6 billions years. Thanks to its exquisite spectral resolution, GIRAFFE also allows for the first time to study the distribution of gas as a function of its density in such distant galaxies. The most spectacular results reveal a possible outflow of gas and energy driven by the intense star-formation within the galaxy and a giant region of very hot gas (HII region) in a galaxy in equilibrium that produces many stars. "Such a technique can be expanded to obtain maps of many physical and chemical characteristics of distant galaxies, enabling us to study in detail how they assembled their mass during their entire life," said François Hammer. "In many respects, GIRAFFE and its multi-integral field mode gives us a first flavour of what will be achieved with future extremely large telescopes." Notes [1]: The team comprises: François Hammer, Hector Flores, Mathieu Puech, Chantal Balkowski (GEPI - Observatoire de Paris), Philippe Amram (LAM - Observatoire Astronomique Marseille-Provence), Göran Östlin (Stockholm Observatory), Thomas Marquart (Dept. of Astronomy and Space Physics - Uppsala, Sweden) and Matthew D. Lehnert (MPE, Germany). [2]: This complex and unique instrument allows obtaining high-quality spectra of a large variety of celestial objects, from individual stars in the Milky Way and other nearby galaxies, to very distant galaxies. It functions by means of multiple optical fibres that guide the light from the telescope's focal plane into the entry slit of the spectrograph. Here the light is dispersed into its different colours. GIRAFFE and these fibres are an integral part of the advanced Fibre Large Array Multi-Element Spectrograph (FLAMES) facility which also includes the OzPoz positioner and an optical field corrector. It is the outcome of a collaboration between ESO, Observatoire de Paris-Meudon, Observatoire de Genève-Lausanne and the Anglo Australian Observatory (AAO). More details are available in ESO PR 01/02. The principle of this instrument involves the positioning in the telescope's focal plane of a large number of optical fibres. This is done in such a way that each of them guides the light from one particular celestial object towards the spectrograph that records the spectra of all these objects simultaneously. The size of the available field-of-view is no less than about 25 arcmin across, i.e. almost as large as the full moon. The individual fibres are moved and positioned "on the objects" in the field by means of the OzPoz positioner. See also ESO PR 13/02. [3]: The results will be published in a series of three papers in the leading research journal, Astronomy and Astrophysics (click on the title to access the papers): "3D spectroscopy with VLT/GIRAFFE - I: The true Tully-Fisher relationship at z~ 0.6" (Flores H., Hammer F., Puech M. et al.); "3D spectroscopy with VLT/GIRAFFE - II: Are Luminous Compact Galaxies merger remnants?" (Puech M., Hammer F., Flores H. et al.); and "3D spectroscopy with VLT/GIRAFFE - III: Mapping electron densities in distant galaxies" (Puech M., Flores H., Hammer F. & Lehnert M.D.).

  4. Explained: Why many surveys of distant galaxies miss 90% of their targets

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Astronomers have long known that in many surveys of the very distant Universe, a large fraction of the total intrinsic light was not being observed. Now, thanks to an extremely deep survey using two of the four giant 8.2-metre telescopes that make up ESO's Very Large Telescope (VLT) and a unique custom-built filter, astronomers have determined that a large fraction of galaxies whose light took 10 billion years to reach us have gone undiscovered. The survey also helped uncover some of the faintest galaxies ever found at this early stage of the Universe. Astronomers frequently use the strong, characteristic "fingerprint" of light emitted by hydrogen known as the Lyman-alpha line, to probe the amount of stars formed in the very distant Universe [1]. Yet there have long been suspicions that many distant galaxies go unnoticed in these surveys. A new VLT survey demonstrates for the first time that this is exactly what is happening. Most of the Lyman-alpha light is trapped within the galaxy that emits it, and 90% of galaxies do not show up in Lyman-alpha surveys. "Astronomers always knew they were missing some fraction of the galaxies in Lyman-alpha surveys," explains Matthew Hayes, the lead author of the paper, published this week in Nature, "but for the first time we now have a measurement. The number of missed galaxies is substantial." To figure out how much of the total luminosity was missed, Hayes and his team used the FORS camera at the VLT and a custom-built narrowband filter [2] to measure this Lyman-alpha light, following the methodology of standard Lyman-alpha surveys. Then, using the new HAWK-I camera, attached to another VLT Unit Telescope, they surveyed the same area of space for light emitted at a different wavelength, also by glowing hydrogen, and known as the H-alpha line. They specifically looked at galaxies whose light has been travelling for 10 billion years (redshift 2.2 [3]), in a well-studied area of the sky, known as the GOODS-South field. "This is the first time we have observed a patch of the sky so deeply in light coming from hydrogen at these two very specific wavelengths, and this proved crucial," says team member Göran Östlin. The survey was extremely deep, and uncovered some of the faintest galaxies known at this early epoch in the life of the Universe. The astronomers could thereby conclude that traditional surveys done using Lyman-alpha only see a tiny part of the total light that is produced, since most of the Lyman-alpha photons are destroyed by interaction with the interstellar clouds of gas and dust. This effect is dramatically more significant for Lyman-alpha than for H-alpha light. As a result, many galaxies, a proportion as high as 90%, go unseen by these surveys. "If there are ten galaxies seen, there could be a hundred there," Hayes says. Different observational methods, targeting the light emitted at different wavelengths, will always lead to a view of the Universe that is only partially complete. The results of this survey issue a stark warning for cosmologists, as the strong Lyman-alpha signature becomes increasingly relied upon in examining the very first galaxies to form in the history of the Universe. "Now that we know how much light we've been missing, we can start to create far more accurate representations of the cosmos, understanding better how quickly stars have formed at different times in the life of the Universe," says co-author Miguel Mas-Hesse. The breakthrough was made possible thanks to the unique camera used. HAWK-I, which saw first light in 2007, is a state-of-the-art instrument. "There are only a few other cameras with a wider field of view than HAWK-I, and they are on telescopes less than half the size of the VLT. So only VLT/HAWK-I, really, is capable of efficiently finding galaxies this faint at these distances," says team member Daniel Schaerer. Notes [1] Lyman-alpha light corresponds to light emitted by excited hydrogen (more specifically, when the electron around the nucleus jumps from the first excited level to the fundamental, or ground, level). This light is emitted in the ultraviolet, at 121.6 nm. The Lyman-alpha line is the first in the so-called Lyman series, named after its discoverer, Theodore Lyman. The Balmer series, named after Johann Balmer, also corresponds to light emitted by excited hydrogen. In this case, the electron falls into the first excited level. The first line in this series is the H-alpha line, emitted at 656.3 nm. As most hydrogen atoms present in a galaxy are in the ground level, Lyman-alpha light is more efficiently absorbed than H-alpha light, which requires atoms having an electron in the second level. As this is very uncommon in the cold interstellar hydrogen permeating galaxies, the gas is almost perfectly transparent to H-alpha light. [2] A narrowband filter is an optical filter designed to let pass only a narrow bandwidth of light, centred on a specific wavelength. Traditional narrowband filters include those centred on the lines of the Balmer series, such as H-alpha. [3] Because the Universe expands, the light of a distant object is redshifted by an amount depending on its distance. This means its light is moved towards longer wavelengths. A redshift of 2.2 - corresponding to galaxies whose light has taken approximately 10 billion years to reach us - means that the light is stretched by a factor 3.2. Thus the Lyman-alpha light is now seen at about 390 nm, near the visible domain, and can be observed with the FORS instrument on ESO's VLT, while the H-alpha line is moved towards 2.1 microns, in the near-infrared. It can thus be observed with the HAWK-I instrument on the VLT. More information This research was presented in a paper to appear in Nature ("Escape of about five per cent of Lyman-a photons from high-redshift star-forming galaxies", by M. Hayes et al.). The team is composed of Matthew Hayes, Daniel Schaerer, and Stéphane de Barros (Observatoire Astronomique de l'Université de Genève, Switzerland), Göran Östlin and Jens Melinder (Stockholm University, Sweden), J. Miguel Mas-Hesse (CSIC-INTA, Madrid, Spain), Claus Leitherer (Space Telescope Science Institute, Baltimore, USA), Hakim Atek and Daniel Kunth (Institut d'Astrophysique de Paris, France), and Anne Verhamme (Oxford Astrophysics, U.K.). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  5. Astronomers Find World with Thick, Inhospitable Atmosphere and an Icy Heart

    NASA Astrophysics Data System (ADS)

    2009-12-01

    Astronomers have discovered the second super-Earth exoplanet [1] for which they have determined the mass and radius, giving vital clues about its structure. It is also the first super-Earth where an atmosphere has been found. The exoplanet, orbiting a small star only 40 light-years away from us, opens up dramatic new perspectives in the quest for habitable worlds. The planet, GJ1214b, has a mass about six times that of Earth and its interior is likely to be mostly made of water ice. Its surface appears to be fairly hot and the planet is surrounded by a thick atmosphere, which makes it inhospitable for life as we know it on Earth. In this week's issue of Nature, astronomers announce the discovery of a planet around the nearby, low-mass star GJ1214 [2]. It is the second time a transiting super-Earth has been detected, after the recent discovery of the planet Corot-7b [3]. A transit occurs when the planet's orbit is aligned so that we see it crossing the face of its parent star. The newly discovered planet has a mass about six times that of our terrestrial home and 2.7 times its radius, falling in size between the Earth and the ice giants of the Solar System, Uranus and Neptune. Although the mass of GJ1214b is similar to that of Corot-7b, its radius is much larger, suggesting that the composition of the two planets must be quite different. While Corot-7b probably has a rocky core and may be covered with lava, astronomers believe that three quarters of GJ1214b is composed of water ice, the rest being made of silicon and iron. GJ1214b orbits its star once every 38 hours at a distance of only two million kilometres - 70 times closer to its star than the Earth is to the Sun. "Being so close to its host star, the planet must have a surface temperature of about 200 degrees Celsius, too hot for water to be liquid," says David Charbonneau, lead author of the paper reporting the discovery. When the astronomers compared the measured radius of GJ1214b with theoretical models of planets, they found that the observed radius exceeds the models' predictions: there is something more than the planet's solid surface blocking the star's light - a surrounding atmosphere, 200 km thick. "This atmosphere is much thicker than that of the Earth, so the high pressure and absence of light would rule out life as we know it," says Charbonneau, "but these conditions are still very interesting, as they could allow for some complex chemistry to take place." "Because the planet is too hot to have kept an atmosphere for long, GJ1214b represents the first opportunity to study a newly formed atmosphere enshrouding a world orbiting another star," adds team member Xavier Bonfils. "Because the planet is so close to us, it will be possible to study its atmosphere even with current facilities." The planet was first discovered as a transiting object within the MEarth project, which follows about 2000 low-mass stars to look for transits by exoplanets [4]. To confirm the planetary nature of GJ1214b and to obtain its mass (using the so-called Doppler method), the astronomers needed the full precision of the HARPS spectrograph, attached to ESO's 3.6-metre telescope at La Silla. An instrument with unrivalled stability and great precision, HARPS is the world's most successful hunter for small exoplanets. "This is the second super-Earth exoplanet for which the mass and radius could be obtained, allowing us to determine the density and to infer the inner structure," adds co-author Stephane Udry. "In both cases, data from HARPS was essential to characterise the planet." "The differences in composition between these two planets are relevant to the quest for habitable worlds," concludes Charbonneau. If super-Earth planets in general are surrounded by an atmosphere similar to that of GJ1214b, they may well be inhospitable to the development of life as we know it on our own planet. Notes [1] A super-Earth is defined as a planet between one and ten times the mass of the Earth. An exoplanet is a planet orbiting a star other than the Sun. [2] The star GJ1214 is five times smaller than our Sun and intrinsically three hundred times less bright. [3] Corot-7b is the smallest and fastest-orbiting exoplanet known and has a density quite similar to the Earth's, suggesting a solid, rocky world. Discovered by the CoRoT satellite as a transiting object, its true nature was revealed by HARPS (eso0933). [4] The MEarth project uses an armada of eight small telescopes each with a diameter of 40 cm, located on top of Mount Hopkins, Arizona, USA. MEarth looks for stars that change brightness. The goal is to find a planet that crosses in front of, or transits, its star. During such a mini-eclipse, the planet blocks a small portion of the star's light, making it dimmer. NASA's Kepler mission also uses transits to look for Earth-sized planets orbiting Sun-like stars. However, such systems dim by only one part in ten thousand. The higher precision required to detect the drop means that such worlds can only be found from space. In contrast, a super-Earth transiting a small, red dwarf star yields a greater proportional decrease in brightness and a stronger signal that is detectable from the ground. More information This research was presented in a paper appearing this week in Nature ("A Super-Earth Transiting a Nearby Low-Mass Star", by David Charbonneau et al.). The team is composed of David Charbonneau, Zachory K. Berta, Jonathan Irwin, Christopher J. Burke, Philip Nutzman, Lars Buchhave, David W. Latham, Ruth A. Murray-Clay, Matthew J. Holman, and Emilio E. Falco (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), Christophe Lovis, Stephane Udry, Didier Queloz, Francesco Pepe, and Michel Mayor (Observatoire de l'Université de Genève, Switzerland), Xavier Bonfils, Xavier Delfosse, and Thierry Forveille (University Joseph Fourier - Grenoble 1/CNRS, LOAG, Grenoble, France), and Joshua N. Winn (Kavli Institute for Astrophysics and Space Research, MIT, Cambridge, USA). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory, and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  6. The possible astronomical function of the El Molle stone circle at the ESO Observatory La Silla. II: The updated measurement campaign

    NASA Astrophysics Data System (ADS)

    Bernardi, Gabriella; Vecchiato, Alberto; Bucciarelli, Beatrice

    2014-07-01

    This paper reviews and updates the accounts of a previous article discussing the possible astronomical significance of a peculiar, man-made circular stone structure, located close to the European Southern Observatory in La Silla, Chile, and attributed to the El Molle culture. Thanks to further, higher-accuracy measurements in situ, we can confirm some of the original hypotheses and dismiss others, upholding the main tenets of the original work.

  7. MUSE alignment onto VLT

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dupuy, Christophe; Jarno, Aurélien; Lizon, Jean-Louis; Migniau, Jean-Emmanuel; Nicklas, Harald; Piqueras, Laure

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transported, fully aligned and without any optomechanical dismounting, onto VLT telescope where the first light was overcame the 7th of February, 2014. This paper describes the alignment procedure of the whole MUSE instrument with respect to the Very Large Telescope (VLT). It describes how 6 tons could be move with accuracy better than 0.025mm and less than 0.25 arcmin in order to reach alignment requirements. The success of the MUSE alignment is demonstrated by the excellent results obtained onto MUSE image quality and throughput directly onto the sky.

  8. MUSE field splitter unit: fan-shaped separator for 24 integral field units

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Anwand, Heiko; Boudon, Didier; Caillier, Patrick; Kosmalski, Johan; Loupias, Magali; Nicklas, Harald; Seifert, Walter; Salaun, Yves; Xu, Wenli

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where it was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transferred in monolithic way onto VLT telescope where the first light was achieved. This paper describes the MUSE main optical component: the Field Splitter Unit. It splits the VLT image into 24 subfields and provides the first separation of the beam for the 24 Integral Field Units. This talk depicts its manufacturing at Winlight Optics and its alignment into MUSE instrument. The success of the MUSE alignment is demonstrated by the excellent results obtained onto MUSE positioning, image quality and throughput onto the sky. MUSE commissioning at the VLT is planned for September, 2014.

  9. TYC 8241 2652 1 and the case of the disappearing disk: No smoking gun yet

    NASA Astrophysics Data System (ADS)

    Günther, Hans Moritz; Kraus, Stefan; Melis, Carl; Curé, Michel; Harries, Tim; Ireland, Michael; Kanaan, Samer; Poppenhaeger, Katja; Rizzuto, Aaron; Rodriguez, David; Schneider, Christian P.; Sitko, Michael; Weigelt, Gerd; Willson, Matthew; Wolk, Scott

    2017-02-01

    Context. TYC8241 2652 1 is a young star that showed a strong mid-infrared (mid-IR, 8-25 μm) excess in all observations before 2008, which is consistent with a dusty disk. Between 2008 and 2010 the mid-IR luminosity of this system dropped dramatically by at least a factor of 30 suggesting a loss of dust mass of an order of magnitude or more. Aims: We aim to constrain possible models including the removal of disk material by stellar activity processes, the presence of a binary companion, or other explanations suggested in the literature. Methods: We present new X-ray observations, optical spectroscopy, near-IR interferometry, and mid-IR photometry of this system to constrain its parameters and further explore the cause of the dust mass loss. Results: In X-rays TYC8241 2652 1 has all the properties expected from a young star: Its luminosity is in the saturation regime and the abundance pattern shows enhancement of O/Fe. The photospheric Hα line is filled with a weak emission feature, indicating chromospheric activity that is consistent with the observed level of coronal emission. Interferometry does not detect a companion and sets upper limits on the companion mass of 0.2, 0.35, 0.1, and 0.05 M⊙ at projected physical separations of 0.1-4 AU, 4-5 AU, 5-10 AU, and 10-30 AU, respectively (assuming a distance of 120.9 pc). Our mid-IR measurements, the first of the system since 2012, are consistent with the depleted dust level seen after 2009. Conclusions: The new data confirm that stellar activity is unlikely to destroy the dust in the disk and shows that scenarios, in which either TYC8241 2652 1 heats the disk of a binary companion or a potential companion heats the disk of TYC8241 2652 1, are unlikely. Based on observations made with ESO telescopes at the Paranal Observatory (ESO program IDs 090.C-0697(A), 090.C-0904(A), and 095.C-0438(A)) and on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  10. 3D shape of asteroid (6) Hebe from VLT/SPHERE imaging: Implications for the origin of ordinary H chondrites

    NASA Astrophysics Data System (ADS)

    Marsset, M.; Carry, B.; Dumas, C.; Hanuš, J.; Viikinkoski, M.; Vernazza, P.; Müller, T. G.; Delbo, M.; Jehin, E.; Gillon, M.; Grice, J.; Yang, B.; Fusco, T.; Berthier, J.; Sonnett, S.; Kugel, F.; Caron, J.; Behrend, R.

    2017-08-01

    Context. The high-angular-resolution capability of the new-generation ground-based adaptive-optics camera SPHERE at ESO VLT allows us to assess, for the very first time, the cratering record of medium-sized (D 100-200 km) asteroids from the ground, opening the prospect of a new era of investigation of the asteroid belt's collisional history. Aims: We investigate here the collisional history of asteroid (6) Hebe and challenge the idea that Hebe may be the parent body of ordinary H chondrites, the most common type of meteorites found on Earth ( 34% of the falls). Methods: We observed Hebe with SPHERE as part of the science verification of the instrument. Combined with earlier adaptive-optics images and optical light curves, we model the spin and three-dimensional (3D) shape of Hebe and check the consistency of the derived model against available stellar occultations and thermal measurements. Results: Our 3D shape model fits the images with sub-pixel residuals and the light curves to 0.02 mag. The rotation period (7.274 47 h), spin (ECJ2000 λ, β of 343°, +47°), and volume-equivalent diameter (193 ± 6 km) are consistent with previous determinations and thermophysical modeling. Hebe's inferred density is 3.48 ± 0.64 g cm-3, in agreement with an intact interior based on its H-chondrite composition. Using the 3D shape model to derive the volume of the largest depression (likely impact crater), it appears that the latter is significantly smaller than the total volume of close-by S-type H-chondrite-like asteroid families. Conclusions: Our results imply that (6) Hebe is not the most likely source of H chondrites. Over the coming years, our team will collect similar high-precision shape measurements with VLT/SPHERE for 40 asteroids covering the main compositional classes, thus providing an unprecedented dataset to investigate the origin and collisional evolution of the asteroid belt. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 60.A-9379 and 086.C-0785.

  11. Massive pre-main-sequence stars in M17

    NASA Astrophysics Data System (ADS)

    Ramírez-Tannus, M. C.; Kaper, L.; de Koter, A.; Tramper, F.; Bik, A.; Ellerbroek, L. E.; Ochsendorf, B. B.; Ramírez-Agudelo, O. H.; Sana, H.

    2017-08-01

    The formation process of massive stars is still poorly understood. Massive young stellar objects (mYSOs) are deeply embedded in their parental clouds; these objects are rare, and thus typically distant, and their reddened spectra usually preclude the determination of their photospheric parameters. M17 is one of the best-studied H II regions in the sky, is relatively nearby, and hosts a young stellar population. We have obtained optical to near-infrared spectra of previously identified candidate mYSOs and a few OB stars in this region with X-shooter on the ESO Very Large Telescope. The large wavelength coverage enables a detailed spectroscopic analysis of the photospheres and circumstellar disks of these candidate mYSOs. We confirm the pre-main-sequence (PMS) nature of six of the stars and characterise the O stars. The PMS stars have radii that are consistent with being contracting towards the main sequence and are surrounded by a remnant accretion disk. The observed infrared excess and the double-peaked emission lines provide an opportunity to measure structured velocity profiles in the disks. We compare the observed properties of this unique sample of young massive stars with evolutionary tracks of massive protostars and propose that these mYSOs near the western edge of the H II region are on their way to become main-sequence stars ( 6-20 M⊙) after having undergone high mass accretion rates (Ṁacc 10-4-10-3M⊙yr-1). Their spin distribution upon arrival at the zero age main-sequence is consistent with that observed for young B stars, assuming conservation of angular momentum and homologous contraction. Based on observations collected at the European Southern Observatory at Paranal, Chile (ESO programmes 60.A-9404(A), 085.D-0741, 089.C-0874(A), and 091.C-0934(B)).The full normalised X-shooter spectra are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A78

  12. The KMOS3D Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths

    NASA Astrophysics Data System (ADS)

    Wisnioski, E.; Mendel, J. T.; Förster Schreiber, N. M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Fossati, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.

    2018-03-01

    Using integral field spectroscopy, we investigate the kinematic properties of 35 massive centrally dense and compact star-forming galaxies (SFGs; {log}{\\overline{M}}* [{M}ȯ ]=11.1, {log}({{{Σ }}}1{kpc}[{M}ȯ {kpc}}-2])> 9.5, {log}({M}* /{r}e1.5[{M}ȯ {kpc}}-1.5])> 10.3) at z ∼ 0.7–3.7 within the KMOS3D survey. We spatially resolve 23 compact SFGs and find that the majority are dominated by rotational motions with velocities ranging from 95 to 500 km s‑1. The range of rotation velocities is reflected in a similar range of integrated Hα line widths, 75–400 km s‑1, consistent with the kinematic properties of mass-matched extended galaxies from the full KMOS3D sample. The fraction of compact SFGs that are classified as “rotation-dominated” or “disklike” also mirrors the fractions of the full KMOS3D sample. We show that integrated line-of-sight gas velocity dispersions from KMOS3D are best approximated by a linear combination of their rotation and turbulent velocities with a lesser but still significant contribution from galactic-scale winds. The Hα exponential disk sizes of compact SFGs are, on average, 2.5 ± 0.2 kpc, 1–2× the continuum sizes, in agreement with previous work. The compact SFGs have a 1.4× higher active galactic nucleus (AGN) incidence than the full KMOS3D sample at fixed stellar mass with an average AGN fraction of 76%. Given their high and centrally concentrated stellar masses, as well as stellar-to-dynamical mass ratios close to unity, the compact SFGs are likely to have low molecular gas fractions and to quench on a short timescale unless replenished with inflowing gas. The rotation in these compact systems suggests that their direct descendants are rotating passive galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, and 098.A-0045).

  13. The Gaia-ESO Survey: Structural and dynamical properties of the young cluster Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Sacco, G. G.; Spina, L.; Randich, S.; Palla, F.; Parker, R. J.; Jeffries, R. D.; Jackson, R.; Meyer, M. R.; Mapelli, M.; Lanzafame, A. C.; Bonito, R.; Damiani, F.; Franciosini, E.; Frasca, A.; Klutsch, A.; Prisinzano, L.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.; Alfaro, E. J.; Micela, G.; Prusti, T.; Barrado, D.; Biazzo, K.; Bouy, H.; Bravi, L.; Lopez-Santiago, J.; Wright, N. J.; Bayo, A.; Gilmore, G.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Pancino, E.; Casey, A. R.; Costado, M. T.; Donati, P.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    Investigating the physical mechanisms driving the dynamical evolution of young star clusters is fundamental to our understanding of the star formation process and the properties of the Galactic field stars. The young ( 2 Myr) and partially embedded cluster Chamaeleon I is one of the closest laboratories for the study of the early stages of star cluster dynamics in a low-density environment. The aim of this work is to study the structural and kinematical properties of this cluster combining parameters from the high-resolution spectroscopic observations of the Gaia-ESO Survey with data from the literature. Our main result is the evidence of a large discrepancy between the velocity dispersion (σstars = 1.14 ± 0.35 km s-1) of the stellar population and the dispersion of the pre-stellar cores ( 0.3 km s-1) derived from submillimeter observations. The origin of this discrepancy, which has been observed in other young star clusters, is not clear. It has been suggested that it may be due to either the effect of the magnetic field on the protostars and the filaments or to the dynamical evolution of stars driven by two-body interactions. Furthermore, the analysis of the kinematic properties of the stellar population puts in evidence a significant velocity shift ( 1 km s-1) between the two subclusters located around the north and south main clouds of the cluster. This result further supports a scenario where clusters form from the evolution of multiple substructures rather than from a monolithic collapse. Using three independent spectroscopic indicators (the gravity indicator γ, the equivalent width of the Li line at 6708 Å, and the Hα 10% width), we performed a new membership selection. We found six new cluster members all located in the outer region of the cluster, proving that Chamaeleon I is probably more extended than previously thought. Starting from the positions and masses of the cluster members, we derived the level of substructure Q, the surface density Σ, and the level of mass segregation ΛMSR of the cluster. The comparison between these structural properties and the results of N-body simulations suggests that the cluster formed in a low-density environment, in virial equilibrium or a supervirial state, and highly substructured. This work is one of the last ones carried out with the help and support of our friend and colleague Francesco Palla, who passed away on 26 January 2016.Full Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A97Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey).

  14. The Gaia-ESO Survey: double-, triple-, and quadruple-line spectroscopic binary candidates

    NASA Astrophysics Data System (ADS)

    Merle, T.; Van Eck, S.; Jorissen, A.; Van der Swaelmen, M.; Masseron, T.; Zwitter, T.; Hatzidimitriou, D.; Klutsch, A.; Pourbaix, D.; Blomme, R.; Worley, C. C.; Sacco, G.; Lewis, J.; Abia, C.; Traven, G.; Sordo, R.; Bragaglia, A.; Smiljanic, R.; Pancino, E.; Damiani, F.; Hourihane, A.; Gilmore, G.; Randich, S.; Koposov, S.; Casey, A.; Morbidelli, L.; Franciosini, E.; Magrini, L.; Jofre, P.; Costado, M. T.; Jeffries, R. D.; Bergemann, M.; Lanzafame, A. C.; Bayo, A.; Carraro, G.; Flaccomio, E.; Monaco, L.; Zaggia, S.

    2017-12-01

    Context. The Gaia-ESO Survey (GES) is a large spectroscopic survey that provides a unique opportunity to study the distribution of spectroscopic multiple systems among different populations of the Galaxy. Aims: Our aim is to detect binarity/multiplicity for stars targeted by the GES from the analysis of the cross-correlation functions (CCFs) of the GES spectra with spectral templates. Methods: We developed a method based on the computation of the CCF successive derivatives to detect multiple peaks and determine their radial velocities, even when the peaks are strongly blended. The parameters of the detection of extrema (DOE) code have been optimized for each GES GIRAFFE and UVES setup to maximize detection. The DOE code therefore allows to automatically detect multiple line spectroscopic binaries (SBn, n ≥ 2). Results: We apply this method on the fourth GES internal data release and detect 354 SBn candidates (342 SB2, 11 SB3, and even one SB4), including only nine SBs known in the literature. This implies that about 98% of these SBn candidates are new because of their faint visual magnitude that can reach V = 19. Visual inspection of the SBn candidate spectra reveals that the most probable candidates have indeed a composite spectrum. Among the SB2 candidates, an orbital solution could be computed for two previously unknown binaries: CNAME 06404608+0949173 (known as V642 Mon) in NGC 2264 and CNAME 19013257-0027338 in Berkeley 81 (Be 81). A detailed analysis of the unique SB4 (four peaks in the CCF) reveals that CNAME 08414659-5303449 (HD 74438) in the open cluster IC 2391 is a physically bound stellar quadruple system. The SB candidates belonging to stellar clusters are reviewed in detail to discard false detections. We suggest that atmospheric parameters should not be used for these system components; SB-specific pipelines should be used instead. Conclusions: Our implementation of an automatic detection of spectroscopic binaries within the GES has allowed the efficient discovery of many new multiple systems. With the detection of the SB1 candidates that will be the subject of a forthcoming paper, the study of the statistical and physical properties of the spectroscopic multiple systems will soon be possible for the entire GES sample. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 188.B-3002. These data products have been processed by the Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.

  15. The Most Remote Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    2000-10-01

    ESO Telescopes Observe "Lightning" in the Young Universe Summary Observations with telescopes at the ESO La Silla and Paranal observatories (Chile) have enabled an international team of astronomers [1] to measure the distance of a "gamma-ray burst", an extremely violent, cosmic explosion of still unknown physical origin. It turns out to be the most remote gamma-ray burst ever observed . The exceedingly powerful flash of light from this event was emitted when the Universe was very young, less than about 1,500 million years old, or only 10% of its present age. Travelling with the speed of light (300,000 km/sec) during 11,000 million years or more, the signal finally reached the Earth on January 31, 2000. The brightness of the exploding object was enormous, at least 1,000,000,000,000 times that of our Sun, or thousands of times that of the explosion of a single, heavy star (a "supernova"). The ESO Very Large Telescope (VLT) was also involved in trail-blazing observations of another gamma-ray burst in May 1999, cf. ESO PR 08/99. PR Photo 28a/00 : Sky field near GRB 000131 . PR Photo 28b/00 : The fading optical counterpart of GRB 000131 . PR Photo 28c/00 : VLT spectrum of GRB 000131 . What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the mysterious events known as "gamma-ray bursts" . They were first detected in the late 1960's by instruments on orbiting satellites. These short flashes of energetic gamma-rays last from less than a second to several minutes. Despite much effort, it is only within the last few years that it has become possible to locate the sites of some of these events (e.g. with the Beppo-Sax satellite ). Since the beginning of 1997, astronomers have identified about twenty optical sources in the sky that are associated with gamma-ray bursts. They have been found to be situated at extremely large (i.e., "cosmological") distances. This implies that the energy release during a gamma-ray burst within a few seconds is larger than that of the Sun during its entire life time (about 10,000 million years). "Gamma-ray bursts" are in fact by far the most powerful events since the Big Bang that are known in the Universe. While there are indications that gamma-ray bursts originate in star-forming regions within distant galaxies, the nature of such explosions remains a puzzle. Recent observations with large telescopes, e.g. the measurement of the degree of polarization of light from a gamma-ray burst in May 1999 with the VLT ( ESO PR 08/99), are now beginning to cast some light on this long-standing mystery. The afterglow of GRB 000131 ESO PR Photo 28a/00 ESO PR Photo 28a/00 [Preview - JPEG: 400 x 475 pix - 41k] [Normal - JPEG: 800 x 949 pix - 232k] [Full-Res - JPEG: 1200 x 1424 pix - 1.2Mb] ESO PR Photo 28b/00 ESO PR Photo 28b/00 [Preview - JPEG: 400 x 480 pix - 67k] [Normal - JPEG: 800 x 959 pix - 288k] [Full-Res - JPEG: 1200 x 1439 pix - 856k] Caption : PR Photo 28a/00 is a colour composite image of the sky field around the position of the gamma-ray burst GRB 000131 that was detected on January 31, 2000. It is based on images obtained with the ESO Very Large Telescope at Paranal. The object is indicated with an arrow, near a rather bright star (magnitude 9, i.e., over 1 million times brighter than the faintest objects visible on this photo). This and other bright objects in the field are responsible for various unavoidable imaging effects, caused by optical reflections (ring-shaped "ghost images", e.g. to the left of the brightest star) and detector saturation effects (horizontal and vertical straight lines and coloured "coronae" at the bright objects, and areas of "bleeding", e.g. below the bright star). PR Photo 28b/00 shows the rapid fading of the optical counterpart of GRB 000131 (slightly left of the centre), by means of exposures with the VLT on February 4 (upper left), 6 (upper right), 8 (lower left) and March 5 (lower right). It is no longer visible on the last photo. Technical information about these photos is available below. A gamma-ray burst was detected on January 31, 2000, by an international network of satellites ( Ulysses , NEAR and Konus ) via the InterPlanetary Network (IPN) [2]. It was designated GRB 000131 according to the date of the event. From geometric triangulation by means of the measured, exact arrival times of the signal at the individual satellites, it was possible to determine the direction from which the burst came. It was found to be from a point within a comparatively small sky area (about 50 arcmin 2 or 1/10 of the apparent size of the Moon), just inside the border of the southern constellation Carina (The Keel). Follow-up observations were undertaken by a group of European astronomers [1] with the ESO Very Large Telescope at the Paranal Observatory. A comparison of several exposures with the FORS1 multi-mode instrument at the 8.2-m VLT ANTU telescope during the nights of February 3-4 and 5-6 revealed a faint, point-like object that was fading rapidly - this was identified as the optical counterpart of the gamma-ray burst (the "afterglow"). On the second night, the R-magnitude (brightness) was found to be only 24.4, or 30 million times fainter than visible with the unaided eye in a dark sky. It was also possible to observe it with a camera at the 1.54-m Danish Telescope at the La Silla Observatory , albeit only in a near-infrared band and with a 1-hour exposure. Additional observations were made on February 8 with the SOFI multi-mode instrument at the ESO 3.58-m New Technology Telescope (NTT) at La Silla. The observations were performed partly by the astronomers from the group, partly in "service mode" by ESO staff at La Silla and Paranal. The observations showed that the light from the afterglow was very red, without blue and green light. This indicated a comparatively large distance and, assuming that the light from the explosion would originally have had the same colour (spectral distribution) as that of optical counterparts of other observed gamma-ray bursts, a photometric redshift of 4.35 to 4.70 was deduced [3]. A spectrum of GRB 000131 ESO PR Photo 28c/00 ESO PR Photo 28c/00 [Preview - JPEG: 400 x 332 pix - 22k] [Normal - JPEG: 800 x 663 pix - 62k] Caption : PR Photo 28c/00 shows the spectrum of the afterglow of GRB 000131 , obtained during a 3-hr exposure with the FORS1 multi-mode instrument at VLT ANTU on February 8, 2000. The "Lyman-alpha break" at wavelength 670.1 nm is indicated. Technical information about this photo is available below. An accurate measurement of the redshift - hence the distance - requires spectroscopic observations. A spectrum of GRB 000131 was therefore obtained on February 8, 2000, cf. PR Photo 28c/00 . At this time, the brightness had decreased further and the object had become so faint (R-magnitude 25.3) that a total of 3 hours of exposure time was necessary with VLT ANTU + FORS1 [4]. Still, this spectrum is quite "noisy". The deduced photometric redshift of GRB 000131 predicts that a "break" will be seen in the red region of the spectrum, at a wavelength somewhere between 650 and 700 nm. This break is caused by the strong absorption of light in intergalactic hydrogen clouds along the line of sight. The effect is known as the "Lyman-alpha forest" and is observed in all remote objects [5]. As PR Photo 28c/00 shows, such a break was indeed found at wavelength 670.1 nm. Virtually all light at shorter wavelengths from the optical counterpart of GRB 000131 is absorbed by intervening hydrogen clouds. From the rest wavelength of the Lyman-alpha break (121.6 nm), the redshift of GRB 000131 is then determined as 4.50, corresponding to a travel time of more than 90% of the age of the Universe . The most distant gamma-ray burst so far The measured redshift of 4.50 makes GRB 000131 the most distant gamma-ray burst known (the previous, spectroscopically confirmed record was 3.42). Assuming an age of the Universe of the order of 12 - 14,000 million years, the look-back time indicates that the explosion took place around the time our own galaxy, the Milky Way, was formed and at least 6,000 million years before the solar system was born. GRB 000131 and other gamma-ray bursts are believed to have taken place in remote galaxies. However, due to the huge distance, it has not yet been possible to see the galaxy in which the GRB 000131 event took place (the "host" galaxy). From the observed fading of the afterglow it is possible to estimate that the maximum brightness of this explosion was at least 10,000 times brighter than the host galaxy. Future studies of gamma-ray bursts The present team of astronomers has now embarked upon a detailed study of the surroundings of GRB 000131 with the VLT. A main goal is to observe the properties of the host galaxy. From the observations of about twenty optical counterparts of gamma-ray bursts identified until now, it is becoming increasingly clear that these very rare events are somehow related to the death of massive, short-lived stars . But despite the accumulating amount of excellent data, the details of the mechanism that leads to such dramatic explosions still remain a puzzle to astrophysicists. The detection and present follow-up observations of GRB 000131 highlight the new possibilities for studies of the extremely distant (and very early) Universe, now possible by means of gamma-ray bursts. When observed with the powerful instruments at a large ground-based telescope like the VLT, this incredibly bright class of cosmological objects may throw light on the fundamental processes of star formation in the infant universe. Of no less interest is the opportunity to analyse the chemical composition of the gas clouds at the epoch galaxies formed, by means of the imprints of the corresponding absorption lines on the afterglow spectrum. Waiting for the opportunity In this context, it would be extremely desirable to obtain very detailed (high-dispersion) spectra of the afterglow of a future gamma-ray burst, soon after the detection and while it is still sufficiently bright. It would for instance be possible to observe a gamma-ray burst like GRB 000131 with the UVES spectrograph at VLT KUEYEN at the moment of maximum brightness (that may have been about magnitude 16). An example of chemical studies of clouds at intermediate distance by means of a more nearby quasar is shown in ESO PR Photo 09h/00. Attempts are therefore now made to shorten considerably the various steps needed to perform such observations. This concerns especially the time needed to identify the counterpart of a gamma-ray burst and - to a lesser extent - the necessary reaction time at the VLT to point UVES towards the object (in theory, a matter of minutes only). The launch of the HETE-2 (High Energy Transient Explorer 2) gamma-ray burst satellite on October 9, 2000, is a major step in this direction. Under optimal conditions, a relative accurate sky position of a gamma-ray burst may henceforth reach the astronomy community within only 10-20 seconds of the first detection by this satellite. More information The research described in this press release is the subject of a scientific article by the team, entitled "VLT Identification of the optical afterglow of the gamma-ray burst GRB 000131 at z = 4.50" ; it will appear in a special VLT-issue (Letters to the Editor) of the European journal Astronomy & Astrophysics (December 1, 2000). The results are being presented today (October 18) at the joint CNR/ESO meeting on "Gamma-Ray Burst in the Afterglow Era" in Rome, Italy. Note also the related article in the ESO Messenger (No. 100, p. 32, June 2000). Notes [1]: The team consists of Michael Andersen (University of Oulu, Finland), Holger Pedersen, Jens Hjorth, Brian Lindgren Jensen, Lisbeth Fogh Olsen, Lise Christensen (University of Copenhagen, Denmark), Leslie Hunt (Centro per l'Astronomia Infrarossa e lo Studio del Mezzo, Florence, Italy), Javier Gorosabel (Danish Space Research Institute, Denmark), Johan Fynbo, Palle Møller (European Southern Observatory), Richard Marc Kippen (University of Alabama in Huntsville and NASA/Marshall Space Flight Center, USA), Bjarne Thomsen (University of Århus, Denmark), Marianne Vestergaard (Ohio State University, USA), Nicola Masetti, Eliana Palazzi (Instituto Tecnologie e Studio Radiazoni Extraterresti, Bologna, Italy) Kevin Hurley (University of California, Berkeley, USA), Thomas Cline (NASA Goddard Space Flight Center, Greenbelt, USA), Lex Kaper (Sterrenkundig Instituut ``Anton Pannekoek", the Netherlands) and Andreas O. Jaunsen (formerly University of Oslo, Norway; now ESO-Paranal). [2]: Detailed reports about the early observations of this gamma-ray burst are available at the dedicated webpage within the GRB Coordinates Network website. [3]: The photometric redshift method makes it possible to judge the distance to a remote celestial object (a galaxy, a quasar, a gamma-ray burst afterglow) from its measured colours. It is based on the proportionality between the distance and the velocity along the line of sight (Hubble's law) that reflects the expansion of the Universe. The larger the distance of an object is, the larger is its velocity and, due to the Doppler effect, the spectral shift of its emission towards longer (redder) wavelengths. Thus, the measured colour provides a rough indication of the distance. Examples of this method are shown in ESO PR 20/98 (Photos 48a/00 and 48e/00). [4]: In fact, the object was so faint that the positioning of the spectrograph slit had to be done in "blind" offset, i.e. without actually seeing the object on the slit during the observation. This very difficult observational feat was possible because of excellent preparations by the team of astronomers and the very good precision of the telescope and instrument. [5]: The " Lyman-alpha forest" refers to the crowding of absorption lines from intervening hydrogen clouds, shortward of the strong Lyman-alpha spectral line at rest wavelength 121.6 nm. Good examples in the VLT ANTU + FORS1 spectra of distant quasars are shown in ESO PR Photos 14a-c/99 and, at much higher dispersion, in a spectrum obtained with VLT KUEYEN + UVES, cf. ESO PR 08/00 (Photo 09f/00). Technical information about the photos PR Photo 28a/00 : The photo is based on three 8-min exposures obtained with VLT ANTU and the multi-mode FORS1 instrument. The optical filters were B (seeing 0.9 arcsec; here rendered as blue), V (0.8 arcsec; green) and R (0.7 arcsec; red). The field measures 6.8 x 6.8 arcmin 2. North is up and East is left. PR Photo 28b/00 : The four R-exposures were obtained with VLT ANTU + FORS1 on February 4 (magnitude R = 23.3), 6 (24.4), 8 (25.1) and March 5 (no longer visible). The field measures 48 x 48 arcsec 2. North is up and East is left. PR Photo 28c/00 : The spectrum was obtained during a 3-hr exposure with the FORS1 multi-mode instrument at VLT ANTU on February 8, 2000, when the object's magnitude was only R = 25.3. The mean levels of the spectral continua on either side of the redshifted "Lyman-alpha break" at wavelength 670.1 nm are indicated.

  16. Trio of Neptunes and their Belt

    NASA Astrophysics Data System (ADS)

    2006-05-01

    Using the ultra-precise HARPS spectrograph on ESO's 3.6-m telescope at La Silla (Chile), a team of European astronomers have discovered that a nearby star is host to three Neptune-mass planets. The innermost planet is most probably rocky, while the outermost is the first known Neptune-mass planet to reside in the habitable zone. This unique system is likely further enriched by an asteroid belt. ESO PR Photo 18a/06 ESO PR Photo 18a/06 Planetary System Around HD 69830 (Artist's Impression) "For the first time, we have discovered a planetary system composed of several Neptune-mass planets", said Christophe Lovis, from the Geneva Observatory and lead-author of the paper presenting the results [1]. During more than two years, the astronomers carefully studied HD 69830, a rather inconspicuous nearby star slightly less massive than the Sun. Located 41 light-years away towards the constellation of Puppis (the Stern), it is, with a visual magnitude of 5.95, just visible with the unaided eye. The astronomers' precise radial-velocity measurements [2] allowed them to discover the presence of three tiny companions orbiting their parent star in 8.67, 31.6 and 197 days. "Only ESO's HARPS instrument installed at the La Silla Observatory, Chile, made it possible to uncover these planets", said Michel Mayor, also from Geneva Observatory, and HARPS Principal Investigator. "Without any doubt, it is presently the world's most precise planet-hunting machine" [3]. ESO PR Photo 18d/06 ESO PR Photo 18d/06 Phase Folded Measurements of HD 69830 The detected velocity variations are between 2 and 3 metres per second, corresponding to about 9 km/h! That's the speed of a person walking briskly. Such tiny signals could not have been distinguished from 'simple noise' by most of today's available spectrographs. The newly found planets have minimum masses between 10 and 18 times the mass of the Earth. Extensive theoretical simulations favour an essentially rocky composition for the inner planet, and a rocky/gas structure for the middle one. The outer planet has probably accreted some ice during its formation, and is likely to be made of a rocky/icy core surrounded by a quite massive envelope. Further calculations have also shown that the system is in a dynamically stable configuration. ESO PR Photo 18e/06 ESO PR Photo 18e/06 Formation Process of the Planetary System The outer planet also appears to be located near the inner edge of the habitable zone, where liquid water can exist at the surface of rocky/icy bodies. Although this planet is probably not Earth-like due to its heavy mass, its discovery opens the way to exciting perspectives. "This alone makes this system already exceptional", said Willy Benz, from Bern University, and co-author. "But the recent discovery by the Spitzer Space Telescope that the star most likely hosts an asteroid belt is adding the cherry to the cake." With three roughly equal-mass planets, one being in the habitable zone, and an asteroid belt, this planetary system shares many properties with our own solar system. "The planetary system around HD 69830 clearly represents a Rosetta stone in our understanding of how planets form", said Michel Mayor. "No doubt it will help us better understand the huge diversity we have observed since the first extra-solar planet was found 11 years ago." High resolution images and their captions are available on this page. Video footage and animations are also available on this page.

  17. Austria Declares Intent To Join ESO

    NASA Astrophysics Data System (ADS)

    2008-04-01

    At a press conference today at the University of Vienna's Observatory, the Austrian Science Minister Johannes Hahn announced the decision by the Austrian Government to seek membership of ESO from 1 July this year. ESO PR Photo 11/08 ESO PR Photo 11/08 Announcing Austria's Intent to Join ESO Said Minister Hahn: "With membership of ESO, Austria's scientists will receive direct access to the world's leading infrastructure in astronomy. This strengthens Austria as a place for research and provides an opportunity for young researchers to continue their work from here. With this move, Austria takes an important step in the reinforcement of Europe's science and research infrastructure." The decision constitutes a major breakthrough for Austrian scientists who have argued for membership of ESO for many years. Seeking membership in ESO also marks a step towards the further development of the European Research and Innovation Area, an important element of Europe's so-called Lisbon Strategy. "ESO welcomes the Austrian bid to join our organisation. I salute the Austrian Government for taking this important step and look forward to working closely with our Austrian friends and colleagues in the years to come," commented the ESO Director General, Tim de Zeeuw. For Austrian astronomers, ESO membership means not only unrestricted access to ESO's world-leading observational facilities including the world's most advanced optical telescope, the Very Large Telescope, and full participation in the quasi-global ALMA project, but also the possibility to participate on a par with their European colleagues in the future projects of ESO, including the realisation of ESO's Extremely Large Telescope project (E-ELT), which is currently in the design phase. All these projects require some of the most advanced technologies in key areas such as optics, detectors, lightweight structures, etc. Austrian participation in ESO opens the door for Austrian industry and major research institutes of the country to take part in the development of such technologies with their associated potential for industrial spin off. The main centres for astronomical research in Austria are at the Universities of Graz, Innsbruck and Vienna. Furthermore scientists in the area of mathematics, applied physics and computer sciences already expressed their interest to contribute to the development of advanced technologies required by ESO's future projects. The Austrian bid for ESO membership will be formally considered by the ESO Council at its next meeting on 3-4 June and is subject also to subsequent ratification by the Austrian Parliament.

  18. Richest Planetary System Discovered - Up to seven planets orbiting a Sun-like star

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers using ESO's world-leading HARPS instrument have discovered a planetary system containing at least five planets, orbiting the Sun-like star HD 10180. The researchers also have tantalising evidence that two other planets may be present, one of which would have the lowest mass ever found. This would make the system similar to our Solar System in terms of the number of planets (seven as compared to the Solar System's eight planets). Furthermore, the team also found evidence that the distances of the planets from their star follow a regular pattern, as also seen in our Solar System. "We have found what is most likely the system with the most planets yet discovered," says Christophe Lovis, lead author of the paper reporting the result. "This remarkable discovery also highlights the fact that we are now entering a new era in exoplanet research: the study of complex planetary systems and not just of individual planets. Studies of planetary motions in the new system reveal complex gravitational interactions between the planets and give us insights into the long-term evolution of the system." The team of astronomers used the HARPS spectrograph, attached to ESO's 3.6-metre telescope at La Silla, Chile, for a six-year-long study of the Sun-like star HD 10180, located 127 light-years away in the southern constellation of Hydrus (the Male Water Snake). HARPS is an instrument with unrivalled measurement stability and great precision and is the world's most successful exoplanet hunter. Thanks to the 190 individual HARPS measurements, the astronomers detected the tiny back and forth motions of the star caused by the complex gravitational attractions from five or more planets. The five strongest signals correspond to planets with Neptune-like masses - between 13 and 25 Earth masses [1] - which orbit the star with periods ranging from about 6 to 600 days. These planets are located between 0.06 and 1.4 times the Earth-Sun distance from their central star. "We also have good reasons to believe that two other planets are present," says Lovis. One would be a Saturn-like planet (with a minimum mass of 65 Earth masses) orbiting in 2200 days. The other would be the least massive exoplanet ever discovered [2], with a mass of about 1.4 times that of the Earth. It is very close to its host star, at just 2 percent of the Earth-Sun distance. One "year" on this planet would last only 1.18 Earth-days. "This object causes a wobble of its star of only about 3 km/hour - slower than walking speed - and this motion is very hard to measure," says team member Damien Ségransan. If confirmed, this object would be another example of a hot rocky planet, similar to Corot-7b (eso0933). The newly discovered system of planets around HD 10180 is unique in several respects. First of all, with at least five Neptune-like planets lying within a distance equivalent to the orbit of Mars, this system is more populated than our Solar System in its inner region, and has many more massive planets there [3]. Furthermore, the system probably has no Jupiter-like gas giant. In addition, all the planets seem to have almost circular orbits. So far, astronomers know of fifteen systems with at least three planets. The last record-holder was 55 Cancri, which contains five planets, two of them being giant planets. "Systems of low-mass planets like the one around HD 10180 appear to be quite common, but their formation history remains a puzzle," says Lovis. Using the new discovery as well as data for other planetary systems, the astronomers found an equivalent of the Titius-Bode law that exists in our Solar System: the distances of the planets from their star seem to follow a regular pattern [4]. "This could be a signature of the formation process of these planetary systems," says team member Michel Mayor. Another important result found by the astronomers while studying these systems is that there is a relationship between the mass of a planetary system and the mass and chemical content of its host star. All very massive planetary systems are found around massive and metal-rich stars, while the four lowest-mass systems are found around lower-mass and metal-poor stars [5]. Such properties confirm current theoretical models. The discovery is announced today at the international colloquium "Detection and dynamics of transiting exoplanets", at the Observatoire de Haute-Provence, France. Notes [1] Using the radial velocity method, astronomers can only estimate a minimum mass for a planet as the mass estimate also depends on the tilt of the orbital plane relative to the line of sight, which is unknown. From a statistical point of view, this minimum mass is however often close to the real mass of the planet. [2] (added 30 August 2010) HD 10180b would be the lowest mass exoplanet discovered orbiting a "normal" star like our Sun. However, lower mass exoplanets have been previously discovered orbiting the pulsar PSR B1257+12 (a highly magnetised rotating neutron star). [3] On average the planets in the inner region of the HD 10180 system have 20 times the mass of the Earth, whereas the inner planets in our own Solar System (Mercury, Venus, Earth and Mars) have an average mass of half that of the Earth. [4] The Titius-Bode law states that the distances of the planets from the Sun follow a simple pattern. For the outer planets, each planet is predicted to be roughly twice as far away from the Sun as the previous object. The hypothesis correctly predicted the orbits of Ceres and Uranus, but failed as a predictor of Neptune's orbit. [5] According to the definition used in astronomy, "metals" are all the elements other than hydrogen and helium. Such metals, except for a very few minor light chemical elements, have all been created by the various generations of stars. Rocky planets are made of "metals". More information This research was presented in a paper submitted to Astronomy and Astrophysics ("The HARPS search for southern extra-solar planets. XXVII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems" by C. Lovis et al.). The team is composed of C. Lovis, D. Ségransan, M. Mayor, S. Udry, F. Pepe, and D. Queloz (Observatoire de Genève, Université de Genève, Switzerland), W. Benz (Universität Bern, Switzerland), F. Bouchy (Institut d'Astrophysique de Paris, France), C. Mordasini (Max-Planck-Institut für Astronomie, Heidelberg, Germany), N. C. Santos (Universidade do Porto, Portugal), J. Laskar (Observatoire de Paris, France), A. Correia (Universidade de Aveiro, Portugal), and J.-L. Bertaux (Université Versailles Saint-Quentin, France) and G. Lo Curto (ESO). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  19. Observing facilities at the European Southern Observatory (ESO) in Chile for cometary observations

    NASA Technical Reports Server (NTRS)

    Schnur, G. F. O.; Kohoutek, L.; Rahe, J.

    1981-01-01

    The (ESO) is located on the mountain La Silla (geographical coordinates: 4h42m55s10 west, -29 deg 15' 25".8 south, 2400 m elevation. The size of the telescopes ranges from a 40 cm Astrograph to the 3.6 m Richey-Chretien telescope. Future telescopes are discussed: a 2.2 m RC-Telescope which will be identical with the German 2.2 m telescope on Calor Alto in SE-Spain, and a 3.5 m telescope, the New Technology Telescope. In addition to these telescopes, a great number of auxiliary instrumentation are operational. Because ESO has to serve all requests of the visiting astronomers these instruments are designed for very different applications. The telescopes and auxiliary instruments that are especially suited for cometary observations are discussed. The dicussion is divided into three parts: photography, photometry-polarimetry and spectroscopy.

  20. The MATISSE analysis of large spectral datasets from the ESO Archive

    NASA Astrophysics Data System (ADS)

    Worley, C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Vernisse, Y.; Ordenovic, C.; Bijaoui, A.

    2010-12-01

    The automated stellar classification algorithm, MATISSE, has been developed at the Observatoire de la Côte d'Azur (OCA) in order to determine stellar temperatures, gravities and chemical abundances for large datasets of stellar spectra. The Gaia Data Processing and Analysis Consortium (DPAC) has selected MATISSE as one of the key programmes to be used in the analysis of the Gaia Radial Velocity Spectrometer (RVS) spectra. MATISSE is currently being used to analyse large datasets of spectra from the ESO archive with the primary goal of producing advanced data products to be made available in the ESO database via the Virtual Observatory. This is also an invaluable opportunity to identify and address issues that can be encountered with the analysis large samples of real spectra prior to the launch of Gaia in 2012. The analysis of the archived spectra of the FEROS spectrograph is currently underway and preliminary results are presented.

  1. GROND followup of ASASSN-17gu/AT2017eip

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Wan; Chen, Tau

    2017-05-01

    We observed the field of ASASSN-17gu/AT2017eip (Stone et al, ATel #10431) simultaneously in g'r'i'z'JHK with GROND (Greiner et al. 2008, PASP 120, 405) mounted at the 2.2m MPG telescope at the ESO La Silla Observatory (Chile).

  2. Brazilian cuts put projects in peril

    NASA Astrophysics Data System (ADS)

    José Lopes, Reinaldo

    2015-10-01

    The soap opera surrounding Brazil's participation in the European Southern Observatory (ESO) has taken another twist after the Ministry of Science, Technology and Innovation said that the government is still “considering” what to do, even though physicist Sérgio Rezende - a former science minister - was behind the push for Brazilian membership.

  3. Is This Speck of Light an Exoplanet?

    NASA Astrophysics Data System (ADS)

    2004-09-01

    VLT Images and Spectra of Intriguing Object near Young Brown Dwarf [1] Summary Is this newly discovered feeble point of light the long-sought bona-fide image of an exoplanet? A research paper by an international team of astronomers [2] provides sound arguments in favour, but the definitive answer is now awaiting further observations. On several occasions during the past years, astronomical images revealed faint objects, seen near much brighter stars. Some of these have been thought to be those of orbiting exoplanets, but after further study, none of them could stand up to the real test. Some turned out to be faint stellar companions, others were entirely unrelated background stars. This one may well be different. In April of this year, the team of European and American astronomers detected a faint and very red point of light very near (at 0.8 arcsec angular distance) a brown-dwarf object, designated 2MASSWJ1207334-393254. Also known as "2M1207", this is a "failed star", i.e. a body too small for major nuclear fusion processes to have ignited in its interior and now producing energy by contraction. It is a member of the TW Hydrae stellar association located at a distance of about 230 light-years. The discovery was made with the adaptive-optics supported NACO facility [3] at the 8.2-m VLT Yepun telescope at the ESO Paranal Observatory (Chile). The feeble object is more than 100 times fainter than 2M1207 and its near-infrared spectrum was obtained with great efforts in June 2004 by NACO, at the technical limit of the powerful facility. This spectrum shows the signatures of water molecules and confirms that the object must be comparatively small and light. None of the available observations contradict that it may be an exoplanet in orbit around 2M1207. Taking into account the infrared colours and the spectral data, evolutionary model calculations point to a 5 jupiter-mass planet in orbit around 2M1207. Still, they do not yet allow a clear-cut decision about the real nature of this intriguing object. Thus, the astronomers refer to it as a "Giant Planet Candidate Companion (GPCC)" [4]. Observations will now be made to ascertain whether the motion in the sky of GPCC is compatible with that of a planet orbiting 2M1207. This should become evident within 1-2 years at the most. PR Photo 26a/04: NACO image of the brown dwarf object 2M1207 and GPCC PR Photo 26b/04: Near-infrared spectrum of the brown dwarf object 2M1207 and GPCC PR Photo 26c/04: Comparison between the possible 2M1207 system and the solar system Just a speck of light ESO PR Photo 26a/04 ESO PR Photo 26a/04 The Brown Dwarf Object 2M1207 and GPCC [Preview - JPEG: 400 x 471 pix - 65k] [Normal - JPEG: 800 x 942 pix - 158k] Caption: ESO PR Photo 26a/04 is a composite image of the brown dwarf object 2M1207 (centre) and the fainter object seen near it, at an angular distance of 778 milliarcsec. Designated "Giant Planet Candidate Companion" by the discoverers, it may represent the first image of an exoplanet. Further observations, in particular of its motion in the sky relative to 2M1207 are needed to ascertain its true nature. The photo is based on three near-infrared exposures (in the H, K and L' wavebands) with the NACO adaptive-optics facility at the 8.2-m VLT Yepun telescope at the ESO Paranal Observatory. Since 1998, a team of European and American astronomers [2] is studying the environment of young, nearby "stellar associations", i.e., large conglomerates of mostly young stars and the dust and gas clouds from which they were recently formed. The stars in these associations are ideal targets for the direct imaging of sub-stellar companions (planets or brown dwarf objects). The leader of the team, ESO astronomer Gael Chauvin notes that "whatever their nature, sub-stellar objects are much hotter and brighter when young - tens of millions of years - and therefore can be more easily detected than older objects of similar mass". The team especially focused on the study of the TW Hydrae Association. It is located in the direction of the constellation Hydra (The Water-Snake) deep down in the southern sky, at a distance of about 230 light-years. For this, they used the NACO facility [3] at the 8.2-m VLT Yepun telescope, one of the four giant telescopes at the ESO Paranal Observatory in northern Chile. The instrument's adaptive optics (AO) overcome the distortion induced by atmospheric turbulence, producing extremely sharp near-infrared images. The infrared wavefront sensor was an essential component of the AO system for the success of these observations. This unique instrument senses the deformation of the near-infrared image, i.e. in a wavelength region where objects like 2M1207 (see below) are much brighter than in the visible range. The TW Hydrae Association contains a star with an orbiting brown dwarf companion, approximately 20 times the mass of Jupiter, and four stars surrounded by dusty proto-planetary disks. Brown dwarf objects are "failed stars", i.e. bodies too small for nuclear processes to have ignited in their interior and now producing energy by contraction. They emit almost no visible light. Like the Sun and the giant planets in the solar system, they are composed mainly of hydrogen gas, perhaps with swirling cloud belts. On a series of exposures made through different optical filters, the astronomers discovered a tiny red speck of light, only 0.8 arcsec from the TW Hydrae Association brown-dwarf object 2MASSWJ1207334-393254, or just "2M1207", cf. PR Photo 26a/04. The feeble image is more than 100 times fainter than that of 2M1207. "If these images had been obtained without adaptive optics, that object would not have been seen," says Gael Chauvin. Christophe Dumas, another member of the team, is enthusiastic: "The thrill of seeing this faint source of light in real-time on the instrument display was unbelievable. Although it is surely much bigger than a terrestrial-size object, it is a strange feeling that it may indeed be the first planetary system beyond our own ever imaged." Exoplanet or Brown Dwarf? ESO PR Photo 26b/04 ESO PR Photo 26b/04 The Brown Dwarf Object 2M1207 and GPCC [Preview - JPEG: 400 x 486 pix - 102k] [Normal - JPEG: 800 x 912 pix - 234k] Caption: ESO PR Photo 26b/04 shows near-infrared H-band spectra of the brown dwarf object 2M1207 and the fainter "GPCC" object seen near it, obtained with the NACO facility at the 8.2-m VLT Yepun telescope. In the upper part, the spectrum of 2M1207 (fully drawn blue curve) is compared with that of another substellar object (T513; dashed line); in the lower, the (somewhat noisy) spectrum of GPCC (fully drawn red curve) is compared with two substellar objects of different types (2M0301 and SDSS0539). The spectrum of GPCC is clearly very similar to these, confirming the substellar nature of this body. The broad dips at the left and the right are clear signatures of water in the (atmospheres of the) objects. What is the nature of this faint object [4]? Could it be an exoplanet in orbit around that young brown dwarf object at a projected distance of about 8,250 million km (about twice the distance between the Sun and Neptune)? "If the candidate companion of 2M1207 is really a planet, this would be the first time that a gravitationally bound exoplanet has been imaged around a star or a brown dwarf" says Benjamin Zuckerman of UCLA, a member of the team and also of NASA's Astrobiology Institute. Using high-angular-resolution spectroscopy with the NACO facility, the team has confirmed the substellar status of this object - now referred to as the "Giant Planet Candidate Companion (GPCC)" - by identifying broad water-band absorptions in its atmosphere, cf. PR Photo 26b/04. The spectrum of a young and hot planet - as the GPCC may well be - will have strong similarities with an older and more massive object such as a brown dwarf. However, when it cools down after a few tens of millions of years, such an object will show the spectral signatures of a giant gaseous planet like those in our own solar system. Although the spectrum of GPCC is quite "noisy" because of its faintness, the team was able to assign to it a spectral characterization that excludes a possible contamination by extra-galactic objects or late-type cool stars with abnormal infrared excess, located beyond the brown dwarf. After a very careful study of all options, the team found that, although this is statistically very improbable, the possibility that this object could be an older and more massive, foreground or background, cool brown dwarf cannot be completely excluded. The related detailed analysis is available in the resulting research paper that has been accepted for publication in the European journal Astronomy & Astrophysics (see below). Implications The brown dwarf 2M1207 has approximately 25 times the mass of Jupiter and is thus about 42 times lighter than the Sun. As a member of the TW Hydrae Association, it is about eight million years old. Because our solar system is 4,600 million years old, there is no way to directly measure how the Earth and other planets formed during the first tens of millions of years following the formation of the Sun. But, if astronomers can study the vicinity of young stars which are now only tens of millions of years old, then by witnessing a variety of planetary systems that are now forming, they will be able to understand much more accurately our own distant origins. Anne-Marie Lagrange, a member of the team from the Grenoble Observatory (France), looks towards the future: "Our discovery represents a first step towards opening a whole new field in astrophysics: the imaging and spectroscopic study of planetary systems. Such studies will enable astronomers to characterize the physical structure and chemical composition of giant and, eventually, terrestrial-like planets." Follow-up observations ESO PR Photo 26c/04 ESO PR Photo 26c/04 Comparison between the solar and 2M1207 systems [Preview - JPEG: 400 x 190 pix - 38k] [Normal - JPEG: 800 x 397 pix - 86k] [HiRes - JPEG: 2000 x 948 pix - 326k] Caption: ESO PR Photo 26c/04 shows for illustration a comparison between the solar system and the brown dwarf object 2M1207 system with its possible planet at 55 AU distance. The sizes of the objects are drawn to the same scale, but the distances have been strongly compressed. Taking into account the infrared colours and the spectral data available for GPCC, evolutionary model calculations point to a 5 jupiter-mass planet, about 55 times more distant from 2M1207 than the Earth is from the Sun (55 AU). The surface temperature appears to be about 10 times hotter than Jupiter, about 1000 °C; this is easily explained by the amount of energy that must be liberated during the current rate of contraction of this young object (indeed, the much older giant planet Jupiter is still producing energy in its interior). The astronomers will now continue their research to confirm or deny whether they have in fact discovered an exoplanet. Over the next few years, they expect to establish beyond doubt whether the object is indeed a planet in orbit around the brown dwarf 2M1207 by watching how the two objects move through space and to learn whether or not they move together. They will also measure the brightness of the GPCC at multiple wavelengths and more spectral observations may be attempted. There is no doubt that future programmes to image exoplanets around nearby stars, either from the ground with extremely large telescopes equipped with specially designed adaptive optics, or from space with special planet-finder telescopes, will greatly profit from current technological achievements. More information The results presented in this ESO Press Release are based on a research paper ("A Giant Planet Candidate near a Young Brown Dwarf" by G. Chauvin et al.) that has been accepted for publication and will appear in the leading research journal "Astronomy and Astrophysics" on September 23, 2004 (Vol. 425, Issue 2, page L29). A preprint is available here and also as astro-ph0409323. Notes [1]: This press release is issued simultaneously by ESO and CNRS (in French). [2]: The team consists of Gael Chauvin and Christophe Dumas (ESO-Chile), Anne-Marie Lagrange and Jean-Luc Beuzit (LAOG, Grenoble, France), Benjamin Zuckerman and Inseok Song (UCLA, Los Angeles, USA), David Mouillet (LAOMP, Tarbes, France) and Patrick Lowrance (IPAC, Pasadena, USA). The American members of the team acknowledge funding in part by NASA's Astrobiology Institute. [3]: The NACO facility (from NAOS/Nasmyth Adaptive Optics System and CONICA/Near-Infrared Imager and Spectrograph) at the 8.2-m VLT Yepun telescope on Paranal offers the capability to produce diffraction-limited near-infrared images of astronomical objects. It senses the radiation in this wavelength region with the N90C10 dichroic; 90 percent of the flux is transmitted to the wavefront sensor and 10 percent to the near-infrared camera CONICA. This mode is particularly useful for sharp imaging of red and very-low-mass stellar or substellar objects. The adaptive optics corrector (NAOS) was built, under an ESO contract, by Office National d'Etudes et de Recherches Aérospatiales (ONERA), Laboratoire d'Astrophysique de Grenoble (LAOG) and the LESIA and GEPI laboratories of the Observatoire de Paris in France, in collaboration with ESO. The CONICA camera was built, under an ESO contract, by the Max-Planck-Institut für Astronomie (MPIA) (Heidelberg) and the Max-Planck Institut für extraterrestrische Physik (MPE) (Garching) in Germany, in collaboration with ESO. [4]: What is the difference between a small brown dwarf and an exoplanet ? The border line between the two is still being investigated but it appears that a brown dwarf object is formed in the same way as stars, i.e. by contraction in an interstellar cloud while planets are formed within stable circumstellar disks via collision/accretion of planetesimals or disk instabilities. This implies that brown dwarfs are formed faster (less than 1 million years) than planets (~10 million years). Another way of separating the two kinds of objects is by mass (as this is also done between brown dwarfs and stars): (giant) planets are lighter than about 13 jupiter-masses (the critical mass needed to ignite deuterium fusion), brown dwarfs are heavier. Unfortunately, the first definition cannot be used in practice, e.g., when detecting a faint companion as in the present case, since the observations do not provide information about the way the object was formed. On the contrary, the above mass criterion is useful in the sense that spectroscopy and astrometry of a faint object, together with the appropriate evolutionary models, may reveal the mass and hence the nature of the object.

  4. Chronicle of a Death Foretold

    NASA Astrophysics Data System (ADS)

    2007-05-01

    Using ESO's VLTI on Cerro Paranal and the VLBA facility operated by NRAO, an international team of astronomers has made what is arguably the most detailed study of the environment of a pulsating red giant star. They performed, for the first time, a series of coordinated observations of three separate layers within the star's tenuous outer envelope: the molecular shell, the dust shell, and the maser shell, leading to significant progress in our understanding of the mechanism of how, before dying, evolved stars lose mass and return it to the interstellar medium. S Orionis (S Ori) belongs to the class of Mira-type variable stars. It is a solar-mass star that, as will be the fate of our Sun in 5 billion years, is nearing its gloomy end as a white dwarf. Mira stars are very large and lose huge amounts of matter. Every year, S Ori ejects as much as the equivalent of Earth's mass into the cosmos. ESO PR Photo 25a/07 ESO PR Photo 25a/07 Evolution of the Mira-type Star S Orionis "Because we are all stardust, studying the phases in the life of a star when processed matter is sent back to the interstellar medium to be used for the next generation of stars, planets... and humans, is very important," said Markus Wittkowski, lead author of the paper reporting the results. A star such as the Sun will lose between a third and half of its mass during the Mira phase. S Ori pulsates with a period of 420 days. In the course of its cycle, it changes its brightness by a factor of the order of 500, while its diameter varies by about 20%. Although such stars are enormous - they are typically larger than the current Sun by a factor of a few hundred, i.e. they encompass the orbit of the Earth around the Sun - they are also distant and to peer into their deep envelopes requires very high resolution. This can only be achieved with interferometric techniques. ESO PR Photo 25b/07 ESO PR Photo 25b/07 Structure of S Ori (Artist's Impression) "Astronomers are like medical doctors, who use various instruments to examine different parts of the human body," said co-author David Boboltz. "While the mouth can be checked with a simple light, a stethoscope is required to listen to the heart beat. Similarly the heart of the star can be observed in the optical, the molecular and dust layers can be studied in the infrared and the maser emission can be probed with radio instruments. Only the combination of the three gives us a more complete picture of the star and its envelope." The maser emission comes from silicon monoxide (SiO) molecules and can be used to image and track the motion of gas clouds in the stellar envelope roughly 10 times the size of the Sun. The astronomers observed S Ori with two of the largest interferometric facilities available: the ESO Very Large Telescope Interferometer (VLTI) at Paranal, observing in the near- and mid-infrared, and the NRAO-operated Very Long Baseline Array (VLBA), that takes measurements in the radio wave domain. Because the star's luminosity changes periodically, the astronomers observed it simultaneously with both instruments, at several different epochs. The first epoch occurred close to the stellar minimum luminosity and the last just after the maximum on the next cycle. ESO PR Photo 25c/07 ESO PR Photo 25c/07 S Ori to Scale (Artist's Impression) The astronomers found the star's diameter to vary between 7.9 milliarcseconds and 9.7 milliarcseconds. At the distance of S Ori, this corresponds to a change of the radius from about 1.9 to 2.3 times the distance between the Earth and the Sun, or between 400 and 500 solar radii! As if such sizes were not enough, the inner dust shell is found to be about twice as big. The maser spots, which also form at about twice the radius of the star, show the typical structure of partial to full rings with a clumpy distribution. Their velocities indicate that the gas is expanding radially, moving away at a speed of about 10 km/s. The multi-wavelength analysis indicates that near the minimum there is more dust production and mass ejection: in these phases indeed the amount of dust is significantly higher than in the others. After this intense matter production and ejection the star continues its pulsation and when it reaches the maximum luminosity, it displays a much more expanded dust shell. This clearly supports a strong connection between the Mira pulsation and the dust production and expulsion. Furthermore, the astronomers found that grains of aluminum oxide - also called corundum - constitute most of S Ori's dust shell: the grain size is estimated to be of the order of 10 millionths of a centimetre, that is one thousand times smaller than the diameter of a human hair. "We know one chapter of the secret life of a Mira star, but much more can be learned in the near future, when we add near-infrared interferometry with the AMBER instrument on the VLTI to our (already broad) observational approach," said Wittkowski. More Information The research presented here is reported in a paper in press in the journal Astronomy and Astrophysics ("The Mira variable S Ori: Relationships between the photosphere, molecular layer, dust shell, and SiO maser shell at 4 epochs", by M. Wittkowski et al.). It is available in PDF format from the publisher's web site. The team consists of Markus Wittkowski (ESO), David A. Boboltz (U.S. Naval Observatory, USA), Keiichi Ohnaka and Thomas Driebe (MPIfR Bonn, Germany), and Michael Scholz (University of Heidelberg, Germany and University of Sydney, Australia).

  5. Promoting Dark Sky Protection in Chile: the Gabriel Mistral IDA Dark Sky Sanctuary and Other AURA Initiatives

    NASA Astrophysics Data System (ADS)

    Smith, R. Chris; Smith, Malcolm; Pompea, Stephen; Sanhueza, Pedro; AURA-Chile EPO Team

    2018-01-01

    For over 20 years, AURA has been leading efforts promoting the protection of dark skies in northern Chile. Efforts began in the early 1990s at AURA's Cerro Tololo Inter-American Observatory (CTIO), working in collaboration with other international observatories in Chile including Las Campanas Observatory (LCO) and the European Southern Observatory (ESO). CTIO also partnered with local communities, for example supporting Vicuña's effort to establish the first municipal observatory in Chile. Today we have developed a multifaceted effort of dark sky protection, including proactive government relations at national and local levels, a strong educational and public outreach program, and a program of highlighting international recognition of the dark skies through the IDA Dark Sky Places program. Work on international recognition has included the declaration of the Gabriel Mistral IDA Dark Sky Sanctuary, the first such IDA sanctuary in the world.

  6. "Life in the Universe" Final Event Video Now Available

    NASA Astrophysics Data System (ADS)

    2002-02-01

    ESO Video Clip 01/02 is issued on the web in conjunction with the release of a 20-min documentary video from the Final Event of the "Life in the Universe" programme. This unique event took place in November 2001 at CERN in Geneva, as part of the 2001 European Science and Technology Week, an initiative by the European Commission to raise the public awareness of science in Europe. The "Life in the Universe" programme comprised competitions in 23 European countries to identify the best projects from school students. The projects could be scientific or a piece of art, a theatrical performance, poetry or even a musical performance. The only restriction was that the final work must be based on scientific evidence. Winning teams from each country were invited to a "Final Event" at CERN on 8-11 November, 2001 to present their projects to a panel of International Experts during a special three-day event devoted to understanding the possibility of other life forms existing in our Universe. This Final Event also included a spectacular 90-min webcast from CERN with the highlights of the programme. The video describes the Final Event and the enthusiastic atmosphere when more than 200 young students and teachers from all over Europe met with some of the world's leading scientific experts of the field. The present video clip, with excerpts from the film, is available in four versions: two MPEG files and two streamer-versions of different sizes; the latter require RealPlayer software. Video Clip 01/02 may be freely reproduced. The 20-min video is available on request from ESO, for viewing in VHS and, for broadcasters, in Betacam-SP format. Please contact the ESO EPR Department for more details. Life in the Universe was jointly organised by the European Organisation for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO) , in co-operation with the European Association for Astronomy Education (EAAE). Other research organisations were associated with the programme, e.g., the European Molecular Biology Laboratory (EMBL) and the European Synchrotron Radiation Facility (ESRF). Detailed information about the "Life in the Universe" programme can be found at the website b>http://www.lifeinuniverse.org and a webcast of this 90-min closing session in one of the large experimental halls at CERN is available on the web via that page. Most of the ESO PR Video Clips at the ESO website provide "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clips 08a-b/01 about The Eagle's EGGs (20 December 2001) . General information is available on the web about ESO videos.

  7. Catherine Cesarsky Elected Foreign Associate of the US National Academy of Sciences

    NASA Astrophysics Data System (ADS)

    2005-04-01

    On April 20, 2004, the US National Academy of Sciences selected 72 new members and 18 foreign associates from 13 countries, including Dr. Cesarsky, in recognition of their distinguished and continuing achievements in original research. This brought the total number of active members to 1,949, among which 351 foreign associates. The US National Academy of Sciences (NAS) is a private, non-profit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Election to the NAS is considered one of the highest honours that can be accorded a scientist or engineer. "It is a great honour. I am extremely happy about it," says Catherine Cesarsky. "It comes at a time when we are very engaged in a fruitful collaboration with our American partners for the construction of the Atacama Large Millimeter Array, certainly one of the largest ground-based astronomy projects of the next decade." Among its distinguished members, the National Academy includes 83 astronomers. Catherine Cesarsky was elected in recognition of her role as a pioneer of space infrared astronomy and a leader of European physics and astronomy. "She has made seminal contributions to the study of star formation in near and distant galaxies, the cosmic infrared background, and the confinement and acceleration of cosmic rays", states the nomination form. "The election of Catherine Cesarsky to the US National Academy of Sciences is most appropriate", declares Piet van der Kruit, President of ESO's Council. "She has many accomplishments of very high standing, not the least her leadership of the European Southern Observatory ESO, which under her directorship became the leading organisation worldwide in ground-based optical astronomy. To her credit go in particular the coming of age of the Paranal Observatory in Chile, which is providing the most advanced observing opportunities in terms of well-instrumented 8-metre class optical telescopes and realising the first optical interferometer for research as a general user facility. At the same time she made a decisive contribution to bringing the Atacama Large Millimeter Array (ALMA) project to a real start." In 2003, Catherine Cesarsky was appointed President Elect of the International Astronomical Union. At the 2006 General Assembly of the IAU, in Prague, she will take up the function of President. The IAU is the world's foremost organisation for astronomy, uniting almost 9000 professional scientists on all continents.

  8. Determination of robust metallicities for metal-rich red giant branch stars. An application to the globular cluster NGC 6528

    NASA Astrophysics Data System (ADS)

    Liu, C.; Ruchti, G.; Feltzing, S.; Primas, F.

    2017-05-01

    Context. The study of the Milky Way relies on our ability to interpret the light from stars correctly. With the advent of the astrometric ESA mission Gaia we will enter a new era where the study of the Milky Way can be undertaken on much larger scales than currently possible. In particular we will be able to obtain full 3D space motions of red giant stars at large distances. This calls for a reinvestigation of how reliably we can determine, for example, iron abundances in such stars and how well they reproduce those of dwarf stars. Aims: Here we explore robust ways of determining the iron content of metal-rich giant stars. We aim to understand what biases and shortcomings the widely applied methods suffer from. Methods: In this study we were mainly concerned with standard methods of analysing stellar spectra. These include the analysis of individual lines to determine stellar parameters, and analysis of the broad wings of certain lines (e.g. Hα and calcium lines) to determine effective temperature and surface gravity for the stars. Results: For NGC 6528 we find that [Fe/H] = + 0.04 dex with a scatter of σ = 0.07 dex, which gives an error in the derived mean abundance of 0.02 dex. Conclusions: Our work has two important conclusions for analysis of metal-rich red giant branch stars. Firstly, for spectra with S/N of below about 35 per reduced pixel, [Fe/H] becomes too high. Secondly, determination of Teff using the wings of the Hα line results in [Fe/H] values about 0.1 dex higher than if excitational equilibrium is used. The last conclusion is perhaps unsurprising, as we expect the NLTE effect to become more prominent in cooler stars and we can not use the wings of the Hα line to determine Teff for the cool stars in our sample. We therefore recommend that in studies of metal-rich red giant stars care should be taken to obtain sufficient calibration data to enable use of the cooler stars. Based on observations made with the ESO/VLT, at Paranal Observatory, under programme 067.B-0382(A) and on data obtained from the ESO Science Archive Facility under programme 065.L-0340(A), 067.D-0489(A), and 077.B-0327(A) and from the Keck Observatory Archive under programme C53H and C19H.The reduced spectra is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A31

  9. Controlled by Distant Explosions

    NASA Astrophysics Data System (ADS)

    2007-03-01

    VLT Automatically Takes Detailed Spectra of Gamma-Ray Burst Afterglows Only Minutes After Discovery A time-series of high-resolution spectra in the optical and ultraviolet has twice been obtained just a few minutes after the detection of a gamma-ray bust explosion in a distant galaxy. The international team of astronomers responsible for these observations derived new conclusive evidence about the nature of the surroundings of these powerful explosions linked to the death of massive stars. At 11:08 pm on 17 April 2006, an alarm rang in the Control Room of ESO's Very Large Telescope on Paranal, Chile. Fortunately, it did not announce any catastrophe on the mountain, nor with one of the world's largest telescopes. Instead, it signalled the doom of a massive star, 9.3 billion light-years away, whose final scream of agony - a powerful burst of gamma rays - had been recorded by the Swift satellite only two minutes earlier. The alarm was triggered by the activation of the VLT Rapid Response Mode, a novel system that allows for robotic observations without any human intervention, except for the alignment of the spectrograph slit. ESO PR Photo 17a/07 ESO PR Photo 17a/07 Triggered by an Explosion Starting less than 10 minutes after the Swift detection, a series of spectra of increasing integration times (3, 5, 10, 20, 40 and 80 minutes) were taken with the Ultraviolet and Visual Echelle Spectrograph (UVES), mounted on Kueyen, the second Unit Telescope of the VLT. "With the Rapid Response Mode, the VLT is directly controlled by a distant explosion," said ESO astronomer Paul Vreeswijk, who requested the observations and is lead-author of the paper reporting the results. "All I really had to do, once I was informed of the gamma-ray burst detection, was to phone the staff astronomers at the Paranal Observatory, Stefano Bagnulo and Stan Stefl, to check that everything was fine." The first spectrum of this time series was the quickest ever taken of a gamma-ray burst afterglow, let alone with an instrument such as UVES, which is capable of splitting the afterglow light with uttermost precision. What is more, this amazing record was broken less than two months later by the same team. On 7 June 2006, the Rapid-Response Mode triggered UVES observations of the afterglow of an even more distant gamma-ray source a mere 7.5 minutes after its detection by the Swift satellite. Gamma-ray bursts are the most intense explosions in the Universe. They are also very brief. They randomly occur in galaxies in the distant Universe and, after the energetic gamma-ray emission has ceased, they radiate an afterglow flux at longer wavelengths (i.e. lower energies). They are classified as long and short bursts according to their duration and burst energetics, but hybrid bursts have also been discovered (see ESO PR 49/06). The scientific community agrees that gamma-ray bursts are associated with the formation of black holes, but the exact nature of the bursts remains enigmatic. ESO PR Photo 17b/07 ESO PR Photo 17b/07 Kueyen at Night Because a gamma-ray burst typically occurs at very large distances, its optical afterglow is faint. In addition, it fades very rapidly: in only a few hours the optical afterglow brightness can fade by as much as a factor of 500. This makes detailed spectral analysis possible only for a few hours after the gamma-ray detection, even with large telescopes. During the first minutes and hours after the explosion, there is also the important opportunity to observe time-dependent phenomena related to the influence of the explosion on its surroundings. The technical challenge therefore consists of obtaining high-resolution spectroscopy with 8-10 m class telescopes as quickly as possible. "The afterglow spectra provide a wealth of information about the composition of the interstellar medium of the galaxy in which the star exploded. Some of us even hoped to characterize the gas in the vicinity of the explosion," said team member Cédric Ledoux (ESO). ESO PR Photo 17c/07 ESO PR Photo 17c/07 The Kueyen Control Room The Rapid Response Mode UVES observations of 17 April 2006 allowed the astronomers to discover variable spectral features associated with a huge gas cloud in the host galaxy of the gamma-ray burst. The cloud was found to be neutral but excited by the radiation from the UV afterglow light. From detailed modelling of these observations, the astronomers were able - for the first time - to not only pinpoint the physical mechanism responsible for the excitation of the atoms, but also determine the distance of the cloud to the GRB. This distance was found to be 5,500 light-years, which is much further out than was previously thought. Either this is a special case, or the common picture that the features seen in optical spectra originate very close to the explosion has to be revised. As a comparison, this distance of 5,500 light-years is more than one fifth of that between the Sun and the centre of our Galaxy. "All the material in this region of space must have been ionised, that is, the atoms have been stripped of most if not all of their electrons," said co-author Alain Smette (ESO). "Were there any life in this region of the Universe, it would most probably have been eradicated." "With the Rapid-Response Mode of the VLT, we are really looking at gamma-ray bursts as quickly as possible," said team member Andreas Jaunsen from the University of Oslo (Norway). "This is crucial if we are to unravel the mysteries of these gigantic explosions and their links with black holes!" More Information The two gamma-ray bursts were discovered with the NASA/ASI/PPARC Swift satellite, which is dedicated to the discovery of these powerful cosmic explosions. Preliminary reports on these observations have been presented in GCN GRB Observation Reports 4974 and 5237. A paper is also in press in the journal Astronomy & Astrophysics ("Rapid-Response Mode VLT/UVES spectroscopy of GRB 060418 - Conclusive evidence for UV pumping from the time evolution of Fe II and Ni II excited- and metastable-level populations" by P. M. Vreeswijk et al.). DOI: 10.1051/0004-6361:20066780 The team is composed of Paul Vreeswijk, Cédric Ledoux, Alain Smette, Andreas Kaufer and Palle Møller (ESO), Sara Ellison (University of Victoria, Canada), Andreas Jaunsen (University of Oslo, Norway), Morten Andersen (AIP, Potsdam, Germany), Andrew Fruchter (STScI, Baltimore, USA), Johan Fynbo and Jens Hjorth (Dark Cosmology Centre, Copenhagen, Denmark), Patrick Petitjean (IAP, Paris, France), Sandra Savaglio (MPE, Garching, Germany), and Ralph Wijers (Astronomical Institute, University of Amsterdam, The Netherlands). Paul Vreeswijk was at the time of this study also associated with the Universidad de Chile, Santiago.

  10. VizieR Online Data Catalog: Faint emission lines in M16, M20, NGC 3603 (Garcia-Rojas+, 2006)

    NASA Astrophysics Data System (ADS)

    Garcia-Rojas, J.; Esteban, C.; Peimbert, M.; Costado, M. T.; Rodriguez, M.; Peimbert, A.; Ruiz, M. T.

    2006-10-01

    The observations were made on 2003 March 29, 30 and 31 with UVES, at the VLT Kueyen Telescope in Cerro Paranal Observatory (Chile). We used the standard settings in both the red and blue arms of the spectrograph, covering the spectral region from 3100 to 10400{AA}. (1 data file).

  11. Resolving the Circumstellar Environment of the Galactic B[e] Supergiant Star MWC 137 from Large to Small Scales

    NASA Astrophysics Data System (ADS)

    Kraus, Michaela; Liimets, Tiina; Cappa, Cristina E.; Cidale, Lydia S.; Nickeler, Dieter H.; Duronea, Nicolas U.; Arias, Maria L.; Gunawan, Diah S.; Oksala, Mary E.; Borges Fernandes, Marcelo; Maravelias, Grigoris; Curé, Michel; Santander-García, Miguel

    2017-11-01

    The Galactic object MWC 137 has been suggested to belong to the group of B[e] supergiants. However, with its large-scale optical bipolar ring nebula and high-velocity jet and knots, it is a rather atypical representative of this class. We performed multiwavelength observations spreading from the optical to the radio regimes. Based on optical imaging and long-slit spectroscopic data, we found that the northern parts of the large-scale nebula are predominantly blueshifted, while the southern regions appear mostly redshifted. We developed a geometrical model consisting of two double cones. Although various observational features can be approximated with such a scenario, the observed velocity pattern is more complex. Using near-infrared integral-field unit spectroscopy, we studied the hot molecular gas in the vicinity of the star. The emission from the hot CO gas arises in a small-scale disk revolving around the star on Keplerian orbits. Although the disk itself cannot be spatially resolved, its emission is reflected by the dust arranged in arc-like structures and the clumps surrounding MWC 137 on small scales. In the radio regime, we mapped the cold molecular gas in the outskirts of the optical nebula. We found that large amounts of cool molecular gas and warm dust embrace the optical nebula in the east, south, and west. No cold gas or dust was detected in the north and northwestern regions. Despite the new insights into the nebula kinematics gained from our studies, the real formation scenario of the large-scale nebula remains an open issue. Based on observations collected with (1) the ESO VLT Paranal Observatory under programs 094.D-0637(B) and 097.D-0033(A), (2) the MPG 2.2 m telescope at La Silla Observatory, Chile, under programs 096.A-9030(A) and 096.A-9039(A), (3) the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), under program GN-2013B-Q-11, (4) the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias, (5) the APEX telescope under the program CHILE-9711B-2016. APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Observatory, and (6) the Perek 2 m telescope at Ondřejov Observatory, Czech Republic.

  12. Chandra and the VLT Jointly Investigate the Cosmic X-Ray Background

    NASA Astrophysics Data System (ADS)

    2001-03-01

    Summary Important scientific advances often happen when complementary investigational techniques are brought together . In the present case, X-ray and optical/infrared observations with some of the world's foremost telescopes have provided the crucial information needed to solve a 40-year old cosmological riddle. Very detailed observations of a small field in the southern sky have recently been carried out, with the space-based NASA Chandra X-Ray Observatory as well as with several ground-based ESO telescopes, including the Very Large Telescope (VLT) at the Paranal Observatory (Chile). Together, they have provided the "deepest" combined view at X-ray and visual/infrared wavelengths ever obtained into the distant Universe. The concerted observational effort has already yielded significant scientific results. This is primarily due to the possibility to 'identify' most of the X-ray emitting objects detected by the Chandra X-ray Observatory on ground-based optical/infrared images and then to determine their nature and distance by means of detailed (spectral) observations with the VLT . In particular, there is now little doubt that the so-called 'X-ray background' , a seemingly diffuse short-wave radiation first detected in 1962, in fact originates in a vast number of powerful black holes residing in active nuclei of distant galaxies . Moreover, the present investigation has permitted to identify and study in some detail a prime example of a hitherto little known type of object, a distant, so-called 'Type II Quasar' , in which the central black hole is deeply embedded in surrounding gas and dust. These achievements are just the beginning of a most fruitful collaboration between "space" and "ground". It is yet another impressive demonstration of the rapid progress of modern astrophysics, due to the recent emergence of a new generation of extremely powerful instruments. PR Photo 09a/01 : Images of a small part of the Chandra Deep Field South , obtained with ESO telescopes in three different wavebands. PR Photo 09b/01 : A VLT/FORS1 spectrum of a 'Type II Quasar' discovered during this programme. The 'Chandra Deep Field South' and the X-Ray Background ESO PR Photo 09a/01 ESO PR Photo 09a/01 [Preview - JPEG: 400 x 183 pix - 76k] [Normal - JPEG: 800 x 366 pix - 208k] [Hires - JPEG: 3000 x 1453 pix - 1.4M] Caption : PR Photo 09a/01 shows optical/infrared images in three wavebands ('Blue', 'Red', 'Infrared') from ESO telescopes of the Type II Quasar CXOCDFS J033229.9 -275106 (at the centre), one of the distant X-ray sources identified in the Chandra Deep Field South (CDFS) area during the present study. Technical information about these photos is available below. The 'Chandra Deep Field South (CDFS)' is a small sky area in the southern constellation Fornax (The Oven). It measures about 16 arcmin across, or roughly half the diameter of the full moon. There is unusually little gas and dust within the Milky Way in this direction and observations towards the distant Universe within this field thus profit from an particularly clear view. That is exactly why this sky area was selected by an international team of astronomers [1] to carry out an ultra-deep survey of X-ray sources with the orbiting Chandra X-Ray Observatory . In order to detect the faintest possible sources, NASA's satellite telescope looked in this direction during an unprecedented total of almost 1 million seconds of exposure time (11.5 days). The main scientific goal of this survey is to understand the nature and evolution of the elusive sources that make up the 'X-ray background' . This diffuse glare in the X-ray sky was discovered by Riccardo Giacconi and his collaborators during a pioneering rocket experiment in 1962. The excellent imaging quality of Chandra (the angular resolution is about 1 arcsec) makes it possible to do extremely deep exposures without encountering problems introduced by the "confusion effect". This refers to the overlapping of images of sources that are seen close to each other in the sky and thus are difficult to study individually. Previous X-ray satellites were not able to obtain sufficiently sharp X-ray images and the earlier deep X-ray surveys therefore suffered severely from this effect. Moreover, Chandra has much better sensitivity at shorter wavelengths (higher energies) which are less affected by obscuration effects. It can therefore better detect faint sources that emit very energetic ("hard") X-rays. X-ray and optical surveys in the Chandra Deep Field South The one-million second Chandra observations were completed in December 2000. In parallel, a group of astronomers based at institutes in Europe and the USA (the CFDS-team [1]) has been collecting deep images and extensive spectroscopic data with the VLT during the past 2 years (cf. PR Photo 09a/01 ). Their aim was to 'identify' the Chandra X-ray sources, i.e., to unveil their nature and measure their distances. For the identification of these sources, the team has also made extensive use of the observations that were carried out as a part of the comprehensive ESO Imaging Survey Project (EIS). More than 300 X-ray sources were detected in the CDFS by Chandra . A significant fraction of these objects shine so faintly in the optical and near-infrared wavebands that only long-exposure observations with the VLT have been able to detect them. During five observing nights with the FORS1 multi-mode instrument at the 8.2-m VLT ANTU telescope in October and November 2000, the CDFS team was able to identify and obtain spectra of more than one hundred of the X-ray sources registered by Chandra . Nature of the X-ray sources The first results from this study have now confirmed that the 'hard' X-ray background is mainly due to Active Galactic Nuclei (AGN) . The observations also reveal that a large fraction of them are of comparatively low brightness (referred to as 'low-luminosity AGN'), heavily enshrouded by dust and located at distances of 8,000 - 9,000 million light-years (corresponding to a redshift of about 1 and a look-back time of 57% of the age of the Universe [2]) . It is generally believed that all these sources are powered by massive black holes at their centres. Previous X-ray surveys missed most of these objects because they were too faint to be observed by the telescopes then available, in particular at short X-ray wavelengths ('hard X-ray photons') where more radiation from the highly active centres is able to pass through the surrounding, heavily absorbing gas and dust clouds. Other types of well-known X-ray sources, e.g., QSOs ('quasars' = high-luminosity AGN) as well as clusters or groups of galaxies were also detected during these observations. Studies of all classes of objects in the CDFS are also being carried out by several other European groups. This sky field, already a standard reference in the southern hemisphere, will be the subject of several multi-wavelength investigations for many years to come. A prime example will be the Great Observatories Origins Deep Survey (GOODS) which will be carried out by the NASA SIRTF infrared satellite in 2003. Discovery of a distant Type II Quasar ESO PR Photo 09b/01 ESO PR Photo 09b/01 [Preview - JPEG: 400 x 352 pix - 56k] [Normal - JPEG: 800 x 703 pix - 128k] Caption : PR Photo 09b/01 displays the optical spectrum of the distant Type II Quasar CXOCDFS J033229.9 -275106 in the Chandra Deep Field South (CDFS), obtained with the FORS1 multi-mode instrument at VLT ANTU. Strong, redshifted emission lines of Hydrogen and ionised Helium, Oxygen, Nitrogen and Carbon are marked. Technical information about this photo is available below. One particular X-ray source that was identified with the VLT during the present investigation has attracted much attention - it is the discovery of a dust-enshrouded quasar (QSO) at very high redshift ( z = 3.7, corresponding to a distance of about 12,000 million light-years; [2]), cf. PR Photo 09a/01 and PR Photo 09b/01 . It is the first very distant representative of this elusive class of objects (referred to as ' Type II Quasars ') which are believed to account for approximately 90% of the black-hole-powered quasars in the distant Universe. The 'sum' of the identified Chandra X-ray sources in the CDFS was found to match both the intensity and the spectral properties of the observed X-ray background. This important result is a significant step forward towards the definitive resolution of this long-standing cosmological problem. Naturally, ESO astronomer Piero Rosati and his colleagues are thrilled: " It is clearly the combination of the new and detailed Chandra X-ray observations and the enormous light-gathering power of the VLT that has been instrumental to this success. " However, he says, " the identification of the remaining Chandra X-ray sources will be the next challenge for the VLT since they are extremely faint. This is because they are either heavily obscured by dust or because they are extremely distant ". More Information This Press Release is issued simultaneously with a NASA Press Release (see also the Harvard site ). Some of the first results are described in a research paper ("First Results from the X-ray and Optical Survey of the Chandra Deep Field South" available on the web at astro-ph/0007240. More information about science results from the Chandra X-Ray Observatory may be found at: http://asc.harvard.edu/. The optical survey of CDFS at ESO with the Wide-Field Imager is described in connection with PR Photos 46a-b/99 ('100,000 galaxies at a glance'). An image of the Chandra Deep Field South is available at the ESO website on the EIS Image Gallery webpage. . Notes [1]: The Chandra Team is lead by Riccardo Giacconi (Association of Universities Inc. [AUI], Washington, USA) and includes: Piero Rosati , Jacqueline Bergeron , Roberto Gilmozzi , Vincenzo Mainieri , Peter Shaver (European Southern Observatory [ESO]), Paolo Tozzi , Mario Nonino , Stefano Borgani (Osservatorio Astronomico, Trieste, Italy), Guenther Hasinger , Gyula Szokoly (Astrophysical Institute Potsdam [AIP], Germany), Colin Norman , Roberto Gilli , Lisa Kewley , Wei Zheng , Andrew Zirm , JungXian Wang (Johns Hopkins University [JHU], Baltimore, USA), Ken Kellerman (National Radio Astronomy Observatory [NRAO], Charlottesville, USA), Ethan Schreier , Anton Koekemoer and Norman Grogin (Space Telescope Science Institute (STScI), Baltimore, USA). [2] In astronomy, the redshift denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant galaxy or quasar gives a direct estimate of the apparent recession velocity as caused by the universal expansion. Since the expansion rate increases with the distance, the velocity is itself a function (the Hubble relation) of the distance to the object. Redshifts of 1 and 3.7 correspond to when the Universe was about 43% and 12% of its present age. The distances indicated in this Press Release depend on the cosmological model chosen and are based on an age of 19,000 million years. Technical information about the photos PR Photo 09a/01 shows B-, R- and I-band images of a 20 x 20 arcsec 2 area within the CDFS, centred on the Type II Quasar CXOCDFS J033229.9 -275106 . They were obtained with the MPG/ESO 2.2-m telescope and the Wide-Field Imager (WFI) at La Silla (B-band; 8 hrs exposure time) and the 8.2-m VLT ANTU telescope with the FORS1 multi-mode instrument at Paranal (R- and I-bands; each 2 hrs exposure). The measured magnitudes are R=23.5 and I=22.7. The overlaid contours show the associated Chandra X-ray source (smoothed with a sigma = 1 arcsec gaussian profile). North is up and East is left. The spectrum shown in PR Photo 09b/01 was obtained on November 25, 2000, with VLT ANTU and FORS1 in the multislit mode (150-I grism, 1.2 arcsec slit). The exposure time was 3 hours.

  13. NAOMI: a low-order adaptive optics system for the VLT interferometer

    NASA Astrophysics Data System (ADS)

    Gonté, Frédéric Yves J.; Alonso, Jaime; Aller-Carpentier, Emmanuel; Andolfato, Luigi; Berger, Jean-Philippe; Cortes, Angela; Delplancke-Strobele, Françoise; Donaldson, Rob; Dorn, Reinhold J.; Dupuy, Christophe; Egner, Sebastian E.; Huber, Stefan; Hubin, Norbert; Kirchbauer, Jean-Paul; Le Louarn, Miska; Lilley, Paul; Jolley, Paul; Martis, Alessandro; Paufique, Jérôme; Pasquini, Luca; Quentin, Jutta; Ridings, Robert; Reyes, Javier; Shchkaturov, Pavel; Suarez, Marcos; Phan Duc, Thanh; Valdes, Guillermo; Woillez, Julien; Le Bouquin, Jean-Baptiste; Beuzit, Jean-Luc; Rochat, Sylvain; Vérinaud, Christophe; Moulin, Thibaut; Delboulbé, Alain; Michaud, Laurence; Correia, Jean-Jacques; Roux, Alain; Maurel, Didier; Stadler, Eric; Magnard, Yves

    2016-08-01

    The New Adaptive Optics Module for Interferometry (NAOMI) will be developed for and installed at the 1.8-metre Auxiliary Telescopes (ATs) at ESO Paranal. The goal of the project is to equip all four ATs with a low-order Shack- Hartmann adaptive optics system operating in the visible. By improving the wavefront quality delivered by the ATs for guide stars brighter than R = 13 mag, NAOMI will make the existing interferometer performance less dependent on the seeing conditions. Fed with higher and more stable Strehl, the fringe tracker(s) will achieve the fringe stability necessary to reach the full performance of the second-generation instruments GRAVITY and MATISSE.

  14. VizieR Online Data Catalog: The populations of Carina. II. Abundances (Norris+, 2017)

    NASA Astrophysics Data System (ADS)

    Norris, J. E.; Yong, D.; Venn, K. A.; Gilmore, G.; Casagrande, L.; Dotter, A.

    2017-08-01

    Our selection of objects is based on unpublished CCD V, I observations that we have made of the Carina galaxy. High-resolution, moderate-S/N spectra were obtained of 39 Carina red giants, during 2007 November-2008 March, with the FLAMES system at the 8.2m Kueyen (VLT/UT2) telescope at Cerro Paranal. The spectra cover the wavelength ranges 4800-5750Å and 5840-6800Å. The resolving power was R=47000. Photometry has been obtained from several sources: P. B. Stetson provided us with homogenized BVI, M. J. Irwin furnished JHK from ESO VISTA survey photometry, and M. Gullieuszik supplied BVIJHKs. (12 data files).

  15. A Glimpse of the Young Milky Way

    NASA Astrophysics Data System (ADS)

    2002-10-01

    VLT UVES Observes Most Metal-Deficient Star Known [1] Summary A faint star in the southern Milky Way, designated HE 0107-5240 , has been found to consist virtually only of hydrogen and helium . It has the lowest abundance of heavier elements ever observed , only 1/200,000 of that of the Sun - 20 times less than the previous record-holding star. This is the result of a major ongoing research project by an international team of astronomers [2]. It is based on a decade-long survey of the southern sky, with detailed follow-up observations by means of the powerful UV-Visual Echelle Spectrograph (UVES) on the 8.2-m VLT KUEYEN telescope at the ESO Paranal Observatory in Chile. This significant discovery now opens a new window towards the early times when the Milky Way galaxy was young, possibly still in the stage of formation. It proves that, contrary to most current theories, comparatively light stars like HE 0107-5240 (with 80% of the mass of the Sun) may form in environments (nearly) devoid of heavier elements. Since some years, astronomers have been desperately searching for stars of the very first stellar generation in the Milky Way, consisting only of hydrogen and helium from the Big Bang. None have been detected so far and doubts have arisen that they exist at all. The present discovery provides new hope that it will ultimately be possible to find such stellar relics from the young Universe and thereby to study "unpolluted" Big Bang material. PR Photo 25a/02 : The sky region around the very metal-deficient star HE 0107-5240 . PR Photo 25b/02 : Comparison of UVES spectra of stars with different metal abundances. Stellar generations in the Milky Way galaxy The Milky Way galaxy in which we live formed from a gigantic cloud of gas, when the Universe was still young, soon after the initial Big Bang. At the beginning, this gas was presumably composed almost exclusively of hydrogen and helium atoms produced during the Big Bang. However, once the first stars formed by contraction in that gas, many heavier elements were built up by nuclear processes in their interiors. As time passed, many of the stars of this and following stellar generations returned the processed matter to their surroundings at the ends of their lives, either during violent supernova explosions or via strong "stellar winds". In this way, the interstellar gas in the Milky Way system has ever since been continuously enriched with heavier elements. Stars of later generations like our Sun now contain those elements produced by their ancestors and we are indeed ourselves made up of them. Consequently, the early (and hence, old) stars in the Milky Way mainly differ from younger stars by containing very small amounts of such elements . Hunting the earliest stars Have some of those earliest stars survived to our days? In theory, at least, it would be possible that some of the lighter ones - having the longest lifetimes - are still around. But if so, where are they? During the past three decades, astronomers have desperately tried to find bona-fide representatives of the very first stellar generation(s) in the Milky Way, i.e. stars with no or, at most, extremely low abundance of elements other than hydrogen and helium. The researchers usually refer to such objects as Population III stars , the other two populations being stars with heavy-element abundances like the Sun (Population I) or somewhat less (Population II) [3]. The Hamburg/ESO survey Now, a group of astronomers from Germany, Sweden, Australia, Brazil and the USA [2] has found a giant star that has a concentration of heavy elements 200,000 times lower than the Sun, or about 20 times less than the previous "record" for this kind of star. It thus provides the researchers with a unique window towards the early stages of the formation of the Milky Way and a fine opportunity to study stellar gas with a composition close to that produced during the Big Bang. This is one important outcome of a systematic search for the most metal-deficient stars that is currently being carried out at Hamburger Sternwarte [4]. Over a period of more than 10 years, a large collection of photographic pictures of the southern sky were obtained with the ESO 1-m Schmidt Telescope, a wide-angle telescope at the La Silla observatory in Chile that has now been decommissioned. Thanks to a large glass prism in the front of the telescope, every object in the observed sky field - stars as well as galaxies - was imaged as a small spectrum, providing a first rough idea about its type and composition. The main aim of this "Hamburg/ESO survey" (with Dieter Reimers , Associate Director of the Hamburger Sternwarte, as Principal Investigator and Lutz Wisotzki , now at Astrophysikalisches Institut Potsdam, Germany, as Project Scientist) was to find quasars (particularly active centres of galaxies), a task that was accomplished most successfully, cf. e.g., ESO PR 10/97 and ESO PR 08/00 (Report F). A very welcome by-product of this survey has been a rich harvest of very metal-poor stars . This part of the project is led by Norbert Christlieb , also from the Hamburg Observatory, and now on sabbatical leave at the Research School of Astronomy and Astrophysics of the Australian National University (Canberra, Australia). Using fast computers and advanced pattern-recognition software to analyze the photographic exposures and thus to sift through millions of registered stellar spectra, about 8000 candidates for very metal-poor stars were found. These stars are now being scrutinized spectroscopically one-by-one with many medium-sized telescopes all over the world. Confirmed candidates are then observed with the largest telescopes in the world in order to obtain very detailed spectra (of high spectral resolution), which allow the astronomers to determine their chemical composition accurately. The very metal-deficient star HE 0107-5240 ESO PR Photo 25a/02 ESO PR Photo 25a/02 [Preview - JPEG: 400 x 458 pix - 86k [Normal - JPEG: 800 x 915 pix - 648k] ESO PR Photo 25b/02 ESO PR Photo 25b/02 [Preview - JPEG: 494 x 400 pix - 55k [Normal - JPEG: 987 x 800 pix - 216k] Caption : PR Photo 25a/02 shows a small sky field with the very metal-deficient star HE 0107-5240 at the centre (reproduced from the Digital Sky Survey [STScI Digitized Sky Survey, (C) 1993, 1994, AURA, Inc. all rights reserved - cf. http://archive.eso.org/dss/dss]). PR Photo 25b/02 displays a comparison of a region of the spectrum of the Sun (top) with that of CD -38 245 , the previously most iron-deficient star known (2nd from top), the new record-holder HE 0107-5240 (3rd from top), and a (hypothetical) Population III star [4], consisting only of elements produced in the Big Bang, i.e. hydrogen and helium, and traces of lithium. As can be seen, the spectral absorption lines become progressively weaker with decreasing content of heavier elements. While there is 1 iron atom for every 31,000 hydrogen atoms in the atmosphere of the Sun, in HE 0107-5240 this ratio is about 200,000 times smaller, or only 1 iron atom for every 6.8 billion hydrogen atoms! The two spectra in the middle show that HE 0107-5240 is indeed much more metal-poor than the previous record-holder CD -38 245 - the iron (Fe) lines in the spectrum of HE 0107-5240 are weaker (or absent) and the Nickel (Ni) line is not visible at all. One of these stars has been designated HE 0107-5240 ("HE" stands for Hamburg/ESO Survey, and the number denotes the approximate position of the star on the sky). It is about ten thousand times fainter than the faintest stars that can be seen with the unaided eye. It is located in the direction of the southern constellation Phoenix, at a distance of about 36,000 light-years. This star was observed in December 2001 with the UV-Visual Echelle Spectrograph (UVES) on the 8.2-m VLT KUEYEN telescope at the ESO Paranal Observatory (Chile). From these spectra, Norbert Christlieb and his colleagues at the Dept. of Astronomy and Space Physics, University of Uppsala (Sweden) and at the Munich University Observatory (Germany) were able to determine the chemical composition of the star. The implications HE 0107-5240 turns out to be the most metal-poor star known to date . " This is, in a way, the closest we have ever come to the conditions directly after the Big Bang by studying stars ", says Norbert Christlieb . " But obviously, a lot must have happened between the Big Bang and the formation of this star. In spite of its extreme metal-poorness, it evidently contains some metals, and they were most probably formed in a even earlier, massive star that exploded as a supernova ". Bengt Gustafsson from the University of Uppsala, who lead the chemical analysis jointly with Christlieb, adds that " this star also has an abnormally large content of carbon and nitrogen. Those elements may possibly have been formed by nuclear reactions with helium and hydrogen deep inside the star and subsequently transported upwards to the stellar surface where they can now be observed. It is also possible that a neigbouring star at the end of its life 'polluted' our star by transferring some of its enriched material to HE 0107-5240 at that moment. The ongoing observations with UVES will help us to decide which scenario is the most probable ." Renewed hope to find first-generation stars The mass of HE 0107-5240 is about 80% of that of the Sun. This discovery thus clearly demonstrates that stars with masses slightly less than the Sun can form from very metal-poor gas. This is unexpected, as most current theoretical calculations indicate that it is very difficult to form low-mass stars shortly after the Big Bang, because metals are needed to efficiently cool gas clouds as they contract into stars. But now HE 0107-5240 reveals that Nature has found a way to achieve the necessary cooling. It therefore appears that many of the model calculations must be refined. Equally important: if a star like HE 0107-5240 , with about 0.8 solar mass and 1/200,000 of the metal content of the Sun, did indeed form in the early Universe, then it should also have been possible for low-mass Population III stars to form . If so, they would have survived until today. This implies that there is new hope to find them by means of large, systematic searches like the Hamburg/ESO Survey. Until now, follow-up spectroscopic observations - which are necessarily quite time-consuming - have only been made of about one-quarter of the 8000 low-metal-abundance candidate stars identified in that survey. It is therefore not excluded that a bona-fide Population III star may eventually be found in the course of this programme. More information The information presented in this Press Release is based on a research article ("A stellar relic from the early Milky Way" by Norbert Christlieb et al.) that appears in the research journal "Nature" on October 31, 2002. Notes [1]: This press release is issued in coordination between ESO and Hamburger Sternwarte in Germany. [2]: The team consists of Norbert Christlieb (Hamburger Sternwarte, University of Hamburg, Germany; on sabbatical leave at the Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Australia), Michael S. Bessell (Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Australia), Timothy C. Beers (Department of Physics and Astronomy, Michigan State University, East Lansing, USA), Bengt Gustafsson, Paul S. Barklem, Torgny Karlsson, Michelle Mizuno-Wiedner (Department of Astronomy and Space Physics, University of Uppsala, Sweden), Andreas Korn (University Observatory Munich, Germany) and Silvia Rossi (Instituto de Astronomia, Geofísica e Ciencias Atmosféricas, Universidade de São Paulo, Brazil). [3]: Most stars in the Milky Way galaxy move within the disk, and for most of these, 1 to 2 percent of their mass consists of chemical elements that are heavier than hydrogen and helium; this is also the case for the Sun, which at 4.6 billion years is about one third of the age of our galaxy. There exists, however, another population of stars for which the heavy-element abundance is only 1/10 - 1/1000 of that of the Sun. Those stars are found in globular clusters, but most move in a huge swarm around the disk, in the halo of the Galaxy. These "halo stars" were born when the Milky Way galaxy was young and their motions still carry the imprint of the process by which our galaxy formed, when gravity brought the gas together and the first stars appeared. The "halo stars" are said to belong to "Population II", in contrast to the younger stars in the disk (like the Sun) that are referred to as "Population I" stars. But what is then the origin of the small amount of heavy elements in Population II stars? There must have been supernovae and other exploding stars in the very early (or even pre-) Milky Way gas, out of which Population II stars were formed. This first (still hypothetical) stellar generation has been named "Population III". There have been many attempts to find Population III stars, which are then presumably totally void of metals, but those searches have not succeeded so far. [4]: Astronomers refer to elements heavier than hydrogen and helium as "metals". Stars with a low abundance of heavier elements are thus referred to as "metal-poor" stars .

  16. Nearest Cosmic Mirage

    NASA Astrophysics Data System (ADS)

    2003-07-01

    Discovery of quadruply lensed quasar with Einstein ring Summary Using the ESO 3.6-m telescope at La Silla (Chile), an international team of astronomers [1] has discovered a complex cosmic mirage in the southern constellation Crater (The Cup). This "gravitational lens" system consists of (at least) four images of the same quasar as well as a ring-shaped image of the galaxy in which the quasar resides - known as an "Einstein ring". The more nearby lensing galaxy that causes this intriguing optical illusion is also well visible. The team obtained spectra of these objects with the new EMMI camera mounted on the ESO 3.5-m New Technology Telescope (NTT), also at the La Silla observatory. They find that the lensed quasar [2] is located at a distance of 6,300 million light-years (its "redshift" is z = 0.66 [3]) while the lensing elliptical galaxy is rougly halfway between the quasar and us, at a distance of 3,500 million light-years (z = 0.3). The system has been designated RXS J1131-1231 - it is the closest gravitationally lensed quasar discovered so far . PR Photo 20a/03 : Image of the gravitational lens system RXS J1131-1231 (ESO 3.6m Telescope). PR Photo 20b/03 : Spectra of two lensed images of the source quasar and the lensing galaxy. Cosmic mirages The physical principle behind a "gravitational lens" (also known as a "cosmic mirage") has been known since 1916 as a consequence of Albert Einstein's Theory of General Relativity . The gravitational field of a massive object curves the local geometry of the Universe, so light rays passing close to the object are bent (like a "straight line" on the surface of the Earth is necessarily curved because of the curvature of the Earth's surface). This effect was first observed by astronomers in 1919 during a total solar eclipse. Accurate positional measurements of stars seen in the dark sky near the eclipsed Sun indicated an apparent displacement in the direction opposite to the Sun, about as much as predicted by Einstein's theory. The effect is due to the gravitational attraction of the stellar photons when they pass near the Sun on their way to us. This was a direct confirmation of an entirely new phenomenon and it represented a milestone in physics. In the 1930's, astronomer Fritz Zwicky (1898 - 1974), of Swiss nationality and working at the Mount Wilson Observatory in California, realised that the same effect may also happen far out in space where galaxies and large galaxy clusters may be sufficiently compact and massive to bend the light from even more distant objects. However, it was only five decades later, in 1979, that his ideas were observationally confirmed when the first example of a cosmic mirage was discovered (as two images of the same distant quasar). Cosmic mirages are generally seen as multiple images of a single quasar [2], lensed by a galaxy located between the quasar and us. The number and the shape of the images of the quasar depends on the relative positions of the quasar, the lensing galaxy and us. Moreover, if the alignment were perfect, we would also see a ring-shaped image around the lensing object. Such "Einstein rings" are very rare, though, and have only been observed in a very few cases. Another particular interest of the gravitational lensing effect is that it may not only result in double or multiple images of the same object, but also that the brightness of these images increase significantly, just as it happens with an ordinary optical lens. Distant galaxies and galaxy clusters may thereby act as "natural telescopes" which allow us to observe more distant objects that would otherwise have been too faint to be detected with currently available astronomical telescopes. Image sharpening techniques resolve the cosmic mirage better ESO PR Photo 20a/03 ESO PR Photo 20a/03 [Preview - JPEG: 613 x 400 pix - 36k [Normal - JPEG: 1226 x 800 pix - 388k] Caption of PR Photo 20a/03 : The left panel displays the image of the newly discovered gravitational lens system RXS J1131-1231 recorded by the EFOSC2 instrument on the ESO 3.6-m telescope. Deconvolution ("image sharpening", right panel) allows a better view of the four star-like components (the four images of the same distant quasar), the Einstein ring (the elongated image of the quasar's host galaxy) and the lensing galaxy (the central bright diffuse image). A new gravitational lens, designated RXS J1131-1231 , was serendipitously discovered in May 2002 by Dominique Sluse , then a PhD student at ESO in Chile, while inspecting quasar images taken with the ESO 3.6-m telescope at the La Silla Observatory. The discovery of this system profited from the good observational conditions prevailing at the time of the observations. From a simple visual inspection of these images, Sluse provisionally concluded that the system had four star-like (the lensed quasar images) and one diffuse (the lensing galaxy) component. Because of the very small separation between the components, of the order of one arcsecond or less, and the unavoidable "blurring" effect caused by turbulence in the terrestrial atmosphere ("seeing"), the astronomers used sophisticated image-sharpening software to produce higher-resolution images on which precise brightness and positional measurements could then be performed (see also ESO PR 09/97). This so-called "deconvolution" technique makes it possible to visualize this complex system much better and, in particular, to confirm and render more conspicuous the associated Einstein ring, cf. PR Photo 20a/03. Identification of the source and of the lens ESO PR Photo 20b/03 ESO PR Photo 20b/03 [Preview - JPEG: 485 x 400 pix - 32k [Normal - JPEG: 970 x 800 pix - 260k] Caption of PR Photo 20b/03 : The top panel demonstrates that the spectra of two of the star-like images (those labeled A and D) are very similar and are therefore from the same object, i.e., the lensed quasar. The emission lines identified in these spectra are typical of a quasar and the redshft is measured as z = 0.66. The bottom panel shows the spectrum of the lensing, elliptical galaxy at redshift z=0.3. The team of astronomers [1] then used the ESO 3.5-m New Technology Telescope (NTT) at La Silla to obtain spectra of the individual image components of this lensing system. This is imperative because, like human fingerprints, the spectra allow unambiguous identification of the observed objects. Nevertheless, this is not an easy task because the different images of the cosmic mirage are located very close to each other in the sky and the best possible conditions are needed to obtain clean and well separated spectra. However, the excellent optical quality of the NTT combined with reasonably good seeing conditions (about 0.7 arcsecond) enabled the astronomers to detect the "spectral fingerprints" of both the source and the object acting as a lens, cf. ESO PR Photo 20b/03. The evaluation of the spectra showed that the background source is a quasar with a redshift of z = 0.66 [3], corresponding to a distance of about 6,300 million light-years. The light from this quasar is lensed by a massive elliptical galaxy with a redshift z=0.3, i.e. at a distance of 3,500 million light-years or about halfway between the quasar and us. It is the nearest gravitationally lensed quasar known to date . Because of the specific geometry of the lens and the position of the lensing galaxy, it is possible to show that the light from the extended galaxy in which the quasar is located should also be lensed and become visible as a ring-shaped image. That this is indeed the case is demonstrated by PR Photo 20a/03 which clearly shows the presence of such an "Einstein ring", surrounding the image of the more nearby lensing galaxy. Micro lensing within macro lensing ? The particular configuration of the individual lensed images observed in this system has enabled the astronomers to produce a detailed model of the system. From this, they can then make predictions about the relative brightness of the various lensed images. Somewhat unexpectedly, they found that the predicted brightnesses of the three brightest star-like images of the quasar are not in agreement with the observed ones - one of them turns out to be one magnitude (that is, a factor of 2.5) brighter than expected . This prediction does not call into question General Relativity but suggests that another effect is at work in this system. The hypothesis advanced by the team is that one of the images is subject to "microlensing" . This effect is of the same nature as the cosmic mirage - multiple amplified images of the object are formed - but in this case, additional light-ray deflection is caused by a single star (or several stars) within the lensing galaxy. The result is that there are additional (unresolved) images of the quasar within one of the macro-lensed images. The outcome is an "over-amplification" of this particular image. Whether this is really so will soon be tested by means of new observations of this gravitational lens system with the ESO Very Large Telescope (VLT) at Paranal (Chile) and also with the Very Large Array (VLA) radio observatory in New Mexico (USA). Outlook Until now, 62 multiple-imaged quasars have been discovered, in most cases showing 2 or 4 images of the same quasar. The presence of elongated images of the quasar and, in particular, of ring-like images is often observed at radio wavelengths. However, this remains a rare phenomenon in the optical domain - only four such systems have been imaged by optical/infrared telecopes until now. The complex and comparatively bright system RXS J1131-1231 now discovered is a unique astrophysical laboratory . Its rare characteristics (e.g., brightness, presence of a ring-shaped image, small redshift, X-ray and radio emission, visible lens,...) will now enable the astronomers to study the properties of the lensing galaxy, including its stellar content, structure and mass distribution in great detail, and to probe the source morphology. These studies will use new observations which are currently being obtained with the VLT at Paranal, with the VLA radio interferometer in New Mexico and with the Hubble Space Telescope. More information The research described in this press release is presented in a Letter to the Editor, soon to appear in the European professional journal Astronomy & Astrophysics ("A quadruply imaged quasar with an optical Einstein ring candidate : 1RXS J113155.4-123155", by Dominique Sluse et al.). More information on gravitational lensing and on this research group can also be found at the URL : http://www.astro.ulg.ac.be/GRech/AEOS/. Notes [1]: The team consists of Dominique Sluse, Damien Hutsemékers, and Thodori Nakos (ESO and Institut d'Astrophysique et de Géophysique de l'Université de Liège - IAGL), Jean-François Claeskens, Frédéric Courbin, Christophe Jean, and Jean Surdej (IAGL), Malvina Billeres (ESO), and Sergiy Khmil (Astronomical Observatory of Shevchentko University). [2]: Quasars are particularly active galaxies, the centres of which emit prodigious amounts of energy and energetic particles. It is believed that they harbour a massive black hole at their centre and that the energy is produced when surrounding matter falls into this black hole. This type of object was first discovered in 1963 by the Dutch-American astronomer Maarten Schmidt at the Palomar Observatory (California, USA) and the name refers to their "star-like" appearance on the images obtained at that time. [3]: In astronomy, the "redshift" denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. Since the redshift of a cosmological object increases with distance, the observed redshift of a remote galaxy also provides an estimate of its distance.

  17. The photospheric solar oxygen project. II. Non-concordance of the oxygen abundance derived from two forbidden lines

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Ludwig, H.-G.; Malherbe, J.-M.; Bonifacio, P.; Steffen, M.; Monaco, L.

    2013-06-01

    Context. In the Sun, the two forbidden [O i] lines at 630 and 636 nm were previously found to provide discrepant oxygen abundances. Aims: We investigate whether this discrepancy is peculiar to the Sun or whether it is also observed in other stars. Methods: We make use of high-resolution, high signal-to-noise ratio spectra of four dwarf to turn-off stars, five giant stars, and one sub-giant star observed with THEMIS, HARPS, and UVES to investigate the coherence of the two lines. Results: The two lines provide oxygen abundances that are consistent, within observational errors, in all the giant stars examined by us. On the other hand, for the two dwarf stars for which a measurement was possible, for Procyon, and for the sub-giant star Capella, the 636 nm line provides systematically higher oxygen abundances, as already seen for the Sun. Conclusions: The only two possible reasons for the discrepancy are a serious error in the oscillator strength of the Ni i line blending the 630 nm line or the presence of an unknown blend in the 636 nm line, which makes the feature stronger. The CN lines blending the 636 nm line cannot be responsible for the discrepancy. The Ca i autoionisation line, on the red wing of which the 636 nm line is formed, is not well modelled by our synthetic spectra. However, a better reproduction of this line would result in even higher abundances from the 636 nm, thus increasing the discrepancy. Based on observations collected at ESO Paranal Observatory, Programme 182.D-5053(A).

  18. Discovery of a Satellite to Asteroid Family Member (702) Alauda

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc; Rojo, P.

    2007-10-01

    Rojo and Margot [1] reported the discovery of a satellite to (702) Alauda from adaptive-optics imaging with the European Southern Observatory (ESO) 8-m Very Large Telescope (VLT) on Cerro Paranal, Chile. (702) Alauda (a = 3.2 AU, e = 0.02, i = 21 deg) has been identified as the largest member of a dynamical family [2,3], suggesting a possible origin of the satellite in the family formation event. The diameter of (702) Alauda is given in the IRAS Minor Planet Survey (IMPS) as 194.73 +/- 3.2 km [4]. If the primary and secondary have similar albedoes, the diameter of the satellite is about 5.5 km. This is based on the measured flux ratio between primary and secondary of 1250, possibly the largest ever observed for solar system binaries with adaptive optics. This is the first satellite discovered to a large minor planet of type B in the SMASSII taxonomy, which is defined by a linear featureless spectrum with bluish to neutral slope [5]. B-types are carbonaceous asteroids that are not well characterized. The mass and density estimates of B-type (2) Pallas vary by 50% [6,7]. Our ongoing determination of the satellite orbit will provide mass and density estimates for (702) Alauda. [1] Rojo and Margot, CBET 1016, 2007. [2] Foglia and Masi 2004, Minor Planet Bull. 41, 100. [3] Gil-Hutton 2006, Icarus 183, 93. [4] Tedesco 2002, AJ 123, 1056. [5] Bus and Binzel 2002, Icarus 158, 146. [6] Hilton 2002, Asteroids III, 103. [7] Britt et al. 2002, Asteroids III, 485.

  19. Estimates of Active Region Area Coverage through Simultaneous Measurements of the He i λλ 5876 and 10830 Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andretta, Vincenzo; Covino, Elvira; Giampapa, Mark S.

    2017-04-20

    Simultaneous, high-quality measurements of the neutral helium triplet features at 5876 Å and 10830 Å in a sample of solar-type stars are presented. The observations were made with ESO telescopes at the La Silla Paranal Observatory under program ID 088.D-0028(A) and MPG Utility Run for Fiber Extended-range Optical Spectrograph 088.A-9029(A). The equivalent widths of these features combined with chromospheric models are utilized to infer the fractional area coverage, or filling factor, of magnetic regions outside of spots. We find that the majority of the sample is characterized by filling factors less than unity. However, discrepancies occur among the coolest K-typemore » and the warmest and most rapidly rotating F-type dwarf stars. We discuss these apparently anomalous results and find that in the case of K-type stars, they are an artifact of the application of chromospheric models best suited to the Sun than to stars with significantly lower T {sub eff}. The case of the F-type rapid rotators can be explained by the measurement uncertainties of the equivalent widths, but they may also be due to a non-magnetic heating component in their atmospheres. With the exceptions noted above, preliminary results suggest that the average heating rates in the active regions are the same from one star to the other, differing in the spatially integrated, observed level of activity due to the area coverage. Hence, differences in activity in this sample are mainly due to the filling factor of active regions.« less

  20. The Puzzlingly Large Ca II Triplet Absorption in Dwarf Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Michielsen, D.; De Rijcke, S.; Dejonghe, H.; Zeilinger, W. W.; Hau, G. K. T.

    2003-11-01

    We present central CaT, PaT, and CaT* indices for a sample of 15 dwarf elliptical galaxies (dE's). Twelve of these have CaT*~7 Å and extend the negative correlation between the CaT* index and the central velocity dispersion σ, which was derived for bright elliptical galaxies (E's), down to 20 km s-1 < σ < 55 km s-1. For five dE's, we have independent age and metallicity estimates. Four of these have CaT*~7 Å, much higher than expected from their low metallicities (-1.5<[Z/H]<-0.5). The observed anticorrelation of CaT* as a function of σ or Z is in flagrant disagreement with theory. We discuss some of the amendments that have been proposed to bring the theoretical predictions into agreement with the observed CaT* values of bright E's and how they can be extended to incorporate the observed CaT* values of dE's as well. Moreover, three dE's in our sample have CaT*~5 Å, as would be expected for metal-poor stellar systems. Any theory for dE evolution will have to be able to explain the coexistence of low-CaT* and high-CaT* dE's at a given mean metallicity. This could be the first direct evidence that the dE population is not homogeneous and that different evolutionary paths led to morphologically and kinematically similar but chemically distinct objects. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Large Program 165.N 0115).

  1. Are beryllium abundances anomalous in stars with giant planets?

    NASA Astrophysics Data System (ADS)

    Santos, N. C.; Israelian, G.; García López, R. J.; Mayor, M.; Rebolo, R.; Randich, S.; Ecuvillon, A.; Domínguez Cerdeña, C.

    2004-12-01

    In this paper we present beryllium (Be) abundances in a large sample of 41 extra-solar planet host stars, and for 29 stars without any known planetary-mass companion, spanning a large range of effective temperatures. The Be abundances were derived through spectral synthesis done in standard Local Thermodynamic Equilibrium, using spectra obtained with various instruments. The results seem to confirm that overall, planet-host stars have ``normal'' Be abundances, although a small, but not significant, difference might be present. This result is discussed, and we show that this difference is probably not due to any stellar ``pollution'' events. In other words, our results support the idea that the high-metal content of planet-host stars has, overall, a ``primordial'' origin. However, we also find a small subset of planet-host late-F and early-G dwarfs that might have higher than average Be abundances. The reason for the offset is not clear, and might be related either to the engulfment of planetary material, to galactic chemical evolution effects, or to stellar-mass differences for stars of similar temperature. Based on observations collected with the VLT/UT2 Kueyen telescope (Paranal Observatory, ESO, Chile) using the UVES spectrograph (Observing runs 66.C-0116 A, 66.D-0284 A, and 68.C-0058 A), and with the William Herschel and Nordic Optical Telescopes, operated on the island of La Palma by the Isaac Newton Group and jointly by Denmark, Finland, Iceland, and Norway, respectively, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  2. A Roof for ALMA

    NASA Astrophysics Data System (ADS)

    2007-03-01

    On 10 March, an official ceremony took place on the 2,900m high site of the Atacama Large Millimeter/submillimeter Array (ALMA) Operations Support Facility, from where the ALMA antennas will be remotely controlled. The ceremony marked the completion of the structural works, while the building itself will be finished by the end of the year. This will become the operational centre of one of the most important ground-based astronomical facilities on Earth. ESO PR Photo 13a/07 ESO PR Photo 13a/07 Cutting the Red Ribbon The ceremony, known as 'Tijerales' in Chile, is the equivalent to the 'roof-topping ceremony' that takes place worldwide, in one form or another, to celebrate reaching the highest level of a construction. It this case, the construction is the unique ALMA Operations Support Facility (OSF), located near the town of San Pedro de Atacama. "The end of this first stage represents an historic moment for ALMA," said Hans Rykaczewski, the European ALMA Project Manager. "Once completed in December 2007, this monumental building of 7,000 square metres will be one of the largest and most important astronomical operation centres in the world." ALMA, located at an elevation of 5,000m in the Atacama Desert of northern Chile, will provide astronomers with the world's most advanced tool for exploring the Universe at millimetre and submillimetre wavelengths. ALMA will detect fainter objects and be able to produce much higher-quality images at these wavelengths than any previous telescope system. The OSF buildings are designed to suit the requirements of this exceptional observatory in a remote, desert location. The facility, which will host about 100 people during operations, consists of three main buildings: the technical building, hosting the control centre of the observatory, the antenna assembly building, including four antenna foundations for testing and maintenance purposes, and the warehouse building, including mechanical workshops. Further secondary buildings are the transporter shelters and the vehicle maintenance facilities as well as the ALMA gate house. The construction started in August 2006 and will be completed in December 2007. ESO PR Photo 13b/07 ESO PR Photo 13b/07 The Ceremony The ceremony took place in the presence of representatives of the regional authorities, members of the Chilean Parliament, and representatives of the local community, including the mayor of San Pedro, Ms. Sandra Berna, who joined more than 40 representatives of ESO, NRAO and NAOJ - the organisations that are, together, building ALMA. "This is certainly a big step in the realisation of the ALMA Project. The completion of this facility will be essential for assembly, testing and adjustment as well as operation and maintenance of all ALMA antennas from Europe, North America and from Japan," said Ryusuke Ogasawara, the representative of NAOJ in Chile. "This is a tremendous achievement and represents a major milestone for the ALMA project," said Adrian Russell, North American Project Manager for ALMA. ESO PR Photo 13c/07 ESO PR Photo 13c/07 The OSF (Artist's View) The first ALMA antennas, the prototypes of which successfully achieved their first combined astronomical observation last week, are expected to arrive at the ALMA site in a few months. These huge antennas will travel in pieces from Europe, USA and Japan and will be assembled next to the OSF building. The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership among Europe, Japan and North America, in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organisation for Astronomical Research in the Southern Hemisphere, in Japan by the National Institutes of Natural Sciences (NINS) in cooperation with the Academia Sinica in Taiwan and in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC). ALMA construction and operations are led on behalf of Europe by ESO, on behalf of Japan by the National Astronomical Observatory of Japan (NAOJ) and on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI)

  3. VLT Data Flow System Begins Operation

    NASA Astrophysics Data System (ADS)

    1999-06-01

    Building a Terabyte Archive at the ESO Headquarters The ESO Very Large Telescope (VLT) is the sum of many sophisticated parts. The site at Cerro Paranal in the dry Atacama desert in Northern Chile is one of the best locations for astronomical observations from the surface of the Earth. Each of the four 8.2-m telescopes is a technological marvel with self-adjusting optics placed in a gigantic mechanical structure of the utmost precision, continuously controlled by advanced soft- and hardware. A multitude of extremely complex instruments with sensitive detectors capture the faint light from distant objects in the Universe and record the digital data fast and efficiently as images and spectra, with a minimum of induced noise. And now the next crucial link in this chain is in place. A few nights ago, following an extended test period, the VLT Data Flow System began providing the astronomers with a steady stream of high-quality, calibrated image and spectral data, ready to be interpreted. The VLT project has entered into a new phase with a larger degree of automation. Indeed, the first 8.2-m Unit Telescope, ANTU, with the FORS1 and ISAAC instruments, has now become a true astronomy machine . A smooth flow of data through the entire system ESO PR Photo 25a/99 ESO PR Photo 25a/99 [Preview - JPEG: 400 x 292 pix - 104k] [Normal - JPEG: 800 x 584 pix - 264k] [High-Res - JPEG: 3000 x 2189 pix - 1.5M] Caption to ESO PR Photo 25a/99 : Simplified flow diagramme for the VLT Data Flow System . It is a closed-loop software system which incorporates various subsystems that track the flow of data all the way from the submission of proposals to storage of the acquired data in the VLT Science Archive Facility. The DFS main components are: Program Handling, Observation Handling, Telescope Control System, Science Archive, Pipeline and Quality Control. Arrows indicate lines of feedback. Already from the start of this project more than ten years ago, the ESO Very Large Telescope was conceived as a complex digital facility to explore the Universe. In order for astronomers to be able to use this marvellous research tool in the most efficient manner possible, the VLT computer software and hardware systems must guarantee a smooth flow of scientific information through the entire system. This process starts when the astronomers submit well-considered proposals for observing time and it ends with large volumes of valuable astronomical data being distributed to the international astronomical community. For this, ESO has produced an integrated collection of software and hardware, known as the VLT Data Flow System (DFS) , that manages and facilitates the flow of scientific information within the VLT Observatory. Early information about this new concept was published as ESO Press Release 12/96 and extensive tests were first carried out at ESOs 3.5-m New Technology Telescope (NTT) at La Silla, cf. ESO Press Release 03/97 [1]. The VLT DFS is a complete (end-to-end) system that guarantees the highest data quality by optimization of the observing process and repeated checks that identify and eliminate any problems. It also introduces automatic calibration of the data, i.e. the removal of external effects introduced by the atmospheric conditions at the time of the observations, as well as the momentary state of the telescope and the instruments. From Proposals to Observations In order to obtain observing time with ESO telescopes, also with the VLT, astronomers must submit a detailed observing proposal to the ESO Observing Programmes Committee (OPC) . It meets twice a year and ranks the proposals according to scientific merit. More than 1000 proposals are submitted each year, mostly by astronomers from the ESO members states and Chile; the competition is fierce and only a fraction of the total demand for observing time can be fulfilled. During the submission of observing proposals, DFS software tools available over the World Wide Web enable the astronomers to simulate their proposed observations and provide accurate estimates of the amount of telescope time they will need to complete their particular scientific programme. Once the proposals have been reviewed by the OPC and telescope time is awarded by the ESO management according to the recommendation by this Committee, the successful astronomers begin to assemble detailed descriptions of their intended observations (e.g. position in the sky, time and duration of the observation, the instrument mode, etc.) in the form of computer files called Observation Blocks (OBs) . The software to make OBs is distributed by ESO and used by the astronomers at their home institutions to design their observing programs well before the observations are scheduled at the telescope. The OBs can then be directly executed by the VLT and result in an increased efficiency in the collection of raw data (images, spectra) from the science instruments on the VLT. The activation (execution) of OBs can be done by the astronomer at the telescope on a particular set of dates ( visitor mode operation) or it can be done by ESO science operations astronomers at times which are optimally suited for the particular scientific programme ( service mode operation). An enormous VLT Data Archive ESO PR Photo 25b/99 ESO PR Photo 25b/99 [Preview - JPEG: 400 x 465 pix - 160k] [Normal - JPEG: 800 x 929 pix - 568k] [High-Res - JPEG: 3000 x 3483 pix - 5.5M] Caption to ESO PR Photo 25b/99 : The first of several DVD storage robot at the VLT Data Archive at the ESO headquarters include 1100 DVDs (with a total capacity of about 16 Terabytes) that may be rapidly accessed by the archive software system, ensuring fast availbility of the requested data. The raw data generated at the telescope are stored by an archive system that sends these data regularly back to ESO headquarters in Garching (Germany) in the form of CD and DVD ROM disks. While the well-known Compact Disks (CD ROMs) store about 600 Megabytes (600,000,000 bytes) each, the new Digital Versatile Disks (DVD ROMs) - of the same physical size - can store up 3.9 Gigabytes (3,900,000,000 bytes) each, or over 6 times more. The VLT will eventually produce more than 20 Gigabytes (20,000,000,000 bytes) of astronomical data every night, corresponding to about 10 million pages of text [2]. Some of these data also pass through "software pipelines" that automatically remove the instrumental effects on the data and deliver data products to the astronomer that can more readily be turned into scientific results. Ultimately these data are stored in a permanent Science Archive Facility at ESO headquarters which is jointly operated by ESO and the Space Telescope European Coordinating Facility (ST-ECF). From here, data are distributed to astronomers on CD ROMs and over the World Wide Web. The archive facility is being developed to enable astronomers to "mine" the large volumes of data that will be collected from the VLT in the coming years. Within the first five years of operations the VLT is expected to produce around 100 Terabytes (100,000,000,000,000 bytes) of data. It is difficult to visualize this enormous amount of information. However, it corresponds to the content of 50 million books of 1000 pages each; they would occupy some 2,500 kilometres of bookshelves! The VLT Data Flow System enters into operation ESO PR Photo 25c/99 ESO PR Photo 25c/99 [Preview - JPEG: 400 x 444 pix - 164k] [Normal - JPEG: 800 x 887 pix - 552k] [High-Res - JPEG: 3000 x 3327 pix - 6.4M] Caption to ESO PR Photo 25c/99 : Astronomers from ESO Data Flow Operations Group at work with the VLT Archive. Science operations with the first VLT 8.2-m telescope ( ANTU ) began on April 1, 1999. Following the first call for proposals to use the VLT in October 1998, the OPC met in December and the observing schedule was finalized early 1999. The related Observation Blocks were prepared by the astronomers in February and March. Service-mode observations began in April and by late May the first scientific programs conducted by ESO science operations were completed. Raw data, instrument calibration information and the products of pipeline processing from these programs have now been assembled and packed onto CD ROMs by ESO science operations staff. On June 15 the first CD ROMs were delivered to astronomers in the ESO community. This event marks the closing of the data flow loop at the VLT for the first time and the successful culmination of more than 5 years of hard work by ESO engineers and scientists to implement a system for efficient and effective scientific data flow. This was achieved by a cross-organization science operations team involving staff in Chile and Europe. With the VLT Data Flow System, a wider research community will have access to the enormous wealth of data from the VLT. It will help astronomers to keep pace with the new technologies and extensive capabilities of the VLT and so obtain world-first scientific results and new insights into the universe. Notes [1] A more technical description of the VLT Data Flow System is available in Chapter 10 of the VLT Whitebook. [2] By definition, one "normal printed page" contains 2,000 characters. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  4. Southern Fireworks above ESO Telescopes

    NASA Astrophysics Data System (ADS)

    1999-05-01

    New Insights from Observations of Mysterious Gamma-Ray Burst International teams of astronomers are now busy working on new and exciting data obtained during the last week with telescopes at the European Southern Observatory (ESO). Their object of study is the remnant of a mysterious cosmic explosion far out in space, first detected as a gigantic outburst of gamma rays on May 10. Gamma-Ray Bursters (GRBs) are brief flashes of very energetic radiation - they represent by far the most powerful type of explosion known in the Universe and their afterglow in optical light can be 10 million times brighter than the brightest supernovae [1]. The May 10 event ranks among the brightest one hundred of the over 2500 GRB's detected in the last decade. The new observations include detailed images and spectra from the VLT 8.2-m ANTU (UT1) telescope at Paranal, obtained at short notice during a special Target of Opportunity programme. This happened just over one month after that powerful telescope entered into regular service and demonstrates its great potential for exciting science. In particular, in an observational first, the VLT measured linear polarization of the light from the optical counterpart, indicating for the first time that synchrotron radiation is involved . It also determined a staggering distance of more than 7,000 million light-years to this GRB . The astronomers are optimistic that the extensive observations will help them to better understand the true nature of such a dramatic event and thus to bring them nearer to the solution of one of the greatest riddles of modern astrophysics. A prime example of international collaboration The present story is about important new results at the front-line of current research. At the same time, it is also a fine illustration of a successful collaboration among several international teams of astronomers and the very effective way modern science functions. It began on May 10, at 08:49 hrs Universal Time (UT), when the Burst And Transient Source Experiment (BATSE) onboard NASA's Compton Gamma-Ray Observatory (CGRO) high in orbit around the Earth, suddenly registered an intense burst of gamma-ray radiation from a direction less than 10° from the celestial south pole. Independently, the Gamma-Ray Burst Monitor (GRBM) on board the Italian-Dutch BeppoSAX satellite also detected the event (see GCN GRB Observation Report 304 [2]). Following the BATSE alert, the BeppoSAX Wide-Field Cameras (WFC) quickly localized the sky position of the burst within a circle of 3 arcmin radius in the southern constellation Chamaeleon. It was also detected by other satellites, including the ESA/NASA Ulysses spacecraft , since some years in a wide orbit around the Sun. The event was designated GRB 990510 and the measured position was immediately distributed by BeppoSAX Mission Scientist Luigi Piro to a network of astronomers. It was also published on Circular No. 7160 of the International Astronomical Union (IAU). From Amsterdam (The Netherlands), Paul Vreeswijk, Titus Galama , and Evert Rol of the Amsterdam/Huntsville GRB follow-up team (led by Jan van Paradijs ) immediately contacted astronomers at the 1-meter telescope of the South African Astronomical Observatory (SAAO) (Sutherland, South Africa) of the PLANET network microlensing team, an international network led by Penny Sackett in Groningen (The Netherlands). There, John Menzies of SAAO and Karen Pollard (University of Canterbury, New Zealand) were about to begin the last of their 14 nights of observations, part of a continuous world-wide monitoring program looking for evidence of planets around other stars. Other PLANET sites in Australia and Tasmania where it was still nighttime were unfortunately clouded out (some observations were in fact made that night at the Mount Stromlo observatory in Australia, but they were only announced one day later). As soon as possible - immediately after sundown and less than 9 hours after the initial burst was recorded - the PLANET observers turned their telescope and quickly obtained a series of CCD images in visual light of the sky region where the gamma-ray burst was detected, then shipped them off electronically to their Dutch colleagues [3]. Comparing the new photos with earlier ones in the digital sky archive, Vreeswijk, Galama and Rol almost immediately discovered a new, relatively bright visual source in the region of the gamma-ray burst, which they proposed as the optical counterpart of the burst, cf. their dedicated webpage at http://www.astro.uva.nl/~titus/grb990510/. The team then placed a message on the international Gamma-Ray Burster web-noteboard ( GCN Circular 310), thereby alerting their colleagues all over the world. One hour later, the narrow-field instruments on BeppoSax identified a new X-Ray source at the same location ( GCN Circular 311), thus confirming the optical identification. All in all, a remarkable synergy of human and satellite resources! Observations of GRB 990510 at ESO Vreeswijk, Galama and Rol, in collaboration with Nicola Masetti, Eliana Palazzi and Elena Pian of the BeppoSAX GRB optical follow-up team (led by Filippo Frontera ) and the Huntsville optical follow-up team (led by Chryssa Kouveliotou ), also contacted the European Southern Observatory (ESO). Astronomers at this Organization's observatories in Chile were quick to exploit this opportunity and crucial data were soon obtained with several of the main telescopes at La Silla and Paranal, less than 14 hours after the first detection of this event by the satellite. ESO PR Photo 22a/99 ESO PR Photo 22a/99 [Preview - JPEG: 211 x 400 pix - 72k] [Normal - JPEG: 422 x 800 pix - 212k] [High-Res - JPEG: 1582 x 3000 pix - 2.6M] ESO PR Photo 22b/99 ESO PR Photo 22b/99 [Preview - JPEG: 400 x 437 pix - 297k] [Normal - JPEG: 800 x 873 pix - 1.1M] [High-Res - JPEG: 2300 x 2509 pix - 5.9M] Caption to PR Photo 22a/99 : This wide-field photo was obtained with the Wide-Field Imager (WFI) at the MPG/ESO 2.2-m telescope at La Silla on May 11, 1999, at 08:42 UT, under inferior observing conditions (seeing = 1.9 arcsec). The exposure time was 450 sec in a B(lue) filter. The optical image of the afterglow of GRB 990510 is indicated with an arrow in the upper part of the field that measures about 8 x 16 arcmin 2. The original scale is 0.24 pix/arcsec and there are 2k x 4k pixels in the original frame. North is up and East is left. Caption to PR Photo 22b/99 : This is a (false-)colour composite of the area around the optical image of the afterglow of GRB 990510, based on three near-infrared exposures with the SOFI multi-mode instrument at the 3.6-m ESO New Technology Telescope (NTT) at La Silla, obtained on May 10, 1999, between 23:15 and 23:45 UT. The exposure times were 10 min each in the J- (1.2 µm; here rendered in blue), H- (1.6 µm; green) and K-bands (2.2 µm; red); the image quality is excellent (0.6 arcsec). The field measures about 5 x 5 arcmin 2 ; the original pixel size is 0.29 arcsec. North is up and East is left. ESO PR Photo 22c/99 ESO PR Photo 22c/99 [Preview - JPEG: 400 x 235 pix - 81k] [Normal - JPEG: 800 x 469 pix - 244k] [High-Res - JPEG: 2732 x 1603 pix - 2.6M] ESO PR Photo 22d/99 ESO PR Photo 22d/99 [Preview - JPEG: 400 x 441 pix - 154k] [Normal - JPEG: 800 x 887 pix - 561k] [High-Res - JPEG: 2300 x 2537 pix - 2.3M] Caption to PR Photo 22c/99 : To the left is a reproduction of a short (30 sec) centering exposure in the V-band (green-yellow light), obtained with VLT ANTU and the multi-mode FORS1 instrument on May 11, 1999, at 03:48 UT under mediocre observing conditions (image quality 1.0 arcsec).The optical image of the afterglow of GRB 990510 is easily seen in the box, by comparison with an exposure of the same sky field before the explosion, made with the ESO Schmidt Telescope in 1986 (right).The exposure time was 120 min on IIIa-F emulsion behind a R(ed) filter. The field shown measures about 6.2 x 6.2 arcmin 2. North is up and East is left. Caption to PR Photo 22d/99 : Enlargement from the 30 sec V-exposure by the VLT, shown in Photo 22c/99. The field is about 1.9 x 1.9 arcmin 2. North is up and East is left. The data from Chile were sent to Europe where, by quick comparison of images from the Wide-Field Imager (WFI) at the MPG/ESO 2.2-m telescope at La Silla with those from SAAO, the Dutch and Italian astronomers found that the brightness of the suspected optical counterpart was fading rapidly; this was a clear sign that the identification was correct ( GCN Circular 313). With the precise sky position of GRB 990510 now available, the ESO observers at the VLT were informed and, setting other programmes aside under the Target of Opportunity scheme, were then able to obtain polarimetric data as well as a very detailed spectrum of the optical counterpart. Comprehensive early observations of this object were also made at La Silla with the ESO 3.6-m telescope (CCD images in the UBVRI-bands from the ultraviolet to the near-infrared part of the spectrum) and the ESO 3.6-m New Technology Telescope (with the SOFI multimode instrument in the infrared JHK-bands). A series of optical images in the BVRI-bands was secured with the Danish 1.5-m telescope, documenting the rapid fading of the object. Observations at longer wavelengths were made with the 15-m Swedish-ESO Submillimetre Telescope (SEST). All of the involved astronomers concur that a fantastic amount of observations has been obtained. They are still busy analyzing the data, and are confident that much will be learned from this particular burst. The VLT scores a first: Measurement of GRB polarization ESO PR Photo 22e/99 ESO PR Photo 22e/99 [Preview - JPEG: 400 x 434 pix - 92k] [Normal - JPEG: 800 x 867 pix - 228k] Caption to PR Photo 22e/99 : Preliminary polarization measurement of the optical image of the afterglow of GRB 990510, as observed with the VLT 8.2-m ANTU telescope and the multi-mode FORS1 instrument. The abscissa represents the measurement angle; the ordinate the corresponding intensity. The sinusoidal curve shows the best fit to the data points (with error bars); the resulting degree of polarization is 1.7 ± 0.2 percent. A group of Italian astronomers led by Stefano Covino of the Observatory of Brera in Milan, have observed for the first time polarization (some degree of alignment of the electric fields of emitted photons) from the optical afterglow of a gamma-ray burst, see their dedicated webpage at http://www.merate.mi.astro.it/~lazzati/GRB990510/. This yielded a polarization at a level of 1.7 ± 0.2 percent for the optical afterglow of GRB 990510, some 18 hours after the gamma-ray burst event; the magnitude was R = 19.1 at the time of this VLT observation. Independently, the Dutch astronomers Vreeswijk, Galama and Rol measured polarization of the order of 2 percent with another data set from the VLT ANTU and FORS1 obtained during the same night. This important result was made possible by the very large light-gathering power of the 8.2-m VLT-ANTU mirror and the FORS1 imaging polarimeter. Albeit small, the detected degree of polarization is highly significant; it is also one of the most precise measurements of polarization ever made in an object as faint as this one. Most importantly, it provides the strongest evidence to date that the afterglow radiation of gamma-ray bursts is, at least in part, produced by the synchrotron process , i.e. by relativistic electrons spiralling in a magnetized region. This type of process is able to imprint some linear polarization on the produced radiation, if the magnetic field is not completely chaotic. The spectrum ESO PR Photo 22f/99 ESO PR Photo 22f/99 [Preview - JPEG: 400 x 485 pix - 112k] [Normal - JPEG: 800 x 969 pix - 288k] Caption to PR Photo 22f/99 : A spectrum of the afterglow of GRB 990510, obtained with VLT ANTU and the multi-mode FORS1 instrument during the night of May 10-11, 1999. Some of the redshifted absorption lines are identified and the stronger bands from the terrestrial atmosphere are also indicated. A VLT spectrum with the multi-mode FORS1 instrument was obtained a little later and showed a number of absorption lines , e.g. from ionized Aluminium, Chromium and neutral Magnesium. They do not arise in the optical counterpart itself - the gas there is so hot and turbulent that any spectral lines will be extremely broad and hence extremely difficult to identify - but from interstellar gas in a galaxy 'hosting' the GRB source, or from intergalactic clouds along the line of sight. It is possible to measure the distance to this intervening material from the redshift of the lines; astronomers Vreeswijk, Galama and Rol found z = 1.619 ± 0.002 [4]. This allows to establish a lower limit for the distance of the explosion and also its total power. The numbers turn out to be truly enormous. The burst occurred at an epoch corresponding to about one half of the present age of the Universe (at a distance of about 7,000 million light-years [5]), and the total energy of the explosion in gamma-rays must be higher than 1.4 10 53 erg , assuming a spherical emission. This energy corresponds to the entire optical energy emitted by the Milky Way in more than 30 years; yet the gamma-ray burst took less than 100 seconds. Since the optical afterglows of gamma-ray bursts are faint, and their flux decays quite rapidly in time, the combination of large telescopes and fast response through suitable observing programs are crucial and, as demonstrated here, ESO's VLT is ideally suited to this goal! The lightcurve Combining results from a multitude of telescopes has provided most useful information. Interestingly, a "break" was observed in the light curve (the way the light of the optical counterpart fades) of the afterglow. Some 1.5 - 2 days after the explosion, the brightness began to decrease more rapidly; this is well documented with the CCD images from the Danish 1.5-m telescope at La Silla and the corresponding diagrams are available on a dedicated webpage at http://www.astro.ku.dk/~jens/grb990510/ at the Copenhagen University Observatory. Complete, regularly updated lightcurves with all published measurements, also from other observatories, may be found at another webpage in Milan at http://www.merate.mi.astro.it/~gabriele/990510/ . This may happen if the explosion emits radiation in a beam which is pointed towards the Earth. Such beams are predicted by some models for the production of gamma-ray bursts. They are also favoured by many astronomers, because they can overcome the fundamental problem that gamma-ray bursts simply produce too much energy. If the energy is not emitted equally in all directions ("isotropically"), but rather in a preferred one along a beam, less energy is needed to produce the observed phenomenon. Such a break has been observed before, but this time it occurred at a very favourable moment, when the source was still relatively bright so that high-quality spectroscopic and multi-colour information could be obtained with the ESO telescopes. Together, these observations may provide an answer to the question whether beams exist in gamma-ray bursts and thus further help us to understand the as yet unknown cause of these mysterious explosions. Latest News ESO PR Photo 22g/99 ESO PR Photo 22g/99 [Normal - JPEG: 453 x 585 pix - 304k] Caption to PR Photo 22g/99 : V(isual) image of the sky field around GRB 990510 (here denoted "OT"), as obtained with the VLT ANTU telescope and FORS1 on May 18 UT during a 20 min exposure in 0.9 arcsec seeing conditions. The reproduction is in false colours to better show differences in intensity. North is up and east is left. Further photometric and spectroscopic observations with the ESO VLT, performed by Klaus Beuermann, Frederic Hessman and Klaus Reinsch of the Göttingen group of the FORS instrument team (Germany), have revealed the character of some of the objects that are seen close to the image of the afterglow of GRB 990510 (also referred to as the "Optical Transient" - OT). Two objects to the North are cool foreground stars of spectral types dM0 and about dM3, respectively; they are located in our Milky Way Galaxy. The object just to the South of the OT is probably also a star. A V(isual)-band image (PR Photo 22g/99) taken during the night between May 17 and 18 with the VLT/ANTU telescope and FORS1 now shows the OT at magnitude V = 24.5, with still no evidence for the host galaxy that is expected to appear when the afterglow has faded sufficiently. Outlook The great distances (high redshifts) of Gamma-Ray Bursts, plus the fact that a 9th magnitude optical flash was seen when another GRB exploded on January 23 this year, has attracted the attention of astronomers outside the GRB field. In fact, GRBs may soon become a very powerful tool to probe the early universe by guiding us to regions of very early star formation and the (proto)-galaxies and (proto)-clusters of which they are part. They will also allow the study of the chemical composition of absorbing clouds at very large distances. At the end of this year, the NASA satellite HETE-II will be launched, which is expected to provide about 50 GRB alerts per year and, most importantly, accurate localisations in the sky that will allow very fast follow-up observations, while the optical counterparts are still quite bright. It will then be possible to obtain more spectra, also of extremely distant bursts, and many new distance determinations can be made, revealing the distribution of intrinsic brightness of GRB's (the "luminosity function"). Other types of observations (e.g. polarimetry, as above) will also profit, leading to a progressive refinement of the available data. Thus there is good hope that astronomers will soon come closer to identifying the progenitors of these enormous explosions and to understand what is really going on. In this process, the huge light-collecting power of the VLT and the many other facilities at the ESO observatories will undoubtedly play an important role. Notes [1] Gamma-Ray Bursts are brief flashes of high-energy radiation. Satellites in orbit around the Earth and spacecraft in interplanetary orbits have detected several thousand such events since they were first discovered in the late 1960s. Earlier investigations established that they were so evenly distributed in the sky that they must be very distant (and hence very powerful) outbursts of some kind. Only in 1997 it became possible to observe the fading "afterglow" of one of these explosions in visible light, thanks to accurate positions available from the BeppoSAX satellite. Soon thereafter, another optical afterglow was detected; it was located in a faint galaxy whose distance could be measured. In 1998, a gamma-ray burst was detected in a galaxy over 8,300 million light-years away. Even the most exotic ideas proposed for these explosions, e.g. supergiant stars collapsing to black holes, black holes merging with neutron stars or other black holes, and other weird and wonderful notions have trouble accounting for explosions with the power of 10,000 million million suns. [2] The various reports issued by astronomers working on this and other gamma-ray burst events are available as GCN Circulars on the GRB Coordinates Network web-noteboard. [3] See also the Press Release, issued by SAAO on this occasion. [4] In astronomy, the redshift (z) denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant galaxy or intergalactic cloud gives a direct estimate of the universal expansion (i.e. the "recession velocity"). The detailed relation between redshift and distance depends on such quantities as the Hubble Constant, the average density of the universe, and the 'cosmological' Constant. For a standard cosmological model, redshift z = 1.6 corresponds to a distance of about 7,000 million light-years. [5] Assuming a Hubble Constant H 0 = 70 km/s/Mpc, mean density Omega 0 = 0.3 and a Cosmological Constant Lambda = 0. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  5. Surprise Discovery of Highly Developed Structure in the Young Universe

    NASA Astrophysics Data System (ADS)

    2005-03-01

    ESO-VLT and ESA XMM-Newton Together Discover Earliest Massive Cluster of Galaxies Known Summary Combining observations with ESO's Very Large Telescope and ESA's XMM-Newton X-ray observatory, astronomers have discovered the most distant, very massive structure in the Universe known so far. It is a remote cluster of galaxies that is found to weigh as much as several thousand galaxies like our own Milky Way and is located no less than 9,000 million light-years away. The VLT images reveal that it contains reddish and elliptical, i.e. old, galaxies. Interestingly, the cluster itself appears to be in a very advanced state of development. It must therefore have formed when the Universe was less than one third of its present age. The discovery of such a complex and mature structure so early in the history of the Universe is highly surprising. Indeed, until recently it would even have been deemed impossible. PR Photo 05a/05: Discovery X-Ray Image of the Distant Cluster (ESA XMM-Netwon) PR Photo 05b/05: False Colour Image of XMMU J2235.3-2557 (FORS/VLT and ESA XMM-Newton) Serendipitous discovery ESO PR Photo 05a/05 ESO PR Photo 05a/05 Discovery X-Ray Image of the Distant Cluster (ESA XMM-Newton) [Preview - JPEG: 400 x 421 pix - 106k] [Normal - JPEG: 800 x 842 pix - 843k] [Full Res - JPEG: 2149 x 2262 pix - 2.5M] Caption: ESO PR Photo 05a/05 is a reproduction of the XMM-Newton observations of the nearby active galaxy NGC7314 (bright object in the centre) from which the newly found distant cluster (white box) was serendipitously identified. The circular field-of-view of XMM-Newton is half-a-degree in diameter, or about the same angular size as the Full Moon. The inset shows the diffuse X-ray emission from the distant cluster XMMU J2235.3-2557. Clusters of galaxies are gigantic structures containing hundreds to thousands of galaxies. They are the fundamental building blocks of the Universe and their study thus provides unique information about the underlying architecture of the Universe as a whole. About one-fifth of the optically invisible mass of a cluster is in the form of a diffuse, very hot gas with a temperature of several tens of millions of degrees. This gas emits powerful X-ray radiation and clusters of galaxies are therefore best discovered by means of X-ray satellites (cf. ESO PR 18/03 and 15/04). It is for this reason that a team of astronomers [1] has initiated a search for distant, X-ray luminous clusters "lying dormant" in archive data from ESA's XMM-Newton satellite observatory. Studying XMM-Newton observations targeted at the nearby active galaxy NGC 7314, the astronomers found evidence of a galaxy cluster in the background, far out in space. This source, now named XMMU J2235.3-2557, appeared extended and very faint: no more than 280 X-ray photons were detected over the entire 12 hour-long observations. A Mature Cluster at Redshift 1.4 ESO PR Photo 05b/05 ESO PR Photo 05b/05 False Colour Image of XMMU J2235.3-2557 (FORS/VLT and ESA XMM-Newton) [Preview - JPEG: 400 x 455 pix - 50k] [Normal - JPEG: 800 x 909 pix - 564k] [Full Res - JPEG: 1599 x 1816 pix - 1.5M] Caption: ESO PR Photo 05b/05 is a false colour image of the XMMU J2235.3-2557 cluster of galaxies, overlaid with the X-ray intensity contours derived from the ESA XMM-Newton data. The red channel is a VLT-ISAAC image (exposure time: 1 hour) obtained in the near-infrared Ks-band (at wavelength 2.2 microns); the green channel is a VLT-FORS2 z-band image (910 nm; 480 sec); the blue channel is a VLT-FORS2 R-band image (; 657 nm; 1140 sec). The VLT reveals 12 reddish galaxies, of elliptical types, as members of the cluster. Knowing where to look, the astronomers then used the European Southern Observatory's Very Large Telescope (VLT) at Paranal (Chile) to obtain images in the visible wavelength region. They confirmed the nature of this cluster and it was possible to identify 12 comparatively bright member galaxies on the images (see ESO PR Photo 05b/05). The galaxies appear reddish and are of the elliptical type. They are full of old, red stars. All of this indicates that these galaxies are already several thousand million years old. Moreover, the cluster itself has a largely spherical shape, also a sign that it is already a very mature structure. In order to determine the distance of the cluster - and hence its age - Christopher Mullis, former European Southern Observatory post-doctoral fellow and now at the University of Michigan in the USA, and his colleagues used again the VLT, now in the spectroscopic mode. By means of one of the FORS multi-mode instruments, the astronomers zoomed-in on the individual galaxies in the field, taking spectral measurements that reveal their overall characteristics, in particular their redshift and hence, distance [2]. The FORS instruments are among the most efficient and versatile available anywhere for this delicate work, obtaining on the average quite detailed spectra of 30 or more galaxies at a time. The VLT data measured the redshift of this cluster as 1.4, indicating a distance of 9,000 million light-years, 500 million light years farther out than the previous record holding cluster. This means that the present cluster must have formed when the Universe was less than one third of its present age. The Universe is now believed to be 13,700 million years old. "We are quite surprised to see that a fully-fledged structure like this could exist at such an early epoch," says Christopher Mullis. "We see an entire network of stars and galaxies in place, just a few thousand million years after the Big Bang". "We seem to have underestimated how quickly the early Universe matured into its present-day state," adds Piero Rosati of ESO, another member of the team. "The Universe did grow up fast!" Towards a Larger Sample This discovery was relative easy to make, once the space-based XMM and the ground-based VLT observations were combined. As an impressive result of the present pilot programme that is specifically focused on the identification of very distant galaxy clusters, it makes the astronomers very optimistic about their future searches. The team is now carrying out detailed follow-up observations both from ground- and space-based observatories. They hope to find many more exceedingly distant clusters, which would then allow them to test competing theories of the formation and evolution of such large structures. "This discovery encourages us to search for additional distant clusters by means of this very efficient technique," says Axel Schwope, team leader at the Astrophysical Institute Potsdam (Germany) and responsible for the source detection from the XMM-Newton archival data. Hans Böhringer of the Max Planck Institute for Extraterrestrial Physics (MPE) in Garching, another member of the team, adds: "Our result also confirms the great promise inherent in other facilities to come, such as APEX (Atacama Pathfinder Experiment) at Chajnantor, the site of the future Atacama Large Millimeter Array. These intense searches will ultimately place strong constraints on some of the most fundamental properties of the Universe." More information This finding is presented today by Christopher Mullis at a scientific meeting in Kona, Hawaii, entitled "The Future of Cosmology with Clusters of Galaxies". It will also soon appear in The Astrophysical Journal ("Discovery of an X-ray Luminous Galaxy Cluster at z=1.4", by C. R. Mullis et al.). More images and information is available on Christopher Mullis' dedicated web page at http://www.astro.lsa.umich.edu/~cmullis/research/xmmuj2235/. A German version of the press release is issued by the Max Planck Society and is available at http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2005/pressemitteilung20050228/presselogin/ .

  6. Spectrum of Th-Ar Hollow Cathode Lamps

    National Institute of Standards and Technology Data Gateway

    SRD 161 NIST Spectrum of Th-Ar Hollow Cathode Lamps (Web, free access)   This atlas presents observations of the infra-red (IR) spectrum of a low current Th-Ar hollow cathode lamp with the 2-m Fourier transform spectrometer (FTS) at NIST. These observations establish more than 2400 lines that are suitable for use as wavelength standards in the range 691 nm to 5804 nm. The observations were made in collaboration with the European Southern Observatory (ESO), in order to provide calibration reference data for new high-resolution Echelle spectrographs, such as the Cryogenic High-Resolution IR Echelle Spectrograph ([CRIRES]), ESO's new IR spectrograph at the Very Large Telescope in Chile.

  7. Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7

    NASA Astrophysics Data System (ADS)

    Barris, Brian J.; Tonry, John L.; Blondin, Stéphane; Challis, Peter; Chornock, Ryan; Clocchiatti, Alejandro; Filippenko, Alexei V.; Garnavich, Peter; Holland, Stephen T.; Jha, Saurabh; Kirshner, Robert P.; Krisciunas, Kevin; Leibundgut, Bruno; Li, Weidong; Matheson, Thomas; Miknaitis, Gajus; Riess, Adam G.; Schmidt, Brian P.; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Stubbs, Christopher W.; Suntzeff, Nicholas B.; Aussel, Hervé; Chambers, K. C.; Connelley, M. S.; Donovan, D.; Henry, J. Patrick; Kaiser, Nick; Liu, Michael C.; Martín, Eduardo L.; Wainscoat, Richard J.

    2004-02-01

    We present photometric and spectroscopic observations of 23 high-redshift supernovae (SNe) spanning a range of z=0.34-1.03, nine of which are unambiguously classified as Type Ia. These SNe were discovered during the IfA Deep Survey, which began in 2001 September and observed a total of 2.5 deg2 to a depth of approximately m~25-26 in RIZ over 9-17 visits, typically every 1-3 weeks for nearly 5 months, with additional observations continuing until 2002 April. We give a brief description of the survey motivations, observational strategy, and reduction process. This sample of 23 high-redshift SNe includes 15 at z>=0.7, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry et al. (2003), we calculate cosmological parameter density contours that are consistent with the flat universe indicated by the cosmic microwave background (Spergel et al. 2003). Adopting the constraint that Ωtotal=1.0, we obtain best-fit values of (Ωm,ΩΛ)=(0.33,0.67) using 22 SNe from this survey augmented by the literature compilation. We show that using the empty-beam model for gravitational lensing does not eliminate the need for ΩΛ>0. Experience from this survey indicates great potential for similar large-scale surveys while also revealing the limitations of performing surveys for z>1 SNe from the ground. CFHT: Based in part on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. CTIO: Based in part on observations taken at the Cerro Tololo Inter-American Observatory. Keck: Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Magellan: Based in part on observations from the 6.5 m Baade telescope operated by the Observatories of the Carnegie Institution of Washington for the Magellan Consortium, a collaboration between the Carnegie Observatories, the University of Arizona, Harvard University, the University of Michigan, and the Massachusetts Institute of Technology. UH: Based in part on observations with the University of Hawaii 2.2 m telescope at Mauna Kea Observatory, Institute for Astronomy, University of Hawaii. VLT: Based in part on observations obtained at the European Southern Observatory, Paranal, Chile, under programs ESO 68.A-0427. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555. This research is primarily associated with proposal GO-09118.

  8. The Cosmic Christmas Ghost - Two Stunning Pictures of Young Stellar Clusters

    NASA Astrophysics Data System (ADS)

    2005-12-01

    Just like Charles Dickens' Christmas Carol takes us on a journey into past, present and future in the time of only one Christmas Eve, two of ESO' s telescopes captured various stages in the life of a star in a single image. ESO PR Photo 42a/05 shows the area surrounding the stellar cluster NGC 2467, located in the southern constellation of Puppis (" The Stern" ). With an age of a few million years at most, it is a very active stellar nursery, where new stars are born continuously from large clouds of dust and gas. The image, looking like a colourful cosmic ghost or a gigantic celestial Mandrill [1] , contains the open clusters Haffner 18 (centre) and Haffner 19 (middle right: it is located inside the smaller pink region - the lower eye of the Mandrill), as well as vast areas of ionised gas. The bright star at the centre of the largest pink region on the bottom of the image is HD 64315, a massive young star that is helping shaping the structure of the whole nebular region. ESO PR Photo 42a/05 was taken with the Wide-Field Imager camera at the 2.2m MPG/ESO telescope located at La Silla, in Chile. Another image of the central part of this area is shown as ESO PR Photo 42b/05. It was obtained with the FORS2 instrument at ESO' s Very Large Telescope on Cerro Paranal, also in Chile. ESO PR Photo 42b/05 zooms in on the open stellar cluster Haffner 18, perfectly illustrating three different stages of this process of star formation: In the centre of the picture, Haffner 18, a group of mature stars that have already dispersed their birth nebulae, represents the completed product or immediate past of the star formation process. Located at the bottom left of this cluster, a very young star, just come into existence and, still surrounded by its birth cocoon of gas, provides insight into the very present of star birth. Finally, the dust clouds towards the right corner of the image are active stellar nurseries that will produce more new stars in the future. Haffner 18 contains about 50 stars, among which several short lived, massive ones. The massive star still surrounded by a small, dense shell of hydrogen, has the rather cryptic name of FM3060a. The shell is about 2.5 light-years wide and expands at a speed of 20 km/s. It must have been created some 40,000 years ago. The cluster is between 25,000 and 30,000 light-years away from us [2]. Technical information: ESO PR Photo 42a/05 is based on images obtained with the WFI instrument on the ESO/MPG 2.2-m telescope for Rubio/Minniti/Barba/Mendez on December, 2003. The 49 observations were done in six different filters : U (2 hour exposure), B, O III, V, H-alpha and R (1 hour exposure each). The data were extracted from the ESO Science Archive. The raw observations were reduced and combined by Benoî t Vandame (ESO). North is right and East is to the top. The field of view is about 30x30 arcmin. ESO PR Photo 42a/05 is a colour-composite image obtained with the FORS2 multi-mode instrument on Kueyen, the second Unit Telescope of the Very Large Telescope. The data was collected during the commissioning of the instrument in February 2000, through 4 filters: B, V, R and I, for a total exposure time of only 11 minutes. The observations were extracted from the ESO Science Archive and reduced by Henri Boffin (ESO). North is above and East is to the left. Final processing of ESO PR Photo 42a/05 and 42b/05 was done by Kristina Boneva and Haennes Heyer (ESO).

  9. Milli-magnitude IR Transit Detection: OGLE-TR-113

    NASA Astrophysics Data System (ADS)

    Ramírez-Alegría, S.; Minniti, D.; Fernández, J. M.; Ruiz, M. T.; Gieren, W.; Pietrzynski, G.; Zoccali, M.; Ivanov, V.

    2006-06-01

    OGLE-TR-113-b is a giant exoplanet that was discovered independently by Bouchy et al. (2004, A&A, 421, L13), and by Konacki et al. (2004, ApJ, 609, L37). We present high quality near-IR and optical data during the transit of this planet in front of the star OGLE-TR-113 (V=14.42, α =10:52:24.4 and δ =-61:26:48.5). The K-band observations were obtained in May 2005 with SOFI+NTT, located at ESO La Silla (Chile), and the V-band observations were obtained in April 2005 with VIMOS+VLT, located at ESO Paranal (Chile). After the data reduction process and difference image photometry, it was possible to achieve millimagnitude precision for the transit light curves in both bands. The planetary transit is clearly seen for the first time in the K-band, with similar amplitudes A = 0.03 mag in both V, I, and K, confirming the planetary size of the OGLE-TR-113 companion. Our monitoring program for this and other OGLE transit candidates using accurate optical and near-IR photometry allows us to discard false positives (binaries, blends, giants, etc), and to refine the star/planet parameters.

  10. Successful "First Light" for VLT High-Resolution Spectrograph

    NASA Astrophysics Data System (ADS)

    1999-10-01

    Great Research Prospects with UVES at KUEYEN A major new astronomical instrument for the ESO Very Large Telescope at Paranal (Chile), the UVES high-resolution spectrograph, has just made its first observations of astronomical objects. The astronomers are delighted with the quality of the spectra obtained at this moment of "First Light". Although much fine-tuning still has to be done, this early success promises well for new and exciting science projects with this large European research facility. Astronomical instruments at VLT KUEYEN The second VLT 8.2-m Unit Telescope, KUEYEN ("The Moon" in the Mapuche language), is in the process of being tuned to perfection before it will be "handed" over to the astronomers on April 1, 2000. The testing of the new giant telescope has been successfully completed. The latest pointing tests were very positive and, from real performance measurements covering the entire operating range of the telescope, the overall accuracy on the sky was found to be 0.85 arcsec (the RMS-value). This is an excellent result for any telescope and implies that KUEYEN (as is already the case for ANTU) will be able to acquire its future target objects securely and efficiently, thus saving precious observing time. This work has paved the way for the installation of large astronomical instruments at its three focal positions, all prototype facilities that are capable of catching the light from even very faint and distant celestial objects. The three instruments at KUEYEN are referred to by their acronyms UVES , FORS2 and FLAMES. They are all dedicated to the investigation of the spectroscopic properties of faint stars and galaxies in the Universe. The UVES instrument The first to be installed is the Ultraviolet Visual Echelle Spectrograph (UVES) that was built by ESO, with the collaboration of the Trieste Observatory (Italy) for the control software. Complete tests of its optical and mechanical components, as well as of its CCD detectors and of the complex control system, cf. ESO PR Photos 44/98 , were made in the laboratories of the ESO Headquarters in Garching (Germany) before it was fully dismounted and shipped (some parts by air, others by ship) to the ESO Paranal Observatory, 130 km south of Antofagasta (Chile). Here, the different pieces of UVES (with a total weight of 8 tons) were carefully reassembled on the Nasmyth platform of KUEYEN and made ready for real observations (see ESO PR Photos 36p-t/99 ). UVES is a complex two-channel spectrograph that has been built around two giant optical (echelle diffraction) gratings, each ruled on a 84 cm x 21 cm x 12 cm block of the ceramic material Zerodur (the same that is used for the VLT 8.2-m main mirrors) and weighing more than 60 kg. These echelle gratings finely disperse the light from celestial objects collected by the telescope into its constituent wavelengths (colours). UVES' resolving power (an optical term that indicates the ratio between a given wavelength and the smallest wavelength difference between two spectral lines that are clearly separated by the spectrograph) may reach 110,000, a very high value for an astronomical instrument of such a large size. This means for instance that even comparatively small changes in radial velocity (a few km/sec only) can be accurately measured and also that it is possible to detect the faint spectral signatures of very rare elements in celestial objects. One UVES channel is optimized for the ultraviolet and blue, the other for visual and red light. The spectra are digitally recorded by two highly efficient CCD detectors for subsequent analysis and astrophysical interpretation. By optimizing the transmission of the various optical components in its two channels, UVES has a very high efficiency all the way from the UV (wavelength about 300 nm) to the near-infrared (1000 nm or 1 µm). This guarantees that only a minimum of the precious light that is collected by KUEYEN is lost and that detailed spectra can be obtained of even quite faint objects, down to about magnitude 20 (corresponding to nearly one million times fainter than what can be perceived with the unaided eye). The possibility of doing simultaneous observations in the two channels (with a dichroic mirror) ensures a further gain in data gathering efficiency. First Observations with UVES In the evening of September 27, 1999, the ESO astronomers turned the KUEYEN telescope and - for the first time - focussed the light of stars and galaxies on the entrance aperture of the UVES instrument. This is the crucial moment of "First Light" for a new astronomical facility. The following test period will last about three weeks. Much of the time during the first observing nights was spent by functional tests of the various observation modes and by targeting "standard stars" with well-known properties in order to measure the performance of the new instrument. They showed that it is behaving very well. This marks the beginning of a period of progressive fine-tuning that will ultimately bring UVES to peak performance. The astronomers also did a few "scientific" observations during these nights, aimed at exploring the capabilities of their new spectrograph. They were eager to do so, also because UVES is the first spectrograph of this type installed at a telescope of large diameter in the southern hemisphere . Many exciting research possibilities are now opening with UVES . They include a study of the chemical history of many galaxies in the Local Group, e.g. by observing the most metal-poor (oldest) stars in the Milky Way Galaxy and by obtaining the first, extremely detailed spectra of their brightest stars in the Magellanic Clouds. Quasars and distant compact galaxies will also be among the most favoured targets of the first UVES observers, not least because their spectra carry crucial information about the density, physical state and chemical composition of the early Universe. UVES First Light: SN 1987A One of the first spectral test exposures with UVES at KUEYEN was of SN 1987A , the famous supernova that exploded in the Large Magellanic Cloud (LMC) in February 1987, and the brightest supernova of the last 400 years. ESO PR Photo 37a/99 ESO PR Photo 37a/99 [Preview - JPEG: 400 x 455 pix - 87k] [Normal - JPEG: 645 x 733 pix - 166k] Caption to ESO PR Photo 37a/99 : This is a direct image of SN1987A, flanked by two nearby stars. The distance between these two is 4.5 arcsec. The slit (2.0 arcsec wide) through which the echelle spectrum shown in PR Photo 37b/99 was obtained, is outlined. This reproduction is from a 2-min exposure through a R(ed) filter with the FORS1 multi-mode instrument at VLT ANTU, obtained in 0.55 arcsec seeing on September 20, 1998. North is up and East is left. ESO PR Photo 37b/99 ESO PR Photo 37b/99 [Preview - JPEG: 400 x 459 pix - 130k] [Normal - JPEG: 800 x 917 pix - 470k] [High-Res - JPEG: 3000 x 3439 pix - 6.5M] Caption to ESO PR Photo 37b/99 : This shows the raw image, as read from the CCD, with the recorded echelle spectrum of SN1987A. With this technique, the supernova spectrum is divided into many individual parts ( spectral orders , each of which appears as a narrow horizontal line) that together cover the wavelength interval from 479 to 682 nm (from the bottom to the top), i.e. from blue to red light. Many bright emission lines from different elements are visible, e.g. the strong H-alpha line from hydrogen near the centre of the fourth order from the top. Emission lines from the terrestrial atmosphere are seen as vertical bright lines that cover the full width of the individual horizontal bands. Since this exposure was done with the nearly Full Moon above the horizon, an underlying, faint absorption-line spectrum of reflected sunlight is also visible. The exposure time was 30 min and the seeing conditions were excellent (0.5 arcsec). ESO PR Photo 37c/99 ESO PR Photo 37c/99 [Preview - JPEG: 400 x 355 pix - 156k] [Normal - JPEG: 800 x 709 pix - 498k] [High-Res - JPEG: 1074 x 952 pix - 766k] Caption to ESO PR Photo 37c/99 : This false-colour image has been extracted from another UVES echelle spectrum of SN 1987A, similar to the one shown in PR Photo 37b/99 , but with a slit width of 1 arcsec only. The upper part shows the emission lines of nitrogen, sulfur and hydrogen, as recorded in some of the spectral orders. The pixel coordinates (X,Y) in the original frame are indicated; the red colour indicates the highest intensities. Below is a more detailed view of the complex H-alpha emission line, with the corresponding velocities and the position along the spectrograph slit indicated. Several components of this line can be distinguished. The bulk of the emission (here shown in red colour) comes from the ring surrounding the supernova; the elongated shape here is due to the differential velocity exhibited by the near (to us) and far sides of the ring. The two bright spots on either side are emission from two outer rings (not immediately visible in PR Photo 37a/99 ). The extended emission in the velocity direction originates from material inside the ring upon which the fastest moving ejecta from the supernova have impacted (As seen in VLT data obtained previously with the ANTU/ISAAC combination (cf. PR Photo 11/99 ), exciting times now lie ahead for SN 1987A. The ejecta moving at 30,000 km/s (1/10th the speed of light) have now, 12 years after the explosion, reached the ring of material and the predicted "fireworks" are about to be ignited.) Finally, there is a broad emission extending all along the spectrograph slit (here mostly yellow) upon which the ring emission is superimposed. This is not associated with the supernova itself, but is H-alpha emission by diffuse gas in the Large Magellanic Cloud (LMC) in which SN 1987A is located. UVES First Light: QSO HE2217-2818 The power of UVES is demonstrated by this two-hour test exposure of the southern quasar QSO HE2217-2818 with U-magnitude = 16.5 and a redshift of z = 2.4. It was discovered a few years ago during the Hamburg-ESO Quasar Survey , by means of photographic plates taken with the 1-m ESO Schmidt Telescope at La Silla, the other ESO astronomical site in Chile. ESO PR Photo 37d/99 ESO PR Photo 37d/99 [Preview - JPEG: 400 x 309 pix - 92k] [Normal - JPEG: 800x 618 pix - 311k] [High-Res - JPEG: 3000 x 2316 pix - 5.0M] ESO PR Photo 37e/99 ESO PR Photo 37e/99 [Preview - JPEG: 400 x 310 pix - 43k] [Normal - JPEG: 800 x 619 pix - 100k] [High-Res - JPEG: 3003 x 2324 pix - 436k] Caption to ESO PR Photo 37d/99 : This UVES echelle spectrum QSO HE2217-2818 (U-magnitude = 16.5) is recorded in different orders (the individual horizontal lines) and altogether covers the wavelength interval between 330 - 450 nm (from the bottom to the top). It illustrates the excellent capability of UVES to work in the UV-band on even faint targets. Simultaneously with this observation, UVES also recorded the adjacent spectral region 465 - 660 nm in its other channel. The broad Lyman-alpha emission from ionized hydrogen associated with the powerful energy source of the QSO is seen in the upper half of the spectrum at wavelength 413 nm. At shorter wavelengths, the dark regions in the spectrum are Lyman-alpha absorption lines from intervening, neutral hydrogen gas located along the line-of-sight at different redshifts (the so-called Lyman-alpha forest ) in the redshift interval z = 1.7 - 2.4. Note that since this exposure was done with the nearly Full Moon above the horizon, an underlying, faint absorption-line spectrum of reflected sunlight is also visible. Caption to ESO PR Photo 37e/99 : A tracing of one spectral order, corresponding to one horizontal line in the echelle spectrum displayed in PR Photo 37d/99 . It shows part of the Lyman-alpha forest in the ultraviolet spectrum of the southern quasar QSO HE2217-2818 . The absorption lines are caused by intervening, neutral hydrogen gas located at different distances along the line-of-sight towards this quasar. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  11. The challengers of an astronomer being a journalist

    NASA Astrophysics Data System (ADS)

    Podorvanyuk, N.

    2015-03-01

    As the weakness of russian astronomers in observational astronomy became chronic Russia should enter European Southern Observatory. But the Russian government is still not providing any financing of the entrance of Russia to ESO. The author states this situation as an example of his experience of work as an astronomer and as a journalist at the same time.

  12. Visits to La Plata Observatory

    NASA Astrophysics Data System (ADS)

    Feinstein, A.

    1985-03-01

    La Plata Observatory will welcome visitors to ESO-La Silla that are willing to make a stop at Buenos Aires on their trip to Chile or on their way back. There is a nice guesthouse at the Observatory that can be used, for a couple of days or so, by astronomers interested in visiting the Observatory and delivering talks on their research work to the Argentine colleagues. No payments can, however, be made at present. La Plata is at 60 km from Buenos Aires. In the same area lie the Instituto de Astronomia y Fisica dei Espacio (IAFE), in Buenos Aires proper, and the Instituto Argentino de Radioastronomia (IAR). about 40 km from Buenos Aires on the way to La Plata. Those interested should contacl: Sr Decano Prof. Cesar A. Mondinalli, or Dr Alejandro Feinstein, Observatorio Astron6mico, Paseo dei Bosque, 1900 La Plata, Argentina. Telex: 31216 CESLA AR.

  13. The Hooked Galaxy

    NASA Astrophysics Data System (ADS)

    2006-06-01

    Life is not easy, even for galaxies. Some indeed get so close to their neighbours that they get rather distorted. But such encounters between galaxies have another effect: they spawn new generations of stars, some of which explode. ESO's VLT has obtained a unique vista of a pair of entangled galaxies, in which a star exploded. Because of the importance of exploding stars, and particularly of supernovae of Type Ia [1], for cosmological studies (e.g. relating to claims of an accelerated cosmic expansion and the existence of a new, unknown, constituent of the universe - the so called 'Dark Energy'), they are a preferred target of study for astronomers. Thus, on several occasions, they pointed ESO's Very Large Telescope (VLT) towards a region of the sky that portrays a trio of amazing galaxies. MCG-01-39-003 (bottom right) is a peculiar spiral galaxy, with a telephone number name, that presents a hook at one side, most probably due to the interaction with its neighbour, the spiral galaxy NGC 5917 (upper right). In fact, further enhancement of the image reveals that matter is pulled off MCG-01-39-003 by NGC 5917. Both these galaxies are located at similar distances, about 87 million light-years away, towards the constellation of Libra (The Balance). ESO PR Photo 22/06 ESO PR Photo 22/06 The Hooked Galaxy and its Companion NGC 5917 (also known as Arp 254 and MCG-01-39-002) is about 750 times fainter than can be seen by the unaided eye and is about 40,000 light-years across. It was discovered in 1835 by William Herschel, who strangely enough, seems to have missed its hooked companion, only 2.5 times fainter. As seen at the bottom left of this exceptional VLT image, a still fainter and nameless, but intricately beautiful, barred spiral galaxy looks from a distance the entangled pair, while many 'island universes' perform a cosmic dance in the background. But this is not the reason why astronomers look at this region. Last year, a star exploded in the vicinity of the hook. The supernova, noted SN 2005cf as it was the 84th found that year, was discovered by astronomers Pugh and Li with the robotic KAIT telescope on 28 May. It appeared to be projected on top of a bridge of matter connecting MCG-01-39-003 with NGC5917. Further analysis with the Whipple Observatory 1.5m Telescope showed this supernova to be of the Ia type and that the material was ejected with velocities up to 15 000 km/s (that is, 54 million kilometres per hour!). Immediately after the discovery, the European Supernova Collaboration (ESC [2]), led by Wolfgang Hillebrandt (MPA-Garching, Germany) started an extensive observing campaign on this object, using a large number of telescopes around the world. There have been several indications about the fact that galaxy encounters and/or galaxy activity phenomena may produce enhanced star formation. As a consequence, the number of supernovae in this kind of system is expected to be larger with respect to isolated galaxies. Normally, this scenario should favour mainly the explosion of young, massive stars. Nevertheless, recent studies have shown that such phenomena could increase the number of stars that eventually explode as Type Ia supernovae. This notwithstanding, the discovery of supernovae in tidal tails connecting interacting galaxies remains quite an exceptional event. For this reason, the discovery of SN2005cf close to the 'tidal bridge' between MCG-01-39-002 and MCG-01-39-003 constitutes a very interesting case. The supernova was followed by the ESC team during its whole evolution, from about ten days before the object reached its peak luminosity until more than a year after the explosion. As the SN becomes fainter and fainter, larger and larger telescopes are needed. One year after the explosion, the object is indeed about 700 times fainter than at maximum. The supernova was observed with the VLT equipped with FORS1 by ESO astronomer Ferdinando Patat, who is also member of the team led by Massimo Turatto (INAF-Padua, Italy), and at a latter stage by the Paranal Science Team, with the aim of studying the very late phases of the supernova. These late stages are very important to probe the inner parts of the ejected material, in order to better understand the explosion mechanism and the elements produced during the explosion. The deep FORS1 images reveal a beautiful tidal structure in the form of a hook, with a wealth of details that probably include regions of star formation triggered by the close encounter between the two galaxies. "Curiously, the supernova appears to be outside of the tidal tail", says Ferdinando Patat. "The progenitor system was probably stripped out of one of the two galaxies and exploded far away from the place where it was born." Life may not be easy for galaxies, but it isn't much simpler for stars either. Technical information: ESO PR Photo 22/06 is a composite image based on data acquired with the FORS1 multi-mode instrument in April and May 2006 for the European Supernova Collaboration. The observations were made in four different filters (B, V, R, and I) that were combined to make a colour image. The field of view covers 5.6 x 8.3 arcmin. North is up and East is to the left. The observations were done by Ferdinando Patat and the Paranal Science team (ESO), and the final processing was done by Olivia Blanchemain, Henri Boffin and Haennes Heyer (ESO).

  14. A Strange Supernova with a Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    1998-10-01

    Important Observations with La Silla Telescopes Several articles appear today in the scientific journal Nature about the strange supernova SN 1998bw that exploded earlier this year in the spiral galaxy ESO184-G82 . These studies indicate that this event was linked to a Gamma-Ray Burst and may thus provide new insights into this elusive phenomenon. Important observations of SN 1998bw have been made with several astronomical telescopes at the ESO La Silla Observatory by some of the co-authors of the Nature articles [1]. The measurements at ESO will continue during the next years. The early observations On April 25, the BeppoSAX satellite detected a Gamma-Ray Burst from the direction of the constellation Telescopium, deep in the southern sky. Although there is now general consensus that they originate in very distant galaxies, the underlying physical causes of these events that release great amounts of energy within seconds are still puzzling astronomers. Immediately after reports about the April 25 Burst had been received, astronomers at La Silla took some images of the sky region where the gamma-rays were observed as a "Target of Opportunity" (ToO) programme. The aim was to check if the visual light of one of the objects in the field had perhaps brightened when compared to exposures made earlier. This would then provide a strong indication of the location of the Gamma-Ray Burst. The digital exposures were transferred to the Italian/Dutch group around BeppoSax that had requested these ToO observations. Astronomers of this group quickly noticed a new, comparatively bright star, right on the arm of a small spiral galaxy. This galaxy was first catalogued in the 1970's during the ESO/Uppsala Survey of the Southern Sky and received the designation ESO184-G82 . It is located at a distance of about 140 million light-years. SN 1998bw ESO PR Photo 39a/98 ESO PR Photo 39a/98 [Preview - JPEG: 800 x 963 pix - 592k] [High-Res - JPEG: 3000 x 3612 pix - 4.1Mb] ESO PR Photo 39b/98 ESO PR Photo 39b/98 [Preview - JPEG: 800 x 987 pix - 432k] [High-Res - JPEG: 3000 x 3703 pix - 2.5Mb] PR Photo 39a/98 (left) shows a colour composite of three images obtained with the EMMI multi-mode instrument at the ESO 3.58-m New Technology Telescope (NTT) at La Silla on May 4, 1998. The short exposures were obtained through V (green), R (red) and I (near-infrared) filtres. SN 1998bw is the very bright, bluish star at the center (indicated with an arrow), located on an arm of spiral galaxy ESO 184-G82 . There are several other galaxies in the field. Compare with Photo 39b/98 (right) that was obtained before the explosion (ESO 1-m Schmidt Telescope; 15 May 1985; 120-min exposure in red light). In both photos, the field of view measures 3.6 x 3.6 arcmin; North is up and East is left. Note that while the brighter objects are more prominent on the long-exposure Schmidt photo (39b/98), considerably more details can be seen on that obtained by the NTT (39a/98). The ESO astronomers at La Silla decided to continue observations of the new star-like object and set up a comprehensive programme with several telescopes at that observatory. During the subsequent weeks and months, they obtained images through various filtres to determine the brightness in different colours, as well as detailed spectra. These observations soon showed the object to be a supernova . This is a heavy star that explodes during a late and fatal evolutionary stage. The new supernova now received the official designation SN 1998bw . From a careful study based on these observations, it has been concluded that SN 1998bw underwent an exceptionally powerful explosion, more violent than most other supernovae observed so far. It was also unusual in the sense that very strong radio emission was observed within a few days after the explosion - normally this only happens after several weeks. In fact, at radio wavelengths, SN 1998bw was the brightest supernova ever observed. The origin of the Gamma-Ray Burst SN 1998bw is obviously an unusual supernova. It is therefore of particular significance that a Gamma-Ray Burst was observed from the same sky region just before it was discovered in optical light. It is very unlikely that these two very rare events would happen in the same region of the sky without being somehow related. Most astronomers therefore tend to believe that the gamma-rays do indeed originate in the supernova explosion. But can a single supernova be sufficiently energetic to produce a powerful Gamma-Ray Burst? New theoretical calculations, also published today in Nature, indicate that this may be so. Moreover, if the Gamma-Ray Burst observed on April 25 did originate in this supernova that is located in a relatively nearby galaxy, it was intrinsically much fainter than some of the other Gamma-Ray Bursts that are known to have taken place in extremely distant galaxies. The main idea is that while the centres of most other supernovae collapse into neutron stars at the moment of explosion, a black hole was created in a very massive star consisting mostly of carbon and oxygen. If so, a very strong shockwave may be produced that is capable of generating the observed gamma rays. A comparison of synthetic spectra from such a supernova model, based on a new spectrum-modelling technique developed by Leon Lucy at the ESA/ESO Space Telescope/European Coordinating Facility (ST/ECF), with the spectra of SN 1998bw observed at La Silla, show good agreement, thus lending credibility to the new models. Future work Much data has already been collected at ESO on the strange supernova SN 1998bw . More observations will be obtained by the astronomers at the ESO observatories in the future during a long-term monitoring programme of SN 1998bw . There is a good chance that this effort will ultimately provide fundamental information on the explosion mechanism and the nature of the progenitor star of this exceptional object. This supernova's connection with a Gamma-Ray Burst will significantly enhance our understanding of the nature of these powerful and enigmatic events. In view of the range in emitted energy, it now seems likely that there may be more than one class of Gamma-Ray Burst. According to some models for Gamma-Ray Bursts that include beaming (emission of the radiation in one prefered direction), it is possible that these events are only detected if they have a favourable angle with respect to the line of sight. In the case of SN 1998bw this is probably not the case, however, and it was only detected in gamma-rays, because it is so relatively nearby. The question of differences in intrinsic brightness and possible different classes of objects is far from settled yet. Note: [1] The ESO astronomers involved in this work are Thomas Augusteijn, Hermann Boehnhardt, James Brewer, Vanessa Doublier, Jean-Francois Gonzalez, Olivier Hainaut, Bruno Leibundgut, Christopher Lidman and Fernando Patat . How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  15. Evaluation of performance of the MACAO systems at the VLTI

    NASA Astrophysics Data System (ADS)

    Rengaswamy, Sridharan; Haguenauer, Pierre; Brillant, Stephane; Cortes, Angela; Girard, Julien H.; Guisard, Stephane; Paufique, Jérôme; Pino, Andres

    2010-07-01

    Multiple Application Curvature Adaptive Optics (MACAO) systems are used at the coudé focus of the unit telescopes (UTs) at the La-Silla Paranal Observatory, Paranal, to correct for the wave-front aberrations induced by the atmosphere. These systems are in operation since 2005 and are designed to provide beams with 10 mas residual rms tip-tilt error to the VLTI laboratory. We have initiated several technical studies such as measuring the Strehl ratio of the images recorded at the guiding camera of the VLTI, establishing the optimum setup of the MACAO to get collimated and focused beam down to the VLTI laboratory and to the instruments, and ascertaining the data generated by the real time computer, all aimed at characterizing and improving the overall performance of these systems. In this paper we report the current status of these studies.

  16. SWEET-Cat update and FASMA. A new minimization procedure for stellar parameters using high-quality spectra

    NASA Astrophysics Data System (ADS)

    Andreasen, D. T.; Sousa, S. G.; Tsantaki, M.; Teixeira, G. D. C.; Mortier, A.; Santos, N. C.; Suárez-Andrés, L.; Delgado-Mena, E.; Ferreira, A. C. S.

    2017-04-01

    Context. Thanks to the importance that the star-planet relation has to our understanding of the planet formation process, the precise determination of stellar parameters for the ever increasing number of discovered extrasolar planets is of great relevance. Furthermore, precise stellar parameters are needed to fully characterize the planet properties. It is thus important to continue the efforts to determine, in the most uniform way possible, the parameters for stars with planets as new discoveries are announced. Aims: In this paper we present new precise atmospheric parameters for a sample of 50 stars with planets. The results are presented in the catalogue: SWEET-Cat. Methods: Stellar atmospheric parameters and masses for the 50 stars were derived assuming local thermodynamic equilibrium and using high-resolution and high signal-to-noise spectra. The methodology used is based on the measurement of equivalent widths with ARES2 for a list of iron lines. The line abundances were derived using MOOG. We then used the curve of growth analysis to determine the parameters. We implemented a new minimization procedure which significantly improves the computational time. Results: The stellar parameters for the 50 stars are presented and compared with previously determined literature values. For SWEET-Cat, we compile values for the effective temperature, surface gravity, metallicity, and stellar mass for almost all the planet host stars listed in the Extrasolar Planets Encyclopaedia. This data will be updated on a continuous basis. The data can be used for statistical studies of the star-planet correlation, and for the derivation of consistent properties for known planets. Based on observations collected at the La Silla Observatory, ESO (Chile), with FEROS/2.2 m (run 2014B/020), with UVES/VLT at the Cerro Paranal Observatory (runs ID 092.C-0695, 093.C-0219, 094.C-0367, 095.C-0324, and 096.C-0092), and with FIES/NOT at Roque de los Muchachos (Spain; runs ID 14AF14 and 53-202).The compiled SWEET-Cat is available online, http://https://www.astro.up.pt/resources/sweet-cat/

  17. Ground-based transit observations of the super-Earth GJ 1214 b

    NASA Astrophysics Data System (ADS)

    Cáceres, C.; Kabath, P.; Hoyer, S.; Ivanov, V. D.; Rojo, P.; Girard, J. H.; Miller-Ricci Kempton, E.; Fortney, J. J.; Minniti, D.

    2014-05-01

    Context. GJ 1214 b is one of the few known transiting super-Earth-sized exoplanets with a measured mass and radius. It orbits an M-dwarf, only 14.55 pc away, making it a favorable candidate for follow-up studies. However, the composition of GJ 1214 b's mysterious atmosphere has yet to be fully unveiled. Aims: Our goal is to distinguish between the various proposed atmospheric models to explain the properties of GJ 1214 b: hydrogen-rich or hydrogen-He mix, or a heavy molecular weight atmosphere with reflecting high clouds, as latest studies have suggested. Methods: Wavelength-dependent planetary radii measurements from the transit depths in the optical/NIR are the best tool to investigate the atmosphere of GJ 1214 b. We present here (i) photometric transit observations with a narrow-band filter centered on 2.14 μm and a broad-band I-Bessel filter centered on 0.8665 μm, and (ii) transmission spectroscopy in the H and K atmospheric windows that cover three transits. The photometric and spectrophotometric time series obtained were analyzed with MCMC simulations to measure the planetary radii as a function of wavelength. We determined radii ratios of 0.1173-0.0024+0.0022 for I-Bessel and 0.11735-0.00076+0.00072 at 2.14 μm. Results: Our measurements indicate a flat transmission spectrum, in agreement with the last atmospheric models that favor featureless spectra with clouds and high molecular weight compositions. Based on observations obtained at the Southern Astrophysical Research (SOAR) Telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). SofI results are based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 087.C-0509.Tables of the lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A7

  18. M Dwarf Flare Continuum Variations on One-second Timescales: Calibrating and Modeling of ULTRACAM Flare Color Indices

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Hilton, Eric J.; Brown, Benjamin P.

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes at the La Silla Paranal Observatory under programme ID 085.D-0501(A).

  19. Polarization switching of sodium guide star laser for brightness enhancement

    NASA Astrophysics Data System (ADS)

    Fan, Tingwei; Zhou, Tianhua; Feng, Yan

    2016-07-01

    The efficiency of optical pumping that enhances the brightness of sodium laser guide star with circularly polarized light is reduced substantially due to the precession of sodium atoms in geomagnetic field. Switching the laser between left and right circular polarization at the Larmor frequency is proposed to improve the photon return. With ESO's cw laser guide star system at Paranal as example, numerical simulation for both square-wave and sine-wave polarization modulation is conducted. For the square-wave switching case, the return flux is increased when the angle between geomagnetic field and laser beam is larger than 60°, as much as 40% at 90°. The method can also be applied for remote measurement of magnetic field with available cw guide star laser.

  20. New Method for Data Treatment Developed at ESO

    NASA Astrophysics Data System (ADS)

    1996-08-01

    How Future Astronomical Observations Will be Done The past four centuries have seen dramatic improvements in astronomical equipment, in terms of better and larger telescopes, more accurate and sensitive detectors and, not the least, by advanced space instruments with access to new spectral regions. However, until recently there has been little progress on another equally important front, that of quantifying the unavoidable influence of this equipment on the astronomical data they produce . For a long time, astronomers have desired to remove efficiently these `instrumental effects' from their data, in order to give them a clearer understanding of the objects in the Universe and their properties. But it is only now that this fundamental problem can finally be tackled efficiently, with the advent of digital imaging techniques and powerful computers. Two researchers at the ESO Headquarters, Michael R. Rosa of the Space Telescope European Co-ordinating Facility (ST/ECF [1]) and Pascal Ballester of the Data Management Division (DMD) are now developing a new approach to this age-old problem. These results are important for the future use of the ESO Very Large Telescope (VLT) , the Hubble Space Telescope (HST) and other large facilities as well [2]. The observational process Observations are crucial to the progress of all natural sciences, including astronomy. Nevertheless, the properties of the observed objects are rarely revealed directly. First, observational data are gathered at the telescopes with instruments such as cameras and spectrophotometers. Then these `raw' data are processed with advanced computer programmes to produce scientifically meaningful data which are finally scrutinized by the astronomers in order to learn more about the observed celestial objects. A basic problem in this chain is the influence of the telescopes and instruments on the data they produce. The `raw' observational data carries the marks, not only of the celestial objects that are observed, but also of the `recording equipment' and, in the case of ground-based observations, of the atmospheric conditions as well. These disturbing effects, for example straylight in the telescope and light absorption in the atmosphere, are referred to as the instrumental and atmospheric `signatures'. Only when they have been `removed' from the data, can these be properly interpreted. In fact, unless these effects are completely known, an observation may not result in any new knowledge at all or, even worse, may lead to erroneous results. The history of astronomy contains many examples of the battle with instrumental effects; see also the Appendix. With the advent of new and advanced astronomical facilities like the VLT and HST, the need for an efficient solution of this fundamental problem has become particularly acute. The calibration challenge Until now, the usual procedure to tackle this common problem has been to observe socalled `reference sources' (celestial objects with well-known properties [3]) with exactly the same instrument and observational mode and under same atmospheric conditions as the celestial object under study, referred to as the `target'. A comparison between the `raw' observational data recorded for the reference sources and their known properties then allows to determine, more or less accurately, the instrumental and atmospheric signatures. Subsequently, these effects can be removed during the data processing from the raw data obtained for the programme targets. This leaves behind - at least in theory - `clean data' which only contain the desired information about the celestial object under investigation. This fundamental, observational procedure is known as `calibration'. Nevertheless, serious limitations are inherent in such a calibration procedure. In principle, it is only logically valid if the reference source has the same properties as the target and both are observed under identical instrumental and atmospheric conditions. These requirements, however, are never fulfilled in practice. One way around this obstacle is to observe a sufficient number of reference sources, the properties of which are supposed to bracket the properties of the targets. Likewise, repeated observations must be made whenever the observing conditions change. This way one hopes to obtain estimates of the instrumental and atmospheric signatures at the time of the observation of the target by means of interpolation. Until now, this empirical calibration process was the only one available. Unfortunately, it demands a lot of the valuable telescope time just for repeated observations of the reference sources, significantly diminishing the time available for observations of the scientifically important objects. Moreover, every time the instrument is even slightly changed or some condition is altered, a new calibration procedure must be carried through. Maximizing observational efficiency In just over one year from now, ESO will begin to operate the largest optical telescope ever built, the Very Large Telescope (VLT) at the new Paranal Observatory in Chile. Because of its enormous light-collecting area and superior optical quality, the VLT is destined to make a break-through in ground-based observational astronomy. The demand by astronomers for observing time at this unique facility is overwhelming. Even with the unsurpassed number of clear nights at Paranal, each available minute will be extremely precious and everything must be done to ensure that no time will be lost to unnecessary actions. This is a major challenge to the scientists. For instance, how long a time should an exposure last to ensure an optimum of new knowledge about the object observed? In addition, how much time should be spent to define in sufficient detail the `signatures' of the atmosphere, the telescope and the instruments which must be removed from the `raw' data before the resulting `clean' data can be interpreted in a trustworthy way? In short, how can the scientific return from the VLT and other telescopes such as the HST best be optimised? It is exactly for this reason that astronomers and engineers at ESO are now busy developing new methods of telescope operation and data analysis alongside with the VLT instrumental hardware itself. The new solution by means of models The appropriate strategy to make progress in the inherent conflict between calibration demand and time available for scientific observations is to obtain a physically correct understanding of the effects exerted on the data by different instruments . In this way, it is possible to decide which calibration data are actually required and on which timescale they have to be updated. One can then use computer models of these instruments to predict calibration solutions which are now valid for the full range of target properties and which handle environmental conditions properly. Such computer models can also be used to simulate observations. This brings a lot of benefits for the entire observational process. First, the astronomer can prepare observations and select instrumental modes and exposure times suited for optimal information return. Secondly, it provides confidence in the validity of the calibration process, and therefore in the cleanliness of the corrected data. Finally, once a theory about the target and its properties has been developed, one may simulate observations of a set of theoretical targets for which the properties are slightly modified in order to study their influence on the raw data. For the observatory there are also advantages. Optimization from the point of view of data analysis can now take place already during instrument design, calibration and data analysis procedures for any observational mode can be tested before real observations are obtained, and the maintenance staff can make sure that the instrument performs as expected and designed. How far have we come along this road? The present project consists of a close collaboration between the ESO Data Management Division (DMD) and Space Telescope European Co-ordinating Facility (ST/ECF). The VLT and the HST facilities have quite similar demands, because both astronomical observatories are committed to make data from a variety of instruments rapidly available to the world-wide community at a large scale. Once the basic concept had been defined, several groups at ESO started to develop models for particular instruments in order to study its general validity. One of the VLT instruments under construction is the high resolution echelle spectrograph UVES; first light is planned for 1999. The DMD model for this instrument now succeeds in predicting the geometrical aspects of observational data to better than one resolution element (pixel) of the detector. In parallel, the ST/ECF has produced a computer model for the low-resolution Faint Object Spectrograph (FOS) on HST. This software is tuned in particular to simulate the aspects of internally scattered light, which is a serious nuisance for observations of faint targets. A direct derivative of such models are accurate exposure time calculators , which the observer can use to estimate the length of each exposure when preparing his/her observing program. This is the time an electronic detector is exposed to the light of the astronomical object under study. If it is too short, the resulting image of the object will not contain enough information. On the other hand, if the exposure time is too long, the image may be degraded by too many artefacts from cosmic rays that hit the detector during the exposure, or it may saturate the detector completely. Clearly, this time may better be used to observe other objects. In order to correctly plan the length of the exposure time for each astronomical target during an observing program, it is necessary to estimate the total effect of the instrument and the atmosphere on the light produced by the target. For this it is necessary to take into account the effects of the colour-dependent atmospheric absorption and the spreading of light by turbulence (seeing), the complete propagation of the light by the telescope mirrors and by the different optical components of the instrumentation (reflection, diffusion, absorption), as well as the properties of the electronic detector. In order to allow a wide access of the scientific community to such tools, the software for these calculators is being made available on the Internet. In co-operation with a contractor, ESO has developed a complete computer model for each of the 8.2-m telescopes. This simulation model includes a large number of effects, for instance from atmospheric disturbances, wind shaking of the telescope and structural vibrations. Using this model, it is possible from simulations to predict the quality achievable, i.e. the signature of the telescope. Furthermore, the model can be used to study the effect of changes before they are implemented in practice. The success of these first modelling experiments has led to the definition of a common framework for the development of such models and the creation of a versatile software package and associated database. Within this environment, a slight modification of the UVES software was efficiently re-used to model an existing high-resolution spectrograph, CASPEC at the ESO 3.6-metre telescope, and is currently being transformed into a model for the STIS spectrograph on HST. The next steps will be to provide models for all those instruments that will become operational on the VLT and the HST in the coming years, and to study further the impact of the improved calibrations on new data analysis techniques. Appendix: Limits of observations Ever since the beginning of astronomical observations with instruments, the problem of the instrumental influence has played a significant role. Indeed, a key challenge for past and present astronomers has always been to convince critical colleagues that they have been able to achieve a clear separation in their data between the intrinsic properties of the celestial object observed on one side, and disturbing instrumental and atmospheric effects on the other side. Through the ages, many learned disputes have centered on this basic problem. For instance, the famous astronomer Tycho Brahe spent a major part of his time at the Uraniborg observatory (1576 - 1597) in trying to describe and understand the `errors' (i.e. `signatures') of his pointing instruments. This was a new approach among observers of his day which greatly contributed to his successful studies. Another early historical example is the first detection of a structure around the planet Saturn by Galileo in 1610. He was the first ever to point an optical telescope - albeit of very small size and rather bad optical quality by today's standards - towards celestial objects. To his great surprise, the disk of Saturn appeared to have two `handles' [4]. He had no means to know whether they were artifacts from light reflections inside the telescope or real objects, and in the latter case what kind of natural object this might be. In fact, it was only 50 years later that improved optical equipment which produced sharper images (`higher optical resolution') finally revealed the true nature, i.e. the well-known Saturnian rings of small particles. In this case, the issue could only be solved by awaiting the technical progress of the optical telescope. Today digital imaging and computer processing allows the astronomers to reach beyond the limits of the raw observations. But even though the equipment available to astronomers has recently made tremendous progress - the HST and VLT are prime examples - the basic problem of verifying the reality of results and correcting the `raw' data for instrumental and atmospheric signatures remains. Notes: [1] The ST/ECF is a joint undertaking of the European Space Agency (ESA) and the European Southern Observatory (ESO). [2] A presentation of the ideas and results described in this Press Release was made at the recent international workshop on `High Precision Data Analysis', held at the National Astronomical Observatory, Tokyo, Japan. [3] There exist, for instance, many `photometric standard stars' in the sky. The apparent brightness of these stars has been repeatedly measured with different instruments and is assumed known to a high degree of accuracy. [4] See also ESO Press Release 03/96 of 19 January 1996. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  1. N° 15-2000: ESA, CERN and ESO launch "Physics on Stage"

    NASA Astrophysics Data System (ADS)

    2000-03-01

    But how much do the citizens of Europe really know about physics? Here is a unique opportunity to learn more about this elusive subject! Beginning in February 2000, three major European research establishments [1] are organising a unique Europe-wide programme to raise the public awareness of physics and related sciences. "Physics on Stage" is launched by the European Space Agency (ESA), the European Laboratory for Particle Physics (CERN), and the European Southern Observatory (ESO), with support from the European Union (EU). Other partners include the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE). This exciting programme is part of the European Week for Science and Technology and will culminate in a Science Festival during November 6-11, 2000, at CERN, Geneva. Why "Physics on Stage"? The primary goal of "Physics on Stage" is to counteract the current decline in interest and knowledge of physics among Europe's citizens by means of a series of highly visible promotional activities. It will bring together leading scientists and educators, government bodies and the media, to confront the diminishing attraction of physics to young people and to develop strategies to reverse this trend. The objective in the short term is to infuse excitement and to provide new educational materials. In the longer term, "Physics on Stage" will generate new developments by enabling experts throughout Europe to meet, exchange and innovate. "Physics on Stage" in 22 European Countries. "Physics on Stage" has been initiated in 22 European countries [2]. In each country, a dedicated National Steering Committee (NSC) is being formed which will be responsible for their own national programme. A list of contact addresses is attached below. "Physics on Stage" is based on a series of high-profile physics-related activities that will inform the European public in general, and European high school physics teachers and media representatives in particular, about innovative ways to convey information about physics. It will stress the intimate connection of this natural science with our daily lives. It will be accompanied by a broad media debate on these subjects. This effort is undertaken in the context of a progressive decline in physics literacy amongst the European population at all levels and ages. Fewer and fewer young people are attracted towards careers in core sciences and technologies - this could potentially lead to a crisis in European technology in the coming decades unless action is taken now. Too few people possess the basic knowledge that is necessary to understand even common physical phenomena. And not enough are able to form their own substantiated opinions about them. What will happen during "Physics on Stage"? During the first phase of "Physics on Stage", from now until October 2000, the individual national steering committees (NSC) will survey the situation in their respective countries. The NSCs will collaborate with national media to identify new and exciting educational approaches to physics. These may involve demonstrations, interactive experiments, video and CD-Rom presentations, web applications, virtual reality, theatre performances, etc. Nationally run competitions will select some of the best and most convincing new ideas for presentations and educational materials which will receive development support from "Physics on Stage". The project will culminate in November 2000, with approximately 400 delegates converging on CERN, in Geneva, for the "Physics on Stage" conference. The conference will enable the national competition winners, science teachers, science communicators, publishers, top scientists and high-level representatives of the ministries and European organisations to brainstorm solutions to bolster physics' popularity. The programme will also include spectacular demonstrations of educational tools; the best will be disseminated over the national TV networks and other media to the European public. Why ESA, CERN, and ESO? As Europe's principal organisations in physics research (particle physics, space and astronomy), the three recognised their mutual responsibility to address the issue with the launch of a new initiative and the creative use of their own research to attract the attention of the general public and teachers alike. About the "European Science and Technology Week" The objective of the "European Science and Technology Week" is to improve the public's knowledge and understanding of science and technology - including the associated benefits for society as a whole. The week focuses on the European dimension of research, such as pan-European scientific and technological co-operation. The rationale for holding the Week has its roots in the importance of the role of science and technology in modern societies and the need therefore, to ensure that the public recognises its significance in our lives. The Week is a framework for special TV programmes, exhibitions, contests, conferences, electronic networking, and other science related activities to promote the public understanding of science and technology. The Week was launched in 1993, on the initiative of the European Commission. Raising public awareness of science and technology is now the subject of a clearly defined action within the Human Potential Programme of the Fifth Framework Programme. Notes [1] The same press release is published also by CERN and ESO. [2] The 22 countries are the member countries of at least one of the participating organisations or the European Union: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom. Statements by the Directors General of ESA, CERN, and ESO Antonio Rodotà (ESA): "Space has become an integral part of every day life. The immense technological development that has led to this achievement has taken place and might be taken for granted. But now is the time to follow up and form the future on this basis, a future that has to be made by the youth and has to give its benefits to the youth. The European Space Agency is dedicated to support the youth in its development to become a space generation. Many activities have been done and are taking place, and many more are planned for the future. Teachers and educational institutions and organisations form a key role in this development. ESA is enthusiastic about co-operating with ESO, CERN and the European Union to create an opportunity to receive ideas from the educational society and will perform a dedicated effort in finding ways to support the realisation of those ideas." Luciano Maiani (CERN): "Science is a critical resource for mankind and, among natural sciences, physics will continue to play a crucial role, well into the next century. The young people of Europe deserve the best possible physics teaching. An enormous resource of first class teachers, teaching materials and innovative thinking exists in our Countries. The "Physics on Stage" project will bring these together to generate a new interest in physics education which will be to the long term benefit of children all over Europe. CERN is delighted to take part in this collaboration between the European Community and the continent's three leading physics research organisations." Catherine Cesarsky (ESO): "Astronomy and Astrophysics are at the very heart of modern physics. As vibrant research disciplines they use the most advanced technology available to humanity to explore Cosmos. It is also a science of extreme conditions - the largest distances, the longest periods of time, the highest temperatures, the strongest electrical and magnetic fields, the highest and lowest densities and the most extreme energies. Cosmos is indeed the greatest physics laboratory. For years, ESO - Europe's Astronomy Organisation - has been engaged in communicating the outcome of the exciting research programmes carried out at the ESO observatories to a wide audience and in particular to Europe's youth. I warmly welcome the broad international collaboration within "Physics on Stage". I am confident that working together with the European Union and our sister organisations ESA and CERN, as well as teachers' organisations and dedicated individuals in all member countries, this innovative education programme will make a most important contribution towards raising the interest in fundamental research in Europe." About ESA, CERN, and ESO The European Space Agency (ESA) is an international/intergovernmental organisation made of 15 member states: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. ESA provides and promotes, for peaceful purposes only, co-operation among its member states in space research, technology and their applications. With ESA, Europe shapes and shares space for people, companies and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO observatory La Silla in Chile is one of the largest and best-equipped observatories in the world. ESO's Very Large Telescope Array (VLT), an array of giant telescopes, is under construction at Cerro Paranal in the Chilean Atacama Desert. When completed in 2001, the VLT will be the largest and best optical telescope in the world. The CERN, European Organisation for Nuclear Research, has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and Unesco have observer status.

  2. X-shooter study of accretion in Chamaeleon I. II. A steeper increase of accretion with stellar mass for very low-mass stars?

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Herczeg, G. J.; Pascucci, I.; Alcalá, J. M.; Natta, A.; Antoniucci, S.; Fedele, D.; Mulders, G. D.; Henning, T.; Mohanty, S.; Prusti, T.; Rigliaco, E.

    2017-08-01

    The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star-forming region carried out using spectra taken with the ESO VLT/X-shooter spectrograph. The sample is nearly complete down to stellar masses (M⋆) 0.1 M⊙ for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broadband flux-calibrated medium resolution spectrum. The correlation between accretion luminosity to stellar luminosity, and of mass accretion rate to stellar mass in the logarithmic plane yields slopes of 1.9 ± 0.1 and 2.3 ± 0.3, respectively. These slopes and the accretion rates are consistent with previous results in various star-forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity lower than 0.45 L⊙ and for stellar masses lower than 0.3 M⊙ is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane that are empty of objects: one region at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second region is located just above the observational limits imposed by chromospheric emission, at M⋆ 0.3 - 0.4 M⊙. These are typical masses where photoevaporation is known to be effective. The mass accretion rates of this region are 10-10M⊙/yr, which is compatible with the value expected for photoevaporation to rapidly dissipate the inner disk. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 090.C-0253 and 095.C-0378.

  3. Tracing the young massive high-eccentricity binary system θ^1Orionis C through periastron passage

    NASA Astrophysics Data System (ADS)

    Kraus, S.; Weigelt, G.; Balega, Y. Y.; Docobo, J. A.; Hofmann, K.-H.; Preibisch, T.; Schertl, D.; Tamazian, V. S.; Driebe, T.; Ohnaka, K.; Petrov, R.; Schöller, M.; Smith, M.

    2009-04-01

    Context: The nearby high-mass star binary system θ^1Ori C is the brightest and most massive of the Trapezium OB stars at the core of the Orion Nebula Cluster, and it represents a perfect laboratory to determine the fundamental parameters of young hot stars and to constrain the distance of the Orion Trapezium Cluster. Aims: By tracing the orbital motion of the θ^1Ori C components, we aim to refine the dynamical orbit of this important binary system. Methods: Between January 2007 and March 2008, we observed θ^1Ori C with VLTI/AMBER near-infrared (H- and K-band) long-baseline interferometry, as well as with bispectrum speckle interferometry with the ESO 3.6 m and the BTA 6 m telescopes (B'- and V'-band). Combining AMBER data taken with three different 3-telescope array configurations, we reconstructed the first VLTI/AMBER closure-phase aperture synthesis image, showing the θ^1Ori C system with a resolution of ˜ 2 mas. To extract the astrometric data from our spectrally dispersed AMBER data, we employed a new algorithm, which fits the wavelength-differential visibility and closure phase modulations along the H- and K-band and is insensitive to calibration errors induced, for instance, by changing atmospheric conditions. Results: Our new astrometric measurements show that the companion has nearly completed one orbital revolution since its discovery in 1997. The derived orbital elements imply a short-period (P ≈ 11.3 yr) and high-eccentricity orbit (e ≈ 0.6) with periastron passage around 2002.6. The new orbit is consistent with recently published radial velocity measurements, from which we can also derive the first direct constraints on the mass ratio of the binary components. We employ various methods to derive the system mass (M_system = 44 ± 7 M⊙) and the dynamical distance (d = 410 ± 20 pc), which is in remarkably good agreement with recently published trigonometric parallax measurements obtained with radio interferometry. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under the OT and VISA-MPG GTO programme IDs 078.C-0360(A), 080.C-0541(A,B,C,D), 080.D-0225(B), and 080.C-0388(A).

  4. The long-term evolution of the X-ray pulsar XTE J1814-338: A receding jet contribution to the quiescent optical emission?

    NASA Astrophysics Data System (ADS)

    Baglio, M. C.; D'Avanzo, P.; Muñoz-Darias, T.; Breton, R. P.; Campana, S.

    2013-11-01

    Aims: We present a study of the quiescent optical counterpart of the accreting millisecond X-ray pulsar XTE J1814-338 that is aimed at unveiling the different components, which contribute to the quiescent optical emission of the system. Methods: We carried out multiband (BVR) orbital phase-resolved photometry of the system using the ESO Very Large Telescope (VLT) that is equipped with the FORS2 camera, covering about 70% of the 4.3 hour orbital period. Results: The optical light curves are consistent with a sinusoidal variability that are modulated with an orbital period with a semi-amplitude of 0.5-0.7 mag. They show evidence of a strongly irradiated companion star, which agrees with previous findings for this system. However, the observed colours cannot be accounted for by the companion star alone, suggesting the presence of an accretion disc during quiescence. The system seems to be fainter in all analysed bands compared to previous observations. The R band light curve displays a possible phase offset with respect to the B and V band. Through a combined fit of the multi-band light curve performed with a Markov chain Monte Carlo technique, we derive constraints on the companion star, disc fluxes, system distance, and companion star mass. Conclusions: The irradiation luminosity required to account for the observed day-side temperature of the companion star is consistent with the spin-down luminosity of a millisecond radio pulsar. Compared to our data with previous observations, which were collected over 5 years, the flux decrease and spectral evolution of the observed quiescent optical emission cannot be satisfactorily explained with the combined contribution of an irradiated companion star and of an accretion disc alone. The observed progressive flux decrease as the system gets bluer could be due to a continuum component that evolves towards a lower, bluer spectrum. While most of the continuum component is likely due to the disc, we do not expect it to become bluer in quiescence. Hence, we hypothesize that an additional component, such as synchrotron emission from a jet was significantly contributing in the data obtained earlier during quiescence and then progressively fading or moving its break frequency towards longer wavelengths. Based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 383.D-0730(A).

  5. Sodium abundances of AGB and RGB stars in Galactic globular clusters. II. Analysis and results of NGC 104, NGC 6121, and NGC 6809

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Primas, F.; Charbonnel, C.; Van der Swaelmen, M.; Bono, G.; Chantereau, W.; Zhao, G.

    2017-11-01

    Aims: We investigate the Na abundance distribution of asymptotic giant branch (AGB) stars in Galactic globular clusters (GCs) and its possible dependence on GC global properties, especially age and metallicity. Methods: We analyze high-resolution spectra of a large sample of AGB and red giant branch (RGB) stars in the Galactic GCs NGC 104, NGC 6121, and NGC 6809 obtained with FLAMES/GIRAFFE at ESO/VLT, and determine their Na abundances. This is the first time that the AGB stars in NGC 6809 are targeted. Moreover, to investigate the dependence of AGB Na abundance dispersion on GC parameters, we compare the AGB [Na/H] distributions of a total of nine GCs, with five determined by ourselves with homogeneous method and four from literature, covering a wide range of GC parameters. Results: NGC 104 and NGC 6809 have comparable AGB and RGB Na abundance distributions revealed by the K-S test, while NGC 6121 shows a lack of very Na-rich AGB stars. By analyzing all nine GCs, we find that the Na abundances and multiple populations of AGB stars form complex picture. In some GCs, AGB stars have similar Na abundances and/or second-population fractions as their RGB counterparts, while some GCs do not have Na-rich second-population AGB stars, and various cases exist between the two extremes. In addition, the fitted relations between fractions of the AGB second population and GC global parameters show that the AGB second-population fraction slightly anticorrelates with GC central concentration, while no robust dependency can be confirmed with other GC parameters. Conclusions: Current data roughly support the prediction of the fast-rotating massive star (FRMS) scenario. However, considering the weak observational and theoretical trends where scatter and exceptions exist, the fraction of second-population AGB stars can be affected by more than one or two factors, and may even be a result of stochasticity. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme ID 093.D-0818(A).Full Tables 3, 5, and 7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A135

  6. TOPoS. IV. Chemical abundances from high-resolution observations of seven extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; Sbordone, L.; Monaco, L.; François, P.; Plez, B.; Molaro, P.; Gallagher, A. J.; Cayrel, R.; Christlieb, N.; Klessen, R. S.; Koch, A.; Ludwig, H.-G.; Steffen, M.; Zaggia, S.; Abate, C.

    2018-04-01

    Context. Extremely metal-poor (EMP) stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. Aims: Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine their chemical composition. Methods: We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. Results: We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] <-5.2). We were also able to measure Li in three stars at [Fe/H] -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low α-to-iron ratios. Conclusions: The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H] -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in α-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low α-to-iron ratios is supported by our observations. Based on observations obtained at ESO Paranal Observatory, Programmes 189.D-0165,090.D-0306, 093.D-0136, and 096.D-0468.

  7. U.S. and European ALMA Partners Sign Agreement Green Light for World's Most Powerful Radio Observatory

    NASA Astrophysics Data System (ADS)

    2003-02-01

    Dr. Rita Colwell, director of the U.S. National Science Foundation (NSF), and Dr. Catherine Cesarsky, director general of the European Southern Observatory (ESO), today signed a historic agreement jointly to construct and operate ALMA, the Atacama Large Millimeter Array, the world's largest and most powerful radio telescope operating at millimeter and sub-millimeter wavelengths. "With this agreement, we usher in a new age of research in astronomy," said Dr. Colwell. "By working together in this truly global partnership, the international astronomy community will be able to ensure the research capabilities needed to meet the long-term demands of our scientific enterprise, and we will be able to study and understand our Universe in ways that have previously been beyond our vision." ALMA Array Artist's Conception of ALMA Array in Compact Configuration (Click on Image for Larger Version) Other Images Available: Artist's conception of the antennas for the Atacama Large Millimeter Array Moonrise over ALMA test equipment near Cerro Chajnantor, Chile VertexRSI antenna at the VLA test site Dr. Cesarsky also commented, "This agreement signifies the start of a great project of contemporary astronomy and astrophysics. Representing Europe, and in collaboration with many laboratories and institutes on this continent, we together look forward toward wonderful research projects. With ALMA, we may learn how the earliest galaxies in the Universe really looked like, to mention but one of the many eagerly awaited opportunities with this marvelous facility." When complete in 2011, ALMA will be an array of 64, 12-meter radio antennas that will work together as one telescope to study millimeter and sub-millimeter wavelength light from space. These wavelengths of the electromagnetic spectrum, which cross the critical boundary between infrared and microwave radiation, hold the key to understanding such processes as planet and star formation, the formation of early galaxies and galaxy clusters, and the detection of organic and other molecules in space. The ALMA partners will construct the telescope at an altitude of 16,500 feet in the Atacama Desert in the Chilean Andes. This unique site is perhaps the best location on Earth to study millimeter and sub-millimeter light because these wavelengths are absorbed by moisture in the atmosphere. "Astronomers will have a pristine view of that portion of the electromagnetic spectrum from the ALMA site," said Colwell. ALMA is a joint project between Europe and North America. In Europe, ESO is leading on behalf of its ten member countries and Spain. In North America, the NSF executes the project through the National Radio Astronomy Observatory (NRAO), which is operated under cooperative agreement by Associated Universities, Inc. (AUI). The National Research Council of Canada will partner with the NSF in the North American endeavor. "The NRAO is very pleased to have the leading role in this project on behalf of the North American partners," said Dr. Fred K.Y. Lo, director of the NRAO in Charlottesville, Virginia. "ALMA will be one of astronomy's premier tools for studying the Universe," said Nobel Laureate Riccardo Giacconi, president of AUI. "The entire astronomical community is anxious to have the unprecedented power and resolution that ALMA will provide." The President of the ESO Council, Professor Piet van der Kruit, agrees: "ALMA heralds a breakthrough in sub-millimeter and millimeter astronomy, allowing some of the most penetrating studies of the Universe ever made. It is safe to predict that there will be exciting scientific surprises when ALMA enters into operation." By signing this agreement, ESO and the NSF give the green light for the joint construction of the ALMA telescope, which will cost approximately $552 million U.S. (in FY 2000 dollars). To oversee the construction and management of ALMA, a joint ALMA Board has been established by the partners. This board met for the first time on February 24-25, 2003, and witnessed the signing at the NSF headquarters in Arlington, Virginia. Dr. Joseph Bordogna, deputy director of the NSF, represented Dr. Colwell at the actual ceremony. Chile, the host country for ALMA, has shown its support for the telescope by issuing a Presidential decree granting AUI permission to work on the ALMA project, and by signing an agreement between ESO and the government of the Republic of Chile. These actions by the government of Chile were necessary formal steps to secure the telescope site in that country. ESO is an intergovernmental, European organization for astronomical research. It has ten member countries. ESO operates astronomical observatories in Chile and has its headquarters in Garching, near Munich, Germany. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  8. ESO adaptive optics facility progress report

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-Francois; Hackenberg, Wolfgang; Kuntschner, Harald; Jochum, Lieselotte; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose A.; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Robert; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andreas; Duchateau, Michel; Downing, Mark; Moreno, Javier R.; Dorn, Reinhold; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan M.; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Maximilian; Pfrommer, Thomas; Biasi, Roberto; Gallieni, Daniele; Bechet, Clementine; Stuik, Remko

    2012-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train. The project has completed the procurement phase and several large structures have been delivered to Garching (Germany) and are being integrated (the AO modules GRAAL and GALACSI and the ASSIST test bench). The 4LGSF Laser (TOPTICA) has undergone final design review and a pre-production unit has been built and successfully tested. The Deformable Secondary Mirror is fully integrated and system tests have started with the first science grade thin shell mirror delivered by SAGEM. The integrated modules will be tested in stand-alone mode in 2012 and upon delivery of the DSM in late 2012, the system test phase will start. A commissioning strategy has been developed and will be updated before delivery to Paranal. A substantial effort has been spent in 2011-2012 to prepare the unit telescope to receive the AOF by preparing the mechanical interfaces and upgrading the cooling and electrical network. This preparation will also simplify the final installation of the facility on the telescope. A lot of attention is given to the system calibration, how to record and correct any misalignment and control the whole facility. A plan is being developed to efficiently operate the AOF after commissioning. This includes monitoring a relevant set of atmospheric parameters for scheduling and a Laser Traffic control system to assist the operator during the night and help/support the observing block preparation.

  9. VISIR upgrade overview and status

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans Ulrich; Baksai, Pedro; Dobrzycka, Danuta; Finger, Gert; Ives, Derek; Jakob, Gerd; Lagadec, Eric; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Moerchen, Margaret; Momany, Yazan; Moreau, Vincent; Pantin, Eric; Riquelme, Miguel; Siebenmorgen, Ralf; Silber, Armin; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Venema, Lars; Weilenmann, Ueli; Yegorova, Irina

    2012-09-01

    We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As Aquarius detector array (Raytheon) which has demonstrated very good performance (sensitivity, stability) in the laboratory IR detector test facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a userdefined constraint on water vapour. Improved pipelines based on the ESO Reflex concept will provide better support to astronomers. The upgraded VISIR will be a powerful instrument providing background limited performance for diffraction-limited observations at an 8-m telescope. It will offer synergy with facilities such as ALMA, JWST, VLTI and SOFIA, while a wealth of targets is available from survey work (e.g. VISTA, WISE). In addition it will bring confirmation of the technical readiness and scientific value of several aspects of potential mid-IR instrumentation at Extremely Large Telescopes. The intervention on VISIR and installation of hardware has been completed in July and commissioning will take place during July and August. VISIR is scheduled to be available to the users starting Oct 2012.

  10. Clearing the Cosmic Fog - The Most Distant Galaxy Ever Measured

    NASA Astrophysics Data System (ADS)

    2010-10-01

    A European team of astronomers using ESO's Very Large Telescope (VLT) has measured the distance to the most remote galaxy so far. By carefully analysing the very faint glow of the galaxy they have found that they are seeing it when the Universe was only about 600 million years old (a redshift of 8.6). These are the first confirmed observations of a galaxy whose light is clearing the opaque hydrogen fog that filled the cosmos at this early time. The results were presented at an online press conference with the scientists on 19 October 2010, and will appear in the 21 October issue of the journal Nature. "Using the ESO Very Large Telescope we have confirmed that a galaxy spotted earlier using Hubble is the most remote object identified so far in the Universe" [1], says Matt Lehnert (Observatoire de Paris) who is lead author of the paper reporting the results. "The power of the VLT and its SINFONI spectrograph allows us to actually measure the distance to this very faint galaxy and we find that we are seeing it when the Universe was less than 600 million years old." Studying these first galaxies is extremely difficult. By the time that their initially brilliant light gets to Earth they appear very faint and small. Furthermore, this dim light falls mostly in the infrared part of the spectrum because its wavelength has been stretched by the expansion of the Universe - an effect known as redshift. To make matters worse, at this early time, less than a billion years after the Big Bang, the Universe was not fully transparent and much of it was filled with a hydrogen fog that absorbed the fierce ultraviolet light from young galaxies. The period when the fog was still being cleared by this ultraviolet light is known as the era of reionisation [2]. Despite these challenges the new Wide Field Camera 3 on the NASA/ESA Hubble Space Telescope discovered several robust candidate objects in 2009 [3] that were thought to be galaxies shining in the era of reionisation. Confirming the distances to such faint and remote objects is an enormous challenge and can only reliably be done using spectroscopy from very large ground-based telescopes [4], by measuring the redshift of the galaxy's light. Matt Lehnert takes up the story: "After the announcement of the candidate galaxies from Hubble we did a quick calculation and were excited to find that the immense light collecting power of the VLT, when combined with the sensitivity of the infrared spectroscopic instrument, SINFONI, and a very long exposure time might just allow us to detect the extremely faint glow from one of these remote galaxies and to measure its distance." On special request to ESO's Director General they obtained telescope time on the VLT and observed a candidate galaxy called UDFy-38135539 [5] for 16 hours. After two months of very careful analysis and testing of their results, the team found that they had clearly detected the very faint glow from hydrogen at a redshift of 8.6, which makes this galaxy the most distant object ever confirmed by spectroscopy. A redshift of 8.6 corresponds to a galaxy seen just 600 million years after the Big Bang. Co-author Nicole Nesvadba (Institut d'Astrophysique Spatiale) sums up this work, "Measuring the redshift of the most distant galaxy so far is very exciting in itself, but the astrophysical implications of this detection are even more important. This is the first time we know for sure that we are looking at one of the galaxies that cleared out the fog which had filled the very early Universe." One of the surprising things about this discovery is that the glow from UDFy-38135539 seems not to be strong enough on its own to clear out the hydrogen fog. "There must be other galaxies, probably fainter and less massive nearby companions of UDFy-38135539, which also helped make the space around the galaxy transparent. Without this additional help the light from the galaxy, no matter how brilliant, would have been trapped in the surrounding hydrogen fog and we would not have been able to detect it", explains co-author Mark Swinbank (Durham University). Co-author Jean-Gabriel Cuby (Laboratoire d'Astrophysique de Marseille) remarks: "Studying the era of reionisation and galaxy formation is pushing the capability of current telescopes and instruments to the limit, but this is just the type of science that will be routine when ESO's European Extremely Large Telescope - which will be the biggest optical and near infrared telescope in the world - becomes operational." Notes [1] An earlier ESO result (eso0405) reported an object at a larger distance (a redshift of 10). However, further work failed to find an object of similar brightness at this position, and more recent observations with the NASA/Hubble Space Telescope have been inconclusive. The identification of this object with a galaxy at very high redshift is no longer considered to be valid by most astronomers. [2] When the Universe cooled down after the Big Bang, about 13.7 billion years ago, electrons and protons combined to form hydrogen gas. This cool dark gas was the main constituent of the Universe during the so-called Dark Ages, when there were no luminous objects. This phase eventually ended when the first stars formed and their intense ultraviolet radiation slowly made the hydrogen fog transparent again by splitting the hydrogen atoms back into electrons and protons, a process known as reionisation. This epoch in the Universe's early history lasted from about 150 million to 800 million years after the Big Bang. Understanding how reionisation happened and how the first galaxies formed and evolved is one of the major challenges of modern cosmology. [3] These Hubble observations are described at: http://www.spacetelescope.org/news/heic1001/ [4] Astronomers have two main ways of finding and measuring the distances to the earliest galaxies. They can take very deep images through differently coloured filters and measure the brightness of many objects at different wavelengths. They can then compare these with what is expected of galaxies of different types at different times in the Universe's history. This is the only way currently available to discover these very faint galaxies and is the technique employed by the Hubble team. But this technique is not always reliable. For example, what may seem to be a faint, very distant galaxy can sometimes turn out to be a mundane, cool star in our Milky Way. Once candidate objects are found more reliable estimates of the distance (measured as the redshift) can be obtained by splitting the light from a candidate object up into its component colours and looking for the telltale signs of emission from hydrogen or other elements in the galaxy. This spectroscopic approach is the only means by which astronomers can obtain the most reliable and accurate measurements of distance. [5] The strange name indicates that it was found in the Ultra Deep Field search area and the number gives its precise position on the sky. More information An online press conference to announce the new results and offer journalists the opportunity for discussion with the scientists will be held at 16:00 CEST on Tuesday, 19 October 2010. To participate in the teleconference, bona-fide members of the media must get accredited by contacting Douglas Pierce-Price by email (dpiercep@eso.org). Reporters will need access to a computer with a recent version of Adobe Flash Player installed and a broadband internet connection. This research was presented in a paper, Spectroscopic confirmation of a galaxy at redshift z=8.6, Lehnert et al., to appear in Nature on 21 October 2010. The team is composed of M. D. Lehnert (Observatoire de Paris - Laboratoire GEPI / CNRS-INSU / Université Paris Diderot, France), N. P. H. Nesvadba (Institut d'Astrophysique Spatiale / CNRS-INSU / Université Paris-Sud, France), J.-G.Cuby (Laboratoire d'Astrophysique de Marseille / CNRS-INSU / Université de Provence, France), A. M. Swinbank (Durham University, UK), S. Morris (Durham University, UK), B. Clément (Laboratoire d'Astrophysique de Marseille / CNRS-INSU / Université de Provence, France), C. J. Evans (UK Astronomy Technology Centre, Edinburgh, UK), M. N. Bremer (University of Bristol, UK) and S. Basa (Laboratoire d'Astrophysique de Marseille / CNRS-INSU / Université de Provence, France). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  11. VLT/SPHERE- and ALMA-based shape reconstruction of asteroid (3) Juno

    NASA Astrophysics Data System (ADS)

    Viikinkoski, M.; Kaasalainen, M.; Ďurech, J.; Carry, B.; Marsset, M.; Fusco, T.; Dumas, C.; Merline, W. J.; Yang, B.; Berthier, J.; Kervella, P.; Vernazza, P.

    2015-09-01

    We use the recently released Atacama Large Millimeter Array (ALMA) and VLT/SPHERE science verification data, together with earlier adaptive-optics images, stellar occultation, and lightcurve data to model the 3D shape and spin of the large asteroid (3) Juno with the all-data asteroid modelling (ADAM) procedure. These data set limits on the plausible range of shape models, yielding reconstructions suggesting that, despite its large size, Juno has sizable unrounded features moulded by non-gravitational processes such as impacts. Based on observations collected at the European Southern Observatory, Paranal, Chile (prog. ID: 60.A-9379, 086.C-0785), and at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  12. Sharper and Deeper Views with MACAO-VLTI

    NASA Astrophysics Data System (ADS)

    2003-05-01

    "First Light" with Powerful Adaptive Optics System for the VLT Interferometer Summary On April 18, 2003, a team of engineers from ESO celebrated the successful accomplishment of "First Light" for the MACAO-VLTI Adaptive Optics facility on the Very Large Telescope (VLT) at the Paranal Observatory (Chile). This is the second Adaptive Optics (AO) system put into operation at this observatory, following the NACO facility ( ESO PR 25/01 ). The achievable image sharpness of a ground-based telescope is normally limited by the effect of atmospheric turbulence. However, with Adaptive Optics (AO) techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e., as if they were taken from space. The acronym "MACAO" stands for "Multi Application Curvature Adaptive Optics" which refers to the particular way optical corrections are made which "eliminate" the blurring effect of atmospheric turbulence. The MACAO-VLTI facility was developed at ESO. It is a highly complex system of which four, one for each 8.2-m VLT Unit Telescope, will be installed below the telescopes (in the Coudé rooms). These systems correct the distortions of the light beams from the large telescopes (induced by the atmospheric turbulence) before they are directed towards the common focus at the VLT Interferometer (VLTI). The installation of the four MACAO-VLTI units of which the first one is now in place, will amount to nothing less than a revolution in VLT interferometry . An enormous gain in efficiency will result, because of the associated 100-fold gain in sensitivity of the VLTI. Put in simple words, with MACAO-VLTI it will become possible to observe celestial objects 100 times fainter than now . Soon the astronomers will be thus able to obtain interference fringes with the VLTI ( ESO PR 23/01 ) of a large number of objects hitherto out of reach with this powerful observing technique, e.g. external galaxies. The ensuing high-resolution images and spectra will open entirely new perspectives in extragalactic research and also in the studies of many faint objects in our own galaxy, the Milky Way. During the present period, the first of the four MACAO-VLTI facilties was installed, integrated and tested by means of a series of observations. For these tests, an infrared camera was specially developed which allowed a detailed evaluation of the performance. It also provided some first, spectacular views of various celestial objects, some of which are shown here. PR Photo 12a/03 : View of the first MACAO-VLTI facility at Paranal PR Photo 12b/03 : The star HIC 59206 (uncorrected image). PR Photo 12c/03 : HIC 59206 (AO corrected image) PR Photo 12e/03 : HIC 69495 (AO corrected image) PR Photo 12f/03 : 3-D plot of HIC 69495 images (without and with AO correction) PR Photo 12g/03 : 3-D plot of the artificially dimmed star HIC 74324 (without and with AO correction) PR Photo 12d/03 : The MACAO-VLTI commissioning team at "First Light" PR Photo 12h/03 : K-band image of the Galactic Center PR Photo 12i/03 : K-band image of the unstable star Eta Carinae PR Photo 12j/03 : K-band image of the peculiar star Frosty Leo MACAO - the Multi Application Curvature Adaptive Optics facility ESO PR Photo 12a/03 ESO PR Photo 12a/03 [Preview - JPEG: 408 x 400 pix - 56k [Normal - JPEG: 815 x 800 pix - 720k] Captions : PR Photo 12a/03 is a front view of the first MACAO-VLTI unit, now installed at the 8.2-m VLT KUEYEN telescope. Adaptive Optics (AO) systems work by means of a computer-controlled deformable mirror (DM) that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a "wavefront sensor" (a special camera) at very high speed, many hundreds of times each second. The ESO Multi Application Curvature Adaptive Optics (MACAO) system uses a 60-element bimorph deformable mirror (DM) and a 60-element curvature wavefront sensor, with a "heartbeat" of 350 Hz (times per second). With this high spatial and temporal correcting power, MACAO is able to nearly restore the theoretically possible ("diffraction-limited") image quality of an 8.2-m VLT Unit Telescope in the near-infrared region of the spectrum, at a wavelength of about 2 µm. The resulting image resolution (sharpness) of the order of 60 milli-arcsec is an improvement by more than a factor of 10 as compared to standard seeing-limited observations. Without the benefit of the AO technique, such image sharpness could only be obtained if the telescope were placed above the Earth's atmosphere. The technical development of MACAO-VLTI in its present form was begun in 1999 and with project reviews at 6 months' intervals, the project quickly reached cruising speed. The effective design is the result of a very fruitful collaboration between the AO department at ESO and European industry which contributed with the diligent fabrication of numerous high-tech components, including the bimorph DM with 60 actuators, a fast-reaction tip-tilt mount and many others. The assembly, tests and performance-tuning of this complex real-time system was assumed by ESO-Garching staff. Installation at Paranal The first crates of the 60+ cubic-meter shipment with MACAO components arrived at the Paranal Observatory on March 12, 2003. Shortly thereafter, ESO engineers and technicians began the painstaking assembly of this complex instrument, below the VLT 8.2-m KUEYEN telescope (formerly UT2). They followed a carefully planned scheme, involving installation of the electronics, water cooling systems, mechanical and optical components. At the end, they performed the demanding optical alignment, delivering a fully assembled instrument one week before the planned first test observations. This extra week provided a very welcome and useful opportunity to perform a multitude of tests and calibrations in preparation of the actual observations. AO to the service of Interferometry The VLT Interferometer (VLTI) combines starlight captured by two or more 8.2- VLT Unit Telescopes (later also from four moveable1.8-m Auxiliary Telescopes) and allows to vastly increase the image resolution. The light beams from the telescopes are brought together "in phase" (coherently). Starting out at the primary mirrors, they undergo numerous reflections along their different paths over total distances of several hundred meters before they reach the interferometric Laboratory where they are combined to within a fraction of a wavelength, i.e., within nanometers! The gain by the interferometric technique is enormous - combining the light beams from two telescopes separated by 100 metres allows observation of details which could otherwise only be resolved by a single telescope with a diameter of 100 metres. Sophisticated data reduction is necessary to interpret interferometric measurements and to deduce important physical parameters of the observed objects like the diameters of stars, etc., cf. ESO PR 22/02 . The VLTI measures the degree of coherence of the combined beams as expressed by the contrast of the observed interferometric fringe pattern. The higher the degree of coherence between the individual beams, the stronger is the measured signal. By removing wavefront aberrations introduced by atmospheric turbulence, the MACAO-VLTI systems enormously increase the efficiency of combining the individual telescope beams. In the interferometric measurement process, the starlight must be injected into optical fibers which are extremely small in order to accomplish their function; only 6 µm (0.006 mm) in diameter. Without the "refocussing" action of MACAO, only a tiny fraction of the starlight captured by the telescopes can be injected into the fibers and the VLTI would not be working at the peak of efficiency for which it has been designed. MACAO-VLTI will now allow a gain of a factor 100 in the injected light flux - this will be tested in detail when two VLT Unit Telescopes, both equipped with MACAO-VLTI's, work together. However, the very good performance actually achieved with the first system makes the engineers very confident that a gain of this order will indeed be reached. This ultimate test will be performed as soon as the second MACAO-VLTI system has been installed later this year. MACAO-VLTI First Light After one month of installation work and following tests by means of an artificial light source installed in the Nasmyth focus of KUEYEN, MACAO-VLTI had "First Light" on April 18 when it received "real" light from several astronomical obejcts. During the preceding performance tests to measure the image improvement (sharpness, light energy concentration) in near-infrared spectral bands at 1.2, 1.6 and 2.2 µm, MACAO-VLTI was checked by means of a custom-made Infrared Test Camera developed for this purpose by ESO. This intermediate test was required to ensure the proper functioning of MACAO before it is used to feed a corrected beam of light into the VLTI. After only a few nights of testing and optimizing of the various functions and operational parameters, MACAO-VLTI was ready to be used for astronomical observations. The images below were taken under average seeing conditions and illustrate the improvement of the image quality when using MACAO-VLTI . MACAO-VLTI - First Images Here are some of the first images obtained with the test camera at the first MACAO-VLTI system, now installed at the 8.2-m VLT KUEYEN telescope. ESO PR Photo 12b/03 ESO PR Photo 12b/03 [Preview - JPEG: 400 x 468 pix - 25k [Normal - JPEG: 800 x 938 pix - 291k] ESO PR Photo 12c/03 ESO PR Photo 12c/03 [Preview - JPEG: 400 x 469 pix - 14k [Normal - JPEG: 800 x 938 pix - 135k] Captions : PR Photos 12b-c/03 show the first image, obtained by the first MACAO-VLTI system at the 8.2-m VLT KUEYEN telescope in the infrared K-band (wavelength 2.2 µm). It displays images of the star HIC 59206 (visual magnitude 10) obtained before (left; Photo 12b/03 ) and after (right; Photo 12c/03 ) the adaptive optics system was switched on. The binary is separated by 0.120 arcsec and the image was taken under medium seeing conditions (0.75 arcsec) seeing. The dramatic improvement in image quality is obvious. ESO PR Photo 12d/03 ESO PR Photo 12d/03 [Preview - JPEG: 400 x 427 pix - 18k [Normal - JPEG: 800 x 854 pix - 205k] ESO PR Photo 12e/03 ESO PR Photo 12e/03 [Preview - JPEG: 483 x 400 pix - 17k [Normal - JPEG: 966 x 800 pix - 169k] Captions : PR Photo 12d/03 shows one of the best images obtained with MACAO-VLTI (logarithmic intensity scale). The seeing was 0.8 arcsec at the time of the observations and three diffraction rings can clearly be seen around the star HIC 69495 of visual magnitude 9.9. This pattern is only well visible when the image resolution is very close to the theoretical limit. The exposure of the point-like source lasted 100 seconds through a narrow K-band filter. It has a Strehl ratio (a measure of light concentration) of about 55% and a Full-Width- Half-Maximum (FWHM) of 0.060 arcsec. The 3-D plot ( PRPhoto 12e/03 ) demonstrates the tremendous gain in peak intensity of the AO image (right) in peak intensity as compared to "open-loop" image (the "noise" to the left) obtained without the benefit of AO. ESO PR Photo 12f/03 ESO PR Photo 12f/03 [Preview - JPEG: 494 x 400 pix - 20k [Normal - JPEG: 988 x 800 pix - 204k] Caption : PR Photo 12f/03 demonstrates the correction performance of MACAO-VLTI when using a faint guide star. The observed star ( HIC 74324 (stellar spectral type G0 and visual magnitude 9.4) was artificially dimmed by a neutral optical filter to visual magnitude 16.5. The observation was carried out in 0.55 arcsec seeing and with a rather short atmospheric correlation time of 3 milliseconds at visible wavelengths. The Strehl ratio in the 25-second K-band exposure is about 10% and the FWHM is 0.14 arcseconds. The uncorrected image is shown to the left for comparison. The improvement is again impressive, even for a star as faint as this, indicating that guide stars of this magnitude are feasible during future observations. ESO PR Photo 12g/03 ESO PR Photo 12g/03 [Preview - JPEG: 528 x 400 pix - 48k [Normal - JPEG: 1055 x 800 pix - 542k] Captions : PR Photo 12g/03 shows some of the MACAO-VLTI commissioning team members in the VLT Control Room at the moment of "First Light" during the night between April 18-19, 2003. Sitting: Markus Kasper, Enrico Fedrigo - Standing: Robin Arsenault, Sebastien Tordo, Christophe Dupuy, Toomas Erm, Jason Spyromilio, Rob Donaldson (all from ESO). PR Photos 12b-c/03 show the first image in the infrared K-band (wavelength 2.2 µm) of a star (visual magnitude 10) obtained without and with image corrections by means of adaptive optics. PR Photo 12d/03 displays one of the best images obtained with MACAO-VLTI during the early tests. It shows a Strehl ratio (measure of light concentration) that fulfills the specifications according to which MACAO-VLTI was built. This enormous improvement when using AO techniques is clearly demonstrated in PR Photo 12e/03 , with the uncorrected image profile (left) hardly visible when compared to the corrected profile (right). PR Photo 11f/03 demonstrates the correction capabilities of MACAO-VLTI when using a faint guide star. Tests using different spectral types showed that the limiting visual magnitude varies between 16 for early-type B-stars and about 18 for late-type M-stars. Astronomical Objects seen at the Diffraction Limit The following examples of MACAO-VLTI observations of two well-known astronomical objects were obtained in order to provisionally evaluate the research opportunities now opening with MACAO-VLTI. They may well be compared with space-based images. The Galactic Center ESO PR Photo 12h/03 ESO PR Photo 12h/03 [Preview - JPEG: 693 x 400 pix - 46k [Normal - JPEG: 1386 x 800 pix - 403k] Caption : PR Photo 12h/03 shows a 90-second K-band exposure of the central 6 x 13 arcsec 2 around the Galactic Center obtained by MACAO-VLTI under average atmospheric conditions (0.8 arcsec seeing). Although the 14.6 magnitude guide star is located roughly 20 arcsec from the field center - this leading to isoplanatic degradation of image sharpness - the present image is nearly diffraction limited and has a point-source FWHM of about 0.115 arcsec. The center of our own galaxy is located in the Sagittarius constellation at a distance of approximately 30,000 light-years. PR Photo 12h/03 shows a short-exposure infrared view of this region, obtained by MACAO-VLTI during the early test phase. Recent AO observations using the NACO facility at the VLT provide compelling evidence that a supermassive black hole with 2.6 million solar masses is located at the very center, cf. ESO PR 17/02 . This result, based on astrometric observations of a star orbiting the black hole and approaching it to within a distance of only 17 light-hours, would not have been possible without images of diffraction limited resolution. Eta Carinae ESO PR Photo 12i/03 ESO PR Photo 12i/03 [Preview - JPEG: 400 x 482 pix - 25k [Normal - JPEG: 800 x 963 pix - 313k] Caption : PR Photo 12i/03 displays an infrared narrow K-band image of the massive star Eta Carinae . The image quality is difficult to estimate because the central star saturated the detector, but the clear structure of the diffraction spikes and the size of the smallest features visible in the photo indicate a near-diffraction limited performance. The field measures about 6.5 x 6.5 arcsec 2. Eta Carinae is one of the heaviest stars known, with a mass that probably exceeds 100 solar masses. It is about 4 million times brighter than the Sun, making it one of the most luminous stars known. Such a massive star has a comparatively short lifetime of about 1 million years only and - measured in the cosmic timescale- Eta Carinae must have formed quite recently. This star is highly unstable and prone to violent outbursts. They are caused by the very high radiation pressure at the star's upper layers, which blows significant portions of the matter at the "surface" into space during violent eruptions that may last several years. The last of these outbursts occurred between 1835 and 1855 and peaked in 1843. Despite its comparaticely large distance - some 7,500 to 10,000 light-years - Eta Carinae briefly became the second brightest star in the sky at that time (with an apparent magnitude -1), only surpassed by Sirius. Frosty Leo ESO PR Photo 12j/03 ESO PR Photo 12j/03 [Preview - JPEG: 411 x 400 pix - 22k [Normal - JPEG: 821 x 800 pix - 344k] Caption : PR Photo 12j/03 shows a 5 x 5 arcsec 2 K-band image of the peculiar star known as "Frosty Leo" obtained in 0.7 arcsec seeing. Although the object is comparatively bright (visual magnitude 11), it is a difficult AO target because of its extension of about 3 arcsec at visible wavelengths. The corrected image quality is about FWHM 0.1 arcsec. Frosty Leo is a magnitude 11 (post-AGB) star surrounded by an envelope of gas, dust, and large amounts of ice (hence the name). The associated nebula is of "butterfly" shape (bipolar morphology) and it is one of the best known examples of the brief transitional phase between two late evolutionary stages, asymptotic giant branch (AGB) and the subsequent planetary nebulae (PNe). For a three-solar-mass object like this one, this phase is believed to last only a few thousand years, the wink of an eye in the life of the star. Hence, objects like this one are very rare and Frosty Leo is one of the nearest and brightest among them.

  13. ESO Observations of New Moon of Jupiter

    NASA Astrophysics Data System (ADS)

    2000-08-01

    Two astronomers, both specialists in minor bodies in the solar system, have performed observations with ESO telescopes that provide important information about a small moon, recently discovered in orbit around the solar system's largest planet, Jupiter. Brett Gladman (of the Centre National de la Recherche Scientifique (CNRS) and working at Observatoire de la Cote d'Azur, France) and Hermann Boehnhardt ( ESO-Paranal) obtained detailed data on the object S/1999 J 1 , definitively confirming it as a natural satellite of Jupiter. Seventeen Jovian moons are now known. The S/1999 J 1 object On July 20, 2000, the Minor Planet Center (MPC) of the International Astronomical Union (IAU) announced on IAU Circular 7460 that orbital computations had shown a small moving object, first seen in the sky in 1999, to be a new candidate satellite of Jupiter. The conclusion was based on several positional observations of that object made in October and November 1999 with the Spacewatch Telescope of the University of Arizona (USA). In particular, the object's motion in the sky was compatible with that of an object in orbit around Jupiter. Following the official IAU procedure, the IAU Central Bureau for Astronomical Telegrams designated the new object as S/1999 J 1 (the 1st candidate Satellite of Jupiter to be discovered in 1999). Details about the exciting detective story of this object's discovery can be found in an MPC press release and the corresponding Spacewatch News Note. Unfortunately, Jupiter and S/1999 J 1 were on the opposite side of the Sun as seen from the Earth during the spring of 2000. The faint object remained lost in the glare of the Sun in this period and, as expected, a search in July 2000 through all available astronomical data archives confirmed that it had not been seen since November 1999, nor before that time. With time, the extrapolated sky position of S/1999 J 1 was getting progressively less accurate. New observations were thus urgently needed to "recover" this object and "secure" its orbit. Recovery of S/1999 J 1 at La Silla Jupiter and its moons would again become visible in the early morning hours in late July with telescopes in the southern hemisphere. By a fortunate coincidence, observing time for observations of comets and asteroids had been allocated to Brett Gladman and his collaborators at two ESO telescopes in exactly this period. Just before sunrise on July 25, he used the Wide Field Imager (WFI) on the MPG/ESO 2.2-m telescope at La Silla to search for S/1999 J 1 . This camera has a comparatively large field-of-view, about 0.5 x 0.5 deg 2 , or about the size of the full moon. This was comfortably larger than the estimated uncertainty in the object's predicted position at the time of the observation. And indeed, S/1999 J 1 was spotted not too far from that location, weakly visible in the glare of the nearby waning moon. Detailed observations of S/1999 J 1 at Paranal Only three days later, in the early morning hours of July 28, the small object was again imaged, this time from the 8.2-m VLT ANTU telescope at Paranal. Brett Gladman and Hermann Boehnhardt , now knowing exactly where to look in the sky, used the FORS-1 multi-mode instrument to obtain exposures of S/1999 J 1 through several optical filters. The great light-collecting power of this telescope resulted in excellent images while S/1999 J 1 was moving across the sky, cf. PR Photos 19a-b/00 . These observations definitively confirmed the "recovery" of the object and also provided an accurate determination of its brightness and colour, cf. IAU Circular 7472 , published on August 3. From accurate positional measurements on these exposures and the earlier ones from La Silla, Gareth Williams of the Minor Planet Center was able to substantially improve the computation of the orbit of S/1999 J 1 around Jupiter. It was found ( IAU Circular 7469 ) to move in a somewhat elliptical orbit around Jupiter with a period of just over 2 years (768 days) and at a mean distance of 24.2 million kilometres from the planet. The nature of S/1999 J 1 This means that S/1999 J 1 belongs to the class of "irregular satellites" which move on non-circular and inclined orbits around the planet. They are believed to have been captured onto their current orbits after the planet was formed. S/1999 J 1 is one of the outermost moons of Jupiter known so far. The eight previously-known "irregular satellites" are split into two groups of four. The four members of the more distant group (Ananke, Carme, Pasiphae and Sinope) move on retrograde orbits, i.e. clockwise as seen from above the solar system (opposite to the motion of all major planets, including the Earth). The newly improved orbit of S/1999 J 1 shows it to be a fifth member of this retrograde cluster. The brightness of S/1999 J 1 , as measured on the VLT images, indicates that it must be comparatively small, with a diameter of the order of 10 - 15 kilometres (the smallest Jovian moon known so far). However, an accurate value can only be deduced once the reflectivity of its surface is known. The colour is very slightly red. This appears to favour the possibility that it is a captured asteroid (minor planet), rather than a cometary nucleus, but additional work is needed to cast more light on this. When more observations of S/1999 J 1 become available, the discoverers will propose a name, from Greek mythology according to astronomical tradition, to be approved by the IAU Working Group for Planetary System Nomenclature. This is the caption to ESO PR Photos 19a-b/00 . They may be reproduced, if credit is given to the European Southern Observatory.

  14. DEEP U BAND AND R IMAGING OF GOODS-SOUTH: OBSERVATIONS, DATA REDUCTION AND FIRST RESULTS ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonino, M.; Cristiani, S.; Vanzella, E.

    2009-08-01

    We present deep imaging in the U band covering an area of 630 arcmin{sup 2} centered on the southern field of the Great Observatories Origins Deep Survey (GOODS). The data were obtained with the VIMOS instrument at the European Southern Observatory (ESO) Very Large Telescope. The final images reach a magnitude limit U {sub lim} {approx} 29.8 (AB, 1{sigma}, in a 1'' radius aperture), and have good image quality, with full width at half-maximum {approx}0.''8. They are significantly deeper than previous U-band images available for the GOODS fields, and better match the sensitivity of other multiwavelength GOODS photometry. The deepermore » U-band data yield significantly improved photometric redshifts, especially in key redshift ranges such as 2 < z < 4, and deeper color-selected galaxy samples, e.g., Lyman break galaxies at z {approx} 3. We also present the co-addition of archival ESO VIMOS R-band data, with R {sub lim} {approx} 29 (AB, 1{sigma}, 1'' radius aperture), and image quality {approx}0.''75. We discuss the strategies for the observations and data reduction, and present the first results from the analysis of the co-added images.« less

  15. Shadow of a Large Disc Casts New Light on the Formation of High Mass Stars

    NASA Astrophysics Data System (ADS)

    2004-05-01

    Massive Star Observed that Forms through a Rotating Accretion Disc Summary Based on a large observational effort with different telescopes and instruments, mostly from the European Southern Observatory (ESO), a team of European astronomers [1] has shown that in the M 17 nebula a high mass star [2] forms via accretion through a circumstellar disc, i.e. through the same channel as low-mass stars. To reach this conclusion, the astronomers used very sensitive infrared instruments to penetrate the south-western molecular cloud of M 17 so that faint emission from gas heated up by a cluster of massive stars, partly located behind the molecular cloud, could be detected through the dust. Against the background of this hot region a large opaque silhouette, which resembles a flared disc seen nearly edge-on, is found to be associated with an hour-glass shaped reflection nebula. This system complies perfectly with a newly forming high-mass star surrounded by a huge accretion disc and accompanied by an energetic bipolar mass outflow. The new observations corroborate recent theoretical calculations which claim that stars up to 40 times more massive than the Sun can be formed by the same processes that are active during the formation of stars of smaller masses. PR Photo 15a/04: Stellar cluster and star-forming region M 17 (also available without text inside photo) PR Photo 15b/04: Silhouette disc seen in M 17 PR Photo 15c/04: Rotation of the disc in M 17. PR Photo 15d/04: Bipolar reflection nebula and silhouette disc of a young, massive star in M 17 PR Photo 15e/04: Optical spectrum of the bipolar nebula. PR Video 03/04: Zooming in onto the disc. The M 17 region ESO PR Photo 15a/04 ESO PR Photo 15a/04 [Preview - JPEG: 400 x 497 pix - 271k] [Normal - JPEG: 800 x 958 pix - 604k] ESO PR Photo 15a1/04 ESO PR Photo 15a/04 (without text within photo) [Preview - JPEG: 400 x 480 pix - 275k] [Normal - JPEG: 800 x 959 pix - 634k] [High-Res - JPEG: 3000 x 3597 pix - 3.8M] [Full-Res - JPEG: 3815 x 4574 pix - 5.4M] Caption: PR Photo 15a/04 is a reproduction of a three-colour composite of the sky region of M 17, a H II region excited by a cluster of young, hot stars. A large silhouette disc has been found to the south-west of the cluster centre. The area within the indicated square is shown in more detail in PR Photo 15b/04. The present image was obtained with the ISAAC near-infrared instrument at the 8.2-m VLT ANTU telescope at Paranal. In the left photo, the orientation and the scale at the distance of M 17 (7,000 light-years) are indicated, and the main regions are identified. To the right, this beautiful photo is available without text and in full resolution for reproduction purposes. While many details related to the formation and early evolution of low-mass stars like the Sun are now well understood, the basic scenario that leads to the formation of high-mass stars [2] still remains a mystery. Two possible scenarios for the formation of massive stars are currently being studied. In the first, such stars form by accretion of large amounts of circumstellar material; the infall onto the nascent star varies with time. Another possibility is formation by collision (coalescence) of protostars of intermediate masses, increasing the stellar mass in "jumps". In their continuing quest to add more pieces to the puzzle and help providing an answer to this fundamental question, a team of European astronomers [1] used a battery of telescopes, mostly at two of the European Southern Observatory's Chilean sites of La Silla and Paranal, to study in unsurpassed detail the Omega nebula. The Omega nebula, also known as the 17th object in the list of famous French astronomer Charles Messier, i.e. Messier 17 or M 17, is one of the most prominent star forming regions in our Galaxy. It is located at a distance of 7,000 light-years. M 17 is extremely young - in astronomical terms - as witnessed by the presence of a cluster of high-mass stars that ionise the surrounding hydrogen gas and create a so-called H II region. The total luminosity of these stars exceeds that of our Sun by almost a factor of ten million. Adjacent to the south-western edge of the H II region, there is a huge cloud of molecular gas which is believed to be a site of ongoing star formation. In order to search for newly forming high-mass stars, Rolf Chini of the Ruhr-Universität Bochum (Germany) and his collaborators have recently investigated the interface between the H II region and the molecular cloud by means of very deep optical and infrared imaging between 0.4 and 2.2 µm. This was done with ISAAC (at 1.25, 1.65 and 2.2 µm) at the ESO Very Large Telescope (VLT) on Cerro Paranal in September 2002 and with EMMI (at 0.45, 0.55, 0.8 µm) at the ESO New Technology Telescope (NTT), La Silla, in July 2003. The image quality was limited by atmospheric turbulence and varied between 0.4 and 0.8 arcsec. The result of these efforts is shown in PR Photo 15a/04. Rolf Chini is pleased: "Our measurements are so sensitive that the south-western molecular cloud of M 17 is penetrated and the faint nebular emission of the H II region, which is partly located behind the molecular cloud, could be detected through the dust." Against the nebular background of the H II region a large opaque silhouette is seen associated with an hourglass shaped reflection nebula. The silhouette disc ESO PR Photo 15b/04 ESO PR Photo 15b/04 [Preview - JPEG: 400 x 475 pix - 348k] [Normal - JPEG: 800 x 950 pix - 907k] Caption: PR Photo 15b/04 shows a Ks-band image of the silhouette disc obtained with the NACO Adaptive Optics camera at the 8.2-m VLT YEPUN telescope at Paranal. The displayed field-of-view is outlined in PR Photo 15a/04. White contours delineate the densest part of the disc (inner torus). The visible stars (slightly elongated due to the adaptive optics technique) are embedded within the molecular cloud but are probably unrelated to the disc. The insert shows a deconvolved zoomed version of the central object of about 450 x 240 AU; its major axis is tilted by about 15 degrees against the direction perpendicular to the disc. ESO PR Video Clip 03/04 ESO PR Video Clip 03/04 [QuickTime Video+Audio; 160x120 pix; 18Mb] Caption: PR Video Clip 03/04 zooms in towards the disc, starting from the ISAAC image of the full nebula to the NACO image of the silhouette disc. This shows the remarkable power of the set of instruments on the Very Large Telescope. ESO PR Photo 15c/04 ESO PR Photo 15c/04 [Preview - JPEG: 533 x 400 pix - 80k] [Normal - JPEG: 1067 x 800 pix - 185k] Caption: PR Photo 15c/04 Position-velocity diagram revealing the rotation of the disc. It is derived from a cut along the major axis of the disc, using the IRAM Plateau de Bure interferometer. For comparison, the theoretically expected position-velocity curve for an edge-on disc around a star of 15 solar masses is shown, the outer part of which (radii larger than about 15,400 AU) is in Keplerian rotation while its inner part is modeled as a rigid rotator. To obtain a better view of the structure, the team of astronomers turned then to Adaptive Optics imaging using the NAOS-CONICA instrument on the VLT. Adaptive optics is a "wonder-weapon" in ground-based astronomy, allowing astronomers to "neutralize" the image-smearing turbulence of the terrestrial atmosphere (seen by the unaided eye as the twinkling of stars) so that much sharper images can be obtained. With NAOS-CONICA on the VLT, the astronomers were able to obtain images with a resolution better than one tenth of the "seeing", that is, as what they could observe with ISAAC. PR Photo 15b/04 shows the high-resolution near-infrared (2.2 µm) image they obtained. It clearly suggests that the morphology of the silhouette resembles a flared disc, seen nearly edge-on. The disc has a diameter of about 20,000 AU [3] - which is 500 times the distance of the farthest planet in our solar system - and is by far the largest circumstellar disc ever detected. To study the disc structure and properties, the astronomers then turned to radio astronomy and carried out molecular line spectroscopy at the IRAM Plateau de Bure interferometer near Grenoble (France) in April 2003. The astronomers have observed the region in the rotational transitions of the 12CO, 13CO and C18O molecules, and in the adjacent continuum at 3 mm. Velocity resolutions of 0.1 and 0.2 km/s, respectively, were achieved. Dieter Nürnberger, member of the team, sees this as a confirmation: "Our 13CO data obtained with IRAM indicate that the disc/envelope system slowly rotates with its north-western part approaching the observer." Over an extent of 30,800 AU a velocity shift of 1.7 km/s is indeed measured (PR Photo 15c/04). From these observations, adopting standard values for the abundance ratio between the different isotopic carbon monoxide molecules (12CO and 13CO) and for the conversion factor to derive molecular hydrogen densities from the mesured CO intensities, the astronomers were also able to derive a conservative lower limit for the disc mass of 110 solar masses. This is by far the most massive and largest accretion disc ever observed directly around a young massive star. The largest silhouette disc so far is known as 114-426 in Orion and has a diameter of about 1,000 AU; however, its central star is likely a low-mass object rather than a massive protostar. Although there are a small number of candidates for massive young stellar objects (YSOs) some of which are associated with outflows, the largest circumstellar disc hitherto detected around these objects has a diameter of only 130 AU. The bipolar nebula ESO PR Photo 15d/04 ESO PR Photo 15d/04 [Preview - JPEG: 450 x 400 pix - 119k] [Normal - JPEG: 913 x 800 pix - 272k] Caption: PR Photo 15d/04 displays a collection of images of the silhouette disc and, perpendicular to that, the bipolar reflection nebula. These images were obtained in different optical and near-infrared wavebands with different instruments: EMMI at the ESO New Technology Telescope on La Silla (top row; wavelengths 0.45 [B-band], 0.55 [V-band], 0.8 µm [I-band], respectively) and ISAAC at the ESO Very Large Telescope on Cerro Paranal (bottom row; 1.25 [J], 1.65 [H] and 2.2 µm [K]). All images are centred on the central massive protostar and cover an area of 30 x 30 arcsec2, corresponding to 1.0 x 1.0 light-years2 at the distance of M 17 (about 7,000 light-years). The obscuration diminishes with increasing wavelength and the background emission of the H II region becomes more and more evident (represented by entirely black colours at K). ESO PR Photo 15e/04 ESO PR Photo 15e/04 [Preview - JPEG: 757 x 400 pix - 136k] [Normal - JPEG: 1513 x 800 pix - 311k] Caption: PR Photo 15e/04 shows an optical spectrum of the bipolar nebula, obtained with EFOSC2 at the ESO 3.6 m telescope and with EMMI at the ESO 3.5 m NTT, both located on La Silla, Chile. A number of identified emission lines, like Hα and the Ca II triplet 849.8, 854.2 and 866.2 nm, are denoted. The second morphological structure that is visible on all images throughout the entire spectral range from visible to infrared (0.4 to 2.2 µm) is an hourglass-shaped nebula perpendicular to the plane of the disc (PR Photo 15d/04). This is believed to be an energetic outflow coming from the central massive object. To confirm this, the astronomers went back to ESO's telescopes to perform spectroscopic observations. The optical spectra of the bipolar outflow were measured in April/June 2003 with EFOSC2 at the ESO 3.6 m telescope and with EMMI at the ESO 3.5 m NTT, both located on La Silla, Chile. The observed spectrum (PR Photo 15e/04) is dominated by the emission lines of hydrogen (Hα), calcium (the Ca II triplet 849.8, 854.2 and 866.2 nm), and helium (He I 667.8 nm). In the case of low-mass stars, these lines provide indirect evidence for ongoing accretion from the inner disc onto the star. The Ca II triplet was also shown to be a product of disc accretion for both a large sample of low and intermediate-mass protostars, known as T Tauri and Herbig Ae/Be stars, respectively. Moreover, the Hα line is extremely broad and shows a deep blue-shifted absorption typically associated with accretion disc-driven outflows. In the spectrum, numerous iron (Fe II) lines were also observed, which are velocity-shifted by ± 120 km/s. This is clear evidence for the existence of shocks with velocities of more than 50 km/s, hence another confirmation of the outflow hypothesis. The central protostar Due to heavy extinction, the nature of an accreting protostellar object, i.e. a star in the process of formation, is usually difficult to infer. Accessible are only those that are located in the neighbourhood of their elder brethren, e.g. next to a cluster of hot stars (cf. ESO PR 15/03). Such already evolved massive stars are a rich source of energetic photons and produce powerful stellar winds of protons (like the "solar wind" but much stronger) which impact on the surrounding interstellar gas and dust clouds. This process may lead to partial evaporation and dispersion of those clouds, thereby "lifting the curtain" and allowing us to look directly at young stars in that region. However, for all high-mass protostellar candidates located away from such a hostile environment there is not a single direct evidence for a (proto-)stellar central object; likewise, the origin of the luminosity - typically about ten thousand solar luminosities - is unclear and may be due to multiple objects or even embedded clusters. The new disc in M 17 is the only system which exhibits a central object at the expected position of the forming star. The 2.2 µm emission is relatively compact (240 AU x 450 AU) - too small to host a cluster of stars. Assuming that the emission is due solely to the star, the astronomers derive an absolute infrared brightness of about K = -2.5 magnitudes which would correspond to a main sequence star of about 20 solar masses. Given the fact that the accretion process is still active, and that models predict that about 30-50% of the circumstellar material can be accumulated onto the central object, it is likely that in the present case a massive protostar is currently being born. Theoretical calculations show that an initial gas cloud of 60 to 120 solar masses may evolve into a star of approximately 30-40 solar masses while the remaining mass is rejected into the interstellar medium. The present observations may be the first to show this happening.

  16. Full Speed Ahead for Eso's Very Large Telescope First Enclosure on its way to PARANAL!

    NASA Astrophysics Data System (ADS)

    1994-09-01

    During the past months, vast progress has been made in the construction of ESO's 16-metre equivalent Very Large Telescope (VLT). This major scientific and technological project aims at installing the world's largest optical telescope in the form of four interconnected telescopes with 8.2-metre mirrors on the Paranal mountain in the Chilean Atacama desert. It continues to be on schedule as it heads towards its completion, just after the year 2000. An important milestone will be reached in early October 1994 when the first large shipment containing heavy steel parts of the enclosure for VLT Unit Telescope no. 1 leaves the Italian port of Genova [1]. Meanwhile the construction work on the Paranal site is also progressing very well. It is now expected that, as planned, the first enclosure will be ready in May 1995 to receive the first 8.2-metre telescope. This Press Release is accompanied by four colour pictures that illustrate some of the most recent developments. CONSTRUCTION PROGRESS IN EUROPE Considerable progress has been made by ESO's industrial partners in Europe, and the VLT Project has now entered into a new and dynamic phase of construction. The first 8.2-metre mirror is currently in the middle of a two-year polishing process at the REOSC company near Paris, and the first interferometric tests have shown that this very delicate operation is progressing well. The enormous mirror surface, with a total area of more than 50 m^2, is slowly but steadily approaching the desired shape which must be achieved within a few hundred-thousandths of one millimetre over the entire surface. Mirror blank no. 2 is now ready at the Schott factory in Mainz (Germany) and will be delivered by barge transport to REOSC in October 1994. Blank no. 3 has successfully completed the critical ceramization phase and blank no. 4 will soon receive the same treatment. The circular steel track, 18 metres in diameter, that will support Telescope no. 1 has now been successfully machined at the Ansaldo factory in Genova (Italy). The substructure on which this track and the complete telescope steel structure will be pre-erected before shipment to Chile was constructed at the Ansaldo factory in Milan. Elements of the telescope fork structure were also welded and machined here. In addition, many of the subsystems of the telescope tube, motors and encoders are now in an advanced phase of manufacture. The full integration of the first telescope will take place in Milan during the test-assembly phase in the first half of 1995. It will then for the first time be possible to fully appreciate the enormous size of this structure. All structural elements for the complex enclosure that will protect Telescope no. 1 have now been machined at IDROMACCHINE in Mestre near Venice. It was decided to perform a pre-erection assembly there of a few critical parts in order to test thoroughly performances and interfaces. THE FIRST SHIPMENT At the beginning of October 1994, the first shipment of steel parts of this enclosure with a total weight of more than 100 tons will leave Europe for the sea journey to Chile. While the smaller parts are packed in large containers, special packing is necessary for the very large structures. The ship will depart from the port of Genova and is expected to dock in Antofagasta towards the end of November 1994, after which the parts will be transported by truck to the top of Paranal. This first shipment will be soon be followed by others; it is expected that consignments of about 100 tons each will be sent to Chile every two weeks over the next eight months. WORK AT PARANAL PROGRESSES RAPIDLY Meanwhile, the construction work on the top of Paranal continues at full speed. About 350 people employed by the construction firm SKANSKA/Belfi now live in the completed base camp and work in shifts day and night on the mountain. The photos accompanying this Press Release show the state of the extensive work by mid-September. The tunneling for the many underground passages is finished, the concrete base for Telescope no. 1 is nearing completion, and the baseplate for no. 2 is ready. The aerial view gives a vivid impression of well-organised "chaos" now reigning at Paranal and it is hard to believe that when this phase is over, supposedly towards the end of 1996, only the four telescope enclosures will be seen on the completely flat mountain platform -- all other infrastructures, including the large interferometric laboratories, will again have been completely covered. This is necessary to ensure the best possible wind-flow pattern over and around the mountain and enclosures and thereby also allow the sharpest possible astronomical images to be obtained with the giant telescopes. The anti-seismic supports to be embedded in the foundations for protection against the strongest earthquakes, have already arrived in Chile and will be installed below enclosure no. 1 during the next few weeks. It is then intended to start the erection of the major parts of this enclosure in mid-December 1994, immediately following the termination of the construction of the concrete support. This work will start with the assembly of the lower, fixed part of the structure that carries the circular track on which the upper part rotates. It is expected that this will last about six months and that the first enclosure will be ready in May 1995. The erection of enclosure no. 2 will begin immediately afterwards and will be followed by nos. 3 and 4. This work should be terminated by the end of 1996. THE NEXT STEPS The heavy parts for Telescope no. 1 will arrive at Paranal shortly after May 1995. However, before the telescope assembly inside the enclosure can begin, a rotating coude platform will have to be installed below, directly on the base plate that will also carry the entire telescope structure above. The lower telescope structure will then be built on top of the two circular tracks and later the telescope tube will be attached at the top. Then follows the installation of the optics, including the 8.2-metre main mirror and the first astronomical instruments. Then arrives the long-awaited moment when the telescope will open its giant eye towards the Universe for the first time; astronomers refer to this special event as "first light". Finally, the telescope will be thoroughly tested, before it is made generally available to the astronomers. This will probably happen about three years from now, in late 1997. The other three telescopes will be installed during the following years. [1] See ESO Press Release 13/94 of 9 August 1994.

  17. Photometric calibration of NGS/POSS and ESO/SRC plates using the NOAO PDS measuring engine. I - Stellar photometry

    NASA Technical Reports Server (NTRS)

    Cutri, Roc M.; Low, Frank J.; Marvel, Kevin B.

    1992-01-01

    The PDS/Monet measuring engine at the National Optical Astronomy Observatory was used to obtain photometry of nearly 10,000 stars on the NGS/POSS and 2000 stars on the ESO/SRC Survey glass plates. These measurements have been used to show that global transformation functions exist that allow calibration of stellar photometry from any blue or red plate to equivalent Johnson B and Cousins R photoelectric magnitudes. The four transformation functions appropriate for the POSS O and E and ESO/SRC J and R plates were characterized, and it was found that, within the measurement uncertainties, they vary from plate to plate only by photometric zero-point offsets. A method is described to correct for the zero-point shifts and to obtain calibrated B and R photometry of stellar sources to an average accuracy of 0.3-0.4 mag within the range R between values of 8 and 19.5 for red plates in both surveys, B between values of 9 and 20.5 on POSS blue plates, and B between values of 10 and 20.5 on ESO/SRC blue plates. This calibration procedure makes it possible to obtain rapid photometry of very large numbers of stellar sources.

  18. New Sub-Millimetre Light in the Desert

    NASA Astrophysics Data System (ADS)

    2005-07-01

    The Atacama Pathfinder Experiment (APEX) project has just passed another major milestone by successfully commissioning its new technology 12-m telescope, located on the 5100m high Chajnantor plateau in the Atacama Desert (Chile). The APEX telescope, designed to work at sub-millimetre wavelengths, in the 0.2 to 1.5 mm range, has just performed its first scientific observations. This new front-line facility will provide access to the "Cold Universe" with unprecedented sensitivity and image quality. Karl Menten, Director of the group for Millimeter and Sub-Millimeter Astronomy at the Max-Planck-Institute for Radio Astronomy (MPIfR) and Principal Investigator of the APEX project is excited: " Among the first observations, we have obtained wonderful spectra, which took only minutes to take but offer a fascinating view of the highly complex organic chemistry in star-forming regions. In addition, we have also obtained exquisite images from the Magellanic Clouds and observed molecules in the active nuclei of several external galaxies. Traditionally, telescopes turn to weak extragalactic sources only after they are well in operation. With APEX, we could pick them amongst our first targets!" Because sub-millimetre radiation from space is heavily absorbed by water vapour in the Earth's atmosphere, APEX is located at an altitude of 5100 metres in the high Chilean Atacama desert on the Chajnantor plains, 50 km east of San Pedro de Atacama in northern Chile. The Atacama desert is one of the driest places on Earth, thus providing unsurpassed observing opportunities - at the costs of the demanding logistics required to operate a frontier science observatory at this remote place. Along with the Japanese 10-m ASTE telescope, which is operating at a neighbouring, lower altitude location, APEX is the first and largest sub-millimetre facility under southern skies. With its precise antenna and large collecting area, it will provide, at this exceptional location, unprecedented access to a whole new domain in astronomical observations. Indeed, millimetre and sub-millimetre astronomy opens exciting new possibilities in the study of the first galaxies to have formed in the Universe and of the formation processes of stars and planets. APEX will, among other things, allow astronomers to study the chemistry and physical conditions of molecular clouds, that is, dense regions of gas and dust in which new stars are forming. APEX follows in the footsteps of the 15m Swedish-ESO Submillimetre Telescope (SEST) which was operated at ESO La Silla from 1987 until 2003 in a collaboration between ESO and the Onsala Space Observatory. SEST operated in the wavelength range from 0.8 to 3 mm. Says Catherine Cesarsky, ESO's Director General: "SEST was for a long time the only instrument of its kind in the southern hemisphere. With it, ESO and our collaborators have gained valuable operational experience with regard to ground-based observations in the non-optical spectral domain. With APEX, we offer the ESO community a most exciting new facility that will pave the way for ALMA." As its name implies, APEX is the pathfinder to the ALMA project. It is indeed a modified ALMA prototype antenna and is located at the future site of the ALMA observatory. ALMA is planned to consist of a giant array of 12-m antennas separated by baselines of up to 14 km and is expected to start operation by the end of the decade. It will bring to sub-millimetre astronomy the aperture synthesis techniques of radio astronomy, enabling precision imaging to be done on sub-arcsecond angular scales, and will so nicely complement the ESO VLT/VLTI observatory. In order to operate at the shorter sub-millimetre wavelengths, APEX presents a surface of exceedingly high quality: after a series of high precision adjustments, the APEX project team was able to adjust the surface of the mirror with remarkable precision: over the 12m diameter of the antenna, the deviation from the perfect parabola is now less than 17 thousandths of a millimetre. This is smaller than one fifth of the average thickness of a human hair! "From the engineering point of view, APEX is already a big success and its performance surpasses our expectations", says APEX Project Manager Rolf Güsten. "This could only be achieved thanks to the highly committed teams from the constructor, from the MPIfR and from the APEX project whose endless hours of work, often at high altitudes, made this project become reality." In parallel to the construction and commissioning of the APEX telescope, a demanding cutting-edge technology program has been launched to provide the best possible detectors for this outstanding facility. For its first observations, APEX was equipped with state-of-the-art sub-millimetre spectrometers developed by MPIfR's Division for Sub-Millimetre Technology and, more recently, with the first facility receiver built at Chalmers University (OSO). APEX is a collaboration between the Max-Planck-Institute for Radio Astronomy (MPIfR), Onsala Space Observatory (OSO), and the European Organisation for Astronomical Research in the Southern Hemisphere (ESO). The telescope was designed and constructed by VERTEX Antennentechnik GmbH (Germany), under contract by MPIfR, and is based on a prototype antenna constructed for the ALMA project. Operation of APEX in Chajnantor is entrusted to ESO. Background information on sub-millimetre astronomy and on the first APEX results can be found as PDF files on the APEX Fact Sheets page. A press release in German was also issued by the Max-Planck Society.

  19. Glowing Hot Transiting Exoplanet Discovered

    NASA Astrophysics Data System (ADS)

    2003-04-01

    VLT Spectra Indicate Shortest-Known-Period Planet Orbiting OGLE-TR-3 Summary More than 100 exoplanets in orbit around stars other than the Sun have been found so far. But while their orbital periods and distances from their central stars are well known, their true masses cannot be determined with certainty, only lower limits. This fundamental limitation is inherent in the common observational method to discover exoplanets - the measurements of small and regular changes in the central star's velocity, caused by the planet's gravitational pull as it orbits the star. However, in two cases so far, it has been found that the exoplanet's orbit happens to be positioned in such a way that the planet moves in front of the stellar disk, as seen from the Earth. This "transit" event causes a small and temporary dip in the star's brightness, as the planet covers a small part of its surface, which can be observed. The additional knowledge of the spatial orientation of the planetary orbit then permits a direct determination of the planet's true mass. Now, a group of German astronomers [1] have found a third star in which a planet, somewhat larger than Jupiter, but only half as massive, moves in front of the central star every 28.5 hours . The crucial observation of this solar-type star, designated OGLE-TR-3 [2] was made with the high-dispersion UVES spectrograph on the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). It is the exoplanet with the shortest period found so far and it is very close to the star, only 3.5 million km away. The hemisphere that faces the star must be extremely hot, about 2000 °C and the planet is obviously losing its atmosphere at high rate . PR Photo 10a/03 : The star OGLE-TR-3 . PR Photo 10b/03 : VLT UVES spectrum of OGLE-TR-3. PR Photo 10c/03 : Relation between stellar brightness and velocity (diagram). PR Photo 10d/03 : Observed velocity variation of OGLE-TR-3. PR Photo 10e/03 : Observed brightness variation of OGLE-TR-3. The search for exoplanets More than 100 planets in orbit around stars other than the Sun have been found so far. These "exoplanets" come in many different sizes and they move in a great variety of orbits at different distances from their central star, some nearly round and others quite elongated. Some planets are five to ten times more massive than the largest one in the solar system, Jupiter - the lightest exoplanets known at this moment are about half as massive as Saturn, i.e. about 50 times more massive than the Earth. Astronomers are hunting exoplanets not just to discover more such objects, but also to learn more about the apparent diversity of planetary systems. The current main research goal is to eventually discover an Earth-like exoplanet, but the available telescopes and instrumentation are still not "sensitive" enough for this daunting task. However, also in this context, it is highly desirable to know not only the orbits of the observable exoplanets, but also their true masses . But this is not an easy task. Masses of exoplanets Virtually all exoplanets detected so far have been found by an indirect method - the measurement of stellar velocity variations . It is based on the gravitational pull of the orbiting planet that causes the central star to move a little back and forth; the heavier the planet, the greater is the associated change in the star's velocity. This technique is rapidly improving: the new HARPS spectrograph (High Accuracy Radial Velocity Planet Searcher) , now being tested on the 3.6-m telescope at the ESO La Silla Observatory , can measure such stellar motions with an unrivalled accuracy of about 1 metre per second (m/s), cf. ESO PR 06/03 . It will shortly be able to search for exoplanets only a few times more massive than the Earth. However, velocity measurements alone do not allow to determine the true mass of the orbiting planet. Because of the unknown inclination of the planetary orbit (to the line-of-sight), they only provide a lower limit to this mass . Additional information about this orbital inclination is therefore needed to derive the true mass of an exoplanet. The transit method Fortunately, this information becomes available if the exoplanet is known to move across ("transit") the star's disk, as seen from the Earth; the orbital plane must then necessarily be very near the line-of-sight. This phenomenon is exactly the same that happens in our own solar system, when the inner planets Mercury and Venus pass in front of the solar disk, as seen from the Earth [3]. A solar eclipse (caused by the Moon moving in front of the Sun) is a more extreme case of the same type of event. During such an exoplanet transit, the observed brightness of the star will decrease slightly because the planet blocks a part of the stellar light. The larger the planet, the more of the light is blocked and the more the brightness of the star will decrease. A study of the way this brightness changes with time (astronomers refer to the "light curve"), when combined with radial velocity measurements, allows a complete determination of the planetary orbit, including the exact inclination. It also provides accurate information about the planet's size, true mass and hence, density. The chances that a particular exoplanet passes in front of the disk of its central star as seen from the Earth are small. However, because of the crucial importance of such events in order to characterize exoplanets fully, astronomers have for some time been actively searching for stars that experience small regularly occurring "brightness dips" that might possibly be caused by exoplanetary transits. The OGLE list Last year, a first list of 59 such possible cases of stars with transiting planets was announced by the Optical Gravitational Lensing Experiment (OGLE) [2]. These stars were found - within a sample of about 5 million stars observed during a 32-day period - to exhibit small and regular brightness dips that might possibly be caused by transits of an exoplanet. For one of these stars, OGLE-TR-56 , a team of American astronomers soon thereafter observed slight variations of the velocity , strongly indicating the presence of an exoplanet around that star. UVES spectra of OGLE-TR-3 ESO PR Photo 10a/03 ESO PR Photo 10a/03 [Preview - JPEG: 400 x 466 pix - 41k [Normal - JPEG: 800 x 931 pix - 280k] ESO PR Photo 10b/03 ESO PR Photo 10b/03 [Preview - JPEG: 492 x 400 pix - 52k [Normal - JPEG: 984 x 800 pix - 224k] Captions : PR Photo 10a/03 shows the 16.5-mag star OGLE-TR-3 , a solar-like star in the direction of the Galactic Center, discovered during an extensive photometric search for planetary and low-luminosity object transits [2]. The image is reproduced from an I-band CCD frame of a 1 x 1 arcmin 2 sky field. North is up and East is left. PR Photo 10b/03 displays a small portion of a high-dispersion spectrum of OGLE-TR-3 , obtained with the UVES spectrograph at the 8.2-m VLT KUEYEN telescope at the Paranal Observatory (Chile). It is divided into five adjacent wavelength intervals and represents the mean of ten 1-hour spectral exposures. The fully drawn curve shows the spectrum of the "best fitting" stellar model from which the composition, temperature, mass, age of OGLE-TR-3 were deduced. Now, a team of German and ESO astronomers [1] have used the UVES High-Dispersion Spectrograph on the 8.2-m VLT KUEYEN telescope at the Paranal Observatory (Chile) to obtain very detailed spectra of another star on that list, OGLE-TR-3 , cf. PR Photos 10a-b/03 . Over a period of one month, a total of ten high-resolution spectra - each with an exposure time of about one hour - were obtained of the 16.5-mag object, i.e. its brightness is about 16,000 fainter that what can be perceived with the unaided eye. A careful evaluation shows that OGLE-TR-3 is very similar to the Sun, with a temperature of about 5800 °C (6100 K). And most interestingly, it undergoes velocity variations of the order of 120 m/s . The exoplanet at OGLE-TR-3 ESO PR Photo 10c/03 ESO PR Photo 10c/03 [Preview - JPEG: 400 x 507 pix - 24k [Normal - JPEG: 800 x 1014 pix - 95k] ESO PR Photo 10d/03 ESO PR Photo 10d/03 [Preview - JPEG: 466 x 400 pix - 20k [Normal - JPEG: 932 x 800 pix - 120k] ESO PR Photo 10e/03 ESO PR Photo 10e/03 [Preview - JPEG: 510 x 200 pix - 21k [Normal - JPEG: 1024 x 400 pix - 120k] Captions : PR Photo 10c/03 illustrates the relationship between the variations in stellar brightness and velocity, caused by an orbiting exoplanet that transits the disk of its central star. Consecutive positions of the planet in its (circular) orbit are marked by black dots, with the motion from left to right. The figure has been drawn to scale, i.e. the dots actually represent the size of the planet itself. At the top is the view of the planetary orbit from above - below a view from the Earth with the planetary transit. Further down, the lightcurve with a brightness (intensity) dip when the planet blocks a small part of the star's light is shown, and at the bottom the corresponding change in the star's velocity. Before the transit, when the planet moves towards us, the star moves in the opposite direction, i.e. away from us and the velocity is positive; during the transit, the relative velocity is zero and later is becomes negative as the star moves towards us. PR Photo 10d/03 displays the velocity variation of the star OGLE-TR-3 , as measured from ten VLT-UVES spectra (each with 1-hour exposure time) and plotted according to the "photometric phase". This means that the planetary transit occurs at phase 0 (left) and again at phase 1 (right). The observed variation is in agreement with the expected one, cf. PR Photo 10c/03 . The fully drawn curve represents the best fit to the observations (velocity variation about 120 m/s) - the mass of the planet is derived from this. PR Photo 10e/03 shows the brightness variation ("light-curve") of the star OGLE-TR-3 obtained during the OGLE observations [2]. The crosses correspond to the observations and the fully drawn curve represents a model fit, with the stellar parameters from the analysis of the UVES spectra (1 solar radius and 1 solar mass) and the planetary parameters from the velocity analysis (0.6 Jupiter mass). The best fit allows determination of the planet's size as about 200,000 km (1.4 times the size of Jupiter). The 2 per cent dip in the brightness of OGLE-TR-3 , as observed during the OGLE programme, occurs every 28 hours 33 minutes (1.1899 days), cf. PR Photo 10e/03 . The UVES velocity measurements ( PR Photo 10d/03 ) fit this period well and reveal, with high probability, the presence of an exoplanet orbiting OGLE-TR-3 with this period. In any case, the observations firmly exclude that the well observed brightness variations could be due to a small stellar companion. A red dwarf star would have caused velocity variations of 15 km/s and a brown dwarf star 2.5 km/s; both would have been easy to observe with UVES, and it is clear that such variations can be excluded. Although the available observations are still insufficient to allow an accurate determination of the planetary properties, the astronomers provisionally deduce a true mass of the planet of the order of one half of that of Jupiter . The density is found to be about 250 kg/m 3 , only one-quarter of that of water or one-fifth of that of Jupiter, so the planet is quite big for this mass - a bit "blown up". It is obviously a planet of the gaseous type . A very hot planet The orbital period, 28 hours 33 minutes (1.1899 days), is the shortest known for any exoplanet and the distance between the star and the planet is correspondingly small, only 3.5 million kilometres . The temperature of the side of the planet facing the star must therefore be very high, of the order of 2000 °C . Clearly, the planet must be losing its atmosphere by evaporation. The astronomers also conclude that it might in fact be possible to observe this exoplanet directly because of its comparatively strong infrared radiation. An attempt to do so will soon be made. As only the third exoplanet found this way (after those at the stars HD209458 and OGLE-TR-56 ), the new object confirms the current impression that a considerable number of stars may possess giant planets in close orbits. Since such planets cannot form so close to their parent star, they must have migrated inwards to the current orbit from a much larger, initial distance. It is not known at this time with certainty how this might happen. Future prospects It is expected that more observational campaigns will be made to search for transiting planets around other stars. There is good hope that OGLE-TR-3 and OGLE-TR-56 are just the first two of a substantial number of exoplanets to be discovered this way. Some years from now, searches will also begin from dedicated space observatories, e.g. ESA's Eddington and Darwin , and NASA's Kepler .

  20. Health, Safety and Performance in High Altitude Observatories: A Sustainable Approach

    NASA Astrophysics Data System (ADS)

    Böcker, Michael; Vogt, Joachim; Christ, Oliver; Müller-Leonhardt, Alice

    2009-09-01

    The research project “Optimising Performance, Health and Safety in High Altitude Observatories” was initiated by ESO to establish an approach to promote the well-being of staff working at its high altitude observatories, and in particular at the Antiplano de Chajnantor. A survey by a questionnaire given to both workers and visitors was employed to assess the effects of working conditions at high altitude. Earlier articles have outlined the project and reported early results. The final results and conclusions are presented, together with a concept for sustainable development to improve the performance, health and safety at high altitude employing Critical Incident Stress Management.

  1. The unusual N IV] -emitter galaxy GDS J033218.92-275302.7: star formation or AGN-driven winds from a massive galaxy at z = 5.56

    NASA Astrophysics Data System (ADS)

    Vanzella, E.; Grazian, A.; Hayes, M.; Pentericci, L.; Schaerer, D.; Dickinson, M.; Cristiani, S.; Giavalisco, M.; Verhamme, A.; Nonino, M.; Rosati, P.

    2010-04-01

    Aims: We investigate the nature of the source GDS J033218.92-275302.7 at redshift ~5.56. Methods: The spectral energy distribution of the source is well-sampled by 16 bands photometry from UV-optical (HST and VLT), near infrared, near infrared (VLT) to mid-infrared (Spitzer). The detection of a signal in the mid-infrared Spitzer/IRAC bands 5.8, 8.0 μm - where the nebular emission contribution is less effective - suggests that there is a Balmer break, the signature of an underlying stellar population formed at earlier epochs. The high-quality VLT/FORS2 spectrum shows a clear Lyα emission line, together with semi-forbidden N iv] 1483.3-1486.5 also in emission. These lines imply a young stellar population. In particular, the N iv] 1483.3-1486.5 feature (if the source is not hosting an AGN) is a signature of massive and hot stars with an associated nebular emission. Conversely, it may be a signature of an AGN. The observed SED and the Lyα emission line profile were modeled carefully to investigate the internal properties of the source. Results: From the SED-fitting with a single and a double stellar population and from the Lyα modeling, it turns out that the source seems to have an evolved component with a stellar mass of ~5 × 1010 M⊙ and age ~0.4 Gyr, and a young component with an age of ~0.01 Gyr and star formation rate in the range of 30-200 M⊙ yr-1. The limits on the effective radius derived from the ACS/z850 and VLT/Ks bands indicate that this galaxy is denser than the local ones with similar mass. A relatively high nebular gas column density is favored from the Lyα line modeling (NHI ⪆ 1021 cm-2). A vigorous outflow (~ 450 km s-1) has been measured from the optical spectrum, consistent with the Lyα modeling. From ACS observations it turns out that the region emitting Lyα photons is spatially compact and has a similar effective radius (~0.1 kpc physical) estimated at the ~1400 Å rest-frame wavelength, whose emission is dominated by the stellar continuum and/or AGN. The gas is blown out from the central region, but, given the mass of the galaxy, it is uncertain whether it will pollute the IGM to large distances. We argue that a burst of star formation in a dense gas environment is active (possibly containing hot and massive stars and/or a low luminosity AGN), superimposed on an already formed fraction of stellar mass. Based on observations made at the European Southern Observatory, Paranal, Chile (ESO program 170.A-0788 The Great Observatories Origins Deep Survey: ESO Public Observations of the SIRTF Legacy/HST Treasury/Chandra Deep Field South).

  2. Cosmological Gamma-Ray Bursts and Hypernovae Conclusively Linked

    NASA Astrophysics Data System (ADS)

    2003-06-01

    Clearest-Ever Evidence from VLT Spectra of Powerful Event Summary A very bright burst of gamma-rays was observed on March 29, 2003 by NASA's High Energy Transient Explorer (HETE-II) , in a sky region within the constellation Leo. Within 90 min, a new, very bright light source (the "optical afterglow") was detected in the same direction by means of a 40-inch telescope at the Siding Spring Observatory (Australia) and also in Japan. The gamma-ray burst was designated GRB 030329 , according to the date. And within 24 hours, a first, very detailed spectrum of this new object was obtained by the UVES high-dispersion spectrograph on the 8.2-m VLT KUEYEN telescope at the ESO Paranal Observatory (Chile). It allowed to determine the distance as about 2,650 million light-years (redshift 0.1685). Continued observations with the FORS1 and FORS2 multi-mode instruments on the VLT during the following month allowed an international team of astronomers [1] to document in unprecedented detail the changes in the spectrum of the optical afterglow of this gamma-ray burst . Their detailed report appears in the June 19 issue of the research journal "Nature". The spectra show the gradual and clear emergence of a supernova spectrum of the most energetic class known, a "hypernova" . This is caused by the explosion of a very heavy star - presumably over 25 times heavier than the Sun. The measured expansion velocity (in excess of 30,000 km/sec) and the total energy released were exceptionally high, even within the elect hypernova class. From a comparison with more nearby hypernovae, the astronomers are able to fix with good accuracy the moment of the stellar explosion. It turns out to be within an interval of plus/minus two days of the gamma-ray burst. This unique conclusion provides compelling evidence that the two events are directly connected. These observations therefore indicate a common physical process behind the hypernova explosion and the associated emission of strong gamma-ray radiation. The team concludes that it is likely to be due to the nearly instantaneous, non-symmetrical collapse of the inner region of a highly developed star (known as the "collapsar" model) . The March 29 gamma-ray burst will pass into the annals of astrophysics as a rare "type-defining event", providing conclusive evidence of a direct link between cosmological gamma-ray bursts and explosions of very massive stars . PR Photo 17a/03 : Image of the optical afterglow of GRB 030329 (VLT FORS1+2). PR Photo 17b/03 : A series of VLT spectra of the optical afterglow of GRB 030329. What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the dramatic events known as "gamma-ray bursts (GRBs)" . They were first detected in the late 1960's by sensitive instruments on-board orbiting military satellites, launched for the surveillance and detection of nuclear tests. Originating, not on the Earth, but far out in space, these short flashes of energetic gamma-rays last from less than a second to several minutes. Despite major observational efforts, it is only within the last six years that it has become possible to pinpoint with some accuracy the sites of some of these events. With the invaluable help of comparatively accurate positional observations of the associated X-ray emission by various X-ray satellite observatories since early 1997, astronomers have until now identified about fifty short-lived sources of optical light associated with GRBs (the "optical afterglows"). Most GRBs have been found to be situated at extremely large ("cosmological") distances. This implies that the energy released in a few seconds during such an event is larger than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are indeed the most powerful events since the Big Bang known in the Universe, cf. ESO PR 08/99 and ESO PR 20/00 . During the past years circumstantial evidence has mounted that GRBs signal the collapse of massive stars. This was originally based on the probable association of one unusual gamma-ray burst with a supernova ("SN 1998bw", also discovered with ESO telescopes, cf. ESO PR 15/98 ). More clues have surfaced since, including the association of GRBs with regions of massive star-formation in distant galaxies, tantalizing evidence of supernova-like light-curve "bumps" in the optical afterglows of some earlier bursts, and spectral signatures from freshly synthesized elements, observed by X-ray observatories. VLT observations of GRB 030329 ESO PR Photo 17a/03 ESO PR Photo 17a/03 [Preview - JPEG: 588 x 400 pix - 61k [Normal - JPEG: 1176 x 800 pix - 688k] ESO PR Photo 17b/03 ESO PR Photo 17b/03 [Preview - JPEG: 400 x 509 pix - 52k [Normal - JPEG: 800 x 1018 pix - 288k] Captions : PR Photo 17a/03 is reproduced from a CCD-exposure, obtained with the FORS 1 and 2 multi-mode instruments at the 8.2-m VLT telescopes. It shows the fading image of the optical afterglow of GRB 030329 , as seen on April 3 (four days after the GRB event) and May 1, 2003. PR Photo 17b/03 displays a series of VLT-FORS-spectra, showing the spectral evolution of the hypernova (designated SN 2003dh [2]) underlying the gamma-ray burst GRB 030329 (black curves). The red-dotted spectra are those of an earlier, nearby hypernova, SN 1998bw , observed with various ESO telescopes. The elapsed time (days in the rest frame of the object) since the explosion is indicated. There is a striking similarity between the spectra of the two hypernovae, also in their evolution with time. This allowed a precise dating of the explosion of the hypernova underlying GRB 030329. On March 29, 2003 (at exactly 11:37:14.67 hrs UT) NASA's High Energy Transient Explorer (HETE-II) detected a very bright gamma-ray burst. Following identification of the "optical afterglow" by a 40-inch telescope at the Siding Spring Observatory (Australia), the redshift of the burst [3] was determined as 0.1685 by means of a high-dispersion spectrum obtained with the UVES spectrograph at the 8.2-m VLT KUEYEN telescope at the ESO Paranal Observatory (Chile). The corresponding distance is about 2,650 million light-years. This is the nearest normal GRB ever detected, therefore providing the long-awaited opportunity to test the many hypotheses and models which have been proposed since the discovery of the first GRBs in the late 1960's. With this specific aim, the ESO-lead team of astronomers [1] now turned to two other powerful instruments at the ESO Very Large Telescope (VLT), the multi-mode FORS1 and FORS2 camera/spectrographs. Over a period of one month, until May 1, 2003, spectra of the fading object were obtained at regular rate, securing a unique set of observational data that documents the physical changes in the remote object in unsurpassed detail. The hypernova connection Based on a careful study of these spectra, the astronomers are now presenting their interpretation of the GRB 030329 event in a research paper appearing in the international journal "Nature" on Thursday, June 19. Under the prosaic title "A very energetic supernova associated with the gamma-ray burst of 29 March 2003", no less than 27 authors from 17 research institutes, headed by Danish astronomer Jens Hjorth conclude that there is now irrefutable evidence of a direct connection between the GRB and the "hypernova" explosion of a very massive, highly evolved star. This is based on the gradual "emergence" with time of a supernova-type spectrum, revealing the extremely violent explosion of a star. With velocities well in excess of 30,000 km/sec (i.e., over 10% of the velocity of light), the ejected material is moving at record speed, testifying to the enormous power of the explosion. Hypernovae are rare events and they are probably caused by explosion of stars of the so-called "Wolf-Rayet" type [4]. These WR-stars were originally formed with a mass above 25 solar masses and consisted mostly of hydrogen. Now in their WR-phase, having stripped themselves of their outer layers, they consist almost purely of helium, oxygen and heavier elements produced by intense nuclear burning during the preceding phase of their short life. " We have been waiting for this one for a long, long time ", says Jens Hjorth , " this GRB really gave us the missing information. From these very detailed spectra, we can now confirm that this burst and probably other long gamma-ray bursts are created through the core collapse of massive stars. Most of the other leading theories are now unlikely. " A "type-defining event" His colleague, ESO-astronomer Palle Møller , is equally content: " What really got us at first was the fact that we clearly detected the supernova signatures already in the first FORS-spectrum taken only four days after the GRB was first observed - we did not expect that at all. As we were getting more and more data, we realised that the spectral evolution was almost completely identical to that of the hypernova seen in 1998. The similarity of the two then allowed us to establish a very precise timing of the present supernova event ". The astronomers determined that the hypernova explosion (designated SN 2003dh [2]) documented in the VLT spectra and the GRB-event observed by HETE-II must have occurred at very nearly the same time. Subject to further refinement, there is at most a difference of 2 days, and there is therefore no doubt whatsoever, that the two are causally connected. " Supernova 1998bw whetted our appetite, but it took 5 more years before we could confidently say, we found the smoking gun that nailed the association between GRBs and SNe " adds Chryssa Kouveliotou of NASA. " GRB 030329 may well turn out to be some kind of 'missing link' for GRBs. " In conclusion, GRB 030329 was a rare "type-defining" event that will be recorded as a watershed in high-energy astrophysics . What really happened on March 29 (or 2,650 million years ago)? Here is the complete story about GRB 030329, as the astronomers now read it. Thousands of years prior to this explosion, a very massive star, running out of hydrogen fuel, let loose much of its outer envelope, transforming itself into a bluish Wolf-Rayet star [3]. The remains of the star contained about 10 solar masses worth of helium, oxygen and heavier elements. In the years before the explosion, the Wolf-Rayet star rapidly depleted its remaining fuel. At some moment, this suddenly triggered the hypernova/gamma-ray burst event. The core collapsed, without the outer part of the star knowing. A black hole formed inside, surrounded by a disk of accreting matter. Within a few seconds, a jet of matter was launched away from that black hole. The jet passed through the outer shell of the star and, in conjunction with vigorous winds of newly formed radioactive nickel-56 blowing off the disk inside, shattered the star. This shattering, the hypernova, shines brightly because of the presence of nickel. Meanwhile, the jet plowed into material in the vicinity of the star, and created the gamma-ray burst which was recorded some 2,650 million years later by the astronomers on Earth. The detailed mechanism for the production of gamma rays is still a matter of debate but it is either linked to interactions between the jet and matter previously ejected from the star, or to internal collisions inside the jet itself. This scenario represents the "collapsar" model, introduced by American astronomer Stan Woosley (University of California, Santa Cruz) in 1993 and a member of the current team, and best explains the observations of GRB 030329. " This does not mean that the gamma-ray burst mystery is now solved ", says Woosley . " We are confident now that long bursts involve a core collapse and a hypernova, likely creating a black hole. We have convinced most skeptics. We cannot reach any conclusion yet, however, on what causes the short gamma-ray bursts, those under two seconds long ."

  3. Orbits and masses in the young triple system TWA 5

    NASA Astrophysics Data System (ADS)

    Köhler, R.; Ratzka, T.; Petr-Gotzens, M. G.; Correia, S.

    2013-10-01

    Aims: We aim to improve the orbital elements and determine the individual masses of the components in the triple system TWA 5. Methods: Five new relative astrometric positions in the H band were recorded with the adaptive optics system at the Very Large Telescope (VLT). We combine them with data from the literature and a measurement in the Ks band. We derive an improved fit for the orbit of TWA 5Aa-b around each other. Furthermore, we use the third component, TWA 5B, as an astrometric reference to determine the motion of Aa and Ab around their center of mass and compute their mass ratio. Results: We find an orbital period of 6.03 ± 0.01 years and a semi-major axis of 63.7 ± 0.2 mas (3.2 ± 0.1 AU). With the trigonometric distance of 50.1 ± 1.8 pc, this yields a system mass of 0.9 ± 0.1 M⊙, where the error is dominated by the error of the distance. The dynamical mass agrees with the system mass predicted by a number of theoretical models if we assume that TWA5 is at the young end of the age range of the TW Hydrae association. We find a mass ratio of MAb/MAa = 1.3-0.4+0.6 , where the less luminous component Ab is more massive. This result is likely to be a consequence of the large uncertainties due to the limited orbital coverage of the observations. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 079.C-0103, 081.C-0393, 386.C-0205, 087.C-0209, 088.C-0046, 089.C-0167, and 090.C-0184.

  4. Gas dynamics in tidal dwarf galaxies: Disc formation at z = 0

    NASA Astrophysics Data System (ADS)

    Lelli, Federico; Duc, Pierre-Alain; Brinks, Elias; Bournaud, Frédéric; McGaugh, Stacy S.; Lisenfeld, Ute; Weilbacher, Peter M.; Boquien, Médéric; Revaz, Yves; Braine, Jonathan; Koribalski, Bärbel S.; Belles, Pierre-Emmanuel

    2015-12-01

    Tidal dwarf galaxies (TDGs) are recycled objects that form within the collisional debris of interacting and merging galaxies. They are expected to be devoid of non-baryonic dark matter, since they can only form from dissipative material ejected from the discs of the progenitor galaxies. We investigate the gas dynamics in a sample of six bona fide TDGs around three interacting and post-interacting systems: NGC 4694, NGC 5291, and NGC 7252 ("Atoms for Peace"). For NGC 4694 and NGC 5291, we analyse existing H I data from the Very Large Array (VLA), while for NGC 7252 we present new H I observations from the Jansky VLA, together with long-slit and integral-field optical spectroscopy. For all six TDGs, the H I emission can be described by rotating disc models. These H I discs, however, have undergone less than a full rotation since the time of the interaction/merger event, raising the question of whether they are in dynamical equilibrium. Assuming that these discs are in equilibrium, the inferred dynamical masses are consistent with the observed baryonic masses, implying that TDGs are devoid of dark matter. This puts constraints on putative "dark discs" (either baryonic or non-baryonic) in the progenitor galaxies. Moreover, TDGs seem to systematically deviate from the baryonic Tully-Fisher relation. These results provide a challenging test for alternative theories like MOND. Based on observations made with ESO telescopes at Paranal Observatory under programmes 65.O-0563, 67.B-0049, and 083.B-0647.Appendices are available in electronic form at http://www.aanda.orgThe reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A113

  5. High-contrast observations of (136108) Haumea. A crystalline water-ice multiple system

    NASA Astrophysics Data System (ADS)

    Dumas, C.; Carry, B.; Hestroffer, D.; Merlin, F.

    2011-04-01

    Context. The trans-Neptunian region of the Solar System is populated by a wide variety of icy bodies showing great diversity in orbital behavior, size, surface color, and composition. One can also see there are dynamical families and binary systems. One surprising feature detected in the spectra of some of the largest trans-Neptunians is the presence of crystalline water-ice. This is the case for the large TNO (136 108) Haumea (2003 EL61). Aims: We seek to constrain the state of the water ice of Haumea and its satellites and to investigate possible energy sources that maintain the water ice in its crystalline form. Methods: Spectro-imaging observations in the near infrared were performed with the integral field spectrograph SINFONI mounted on UT4 at the ESO Very Large Telescope. The spectra of both Haumea and its larger satellite Hi'iaka were analyzed. Relative astrometry of the components was also measured, providing a check of the orbital solutions and equinox seasons. Results: We describe the physical characteristics of the crystalline water-ice present on the surface of Haumea and its largest satellite Hi'iaka and analyze possible sources of heating to maintain water in a crystalline state: tidal dissipation in the system components vs. radiogenic source. The surface of Hi'iaka appears to be covered by large grains of water ice, almost entirely in its crystalline form. Under some restricted conditions, both radiogenic heating and tidal forces between Haumea and Hi'iaka could provide the energy needed to maintain the ice in its crystalline state. Based on observations collected at the European Southern Observatory, Paranal, Chile - 60.A-9235.

  6. MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397. I. The first comprehensive HRD of a globular cluster

    NASA Astrophysics Data System (ADS)

    Husser, Tim-Oliver; Kamann, Sebastian; Dreizler, Stefan; Wendt, Martin; Wulff, Nina; Bacon, Roland; Wisotzki, Lutz; Brinchmann, Jarle; Weilbacher, Peter M.; Roth, Martin M.; Monreal-Ibero, Ana

    2016-04-01

    Aims: We demonstrate the high multiplex advantage of crowded field 3D spectroscopy with the new integral field spectrograph MUSE by means of a spectroscopic analysis of more than 12 000 individual stars in the globular cluster NGC 6397. Methods: The stars are deblended with a point spread function fitting technique, using a photometric reference catalogue from HST as prior, including relative positions and brightnesses. This catalogue is also used for a first analysis of the extracted spectra, followed by an automatic in-depth analysis via a full-spectrum fitting method based on a large grid of PHOENIX spectra. Results: We analysed the largest sample so far available for a single globular cluster of 18 932 spectra from 12 307 stars in NGC 6397. We derived a mean radial velocity of vrad = 17.84 ± 0.07 km s-1 and a mean metallicity of [Fe/H] = -2.120 ± 0.002, with the latter seemingly varying with temperature for stars on the red giant branch (RGB). We determine Teff and [Fe/H] from the spectra, and log g from HST photometry. This is the first very comprehensive Hertzsprung-Russell diagram (HRD) for a globular cluster based on the analysis of several thousands of stellar spectra, ranging from the main sequence to the tip of the RGB. Furthermore, two interesting objects were identified; one is a post-AGB star and the other is a possible millisecond-pulsar companion. Data products are available at http://muse-vlt.eu/scienceBased on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory, Paranal, Chile (ESO Programme ID 60.A-9100(C)).

  7. The brightest pure-H ultracool white dwarf

    NASA Astrophysics Data System (ADS)

    Catalán, S.; Tremblay, P.-E.; Pinfield, D. J.; Smith, L. C.; Zhang, Z. H.; Napiwotzki, R.; Marocco, F.; Day-Jones, A. C.; Gomes, J.; Forde, K. P.; Lucas, P. W.; Jones, H. R. A.

    2012-10-01

    We report the identification of LSR J0745+2627 in the United Kingdom InfraRed Telescope Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) as a cool white dwarf with kinematics and age compatible with the thick-disk/halo population. LSR J0745+2627 has a high proper motion (890 mas/yr) and a high reduced proper motion value in the J band (HJ = 21.87). We show how the infrared-reduced proper motion diagram is useful for selecting a sample of cool white dwarfs with low contamination. LSR J0745+2627 is also detected in the Sloan Digital Sky Survey (SDSS) and the Wide-field Infrared Survey Explorer (WISE). We have spectroscopically confirmed this object as a cool white dwarf using X-Shooter on the Very Large Telescope. A detailed analysis of its spectral energy distribution reveals that its atmosphere is compatible with a pure-H composition model with an effective temperature of 3880 ± 90 K. This object is the brightest pure-H ultracool white dwarf (Teff < 4000 K) ever identified. We have constrained the distance (24-45 pc), space velocities and age considering different surface gravities. The results obtained suggest that LSR J0745+2627 belongs to the thick-disk/halo population and is also one of the closest ultracool white dwarfs. Based on observations made with ESO telescopes at the Paranal Observatory under programme ID 088.C-0048(B).FITS version of the reduced spectrum is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/L3

  8. Carbon stars in the X-Shooter Spectral Library

    NASA Astrophysics Data System (ADS)

    Gonneau, A.; Lançon, A.; Trager, S. C.; Aringer, B.; Lyubenova, M.; Nowotny, W.; Peletier, R. F.; Prugniel, P.; Chen, Y.-P.; Dries, M.; Choudhury, O. S.; Falcón-Barroso, J.; Koleva, M.; Meneses-Goytia, S.; Sánchez-Blázquez, P.; Vazdekis, A.

    2016-05-01

    We provide a new collection of spectra of 35 carbon stars obtained with the ESO/VLT X-Shooter instrument as part of the X-Shooter Spectral Library project. The spectra extend from 0.3 μm to 2.4 μm with a resolving power above ~8000. The sample contains stars with a broad range of (J - K) color and pulsation properties located in the Milky Way and the Magellanic Clouds. We show that the distribution of spectral properties of carbon stars at a given (J - K) color becomes bimodal (in our sample) when (J - K) is larger than about 1.5. We describe the two families of spectra that emerge, characterized by the presence or absence of the absorption feature at 1.53 μm, generally associated with HCN and C2H2. This feature appears essentially only in large-amplitude variables, though not in all observations. Associated spectral signatures that we interpret as the result of veiling by circumstellar matter, indicate that the 1.53 μm feature might point to episodes of dust production in carbon-rich Miras. Based on observations collected at the European Southern Observatory, Paranal, Chile, Prog. ID 084.B-0869(A/B), 085.B-0751(A/B), 189.B-0925(A/B/C/D).Tables 1, B.1, E.1, E.2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A36The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A36

  9. Deriving temperature, mass, and age of evolved stars from high-resolution spectra. Application to field stars and the open cluster IC 4651

    NASA Astrophysics Data System (ADS)

    Biazzo, K.; Pasquini, L.; Girardi, L.; Frasca, A.; da Silva, L.; Setiawan, J.; Marilli, E.; Hatzes, A. P.; Catalano, S.

    2007-12-01

    Aims:We test our capability of deriving stellar physical parameters of giant stars by analysing a sample of field stars and the well studied open cluster IC 4651 with different spectroscopic methods. Methods: The use of a technique based on line-depth ratios (LDRs) allows us to determine with high precision the effective temperature of the stars and to compare the results with those obtained with a classical LTE abundance analysis. Results: (i) For the field stars we find that the temperatures derived by means of the LDR method are in excellent agreement with those found by the spectral synthesis. This result is extremely encouraging because it shows that spectra can be used to firmly derive population characteristics (e.g., mass and age) of the observed stars. (ii) For the IC 4651 stars we use the determined effective temperature to derive the following results. a) The reddening E(B-V) of the cluster is 0.12±0.02, largely independent of the color-temperature calibration used. b) The age of the cluster is 1.2±0.2 Gyr. c) The typical mass of the analysed giant stars is 2.0±0.2~M⊙. Moreover, we find a systematic difference of about 0.2 dex in log g between spectroscopic and evolutionary values. Conclusions: We conclude that, in spite of known limitations, a classical spectroscopic analysis of giant stars may indeed result in very reliable stellar parameters. We caution that the quality of the agreement, on the other hand, depends on the details of the adopted spectroscopic analysis. Based on observations collected at the ESO telescopes at the Paranal and La Silla Observatories, Chile.

  10. The geometry of the close environment of SV Piscium as probed by VLTI/MIDI

    NASA Astrophysics Data System (ADS)

    Klotz, D.; Sacuto, S.; Kerschbaum, F.; Paladini, C.; Olofsson, H.; Hron, J.

    2012-05-01

    Context. SV Psc is an asymptotic giant branch (AGB) star surrounded by an oxygen-rich dust envelope. The mm-CO line profile of the object's outflow shows a clear double-component structure. Because of the high angular resolution, mid-IR interferometry may give strong constraints on the origin of this composite profile. Aims: The aim of this work is to investigate the morphology of the environment around SV Psc using high-angular resolution interferometry observations in the mid-IR with the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI). Methods: Interferometric data in the N-band taken at different baseline lengths (ranging from 32-64 m) and position angles (73-142°) allow a study of the morphology of the circumstellar environment close to the star. The data are interpreted on the basis of 2-dimensional, chromatic geometrical models using the fitting software tool GEM-FIND developed for this purpose. Results: The results favor two scenarios: (i) the presence of a highly inclined, optically thin, dusty disk surrounding the central star; (ii) the presence of an unresolved binary companion at a separation of 13.7+4.2-4.8 AU and a position angle of 121.8°+15.4°-24.5° NE. The derived orbital period of the binary is 38.1+20.4-22.6 yr. This detection is in good agreement with hydrodynamic simulations showing that a close companion could be responsible for the entrainment of the gas and dust into a circumbinary structure. Based on observations made with ESO telescopes at La Silla Paranal Observatory under program IDs 082.D-0389 and 086.D-0069.

  11. The HELLAS2XMM survey. XI. Unveiling the nature of X-ray bright optically normal galaxies

    NASA Astrophysics Data System (ADS)

    Civano, F.; Mignoli, M.; Comastri, A.; Vignali, C.; Fiore, F.; Pozzetti, L.; Brusa, M.; La Franca, F.; Matt, G.; Puccetti, S.; Cocchia, F.

    2007-12-01

    Aims:X-ray bright optically normal galaxies (XBONGs) constitute a small but significant fraction of hard X-ray selected sources in recent Chandra and XMM-Newton surveys. Even though several possibilities were proposed to explain why a relatively luminous hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the nature of XBONGs is still subject of debate. We aim to better understand their nature by means of a multiwavelength and morphological analysis of a small sample of these sources. Methods: Good-quality photometric near-infrared data (ISAAC/VLT) of four low-redshift (z = 0.1{-}0.3) XBONGs, selected from the HELLAS2XMM survey, have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique through the least-squares fitting program GALFIT. Results: The surface brightness decomposition allows us to reveal a nuclear point-like source, likely to be responsible for the X-ray emission, in two out of the four sources. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4π) at the nuclear source, combined with the low nuclear activity, may explain the lack of optical emission lines. The third XBONG is associated with an X-ray extended source and no nuclear excess is detected in the near infrared at the limits of our observations. The last source is associated to a close (d≤ 1 arcsec) double system and the fitting procedure cannot achieve a firm conclusion. Based on observations made at the European Southern Observatory, Paranal, Chile (ESO Programme ID 69.A-0554).

  12. Precision Ephemerides for Gravitational-wave Searches. I. Sco X-1

    NASA Astrophysics Data System (ADS)

    Galloway, Duncan K.; Premachandra, Sammanani; Steeghs, Danny; Marsh, Tom; Casares, Jorge; Cornelisse, Rémon

    2014-01-01

    Rapidly rotating neutron stars are the only candidates for persistent high-frequency gravitational wave emission, for which a targeted search can be performed based on the spin period measured from electromagnetic (e.g., radio and X-ray) observations. The principal factor determining the sensitivity of such searches is the measurement precision of the physical parameters of the system. Neutron stars in X-ray binaries present additional computational demands for searches due to the uncertainty in the binary parameters. We present the results of a pilot study with the goal of improving the measurement precision of binary orbital parameters for candidate gravitational wave sources. We observed the optical counterpart of Sco X-1 in 2011 June with the William Herschel Telescope and also made use of Very Large Telescope observations in 2011 to provide an additional epoch of radial-velocity measurements to earlier measurements in 1999. From a circular orbit fit to the combined data set, we obtained an improvement of a factor of 2 in the orbital period precision and a factor of 2.5 in the epoch of inferior conjunction T 0. While the new orbital period is consistent with the previous value of Gottlieb et al., the new T 0 (and the amplitude of variation of the Bowen line velocities) exhibited a significant shift, which we attribute to variations in the emission geometry with epoch. We propagate the uncertainties on these parameters through to the expected Advanced LIGO-Virgo detector network observation epochs and quantify the improvement obtained with additional optical observations. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 087.D-0278.

  13. The environment of the fast rotating star Achernar. II. Thermal infrared interferometry with VLTI/MIDI

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Domiciano de Souza, A.; Kanaan, S.; Meilland, A.; Spang, A.; Stee, Ph.

    2009-01-01

    Context: As is the case of several other Be stars, Achernar is surrounded by an envelope, recently detected by near-IR interferometry. Aims: We search for the signature of circumstellar emission at distances of a few stellar radii from Achernar, in the thermal IR domain. Methods: We obtained interferometric observations on three VLTI baselines in the N band (8-13 μm), using the MIDI instrument. Results: From the measured visibilities, we derive the angular extension and flux contribution of the N band circumstellar emission in the polar direction of Achernar. The interferometrically resolved polar envelope contributes 13.4 ± 2.5% of the photospheric flux in the N band, with a full width at half maximum of 9.9 ± 2.3 mas (≈6 R_star). This flux contribution is in good agreement with the photometric IR excess of 10-20% measured by fitting the spectral energy distribution. Due to our limited azimuth coverage, we can only establish an upper limit of 5-10% for the equatorial envelope. We compare the observed properties of the envelope with an existing model of this star computed with the SIMECA code. Conclusions: The observed extended emission in the thermal IR along the polar direction of Achernar is well reproduced by the existing SIMECA model. Already detected at 2.2 μm, this polar envelope is most probably an observational signature of the fast wind ejected by the hot polar caps of the star. Based on observations made with ESO Telescopes at Paranal Observatory under programs 078.D-0295(C), (D) and (E). Table 2 is only available in electronic form at http://www.aanda.org

  14. Extended envelopes around Galactic Cepheids. IV. T Monocerotis and X Sagittarii from mid-infrared interferometry with VLTI/MIDI

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Mérand, A.; Kervella, P.; Chesneau, O.; Breitfelder, J.; Gieren, W.

    2013-10-01

    Aims: We study the close environment of nearby Cepheids using high spatial resolution observations in the mid-infrared with the VLTI/MIDI instrument, a two-beam interferometric recombiner. Methods: We obtained spectra and visibilities for the classical Cepheids X Sgr and T Mon. We fitted the MIDI measurements, supplemented by B,V,J,H,K literature photometry, with the numerical transfer code DUSTY to determine the dust shell parameters. We used a typical dust composition for circumstellar environments. Results: We detect an extended dusty environment in the spectra and visibilities for both stars, although T Mon might suffer from thermal background contamination. We attribute this to the presence of a circumstellar envelope (CSE) surrounding the Cepheids. This is optically thin for X Sgr (τ0.55 μm = 0.008), while it appears to be thicker for T Mon (τ0.55 μm = 0.15). They are located at about 15-20 stellar radii. Following our previous work, we derived a likely period-excess relation in the VISIR PAH1 filter, f8.6 μm[%]= 0.81(±0.04)P[day]. We argue that the impact of CSEs on the mid-IR period-luminosity (P - L) relation cannot be negligible because they can bias the Cepheid brightness by up to about 30%. For the K-band P - L relation, the CSE contribution seems to be lower (<5%), but the sample needs to be enlarged to firmly conclude that the impact of the CSEs is negligible in this band. Based on observations made with ESO telescopes at Paranal observatory under program ID 082.D-0066Table 3 is only available in electronic form at http://www.aanda.org

  15. Modelling the atmosphere of the carbon-rich Mira RU Virginis

    NASA Astrophysics Data System (ADS)

    Rau, G.; Paladini, C.; Hron, J.; Aringer, B.; Groenewegen, M. A. T.; Nowotny, W.

    2015-11-01

    Context. We study the atmosphere of the carbon-rich Mira RU Vir using the mid-infrared high spatial resolution interferometric observations from VLTI/MIDI. Aims: The aim of this work is to analyse the atmosphere of the carbon-rich Mira RU Vir with hydrostatic and dynamic models, in this way deepening the knowledge of the dynamic processes at work in carbon-rich Miras. Methods: We compare spectro-photometric and interferometric measurements of this carbon-rich Mira AGB star with the predictions of different kinds of modelling approaches (hydrostatic model atmospheres plus MOD-More Of Dusty, self-consistent dynamic model atmospheres). A geometric model fitting tool is used for a first interpretation of the interferometric data. Results: The results show that a joint use of different kinds of observations (photometry, spectroscopy, interferometry) is essential for shedding light on the structure of the atmosphere of a carbon-rich Mira. The dynamic model atmospheres fit the ISO spectrum well in the wavelength range λ = [2.9,25.0] μm. Nevertheless, a discrepancy is noticeable both in the SED (visible) and in the interferometric visibilities (shape and level), which is a possible explanation are intra-/inter-cycle variations in the dynamic model atmospheres, as well as in the observations. The presence of a companion star and/or a disk or a decrease in mass loss within the past few hundred years cannot be excluded, but these explanations are considered unlikely. Based on observations made with ESO telescopes at La Silla Paranal Observatory under programme IDs: 085.D-0756 and 093. D-0708.Appendix A is available in electronic form at http://www.aanda.org

  16. A Spectroscopic Survey and Analysis of Bright, Hydrogen-rich White Dwarfs

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Bergeron, P.; Ruiz, M. T.

    2011-12-01

    We have conducted a spectroscopic survey of over 1300 bright (V <= 17.5), hydrogen-rich white dwarfs based largely on the last published version of the McCook & Sion catalog. The complete results from our survey, including the spectroscopic analysis of over 1100 DA white dwarfs, are presented. High signal-to-noise ratio optical spectra were obtained for each star and were subsequently analyzed using our standard spectroscopic technique where the observed Balmer line profiles are compared to synthetic spectra computed from the latest generation of model atmospheres appropriate for these stars. First, we present the spectroscopic content of our sample, which includes many misclassifications as well as several DAB, DAZ, and magnetic white dwarfs. Next, we look at how the new Stark broadening profiles affect the determination of the atmospheric parameters. When necessary, specific models and analysis techniques are used to derive the most accurate atmospheric parameters possible. In particular, we employ M dwarf templates to obtain better estimates of the atmospheric parameters for those white dwarfs that are in DA+dM binary systems. Certain unique white dwarfs and double-degenerate binary systems are also analyzed in greater detail. We then examine the global properties of our sample including the mass distribution and their distribution as a function of temperature. We then proceed to test the accuracy and robustness of our method by comparing our results to those of other surveys such as SPY and Sloan Digital Sky Survey. Finally, we revisit the ZZ Ceti instability strip and examine how the determination of its empirical boundaries is affected by the latest line profile calculations. Based on observations made with ESO Telescopes at the La Silla or Paranal Observatories under program ID 078.D-0824(A).

  17. A Statistical Study of Multiply Imaged Systems in the Lensing Cluster Abell 68

    NASA Astrophysics Data System (ADS)

    Richard, Johan; Kneib, Jean-Paul; Jullo, Eric; Covone, Giovanni; Limousin, Marceau; Ellis, Richard; Stark, Daniel; Bundy, Kevin; Czoske, Oliver; Ebeling, Harald; Soucail, Geneviève

    2007-06-01

    We have carried out an extensive spectroscopic survey with the Keck and VLT telescopes, targeting lensed galaxies in the background of the massive cluster Abell 68. Spectroscopic measurements are obtained for 26 lensed images, including a distant galaxy at z=5.4. Redshifts have been determined for 5 out of 7 multiple-image systems. Through a careful modeling of the mass distribution in the strongly lensed regime, we derive a mass estimate of 5.3×1014 Msolar within 500 kpc. Our mass model is then used to constrain the redshift distribution of the remaining multiply imaged and singly imaged sources. This enables us to examine the physical properties for a subsample of 7 Lyα emitters at 1.7<~z<~5.5, whose unlensed luminosities of ~=1041 ergs s-1 are fainter than similar objects found in blank fields. Of particular interest is an extended Lyα emission region surrounding a highly magnified source at z=2.6, detected in VIMOS integral field spectroscopy data. The physical scale of the most distant lensed source at z=5.4 is very small (<300 pc), similar to the lensed z~5.6 emitter reported by Ellis et al. in Abell 2218. New photometric data available for Abell 2218 allow for a direct comparison between these two unique objects. Our survey illustrates the practicality of using lensing clusters to probe the faint end of the z~2-5 Lyα luminosity function in a manner that is complementary to blank-field narrowband surveys. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Also based on observations collected at the Very Large Telescope (Antu/UT1 and Melipal/UT3), European Southern Observatory, Paranal, Chile (ESO programs 070.A-0643 and 073.A-0774), the NASA/ESA Hubble Space Telescope (program 8249) obtained at the Space Telescope Science Institute, which is operated by AURA under NASA contract NAS5-26555, and the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  18. Astronomy in Australia

    NASA Astrophysics Data System (ADS)

    Watson, F.; Couch, W.

    2017-12-01

    Australians have watched the sky for tens of thousands of years. The nineteenth century saw the foundation of government observatories in capital cities such as Sydney and Melbourne. While early twentieth-century astronomy focused largely on solar physics, the advent of radio astronomy at the end of the Second World War enabled Australia to take a leading role in the new science, with particular emphasis on low-frequency studies. Today, the radio quietness of its outback interior provides an excellent location for the Australian core of the Square Kilometre Array. Australian optical astronomy has flourished since the 1960s, with the 3.9-metre Anglo-Australian Telescope becoming the principal national facility in 1974. Access to ESO’s facilities at the La Silla Paranal Observatory is warmly welcomed by all Australian astronomers.

  19. Feeling the Heat

    NASA Astrophysics Data System (ADS)

    2004-05-01

    Successful "First Light" for the Mid-Infrared VISIR Instrument on the VLT Summary Close to midnight on April 30, 2004, intriguing thermal infrared images of dust and gas heated by invisible stars in a distant region of our Milky Way appeared on a computer screen in the control room of the ESO Very Large Telescope (VLT). These images mark the successful "First Light" of the VLT Imager and Spectrometer in the InfraRed (VISIR), the latest instrument to be installed on this powerful telescope facility at the ESO Paranal Observatory in Chile. The event was greeted with a mixture of delight, satisfaction and some relief by the team of astronomers and engineers from the consortium of French and Dutch Institutes and ESO who have worked on the development of VISIR for around 10 years [1]. Pierre-Olivier Lagage (CEA, France), the Principal Investigator, is content : "This is a wonderful day! A result of many years of dedication by a team of engineers and technicians, who can today be proud of their work. With VISIR, astronomers will have at their disposal a great instrument on a marvellous telescope. And the gain is enormous; 20 minutes of observing with VISIR is equivalent to a whole night of observing on a 3-4m class telescope." Dutch astronomer and co-PI Jan-Willem Pel (Groningen, The Netherlands) adds: "What's more, VISIR features a unique observing mode in the mid-infrared: spectroscopy at a very high spectral resolution. This will open up new possibilities such as the study of warm molecular hydrogen most likely to be an important component of our galaxy." PR Photo 16a/04: VISIR under the Cassegrain focus of the Melipal telescope PR Photo 16b/04: VISIR mounted behind the mirror of the Melipal telescope PR Photo 16c/04: Colour composite of the star forming region G333.6-0.2 PR Photo 16d/04: Colour composite of the Galactic Centre PR Photo 16e/04: The Ant Planetary Nebula at 12.8 μm PR Photo 16f/04: The starburst galaxy He2-10 at 11.3μm PR Photo 16g/04: High-resolution spectrum of G333.6-0.2 around 12.8μm PR Photo 16h/04: High-resolution spectrum of the Ant Planetary Nebula around 12.8μm From cometary tails to centres of galaxies The mid-infrared spectral region extends from a few to a few tens of microns in wavelength and provides a unique view of our Universe. Optical astronomy, that is astronomy at wavelengths to which our eyes are sensitive, is mostly directed towards light emitted by gas, be it in stars, nebulae or galaxies. Mid-Infrared astronomy, however, allows us to also detect solid dust particles at temperatures of -200 to +300 °C. Dust is very abundant in the universe in many different environments, ranging from cometary tails to the centres of galaxies. This dust also often totally absorbs and hence blocks the visible light reaching us from such objects. Red light, and especially infrared light, can propagate much better in dust clouds. Many important astrophysical processes occur in regions of high obscuration by dust, most notably star formation and the late stages of their evolution, when stars that have burnt nearly all their fuel shed much of their outer layers and dust grains form in their "stellar wind". Stars are born in so-called molecular clouds. The proto-stars feed from these clouds and are shielded from the outside by them. Infrared is a tool - very much as ultrasound is for medical inspections - for looking into those otherwise hidden regions to study the stellar "embryos". It is thus crucial to also observe the Universe in the infrared and mid-infrared. Unfortunately, there are also infrared-emitting molecules in the Earth's atmosphere, e.g. water vapour, Nitric Oxides, Ozone, Methane. Because of these gases, the atmosphere is completely opaque at certain wavelengths, except in a few "windows" where the Earth's atmosphere is transparent. Even in these windows, however, the sky and telescope emit radiation in the infrared to an extent that observing in the mid-infrared at night is comparable to trying to do optical astronomy in daytime. Ground-based infrared astronomers have thus become extremely adept at developing special techniques called "chopping' and "nodding" for detecting the extremely faint astronomical signals against this unwanted bright background [3]. VISIR: an extremely complex instrument VISIR - the VLT Imager and Spectrometer in the InfraRed - is a complex multi-mode instrument designed to operate in the 10 and 20 μm atmospheric windows, i.e. at wavelengths up to about 40 times longer than visible light and to provide images as well as spectra at a wide range of resolving power up to ~ 30.000. It can sample images down to the diffraction limit of the 8.2-m Melipal telescope (0.27 arcsec at 10 μm wavelength, i.e. corresponding to a resolution of 500 m on the Moon), which is expected to be reached routinely due to the excellent seeing conditions experienced for a large fraction of the time at the VLT [2]. Because at room temperature the metal and glass of VISIR would emit strongly at exactly the same wavelengths and would swamp any faint mid-infrared astronomical signals, the whole VISIR instrument is cooled to a temperature close to -250° C and its two panoramic 256x256 pixel array detectors to even lower temperatures, only a few degrees above absolute zero. It is also kept in a vacuum tank to avoid the unavoidable condensation of water and icing which would otherwise occur. The complete instrument is mounted on the telescope and must remain rigid to within a few thousandths of a millimetre as the telescope moves to acquire and then track objects anywhere in the sky. Needless to say, this makes for an extremely complex instrument and explains the many years needed to develop and bring it to the telescope on the top of Paranal. VISIR also includes a number of important technological innovations, most notably its unique cryogenic motor drive systems comprising integrated stepper motors, gears and clutches whose shape is similar to that of the box of the famous French Camembert cheese. VISIR is mounted on Melipal ESO PR Photo 16a/04 ESO PR Photo 16a/04 VISIR under the Cassegrain focus of the Melipal telescope [Preview - JPEG: 400 x 476 pix - 271k] [Normal - JPEG: 800 x 951 pix - 600k] ESO PR Photo 16b/04 ESO PR Photo 16b/04 VISIR mounted behind the mirror of the Melipal telescope [Preview - JPEG: 400 x 603 pix - 366k] [Normal - JPEG: 800 x 1206 pix - 945k] Caption: ESO PR Photo 16a/04 shows VISIR about to be attached at the Cassegrain focus of the Melipal telescope. On ESO PR Photo 16b/04, VISIR appears much smaller once mounted behind the enormous 8.2-m diameter mirror of the Melipal telescope. The fully integrated VISIR plus all the associated equipment (amounting to a total of around 8 tons) was air freighted from Paris to Santiago de Chile and arrived at the Paranal Observatory on 25th March after a subsequent 1500 km journey by road. Following tests to confirm that nothing had been damaged, VISIR was mounted on the third VLT telescope "Melipal" on April 27th. PR Photos 16a/04 and 16b/04 show the approximately 1.6 tons of VISIR being mounted at the Cassegrain focus, below the 8.2-m main mirror. First technical light on a star was achieved on April 29th, shortly after VISIR had been cooled down to its operating temperature. This allowed to proceed with the necessary first basic operations, including focusing the telescope, and tests. While telescope focusing was one of the difficult and frequent tasks faced by astronomers in the past, this is no longer so with the active optics feature of the VLT telescopes which, in principle, has to be focused only once after which it will forever be automatically kept in perfect focus. First images and spectra from VISIR ESO PR Photo 16c/04 ESO PR Photo 16c/04 Colour composite of the star forming region G333.6-0.2 [Preview - JPEG: 400 x 477 pix - 78k] [Normal - JPEG: 800 x 954 pix - 191k] ESO PR Photo 16d/04 ESO PR Photo 16d/04 Colour composite of the Galactic Centre [Preview - JPEG: 400 x 478 pix - 159k] [Normal - JPEG: 800 x 955 pix - 348k] Caption: ESO PR Photo 16c/04 is a colour composite image of the visually obscured G333.6-0.2 star-forming region at a distance of nearly 10,000 light-years in our Milky Way galaxy. This image was made by combining three digital images of the intensity of the infrared emission at wavelengths of 11.3μm (one of the Polycyclic Aromatic Hydrocarbon features, coded blue), 12.8 μm (an emission line of [NeII], coded green) and 19μm (warm dust emission, coded red). Each pixel subtends 0.127 arcsec and the total field is ~ 33 x 33 arcsec with North at the top and East to the left. The total integration times were 13 seconds at the shortest and 35 seconds at the longer wavelengths. The brighter spots locate regions where the dust, which obscures all the visible light, has been heated by recently formed stars. ESO PR Photo 16d/04 shows another colour composite, this time of the Galactic Centre at a distance of about 30,000 light-years. It was made by combining images in filters centred at 8.6μm (Polycyclic Aromatic Hydrocarbon molecular feature - coded blue), 12.8μm ([NeII] - coded green) and 19.5μm (coded red). Each pixel subtends 0.127 arcsec and the total field is ~ 33 x 33 arcsec with North at the top and East to the left. Total integration times were 300, 160 and 300 s for the 3 filters, respectively. This region is very rich, full of stars, dust, ionised and molecular gas. One of the scientific goals will be to detect and monitor the signal from the black hole at the centre of our galaxy. ESO PR Photo 16e/04 ESO PR Photo 16e/04 The Ant Planetary Nebula at 12.8 μm [Preview - JPEG: 400 x 477 pix - 77k] [Normal - JPEG: 800 x 954 pix - 182k] Caption: ESO PR Photo 16e/04 is an image of the "Ant" Planetary Nebula (Mz3) in the narrow-band filter centred at wavelength 12.8 μm. The scale is 0.127 arcsec/pixel and the total field-of-view is 33 x 33 arcsec, with North at the top and East to the left. The total integration time was 200 seconds. Note the diffraction rings around the central star which confirm that the maximum spatial resolution possible with the 8.2-m telescope is being achieved. ESO PR Photo 16f/04 ESO PR Photo 16f/04 The starburst galaxy He2-10 at 11.3μm [Preview - JPEG: 400 x 477 pix - 69k] [Normal - JPEG: 800 x 954 pix - 172k] Caption: ESO PR Photo 16f/04 is an image at wavelength 11.3 μm of the "nearby" (distance about 30 million light-years) blue compact galaxy He2-10, which is actively forming stars. The scale is 0.127 arcsec per pixel and the full field covers 15 x 15 arcsec with North at the top and East on the left. The total integration time for this observation is one hour. Several star forming regions are detected, as well as a diffuse emission, which was unknown until these VISIR observations. The star-forming regions on the left of the image are not visible in optical images. ESO PR Photo 16g/04 ESO PR Photo 16g/04 High-resolution spectrum of G333.6-0.2 around 12.8 μm [Preview - JPEG: 652 x 400 pix - 123k] [Normal - JPEG: 1303 x 800 pix - 277k] Caption: ESO PR Photo 16g/04 is a reproduction of a high-resolution spectrum of the Ne II line (ionised Neon) at 12.8135 μm of the star-forming region G333.6-0.2 shown in ESO PR Photo 16c/04. This spectrum reveals the complex motions of the ionized gas in this region. The images are 256 x 256 frames of 50 x 50 micron pixels. The "field" direction is horizontal, with total slit length of 32.5 arcsec; North is left and South is to the right. The dispersion direction is vertical, with the wavelength increasing downward. The total integration time was 80 sec. ESO PR Photo 16h/04 ESO PR Photo 16h/04 High-resolution spectrum of the Ant nebula around 12.8 μm [Preview - JPEG: 610 x 400 pix - 354k] [Normal - JPEG: 1219 x 800 pix - 901k] Caption: ESO PR Photo 16h/04 is a reproduction of a high-resolution spectrum of the Ne II line (ionised Neon) at 12.8135 microns of the Ant Planetary Nebula, also known as Mz-3, shown in ESO PR Photo 16d/04. The technical details are similar to ESO PR Photo 16g/04. The total integration time was 120 sec. The photos above resulted from some of the first observational tests with VISIR. PR Photo 16c/04 shows the scientific "First Light" image, obtained one day later on April 30th, of a visually obscured star forming region nearly 10,000 light-years away in our galaxy, the Milky Way. The picture shown here is a false-colour image made by combining three digital images of the intensity of the infrared emission from this region at wavelengths of 11.3 μm (one of the Polycyclic Aromatic Hydrocarbon - PAH - features), 12.8 μm (an emission line of ionised neon) and 19 μm (cool dust emission). Ten times sharper Until now, an elegant way to avoid the problems caused by the emission and absorption of the atmosphere was to fly infrared telescopes on satellites as was done in the highly successful IRAS and ISO missions and currently the Spitzer observatory. For both technical and cost reasons, however, such telescopes have so far been limited to only 60-85 cm in diameter. While very sensitive therefore, the spatial resolution (sharpness) delivered by these telescopes is 10 times worse than that of the 8.2-m diameter VLT telescopes. They have also not been equipped with the very high spectral resolution capability, a feature of the VISIR instrument, which is thus expected to remain the instrument of choice for a wide range of studies for many years to come despite the competition from space. More information A corresponding [1]: The consortium of institutes responsible for building the VISIR instrument under contract to ESO comprises the CEA/DSM/DAPNIA, Saclay, France - led by the Principal Investigator (PI), Pierre-Olivier Lagage and the Netherlands Foundation for Research in Astronomy/ASTRON - (Dwingeloo, The Netherlands) with Jan-Willem Pel from Groningen University as Co-PI for the spectrometer. [2]: Stellar radiation on its way to the observer is also affected by the turbulence of the Earth's atmosphere. This is the effect which makes the stars twinkle for the human eye. While the general public enjoys this phenomenon as something that makes the night sky interesting and may be entertaining, the twinkling is a major concern for amateur and professional astronomers, as it smears out the optical images. Infrared radiation is less affected by this effect. Therefore an instrument like VISIR can make full use of the extremely high optical quality of modern telescopes, like the VLT. [3]: Observations from the ground at wavelengths of 10 to 20 μm are particularly difficult because this is the wavelength region in which both the telescope and the atmosphere emits most strongly. In order to minimize its effect, the images shown here were made by tilting the telescope secondary mirror every few seconds (chopping) and the whole telescope every minute (nodding) so that this unwanted telescope and sky background emission could be measured and subtracted from the science images faster than it varies.

  20. TNO Photometry and Spectroscopy at ESO and Calar Alto

    NASA Astrophysics Data System (ADS)

    Boehnhardt, H.; Sekiguchi, T.; Vair, M.; Hainaut, O.; Delahodde, C.; West, R. M.; Tozzi, G. P.; Barrera, L.; Birkle, K.; Watanabe, J.; Meech, K.

    New photometry and spectroscopy of Transneptunian objects (TNO) has been obtained at ESO (VLT+FORS1, NTT+SOFI) and the Calar Alto (3.5m+MOSCA) observatory. BVRI photometry of more than 10 objects confirms the general colour-colour distribution of TNOs found previously. Quasi-simultaneous spectroscopy in the visible wavelength range of 5 TNOs did not reveal any spectral signature apart from the spetral gradients which are in agreement with the broadband colours. JHK filter photometry of 3 objects indicates that the reddening may only occur in the near-IR at least in some cases. Using new observations from the ESO VLT the lightcurve, colours and spectrum of 1996TO66 are investigated: the rotation period of 6.25h is confirmed, also the change in the lightcurve between 1997 and 1998 which indicates an exceptional behaviour in this object (temporary cometary activity ?). The 1999 photometry and spectroscopy in the visible revealed solar colours, no reddening and no spectral features. V-R colour changes over the rotation phase are not found. This works is done in colaboration with:

  1. SINFONI Opens with Upbeat Chords

    NASA Astrophysics Data System (ADS)

    2004-08-01

    First Observations with New VLT Instrument Hold Great Promise [1] Summary The European Southern Observatory, the Max-Planck-Institute for Extraterrestrial Physics (Garching, Germany) and the Nederlandse Onderzoekschool Voor Astronomie (Leiden, The Netherlands), and with them all European astronomers, are celebrating the successful accomplishment of "First Light" for the Adaptive Optics (AO) assisted SINFONI ("Spectrograph for INtegral Field Observation in the Near-Infrared") instrument, just installed on ESO's Very Large Telescope at the Paranal Observatory (Chile). This is the first facility of its type ever installed on an 8-m class telescope, now providing exceptional observing capabilities for the imaging and spectroscopic studies of very complex sky regions, e.g. stellar nurseries and black-hole environments, also in distant galaxies. Following smooth assembly at the 8.2-m VLT Yepun telescope of SINFONI's two parts, the Adaptive Optics Module that feeds the SPIFFI spectrograph, the "First Light" spectrum of a bright star was recorded with SINFONI in the early evening of July 9, 2004. The following thirteen nights served to evaluate the performance of the new instrument and to explore its capabilities by test observations on a selection of exciting astronomical targets. They included the Galactic Centre region, already imaged with the NACO AO-instrument on the same telescope. Unprecedented high-angular resolution spectra and images were obtained of stars in the immediate vicinity of the massive central black hole. During the night of July 15 - 16, SINFONI recorded a flare from this black hole in great detail. Other interesting objects observed during this period include galaxies with active nuclei (e.g., the Circinus Galaxy and NGC 7469), a merging galaxy system (NGC 6240) and a young starforming galaxy pair at redshift 2 (BX 404/405). These first results were greeted with enthusiasm by the team of astronomers and engineers [2] from the consortium of German and Dutch Institutes and ESO who have worked on the development of SINFONI for nearly 7 years. The work on SINFONI at Paranal included successful commissioning in June 2004 of the Adaptive Optics Module built by ESO, during which exceptional test images were obtained of the main-belt asteroid (22) Kalliope and its moon. Moreover, the ability was demonstrated to correct the atmospheric turbulence by means of even very faint "guide" objects (magnitude 17.5), crucial for the observation of astronomical objects in many parts of the sky. SPIFFI - SPectrometer for Infrared Faint Field Imaging - was developed at the Max Planck Institute for Extraterrestrische Physik (MPE) in Garching (Germany), in a collaboration with the Nederlandse Onderzoekschool Voor Astronomie (NOVA) in Leiden and the Netherlands Foundation for Research in Astronomy (ASTRON), and ESO. PR Photo 24a/04: SINFONI Adaptive Optics Module at VLT Yepun (June 2004) PR Photo 24b/04: SINFONI at VLT Yepun, now fully assembled (July 2004) PR Photo 24c/04: "First Light" image from the SINFONI Adaptive Optics Module PR Photo 24d/04: AO-corrected Image of a 17.5-magnitude Star PR Photo 24e/04: SINFONI undergoing Balancing and Flexure Tests at VLT Yepun PR Photo 24f/04: SINFONI "First Light" Spectrum of HD 130163 PR Photo 24g/04: Members of the SINFONI Adaptive Optics Module Commissioning Team PR Photo 24h/04: Members of the SPIFFI Commissioning Team PR Photo 24i/04: The Principle of Integral Field Spectroscopy (IFS) PR Photo 24j/04: The Orbital Motion of Linus around (22) Kalliope PR Photo 24k/04: SINFONI Observations of the Galactic Centre Region PR Photo 24l/04: SINFONI Observations of the Circinus Galaxy PR Photo 24m/04: SINFONI Observations of the AGN Galaxy NGC 7469 PR Photo 24n/04: SINFONI Observations of NGC 6240 PR Photo 24o/04: SINFONI Observations of the Young Starforming Galaxies BX 404/405 PR Video Clip 07/04: The Orbital Motion of Linus around (22) Kalliope SINFONI: A powerful and complex instrument ESO PR Photo 24a/04 ESO PR Photo 24a/04 The SINFONI Adaptive Optics Module Commissioning Setup [Preview - JPEG: 427 x 400 pix - 230k] [Normal - JPEG: 854 x 800 pix - 551k] ESO PR Photo 24b/04 ESO PR Photo 24b/04 SINFONI at the VLT Yepun Cassegrain Focus [Preview - JPEG: 414 x 400 pix - 222k] [Normal - JPEG: 827 x 800 pix - 574k] Captions: ESO PR Photo 24a/04 shows the SINFONI Adaptive Optics Module, installed at the 8.2-m VLT YEPUN telescope during the first tests in June 2004. At this time, SPIFFI was not yet installed. The blue ring is the Adaptive Optics Module. The yellow parts, with a weight of 800 kg, simulate SPIFFI. The IR Test Imager is located inside the yellow ring. On ESO PR Photo 24b/04, the Near-Infrared Spectrograph SPIFFI in its cryogenic aluminium cylinder has now been attached. A new and very powerful astronomical instrument, a world-leader in its field, has been installed on the Very Large Telescope at the Paranal Observatory (Chile), cf. PR Photos 24a-b/04. Known as SINFONI ("Spectrograph for INtegral Field Observation in the Near-Infrared"), it was mounted in two steps at the Cassegrain focus of the 8.2-m VLT YEPUN telescope. First Light of the completed instrument was achieved on July 9, 2004 and various test observations during the subsequent commissioning phase were carried out with great success. SINFONI has two parts, the Near Infrared Integral Field Spectrograph, also known as SPIFFI (SPectrometer for Infrared Faint Field Imaging), and the Adaptive Optics Module. SPIFFI was developed at the Max Planck Institute for Extraterrestrische Physik (MPE) (Garching, Germany), in a collaboration with the Nederlandse Onderzoekschool Voor Astronomie (NOVA) in Leiden, the Netherlands Foundation for Research in Astronomy (ASTRON) (The Netherlands), and the European Southern Observatory (ESO) (Garching, Germany). The Adaptive Optics (AO) Module was developed by ESO. Once fully commissioned, SINFONI will provide adaptive-optics assisted Integral Field Spectroscopy in the near-infrared 1.1 - 2.45 µm waveband. This advanced technique provides simultaneous spectra of numerous adjacent regions in a small sky field, e.g., of an interstellar nebula, the stars in a dense stellar cluster or a galaxy. Astronomers refer to these data as "3D-spectra" or "data cubes" (i.e., one spectrum for each small area in the two-dimensional sky field), cf. Appendix A. The SINFONI Adaptive Optics Module is based on a 60-element curvature system, similar to the Multi Application Curvature Adaptive Optics devices (MACAO), developed by the ESO Adaptive Optics Department and of which three have already been installed at the VLT (ESO PR 11/03); the last one in August 2004. Provided a sufficiently bright reference source ("guide star") is available within 60 arcsec of the observed field, the SINFONI AO module will ultimately offer diffraction-limited images (resolution 0.050 arcsec) at a wavelength of 2 µm. At the centre of the field, partial correction can be performed with guide stars as faint as magnitude 17.5. In about 6-months' time, it will benefit from a sodium Laser Guide Star, achieving a much better sky coverage than what is now possible. SPIFFI is a fully cryogenic near-infrared integral field spectrograph allowing observers to obtain simultaneously spectra of 2048 pixels within a 64 x 32 pixel field-of-view. In conjunction with the AO Module, it performs spectroscopy with slit-width sampling at the diffraction limit of an 8-m class telescope. For observations of very faint, extended celestial objects, the spatial resolution can be degraded so that both sensitivity and field-of-view are increased. SPIFFI works in the near-infrared wavelength range (1.1 - 2.45 µm) with a moderate spectral resolving power (R = 1500 to 4500). More information about the way SPIFFI functions will be found in Appendix A. "First Light with SINFONI's Adaptive Optics Module ESO PR Photo 24c/04 ESO PR Photo 24c/04 SINFONI AO "First Light" Image [Preview - JPEG: 400 x 482 pix - 106k] [Normal - JPEG: 800 x 963 pix - 256k] ESO PR Photo 24d/04 ESO PR Photo 24d/04 AO-corrected image of 17.5-magnitude Star [Preview - JPEG: 509 x 400 pix - 80k] [Normal - JPEG: 1018 x 800 pix - 182k] Captions: ESO PR Photo 24c/04 shows the "First Light" image obtained with the SINFONI AO Module and a high-angular-resolution near-infrared Test Camera during the night of May 31 - June 1, 2004. The magnitude of the observed star is 11 and the seeing conditions median. The diffraction limit at wavelength 2.2 µm of the 8.2-m telescope (FWHM 0.06 arcsec) was reached and is indicated by the bar. ESO PR Photo 24d/04: Image of a very faint guide star (visual magnitude 17.5), obtained with the SINFONI AO Module. To the right, the seeing-limited K-band image (FWHM 0.38 arcsec). To the left, the AO-corrected image (FWHM 0.145 arcsec). The ability to perform AO corrections on very faint guide objects is essential for SINFONI in order to observe very faint extragalactic objects. Because of the complexity of SINFONI, with its two modules, it was decided to perform the installation on the 8.2-m VLT Yepun telescope in two steps. The Adaptive Optics module was completely dismounted at ESO-Garching (Germany) and the corresponding 6 tons of equipment was air-freighted from Frankfurt to Santiago de Chile. The subsequent transport by road arrived at the Paranal Observatory on April 21, 2004. After 6 weeks of reintegration and testing in the Integration Hall, the AO Module was mounted on Yepun on May 30 - 31, together with a high-angular-resolution near-infrared Test Camera, cf. PR Photo 24a/04. Technical "First-Light" with this system was achieved around midnight on May 31st by observing a 11-magnitude star, cf. PR Photo 24c/04, reaching right away the theoretical diffraction limit of the 8.2-m telescope (0.06 arcsec) at this wavelength (2.2 µm). Following this early success, the ESO AO team continued the full on-sky tuning and testing of the AO Module until June 8, setting in particular a new world record by reaching a limiting guide-star magnitude of 17.5, two-and-a-half magnitudes (a factor of 10) fainter than ever achieved with any telescope! The ability to perform AO corrections on very faint guide objects is essential for SINFONI in order to observe very faint extragalactic objects. During this commissioning period, test observations were performed of the binary asteroid (22) Kalliope and its moon Linus. They were made by the ESO AO team and served to demonstrate the high performance of this ESO-built Adaptive Optics (AO) system at near-infrared wavelengths. More information about these observations, including a movie of the orbital motion of Linus is available in Appendix B. "First Light" with SINFONI ESO PR Photo 24e/04 ESO PR Photo 24e/04 SINFONI Undergoing Balancing and Flexure Tests at VLT Yepun [Preview - JPEG: 427 x 400 pix - 269k] [Normal - JPEG: 854 x 800 pix - 730k] ESO PR Photo 24f/04 ESO PR Photo 24f/04 SINFONI "First Light" Spectrum [Preview - JPEG: 427 x 400 pix - 94k] [Normal - JPEG: 854 x 800 pix - 222k] Captions: ESO PR Photo 24e/04 shows SINFONI attached to the Cassegrain focus of the 8.2-m VLT Yepun telescope during balancing and flexure tests. ESO PR Photo 24f/04: "First Light" "data cube" spectrum obtained with SINFONI on the bright star HD 130163 on July 9, 2004, as seen on the science data computer screen. This 7th-magnitude A0 V star was observed in the near-infrared H-band with a moderate seeing of 0.8 arcsec. The width of the slitlets in this image is 0.25 arcsec. The exposure time was 1 second. The fully integrated SPIFFI module was air-freighted from Frankfurt to Santiago de Chile and arrived at Paranal on June 5, 2004. The subsequent cool-down to -195 °C was done and an extensive test programme was carried through during the next two weeks. Meanwhile, the AO Module was removed from the telescope and the "wedding" with SPIFFI was celebrated on June 20 in the Paranal Integration Hall. All went well and the first AO-corrected test spectra were obtained immediately thereafter. The extensive tests of SINFONI continued at this site until July 7, 2004, when the instrument was declared fit for work at the telescope. The installation at the 8.2-m VLT Yepun telescope was then accomplished on July 8 - 9, cf. PR Photos 24b/04 and 24e/04. "First Light" was achieved in the early evening of July 9, 2004, only 30 min after the telescope enclosure was opened. At 19:30 local time, SINFONI recorded the first AO-corrected "data cube" with spectra of HD 130163, cf. PR Photo 24f/04. This 7th-magnitude star was observed in the near-infrared H-band with a moderate seeing of 0.8 arcsec. Test Observations with SINFONI ESO PR Photo 24k/04 ESO PR Photo 24k/04 SINFONI Observations of the Galactic Centre [Preview - JPEG: 427 x 400 pix - 213k] [Normal - JPEG: 854 x 800 pix - 511k] ESO PR Photo 24o/04 ESO PR Photo 24o/04 SINFONI Observations of the Distant Galaxy Pair BX 404/405 [Preview - JPEG: 481 x 400 pix - 86k] [Normal - JPEG: 962 x 800 pix - 251k] Captions: ESO PR Photo 24k/04: The coloured image (background) shows a three-band composite image (H, K, and L-bands) obtained with the AO imager NACO on the 8.2-m VLT Yepun telescope. On July 15, 2004, the new SINFONI instrument, mounted at the Cassegrain focus of the same telescope, observed the innermost region (the central 1 x 1 arcsec) of the Milky Way Galaxy in the combined H+K band (1.45 - 2.45 µm) during a total of 110 min "on-source". The insert (upper left) shows the immediate neighbourhood of the central black hole as seen with SINFONI. The position of the black hole is marked with a yellow circle. Later in the night (03:37 UT on July 16), a flare from the black hole ocurred (a zoom-in is shown in the insert at the lower left) and the first-ever infrared spectrum of this phenomenon was observed. It was also possible to register for the first time in great detail the near-infrared spectra of young massive stars orbiting the black hole; some of these are shown in the inserts at the upper right; stars are identified by their "S"-designations. The lower right inserts show the spectra of stars in "IRS 13 E", a very compact cluster of very young and massive stars, located about 3.5 arcsec to the south-west of the black hole. The wavefront reference ("guide") star employed for these AO observations is comparably faint (red magnitude approx. 15), and it is located about 20 arcsec away from the field centre. The seeing during these observations was about 0.6 arcsec. The width of the slitlets was 0.025 arcsec. See Appendix G for more detail. ESO PR Photo 24o/04 shows the distant galaxy pair BX 404/405, as recorded in the K-band (wavelength 2 µm, centered on the redshifted H-alpha line), without AO-correction because of the lack of a nearby, sufficiently bright "guide" star. The width of each slitlet was 0.25 arcsec and the seeing about 0.6 arcsec. The integration time on the galaxy was 2 hours "on-source". The image shown has been reconstructed by combining all of the spectral elements around the H-alpha spectral line. The spectrum of BX 405 (upper right) clearly reveals signs of a velocity shear while that of BX 404 does not. This may be a sign of rotation, a possible signature of a young disc in this galaxy. More information can be found in Appendix C. Until July 22, test observations on a number of celestial objects were performed in order to tune the instrument, to evaluate the performance and to demonstrate its astronomical capabilities. In particular, spectra were obtained of various highly interesting celestial objects and sky regions. Details about these observations (and some images obtained with the AO Module alone) are available in the Appendices to this Press Release: * a video of the motion of the moon Linus around the main-belt asteroid (22) Kalliope, providing the best view of this binary system obtained so far (Appendix B), * images and first-ever detailed spectra of many of the stars that move near the massive black hole at the Galactic Centre, with crucial information on the nature of the individual stars and their motions (Appendix C), * images and spectra of the heavily dust-obscured, active centre of the Circinus galaxy, one of the closest active galaxies, showing ordered rotation in this area and distinct broad and narrow components of the spectral line of Ca7+-ions (Appendix D), * images and spectra of the less obscured central area of NGC 7469, a more distant active galaxy, with spectral lines of molecular hydrogen and carbon monoxide showing a very different distribution of these species (Appendix E), * images and spectra of the Infrared Luminous Galaxy (ULIRG) NGC 6240, a typical galaxy merger, displaying important differences between the two nuclei (Appendix F), and * images and spectra of the young starforming galaxies BX 404/405, casting more light on the formation of disks in spiral galaxies (Appendix G) The SINFONI Teams ESO PR Photo 24g/04 ESO PR Photo 24g/04 Members of the SINFONI Adaptive Optics Commissioning Team [Preview - JPEG: 646 x 400 pix - 198k] [Normal - JPEG: 1291 x 800 pix - 618k] ESO PR Photo 24h/04 ESO PR Photo 24h/04 Members of the SPIFFI Commissioning Team [Preview - JPEG: 491 x 400 pix - 193k] [Normal - JPEG: 982 x 800 pix - 482k] Captions: ESO PR Photo 24g/04 Members of the SINFONI Adaptice Optics Commissioning Team in the VLT Control Room in the night between June 7 - 8, 2004. From left to right and top to bottom: Thomas Szeifert, Sebastien Tordo, Stefan Stroebele, Jerome Paufique, Chris Lidman, Robert Donaldson, Enrico Fedrigo, Markus Kissler Patig, Norbert Hubin, Henri Bonnet. ESO PR Photo 24h/04: Members of the SPIFFI Commissioning Team on August 17. From left to right, Roberto Abuter, Frank Eisenhauer, Andrea Gilbert and Matthew Horrobin. The first SINFONI results have been greeted with enthusiasm, in particular by the team of astronomers and engineers from the consortium of German and Dutch institutes and ESO who worked on the development of SINFONI for nearly 7 years. Some of the members of the Commissioning Teams are depicted in PR Photos 24g/04 and 24h/04; in addition to the SPIFFI team members present on the second photo, Walter Bornemann, Reinhard Genzel, Hans Gemperlein, Stefan Huber have also been working on the reintegration/commissioning in Paranal. Notes [1] This press release is issued in coordination between ESO, the Max-Planck-Institute for Extraterrestrial Physics (MPE) in Garching, Germany, and the Nederlandse Onderzoekschool Voor Astronomie in Leiden, The Netherlands. A German version is available at http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2004/pressemitteilung20040824/index.html and a Dutch version at http://www.astronomy.nl/inhoud/pers/persberichten/30_08_04.html. [2] The SINFONI team consists of Roberto Abuter, Andrew Baker, Walter Bornemann, Ric Davies, Frank Eisenhauer (SPIFFI Principal Investigator), Hans Gemperlein, Reinhard Genzel (MPE Director), Andrea Gilbert, Armin Goldbrunner, Matthew Horrobin, Stefan Huber, Christof Iserlohe, Matthew Lehnert, Werner Lieb, Dieter Lutz, Nicole Nesvadba, Claudia Röhrle, Jürgen Schreiber, Linda Tacconi, Matthias Tecza, Niranjan Thatte, Harald Weisz (Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany), Anthony Brown, Paul van der Werf (NOVA, Leiden, The Netherlands), Eddy Elswijk, Johan Pragt, Jan Kragt, Gabby Kroes, Ton Schoenmaker, Rik ter Horst (ASTRON, Dwingeloo, The Netherlands), Henri Bonnet (SINFONI Project Manager), Roberto Castillo, Ralf Conzelmann, Romuald Damster, Bernard Delabre, Christophe Dupuy, Robert Donaldson, Christophe Dumas, Enrico Fedrigo, Gert Finger, Gordon Gillet, Norbert Hubin (Head of Adaptive Optics Dept.), Andreas Kaufer, Franz Koch, Johann Kolb, Andrea Modigliani, Guy Monnet (Head of Telescope Systems Division), Chris Lidman, Jochen Liske, Jean Louis Lizon, Markus Kissler-Patig (SINFONI Instrument Scientist), Jerome Paufique, Juha Reunanen, Silvio Rossi, Riccardo Schmutzer, Armin Silber, Stefan Ströbele (SINFONI System Engineer), Thomas Szeifert, Sebastien Tordo, Leander Mehrgan, Joerg Stegmeier, Reinhold Dorn (European Southern Observatory). Contacts Frank Eisenhauer Max-Planck-Institut für Extraterrestrische Physik (MPE) Garching, Germany Phone: +49-89-30000-3563 Email: eisenhau@mpe.mpg.de Paul van der Werf Leiden Observatory Leiden, The Netherlands Phone: +31-71-5275883 Email: pvdwerf@strw.leidenuniv.nl Henri Bonnet European Southern Observatory (ESO) Email: hbonnet@eso.org Reinhard Genzel Max-Planck-Institut für Extraterrestrische Physik (MPE) Garching, Germany Phone: +49-89-30000-3280 Email: Norbert Hubin European Southern Observatory (ESO) Email: nhubin@eso.org Appendix A: Integral Field Spectroscopy as a Powerful Discovery Tool ESO PR Photo 24i/04 ESO PR Photo 24i/04 How Integral Field Spectroscopy Works [Preview - JPEG: 400 x 425 pix - 127k] [Normal - JPEG: 800 x 850 pix - 366k] Caption: ESO PR Photo 24i/04 shows the principle of Integrated Field Spectroscopy (IFS). The detailed explanation is found in the text. How does SINFONI work? What is Integral Field Spectroscopy (IFS)? The idea of IFS is to obtain a spectrum of each defined spatial element ("spaxel") in the field-of-view. Several techniques to do this are available - in SINFONI, the slicer principle is applied. This involves (PR Photo 24i/04) that * the two-dimensional field-of-view is cut into slices, the so-called slitlets (short slits in contrast to normal long-slit spectroscopy), * the slitlets are then arranged next to each other to form a pseudo-long-slit, * a grating is used to disperse the light, and * the photons are detected with a Near-InfraRed detector. Following data reduction, the set of generated spectra can be re-arranged in the computer to form a 3-dimensional "data cube" of two spatial, and one wavelength dimension. Thus the term "3D-Spectroscopy" is sometimes used for IFS. Appendix B: Linus' orbital motion around Kalliope ESO PR Photo 24j/04 ESO PR Photo 24j/04 Asteroid Kalliope and its Moon Linus [Preview - JPEG: 400 x 427 pix - 50k] [Normal - JPEG: 800 x 854 pix - 136k] ESO PR Video 07/04 ESO PR Video 07/04 The Motion of Linus around Kalliope [MPG: 800 x 800 pix - 128k] [AVI : 800 x 800 pix - 176k] [Animated GIF : 800 x 800 pix - 592k] Caption: ESO PR Photo 24j/04 and Video Clip 07/04 show the best-ever images of the moon Linus orbiting Asteroid (22) Kalliope. It was obtained with the SINFONI Adaptive Optics Module and a high-angular-resolution near-infrared Test Camera during commissioning in June 2004. At minimum separation, the satellite approaches Kalliope to 0.33 arcsec, i.e. the angle under which a 1 Euro coin is seen at a distance of 15 kilometers. At maximum separation, the angular distance is nearly twice as large. For clarity, the brightness of the asteroid has been artificially decreased by a factor of 15, to the level of the moon. This image processing technique also permits to perceive the variation of the asteroid's shape as Kalliope spins around its own axis with a period of 4.15 hours. The asteroid, with an angular diameter of 0.11 arcsec, is barely resolved in these VLT images (resolution 0.06 arcsec at wavelength 2.2 µm). The satellite measures about 50 km acroos and orbits Kalliope at a distance of about 1000 kilometers. ESO Video Clip 07/04 shows the 3.6-day orbital motion of the satellite (moon) Linus around the main-belt asteroid (22) Kalliope. Kalliope orbits the Sun between Mars and Jupiter; it measures about 180 km across and the diameter of its moon is 50 km. This system was observed with the SINFONI AO Module for short periods over four consecutive nights. Linus moves around Kalliope in a circular orbit, at a distance of 1000 km and with a direction of motion similar to the rotation of Kalliope (prograde rotation); the orbital plane of the moon was seen under a 60°-angle with respect to the line-of-sight. The unobserved parts of this orbit are indicated by a dotted line. A hypothetical observer on the surface of Kalliope would live in a strange world: the days would be 14 hours long, and the sky would be filled by a moon five times bigger than our own! The brightness changes of the Linus images is due to variations in the sky conditions at the time of the observations. Rapid changes in the atmosphere result in variations in the sharpness of the corrected images. During the first two nights, seeing conditions were very good, but less so during the last two nights; this can be seen as a slight loss of sharpness of the corresponding satellite images. The discovery of this asteroid satellite, named Linus after the son of Kalliope, the Greek muse of heroic poetry, was first reported in September 2001 by a group of astronomers using the Canadian-France-Hawaii telescope on Mauna Kea (Hawaii, USA). Although previously believed to consist of metal-rich material, the discovery of Linus allowed the scientists to determine the mean density of Kalliope as ~ 2 g/cm3, a rather low value and not consistent with a metal-rich object. Kalliope is now believed to be a "rubble-pile" stony asteroid. Its porous interior is due to a catastrophic collision with another, smaller asteroid early in its history and which also gave birth to Linus. Other references related to Kalliope can be found in the International Astronomical Union Circular (IAUC) 7703 (2001) and a research article "A low density M-type asteroid in the main-belt" by Margot and Brown (Science 300, 193, 2003). Appendix C: Stars at the Galactic Centre and a Flare from the Black Hole ESO PR Photo 24k/04 ESO PR Photo 24k/04 SINFONI Observations of the Galactic Centre [Preview - JPEG: 427 x 400 pix - 213k] [Normal - JPEG: 854 x 800 pix - 511k] Caption: ESO PR Photo 24k/04: The coloured image (background) shows a three-band composite image (H, K, and L-bands) obtained with the AO imager NACO on the 8.2-m VLT Yepun telescope. On July 15, 2004, the new SINFONI instrument, mounted at the Cassegrain focus of the same telescope, observed the innermost region (the central 1 x 1 arcsec) of the Milky Way Galaxy in the combined H+K band (1.45 - 2.45 µm) during a total of 110 min "on-source". The insert (upper left) shows the immediate neighbourhood of the central black hole as seen with SINFONI. The position of the black hole is marked with a yellow circle. Later in the night (03:37 UT on July 16), a flare from the black hole ocurred (a zoom-in is shown in the insert at the lower left) and the first-ever infrared spectrum of this phenomenon was observed. It was also possible to register for the first time in great detail the near-infrared spectra of young massive stars orbiting the black hole; some of these are shown in the inserts at the upper right; stars are identified by their "S"-designations. The lower right inserts show the spectra of stars in "IRS 13 E", a very compact cluster of very young and massive stars, located about 3.5 arcsec to the south-west of the black hole. The wavefront reference ("guide") star employed for these AO observations is comparably faint (red magnitude approx. 15), and it is located about 20 arcsec away from the field centre. The seeing during these observations was about 0.6 arcsec. The width of the slitlets was 0.025 arcsec. The Milky Way Centre is a unique laboratory for studying physical processes that are thought to be common in galactic nuclei. The Galactic Centre is not only the best studied case of a supermassive black hole, but the region also hosts the largest population of high-mass stars in the Galaxy. Diffraction-limited near-IR integral field spectroscopy offers a unique opportunity for exploring in detail the physical phenomena responsible for the active phases of this supermassive black hole, and for studying the dynamics and evolution of the star cluster in its immediate vicinity. Earlier observations with the VLT have been described in ESO PR 17/02 and ESO PR 26/03. With the new SINFONI observations, some of which are displayed in PR Photo 24k/04, it was possible to obtain for the first time very detailed near-infrared spectra of several young and massive stars orbiting the black hole at the centre of our galaxy. The presence of spectral signatures from ionised hydrogen (the Bracket-gamma line) and Helium clearly classify these stars as young, massive early-type stars. They are comparatively short-lived, and the large fraction of such stars in the immediate vicinity of a supermassive black hole is a mystery. The first SINFONI observations of the stellar populations in the innermost Galactic Centre region will now help to explain the origin and formation process of those stars. Moreover, the observed spectral features allow measuring their motions along the line-of-sight (the "radial velocities"). Combining them with the motions in the sky (the "proper motions") obtained from previous observations with the NACO instrument (ESO PR 17/02), it is now possible to determine all orbital parameters for the "S"-stars. This in turn makes it possible to measure directly the mass and the distance of the supermassive black hole at the centre of our galaxy. But not only this! Even more exciting, it became possible to register for the first time the infrared spectrum of a flare from the Galactic Centre black hole (cf. ESO PR 26/03). From the earlier imaging observations, it is known that such outbursts occur approximately once every 4 hours, giving us a uniquely detailed glimpse of a black hole feeding on left-over gas in its close surroundings. It is only the innovative technique of SINFONI - providing spectra for every pixel in a diffraction-limited image - that made it possible to capture the infrared spectrum of such a flare. Such spectra from SINFONI will soon allow to understand better the physics and mechanisms involved in the flare emission. Appendix D: The Active Circinus Galaxy ESO PR Photo 24l/04 ESO PR Photo 24l/04 SINFONI Observations of the Circinus Galaxy [Preview - JPEG: 824 x 400 pix - 324k] [Normal - JPEG: 412 x 800 pix - 131k] Caption: ESO PR Photo 24l/04: The Circinus galaxy - one of the nearest galaxies with an active centre (AGN) - was observed in the K-band (wavelength 2 µm) using the nucleus to guide the SINFONI AO Module. The seeing was 0.5 arcsec and the width of each slitlet 0.025 arcsec; the total integration time on the galaxy was 40 min. At the top is a K-band image of the central arcsec of the galaxy (left insert) and a K-band spectrum of the nucleus (right). In the lower half are images (left) in the light of ionised hydrogen (the Brackett-gamma line) and molecular hydrogen lines (H2), together with their combined rotation curve (middle), as well as images of the broad and narrow components of the high excitation [Ca VIII] spectral line (right). The false-colours in the images represent regions of different surface brightness. At a distance of about 13 million light-years, the Circinus galaxy is one of the nearest galaxies with a very active black hole at the centre. It is seen behind a highly obscured sky field, only 3° from the Milky Way main plane in the southern constellation of this name ("The Pair of Compasses"). Using the nucleus of this galaxy to guide the AO Module, SINFONI was able to zoom in on the central arcsec region - only 60 light-years across - and to map the immediate environment of the black hole at the centre, cf. PR Photo 24l/04. The K-band (wavelength 2 µm) image (insert at the upper left) displays a very compact structure; the emission recorded at this wavelength comes from hot dust heated by radiation from the accretion disc around the black hole. However, as may be seen in the two inserts below, both the emission from ionized hydrogen (the Brackett-gamma line) and molecular hydrogen (H2) are more extended, up to about 30 light-years. As these spectral lines (cf. the spectral tracing at the upper right) are quite narrow and show ordered rotation up to ±40km/s, it is likely that they arise from star formation in a disk around the central black hole. A surprise from the SINFONI observations is that the spectral line of Ca7+-ions (seven times ionised Calcium atoms, or [Ca VIII], which are produced by the ionizing effect of very energetic ultraviolet radiation) in this area appears to have distinct broad and narrow components (images at the lower right). The broad component is centred on the region around the black hole, and probably arises in the so-called "Broad-Line Region". The narrow component is displaced to the north-west and most likely indicates a region where there is a direct line-of-sight from the black hole to some gas clouds. Appendix E: The Active Nucleus in NGC 7469 ESO PR Photo 24m/04 ESO PR Photo 24m/04 SINFONI Observations of NGC 7469 [Preview - JPEG: 470 x 400 pix - 116k] [Normal - JPEG: 939 x 800 pix - 324k] Caption: ESO PR Photo 24m/04: NGC 7469 was observed in K band (wavelength 2 µm) using the nucleus to guide the adaptive optics. The width of each slitlet was 0.025 arcsec and the seeing was 1.1 arcsec. The total integration time on the galaxy was 70 min "on-source". To the upper left is a K-band image (2 µm) of the central arcsec of the NGC7469 and to the upper right, the spectrum of the nucleus. To the lower left is an image of the molecular hydrogen line, together with its rotation curve. There is an image in the light of ionized hydrogen (Bracket-gamma line) at the lower middle and an image of the CO 2-0 absorption bandhead which traces young stars (lower right). The galaxy NGC 7469 (seen north of the celestial equator in the constellation Pegasus) also hosts an active galactic nucleus, but contrary to the Circinus galaxy, it is relatively unobscured. Since NGC 7469 is at a much larger distance, about 225 million light-years, the 0.15 arcsec resolution achieved by SINFONI here corresponds to about 165 light-years. The K-band image (PR Photo 24m/04) shows the bright, compact nucleus of this galaxy, and the spectrum displays very broad lines of ionized hydrogen (the Brackett-gamma line) and helium. This emission arises in the "Broad-Line" region which is still unresolved, as shown by the Brackett-gamma image. On the other hand, the molecular hydrogen extends up to 650 light-years from the centre and shows an ordered rotation. In contrast, the image obtained in the light of CO-molecules - which directly traces late-type stars typical for starbursts - appears very compact. These results confirm those obtained by means of earlier AO observations, but with the new SINFONI data corresponding to various spectral lines, the detailed, two-dimensional structure and motions close to the central black hole are now clearly revealed for the first time. Appendix F: The Galaxy Merger NGC 6240 ESO PR Photo 24n/04 ESO PR Photo 24n/04 SINFONI Observations of NGC 6240 [Preview - JPEG: 506 x 400 pix - 96k] [Normal - JPEG: 1011 x 800 pix - 277k] Caption: ESO PR Photo 24n/04: The galaxy merger system NGC 6240 was observed with SINFONI in the K-band (wavelength 2 µm). This object has two nuclei; the image of the southern one is also shown enlarged, together with the corresponding spectrum. The width of each slitlet was 0.025 arcsec and the seeing was 0.8 arcsec. The total integration time on the galaxy was 80 min. The false-colours in the images represent regions of different surface brightness. The infrared-luminous galaxy NGC 6240 in the constellation Ophiuchus (The Serpent-holder) is in many ways the prototype of a gas-rich, infrared-(ultra-)luminous galaxy merger. This system has two rapidly rotating, massive bulges/nuclei at a projected angular separation of 1.6 arcsec. Each of them contains a powerful starburst region and a luminous, highly obscured, X-ray-emitting supermassive black hole. As such, NGC 6240 is probably a nearby example of dust and gas-rich galaxy merger systems seen at larger distances. NGC6240 is also the most luminous, nearby source of molecular hydrogen emission. It was observed in the K-band (wavelength 2 µm), using a faint star at a distance of about 35 arcsec as the AO "guide" star. The starburst activity is traced by the ionized gas and occurs mostly at the two nuclei in regions measuring around 650 light-years across. The distribution of the molecular gas is very different. It follows a complex spatial and dynamical pattern with several extended streamers. The high-resolution SINFONI data now makes it possible - for the first time - to investigate the distribution and motion of the molecular gas, as well as the stellar population in this galaxy with a "resolution" of about 80 light-years. Appendix G: Motions in the Young Star-Forming Galaxies BX 404/405 ESO PR Photo 24o/04 ESO PR Photo 24o/04 SINFONI Observations of the Distant Galaxy Pair BX 404/405 [Preview - JPEG: 481 x 400 pix - 86k] [Normal - JPEG: 962 x 800 pix - 251k] Caption: ESO PR Photo 24o/04 shows the distant galaxy pair BX 404/405, as recorded in the K-band (wavelength 2 µm, centered on the redshifted H-alpha line), without AO-correction because of the lack of a nearby, sufficiently bright "guide" star. The width of each slitlet was 0.25 arcsec and the seeing about 0.6 arcsec. The integration time on the galaxy was 2 hours "on-source". The image shown has been reconstructed by combining all of the spectral elements around the H-alpha spectral line. The spectrum of BX 405 (upper right) clearly reveals signs of a velocity shear while that of BX 404 does not. This may be a sign of rotation, a possible signature of a young disc in this galaxy. How and when did the discs in spiral galaxies like the Milky Way form? This is one of the longest-standing puzzles in modern cosmology. Two general models presently describe how disk galaxies may form. One is based on a scenario in which there is a gentle collapse of gas clouds that collide and lose momentum. They sink towards a "centre", thereby producing a disc of gas in which stars are formed. The other implies that galaxies grow through repeated mergers of smaller gas-rich galaxies. Together they first produce a spherical mass distribution at the centre and any remaining gas then settles into a disk. Recent studies of stars in the Milky Way system and nearby spiral galaxies suggest that the discs now present in these systems formed about 10,000 million years ago. This corresponds to the epoch when we observe galaxies at redshifts of about 1.5 - 2.5. Interestingly, studies of galaxies at these distances seem consistent with current ideas about when disks may have formed, and there is some evidence that most of the mass in the galaxies was also assembled at that time. In any case, the most direct way to verify such a connection is to observe galaxies at redshifts 1.5-2.5, in order to elucidate whether their observed properties are consistent with velocity patterns of rotating disks of gas and stars. This would be visible as a "velocity shear", i.e., a significant difference in velocity of neigbouring regions. In addition, such observations may provide a good test of the above mentioned hypotheses for how discs may have formed. Various groups of astrophysicists in the US and Europe have developed observational selection criteria which may be used to identify galaxies with properties similar to those expected for young disc galaxies. Observations with SINFONI was made of one of these objects, the galaxy pair BX 404/405 discovered by a group of astronomers at Caltech (USA). For BX 405, clear signs were found of a "velocity shear" like that expected for rotation of a forming disk, but the other object does not show this. It may thus be that the properties of star-forming galaxies at this epoch are quite complex and that only some of them have young disks.

  2. Calibration of EFOSC2 Broadband Linear Imaging Polarimetry

    NASA Astrophysics Data System (ADS)

    Wiersema, K.; Higgins, A. B.; Covino, S.; Starling, R. L. C.

    2018-03-01

    The European Southern Observatory Faint Object Spectrograph and Camera v2 is one of the workhorse instruments on ESO's New Technology Telescope, and is one of the most popular instruments at La Silla observatory. It is mounted at a Nasmyth focus, and therefore exhibits strong, wavelength and pointing-direction-dependent instrumental polarisation. In this document, we describe our efforts to calibrate the broadband imaging polarimetry mode, and provide a calibration for broadband B, V, and R filters to a level that satisfies most use cases (i.e. polarimetric calibration uncertainty 0.1%). We make our calibration codes public. This calibration effort can be used to enhance the yield of future polarimetric programmes with the European Southern Observatory Faint Object Spectrograph and Camera v2, by allowing good calibration with a greatly reduced number of standard star observations. Similarly, our calibration model can be combined with archival calibration observations to post-process data taken in past years, to form the European Southern Observatory Faint Object Spectrograph and Camera v2 legacy archive with substantial scientific potential.

  3. Life in the Universe

    NASA Astrophysics Data System (ADS)

    2001-10-01

    Live Webcast from Europe's Leading Research Organisations Summary Is there life elsewhere in the Universe? Are we alone? These questions have always fascinated humanity and for more than 50 years, physicists, biologists, chemists, cosmologists, astronomers and other scientists have worked tirelessly to answer these fundamental questions. And now this November via webcast, all the world will have the opportunity to see and hear the latest news on extraterrestrial life from the most prestigious research centers and how for the past three months, European students have had the chance to jump into the scientists' shoes and explore these questions for themselves. The event is being sponsored by the European Organisation for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO) , in cooperation with the European Molecular Biology Laboratory (EMBL) and the European Synchrotron Radiation Facility (ESRF) and the European Association for Astronomy Education (EAAE). "Life in the Universe" is being mounted in collaboration with the Research Directorate-General of the European Commission for the European Week of Science and Technology in November 2001 . "Life in the Universe" competitions are already underway in 23 European countries to find the best projects from school students between 14 and 18. Two winning teams from each country will be invited to a final event at CERN in Geneva on 8-11 November 2001 to present their projects and discuss them with a panel of International Experts at a special three-day event. They will also compete for the "Super Prize" - a free visit to ESA's and ESO's research and technology facilities at Kourou and Paranal in South America. Students participating in the programme are encouraged to present their views on extraterrestrial life creatively. The only requirement is that the views be based upon scientific evidence. Many projects are being submitted just now - among them are scientific essays, pieces of art, theatrical performance and CD-Roms. The best of these will be presented worldwide during the "Life in the Universe" webcast live from CERN on November 10th at 7 pm CET (18 UT). The webcast - during which the "Super Prizes" for the two best works will be announced - will also feature interviews, video clips and animations on the latest scientific findings on the subject of extraterrestrial life. The webcast is truly an around-the-world event that will actively engage even geographically distant audiences. During the webcast, anyone on the planet can send questions via e-mail to the real experts with live connections in European laboratories who will answer live during the broadcast. Tuning in is easy too. All people have to do is enter http://www.lifeinuniverse.org into their browser and they will get full instructions on how to connect up. The home base of "Life in the Universe" - http://www.lifeinuniverse.org - is a vibrant web space where details of the programme can be found. It has a wealth of information and links to the national websites, where all entries will be posted. Is there other life in the Universe? We do not know - but the search is on and you'll know much more about it by just following the webcast! "Life in the Universe" webpage at ESO More information and related links may also be found on the dedicated "Life in the Universe"-webpage at the ESO Outreach website.

  4. Rubble-Pile Minor Planet Sylvia and Her Twins

    NASA Astrophysics Data System (ADS)

    2005-08-01

    VLT NACO Instrument Helps Discover First Triple Asteroid One of the thousands of minor planets orbiting the Sun has been found to have its own mini planetary system. Astronomer Franck Marchis (University of California, Berkeley, USA) and his colleagues at the Observatoire de Paris (France) [1] have discovered the first triple asteroid system - two small asteroids orbiting a larger one known since 1866 as 87 Sylvia [2]. "Since double asteroids seem to be common, people have been looking for multiple asteroid systems for a long time," said Marchis. "I couldn't believe we found one." The discovery was made with Yepun, one of ESO's 8.2-m telescopes of the Very Large Telescope Array at Cerro Paranal (Chile), using the outstanding image' sharpness provided by the adaptive optics NACO instrument. Via the observatory's proven "Service Observing Mode", Marchis and his colleagues were able to obtain sky images of many asteroids over a six-month period without actually having to travel to Chile. ESO PR Photo 25a/05 ESO PR Photo 25a/05 Orbits of Twin Moonlets around 87 Sylvia [Preview - JPEG: 400 x 516 pix - 145k] [Normal - JPEG: 800 x 1032 pix - 350k] ESO PR Photo 25b/05 ESO PR Photo 25b/05 Artist's impression of the triple asteroid system [Preview - JPEG: 420 x 400 pix - 98k] [Normal - JPEG: 849 x 800 pix - 238k] [Full Res - JPEG: 4000 x 3407 pix - 3.7M] [Full Res - TIFF: 4000 x 3000 pix - 36.0M] Caption: ESO PR Photo 25a/05 is a composite image showing the positions of Remus and Romulus around 87 Sylvia on 9 different nights as seen on NACO images. It clearly reveals the orbits of the two moonlets. The inset shows the potato shape of 87 Sylvia. The field of view is 2 arcsec. North is up and East is left. ESO PR Photo 25b/05 is an artist rendering of the triple system: Romulus, Sylvia, and Remus. ESO Video Clip 03/05 ESO Video Clip 03/05 Asteroid Sylvia and Her Twins [Quicktime Movie - 50 sec - 384 x 288 pix - 12.6M] Caption: ESO PR Video Clip 03/05 is an artist rendering of the triple asteroid system showing the large asteroid 87 Sylvia spinning at a rapid rate and surrounded by two smaller asteroids (Remus and Romulus) in orbit around it. This computer animation is also available in broadcast quality to the media (please contact Herbert Zodet). One of these asteroids was 87 Sylvia, which was known to be double since 2001, from observations made by Mike Brown and Jean-Luc Margot with the Keck telescope. The astronomers used NACO to observe Sylvia on 27 occasions, over a two-month period. On each of the images, the known small companion was seen, allowing Marchis and his colleagues to precisely compute its orbit. But on 12 of the images, the astronomers also found a closer and smaller companion. 87 Sylvia is thus not double but triple! Because 87 Sylvia was named after Rhea Sylvia, the mythical mother of the founders of Rome [3], Marchis proposed naming the twin moons after those founders: Romulus and Remus. The International Astronomical Union approved the names. Sylvia's moons are considerably smaller, orbiting in nearly circular orbits and in the same plane and direction. The closest and newly discovered moonlet, orbiting about 710 km from Sylvia, is Remus, a body only 7 km across and circling Sylvia every 33 hours. The second, Romulus, orbits at about 1360 km in 87.6 hours and measures about 18 km across. The asteroid 87 Sylvia is one of the largest known from the asteroid main belt, and is located about 3.5 times further away from the Sun than the Earth, between the orbits of Mars and Jupiter. The wealth of details provided by the NACO images show that 87 Sylvia is shaped like a lumpy potato, measuring 380 x 260 x 230 km (see ESO PR Photo 25a/05). It is spinning at a rapid rate, once every 5 hours and 11 minutes. The observations of the moonlets' orbits allow the astronomers to precisely calculate the mass and density of Sylvia. With a density only 20% higher than the density of water, it is likely composed of water ice and rubble from a primordial asteroid. "It could be up to 60 percent empty space," said co-discoverer Daniel Hestroffer (Observatoire de Paris, France). "It is most probably a "rubble-pile" asteroid", Marchis added. These asteroids are loose aggregations of rock, presumably the result of a collision. Two asteroids smacked into each other and got disrupted. The new rubble-pile asteroid formed later by accumulation of large fragments while the moonlets are probably debris left over from the collision that were captured by the newly formed asteroid and eventually settled into orbits around it. "Because of the way they form, we expect to see more multiple asteroid systems like this." Marchis and his colleagues will report their discovery in the August 11 issue of the journal Nature, simultaneously with an announcement that day at the Asteroid Comet Meteor conference in Armação dos Búzios, Rio de Janeiro state, Brazil.

  5. HUBBLE PHOTOGRAPHS WARPED GALAXY AS CAMERA PASSES MILESTONE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has captured an image of an unusual edge-on galaxy, revealing remarkable details of its warped dusty disk and showing how colliding galaxies spawn the formation of new generations of stars. The dust and spiral arms of normal spiral galaxies, like our own Milky Way, appear flat when viewed edge-on. This month's Hubble Heritage image of ESO 510-G13 shows a galaxy that, by contrast, has an unusual twisted disk structure, first seen in ground-based photographs obtained at the European Southern Observatory (ESO) in Chile. ESO 510-G13 lies in the southern constellation Hydra, roughly 150 million light-years from Earth. Details of the structure of ESO 510-G13 are visible because the interstellar dust clouds that trace its disk are silhouetted from behind by light from the galaxy's bright, smooth central bulge. The strong warping of the disk indicates that ESO 510-G13 has recently undergone a collision with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort the structures of the galaxies as their stars, gas, and dust merge together in a process that takes millions of years. Eventually the disturbances will die out, and ESO 510-G13 will become a normal-appearing single galaxy. In the outer regions of ESO 510-G13, especially on the right-hand side of the image, we see that the twisted disk contains not only dark dust, but also bright clouds of blue stars. This shows that hot, young stars are being formed in the disk. Astronomers believe that the formation of new stars may be triggered by collisions between galaxies, as their interstellar clouds smash together and are compressed. The Heritage Team used Hubble's Wide Field Planetary Camera 2 (WFPC2) to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty spiral arms, the bright bulge, and the blue star-forming regions. During the observations of ESO 510-G13, WFPC2 passed the milestone of taking its 100,000th image since its installation in the telescope by shuttle astronauts in 1993. Image Credit: NASA and the Hubble Heritage Team (STScI/AURA) Acknowledgment: C. Conselice (U. Wisconsin/STScI)

  6. Close to the Sky

    NASA Astrophysics Data System (ADS)

    2007-11-01

    Today, a new ALMA outreach and educational book was publicly presented to city officials of San Pedro de Atacama in Chile, as part of the celebrations of the anniversary of the Andean village. ESO PR Photo 50a/07 ESO PR Photo 50a/07 A Useful Tool for Schools Entitled "Close to the sky: Biological heritage in the ALMA area", and edited in English and Spanish by ESO in Chile, the book collects unique on-site observations of the flora and fauna of the ALMA region performed by experts commissioned to investigate it and to provide key initiatives to protect it. "I thank the ALMA project for providing us a book that will surely be a good support for the education of children and youngsters of San Pedro de Atacama. Thanks to this publication, we expect our rich flora and fauna to be better known. I invite teachers and students to take advantage of this educational resource, which will be available in our schools", commented Ms. Sandra Berna, the Mayor of San Pedro de Atacama, who was given the book by representatives of the ALMA global collaboration project. Copies of the book 'Close to the sky' will be donated to all schools in the area, as a contribution to the education of students and young people in northern Chile. "From the very beginning of the project, ALMA construction has had a firm commitment to environment and local culture, protecting unique flora and fauna species and preserving old estancias belonging to the Likan Antai culture," said Jacques Lassalle, who represented ALMA at the hand-over. "Animals like the llama, the fox or the condor do not only live in the region where ALMA is now being built, but they are also key elements of the ancient Andean constellations. In this sense they are part of the same sky that will be explored by ALMA in the near future." ESO PR Photo 50c/07 ESO PR Photo 50c/07 Presentation of the ALMA book The ALMA Project is a giant, international observatory currently under construction on the high-altitude Chajnantor site in Chile. ALMA will be composed initially of 66 high-precision telescopes, operating at wavelengths of 0.3 to 9.6 mm. The ALMA antennas will be electronically combined and will provide astronomical observations which are equivalent to those from a single large telescope of tremendous size and resolution. Chajnantor was selected as the ideal spot for ALMA, following several years of atmospheric and meteorology studies. The high elevation, stable atmosphere, and low humidity make it one of the best locations in the world for radio astronomy. To protect the outstanding conditions of Chajnantor, the Government of Chile declared a major portion of the area a scientific reserve. The publication is available in PDF format. It is the second book on ALMA for the general public, following the previous launch of "Footprints in the Desert", also available on the Internet in PDF format in Spanish. ALMA is a partnership between Europe, East Asia and North America in cooperation with the Republic of Chile. It is funded in Europe by ESO, in East Asia by the National Institutes of Natural Sciences of Japan in cooperation with the Academia Sinica in Taiwan and in North America by the U.S. National Science Foundation in cooperation with the National Research Council of Canada. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of East Asia by the National Astronomical Observatory of Japan and on behalf of North America by the National Radio Astronomy Observatory, which is managed by Associated Universities, Inc.

  7. Final Tests before MELIPAL "First Light"

    NASA Astrophysics Data System (ADS)

    2000-01-01

    Secondary Mirror Now in Place Happy expectations are again growing at ESO's Paranal Observatory. For the third time in less than two years, the special moment of "First Light" for an 8.2-m VLT Unit Telescope is getting close - now is the turn of MELIPAL. Yesterday morning (January 20), the secondary mirror for MELIPAL was successfully coated with a thin layer of highly reflecting Aluminium. For this, the light-weight Beryllium mirror (about 50 kg) with a diameter of 1.1-m and covered with a layer of Nickel was carefully cleaned. It was subsequently placed in the large coating plant in which a target of exceedingly pure Aluminium is bombarded by fast argon ions. In this "sputtering" process, large numbers of Aluminium atoms are released from the target and deposited on the mirror. After about 15 minutes, the Aluminium layer had reached the desired thickness, 80 nm (= 0.00008 mm), or about 600 Aluminium atoms on top of each other. When the plant was opened, the reflectivity was measured as 91%, an excellent value. The equally successful coating of MELIPAL's main 8.2-m mirror was done in the same plant in late 1999, cf. ESO PR Photos 42a-ad/99. In the evening of January 20, the mirror was placed in its protective box and transported to the telescope enclosure. The mechanical structure of MELIPAL was tilted towards the horizon for easy access to the M2-Unit , the electro-mechanical support system for the secondary mirror at the top end. After removal of the M2 dummy mirror, the newly coated Beryllium mirror was cautiously mounted on its support. This delicate operation went smoothly, without any problems. With the optical mirrors in place, a further series of careful tests and thorough checks of all telescope functions will now follow. This will include extremely accurate balancing of the 450-tonnes telescope frame on its hydrostatic oil bearings, as well as precise adjustment of the various motions. Everything is controlled and monitored by computers and the ESO engineers will endeavour to tune the performance of the entire telescope to a high level of perfection, already at this stage. When the "First Light" observations are made some days from now, the light from the chosen celestial objects will be registered by the VLT Test Camera at the Cassegrain Focus. This comparatively simple instrument was also used for the "First Light" for ANTU and KUEYEN . It is mounted on the telescope's optical axis within the M1 Mirror Cell, just behind the main mirror. One or more of the astronomical images that will be obtained during MELIPAL "First Light" event will be made available on the web right after this important milestone of the VLT project. The following digital photos, most of which were obtained on January 20, illustrate the work on the M2 mirror described above.

  8. INTEGRAL, XMM-Newton and ESO/NTT identification of AX J1749.1-2733: an obscured and probably distant Be/X-ray binary

    NASA Astrophysics Data System (ADS)

    Zurita Heras, J. A.; Chaty, S.

    2008-10-01

    Context: AX J1749.1-2733 is an unclassified transient X-ray source discovered during surveys by ASCA in 1993-1999. The transient behaviour and the short and bright flares of the source have led to the idea that it is part of the recently revealed subclass of supergiant fast X-ray transients. Aims: A multi-wavelength study in NIR, optical, X-rays, and hard X-rays of AX J1749.1-2733 is undertaken in order to determine its nature. Methods: Public INTEGRAL data and our target of opportunity observation with XMM-Newton were used to study the high-energy source through timing and spectral analysis. Multi-wavelength observations in optical and NIR with the ESO/NTT telescope were also performed to search for the counterpart. Results: AX J1749.1-2733 is a new high-mass X-ray binary pulsar with an orbital period of 185.5±1.1 days (or 185.5/f with f=2,3 or 4) and a spin period of 66 s, parameters typical of a Be/X-ray binary. The outbursts last 12 d. A spin-down of dot{P}=0.08 ± 0.02 s yr -1 is also observed, very likely due to the propeller effect. The most accurate X-ray position is RA (2000) =17h49m06.8s and Dec =-27°32 arcmin32.5 arcsec (uncertainty 2 arcsec). The high-energy broad-band spectrum is well-fitted with an absorbed powerlaw and a high-energy cutoff with values NH=20.1-1.3+1.5×1022 cm-2, Γ=1.0-0.3+0.1, and Ecut=21-3+5 keV. The only optical/NIR candidate counterpart within the X-ray error circle has magnitudes of R=21.9±0.1, I=20.92±0.09, J=17.42±0.03, H=16.71±0.02, and Ks=15.75±0.07, which points towards a Be star located far away (>8.5 kpc) and highly absorbed (NH˜ 1.7×1022 cm-2). The average 22-50 keV luminosity is 0.4-0.9×1036 erg s-1 during the long outbursts and 3×1036 erg s-1 during the bright flare that occurred on MJD 52891 for an assumed distance of 8.5 kpc. Based on observations made with 1) INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA; 2) XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; and 3) ESO Telescopes at the La Silla or Paranal Observatories under programme ID 079.D-0432(A).

  9. ESO PR Highlights in 2006

    NASA Astrophysics Data System (ADS)

    2007-01-01

    Last year proved to be another exceptional year for the European organisation for ground-based astronomy. ESO should begin the New Year with two new member states: Spain (PR 05/06) and the Czech Republic (PR 52/06). ESO PR Highlights 2006 2006 was a year of renovation and revolution in the world of planets. A new Earth-like exoplanet has been discovered (PR 03/06) using a network of telescopes from all over the world (including the Danish 1.54-m one at ESO La Silla). It is not the only child of this fruitful year: thanks to the combined use of ESO's Very Large Telescope (VLT) and La Silla instruments, a surprising system of twin giant exoplanets was found (PR 29/06), and a trio of Neptune-like planets hosted by a nearby star were identified (PR 18/06). These results open new perspectives on the search for habitable zones and on the understanding of the mechanism of planet formation. The VISIR instrument on the VLT has been providing unique information to answer this last question, by supplying a high resolution view of a planet-forming disc (PR 36/06). There are not only new members in the planets' register: during the General Assembly of the International Astronomical Union held in Prague (Czech Republic), it was decided that Pluto is not a planet anymore but a 'dwarf planet'. Whatever its status, Pluto still has a satellite, Charon, whose radius and density have been measured more accurately by observing a rare occultation from different sites, including Cerro Paranal (PR 02/06). The scientific community dedicated 2006 to the great physicist James Clerk Maxwell (it was the 175th anniversary of the birth): without his electromagnetic theory of light, none of the astonishing discoveries of modern physics could have been achieved. Nowadays we can look at distant galaxies in great detail: the GIRAFFE spectrograph on the VLT revealed that galaxies 6 billion years ago had the same amount of dark matter relative to stars than nowadays (PR 10/06), while SINFONI gave an unprecedented detailed map of a proto-disc galaxy, showing how galaxies looked like 10 billion years ago (PR 31/06). The VLT also helped to discover a large primordial (more than 10 billion years away) 'blob', explained as the early stage formation of a galaxy (PR 23/06). Not only far away galaxies are rich of surprises: also our own Galaxy was the object of investigations during 2006 and its history is now less obscure (PR 34/06 and 41/06). ESO's Very Large Telescope unveiled that the stellar cluster Messier 12 must have lost to our Milky Way galaxy close to one million low-mass stars (PR 04/06). Stealing is not uncommon in astronomy: evidence of stellar vampires - star sucking off material from another - was unearthed in the globular cluster 47 Tucanae (PR 37/06). Still closer to home, the VLT observed Schwassmann-Wachmann 3, a comet that is breaking apart and revealed many mini-comets (PR 15/06). At Paranal, a fourth Auxiliary Telescope was installed for the Very Large Telescope Interferometer (PR 51/06), and since January 2006, not only do natural stars shine: the first artificial star twinkles in the Southern Hemisphere. It does not guide the sailors (it is too faint to be seen by the unaided eye), but it conducts the eye of the present and future telescopes (PR 07/06). And 2006 proved an important year for the future project of ESO, the Extremely Large Telescope. After approval from the ESO council, the European community can now start the final design of this telescope that will without doubt revolutionise astronomy (PR 25/06 and 46/06). ESO PR Photos 2006 2006 was without doubt an explosive year: the explosion of a supernovae of Type Ia in the enchanting Hooked Galaxy was followed from the middle of 2005 for more than a year (PR 22/06) and using observations of 17 supernovae Ia astronomers could make light on the nature of such explosions, that are likely to occur at supersonic speed (PR 44/06). Supernovae are proved to be linked to X-ray flashes (PR 33/06) and to the more energetic gamma-ray bursts. But not all the explosions are associated with supernovae, and a new kind of explosion is indeed suggested by the observation of a new mysterious category of gamma-ray bursts (PR 49/06). The Atacama Pathfinder Experiment (APEX) 12-m sub-millimetre telescope lived up to the ambitions of the scientists by providing access to the 'Cold Universe' with unprecedented sensitivity and image quality. As a demonstration, no less than 26 articles based on early science with APEX were published in a special issue of the research journal Astronomy & Astrophysics (PR 24/06). This year ESO and Chile celebrated ten years of collaboration: a cooperation that led not only to breakthrough discoveries, but also to a growth of astronomy and related sciences in the South American country (PR 21/06). ESO published many images last year as well, including two huge ones, made with the Wide Field Imager: one, made of about 300 million pixels, shows an 'empty field' (PR 14/06), while the other, a 256 million pixel mosaic, depicts in amazing detail the Tarantula Nebula (PR 50/06). These and other images can be accessed through the clickable map, including amazing images of galaxies and of a finally identified flying object (PR 48/06).

  10. "First Light" for the VLT Interferometer

    NASA Astrophysics Data System (ADS)

    2001-03-01

    Excellent Fringes From Bright Stars Prove VLTI Concept Summary Following the "First Light" for the fourth of the 8.2-m telescopes of the VLT Observatory on Paranal in September 2000, ESO scientists and engineers have just successfully accomplished the next major step of this large project. On March 17, 2001, "First Fringes" were obtained with the VLT Interferometer (VLTI) - this important event corresponds to the "First Light" for an astronomical telescope. At the VLTI, it occurred when the infrared light from the bright star Sirius was captured by two small telescopes and the two beams were successfully combined in the subterranean Interferometric Laboratory to form the typical pattern of dark and bright lines known as " interferometric fringes ". This proves the success of the robust VLTI concept, in particular of the "Delay Line". On the next night, the VLTI was used to perform a scientific measurement of the angular diameter of another comparatively bright star, Alpha Hydrae ( Alphard ); it was found to be 0.00929±0.00017 arcsec . This corresponds to the angular distance between the two headlights of a car as seen from a distance of approx. 35,000 kilometres. The excellent result was obtained during a series of observations, each lasting 2 minutes, and fully confirming the impressive predicted abilities of the VLTI . This first observation with the VLTI is a monumental technological achievement, especially in terms of accuracy and stability . It crucially depends on the proper combination and functioning of a large number of individual opto-mechnical and electronic elements. This includes the test telescopes that capture the starlight, continuous and extremely precise adjustment of the various mirrors that deflect the light beams as well as the automatic positioning and motion of the Delay Line carriages and, not least, the optimal tuning of the VLT INterferometer Commissionning Instrument (VINCI). These initial observations prove the overall concept for the VLTI . It was first envisaged in the early 1980's and has been continuously updated, as new technologies and materials became available during the intervening period. The present series of functional tests will go on for some time and involve many different configurations of the small telescopes and the instrument. It is then expected that the first combination of light beams from two of the VLT 8.2-m telescopes will take place in late 2001 . According to current plans, regular science observations will start from 2002, when the European and international astronomical community will have access to the full interferometric facility and the specially developed VLTI instrumentation now under construction. A wide range of scientific investigations will then become possible, from the search for planets around nearby stars, to the study of energetic processes at the cores of distant galaxies. With its superior angular resolution (image sharpness), the VLT is now beginning to open a new era in observational optical and infrared astronomy. The ambition of ESO is to make this type of observations available to all astronomers, not just the interferometry specialists. Video Clip 03/01 : Various video scenes related to the VLTI and the "First Fringes". PR Photo 10a/01 : "First Fringes" from the VLTI on the computer screen. PR Photo 10b/01 : Celebrating the VLTI "First Fringes" . PR Photo 10c/01 : Overview of the VLT Interferometer . PR Photo 10d/01 : Interferometric observations: Fringes from two stars of different angular size . PR Photo 10e/01 : Interferometric observations: Change of fringes with increasing baseline . PR Photo 10f/01 : Aerial view of the installations for the VLTI on the Paranal platform. PR Photo 10g/01 : Stations for the VLTI Auxiliary Telescopes. PR Photo 10h/01 : A test siderostat in place for observations. PR Photo 10i/01 : A test siderostat ( close-up ). PR Photo 10j/01 : One of the Delay Line carriages in the Interferometric Tunnel. PR Photo 10k/01 : The VINCI instrument in the Interferometric Laboratory. PR Photo 10l/01 : The VLTI Control Room . "First Fringes at the VLTI": A great moment! First light of the VLT Interferometer - PR Video Clip 03/01 [MPEG - x.xMb] ESO PR Video Clip 03/01 "First Light of the VLT Interferometer" (March 2001) (5025 frames/3:21x min) [MPEG Video+Audio; 144x112 pix; 6.9Mb] [MPEG Video+Audio; 320x240 pix; 13.7Mb] [RealMedia; streaming; 34kps] [RealMedia; streaming; 200kps] ESO Video Clip 03/01 provides a quick overview of the various elements of the VLT Interferometer and the important achievement of "First Fringes". The sequence is: General view of the Paranal observing platform. The "stations" for the VLTI Auxiliary Telescopes. Statement by the Manager of the VLT project, Massimo Tarenghi . One of the VLTI test telescopes ("siderostats") is being readied for observations. The Delay Line carriages in the Interferometric Tunnel move. The VINCI instrument in the Interferometric Laboratory is adjusted. Platform at sunset, before the observations. Astronomers and engineers prepare for the first observations in the VLTI Control Room in the Interferometric Building. "Interferometric Fringes" on the computer screen. Concluding statements by Andreas Glindemann , VLTI Project Leader, and Massimo Tarenghi . Distant view of the installations at Paranal at sunset (on March 1, 2001). The moment of "First Fringes" at the VLTI occurred in the evening of March 17, 2001 . The bright star Sirius was observed with two small telescopes ("siderostats"), specially constructed for this purpose during the early VLTI test phases. ESO PR Video Clip 03/01 includes related scenes and is based on a more comprehensive documentation, now available as ESO Video News Reel No. 12. The star was tracked by the two telescopes and the light beams were guided via the Delay Lines in the Interferometric Tunnel to the VINCI instrument [1] at the Interferometric Laboratory. The path lengths were continuously adjusted and it was possible to keep them stable to within 1 wavelength (2.2 µm, or 0.0022 mm) over a period of at least 2 min. Next night, several other stars were observed, enabling the ESO astronomers and engineers in the Control Room to obtain stable fringe patterns more routinely. With the special software developed, they also obtained 'on-line' an accurate measurement of the angular diameter of a star. This means that the VLTI delivered its first valid scientific result, already during this first test . First observation with the VLTI ESO PR Photo 10a/01 ESO PR Photo 10a/01 [Preview - JPEG: 400 x 315 pix - 96k] [Normal - JPEG: 800 x 630 pix - 256k] [Hi-Res - JPEG: 3000 x 2400 pix - 1.7k] ESO PR Photo 10b/01 ESO PR Photo 10b/01 [Preview - JPEG: 400 x 218 pix - 80k] [Normal - JPEG: 800 x 436 pix - 204k] Caption : PR Photo 10a/01 The "first fringes" obtained with the VLTI, as seen on the computer screen during the observation (upper right window). The fringe pattern arises when the light beams from two small telescopes are brought together in the VINCI instrument. The pattern itself contains information about the angular extension of the observed object, here the bright star Sirius . More details about the interpretation of this pattern is given in Appendix A. PR Photo 10b/01 : Celebrating the moment of "First Fringes" at the VLTI. At the VLTI control console (left to right): Pierre Kervella , Vincent Coudé du Foresto , Philippe Gitton , Andreas Glindemann , Massimo Tarenghi , Anders Wallander , Roberto Gilmozzi , Markus Schoeller and Bill Cotton . Bertrand Koehler was also present and took the photo. Technical information about PR Photo 10a/01 is available below. Following careful adjustment of all of the various components of the VLTI, the first attempt to perform a real observation was initiated during the night of March 16-17, 2001. "Fringes" were actually acquired during several seconds, leading to further optimization of the Delay Line optics. The next night, March 17-18, stable fringes were obtained on the bright stars Sirius and Lambda Velorum . The following night, the first scientifically valid results were obtained during a series of observations of six stars. One of these, Alpha Hydrae , was measured twice, with an interval of 15 minutes between the 2-min integrations. The measured diameters were highly consistent, with a mean of 0.00929±0.00017 arcsec. This new VLTI measurement is in full agreement with indirect (photometric) estimates of about 0.009 arcsec. The overall performance of the VLTI was excellent already in this early stage. For example, the interferometric efficiency ('contrast' on a stellar point source) was measured to be 87% and stable to within 1.3% over several days. This performance will be further improved following additional tuning. The entire operation of the VLTI was performed remotely from the Control Room, as this will also be the case in the future. Another great advantage of the VLTI concept is the possibility to analyse the data at the control console. This is one of the key features of the VLTI that contributes to make it a very user-friendly facility. Overview of the VLT Interferometer ESO PR Photo 10c/01 ESO PR Photo 10c/01 [Preview - JPEG: 400 x 410 pix - 60k] [Normal - JPEG: 800 x 820 pix - 124k] [Hi-Res - JPEG: 3000 x 3074 pix - 680k] Caption : PR Photo 10c/01 Overview of the VLT Interferometer, with the various elements indicated. In this case, the light beams from two of the 8.2-m telescopes are combined. The VINCI instrument that was used for the present test, is located at the common focus in the Interferometric Laboratory. The interferometric principle is based on the phase-stable combination of light beams from two or more telescopes at a common interferometric focus , cf. PR Photo 10c/01 . The light from a celestial object is captured simultaneously by two or more telescopes. For the first tests, two "siderostats" with 40-cm aperture are used; later on, two or more 8.2-m Unit Telescopes will be used, as well as several moving 1.8-m Auxiliary Telescopes (ATs), now under construction at the AMOS factory in Belgium. Via several mirrors and through the Delay Line, that continuously compensates for changes in the path length introduced by the Earth's rotation as well as by other effects (e.g., atmospheric turbulence), the light beams are guided towards the interferometric instrument VINCI at the common interferometric focus. It is located in the subterranean Interferometric Laboratory , at the centre of the observing platform on the top of the Paranal mountain. Photos of some of the VLTI elements are shown in Appendix B. The interferometric technique allows achieving images, as sharp as those of a telescope with a diameter equivalent to the largest distance between the telescopes in the interferometer. For the VLTI, this distance is about 200 metres, resulting in a resolution of 0.001 arcsec in the near-infrared spectral region (at 1 µm wavelength), or 0.0005 arcsec in visual light (500 nm). The latter measure corresponds to about 2 metres on the surface of the Moon. The VLTI instruments The installation and putting into operation of the VLTI at Paranal is a gradual process that will take several years. While the present "First Fringe" event is of crucial importance, the full potential of the VLTI will only be reached some years from now. This will happen with the successive installation of a number of highly specialised instruments, like the near-infrared/red VLTI focal instrument (AMBER) , the Mid-Infrared interferometric instrument for the VLTI (MIDI) and the instrument for Phase-Referenced Imaging and Microarcsecond Astrometry (PRIMA). Already next year, the three 1.8-m Auxiliary Telescopes that will be fully devoted to interferometric observations, will arrive at Paranal. Ultimately, it will be possible to combine the light beams from all the large and small telescopes. Great research promises Together, they will be able to achieve an unprecedented image sharpness (angular resolution) in the optical/infrared wavelength region, and thanks to the great light-collecting ability of the VLT Unit Telescopes, also for observations of quite faint objects. This will make it possible to carry out many different front-line scientific studies, beyond the reach of other instruments. There are many promising research fields that will profit from VLTI observations, of which the following serve as particularly interesting examples: * The structure and composition of the outer solar system, by studies of individual moons, Trans-Neptunian Objects and comets. * The direct detection and imaging of exoplanets in orbit around other stars. * The formation of star clusters and their evolution, from images and spectra of very young objects. * Direct views of the surface structures of stars other than the Sun. * Measuring accurate distances to the most prominent "stepping stones" in the extragalactic distance scale, e.g., galactic Cepheid stars, the Large Magellanic Cloud and globular clusters. * Direct investigations of the physical mechanisms responsible for stellar pulsation, mass loss and dust formation in stellar envelopes and evolution to the Planetary Nebula and White Dwarf stages. * Close-up studies of interacting binary stars to better understand their mass transfer mechanisms and evolution. * Studies of the structure of the circum-stellar environment of stellar black holes and neutron stars. * The evolution of the expanding shells of unstable stars like novae and supernovae and their interaction with the interstellar medium. * Studying the structure and evolution of stellar and galactic nuclear accretion disks and the associated features, e.g., jets and dust tori. * With images and spectra of the innermost regions of the Milky Way galaxy, to investigate the nature of the nucleus surrounding the central black hole. Clearly, there will be no lack of opportunities for trailblazing research with the VLTI. The "First Fringes" constitute a very important milestone in this direction. Appendix A: How does it work? ESO PR Photo 10d/01 ESO PR Photo 10d/01 [Preview - JPEG: 400 x 290 pix - 24k] [Normal - JPEG: 800 x 579 pix - 68k] [Hi-Res - JPEG: 3000 x 2170 pix - 412k] ESO PR Photo 10e/01 ESO PR Photo 10e/01 [Preview - JPEG: 400 x 219 pix - 32k] [Normal - JPEG: 800 x 438 pix - 64k] [Hi-Res - JPEG: 3000 x 1644 pix - 336k] Caption : PR Photo 10d/01 demonstrates in a schematic way, how the images of two stars of different angular size (left) will look like, with a single telescope (middle) and with an interferometer like the VLTI (right). Whereas there is little difference with one telescope, the fringe patterns at the interferometer are quite different. Conversely, the appearance of this pattern provides a measure of the star's angular diameter. In PR Photo 10e/01 , interferometric observations of a single star are shown, as the distance between the two telescopes is gradually increased. The observed pattern at the focal plane clearly changes, and the "fringes" disappear completely. See the text for more details. The principle behind interferometry is the "coherent optical interference" of light beams from two or more telescopes, due to the wave nature of light. The above illustrations serve to explain what the astronomers observe in the simplest case, that of a single star with a certain angular size, and how this can be translated into a measurement of this size. In PR Photo 10d/01 , the difference between two stars of different diameter is illustrated. While the image of the smaller star displays strong interference effects (i.e., a well visible fringe pattern), those of the larger star are much less prominent. The "visibility" of the fringes is therefore a direct measure of the size; the stronger they appear (the "larger the contrast"), the smaller is the star. If the distance between the two telescopes is increased when a particular star is observed ( PR Photo 10e/01 ), then the fringes become less and less prominent. At a certain distance, the fringe pattern disppears completely. This distance is directly related to the angular size of the star. Appendix B: Elements of the VLT Interferometer Contrary to other large astronomical telescopes, the VLT was designed from the beginning with the use of interferometry as a major goal . For this reason, the four 8.2-m Unit Telescopes were positioned in a quasi-trapezoidal configuration and several moving 1.8-m telescopes were included into the overall VLT concept, cf. PR Photo 10f/01 . The photos below show some of the key elements of the VLT Interferometer during the present observations. They include the siderostats , 40-cm telescopes that serve to capture the light from a comparatively bright star ( Photos 10g-i/01 ), the Delay Lines ( Photo 10j/01 ), and the VINCI instrument ( Photo 10k/01) Earlier information about the development and construction of the individual elements of the VLTI is available as ESO PR 04/98 , ESO PR 14/00 and ESO PR Photos 26a-e/00.

  11. CFBDSIR 2149-0403: young isolated planetary-mass object or high-metallicity low-mass brown dwarf?

    NASA Astrophysics Data System (ADS)

    Delorme, P.; Dupuy, T.; Gagné, J.; Reylé, C.; Forveille, T.; Liu, M. C.; Artigau, E.; Albert, L.; Delfosse, X.; Allard, F.; Homeier, D.; Malo, L.; Morley, C.; Naud, M. E.; Bonnefoy, M.

    2017-06-01

    Aims: We conducted a multi-wavelength, multi-instrument observational characterisation of the candidate free-floating planet CFBDSIR J214947.2-040308.9, a late T-dwarf with possible low-gravity features, in order to constrain its physical properties. Methods: We analysed nine hours of X-shooter spectroscopy with signal detectable from 0.8 to 2.3 μm, as well as additional photometry in the mid-infrared using the Spitzer Space Telescope. Combined with a VLT/HAWK-I astrometric parallax, this enabled a full characterisation of the absolute flux from the visible to 5 μm, encompassing more than 90% of the expected energy emitted by such a cool late T-type object. Our analysis of the spectrum also provided the radial velocity and therefore the determination of its full 3D kinematics. Results: While our new spectrum confirms the low gravity and/or high metallicity of CFBDSIR 2149, the parallax and kinematics safely rule out membership to any known young moving group, including AB Doradus. We use the equivalent width of the K I doublet at 1.25 μm as a promising tool to discriminate the effects of low-gravity from the effects of high-metallicity on the emission spectra of cool atmospheres. In the case of CFBDSIR 2149, the observed K I doublet clearly favours the low-gravity solution. Conclusions: CFBDSIR 2149 is therefore a peculiar late-T dwarf that is probably a young, planetary-mass object (2-13 MJup, <500 Myr) possibly similar to the exoplanet 51 Eri b, or perhaps a 2-40 MJup brown dwarf with super-solar metallicity. Based on observations obtained with X-shooter on VLT-UT2 at ESO-Paranal (run 091.D-0723). Based on observations obtained with HAWKI on VLT-UT4 (run 089.C-0952, 090.C-0483, 091.C-0543,092.C-0548,293.C-5019(A) and run 086.C-0655(A)). Based on observations obtained with ISAAC on VLT-UT3 at ESO-Paranal (run 290.C-5083). Based on observation obtained with WIRCam at CFHT (program 2012BF12). Based on Spitzer Space telescope DDT observation (program 10166).

  12. The ESO Educational Office Reaches Out towards Europe's Teachers

    NASA Astrophysics Data System (ADS)

    2001-12-01

    ESA/ESO Astronomy Exercises Provide a Taste of Real Astronomy [1] Summary The European Southern Observatory (ESO) has been involved in many Europe-wide educational projects during the past years, in particular within European Science Weeks sponsored by the European Commission (EC). In order to further enhance the significant educational potential inherent in the numerous scientific endeavours now carried out by Europe's astronomers with ESO front-line telescope facilities, it has been decided to set up an Educational Office within the ESO EPR Department. It will from now on work closely with astronomy-oriented teachers, in particular at the high-school level , providing support, inspiration and new materials. Much of this interaction will happen via the European Association for Astronomy Education (EAAE) In this context, and in collaboration with the European Space Agency (ESA) , the first instalments of the "ESA/ESO Astronomy Exercise Series" have just been published, on the web ( http://www.astroex.org ) and in print (6 booklets totalling 100 pages; provided free-of-charge to teachers on request). They allow 16-19 year old students to gain exciting hands-on experience in astronomy, making realistic calculations with data obtained from observations by some of the world's best telescopes, the NASA/ESA Hubble Space Telescope (HST) and ESO's Very Large Telescope (VLT) . PR Photo 36/01 : The "ESA/ESO Astronomy Exercise Series" . Educational projects at ESO The European Southern Observatory (ESO) , through its Education and Public Relations Department (EPR) , has long been involved in educational activities, in particular by means of Europe-wide projects during successive European Science Weeks , with support from the European Commission (EC) . A most visible outcome has been the creation of the trailblazing European Association for Astronomy Education (EAAE) - this was first discussed at an international meeting at the ESO Headquarters in November 1994 with the participation of more than one hundred physics teachers from different European countries. Other educational projects include the highly successful "Sea and Space" (in 1998; with ESA), "Physics on Stage" (2000; with CERN and ESA), and "Life in the Universe" (2001; with CERN, ESA, EMBL and ESRF), all in close collaboration with EAAE. Astronomy and Astrophysics at the frontline of education The subject of Astronomy and Astrophysics plays an increasingly important role within education. This is not coincidental - this particular field of basic science is very attractive to young people. Its exploratory nature tickles youthful minds and the vast expanse of the Universe harbours many unknown secrets that are waiting to be discovered. The beautiful and intriguing images brought back by high-tech telescopes and instruments from the enormous terra incognita out there are natural works of art that invite comtemplation as well as interpretation. Astronomy and Astrophysics is a broadly interdisciplinary field, providing ample opportunities for interesting educational angles into many different fields of fundamental science, from physics, chemistry and mathematics, to applied research in opto-mechanics, detectors and data handling, and onwards into the humanities. The ESO Educational Office In order to further enhance the educational potential of the numerous scientific endeavours now carried out by Europe's astronomers with ESO front-line facilities, it has been decided to set up an Educational Office within the ESO EPR Department. It will from now on work closely with astronomy-oriented teachers, in particular at the high-school level , providing support, inspiration and new materials. Beginning next year, it will arrange meetings for teachers to inform about new results and trends in modern astrophysics, while facilitating the efficient exchange of the teachers' educational experience at different levels within the different curricula at Europe's schools. These initiatives will be carried out in close collaboration with the European Association for Astronomy Education (EAAE). During the past months, various preparatory discussions have been held between ESO, EAAE members and other teachers involved in Astronomy teaching from many countries. Provisional information about the ESO Educational Office will be found at its website ( http://www.eso.org/outreach/eduoff/ ). One of the first activities is concerned with a survey of the specific needs for astronomy education in Europe's high-schools by means of a widely distributed questionnaire. Of more immediate use will be the publication of four, comprehensive astronomy exercises, prepared in collaboration with the European Space Agency (ESA) and further described below. In the scientists' footsteps ESO PR Photo 36/01 ESO PR Photo 36/01 [Preview - JPEG: 450 x 640 pix - 34k] [Hires - JPEG: 2514 x 3578 pix - 1.4M] Cover of the "General Introduction" to the "ESA/ESO Astronomy Exercise Series" . The first instalments of the "ESA/ESO Astronomy Exercise Series" have just been published, on the web and in print. These exercises allow high-school students to gain exciting hands-on experience in astronomy, by making realistic calculations based on data obtained by some of the world's best telescopes, the NASA/ESA Hubble Space Telescope (HST) and ESO's Very Large Telescope (VLT) . Carefully prepared by astronomers and media experts, these excercises enable the students to measure and calculate fundamental properties like the distances to and the ages of different kinds of astronomical objects. Astronomy is an accessible and visual science, making it ideal for educational purposes. Reacting to the current need for innovative, high-quality educational materials, the European Space Agency (ESA) and the European Southern Observatory (ESO) have together produced this series of astronomical exercises for use in high schools. The prime object of the series is to present various small projects that will transmit some of the excitement and satisfaction of scientific discovery to students . By performing the well-structured projects, the students also gain first-hand experience in the application of scientific methods that only require basic geometrical and physical knowledge. They use ideas and techniques described in recent front-line scientific papers and are able to derive results that compare well with those from the much more sophisticated analyses done by the scientists. Focus on basic astrophysical themes The first four exercises focus on techniques to measuring distances in the Universe, one of the most basics problems in modern astrophysics. The students apply different methods to determine the distance of astronomical objects such as the supernova SN 1987A , the spiral galaxy Messier 100 , the Cat's Eye Planetary Nebula and the globular cluster Messier 12 . With these results, it is possible to make quite accurate estimates of the age of the Universe and its expansion rate , without the use of computers or sophisticated software. Students can also perform "naked-eye photometry" by measuring the brightness of stars on two VLT images (taken through blue and green optical filters, respectively). They can then construct the basic luminosity-temperature relation (the "Hertzsprung-Russell Diagramme") providing a superb way to gain insight into fundamental stellar physics. Six booklets The excercises are now available on the web ( http://www.astroex.org ) and in six booklets (100 pages in total), entitled * "General Introduction" (an overview of the HST and VLT telescopes), * "Toolkits" (explanation of basic astronomical and mathematical techniques), * "Exercise 1: Measuring the Distance to Supernova 1987A", * "Exercise 2: The Distance to Messier 100 as Determined By Cepheid Variable Stars", * "Exercise 3: Measuring the Distance to the Cat's Eye Nebula", and * "Exercise 4: Measuring a Globular Star Cluster's Distance and Age". Each of the four exercises begins with a background text, followed by a series of questions, measurements and calculations. The exercises can be used either as texts in a traditional classroom format or for independent study as part of a project undertaken in smaller groups. The booklets are sent free-of-charge to high- school teachers on request and may be downloaded as PDF-files from the above indicated website. More exercises will follow.

  13. The X-ray view of EROs

    NASA Astrophysics Data System (ADS)

    Brusa, M.; Comastri, A.; Daddi, E.; Cimatti, A.; Vignali, C.

    (1) Dip. Astronomia Bologna University, via Ranzani 1, I-40127 Bologna ITALY (2) INAF - Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna ITALY (3) ESO - European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen Germany (4) INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-55025 Firenze, Italy (5) Dept. of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA

  14. GAUDI: A Preparatory Archive for the COROT Mission

    NASA Astrophysics Data System (ADS)

    Solano, E.; Catala, C.; Garrido, R.; Poretti, E.; Janot-Pacheco, E.; Gutiérrez, R.; González, R.; Mantegazza, L.; Neiner, C.; Fremat, Y.; Charpinet, S.; Weiss, W.; Amado, P. J.; Rainer, M.; Tsymbal, V.; Lyashko, D.; Ballereau, D.; Bouret, J. C.; Hua, T.; Katz, D.; Lignières, F.; Lüftinger, T.; Mittermayer, P.; Nesvacil, N.; Soubiran, C.; van't Veer-Menneret, C.; Goupil, M. J.; Costa, V.; Rolland, A.; Antonello, E.; Bossi, M.; Buzzoni, A.; Rodrigo, C.; Aerts, C.; Butler, C. J.; Guenther, E.; Hatzes, A.

    2005-01-01

    The GAUDI database (Ground-based Asteroseismology Uniform Database Interface) is a preparatory archive for the COROT (Convection, Rotation, and Planetary Transits) mission developed at the Laboratorio de Astrofísica Espacial y Física Fundamental (Laboratory for Space Astrophysics and Theoretical Physics, Spain). Its intention is to make the ground-based observations obtained in preparation of the asteroseismology program available in a simple and efficient way. It contains spectroscopic and photometric data together with inferred physical parameters for more than 1500 objects gathered since 1998 January 1998 in 6 years of observational campaigns. In this paper, the main functions and characteristics of the system are described. Based on observations collected at La Silla (ESO proposals 67.D-0169, 69.D-0166, and 70.D-0110), Telescopio Nazionale Galileo (proposal 6-20-068), Observatoire de Haute-Provence, the South African Astronomical Observatory, Tautenburg Observatory, and Sierra Nevada Observatory.

  15. New Inspiring Planetarium Show Introduces ALMA to the Public

    NASA Astrophysics Data System (ADS)

    2009-03-01

    As part of a wide range of education and public outreach activities for the International Year of Astronomy 2009 (IYA2009), ESO, together with the Association of French Language Planetariums (APLF), has produced a 30-minute planetarium show, In Search of our Cosmic Origins. It is centred on the global ground-based astronomical Atacama Large Millimeter/submillimeter Array (ALMA) project and represents a unique chance for planetariums to be associated with the IYA2009. ESO PR Photo 09a/09 Logo of the ALMA Planetarium Show ESO PR Photo 09b/09 Galileo's first observations with a telescope ESO PR Photo 09c/09 The ALMA Observatory ESO PR Photo 09d/09 The Milky Way band ESO PR Video 09a/09 Trailer in English ALMA is the leading telescope for observing the cool Universe -- the relic radiation of the Big Bang, and the molecular gas and dust that constitute the building blocks of stars, planetary systems, galaxies and life itself. It is currently being built in the extremely arid environment of the Chajnantor plateau, at 5000 metres altitude in the Chilean Andes, and will start scientific observations around 2011. ALMA, the largest current astronomical project, is a revolutionary telescope, comprising a state-of-the-art array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. In Search of our Cosmic Origins highlights the unprecedented window on the Universe that this facility will open for astronomers. "The show gives viewers a fascinating tour of the highest observatory on Earth, and takes them from there out into our Milky Way, and beyond," says Douglas Pierce-Price, the ALMA Public Information Officer at ESO. Edited by world fulldome experts Mirage3D, the emphasis of the new planetarium show is on the incomparable scientific adventure of the ALMA project. A young female astronomer guides the audience through a story that includes unique animations and footage, leading the viewer from the first observations by Galileo, 400 years ago, to the world of modern astronomy, moving from the visible wavelength domain to explore the millimetre-wave view of the Universe, and leaving light-polluted cities for unique settings in some of the highest and driest places on Earth. "The fascinating topic, the breathtaking ESO astronomical images, the amazing 3D computer animations, and the very clever use of the music, all make this a really inspiring show," says Agnès Acker, President of the APLF. In search of our Cosmic Origins is available in three different formats: fulldome video, classical with video windows, and classical with slides. Fulldome video shows immerse the audience in a true 360-degree projected computer-generated virtual environment. The ALMA planetarium show is currently available in French and English. Several other language versions are in preparation: German, Italian, Spanish and Chilean Spanish, while further languages are planned: Danish, Dutch, Greek, Japanese, Portuguese and Brazilian Portuguese. The show will be available to all planetariums worldwide for a small fee, depending on the type and the size of the planetarium, to cover basic costs. The media are invited to attend, and see firsthand, the official screening during the European Film Festival, between 24 and 26 April 2009 in Espinho, Portugal. For media accreditation, please go to http://iff.multimeios.pt/index.php?option=com_wrapper&Itemid=45 A set of educational materials is also being prepared and will be finished in late April. To learn more about the show, please go to www.cosmicorigins.org

  16. HATS-17b: A Transiting Compact Warm Jupiter in a 16.3 Day Circular Orbit

    NASA Astrophysics Data System (ADS)

    Brahm, R.; Jordán, A.; Bakos, G. Á.; Penev, K.; Espinoza, N.; Rabus, M.; Hartman, J. D.; Bayliss, D.; Ciceri, S.; Zhou, G.; Mancini, L.; Tan, T. G.; de Val-Borro, M.; Bhatti, W.; Csubry, Z.; Bento, J.; Henning, T.; Schmidt, B.; Rojas, F.; Suc, V.; Lázár, J.; Papp, I.; Sári, P.

    2016-04-01

    We report the discovery of HATS-17b, the first transiting warm Jupiter of the HATSouth network. HATS-17b transits its bright (V = 12.4) G-type ({M}\\star = 1.131+/- 0.030 {M}⊙ , {R}\\star = {1.091}-0.046+0.070 {R}⊙ ) metal-rich ([Fe/H] = +0.3 dex) host star in a circular orbit with a period of P = 16.2546 days. HATS-17b has a very compact radius of 0.777+/- 0.056 {R}{{J}} given its Jupiter-like mass of 1.338+/- 0.065 {M}{{J}}. Up to 50% of the mass of HATS-17b may be composed of heavy elements in order to explain its high density with current models of planetary structure. HATS-17b is the longest period transiting planet discovered to date by a ground-based photometric survey, and is one of the brightest transiting warm Jupiter systems known. The brightness of HATS-17 will allow detailed follow-up observations to characterize the orbital geometry of the system and the atmosphere of the planet. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. This paper includes data gathered with the MPG 2.2 m telescope at the ESO Observatory in La Silla and with the 3.9 m AAT in Siding Spring Observatory. This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope. Based on observations taken with the HARPS spectrograph (ESO 3.6 m telescope at La Silla) under programme 097.C-0571.

  17. HATS-43b, HATS-44b, HATS-45b, and HATS-46b: Four Short-period Transiting Giant Planets in the Neptune–Jupiter Mass Range

    NASA Astrophysics Data System (ADS)

    Brahm, R.; Hartman, J. D.; Jordán, A.; Bakos, G. Á.; Espinoza, N.; Rabus, M.; Bhatti, W.; Penev, K.; Sarkis, P.; Suc, V.; Csubry, Z.; Bayliss, D.; Bento, J.; Zhou, G.; Mancini, L.; Henning, T.; Ciceri, S.; de Val-Borro, M.; Shectman, S.; Crane, J. D.; Arriagada, P.; Butler, P.; Teske, J.; Thompson, I.; Osip, D.; Díaz, M.; Schmidt, B.; Lázár, J.; Papp, I.; Sári, P.

    2018-03-01

    We report the discovery of four short-period extrasolar planets transiting moderately bright stars from photometric measurements of the HATSouth network coupled to additional spectroscopic and photometric follow-up observations. While the planet masses range from 0.26 to 0.90 {M}{{J}}, the radii are all approximately a Jupiter radii, resulting in a wide range of bulk densities. The orbital period of the planets ranges from 2.7 days to 4.7 days, with HATS-43b having an orbit that appears to be marginally non-circular (e = 0.173 ± 0.089). HATS-44 is notable for having a high metallicity ([{Fe}/{{H}}] = 0.320 ± 0.071). The host stars spectral types range from late F to early K, and all of them are moderately bright (13.3 < V < 14.4), allowing the execution of future detailed follow-up observations. HATS-43b and HATS-46b, with expected transmission signals of 2350 ppm and 1500 ppm, respectively, are particularly well suited targets for atmospheric characterization via transmission spectroscopy. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. This paper includes data gathered with the MPG 2.2 m and ESO 3.6 m telescopes at the ESO Observatory in La Silla. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  18. HATS-1b: The First Transiting Planet Discovered by the HATSouth Survey

    NASA Astrophysics Data System (ADS)

    Penev, K.; Bakos, G. Á.; Bayliss, D.; Jordán, A.; Mohler, M.; Zhou, G.; Suc, V.; Rabus, M.; Hartman, J. D.; Mancini, L.; Béky, B.; Csubry, Z.; Buchhave, L.; Henning, T.; Nikolov, N.; Csák, B.; Brahm, R.; Espinoza, N.; Conroy, P.; Noyes, R. W.; Sasselov, D. D.; Schmidt, B.; Wright, D. J.; Tinney, C. G.; Addison, B. C.; Lázár, J.; Papp, I.; Sári, P.

    2013-01-01

    We report the discovery of HATS-1b, a transiting extrasolar planet orbiting the moderately bright V = 12.05 G dwarf star GSC 6652-00186, and the first planet discovered by HATSouth, a global network of autonomous wide-field telescopes. HATS-1b has a period of P ≈ 3.4465 days, mass of Mp ≈ 1.86 M J, and radius of Rp ≈ 1.30 R J. The host star has a mass of 0.99 M ⊙ and radius of 1.04 R ⊙. The discovery light curve of HATS-1b has near-continuous coverage over several multi-day timespans, demonstrating the power of using a global network of telescopes to discover transiting planets. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), and the Australian National University (ANU). The station at Las Campanas Observatory (LCO) of the Carnegie Institute, is operated by PU in conjunction with collaborators at the Pontificia Universidad Católica de Chile (PUC), the station at the High Energy Spectroscopic Survey (HESS) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. Based in part on observations made with the Nordic Optical Telescope, operated on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based on observations made with the MPG/ESO 2.2 m Telescope at the ESO Observatory in La Silla. FEROS ID programmes: P087.A-9014(A), P088.A-9008(A), P089.A-9008(A), P087.C-0508(A). GROND ID programme: 089.A-9006(A). This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope.

  19. Giant Eyes for the VLT Interferometer

    NASA Astrophysics Data System (ADS)

    2001-11-01

    First Scientific Results with Combined Light Beams from Two 8.2-m Unit Telescopes Summary It started as a preparatory technical experiment and it soon developed into a spectacular success. Those astronomers and engineers who were present in the control room that night now think of it as the scientific dawn of the Very Large Telescope Interferometer (VLTI) . On October 29, 2001, ANTU and MELIPAL , two of the four VLT 8.2-m Unit Telescopes at the ESO Paranal Observatory, were linked for the first time. Light from the southern star Achernar (Alpha Eridani) was captured by the two telescopes and sent to a common focus in the observatory's Interferometric Laboratory. Following careful adjustments of the optical paths, interferometric fringes were soon recorded there, proving that the beams from the two telescopes had been successfully combined "in phase" . From an analysis of the observed pattern (the "fringe contrast"), the angular diameter of Achernar was determined to be 1.9 milli-arcsec. At the star's distance (145 light-years), this corresponds to a size of 13 million km. The observation is equivalent to measuring the size of a 4-metre long car on the surface of the Moon. This result marks the exciting starting point for operations with the Very Large Telescope Interferometer (VLTI) and it was immediately followed up by other scientific observations. Among these were the first measurements of the diameters of three red dwarf stars ("Kapteyn's star" - HD 33793, HD 217987 and HD 36395), a precise determination of the variable diameters of the pulsating Cepheid stars Beta Doradus and Zeta Geminorum (of great importance for the calibration of the universal distance scale), as well as a first interferometric measurement of the core of Eta Carinae , an intriguing, massive southern object that may possibly become the next supernova in our galaxy. This milestone is another important step towards the ultimate goal of the VLT project - to combine all four 8.2-m telescopes into the most powerful optical/infrared telescope system on Earth. When ready, it will be able to reveal at least 15 times finer details in astronomical objects than what is possible with any existing, single ground-based telescope. PR Photo 30a/01 : Overview of the VLT Interferometer . PR Photo 30b/01 : "Joint" stellar light-spot produced via ANTU and MELIPAL at the VLTI focus. PR Photo 30c/01 : Interferometric fringes from the star Achernar . PR Photo 30d/01 : Time sequence of fringes from Achernar. PR Photo 30e/01 : "Visibility curve" of the star Psi Phoenicis . Scientific Appendix First VLTI observations with two 8.2-m telescopes ESO PR Photo 30a/01 ESO PR Photo 30a/01 [Preview - JPEG: 357 x 400 pix - 82k] [Normal - JPEG: 713 x 800 pix - 208k] [Hi-Res - JPEG: 2673 x 3000 pix - 1.4M] ESO PR Photo 30b/01 ESO PR Photo 30b/01 [Preview - JPEG: 400 x 350 pix - 57k] [Normal - JPEG: 800 x 700 pix - 176k] Caption : PR Photo 30a/01 : Overview of the VLT Interferometer as it was operated when the light beams from two of the 8.2-m telescopes were combined. The VINCI instrument that was used for the present test, is located at the common focus in the Interferometric Laboratory. PR Photo 30b/01 shows one of the first "joint" light-spots from a star as seen at this VLTI focus and resulting from the superposition of light collected with the 8.2-m VLT ANTU and MELIPAL telescopes. Despite the long optical paths (about 200 m), the quality is excellent (FWHM = 0.45 arcsec). Note that this is not (yet) an image of the stellar surface. At 1 o'clock in the morning of October 30, 2001, ESO astronomers and engineers working in the VLTI Control Room successfully combined the light from ANTU and MELIPAL , two of the four 8.2-m VLT Unit Telescopes at the Paranal Observatory. The same night, a series of high-resolution test observations with the VINCI instrument [1] at the focus of the VLT Interferometer (VLTI) proved that this complex system was functioning extremely well, and within the technical specifications . Following about seven months after the moment of "VLTI first light" during which the light beams from two small test telescopes were combined - as described in detail in ESO Press Release 06/01 - this accomplishment above all serves as a demonstration of the possibilities and potential of interferometric observations with the four giant VLT telescopes. The two large telescopes used for the present test are separated by 102 metres. In order to properly combine the starlight received by them, a train of 25 mirrors is needed . All of them must be adjusted with a precision of one thousandth of a millimetre or better. As can be seen on PR Photo 30a/01 , the light from the observed star is first directed towards the Nasmyth focus by three mirrors in the telescope tube. From here, it continues towards the intermediate Coudé focus below the telescope and then onwards through a subterranean light duct to the VLTI Delay Lines that are installed in the Interferometric Tunnel . At the end of this long chain of mirrors and after traveling a distance of approximately 200 metres, the light finally reaches the VINCI instrument in which the two beams interact coherently (in phase) to produce "interferometric fringes". The tests have shown that the starlight arrives at the VINCI instrument with a pointing accuracy of about 1 arcsecond and, even more important, with a long-term tracking stability of the order of 0.2 arcseconds per hour. In fact, the image quality measured at the focus of VINCI is essentially identical to that of the individual telescopes at the Nasmyth (and Cassegrain) foci. Stellar images as sharp as 0.4 arcsec (note that this is the size of the "seeing disk" FWHM, not yet a real image of the stellar surface; the VLTI will start producing two-dimensional images of stars and other objects at a later stage) have been obtained at the interferometric focus, cf. PR Photo 30b/01 . The installation of an Adaptive Optics system (see below) will later reduce the image size to the theoretical limit of 0.057 arcsec (for observations with an 8.2-m telescope in the infrared K-band at wavelength 2.2 µm (or 0.032 arcsec in the J-band at 1.2 µm). First scientific results already during the test observations ESO PR Photo 30c/01 ESO PR Photo 30c/01 [Preview - JPEG: 400 x 368 pix - 50k] [Normal - JPEG: 800 x 736 pix - 136k] ESO PR Photo 30d/01 ESO PR Photo 30d/01 [Preview - JPEG: 400 x 332 pix - 168k] [Normal - JPEG: 800 x 663 pix - 440k] Caption : PR Photo 30c/01 shows the interferometric fringes of the star Achernar , as observed on the computer screen in the VLTI Control Room, at the moment of "First Light" with two 8.2-m VLT telescopes. PR Photo 30d/01 displays the time evolution of the interferometric fringes obtained on Achernar . Each horizontal scan represents a recorded fringe pattern, with time running vertically from bottom to top. PR Photo 30c/01 was extracted from one of these scans. The technical demonstration being so successful, the ESO astronomers and engineers involved in the development of the VLTI immediately decided to go one step further. And indeed, the interferometric fringes recorded with the light beams from two 8.2-m VLT telescopes during these initial technical tests have already led to some very valuable scientific results. The first star to be observed - the brightest star in the southern constellation Eridanus (The River) and known as Alpha Eridani or Achernar - is quite different from our Sun. It is estimated to be several times more massive and, with a surface temperature of about 20000 degrees, it is about three times hotter than our local star. The distance to Achernar has been measured by the ESA HIPPARCOS satellite as about 145 light-years, and from its apparent brightness, it is found to be almost 1000 times more luminous than the Sun. Consequently, it depletes its energy resources much faster and has a much shorter life expectancy (about 100 million years) than the Sun (about 10,000 million years). The new measurement with the VLTI found the angular diameter of Achernar to be 0.00192 ± 0.00005 arcsec . This is equivalent to the angle subtended by a 1 Euro coin (diameter 23.25 mm) as seen from a distance of 2500 km, or by a car (4 metres long) on the surface of the Moon. At the indicated distance, this angle also shows that the real size of Achernar is about 13 million kilometres, and that it is therefore nearly ten times larger than our Sun. Following that first observation, and in spite of the many technical tests scheduled at this moment of the VLTI commissioning work, the astronomers were able to carry out several other scientific observations. During this exciting first period of operation, among others, measurements were made of three red dwarf stars, three stars surrounded by disks, one red giant star, two Cepheid stars and one luminous blue variable star. Preliminary results from some of these observations are described in the Appendix. Angular measurements with the VLTI like the present ones will soon become routine and will allow astronomers to measure accurately the physical characteristics of many different types of stars. For instance, the precise measurement of the angular diameter of Achernar will make it possible to deduce directly and accurately its surface temperature, an important information for our understanding of the formation and evolution of such hot and massive stars. From 40-cm to 8.2-m The present event follows after half a year of much hard work by ESO astronomers and engineers. Earlier this year, the VLTI achieved "first fringes" by combining two small 40-cm siderostat telescopes ( ESO PR 06/01 ). Since then, ESO astronomers and engineers have upgraded the VLTI and are preparing it for regular observations that will start next year. The present results obtained with the combination of two giant telescopes constitute one important milestone along this road. Between March and October 2001, about 1000 individual measurements were carried out on celestial objects with the light beams from the small test telescopes. This process is on-going, as part of the commissioning of the VLTI, and is aimed at a detailed technical characterization of the interferometer and thorough knowledge of its performance. Such observations mainly serve to obtain technical data. Nevertheless, some of them also provide interesting scientific results . For example, during the week just prior to the first fringes now achieved with two large telescopes, nearly 150 measurements were obtained over 4 nights. Among them, five Mira stars (a type of large and cool, pulsating stars) and two close binary stellar systems were observed - some of them had never before been studied interferometrically. Moreover, a large number of objects were observed for calibration. These data are now being evaluated, and will help astronomers to refine their understanding of the capabilities of the VLTI - they will soon become available to the astronomical community via the VLT archive. In the same period, substantial additions were made to the system, e.g., a third Delay Line was installed in the Interferometric Tunnel. This allows the use of the telescopes on the east side of the beam combination laboratory (including MELIPAL) and also to combine the light beams from up to three telescopes at a later moment. The additional mirrors needed in order to permit the combination of the light from the two 8.2-m telescopes were installed. The extensive software that controls the telescopes and the instruments has undergone several revisions to accommodate the increased needs required by the more complex system of Unit Telescopes, delay lines and test instruments. At the same time, the overall reliability of the facility has been constantly improved. The path that the light travels from the two 8.2-m telescopes to the VINCI instrument must be kept constant to within a fraction of a micron , or better than one thousandth of a millimetre! Although it is therefore extremely sensitive to even very small disturbances, the VLT Interferometer has proven to be remarkably reliable and robust. For instance, an earthquake of magnitude 4+ on the Richter scale happened in August 2001 in the middle of a series of interferometric measurements. However, thanks to the many safeguards and compensatory measures built into the system, the VLTI continued to function all through the tremor. The observations were barely affected by the ground vibrations. It should also be noted that, unlike the 40-cm siderostat telescopes, the 8.2-m telescopes are so large that the images they produce are significantly affected by atmospheric turbulence. In order to overcome this problem, ESO is now developing a system of "Adaptive Optics" correctors ( MACAO ) which will "remove" the distortions introduced by the atmospheres by means of small, rapidly reacting computer-controlled deformable mirrors. From 2003, this system will increase the sensitivity of the VLTI by a factor of about 100 (5 magnitudes) compared to the present observations without adaptive optics. VLT Instrumentation The next steps in the VLTI project will be the integration of a new instrument working at a wavelength of 10 µm (the Mid-Infrared interferometric instrument for the VLTI (MIDI) ) in the middle of 2002, the addition of a fringe tracker ( FINITO ) and then of a 3-way, 3-photometric bands instrument (the near-infrared/red VLTI focal instrument (AMBER) ) at the beginning of 2003. Following closely will be the addition of three 1.8-m movable telescopes dedicated to interferometry, and of the Adaptive Optics system. With all these components in place, the VLTI will represent the most powerful interferometer available in the southern hemisphere, and will enable scientific investigations on a wide range of topics ranging from the direct detection of planets around other stars, to the formation and early evolution of stars, to the study of extragalactic objects. A dedication to Ariela Rijo On behalf of the staff, the Director of the Paranal Observatory adds this message: "The Paranal Observatory, while very pleased at the present success of the first fringes from two of the 8.2-m telescopes, at the same time is greatly saddened by the loss of our colleague Ariela Rijo who passed away on October 31" . "She was a wonderful person and an excellent colleague who contributed greatly to the implementation of the VLTI on Paranal. The Paranal Observatory dedicates this result to her memory". Note [1]: The VINCI instrument was built under ESO contract at the Observatoire de Paris (France) and the camera in this instrument was delivered by the MPI for Extraterrestrial Physics (Garching, Germany). The detector and the detector electronics was supplied by ESO. Scientific Appendix: First VLTI stellar measurements with two UTs ESO PR Photo 30e/01 ESO PR Photo 30e/01 [Preview - JPEG: 343 x 400 pix - 39k] [Normal - JPEG: 686 x 800 pix - 82k] Caption : PR Photo 30d/01 shows the "visibility curve" for the red giant star Psi Phoenicis as measured on two nights (16 data sets; three points to the right) with two VLT UTs (ANTU + MELIPAL) for three different positions in the sky and on four nights with the 40-cm test siderostats on a shorter 16-m baseline (8 data sets; one point to the left); see the text below. From the fitted curve, a preliminary value of the angular diameter is 8.21 ± 0.02 milli-arcsec (mas). This appendix presents some technical details of the measurements, obtained with the VLTI and two UTs during the first three test nights. While it must be emphasized that the stated results are still provisional, they clearly indicate the excellent performance of the VLTI already at this early stage and, not least, the great potential for important fundamental observations with this facility. Note in particular, that the quoted errors reflect the statistical uncertainty in the data only and that additional calibration errors must later be taken into account. The observational data were taken on a variety of astronomical objects, including three red dwarfs, three stars surrounded by disks, one red giant, two Cepheids and one luminous blue variable. All of these measurements were calibrated by observing a reference star of known angular size. Each data set required about ten minutes of continuous observations. Fringes were found on all pointed objects within a few minutes of time and kept for up to several hours. All data were deemed to be of high quality and will be analyzed in detail within the next weeks. A preliminary data reduction was possible for part of these objects and it gave the results listed below (all quoted values are uniform disk diameters): * For the blue dwarf Alpha Eridani , on which first fringes were found, 11 data sets were taken within three nights and an angular diameter of 1.92 ± 0.05 milli-arcsec (mas) could be estimated, which is precisely in line with previous measurements. * The nearby red dwarf HD 217987 was measured to have a diameter of 0.92 ± 0.05 mas, resulting from two data sets. This is the first measurement of the angular diameter of a star as small as a type M0 dwarf , and one of the very few available for cool main sequence stars in general. * The giant star HD 36167 was found from four data sets to have a diameter of 3.32 ± 0.02 mas. This measurement constitutes a significant refinement of the earlier, indirect estimate of 3.55 ± 0.06 mas (Cohen M. et al. 1999, Astronomical Journal 117, 1864). * For the three stars which are known to be surrounded by a disk, the following results were obtained: Epsilon Eridani 2.20 ± 0.02 mas (8 data sets in two nights); Fomalhaut (Alpha Piscis Austrini) 2.31 ± 0.02 mas (4 data sets); Beta Pictoris unresolved (4 data sets). Further analysis is expected to put a significant lower limit on the visibility for the latter star. * The two Cepheids Zeta Geminorum and Beta Doradus showed diameters of 1.78 ± 0.02 mas (7 data sets) and 2.00 ± 0.04 mas (6 data sets), respectively. The diameter of Zeta Geminorum has been measured before by three different interferometers. Its diameter is expected to vary between about 1.5 mas and 1.8 mas within ten days. On the date the VLTI data was taken, its phase was close to the foreseen maximum diameter. Beta Doradus has never been measured before. * The red giant Psi Phoenicis was measured on two nights (16 data sets) with the UTs for three different positions in the sky, hence with three different projected baselines. Some weeks earlier it had been measured on four nights with the 40-cm test siderostats (8 data sets) on a shorter 16-m baseline. The star was well resolved already in the previous measurements, but the addition of the data recently obtained with the UTs is of fundamental importance because with their longer baseline and larger light-gathering power, it now becomes possible to obtain visibility measurements beyond the first null, cf. PR Photo 30e/01 . Such measurements in the future will enable astronomers to measure fine details such as limb-darkening and deviations from spherical symmetry. The preliminary diameter value for this star is 8.21 ± 0.02 mas. * The enigmatic object Eta Carinae is a luminous blue variable, a supermassive star, which underwent a massive outburst in the 1840's. This outburst was responsible for the creation of the surrounding Homunculus Nebula . The central object is not well understood, but is likely to have a complex structure and therefore the first interferometric measurement with the VLTI is of great importance. Fringes with a low contrast (amplitude of about 20%) were detected, indicating that the central object is resolved on a scale of a few milliarcseconds. More observations will be obtained to further investigate this peculiar object.

  20. The Gaia-ESO Survey: Exploring the complex nature and origins of the Galactic bulge populations

    NASA Astrophysics Data System (ADS)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Mikolaitis, Š.; Matteucci, F.; Spitoni, E.; Schultheis, M.; Hayden, M.; Hill, V.; Zoccali, M.; Minniti, D.; Gonzalez, O. A.; Gilmore, G.; Randich, S.; Feltzing, S.; Alfaro, E. J.; Babusiaux, C.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Pancino, E.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    Context. As observational evidence steadily accumulates, the nature of the Galactic bulge has proven to be rather complex: the structural, kinematic, and chemical analyses often lead to contradictory conclusions. The nature of the metal-rich bulge - and especially of the metal-poor bulge - and their relation with other Galactic components, still need to be firmly defined on the basis of statistically significant high-quality data samples. Aims: We used the fourth internal data release of the Gaia-ESO survey to characterize the bulge metallicity distribution function (MDF), magnesium abundance, spatial distribution, and correlation of these properties with kinematics. Moreover, the homogeneous sampling of the different Galactic populations provided by the Gaia-ESO survey allowed us to perform a comparison between the bulge, thin disk, and thick disk sequences in the [Mg/Fe] vs. [Fe/H] plane in order to constrain the extent of their eventual chemical similarities. Methods: We obtained spectroscopic data for 2500 red clump stars in 11 bulge fields, sampling the area -10° ≤ l ≤ + 8° and -10° ≤ b ≤ -4° from the fourth internal data release of the Gaia-ESO survey. A sample of 6300 disk stars was also selected for comparison. Spectrophotometric distances computed via isochrone fitting allowed us to define a sample of stars likely located in the bulge region. Results: From a Gaussian mixture models (GMM) analysis, the bulge MDF is confirmed to be bimodal across the whole sampled area. The relative ratio between the two modes of the MDF changes as a function of b, with metal-poor stars dominating at high latitudes. The metal-rich stars exhibit bar-like kinematics and display a bimodality in their magnitude distribution, a feature which is tightly associated with the X-shape bulge. They overlap with the metal-rich end of the thin disk sequence in the [Mg/Fe] vs. [Fe/H] plane. On the other hand, metal-poor bulge stars have a more isotropic hot kinematics and do not participate in the X-shape bulge. Their Mg enhancement level and general shape in the [Mg/Fe] vs. [Fe/H] plane is comparable to that of the thick disk sequence. The position at which [Mg/Fe] starts to decrease with [Fe/H], called the "knee", is observed in the metal-poor bulge at [Fe/H] knee = -0.37 ± 0.09, being 0.06 dex higher than that of the thick disk. Although this difference is inside the error bars, it suggest a higher star formation rate (SFR) for the bulge than for the thick disk. We estimate an upper limit for this difference of Δ [Fe/H] knee = 0.24 dex. Finally, we present a chemical evolution model that suitably fits the whole bulge sequence by assuming a fast (<1 Gyr) intense burst of stellar formation that takes place at early epochs. Conclusions: We associate metal-rich stars with the bar boxy/peanut bulge formed as the product of secular evolution of the early thin disk. On the other hand, the metal-poor subpopulation might be the product of an early prompt dissipative collapse dominated by massive stars. Nevertheless, our results do not allow us to firmly rule out the possibility that these stars come from the secular evolution of the early thick disk. This is the first time that an analysis of the bulge MDF and α-abundances has been performed in a large area on the basis of a homogeneous, fully spectroscopic analysis of high-resolution, high S/N data. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 188.B-3002. These data products have been processed by the Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.

  1. Astronomical virtual observatory and the place and role of Bulgarian one

    NASA Astrophysics Data System (ADS)

    Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen

    2009-07-01

    Virtual observatory could be defined as a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that combine existing databases from ground-based and orbiting observatories, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies has been compiled from observations in a variety of wavelengths-optical, radio, infrared, gamma ray, X-ray and more. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. During the autumn of the 2001 (26.09.2001) six organizations from Europe put the establishment of the Astronomical Virtual Observatory (AVO)-ESO, ESA, Astrogrid, CDS, CNRS, Jodrell Bank (Dolensky et al., 2003). Its aims have been outlined as follows: - To provide comparative analysis of large sets of multiwavelength data; - To reuse data collected by a single source; - To provide uniform access to data; - To make data available to less-advantaged communities; - To be an educational tool. The Virtual observatory includes: - Tools that make it easy to locate and retrieve data from catalogues, archives, and databases worldwide; - Tools for data analysis, simulation, and visualization; - Tools to compare observations with results obtained from models, simulations and theory; - Interoperability: services that can be used regardless of the clients computing platform, operating system and software capabilities; - Access to data in near real-time, archived data and historical data; - Additional information - documentation, user-guides, reports, publications, news and so on. This large growth of astronomical data and the necessity of an easy access to those data led to the foundation of the International Virtual Observatory Alliance (IVOA). IVOA was formed in June 2002. By January 2005, the IVOA has grown to include 15 funded VO projects from Australia, Canada, China, Europe, France, Germany, Hungary, India, Italy, Japan, Korea, Russia, Spain, the United Kingdom, and the United States. At the time being Bulgaria is not a member of European Astronomical Virtual Observatory and as the Bulgarian Virtual Observatory is not a legal entity, we are not members of IVOA. The main purpose of the project is Bulgarian Virtual Observatory to join the leading virtual astronomical institutions in the world. Initially the Bulgarian Virtual Observatory will include: - BG Galaxian virtual observatory; - BG Solar virtual observatory; - Department Star clusters of IA, BAS; - WFPDB group of IA, BAS. All available data will be integrated in the Bulgarian centers of astronomical data, conducted by the Wide Field Plate Archive data centre. For the above purpose POSTGRESQL or/and MySQL will be installed on the server of BG-VO and SAADA tools, ESO-MEX or/and DAL ToolKit to transform our FITS files in standard format for VO-tools. A part of the participants was acquainted with the principles of these products during the "Days of virtual observatory in Sofia" January, 2008.

  2. Riccardo Giacconi to Receive National Medal of Science

    NASA Astrophysics Data System (ADS)

    2005-02-01

    Riccardo Giacconi, very recently retired President of Associated Universities, Inc. (AUI), will be awarded the National Medal of Science by President George W. Bush on March 14, according to the White House. Giacconi, who received the Nobel Prize in Physics in 2002, will be honored for his pioneering research in X-ray astronomy and for his visionary leadership of major astronomy facilities. Established by Congress in 1959, the National Medal of Science is the Nation's highest honor for American scientists and is awarded annually by the President of the United States to individuals "deserving of special recognition for their outstanding contributions to knowledge." "We are extremely proud that Riccardo Giacconi has been selected to receive the nation's highest award for scientific achievement," said current AUI President Ethan J. Schreier, a long-term colleague of Dr. Giacconi. "It is another fitting recognition for an outstanding scientific career that has enhanced our basic understanding of the universe," Schreier added. Giacconi, known as the father of X-ray astronomy, used X-ray detectors launched on rockets to discover the first cosmic X-ray source in 1962. Because X-ray radiation is absorbed in Earth's atmosphere, space-based instruments are necessary to study it. Giacconi outlined a methodical program to investigate this new X-ray universe and, working with his research group at American Science and Engineering, Inc. in Cambridge, Massachusetts, developed the first space satellite dedicated to the new field of X-ray astronomy. Named Uhuru, this X-ray satellite observatory was launched in 1970 and subsequently discovered hundreds of X-ray sources. The ground-breaking work of Giacconi and his group led to the discovery of black holes, which to that point had been hypothesized but never seen. Giacconi was also the first to prove that the universe contains background radiation of X-ray light. Riccardo Giacconi has played a key role in many other landmark astronomy programs. He was the Principal Investigator for the Einstein Observatory, the first imaging X-ray observatory, and led the team that proposed the current Chandra X-ray Observatory. He became the first director of the Space Telescope Science Institute, responsible for conducting the science program of the Hubble Space Telescope. He later moved to Germany to become Director-General of the European Southern Observatory (ESO), building the Very Large Telescope, an array of four 8-meter telescopes in Chile. While Director-General of ESO, Giacconi initiated a new cooperative program between the United States, ESO, and Canada to develop and build a large array of antennas for radio astronomy, the Atacama Large Millimeter Array (ALMA), in northern Chile. Giacconi was President of AUI from 1999 to 2004, managing the world-class National Radio Astronomy Observatory (NRAO), an astronomical research facility of the National Science Foundation. During his tenure, Giacconi's scientific vision dramatically advanced the observatory's capabilities. NRAO began the construction of ALMA in Chile and also the Expansion of the Very Large Array (EVLA) in New Mexico, opening new scientific frontiers across the entire radio spectrum. "I am delighted that Riccardo Giacconi has received this recognition," said NRAO Director Fred K.Y. Lo. "The value and impact of the multi-wavelength astronomy which he enabled has been nothing short of revolutionary. This honor recognizes Giacconi's contributions to astronomy and the broader scientific community." Dr. Giacconi is currently a University Professor at Johns Hopkins University in Baltimore, and remains a Distinguished Advisor to the Trustees of Associated Universities, Inc.

  3. First Solid Evidence for a Rocky Exoplanet - Mass and density of smallest exoplanet finally measured

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The longest set of HARPS measurements ever made has firmly established the nature of the smallest and fastest-orbiting exoplanet known, CoRoT-7b, revealing its mass as five times that of Earth's. Combined with CoRoT-7b's known radius, which is less than twice that of our terrestrial home, this tells us that the exoplanet's density is quite similar to the Earth's, suggesting a solid, rocky world. The extensive dataset also reveals the presence of another so-called super-Earth in this alien solar system. "This is science at its thrilling and amazing best," says Didier Queloz, leader of the team that made the observations. "We did everything we could to learn what the object discovered by the CoRoT satellite looks like and we found a unique system." In February 2009, the discovery by the CoRoT satellite [1] of a small exoplanet around a rather unremarkable star named TYC 4799-1733-1 was announced one year after its detection and after several months of painstaking measurements with many telescopes on the ground, including several from ESO. The star, now known as CoRoT-7, is located towards the constellation of Monoceros (the Unicorn) at a distance of about 500 light-years. Slightly smaller and cooler than our Sun, CoRoT-7 is also thought to be younger, with an age of about 1.5 billion years. Every 20.4 hours, the planet eclipses a small fraction of the light of the star for a little over one hour by one part in 3000 [2]. This planet, designated CoRoT-7b, is only 2.5 million kilometres away from its host star, or 23 times closer than Mercury is to the Sun. It has a radius that is about 80% greater than the Earth's. The initial set of measurements, however, could not provide the mass of the exoplanet. Such a result requires extremely precise measurements of the velocity of the star, which is pulled a tiny amount by the gravitational tug of the orbiting exoplanet. The problem with CoRoT-7b is that these tiny signals are blurred by stellar activity in the form of "starspots" (just like sunspots on our Sun), which are cooler regions on the surface of the star. Therefore, the main signal is linked to the rotation of the star, with makes one complete revolution in about 23 days. To get an answer, astronomers had to call upon the best exoplanet-hunting device in the world, the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph attached to the ESO 3.6-metre telescope at the La Silla Observatory in Chile. "Even though HARPS is certainly unbeaten when it comes to detecting small exoplanets, the measurements of CoRoT-7b proved to be so demanding that we had to gather 70 hours of observations on the star," says co-author François Bouchy. HARPS delivered, allowing the astronomers to tease out the 20.4-hour signal in the data. This figure led them to infer that CoRoT-7b has a mass of about five Earth masses, placing it in rare company as one of the lightest exoplanets yet found. "Since the planet's orbit is aligned so that we see it crossing the face of its parent star - it is said to be transiting - we can actually measure, and not simply infer, the mass of the exoplanet, which is the smallest that has been precisely measured for an exoplanet [3]," says team member Claire Moutou. "Moreover, as we have both the radius and the mass, we can determine the density and get a better idea of the internal structure of this planet." With a mass much closer to that of Earth than, for example, ice giant Neptune's 17 Earth masses, CoRoT-7b belongs to the category of "super-Earth" exoplanets. About a dozen of these bodies have been detected, though in the case of CoRoT-7b, this is the first time that the density has been measured for such a small exoplanet. The calculated density is close to Earth's, suggesting that the planet's composition is similarly rocky. "CoRoT-7b resulted in a 'tour de force' of astronomical measurements. The superb light curves of the space telescope CoRoT gave us the best radius measurement, and HARPS the best mass measurement for an exoplanet. Both were needed to discover a rocky planet with the same density as the Earth," says co-author Artie Hatzes. CoRoT-7b earns another distinction as the closest known exoplanet to its host star, which also makes it the fastest - it orbits its star at a speed of more than 750 000 kilometres per hour, more than seven times faster than the Earth's motion around the Sun. "In fact, CoRoT-7b is so close that the place may well look like Dante's Inferno, with a probable temperature on its 'day-face' above 2000 degrees and minus 200 degrees on its night face. Theoretical models suggest that the planet may have lava or boiling oceans on its surface. With such extreme conditions this planet is definitively not a place for life to develop," says Queloz. As a further testament to HARPS' sublime precision, the astronomers found from their dataset that CoRoT-7 hosts another exoplanet slightly further away than CoRoT-7b. Designated CoRoT-7c, it circles its host star in 3 days and 17 hours and has a mass about eight times that of Earth, so it too is classified as a super-Earth. Unlike CoRoT-7b, this sister world does not pass in front of its star as seen from Earth, so astronomers cannot measure its radius and thus its density. Given these findings, CoRoT-7 stands as the first star known to have a planetary system made of two short period super-Earths with one that transits its host. Notes [1] The CoRoT mission is a cooperation between France and its international partners: ESA, Austria, Belgium, Brazil, Germany and Spain. [2] We see exactly the same effect in our Solar System when Mercury or Venus transits the solar disc, as Venus did on 8 June 2004. In the past centuries such events were used to estimate the Sun-Earth distance, with extremely useful implications for astrophysics and celestial mechanics. [3] Gliese 581e, also discovered with HARPS, has a minimum mass about twice the Earth's mass (see ESO 15/09), but the exact geometry of the orbit is undefined, making its real mass unknown. In the case of CoRoT-7b, as the planet is transiting, the geometry is well defined, allowing the astronomers to measure the mass of the planet precisely. More information This research was presented in a paper to appear in a special issue of the Astronomy and Astrophysics journal on CoRoT, volume 506-1, 22 October 2009: "The CoRoT-7 planetary system: two orbiting Super-Earths", by D. Queloz et al. The team is composed of D. Queloz, R. Alonso, C. Lovis, M. Mayor, F. Pepe, D. Segransan, and S. Udry (Observatoire de Genève, Switzerland), F. Bouchy, F. and G. Hébrard, G. (IAP, Paris, France), C. Moutou, M. Barbieri, P. Barge, M. Deleuil, L. Jorda, and A. Llebaria (Laboratoire d'Astrophysique de Marseille, France), A. Hatzes, D. Gandolfi, E. Guenther, M. Hartmann, and G. Wuchterl (Thüringer Landessternwarte Tautenburg, Germany), M. Auvergne, A. Baglin, D. Rouan, and J. Schneider (LESIA, CNRS, Observatoire de Paris, France), W. Benz (University of Bern, Switzerland), P. Bordé, A. Léger, and M. Ollivier (IAS, UMR 8617 CNRS, Université Paris-Sud, France), H. Deeg (Instituto de Astrofísica de Canarias, Spain), R. Dvorak (University of Vienna, Austria), A. Erikson and H. Rauer (DLR, Berlin, Germany), S. Ferraz Mello (IAG-Universidade de Sao Paulo, Brazil), M. Fridlund (European Space Agency, ESTEC, The Netherlands), M. Gillon and P. Magain (Université de Liège, Belgium), T. Guillot (Observatoire de la Côte d'Azur, CNRS UMR 6202, Nice France), H. Lammer (Austrian Academy of Sciences), T. Mazeh (Tel Aviv University, Israel), and M. Pätzold (Köln University, Germany). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. CERN, ESA and ESO Launch "Physics On Stage"

    NASA Astrophysics Data System (ADS)

    2000-03-01

    Physics is everywhere . The laws of physics govern the Universe, the Sun, the Earth and even our own lives. In today's rapidly developing society, we are becoming increasingly dependent on high technology - computers, transport, and communication are just some of the key areas that are the result of discoveries by scientists working in physics. But how much do the citizens of Europe really know about physics? Here is a unique opportunity to learn more about this elusive subject! [Go to Physics On Stage Website] Beginning in February 2000, three major European research organisations are organising a unique Europe-wide programme to raise the public awareness of physics and related sciences. "Physics on Stage" is launched by the European Laboratory for Particle Physics (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO) , with support from the European Union. Other partners are the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE). This exciting programme is part of the European Week for Science and Technology and will culminate in a Science Festival during November 6-11, 2000, on the CERN premises at the French-Swiss border near Geneva. Why "Physics on Stage"? The primary goal of "Physics on Stage" is to counteract the current decline in interest and knowledge about physics among Europe's citizens by means of a series of highly visible promotional activities. It will bring together leading scientists and educators, government bodies and the media, to confront the diminishing attraction of physics to young people and to develop strategies to reverse this trend. The objective in the short term is to infuse excitement and to provide new educational materials. In the longer term, "Physics on Stage" will generate new developments by enabling experts throughout Europe to meet, exchange and innovate. "Physics on Stage" in 22 European Countries "Physics on Stage" has been initiated in 22 European countries [2]. In each of these, a dedicated National Steering Committee is being formed which will be responsible for its own national programme. A list of contact addresses is attached below. "Physics on Stage" is based on a series of high-profile physics-related activities that will inform the European public in general and European high school physics teachers and media representatives in particular about innovative ways to convey information about physics. It will stress the intimate connection of this natural science with our daily lives. It will be accompanied by a broad media debate on these subjects. This effort is undertaken in the context of a progressive decline of physics literacy amongst the European population at all levels. Fewer and fewer young people are attracted towards careers in core sciences and technologies - this could potentially lead to a crisis in European technology in the coming decades unless action is taken now. Too few people possess the basic knowledge that is necessary to understand even common physical phenomena. And not enough are able to form their own substantiated opinions about them. What will happen during "Physics on Stage"? During the first phase of "Physics on Stage" , from now until October 2000, the individual National Steering Committees (NSCs) will survey the situation in their respective countries. The NSCs will collaborate with national media to identify new and exciting educational approaches to physics. These may involve demonstrations, interactive experiments, video and CD-Rom presentations, Web applications, virtual reality, theatre performances, etc. Nationally run competitions will select some of the best and most convincing new ideas for presentations and educational materials which will receive development support from "Physics on Stage" . The project will culminate in November 2000, with approximately 400 delegates converging on CERN, in Geneva, for the Physics on Stage Festival . During this event, the national competion winners, science teachers, science communicators, publishers, top scientists and high-level representatives of the ministries and European organisations will brainstorm future solutions to bolster physics' popularity. The programme will also include spectacular demonstrations of new educational tools; the best will be disseminated over the national TV networks and other media to the European public. Why CERN, ESA and ESO? As Europe's principal organisations in physics research (particle physics, space and astronomy), the three recognised their mutual responsibility to address the issue through the creation of a new initiative and the creative use of their own research to attract the public and teachers alike. About the "European Science and Technology Week" [Go to EWST Website] The objective of the European Science and Technology Week is to improve the public's knowledge and understanding of science and technology - including the associated benefits for society as a whole. The Week focuses on the European dimension of research, such as pan-European scientific and technological co-operation. The rationale for holding the Week has its roots in the importance of the role of science and technology in modern societies and the need, therefore, to ensure that the public recognises its significance in our lives. The Week is a framework for special TV programmes, exhibitions, contests, conferences, electronic networking, and other science related activities to promote the public understanding of science and technology. The Week was launched in 1993, on the initiative of the European Commission. Raising public awareness of science and technology is now the subject of a clearly defined action within the Human Potential Programme of the Fifth Framework Programme. Notes [1] This is a joint Press Release by the European Organization for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO). [1] The 22 countries are the member countries of at least one of the participating organisations or the European Union: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom. Statements by the Directors General of CERN, ESA and ESO Luciano Maiani (CERN) : "Science is a critical resource for mankind and, among natural sciences, physics will continue to play a crucial role, well into the next century. The young people of Europe deserve the best possible physics teaching. An enormous resource of first class teachers, teaching materials and innovative thinking exists in our countries. The "Physics on Stage" project will bring these together to generate a new interest in physics education which will be to the long term benefit of children all over Europe. CERN is delighted to take part in this collaboration between the European Community and the continent's three leading physics research organizations." Antonio Rodotà (ESA) : "Space has become an integral part of every day life. The immense technological development that has led to this achievement has taken place and might be taken for granted. But now is the time to follow up and form the future on this basis, a future that has to made by the youth and has to give its benefits to the youth. The European Space Agency is dedicated to support the youth in its development to become a space generation. Many activities have been done and are taking place, and many more are planned for the future. Teachers and educational institutions and organisations form a key role in this development. ESA is enthusiastic about co-operating with ESO and CERN to create an opportunity to receiving ideas from the educational society and will perform a dedicated effort in finding ways to support the realisation of those ideas." Catherine Cesarsky (ESO) : "Astronomy and Astrophysics are at the very heart of modern physics. As vibrant research disciplines they use the most advanced technology available to humanity to explore Cosmos. It is also a science of extreme conditions - the largest distances, the longest periods of time, the highest temperatures, the strongest electrical and magnetic fields, the highest and lowest densities and the most extreme energies. Cosmos is indeed the greatest physics laboratory. For years, ESO - Europe's Astronomy Organisation - has been engaged in communicating the outcome of the exciting research programmes carried out at the ESO observatories to a wide audience and in particular to Europe's youth. I warmly welcome the broad international collaboration within "Physics on Stage". I am confident that working together with the European Union and our sister organisations ESA and CERN, as well as teachers' organisations and dedicated individuals in all member countries, this innovative education programme will make a most important contribution towards raising the interest in fundamental research in Europe." About CERN, ESA and ESO CERN , the European Organization for Nuclear Research , has its headquarters in Geneva. At present, its Member States are Austria, Belgium,Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and Unesco have observer status. The European Space Agency (ESA) is an international/intergovernmental organisation made of 15 member states: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. ESA provides and promotes, for peaceful purposes only, cooperation among its member states in space research, technology and their applications. With ESA, Europe shapes and shares space for people, companies and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO La Silla observatory (Chile) is one of the largest and best-equipped in the world. ESO's Very Large Telescope Array (VLT) is under construction at Cerro Paranal (Chile). When completed in 2001, the VLT will be the largest optical telescope in the world. Useful Physics On Stage addresses "Physics on Stage" webaddress: http://www.estec.esa.nl/outreach/pos International Steering Committee (ISC) Clovis de Matos (Executive Coordinator) ESA/ESTEC European Space Research and Technology Centre Office for Educational Outreach Activities Keplerlaan 1 Postbus 299 NL-2200 AG Noordwijk The Netherlands email: cdematos@estec.esa.nl Telephone: +31-71-565- 5518 Fax: +31-71-565 5590

  5. The European SL-9/JUPITER Workshop

    NASA Astrophysics Data System (ADS)

    1995-02-01

    During the past six months, many astronomers - observational as well theoretical - have been busy interpreting the many data taken during the impacts and thereafter. This is a very labour-intensive task and although the first conclusions have begun to emerge, it has also become obvious that extensive consultations between the various groups are necessary before it will be possible to understand the very complex processes during the impacts and thereafter. In order to further the interaction among the involved scientists, it has been decided to hold a three-day "European SL-9/Jupiter Workshop" at the Headquarters of the European Southern Observatory. More than 100 astronomers will meet on February 13-15, 1995, and close to 100 reports will be delivered on this occasion. Although most come from European countries, the major groups on other continents are also well represented. This meeting will give the participants the opportunity to exchange information about their individual programmes and will serve to establish future collaborative efforts. SL-9/JUPITER PRESS CONFERENCE In this connection, ESO is pleased to invite the media to a Press Conference: Wednesday, February 15, 1995, 17:30 CET ESO Headquarters, Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany This conference will be held at the end of the Workshop and will provide a thorough overview of the latest results, as presented during the meeting. Media representatives who are interested in participating in this Press Conference are requested to register with the ESO Information Service (Mrs. E. Völk, Tel.: +49-89-32006276; Fax: +49-89-3202362), at the latest on Friday, February 10, 1995. ESO Press Information is made available on the World-Wide Web (URL: http://www.hq.eso.org/) and on CompuServe (space science and astronomy area, GO SPACE).

  6. Validation of the vertical profiles of three meteorological models using radiosondes from Antofagasta, Paranal and Llano de Chajnantor

    NASA Astrophysics Data System (ADS)

    Cortés, L.; Curé, M.

    2011-11-01

    This research presents an evaluation of three meteorological models, the Global Forecast System (GFS), the European Centre for Medium-Range Weather Forecasts (ECMWF) and the mesoscale model WRF (Weather Research and Forecasting) for three sites located in north of Chile. Cerro Moreno Airport, the Paranal Observatory and Llano de Chajnantor are located at 25, 130 and 283 km from the city of Antofagasta, respectively. Results for the three sites show that the lowest correlation and the highest errors occur at the surface. ECMWF model presents the best results at these levels for the two hours analyzed. This could be due to the fact that the ECMWF model has 91 vertical levels, compared to the 64 and 27 vertical levels of GFS and WRF models, respectively. Therefore, it can represent better the processes in the Planetary Boundary Layer (PBL). In relation to the middle and upper troposphere, the three models show good agreement.

  7. The origin and evolution of r- and s-process elements in the Milky Way stellar disk

    NASA Astrophysics Data System (ADS)

    Battistini, Chiara; Bensby, Thomas

    2016-02-01

    Context. Elements heavier than iron are produced through neutron-capture processes in the different phases of stellar evolution. Asymptotic giant branch (AGB) stars are believed to be mainly responsible for elements that form through the slow neutron-capture process, while the elements created in the rapid neutron-capture process have production sites that are less understood. Knowledge of abundance ratios as functions of metallicity can lead to insight into the origin and evolution of our Galaxy and its stellar populations. Aims: We aim to trace the chemical evolution of the neutron-capture elements Sr, Zr, La, Ce, Nd, Sm, and Eu in the Milky Way stellar disk. This will allow us to constrain the formation sites of these elements, as well as to probe the evolution of the Galactic thin and thick disks. Methods: Using spectra of high resolution (42 000 ≲ R ≲ 65 000) and high signal-to-noise (S/N ≳ 200) obtained with the MIKE and the FEROS spectrographs, we determine Sr, Zr, La, Ce, Nd, Sm, and Eu abundances for a sample of 593 F and G dwarf stars in the solar neighborhood. The abundance analysis is based on spectral synthesis using one-dimensional, plane-parallel, local thermodynamic equilibrium (LTE) model stellar atmospheres calculated with the MARCS 2012 code. Results: We present abundance results for Sr (156 stars), Zr (311 stars), La (242 stars), Ce (365 stars), Nd (395 stars), Sm (280 stars), and Eu (378 stars). We find that Nd, Sm, and Eu show trends similar to what is observed for the α elements in the [X/Fe]-[Fe/H] abundance plane. For [Sr/Fe] and [Zr/Fe], we find decreasing abundance ratios for increasing metallicity, reaching sub-solar values at super-solar metallicities. [La/Fe] and [Ce/Fe] do not show any clear trend with metallicity, and they are close to solar values at all [Fe/H]. The trends of abundance ratios [X/Fe] as a function of stellar ages present different slopes before and after 8 Gyr. Conclusions: The rapid neutron-capture process is active early in the Galaxy, mainly in type-II supernovae from stars in the mass range 8-10 M⊙. Europium is almost completely produced by the r-process, but Nd and Sm show similar trends to Eu even if their s-process component is higher. Strontium and Zr are thought to be mainly produced by the s-process, but show significant enrichment at low metallicity that requires extra r-process production, which probably is different from the classical r-process. Finally, La and Ce are mainly produced via s-process from AGB stars in the mass range 2-4 M⊙, which can be seen by the decrease in [La/Eu] and [Ce/Eu] at [Fe/H] ≈ -0.5. The trend of [X/Fe] with age could be explained by considering that the decrease in [X/Fe] for the thick disk stars can be due to the decrease in type-II supernovae with time, meaning a reduced enrichment of r-process elements in the interstellar medium. In the thin disk, the trends are flatter, which is probably due to the main production from the s-process being balanced by Fe production from type-Ia supernovae. This paper includes data gathered with the 6.5 m Magellan Telescopes at the Las Campanas Observatory, Chile and the ESO 1.5-m, 2.2-m. and 3.6-m telescopes on La Silla, Chile (ESO Proposal ID 65.L-0019, 67.B-0108, 76.B-0416, 82.B-0610); and data from UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655).Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A49

  8. Explosions in Majestic Spiral Beauties

    NASA Astrophysics Data System (ADS)

    2004-12-01

    Images of beautiful galaxies, and in particular of spiral brethren of our own Milky Way, leaves no-one unmoved. It is difficult indeed to resist the charm of these impressive grand structures. Astronomers at Paranal Observatory used the versatile VIMOS instrument on the Very Large Telescope to photograph two magnificent examples of such "island universes", both of which are seen in a southern constellation with an animal name. But more significantly, both galaxies harboured a particular type of supernova, the explosion of a massive star during a late and fatal evolutionary stage. The first image (PR Photo 33a/04) is of the impressive spiral galaxy NGC 6118 [1], located near the celestial equator, in the constellation Serpens (The Snake). It is a comparatively faint object of 13th magnitude with a rather low surface brightness, making it pretty hard to see in small telescopes. This shyness has prompted amateur astronomers to nickname NGC 6118 the "Blinking Galaxy" as it would appear to flick into existence when viewed through their telescopes in a certain orientation, and then suddenly disappear again as the eye position shifted. There is of course no such problem for the VLT's enormous light-collecting power and ability to produce sharp images, and this magnificent galaxy is here seen in unequalled detail. The colour photo is based on a series of exposures behind different optical filters, obtained with the VIMOS multi-mode instrument on the 8.2-m VLT Melipal telescope during several nights around August 21, 2004. About 80 million light-years away, NGC 6118 is a grand-design spiral seen at an angle, with a very small central bar and several rather tightly wound spiral arms (it is classified as of type "SA(s)cd" [2]) in which large numbers of bright bluish knots are visible. Most of them are active star-forming regions and in some, very luminous and young stars can be perceived. Of particular interest is the comparatively bright stellar-like object situated directly North of the galaxy's centre, near the periphery (see PR Photo 33b/04): it is Supernova 2004dk that was first reported on August 1, 2004. Observations a few days later showed this to be a supernova of Type Ib or Ic [3], caught a few days before maximum light. This particular kind of supernova is believed to result from the demise of a massive star that has somehow lost its entire hydrogen envelope, probably as a result of mass transfer in a binary system, before exploding. Also visible on the image is the trail left by a satellite, which passed by during one of the exposures taken in the B filter, hence its blue colour. This is an illustration that even in such a remote place as the Paranal Observatory in the Atacama desert, astronomers are not completely sheltered from light pollution. ESO PR Photo 33c/04 ESO PR Photo 33c/04 NGC 7424 - VIMOS+VLT Colour composite [Preview - JPEG: 400 x 514 pix - 110k] [Normal - JPEG: 800 x 1028 pix - 995k] [FullRes - JPEG: 1887 x 2424 pix - 5.4M] Caption: ESO PR Photo 33c/04 shows a composite colour-coded image of another magnificent spiral galaxy, NGC 7424, at a distance of 40 million light-years. It is based on images obtained with the multi-mode VIMOS instrument on the ESO Very Large Telescope (VLT) in three different wavelength bands (see Technical information below). The image covers 6.5 x 7.2 arcmin on the sky. North is up and East is to the right. The second galaxy imaged by the VLT (ESO PR Photo 33c/04) is another spiral, the beautiful multi-armed NGC 7424 that is seen almost directly face-on. Located at a distance of roughly 40 million light-years in the constellation Grus (the Crane), this galaxy was discovered by Sir John Herschel while observing at the Cape of Good Hope. This other example of a "grand design" galaxy is classified as "SAB(rs)cd" [2], meaning that it is intermediate between normal spirals (SA) and strongly barred galaxies (SB) and that it has rather open arms with a small central region. It also shows many ionised regions as well as clusters of young and massive stars. Ten young massive star clusters can be identified whose size span the range from 1 to 200 light-years. The galaxy itself is roughly 100,000 light-years across, that is, quite similar in size to our own Milky Way galaxy. Because of its low surface brightness, this galaxy also demands dark skies and a clear night to be observed in this impressive detail. When viewed in a small telescope, it appears as a large elliptical haze with no trace of the many beautiful filamentary arms with a multitude of branches revealed in this striking VLT image. Note also the very bright and prominent bar in the middle. ESO PR Photo 33d/04 ESO PR Photo 33d/04 NGC 7424 and SN2001ig (FORS 2 and VIMOS + VLT) [Preview - JPEG: 400 x 596 pix - 44k] [Normal - JPEG: 800 x 1192 pix - 637k] Caption: ESO PR Photo 33d/04 shows two composite colour-coded image of a part of NGC 7424. The left image was made from an exposure taken with the FORS 2 instrument on VLT Yepun on June 16, 2002. In this, the supernova - although considerably fainter than when it was discovered six months earlier - is still well visible in the middle right of the image. The right image is part of PR Photo 33d/04 on the same scale. Obtained in October 2004, the supernova is no more apparent. The image covers 3.8 x 3.2 arcmin. North is up and East is to the right. On the evening of 10 December 2001, Australian amateur astronomer Reverend Robert Evans, observing from his backyard in the Blue Mountains west of Sydney, discovered with his 30cm telescope his 39th supernova, Supernova 2001ig in the outskirts of NGC 7424. Of magnitude 14.5 (that is, 3000 times fainter than the faintest star that can be seen with the unaided eye), this supernova brightened quickly by a factor 8 to magnitude 12.3. A few months later, it had faded to an insignificant object below 17th magnitude. By comparison, the entire galaxy is of magnitude 11: at the time of its maximum, the supernova was thus only three times fainter than the whole galaxy. It must have been a splendid firework indeed! By digging into the vast Science Archive of the ESO Very Large Telescope, it was possible to find an image of NGC 7424 taken on June 16, 2002 by Massimo Turatto (Observatorio di Padova-INAF, Italy) with the FORS 2 instrument on Yepun (UT4). Although, the supernova was already much fainter than at its maximum 6 months earlier, it is still very well visible on this image (see PR Photo 33d/04). Spectra taken with ESO's 3.6-m telescope at La Silla over the months following the explosion showed the object to evolve to a Type Ib/c supernova. By October 2002, the transition to a Type Ib/c supernova was complete. It is now believed that this supernova arose from the explosion of a very massive star, a so-called Wolf-Rayet star, which together with a massive hot companion belonged to a very close binary system in which the two stars orbited each other once every 100 days or so (read the details in the paper by Ryder et al. here ). Future detailed observations may reveal the presence of the companion star that survived this explosion but which is now doomed to explode as another supernova in due time.

  9. Early German plans for southern observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    2002-07-01

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century, Heidelberg and Potsdam astronomers proposed a southern observatory. Then Göttingen astronomers suggested building an observatory in Windhoek for photographing the sky and measuring the solar constant. In 1910 Karl Schwarzschild (1873-1916), after a visit to observatories in the United States, pointed out the usefulness of an observatory in South West Africa, in a climate superior to that in Germany, giving German astronomers access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhoek to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963.

  10. Comet or Asteroid?

    NASA Astrophysics Data System (ADS)

    1997-11-01

    When is a minor object in the solar system a comet? And when is it an asteroid? Until recently, there was little doubt. Any object that was found to display a tail or appeared diffuse was a comet of ice and dust grains, and any that didn't, was an asteroid of solid rock. Moreover, comets normally move in rather elongated orbits, while most asteroids follow near-circular orbits close to the main plane of the solar system in which the major planets move. However, astronomers have recently discovered some `intermediate' objects which seem to possess properties that are typical for both categories. For instance, a strange object (P/1996 N2 - Elst-Pizarro) was found last year at ESO ( ESO Press Photo 36/96 ) which showed a cometary tail, while moving in a typical asteroidal orbit. At about the same time, American scientists found another (1996 PW) that moved in a very elongated comet-type orbit but was completely devoid of a tail. Now, a group of European scientists, by means of observations carried out at the ESO La Silla observatory, have found yet another object that at first appeared to be one more comet/asteroid example. However, continued and more detailed observations aimed at revealing its true nature have shown that it is most probably a comet . Consequently, it has received the provisional cometary designation P/1997 T3 . The Uppsala-DLR Trojan Survey Some time ago, Claes-Ingvar Lagerkvist (Astronomical Observatory, Uppsala, Sweden), in collaboration with Gerhard Hahn, Stefano Mottola, Magnus Lundström and Uri Carsenty (DLR, Institute of Planetary Exploration, Berlin, Germany), started to study the distribution of asteroids near Jupiter. They were particularly interested in those that move in orbits similar to that of Jupiter and which are located `ahead' of Jupiter in the so-called `Jovian L4 Lagrangian point'. Together with those `behind' Jupiter, these asteroids have been given the names of Greek and Trojan Heroes who participated in the famous Trojan war. Thus such asteroids are known as the Trojans and the mentioned programme is referred to as the Uppsala-DLR Trojan Survey . In September and October/November 1996, the ESO Schmidt telescope was used to cover about 900 square degrees twice centered on the sky field in the direction of the Jovian L4 point. The observations were made by ESO night-assistants Guido and Oscar Pizarro . By inspection of those from September, Claes-Ingvar Lagerkvist found a total of about 400 Trojan asteroids, most of which were hitherto unknown. Their accurate positions were measured on a two-coordinate measuring machine at the ESO Headquarters in Garching (Germany). During the same period, the 0.6-m Bochum telescope at La Silla was used for additional observations of positions and magnitudes. An asteroid with a tail? ESO Press Photo 31a/97 ESO Press Photo 31a/97 [JPG, 120k] Caption: Discovery image of P/1997 T3 , obtained on October 1, 1997, with the 1-metre ESO Schmidt telescope at the La Silla observatory in the Chilean Atacama desert. The object is seen as a small straight and sharp `asteroidal' trail (in 4 o'clock orientation) on the lower right side of the strong white line in the middle of the field, directly opposite the white dot (these marks were placed in order to mark the position of the new object on the film). A new object was found by Claes-Ingvar Lagerkvist on a film obtained with the ESO 1-metre Schmidt telescope on October 1, 1997. The appearance was that of a point light source, i.e. it was presumably of asteroidal nature , cf. ESO Press Photo 31a/97. ESO Press Photo 31b/97 ESO Press Photo 31b/97 [JPG, 45k] Caption: P/1997 T3 on October 6, 1997 at 05:13:54 UT. This image of the new object (slightly above and to the left of the centre of the field) was obtained with the 0.6-m Bochum telescope at La Silla; the observer was Andreas Nathues . The tail is faintly visible to the lower left of the point-like object (in the 7 o'clock direction). However, when Andreas Nathues (DLR, Institute of Planetary Exploration) soon thereafter obtained seven unfiltered CCD images on three consecutive nights with the 60-cm `Bochum telescope' at La Silla, Uri Carsenty found a tail extending 15 arcseconds in the WSE direction from the point source, cf. ESO Press Photo 31b/97. The (red) magnitude was about 19, or 150,000 times fainter than what is visible to the naked eye. More observations were obtained at La Silla during the following nights, confirming the persistent presence of this tail. NTT observations confirm the cometary nature of P/1997 T3 ESO Press Photo 31c/97 ESO Press Photo 31c/97 [JPG, 52k] Caption: Deep NTT image of P/1997 T3. This image covers a field of 105 x 60 arcsec and is a composite of several CCD exposures. It was taken with the ESO New Technology Telescope (NTT) and the EMMI multi-mode instrument by ESO astronomers Hermann Boehnhardt and Olivier Hainaut on different days between 21 and 25 October 1997. By computer processing, the images of P/1997 T3 are aligned to the same pixel position and co-added in order to increase the visibility of the comet. Due to the motion of the comet, multiple images of several galaxies and stars appear in this photo. At the time of the observations, the comet was about 3.34 AU from Earth and about 4.30 AU from the Sun. A larger version [JPG, 384k] is also available. In late October 1997, further images of the new object and its tail were taken with the ESO 3.5-m New Technology Telescope (NTT) at La Silla, cf. ESO Press Photo 31c/97. On these, the narrow tail was seen to be at least 90 arcsec long and pointing roughly in the Sun direction . The steady appearance and the sunward orientation of the tail indicates that it consists of dust. Moreover, a preliminary image analysis shows the presence of a weak and very condensed coma of dust grains around the nucleus. Interestingly, a series of images through several broadband filters with a total of almost 30 min exposure time did not show any trace of a normal, anti-sunward tail seen in most comets. Still, these observations indicate that the object resembles a typical comet much more than originally thought. This is also supported by the fact that its orbit, calculated on the basis of positional observations during the past month, has been found to be moderately elongated (eccentricity 0.36). The mean distance to the Sun is 6.67 AU (1000 million kilometres), but it comes as close as 4.25 AU (635 million kilometres) at its perihelion. The orbital period is about 17 years. More observations needed! It will be interesting to follow this new object in coming years. Will it remain `cometary' or will the unusual tail disappear after a while? Could it be that some `asteroids' in `cometary' orbits, if observed in more detail with a larger telescope, as was done in this case with the NTT, will also turn out to have a faint coma and even a tail? It is at this moment still unknown which implications the discovery of apparently `intermediate' objects may have on our understanding of the origin and evolution of the solar system. In particular, it is not at all clear whether they represent a completely new class of objects with an internal structure (and composition?) that is significantly different from a `dirty-snowball' cometary nucleus or a rocky asteroid. It may also be that some asteroids have substantial deposits of icy material on or near the surface that may be set free under certain circumstances and mimic cometary activity. This might in theory happen by collisions with other, smaller objects or due to an internal heat source. Only further observations of such objects will allow to tell. Where to find more information Here are some WWW-addresses where more useful information may be obtained about the comet/asteroid phenomenon: * http://www.dlr.de/Berlin/ - Small Bodies Group at the DLR (Berlin, Germany) * http://www.astro.uu.se/planet/asteroid - Asteroids' page of the Uppsala planetary system group (Sweden) * http://www.skypub.com/comets/1996n2pw.html - Are They Comets or Asteroids? (adapted version of article by Stuart J. Goldman in Sky & Telescope, November 1996) * http://cfa-www.harvard.edu/~graff/pressreleases/1996PW.html - Two Unusual Objects: 1996 PW and C/1996 N2 (Press information from the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, Massachusetts, U.S.A.) * Abstract of research article : Origin and Evolution of the Unusual Object 1996 PW: Asteroids from the Oort Cloud? by Paul R. Weissman and Harold F. Levison * Abstract of research article : The Main Asteroid Belt - Comet Graveyard or Nursery? by Mark Hammergren * Preprint of research article : The Lightcurve and Colours of Unusual Minor Planet 1996 PW by J.K. Davies et al. This Press Release is accompanied by ESO PR Photo 31a/97 [JPG, 120k] , ESO PR Photo 31b/97 [JPG, 45k] and ESO PR Photo 31c/97 [JPG, 52k]. A larger version of ESO PR Photo 31c/97 [JPG, 384k] is also available. They may be reproduced, if credit is given to the European Southern Observatory. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ).

  11. New constraints on the disk characteristics and companion candidates around T Chamaeleontis with VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Sissa, E.; Langlois, M.; Müller, A.; Ginski, C.; van Holstein, R. G.; Vigan, A.; Mesa, D.; Maire, A.-L.; Henning, Th.; Gratton, R.; Olofsson, J.; van Boekel, R.; Benisty, M.; Biller, B.; Boccaletti, A.; Chauvin, G.; Daemgen, S.; de Boer, J.; Desidera, S.; Dominik, C.; Garufi, A.; Janson, M.; Kral, Q.; Ménard, F.; Pinte, C.; Stolker, T.; Szulágyi, J.; Zurlo, A.; Bonnefoy, M.; Cheetham, A.; Cudel, M.; Feldt, M.; Kasper, M.; Lagrange, A.-M.; Perrot, C.; Wildi, F.

    2017-09-01

    Context. The transition disk around the T Tauri star T Cha possesses a large gap, making it a prime target for high-resolution imaging in the context of planet formation. Aims: We aim to find signs of disk evolutionary processes by studying the disk geometry and the dust grain properties at its surface, and to search for companion candidates. Methods: We analyze a set of VLT/SPHERE data at near-infrared and optical wavelengths. We performed polarimetric imaging of T Cha with IRDIS (1.6 μm) and ZIMPOL (0.5-0.9 μm), and obtained intensity images from IRDIS dual-band imaging with simultaneous spectro-imaging with IFS (0.9-1.3 μm). Results: The disk around T Cha is detected in all observing modes and its outer disk is resolved in scattered light with unprecedented angular resolution and signal-to-noise. The images reveal a highly inclined disk with a noticeable east-west brightness asymmetry. The significant amount of non-azimuthal polarization signal in the Uφ images, with a Uφ/Qφ peak-to-peak value of 14%, is in accordance with theoretical studies on multiple scattering in an inclined disk. Our optimal axisymmetric radiative transfer model considers two coplanar inner and outer disks, separated by a gap of 0.̋28 ( 30 au) in size, which is larger than previously thought. We derive a disk inclination of 69 deg and PA of 114 deg. In order to self-consistently reproduce the intensity and polarimetric images, the dust grains, responsible for the scattered light, need to be dominated by sizes of around ten microns. A point source is detected at an angular distance of 3.5'' from the central star. It is, however, found not to be co-moving. Conclusions: We confirm that the dominant source of emission is forward scattered light from the near edge of the outer disk. Our point source analysis rules out the presence of a companion with mass larger than 8.5 Mjup between 0.̋1 and 0.̋3. The detection limit decreases to 2 Mjup for 0.̋3 to 4.0''. Based on observations made with European Southern Observatory (ESO) telescopes at the Paranal Observatory in Chile, under program IDs 095.C-0298(B), 096.C-0248(B) and 096.C-0248(C).

  12. HIP 10725: The first solar twin/analogue field blue straggler

    NASA Astrophysics Data System (ADS)

    Schirbel, Lucas; Meléndez, Jorge; Karakas, Amanda I.; Ramírez, Iván; Castro, Matthieu; Faria, Marcos A.; Lugaro, Maria; Asplund, Martin; Tucci Maia, Marcelo; Yong, David; Howes, Louise; do Nascimento, José D.

    2015-12-01

    Context. Blue stragglers are easy to identify in globular clusters, but are much harder to identify in the field. Here we present the serendipitous discovery of one field blue straggler, HIP 10725, that closely matches the Sun in mass and age, but with a metallicity slightly lower than solar. Aims: We characterise the solar twin/analogue HIP 10725 to assess whether this star is a blue straggler. Methods: We employed spectra with high resolution (R ~ 105) and high signal-to-noise ratio (330) obtained with UVES at the VLT to perform a differential abundance analysis of the solar analogue HIP 10725. Radial velocities obtained by other instruments were also used to check for binarity. We also studied its chromospheric activity, age, and rotational velocity. Results: HIP 10725 is severely depleted in beryllium ([ Be/H ] ≤ -1.2 dex) for its stellar parameters and age. The abundances relative to solar of the elements with Z ≤ 30 show a correlation with condensation temperature, and the neutron capture elements produced by the s-process are greatly enhanced, while the r-process elements seem normal. We found its projected rotational velocity (vsini = 3.3 ± 0.1 km s-1) to be significantly higher than solar and incompatible with its isochrone-derived age. Radial velocity monitoring shows that the star has a binary companion. Conclusions: Based on the high s-process element enhancements and low beryllium abundance, we suggest that HIP 10725 has been polluted by mass transfer from an AGB star that probably had an initial mass of about 2 M⊙. The radial velocity variations suggest the presence of an unseen binary companion, probably the remnant of a former AGB star. Isochrones predict a solar-age star, but this disagrees with the high projected rotational velocity and high chromospheric activity. We conclude that HIP 10725 is a field blue straggler, rejuvenated by the mass-transfer process of its former AGB companion. Based on observations obtained at the European Southern Observatory (ESO) Very Large Telescope (VLT) at Paranal Observatory, Chile (observing programs 083.D-0871, 082.C-0446, 093.D-0807), and complemented with observations taken at the Observatório Pico dos Dias (OPD), Brazil (program OP2014A-011).Appendix A is available in electronic form at http://www.aanda.org

  13. Beryllium abundances along the evolutionary sequence of the open cluster IC 4651 - A new test for hydrodynamical stellar models

    NASA Astrophysics Data System (ADS)

    Smiljanic, R.; Pasquini, L.; Charbonnel, C.; Lagarde, N.

    2010-02-01

    Context. Previous analyses of lithium abundances in main sequence and red giant stars have revealed the action of mixing mechanisms other than convection in stellar interiors. Beryllium abundances in stars with Li abundance determinations can offer valuable complementary information on the nature of these mechanisms. Aims: Our aim is to derive Be abundances along the whole evolutionary sequence of an open cluster. We focus on the well-studied open cluster IC 4651. These Be abundances are used with previously determined Li abundances, in the same sample stars, to investigate the mixing mechanisms in a range of stellar masses and evolutionary stages. Methods: Atmospheric parameters were adopted from a previous abundance analysis by the same authors. New Be abundances have been determined from high-resolution, high signal-to-noise UVES spectra using spectrum synthesis and model atmospheres. The careful synthetic modeling of the Be lines region is used to calculate reliable abundances in rapidly rotating stars. The observed behavior of Be and Li is compared to theoretical predictions from stellar models including rotation-induced mixing, internal gravity waves, atomic diffusion, and thermohaline mixing. Results: Beryllium is detected in all the main sequence and turn-off sample stars, both slow- and fast-rotating stars, including the Li-dip stars, but is not detected in the red giants. Confirming previous results, we find that the Li dip is also a Be dip, although the depletion of Be is more modest than for Li in the corresponding effective temperature range. For post-main-sequence stars, the Be dilution starts earlier within the Hertzsprung gap than expected from classical predictions, as does the Li dilution. A clear dispersion in the Be abundances is also observed. Theoretical stellar models including the hydrodynamical transport processes mentioned above are able to reproduce all the observed features well. These results show a good theoretical understanding of the Li and Be behavior along the color-magnitude diagram of this intermediate-age cluster for stars more massive than 1.2 M⊙. Based on observations made with the ESO VLT, at Paranal Observatory, under programs 065.L-0427 and 067.D-0126.Current address: European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany.

  14. Precision engineering for astronomy: historical origins and the future revolution in ground-based astronomy.

    PubMed

    Cunningham, Colin; Russell, Adrian

    2012-08-28

    Since the dawn of civilization, the human race has pushed technology to the limit to study the heavens in ever-increasing detail. As astronomical instruments have evolved from those built by Tycho Brahe in the sixteenth century, through Galileo and Newton in the seventeenth, to the present day, astronomers have made ever more precise measurements. To do this, they have pushed the art and science of precision engineering to extremes. Some of the critical steps are described in the evolution of precision engineering from the first telescopes to the modern generation telescopes and ultra-sensitive instruments that need a combination of precision manufacturing, metrology and accurate positioning systems. In the future, precision-engineered technologies such as those emerging from the photonics industries may enable future progress in enhancing the capabilities of instruments, while potentially reducing the size and cost. In the modern era, there has been a revolution in astronomy leading to ever-increasing light-gathering capability. Today, the European Southern Observatory (ESO) is at the forefront of this revolution, building observatories on the ground that are set to transform our view of the universe. At an elevation of 5000 m in the Atacama Desert of northern Chile, the Atacama Large Millimetre/submillimetre Array (ALMA) is nearing completion. The ALMA is the most powerful radio observatory ever and is being built by a global partnership from Europe, North America and East Asia. In the optical/infrared part of the spectrum, the latest project for ESO is even more ambitious: the European Extremely Large Telescope, a giant 40 m class telescope that will also be located in Chile and which will give the most detailed view of the universe so far.

  15. A green observatory in the Chilean Atacama desert

    NASA Astrophysics Data System (ADS)

    Ramolla, Michael; Westhues, Christian; Hackstein, Moritz; Haas, Martin; Hodapp, Klaus; Lemke, Roland; Barr Domínguez, Angie; Chini, Rolf; Murphy, Miguel

    2016-08-01

    Since 2007, the Ruhr-Universität Bochum (RUB) in Germany and Universidad Católica del Norte (UCN) in Chile jointly operate the Universitätssternwarte der Ruhr-Universität Bochum (USB), which is located in direct neighborhood of the future E-ELT of ESO. It is the only observatory powered exclusively by solar panels and wind turbines. Excess power is stored in batteries that allow uninterrupted operation even in windless nights. The scientific equipment consists of three robotic optical telescopes with apertures ranging from 15 cm (RoBoTT) over 25 cm (BESTII) to 40 cm (BMT) and one 80 cm (IRIS) infra-red telescope. The optical telescopes are equipped with Johnson and Sloan broad band filters together with a large number of narrow and intermediate bands. In the infrared, J,H and K filters are available, accompanied by several narrow bands near the K band wavelength. The second Nasmyth focus in the 80 cm telescope feeds a high resolution echelle spectrograph similar to the FEROS instrument of ESO. This variety of instruments has evolved from different collaborations, i.e. with the University of Hawaii (IfA) in the USA, which provided the near-infrared-camera of the IRIS telescope, or with the Deutsches Zentrum für Luft- und Raumfahrt (DLR) in Germany, which provided the BESTII telescope. The highly automatized processes on all telescopes enable a single person to run the whole facility, providing the high cost efficiency required for an university observatory. The excellent site conditions allow projects that require daily observations of astronomical objects over epochs of several months or years. Here we report on such studies of young stellar objects from the Bochum Galactic Disk Survey, the multiplicity of stars, quasar variability or the hunt for exo-planets.

  16. The peculiar isolated neutron star in the Carina Nebula. Deep XMM-Newton and ESO-VLT observations of 2XMM J104608.7-594306

    NASA Astrophysics Data System (ADS)

    Pires, A. M.; Motch, C.; Turolla, R.; Schwope, A.; Pilia, M.; Treves, A.; Popov, S. B.; Janot-Pacheco, E.

    2012-08-01

    While fewer in number than the dominant rotation-powered radio pulsar population, peculiar classes of isolated neutron stars (INSs) - which include magnetars, the ROSAT-discovered "Magnificent Seven" (M7), rotating radio transients (RRATs), and central compact objects in supernova remnants (CCOs) - represent a key element in understanding the neutron star phenomenology. We report the results of an observational campaign to study the properties of the source 2XMM J104608.7-594306, a newly discovered thermally emitting INS. The evolutionary state of the neutron star is investigated by means of deep dedicated observations obtained with the XMM-Newton Observatory, the ESO Very Large Telescope, as well as publicly available γ-ray data from the Fermi Space Telescope and the AGILE Mission. The observations confirm previous expectations and reveal a unique type of object. The source, which is likely within the Carina Nebula (NH = 2.6 × 1021 cm-2), has a spectrum that is both thermal and soft, with kT∞ = 135 eV. Non-thermal (magnetospheric) emission is not detected down to 1% (3σ, 0.1-12 keV) of the source luminosity. Significant deviations (absorption features) from a simple blackbody model are identified in the spectrum of the source around energies 0.6 keV and 1.35 keV. While the former deviation is likely related to a local oxygen overabundance in the Carina Nebula, the latter can only be accounted for by an additional spectral component, which is modelled as a Gaussian line in absorption with EW = 91 eV and σ = 0.14 keV (1σ). Furthermore, the optical counterpart is fainter than mV = 27 (2σ) and no γ-ray emission is significantly detected by either the Fermi or AGILE missions. Very interestingly, while these characteristics are remarkably similar to those of the M7 or the only RRAT so far detected in X-rays, which all have spin periods of a few seconds, we found intriguing evidence of very rapid rotation, P = 18.6 ms, at the 4σ confidence level. We interpret these new results in the light of the observed properties of the currently known neutron star population, in particular those of standard rotation-powered pulsars, recycled objects, and CCOs. We find that none of these scenarios can satisfactorily explain the collective properties of 2XMM J104608.7-594306, although it may be related to the still poorly known class of Galactic anti-magnetars. Future XMM-Newton data, granted for the next cycle of observations (AO11), will help us to improve our currentobservational interpretation of the source, enabling us to significantly constrain the rate of pulsar spin down. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA (Target 2XMM J104608.7-594306, obsid 0650840101). Optical observations were performed at the European Southern Observatory, Paranal, Chile, under programme IDs 382.D-0687(A) and 385.D-0209(A).

  17. Searching for the signatures of terrestrial planets in F-, G-type main-sequence stars

    NASA Astrophysics Data System (ADS)

    González Hernández, J. I.; Delgado-Mena, E.; Sousa, S. G.; Israelian, G.; Santos, N. C.; Adibekyan, V. Zh.; Udry, S.

    2013-04-01

    Context. Detailed chemical abundances of volatile and refractory elements have been discussed in the context of terrestrial-planet formation during in past years. Aims: The HARPS-GTO high-precision planet-search program has provided an extensive database of stellar spectra, which we have inspected in order to select the best-quality spectra available for late type stars. We study the volatile-to-refractory abundance ratios to investigate their possible relation with the low-mass planetary formation. Methods: We present a fully differential chemical abundance analysis using high-quality HARPS and UVES spectra of 61 late F- and early G-type main-sequence stars, where 29 are planet hosts and 32 are stars without detected planets. Results: As for the previous sample of solar analogs, these stars slightly hotter than the Sun also provide very accurate Galactic chemical abundance trends in the metallicity range -0.3 < [Fe/H] < 0.4. Stars with and without planets show similar mean abundance ratios. Moreover, when removing the Galactic chemical evolution effects, these mean abundance ratios, Δ [X/Fe] SUN - STARS, against condensation temperature, tend to exhibit less steep trends with nearly zero or slightly negative slopes. We have also analyzed a subsample of 26 metal-rich stars, 13 with and 13 without known planets, with spectra at S/N ~ 850, on average, in the narrow metallicity range 0.04 < [Fe/H] < 0.19. We find the similar, although not equal, abundance pattern with negative slopes for both samples of stars with and without planets. Using stars at S/N ≥ 550 provides equally steep abundance trends with negative slopes for stars both with and without planets. We revisit the sample of solar analogs to study the abundance patterns of these stars, in particular, 8 stars hosting super-Earth-like planets. Among these stars having very low-mass planets, only four of them reveal clear increasing abundance trends versus condensation temperature. Conclusions: Finally, we compared these observed slopes with those predicted using a simple model that enables us to compute the mass of rocks that have formed terrestrial planets in each planetary system. We do not find any evidence supporting the conclusion that the volatile-to-refractory abundance ratio is related to the presence of rocky planets. Based on observations collected with the HARPS spectrograph at the 3.6-m telescope (072.C-0488(E)), installed at the La Silla Observatory, ESO (Chile), with the UVES spectrograph at the 8-m Very Large Telescope (VLT) - program IDs: 67.C-0206(A), 074.C-0134(A), 075.D-0453(A) -, installed at the Cerro Paranal Observatory, ESO (Chile), and with the UES spectrograph at the 4.2-m William Herschel Telescope (WHT), installed at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma.Tables A.1-A.8 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/552/A6

  18. The VISTA Carina Nebula Survey . I. Introduction and source catalog

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Zeidler, P.; Ratzka, T.; Roccatagliata, V.; Petr-Gotzens, M. G.

    2014-12-01

    Context. The Carina Nebula is one of the most massive and active star-forming regions in our Galaxy and has been studied with numerous multiwavelength observations in the past five years. However, most of these studies were restricted to the inner parts (≲1 square-degree) of the nebula, and thus covered only a small fraction of the whole cloud complex. Aims: Our aim was to conduct a near-infrared survey that covers the full spatial extent (~5 square-degrees) of the Carina Nebula complex and is sensitive enough to detect all associated young stars through extinctions of up to AV ≈ 6 mag. Methods: We used the 4m Visible and Infrared Survey Telescope for Astronomy (VISTA) of ESO to map an area of 6.7 square-degrees around the Carina Nebula in the near-infrared J-, H-, Ks-bands. Results: The analysis of our VISTA data revealed 4 840 807 individual near-infrared sources, 3 951 580 of which are detected in at least two bands. The faintest S/N ≥ 3 detections have magnitudes of J ≈ 21.2, H ≈ 19.9, and Ks ≈ 19.3. For objects at the distance of the Carina Nebula (2.3 kpc), our catalog is estimated to be complete down to stellar masses of ≈0.1 M⊙ for young stars with extinctions of AV ≈ 5 mag; for regions in the brightest parts of the central nebula with particularly strong diffuse emission, the completeness limit is at slightly higher stellar masses. We describe the photometric calibration, the characteristics, and the quality of these data. VISTA images of several newly detected or yet rarely studied clusters in the outer parts of the Carina Nebula complex are presented. Finally, a list of stars with high proper motions that were discovered in our analysis is provided in an appendix. Conclusions: Our catalog represents by far the most comprehensive deep near-infrared catalog of the Carina Nebula complex. It provides a new basis for spatially complete investigations of the young stellar population in this important star-forming complex. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 088.C-0117.The catalog (full Table 2) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A116

  19. The COSMOS2015 galaxy stellar mass function . Thirteen billion years of stellar mass assembly in ten snapshots

    NASA Astrophysics Data System (ADS)

    Davidzon, I.; Ilbert, O.; Laigle, C.; Coupon, J.; McCracken, H. J.; Delvecchio, I.; Masters, D.; Capak, P.; Hsieh, B. C.; Le Fèvre, O.; Tresse, L.; Bethermin, M.; Chang, Y.-Y.; Faisst, A. L.; Le Floc'h, E.; Steinhardt, C.; Toft, S.; Aussel, H.; Dubois, C.; Hasinger, G.; Salvato, M.; Sanders, D. B.; Scoville, N.; Silverman, J. D.

    2017-09-01

    We measure the stellar mass function (SMF) and stellar mass density of galaxies in the COSMOS field up to z 6. We select them in the near-IR bands of the COSMOS2015 catalogue, which includes ultra-deep photometry from UltraVISTA-DR2, SPLASH, and Subaru/Hyper Suprime-Cam. At z> 2.5 we use new precise photometric redshifts with error σz = 0.03(1 + z) and an outlier fraction of 12%, estimated by means of the unique spectroscopic sample of COSMOS ( 100 000 spectroscopic measurements in total, more than one thousand having robust zspec> 2.5). The increased exposure time in the DR2, along with our panchromatic detection strategy, allow us to improve the completeness at high z with respect to previous UltraVISTA catalogues (e.g. our sample is >75% complete at 1010 ℳ⊙ and z = 5). We also identify passive galaxies through a robust colour-colour selection, extending their SMF estimate up to z = 4. Our work provides a comprehensive view of galaxy-stellar-mass assembly between z = 0.1 and 6, for the first time using consistent estimates across the entire redshift range. We fit these measurements with a Schechter function, correcting for Eddington bias. We compare the SMF fit with the halo mass function predicted from ΛCDM simulations, finding that at z> 3 both functions decline with a similar slope in thehigh-mass end. This feature could be explained assuming that mechanisms quenching star formation in massive haloes become less effective at high redshifts; however further work needs to be done to confirm this scenario. Concerning the SMF low-mass end, it shows a progressive steepening as it moves towards higher redshifts, with α decreasing from -1.47+0.02-0.02 at z ≃ 0.1 to -2.11+0.30-0.13 at z ≃ 5. This slope depends on the characterisation of the observational uncertainties, which is crucial to properly remove the Eddington bias. We show that there is currently no consensus on the method to quantify such errors: different error models result in different best-fit Schechter parameters. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under ESO programme ID 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium (http://ultravista.org/). Based on data produced by the SPLASH team from observations made with the Spitzer Space Telescope (http://splash.caltech.edu).

  20. High-dispersion infrared spectroscopic observations of comet 8P/Tuttle with VLT/CRIRES

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Bockelée-Morvan, D.; Kawakita, H.; Dello Russo, N.; Jehin, E.; Manfroid, J.; Smette, A.; Hutsemékers, D.; Stüwe, J.; Weiler, M.; Arpigny, C.; Biver, N.; Cochran, A.; Crovisier, J.; Magain, P.; Sana, H.; Schulz, R.; Vervack, R. J.; Weaver, H.; Zucconi, J.-M.

    2010-01-01

    We report on the composition of the Halley-family comet (HFC) 8P/Tuttle investigated with high-dispersion near-infrared spectroscopic observations. The observations were carried out at the ESO VLT (Very Large Telescope) with the CRIRES instrument as part of a multi-wavelength observation campaign of 8P/Tuttle performed in late January and early February 2008. Radar observations suggested that 8P/Tuttle is a contact binary, and it was proposed that these components might be heterogeneous in chemistry. We determined mixing ratios of organic volatiles with respect to H2O and found that mixing ratios were consistent with previous near infrared spectroscopic observations obtained in late December 2007 and in late January 2008. It has been suggested that because 8P/Tuttle is a contact binary, it might be chemically heterogeneous. However, we find no evidence for chemical heterogeneity within the nucleus of 8P/Tuttle. We also compared the mixing ratios of organic molecules in 8P/Tuttle with those of both other HFCs and long period comets (LPCs) and found that HCN, C2H2, and C2H6 are depleted whereas CH4 and CH3OH have normal abundances. This may indicate that 8P/Tuttle was formed in a different region of the early solar nebula than other HFCs and LPCs. We estimated the conversion efficiency from C2H2 to C2H6 by hydrogen addition reactions on cold grains by employing the C2H6/(C2H6+C2H2) ratio. The C2H6/(C2H6+C2H2) ratio in 8P/Tuttle is consistent with the ratios found in other HFCs and LPCs within the error bars. We also discuss the source of C2 and CN based on our observations and conclude that the abundances of C2H2 and C2H6 are insufficient to explain the C2 abundances in comet 8P/Tuttle and that the abundance of HCN is insufficient to explain the CN abundances in the comet, so at least one additional parent is needed for each species, as pointed out in previous study. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Prog. 080.C-0615 and 280.C-5053).We regret to note the death of Dr. J. -M. Zucconi in 2009 May.

Top