Sample records for observatory projects office

  1. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    NASA Astrophysics Data System (ADS)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  2. Project on Chinese Virtual Solar Observatory

    NASA Astrophysics Data System (ADS)

    Lin, Gang-Hua

    2004-09-01

    With going deep into research of solar physics, development of observational instrument and accumulation of obervation data, it urges people to think such things: using data which is observed in different times, places, bands and history data to seek answers of a plenty science problems. In the meanwhile, researcher can easily search the data and analyze data. This is why the project of the virtual solar observatory gained active replies and operation from observatories, institutes and universities in the world. In this article, how we face to the development of the virtual solar observatory and our preliminary project on CVSO are discussed.

  3. The Role of Project Science in the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Weisskopf, Martin C.

    2006-01-01

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.

  4. FIFRA Project Officers Manual

    EPA Pesticide Factsheets

    The FIFRA Project Officers Manual provides guidance to new as well as experienced project officers in the management of grants and cooperative agreements under the Federal Insecticide, Fungicide and Rodenticide Act.

  5. Historical Archives in Italian Astronomical Observatories: The ``Specola 2000'' Project

    NASA Astrophysics Data System (ADS)

    Chinnici, I.; Mandrino, A.; Bònoli, F.

    2006-12-01

    Italy's well-consolidated tradition in astronomy is fully witnessed by its rich archival heritage. Astronomical records are stored in many observatories and universities, as well as in libraries and in private institutions. In 2000 a project was promoted to arrange and produce inventories of all material kept in Italian observatory archives. The project was planned by the Società Astronomica Italiana, and financial support was provided by the Italian Ministero per i Beni e le Attività Culturali. In this paper, the results obtained thus far are presented and commented on.

  6. Astronomy Against Terrorism: an Educational Astronomical Observatory Project in Peru

    NASA Astrophysics Data System (ADS)

    Ishitsuka, M.; Montes, H.; Kuroda, T.; Morimoto, M.; Ishitsuka, J.

    2003-05-01

    The Cosmos Coronagraphic Observatory was completely destroyed by terrorists in 1988. In 1995, in coordination with the Minister of Education of Peru, a project to construct a new Educational Astronomical Observatory has been executed. The main purpose of the observatory is to promote an interest in basic space sciences in young students from school to university levels, through basic astronomical studies and observations. The planned observatory will be able to lodge 25 visitors; furthermore an auditorium, a library and a computer room will be constructed to improve the interest of people in astronomy. Two 15-cm refractor telescopes, equipped with a CCD camera and a photometer, will be available for observations. Also a 6-m dome will house a 60-cm class reflector telescope, which will be donated soon, thanks to a fund collected and organized by the Nishi-Harima Astronomical Observatory in Japan. In addition a new modern planetarium donated by the Government of Japan will be installed in Lima, the capital of Peru. These installations will be widely open to serve the requirements of people interested in science.

  7. The Maunakea Spectroscopic Explorer: Design and Project Status

    NASA Astrophysics Data System (ADS)

    Murowinski, Rick

    2015-08-01

    The Maunakea Spectroscopic Explorer (MSE) will be a 10-m class telescope feeding a dedicated massively-multiplexed multi-object spectrometer. The project formally kicked off in March 2014, with a Project Office hosted at the Canada France Hawaii Telescope's (CFHT's) Waimea office facility. The MSE observatory will be ultimately realized my means of an upgrade to the CFHT telescope and partnership, resulting in a new observatory with forefront transformational capability and serving a new international partnership. This new observatory will be housed within the facade of the current CFHT and using the same summit site that CFHT now occupies. We present a description, and the status, of the project. We will show the level one design choices that have been made and those under consideration. We will show our progress in gaining permitting permission as the first major observatory that will re-use an existing Maunakea telescope site.

  8. The National E-Books Observatory Project: Examining Student Behaviors and Usage

    ERIC Educational Resources Information Center

    Estelle, Lorraine; Woodward, Hazel

    2009-01-01

    The Joint Information Systems Committee National e-Books Observatory Project will assess the impacts, observe behaviors, and develop new models to stimulate the U.K. higher education e-books market. The project has licensed a collection of e-books that are highly relevant to U.K. higher education in four disciplines and will evaluate the use of…

  9. The SOAR Telescope Project Southern Observatory for Astronomical Research (SOAR)

    DTIC Science & Technology

    2003-03-21

    completed SOAR dome and facility. 2. Dome The preliminary design of the dome was handled by M3 (US). A Brazilian firm, Equatorial Sistemas led the...for the Gemini Telescope during construction, now Project Manager at the National Solar Observatory • Robert Shelton, Provost of the University on

  10. Requirements management for Gemini Observatory: a small organization with big development projects

    NASA Astrophysics Data System (ADS)

    Close, Madeline; Serio, Andrew; Cordova, Martin; Hardie, Kayla

    2016-08-01

    Gemini Observatory is an astronomical observatory operating two premier 8m-class telescopes, one in each hemisphere. As an operational facility, a majority of Gemini's resources are spent on operations however the observatory undertakes major development projects as well. Current projects include new facility science instruments, an operational paradigm shift to full remote operations, and new operations tools for planning, configuration and change control. Three years ago, Gemini determined that a specialized requirements management tool was needed. Over the next year, the Gemini Systems Engineering Group investigated several tools, selected one for a trial period and configured it for use. Configuration activities including definition of systems engineering processes, development of a requirements framework, and assignment of project roles to tool roles. Test projects were implemented in the tool. At the conclusion of the trial, the group determined that the Gemini could meet its requirements management needs without use of a specialized requirements management tool, and the group identified a number of lessons learned which are described in the last major section of this paper. These lessons learned include how to conduct an organizational needs analysis prior to pursuing a tool; caveats concerning tool criteria and the selection process; the prerequisites and sequence of activities necessary to achieve an optimum configuration of the tool; the need for adequate staff resources and staff training; and a special note regarding organizations in transition and archiving of requirements.

  11. 48 CFR 2052.215-71 - Project officer authority.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... directive whatever. (d) All technical directions must be issued in writing by the project officer or must be... advise the contractor in writing that, in the contracting officer's opinion, the technical direction is... subject to the technical direction of the NRC project officer. The term technical direction is defined to...

  12. First Student Project at the University of Tennessee at Martin Observatory

    NASA Astrophysics Data System (ADS)

    Crews, Lionel J.; Turner, K.; Wesner, P.

    2011-05-01

    The University of Tennessee at Martin has recently completed the construction and setup of an observatory. The dome houses a 16" Meade telescope with SBIG STL-11000M CCD. For its first project, observations of the Delta Scuti type variable SZ Lynx were taken in March and analyzed using MiraPRO. A simple ephemeris calculation was done, and compared to previous results. This project was done under the University Scholars program, a four year scholarship program which includes a faculty-mentored research project.

  13. The Boulder magnetic observatory

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.; Pedrie, Kolby L.; Blum, Cletus C.

    2015-08-14

    The Boulder magnetic observatory has, since 1963, been operated by the Geomagnetism Program of the U.S. Geological Survey in accordance with Bureau and national priorities. Data from the observatory are used for a wide variety of scientific purposes, both pure and applied. The observatory also supports developmental projects within the Geomagnetism Program and collaborative projects with allied geophysical agencies.

  14. Developments of next generation of seafloor observatories in MARsite project

    NASA Astrophysics Data System (ADS)

    Italiano, Francesco; Favali, Paolo; Zaffuto, Alfonso; Zora, Marco; D'Anca, Fabio

    2015-04-01

    The development of new generation of autonomous sea-floor observatories is among the aims of the EC supersite project MARsite (MARMARA Supersite; FP7 EC-funded project, grant n° 308417). An approach based on multiparameter seafloor observatories is considered of basic importance to better understand the role of the fluids in an active tectonic system and their behaviour during the development of the seismogenesis. To continuously collect geochemical and geophysical data from the immediate vicinity of the submerged North Anatolian Fault Zone (NAFZ) is one of the possibilities to contribute to the seismic hazard minimization of the Marmara area. The planning of next generation of seafloor observatories for geo-hazard monitoring is a task in one of the MARsite Work Packages (WP8). The activity is carried out combining together either the experience got after years of investigating fluids and their interactions with the seafloor and tectonic structures and the long-term experience on the development and management of permanent seafloor observatories in the main frame of the EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org) Research Infrastructure. The new generation of seafloor observatories have to support the observation of both slow and quick variations, thus allow collecting low and high-frequency signals besides the storage of long-term dataset and/or enable the near-real-time mode data transmission. Improvements of some the seafloor equipments have been done so far within MARsite project in terms of the amount of contemporary active instruments, their interlink with "smart sensor" capacities (threshold detection, triggering), quality of the collected data and power consumption reduction. In order to power the multiparameter sensors the digitizer and the microprocessor, an electronic board named PMS (Power Management System) with multi-master, multi-slave, single-ended, serial bus Inter-Integrated Circuit (I²C) interface

  15. ``Route of astronomical observatories'' project: Classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2016-10-01

    Observatories offer a good possibility for serial transnational applications. For example one can choose groups like baroque or neoclassical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments or made by famous firms. I will discuss what has been achieved and show examples, like the route of astronomical observatories, the transition from classical astronomy to modern astrophysics. I will also discuss why the implementation of the World Heritage & Astronomy initiative is difficult and why there are problems to nominate observatories for election in the national tentative lists.

  16. 48 CFR 301.607-78 - Contracting Officer designation of a Program/Project Manager as the Contracting Officer's...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... designation of a Program/Project Manager as the Contracting Officer's Technical Representative. 301.607-78... Contracting Officer designation of a Program/Project Manager as the Contracting Officer's Technical... acquisition. However, for those individuals serving as a Program or Project Manager under a FAC-P/PM...

  17. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  18. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    NASA Headquarters Public Affairs Officer Steve Cole, standing, moderates a Orbiting Carbon Observatory-2 (OCO-2) briefing with (from left), Betsy Edwards, OCO-2 program executive with the Science Mission Directorate at NASA Headquarters, Ralph Basilio, OCO-2 project manager with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, Mike Gunson, OCO-2 project scientist with JPL, and Annmarie Eldering, OCO-2 deputy project scientist JPL, , Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2, NASA’s first spacecraft dedicated to studying carbon dioxide, is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  19. New developments in Seafloor observatory technologies: the SED Module developed in the MONSOON project

    NASA Astrophysics Data System (ADS)

    Italiano, Francesco; Caruso, Cinzia; Corbo, Andrea; Lazzaro, Gianluca; Nigrelli, Alessandra; Sprovieri, Mario; Oliveri, Elvira; Bagnato, Emanuela; Favali, Paolo

    2015-04-01

    In the main frame of the wide range of scientific and technological activities developed by EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org) Research Infrastructure. The MONSOON project (MONitoraggio SOttOmariNo for environmental and energetic purposes) is a FESR (i.e. European funds for social development) funded project by "Regione Siciliana" (industrial call). The final target of the project is to build up a prototype of a seafloor observatory named SED (Submarine Energy Device),.for which specific technological developments in terms of power consumption reduction, new data logger and new sensors have been planned. The SED observatory is planned to operate down to a water depth of 2000m in an extreme marine environment, with the presence of hydrothermal vents. SED is designed to operate as "stand-alone" or near-real-time observatory when connected to a buoy. The final version of the prototype it is planned to be released in June-July 2015 after tests completion. All the components of the observatory have been planned and laboratory-tested by the INGV and CNR public Research Institutions, while the executive plan and the manufacturing has been carried out by the industrial partnership (Eurobuilding SpA, Hitec2000 srl and Innova SpA). All the partners are going to take care of the tests in a real environment. The selected test site is located in the Aeolian islands where the shallow hydrothermal system off the coasts of the Panarea island provided an easy-to access extreme submarine environment with temperatures up to 140°C, pH less than 3 and electrical conductivity double of the normal sea-water. In this hostile environment we tested all the materials planned to be used to manufacture the different parts of the observatory, as well as all the sensors including those off-the-shelf and those planned within the MONSOON project: probes for acoustic signals, dissolved CO2 data, optical fibre-based temperature and pressure The

  20. Support of US CLIVAR Project Office 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, Donna

    Director of JOSS, supervised the U.S. CLIVAR Project Office Director and helped direct the officer to enhance the goals and objectives of the U.S. CLIVAR Project and budget. Financial Manager of JOSS, worked to complete proposals and monitor compliance with award requirements and funding limitations and ensure the U.S. CLIVAR Project Office complied with UCAR policies and procedures. Project Coordinator administered the funding for the U.S. CLIVAR Project Office and was responsible for coordinating special projects that required additional support from JOSS technical staff. These projects included activities such as website updates, technology upgrades, production of printed reports, and developmentmore » of graphic elements like logos. Web Developer worked both on web development and graphic work and the work consisted of the following: Maintaining the site ? installing updates to Drupal CMS (Content Management System). Creating new templates for webpages and styling them with CSS and JavaScript/jQuery code. Fixing the styling on webpages that the content contributor/manager (Jenn Mays) created and has had trouble with. Creating new web forms for abstract uploading, subscriptions, and meeting registrations. Created 4 webpages for the ?ASP: Key Uncertainties in the Global Carbon-Cycle? meeting. Developed a document review form, instruction webpages, login redirect, dynamic table with form submissions for the US CLIVAR SSC Science Plan Document Review. This was open to the public from June 12, 2013 until July 10, 2013. During this time the user accounts had to be checked (daily) that were created by the public, to delete any spam ones. Graphics work: preparing images for general use on webpages, webpage banners, and for meeting name badges, creating a US CLIVAR letterhead, redesigning the US AMOC logo. System Administrator spent time working on the migration of the US CLIVAR site from the USGCRP office to UCAR here Boulder. This was done to increase the general

  1. Archives at the U.S. Naval Observatory - Recent Projects

    NASA Astrophysics Data System (ADS)

    Corbin, B. G.

    2004-12-01

    In 1874, like many other astronomical institutions, the U.S. Naval Observatory sent eight expeditions to different parts of the globe to observe the Transit of Venus. After all results were in, William Harkness was placed in charge of preparing the results and observations for publication. Page proofs of these observations appeared in 1881, but due to lack of funds and other reasons, these volumes were never published. Recently funds became available to have photocopies made on acid-free paper. The Astrophysics Data System (ADS) agreed to scan the photocopied pages and has made this publication available via the ADS so it now may be seen by anyone with access to the web. The compilation of a historical photograph archive at the USNO is continuing. Photographs and glass plates are being scanned by students and placed on the web. As the Naval Observatory has many thousands of plates and photographs, this project will take quite some time to complete. The images are of instruments, buildings, and staff members. The URL for this collection is http://www.usno.navy.mil/library/search.shtml

  2. Archive interoperability in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Genova, Françoise

    2003-02-01

    Main goals of Virtual Observatory projects are to build interoperability between astronomical on-line services, observatory archives, databases and results published in journals, and to develop tools permitting the best scientific usage from the very large data sets stored in observatory archives and produced by large surveys. The different Virtual Observatory projects collaborate to define common exchange standards, which are the key for a truly International Virtual Observatory: for instance their first common milestone has been a standard allowing exchange of tabular data, called VOTable. The Interoperability Work Area of the European Astrophysical Virtual Observatory project aims at networking European archives, by building a prototype using the CDS VizieR and Aladin tools, and at defining basic rules to help archive providers in interoperability implementation. The prototype is accessible for scientific usage, to get user feedback (and science results!) at an early stage of the project. ISO archive participates very actively to this endeavour, and more generally to information networking. The on-going inclusion of the ISO log in SIMBAD will allow higher level links for users.

  3. Flight Projects Office Information Systems Testbed (FIST)

    NASA Technical Reports Server (NTRS)

    Liggett, Patricia

    1991-01-01

    Viewgraphs on the Flight Projects Office Information Systems Testbed (FIST) are presented. The goal is to perform technology evaluation and prototyping of information systems to support SFOC and JPL flight projects in order to reduce risk in the development of operational data systems for such projects.

  4. The Virtual Observatory: I

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2014-11-01

    The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.

  5. Solaris: a global network of autonomous observatories in the southern hemisphere

    NASA Astrophysics Data System (ADS)

    Kozłowski, S. K.; Sybilski, P.; Konacki, Maciej; Pawłaszek, R. K.; Ratajczak, Milena; Helminiak, K. G.

    2014-07-01

    We present Project Solaris, a network of four autonomous observatories in the Southern Hemisphere. The Project's primary goal is to detect and characterize circumbinary planets using the eclipse timing approach. This method requires high-cadence and long time-span photometric coverage of the binaries' eclipses, hence the observatories are located at sites having similar separation in longitude and nearly identical latitudes: South African Astronómical Observatory, Republic of South Africa (Solaris-1 and -2), Siding Spring Observatory, Australia (Solaris-3) and Complejo Astronomico El Leoncito, Argentina (Solaris-4). The headquarters coordinating and monitoring the network is based in Toruń, Poland. All four sites are operational as of December 2013. The instrument and hardware configurations are nearly identical. Each site is equipped with a 0.5-m Ritchey-Chrétien or Schmidt-Cassegrain optical tube assembly mounted on a direct-drive modified German equatorial mount along with a set of instruments. Computer, power and networking components are installed in rack cabinets. Everything is housed in sandwiched fiberglass clamshell 3.5-m diameter robotized domes. The Argentinian site is additionally equipped with a 20-ft office container. We discuss the design requirements of robotic observatories aimed to operate autonomously as a global network with concentration on efficiency, robustness and modularity. We also present a newly introduced spectroscopic mode of operation commissioned on the Solaris-1 telescope. Using a compact échelle spectrograph (20 000 resolution) mounted directly on the imaging train of the telescope, we are able to remotely acquire spectra. A fully robotic spectroscopic mode is planned for 2015.

  6. George C. Comstock: Wisconsin Astronomer, Observatory Director, Graduate School Dean, and AAS Officer

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    1996-05-01

    George C. Comstock, the third director of Washburn Observatory, had a long and interesting career at Wisconsin. Born in Madison, he did his undergraduate work at Michigan under James Watson. From him Comstock learned the classical astronomy of stellar positions and celestial mechanics. He had one year of graduate work at Michigan before going to Madison as Watson's assistant in 1880, and remained after the latter's death as E.S. Holden's assistant. At Wisconsin, Comstock also studied law at the UW Law School in his ``spare time", to have an alternate career path. He was admitted to the bar in 1883 but never practiced. From 1885-7 he was on the Ohio State faculty with a summer working at Lick Observatory; then in 1887 became associate director back at Washburn Observatory. Two years later he succeeded to the full directorship, and kept the post until he retired in 1922 at the age of 67. All Comstock's research was in positional astronomy, and he considered his most important work to be the measurement of stellar aberration and atmospheric refraction. He also measured double stars with the 15-inch Washburn refractor. His main duty at UW was teaching, mostly ``practical astronomy" for civil engineering students. Comstock wrote several text books on astronomy, surveying, and least squares. He was the first head of the UW Graduate School, set up by President Charles R. Van Hise in 1904. Comstock was a highly effective administrator, and did much to build up research at UW. His own most successful students were Sidney D. Townley, Joel Stebbins, and Sebastian Albrecht. Because of his legal training, Comstock was involved as an officer in many scientific societies. He was one of the organizers of the AAS, its first secretary, and later its vice president, then president. He retired in 1922, and was succeeded by Stebbins, whom he helped to bring back to Madison from Illinois. After his retirement, Comstock lived in Beloit until his death in 1934.

  7. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  8. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Vern Thorp, United Launch Alliance program manager, NASA missions,, left, Ralph Basilio, OCO-2 project manager, JPL, and Lt. Joseph Round, launch weather officer, USAF 30th Space Wing Weather Squadron, right, discuss the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  9. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    From left, NASA Kennedy Space Center Public Affairs Officer George Diller, Ken Jucks, OCO-2 program scientist, NASA Headquarters, Dave Crisp, OCO-2 science team leader, JPL, and Annmarie Eldering, OCO-2 deputy project scientist, JPL, give a science briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  10. S-net project: Construction of large scale seafloor observatory network for tsunamis and earthquakes in Japan

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Kanazawa, T.; Uehira, K.; Shimbo, T.; Shiomi, K.; Kunugi, T.; Aoi, S.; Matsumoto, T.; Sekiguchi, S.; Yamamoto, N.; Takahashi, N.; Shinohara, M.; Yamada, T.

    2016-12-01

    National Research Institute for Earth Science and Disaster Resilience ( NIED ) has launched the project of constructing an observatory network for tsunamis and earthquakes on the seafloor. The observatory network was named "S-net, Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench". The S-net consists of 150 seafloor observatories which are connected in line with submarine optical cables. The total length of submarine optical cable is about 5,700 km. The S-net system extends along Kuril and Japan trenches around Japan islands from north to south covering the area between southeast off island of Hokkaido and off the Boso Peninsula, Chiba Prefecture. The project has been financially supported by MEXT Japan. An observatory package is 34cm in diameter and 226cm long. Each observatory equips two units of a high sensitive water-depth sensor as a tsunami meter and four sets of three-component seismometers. The water-depth sensor has measurement resolution of sub-centimeter level. Combination of multiple seismometers secures wide dynamic range and robustness of the observation that are needed for early earthquake warning. The S-net is composed of six segment networks that consists of about 25 observatories and 800-1,600km length submarine optical cable. Five of six segment networks except the one covering the outer rise area of the Japan Trench has been already installed. The data from the observatories on those five segment networks are being transferred to the data center at NIED on a real-time basis, and then verification of data integrity are being carried out at the present moment. Installation of the last segment network of the S-net, that is, the outer rise one is scheduled to be finished within FY2016. Full-scale operation of the S-net will start at FY2017. We will report construction and operation of the S-net submarine cable system as well as the outline of the obtained data in this presentation.

  11. The Cosmic Ray Observatory Project in Nebraska and Public Outreach for the Pierre Auger Observatory in Argentina

    NASA Astrophysics Data System (ADS)

    Snow, Gregory

    2005-04-01

    The Cosmic Ray Observatory Project (CROP) is a statewide education and research experiment involving Nebraska high school students, teachers, and college undergraduates in the study of extensive cosmic-ray air showers. A network of high school teams construct, install, and operate school-based detectors in coordination with University of Nebraska physics professors and graduate students. The detector system at each school is an array of scintillation counters recycled from the Chicago Air Shower Array in weather-proof enclosures on the school roof, with a GPS receiver providing a time stamp for cosmic-ray events. The detectors are connected to triggering electronics and a data-acquisition PC inside the building. Students share data via the Internet to search for time coincidences with other sites. CROP has enlisted 26 schools in its first 5 years of operation with the aim of expanding to the 314 high schools in the state over the next several years. The presenter also serves as the Task Leader for Education and Outreach for the Pierre Auger Cosmic Ray Observatory, and selected public outreach activities related to the experiment will be described.

  12. TMT approach to observatory software development process

    NASA Astrophysics Data System (ADS)

    Buur, Hanne; Subramaniam, Annapurni; Gillies, Kim; Dumas, Christophe; Bhatia, Ravinder

    2016-07-01

    The purpose of the Observatory Software System (OSW) is to integrate all software and hardware components of the Thirty Meter Telescope (TMT) to enable observations and data capture; thus it is a complex software system that is defined by four principal software subsystems: Common Software (CSW), Executive Software (ESW), Data Management System (DMS) and Science Operations Support System (SOSS), all of which have interdependencies with the observatory control systems and data acquisition systems. Therefore, the software development process and plan must consider dependencies to other subsystems, manage architecture, interfaces and design, manage software scope and complexity, and standardize and optimize use of resources and tools. Additionally, the TMT Observatory Software will largely be developed in India through TMT's workshare relationship with the India TMT Coordination Centre (ITCC) and use of Indian software industry vendors, which adds complexity and challenges to the software development process, communication and coordination of activities and priorities as well as measuring performance and managing quality and risk. The software project management challenge for the TMT OSW is thus a multi-faceted technical, managerial, communications and interpersonal relations challenge. The approach TMT is using to manage this multifaceted challenge is a combination of establishing an effective geographically distributed software team (Integrated Product Team) with strong project management and technical leadership provided by the TMT Project Office (PO) and the ITCC partner to manage plans, process, performance, risk and quality, and to facilitate effective communications; establishing an effective cross-functional software management team composed of stakeholders, OSW leadership and ITCC leadership to manage dependencies and software release plans, technical complexities and change to approved interfaces, architecture, design and tool set, and to facilitate

  13. Low Emissions Alternative Power (LEAP) Project Office Business Team of the Aeropropulsion Research Program Office (ARPO) Org. 0140

    NASA Technical Reports Server (NTRS)

    Buttler, Jennifer A.

    2004-01-01

    The program for which I am working at this summer is Propulsion and Power/Low Emissions Alternative Power (P&P/LEAP). It invests in a fundamental TRL 1-6 research and technology portfolio that will enable the future of: Alternative fuels and/or alternative propulsion systems, non-combustion (electric) propulsion systems. P&P/LEAP will identify and capitalize on the highest potential concepts generated both internal and external to the Agency. During my 2004 summer at NASA Glenn Research Center, I worked with my mentor Barbara Mader, in the Project Office with the Business Team completing various tasks for the project and personnel. The LEAP project is a highly matrixed organization. The Project Office is responsible for the goals advocacy and dollar (budget) of the LEAP project. The objectives of the LEAP Project are to discover new energy sources and develop unconventional engines and power systems directed towards greatly reduced emissions, enable new vehicle concepts for public mobility, new science missions and national security. The Propulsion and PowerLow Emissions Alternative Power directly supports the environmental, mobility, national security objectives of the Vehicle Systems Program and the Aeronautics Technology Theme. Technology deliverables include the demonstration through integrated ground tests, a constant volume combustor in an engine system, and UAV/small transport aircraft all electric power system. My mentor serves as a key member of the management team for the Aeropropulsion Research Program Office (ARPO). She has represented the office on numerous occasions, and is a member of a number of center-wide panels/teams, such as the Space management Committee and is chair to the Business Process Consolidation Team. She is responsible for the overall coordination of resources for the Propulsion and Power Project - from advocacy to implementation. The goal for my summer at NASA was to document processes and archive program documents from the past

  14. Making Kew Observatory: the Royal Society, the British Association and the politics of early Victorian science.

    PubMed

    Macdonald, Lee T

    2015-09-01

    Built in 1769 as a private observatory for King George III, Kew Observatory was taken over in 1842 by the British Association for the Advancement of Science (BAAS). It was then quickly transformed into what some claimed to be a 'physical observatory' of the sort proposed by John Herschel - an observatory that gathered data in a wide range of physical sciences, including geomagnetism and meteorology, rather than just astronomy. Yet this article argues that the institution which emerged in the 1840s was different in many ways from that envisaged by Herschel. It uses a chronological framework to show how, at every stage, the geophysicist and Royal Artillery officer Edward Sabine manipulated the project towards his own agenda: an independent observatory through which he could control the geomagnetic and meteorological research, including the ongoing 'Magnetic Crusade'. The political machinations surrounding Kew Observatory, within the Royal Society and the BAAS, may help to illuminate the complex politics of science in early Victorian Britain, particularly the role of 'scientific servicemen' such as Sabine. Both the diversity of activities at Kew and the complexity of the observatory's origins make its study important in the context of the growing field of the 'observatory sciences'.

  15. An astronomical observatory for Peru

    NASA Astrophysics Data System (ADS)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  16. Using Project Management Systems at the Construction Field Office

    DTIC Science & Technology

    1989-03-01

    instrumentation 13550 transportation control instrumentation 13600 solor energy systems 13700 wind energy systems 13800 building automation systems ...Engineering Research Laboratory AD-A207 077 Using Project Management Systems at the Construction Field Office by E. William East Jeffrey G. Kirby Automated...automated systems available, engineers at the construction fieid office (or resident office) are faced with the over- whelming task of choosing which

  17. Project Solaris, a Global Network of Autonomous Observatories: Design, Commissioning, and First Science Results

    NASA Astrophysics Data System (ADS)

    Kozłowski, S. K.; Sybilski, P. W.; Konacki, M.; Pawłaszek, R. K.; Ratajczak, M.; Hełminiak, K. G.; Litwicki, M.

    2017-10-01

    We present the design and commissioning of Project Solaris, a global network of autonomous observatories. Solaris is a Polish scientific undertaking aimed at the detection and characterization of circumbinary exoplanets and eclipsing binary stars. To accomplish this, a network of four fully autonomous observatories has been deployed in the Southern Hemisphere: Solaris-1 and Solaris-2 in the South African Astronomical Observatory in South Africa; Solaris-3 in Siding Spring Observatory in Australia; and Solaris-4 in Complejo Astronomico El Leoncito in Argentina. The four stations are nearly identical and are equipped with 0.5-m Ritchey-Crétien (f/15) or Cassegrain (f/9, Solaris-3) optics and high-grade 2 K × 2 K CCD cameras with Johnson and Sloan filter sets. We present the design and implementation of low-level security; data logging and notification systems; weather monitoring components; all-sky vision system, surveillance system; and distributed temperature and humidity sensors. We describe dedicated grounding and lighting protection system design and robust fiber data transfer interfaces in electrically demanding conditions. We discuss the outcomes of our design, as well as the resulting software engineering requirements. We describe our system’s engineering approach to achieve the required level of autonomy, the architecture of the custom high-level industry-grade software that has been designed and implemented specifically for the use of the network. We present the actual status of the project and first photometric results; these include data and models of already studied systems for benchmarking purposes (Wasp-4b, Wasp-64b, and Wasp-98b transits, PG 1663-018, an eclipsing binary with a pulsator) as well J024946-3825.6, an interesting low-mass binary system for which a complete model is provided for the first time.

  18. Project Manager Performance and the Decision to Backsource the Project Management Office

    ERIC Educational Resources Information Center

    Lively, William R.

    2014-01-01

    This paper reviews a management decision of an Information Technology Outsource (ITO) provider to backshore the management oversight of its Project Management Office (PMO) after only one year of offshore operations. Governance is a term used in project management to refer to management oversight. The review is a quantitative analysis of existing…

  19. Development of Armenian-Georgian Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg; Kochiashvili, Nino; Astsatryan, Hrach; Harutyunian, Haik; Magakyan, Tigran; Chargeishvili, Ketevan; Natsvlishvili, Rezo; Kukhianidze, Vasil; Ramishvili, Giorgi; Sargsyan, Lusine; Sinamyan, Parandzem; Kochiashvili, Ia; Mikayelyan, Gor

    2009-10-01

    The Armenian-Georgian Virtual Observatory (ArGVO) project is the first initiative in the world to create a regional VO infrastructure based on national VO projects and regional Grid. The Byurakan and Abastumani Astrophysical Observatories are scientific partners since 1946, after establishment of the Byurakan observatory . The Armenian VO project (ArVO) is being developed since 2005 and is a part of the International Virtual Observatory Alliance (IVOA). It is based on the Digitized First Byurakan Survey (DFBS, the digitized version of famous Markarian survey) and other Armenian archival data. Similarly, the Georgian VO will be created to serve as a research environment to utilize the digitized Georgian plate archives. Therefore, one of the main goals for creation of the regional VO is the digitization of large amounts of plates preserved at the plate stacks of these two observatories. The total amount of plates is more than 100,000 units. Observational programs of high importance have been selected and some 3000 plates will be digitized during the next two years; the priority is being defined by the usefulness of the material for future science projects, like search for new objects, optical identifications of radio, IR, and X-ray sources, study of variability and proper motions, etc. Having the digitized material in VO standards, a VO database through the regional Grid infrastructure will be active. This partnership is being carried out in the framework of the ISTC project A-1606 "Development of Armenian-Georgian Grid Infrastructure and Applications in the Fields of High Energy Physics, Astrophysics and Quantum Physics".

  20. The Farid & Moussa Raphael Observatory

    NASA Astrophysics Data System (ADS)

    Hajjar, R.

    2017-06-01

    The Farid & Moussa Raphael Observatory (FMRO) at Notre Dame University Louaize (NDU) is a teaching, research, and outreach facility located at the main campus of the university. It located very close to the Lebanese coast, in an urbanized area. It features a 60-cm Planewave CDK telescope, and instruments that allow for photometric and spetroscopic studies. The observatory currently has one thinned, back-illuminated CCD camera, used as the main imager along with Johnson-Cousin and Sloan photometric filters. It also features two spectrographs, one of which is a fiber fed echelle spectrograph. These are used with a dedicated CCD. The observatory has served for student projects, and summer schools for advanced undergraduate and graduate students. It is also made available for use by the regional and international community. The control system is currently being configured for remote observations. A number of long-term research projects are also being launched at the observatory.

  1. Ten years of the Spanish Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Solano, E.

    2015-05-01

    The main objective of the Virtual Observatory (VO) is to guarantee an easy and efficient access and analysis of the information hosted in astronomical archives. The Spanish Virtual Observatory (SVO) is a project that was born in 2004 with the goal of promoting and coordinating the VO-related activities at national level. SVO is also the national contact point for the international VO initiatives, in particular the International Virtual Observatory Alliance (IVOA) and the Euro-VO project. The project, led by Centro de Astrobiología (INTA-CSIC), is structured around four major topics: a) VO compliance of astronomical archives, b) VO-science, c) VO- and data mining-tools, and d) Education and outreach. In this paper I will describe the most important results obtained by the Spanish Virtual Observatory in its first ten years of life as well as the future lines of work.

  2. The Cincinnati Observatory as a Research Instrument for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Abel, Nicholas; Regas, Dean; Flateau, Davin C.; Larrabee, Cliff

    2016-06-01

    The Cincinnati Observatory, founded in 1842, was the first public observatory in the Western Hemisphere. The history of Cincinnati is closely intertwined with the history of the Observatory, and with the history of science in the United States. Previous directors of the Observatory helped to create the National Weather Service, the Minor Planet Center, and the first astronomical journal in the U.S. The Cincinnati Observatory was internationally known in the late 19th century, with Jules Verne mentioning the Cincinnati Observatory in two of his books, and the Observatory now stands as a National Historic Landmark.No longer a research instrument, the Observatory is now a tool for promoting astronomy education to the general public. However, with the 11" and 16" refracting telescopes, the Observatory telescopes are very capable of collecting data to fuel undergraduate research projects. In this poster, we will discuss the history of the Observatory, types of student research projects capable with the Cincinnati Observatory, future plans, and preliminary results. The overall goal of this project is to produce a steady supply of undergraduate students collecting, analyzing, and interpreting data, and thereby introduce them to the techniques and methodology of an astronomer at an early stage of their academic career.

  3. Site Protection Program and Progress Report of Ali Observatory, Tibet

    NASA Astrophysics Data System (ADS)

    Yao, Yongqiang; Zhou, Yunhe; Wang, Xiaohua; He, Jun; Zhou, Shu

    2015-08-01

    The Ali observatory, Tibet, is a promising new site identified through ten year site survey over west China, and it is of significance to establish rules of site protection during site development. The site protection program is described with five aspects: site monitoring, technical support, local government support, specific organization, and public education. The long-term sky brightness monitoring is ready with site testing instruments and basic for light pollution measurement; the monitoring also includes directions of main light sources, providing periodical reports and suggestions for coordinating meetings. The technical supports with institutes and manufacturers help to publish lighting standards and replace light fixtures; the research pays special attention to the blue-rich sources, which impact the important application of high altitude sites. An official leading group towards development and protection of astronomical resources has been established by Ali government; one of its tasks is to issue regulations against light pollution, including special restrictions of airport, mine, and winter heating, and to supervise lighting inspection and rectification. A site protection office under the official group and local astronomical society are organized by Ali observatory; the office can coordinate in government levels and promote related activities. A specific website operated by the protection office releases activity propaganda, evaluation results, and technical comparison with other observatories. Both the site protection office and Ali observatory take responsibility for public education, including popular science lectures, light pollution and energy conservation education. Ali Night Sky Park has been constructed and opens in 2014, and provides a popular place and observational experience. The establishment of Ali Observatory and Night Sky Park brings unexpected social influence, and the starry sky trip to Ali becomes a new format of culture

  4. Astronomical Archive at Tartu Observatory

    NASA Astrophysics Data System (ADS)

    Annuk, K.

    2007-10-01

    Archiving astronomical data is important task not only at large observatories but also at small observatories. Here we describe the astronomical archive at Tartu Observatory. The archive consists of old photographic plate images, photographic spectrograms, CCD direct--images and CCD spectroscopic data. The photographic plate digitizing project was started in 2005. An on-line database (based on MySQL) was created. The database includes CCD data as well photographic data. A PHP-MySQL interface was written for access to all data.

  5. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Sackett, C.

    1999-05-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building and dome has been completed, and first light is planned for spring 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have received an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  6. Chemical research projects office: An overview and bibliography, 1975-1980

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Heimbuch, A. H.; Parker, J. A.

    1980-01-01

    The activities of the Chemical Research Projects Office at Ames Research Center, Moffett Field, California are reported. The office conducts basic and applied research in the fields of polymer chemistry, computational chemistry, polymer physics, and physical and organic chemistry. It works to identify the chemical research and technology required for solutions to problems of national urgency, synchronous with the aeronautic and space effort. It conducts interdisciplinary research on chemical problems, mainly in areas of macromolecular science and fire research. The office also acts as liaison with the engineering community and assures that relevant technology is made available to other NASA centers, agencies, and industry. Recent accomplishments are listed in this report. Activities of the three research groups, Polymer Research, Aircraft Operating and Safety, and Engineering Testing, are summarized. A complete bibliography which lists all Chemical Research Projects Office publications, contracts, grants, patents, and presentations from 1975 to 1980 is included.

  7. National Unmanned Aircraft Systems Project Office

    USGS Publications Warehouse

    Goplen, Susan E.; Sloan, Jeff L.

    2015-01-01

    The U.S. Geological Survey (USGS) National Unmanned Aircraft Systems (UAS) Project Office leads the implementation of UAS technology in the Department of the Interior (DOI). Our mission is to support the transition of UAS into DOI as a new cost-effective tool for collecting remote-sensing data to monitor environmental conditions, respond to natural hazards, recognize the consequences and benefits of land and climate change and conduct wildlife inventories. The USGS is teaming with all DOI agencies and academia as well as local, State, and Tribal governments with guidance from the Federal Aviation Administration and the DOI Office of Aviation Services (OAS) to lead the safe, efficient, costeffective and leading-edge adoption of UAS technology into the scientific research and operational activities of the DOI.

  8. Establishment of a Taiwan Marine cable hosted observatory (Ma-Cho project)

    NASA Astrophysics Data System (ADS)

    Lee, C.; Hsu, S.; Shin, T.

    2006-12-01

    Taiwan is located in a junction corner between the Philippine Sea Plate and Eurasian Plate. Because of the active convergence, numerous earthquakes have occurred in and around Taiwan. On average, there are about two earthquakes greater than magnitude 6 each year and 80% of earthquakes occurred in the offshore area. Because of the subduction of Philippine Sea Plate beneath the western end of the Ryukyu Arc and northern Taiwan, both the tectonics and seismic activity are intensive. The 2004 Sumatra earthquake has induced giant tsunami attacking coastal countries of South Asia. Due to a similar geodynamic context, the Sumatra event has aroused the attention of Taiwan government. Soon, specialists from Taiwan earth scientists and ocean engineers have teamed up to discuss the potential and mitigation of natural hazards from the western end of the Ryukyu subduction zone. The constructing a submarine cable observatory off eastern Taiwan (Ma-Cho project) was suggested. Ma-Cho means a sea goddess who protects people at sea. The purpose of Ma-Cho project has several folds. Firstly, the extension of seismic stations on land to offshore area can increase the resolution of earthquake locating. Secondly, the extension of seismic stations may obtain tens of second before the destructing seismic waves arrive on land or tens of minute before the arrival of giant tsunami, which is helpful for earthquake or tsunami warning. Thirdly, the seafloor scientific station can monitor the active volcanoes in the Okinawa Trough, which is directly adjacent to the Ilan plain in northeastern Taiwan. Fourthly, the seafloor observatory can be used to continuously study the Kurosho current, off eastern Taiwan. The Ma- Cho project has been granted for the first year. From 2007, we will start with a submarine route survey and a construction of the submarine cable land station. The main submarine cable frame and the connection of scientific instruments to cable nodes will be finished in 2009.

  9. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1982-01-01

    This artist's conception depicts the High Energy Astronomy Observatory (HEAO)-1 in orbit. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit. The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. Hardware support for the imaging instruments was provided by American Science and Engineeing. The HEAO spacecraft were built by TRW, Inc. under project management of the Marshall Space Flight Center.

  10. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Rideout, C.; Vanlew, K.

    1998-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction is nearly completed and first light is planned for fall 1998. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. That telescope has been in use for the past four years by up to 50 schools per month. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have applied for an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  11. Infrared Space Observatory (ISO) Key Project: the Birth and Death of Planets

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Creech-Eakman, Michelle; Fajardo-Acosta, Sergio; Backman, Dana

    1999-01-01

    This program was designed to continue to analyze observations of stars thought to be forming protoplanets, using the European Space Agency's Infrared Space Observatory, ISO, as one of NASA Key Projects with ISO. A particular class of Infrared Astronomy Satellite (IRAS) discovered stars, known after the prototype, Vega, are principal targets for these observations aimed at examining the evidence for processes involved in forming, or failing to form, planetary systems around other stars. In addition, this program continued to provide partial support for related science in the WIRE, SOFIA and Space Infrared Telescope Facility (SIRTF) projects, plus approved ISO supplementary time observations under programs MCREE1 29 and VEGADMAP. Their goals include time dependent changes in SWS spectra of Long Period Variable stars and PHOT P32 mapping experiments of recognized protoplanetary disk candidate stars.

  12. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; VanLew, K.; Melsheimer, T.; Sackett, C.

    1999-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. Construction of the dome and the remote control system has been completed, and the telescope is now on-line and operational over the Internet. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have begun teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  13. The project management office: transforming healthcare in the context of a hospital redevelopment project.

    PubMed

    Richer, Marie-Claire; Marchionni, Caroline; Lavoie-Tremblay, Melanie; Aubry, Monique

    2013-01-01

    It has been shown that classifying projects into a typology allows improved allocation of resources and promotes project success. However, a typology of healthcare projects has yet to be developed. The projects encountered by the Transition Support Office at the McGill University Health Centre in Montreal, Quebec, where a major redevelopment project is under way, were classified into a typology unique to the healthcare context. Examples of the 3 project types, Process, People, and Practice, are provided to clarify the specific support strategies and context-adapted interventions that were instrumental to their success.

  14. Innovation in health service management: Adoption of project management offices to support major health care transformation.

    PubMed

    Lavoie-Tremblay, Mélanie; Aubry, Monique; Cyr, Guylaine; Richer, Marie-Claire; Fortin-Verreault, Jean-François; Fortin, Claude; Marchionni, Caroline

    2017-11-01

    To explore the characteristics that influence project management offices acceptance and adoption in healthcare sector. The creation of project management offices has been suggested as a promising avenue to promote successful organisational change and facilitate evidence-based practice. However, little is known about the characteristics that promote their initial adoption and acceptance in health care sector. This knowledge is important in the context where many organisations are considering implementing project management offices with nurse managers as leaders. A descriptive multiple case study design was used. The unit of analysis was the project management offices. The study was conducted in three university-affiliated teaching hospitals in 2013-14 (Canada). Individual interviews (n = 34) were conducted with senior managers. Results reveal that project management offices dedicated to project and change management constitute an innovation and an added value that addresses tangible needs in the field. Project management offices are an innovation highly compatible with health care managers and their approach has parallels to the process of clinical problem solving and reasoning well-known to adopters. This knowledge is important in a context where many nurses hold various roles in project management offices, such as Director, project manager, clinical expert and knowledge broker. © 2017 John Wiley & Sons Ltd.

  15. Worldwide R&D of Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cui, C. Z.; Zhao, Y. H.

    2008-07-01

    Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in the late 1990s to meet the challenges brought up with data avalanche in astronomy. In the paper, current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects are reviewed, a brief introduction of Chinese Virtual Observatory is given.

  16. Implementation of CUAHSI-HIS Community Project Components in a Local Observatory

    NASA Astrophysics Data System (ADS)

    Muste, M.; Arnold, N.; Kim, D.

    2008-12-01

    The deployment of the eleven WATERS Network local observatories using CUAHSI-HIS project products showed that water observations data collected by academic investigators could be stored, published on the Internet, federated with water observations data published by water agencies, and searched using a concept framework that connects with variables in each individual data source. For many within the water resources community, the CUAHSI-HIS community project represents a new opportunity to approach the management, publication, and analysis of their data systematically - i.e., moving from collections of ASCII text or spreadsheet files to relational data models. This research describes the initial efforts carried out by a University of Iowa research group during the component implementation of a hydrologic community project in a local CI-based digital watershed (DW). The goal was to test what types of data query the DW can handle and see how it performs in use cases where data streams are coupled with models for continuous forecasting. This paper also discusses the general context for the DW development and summarizes the lessons learned by the group during this initial developmental stage. Given the uniform and scalable nature of the community project components, it is expected that the workflows presented herein are transferable to other users and other watersheds.

  17. Telescopio San Pedro Mártir Observatory preliminary design and project approach

    NASA Astrophysics Data System (ADS)

    Teran, Jose; Lee, William H.; Richer, Michael G.; Sánchez, Beatriz S.; Urdaibay, David; Hill, Derek; Adriaanse, David; Hernandez-Limonchi, Regina

    2016-07-01

    The Instituto de Astronomia of the Universidad Nacional Autónoma de México (UNAM) along with Instituto Nacional de Astrofisica, Optica y Electronica, the University of Arizona and the Smithsonian Astrophysical Observatory are developing the Telescopio San Pedro Mártir (TSPM) project, a 6.5m diameter optical telescope. M3 Engineering and Technology Corp. (M3) is the design and construction management firm responsible for all site infrastructure, enclosure and support facilities. The Telescopio San Pedro Mártir project (TSPM) will be located within the San Pedro Mártir National Park in Baja California, Mexico at 2,830 m. above sea level, approximately 65 km. east of the Pacific Ocean, 55km west of the Sea of Cortes (Gulf of California) and 180km south of the United States and México border. The aim of the paper is to present the preliminary design of the site infrastructure, enclosure and support facilities to date and share the design and construction approach.

  18. [Earth Science Technology Office's Computational Technologies Project

    NASA Technical Reports Server (NTRS)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  19. [Factors associated with investment in an office medicine project by general practice residents].

    PubMed

    Munck, Stéphane; Massin, Sophie; Hofliger, Philippe; Darmon, David

    2015-01-01

    To identify thefactors associated with investment in an office medicine project by French general practice (GP) residents. We conducted a national survey using a web-based self-administered questionnaire and analyzed the data collected by multiple logistic regressions. The dependent variable was "an office medicine project" The explanatory variables were both individual (socio-demographic and linked to training trajectories) and contextual (related to the available training programmes and the regional medical demography). The response rate was 48.5%. Out of the 1,695 residents of the study sample, 315 (18.6%) already had a project to setup an office practice during their third cycle ofmedical studies. The main factors associated with this project were (p < 0.05): to receive strong academic support, to live in a rural or semi-rural area, to work as a GP locum, to perform residency training in the same city as the medical training and to perform residency training in a region with a high percentage of GPs 55years and older. This study showed that a project to setup an office practice was influenced by both individual and contextualfactors. Special attention should be paid to the means and content of training to ensure better supportfor residents, which could make office general practice more attractive.

  20. The University of Montana's Blue Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Friend, D. B.

    2004-12-01

    The University of Montana's Department of Physics and Astronomy runs the state of Montana's only professional astronomical observatory. The Observatory, located on nearby Blue Mountain, houses a 16 inch Boller and Chivens Cassegrain reflector (purchased in 1970), in an Ash dome. The Observatory sits just below the summit ridge, at an elevation of approximately 6300 feet. Our instrumentation includes an Op-Tec SSP-5A photoelectric photometer and an SBIG ST-9E CCD camera. We have the only undergraduate astronomy major in the state (technically a physics major with an astronomy option), so our Observatory is an important component of our students' education. Students have recently carried out observing projects on the photometry of variable stars and color photometry of open clusters and OB associations. In my poster I will show some of the data collected by students in their observing projects. The Observatory is also used for public open houses during the summer months, and these have become very popular: at times we have had 300 visitors in a single night.

  1. Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Khosroshahi, H. G.; Danesh, A.; Molaeinezhad, A.

    2016-09-01

    The Iranian National Observatory is under construction at an altitude of 3600m at Gargash summit 300km southern Tehran. The site selection was concluded in 2007 and the site monitoring activities have begun since then, which indicates a high quality of the site with a median seeing of 0.7 arcsec through the year. One of the major observing facilities of the observatory is a 3.4m Alt-Az Ritchey-Chretien optical telescope which is currently under design. This f/11 telescope will be equipped with high resolution medium-wide field imaging cameras as well as medium and high resolution spectrographs. In this review, I will give an overview of astronomy research and education in Iran. Then I will go through the past and present activities of the Iranian National Observatory project including the site quality, telescope specifications and instrument capabilities.

  2. Sierra Stars Observatory Network: An Accessible Global Network

    NASA Astrophysics Data System (ADS)

    Williams, Richard; Beshore, Edward

    2011-03-01

    The Sierra Stars Observatory Network (SSON) is a unique partnership among professional observatories that provides its users with affordable high-quality calibrated image data. SSON comprises observatories in the Northern and Southern Hemisphere and is in the process of expanding to a truly global network capable of covering the entire sky 24 hours a day in the near future. The goal of SSON is to serve the needs of science-based projects and programs. Colleges, universities, institutions, and individuals use SSON for their education and research projects. The mission of SSON is to promote and expand the use of its facilities among the thousands of colleges and schools worldwide that do not have access to professional-quality automated observatory systems to use for astronomy education and research. With appropriate leadership and guidance educators can use SSON to help teach astronomy and do meaningful scientific projects. The relatively small cost of using SSON for this type of work makes it affordable and accessible for educators to start using immediately. Remote observatory services like SSON need to evolve to better support education and research initiatives of colleges, institutions and individual investigators. To meet these needs, SSON is developing a sophisticated interactive scheduling system to integrate among the nodes of the observatory network. This will enable more dynamic observations, including immediate priority interrupts, acquiring moving objects using ephemeris data, and more.

  3. Addressing the social dimensions of citizen observatories: The Ground Truth 2.0 socio-technical approach for sustainable implementation of citizen observatories

    NASA Astrophysics Data System (ADS)

    Wehn, Uta; Joshi, Somya; Pfeiffer, Ellen; Anema, Kim; Gharesifard, Mohammad; Momani, Abeer

    2017-04-01

    Owing to ICT-enabled citizen observatories, citizens can take on new roles in environmental monitoring, decision making and co-operative planning, and environmental stewardship. And yet implementing advanced citizen observatories for data collection, knowledge exchange and interactions to support policy objectives is neither always easy nor successful, given the required commitment, trust, and data reliability concerns. Many efforts are facing problems with the uptake and sustained engagement by citizens, limited scalability, unclear long-term sustainability and limited actual impact on governance processes. Similarly, to sustain the engagement of decision makers in citizen observatories, mechanisms are required from the start of the initiative in order to have them invest in and, hence, commit to and own the entire process. In order to implement sustainable citizen observatories, these social dimensions therefore need to be soundly managed. We provide empirical evidence of how the social dimensions of citizen observatories are being addressed in the Ground Truth 2.0 project, drawing on a range of relevant social science approaches. This project combines the social dimensions of citizen observatories with enabling technologies - via a socio-technical approach - so that their customisation and deployment is tailored to the envisaged societal and economic impacts of the observatories. The projects consists of the demonstration and validation of six scaled up citizen observatories in real operational conditions both in the EU and in Africa, with a specific focus on flora and fauna as well as water availability and water quality for land and natural resources management. The demonstration cases (4 EU and 2 African) cover the full 'spectrum' of citizen-sensed data usage and citizen engagement, and therefore allow testing and validation of the socio-technical concept for citizen observatories under a range of conditions.

  4. NEPTUNE: an under-sea plate scale observatory

    NASA Technical Reports Server (NTRS)

    Beauchamp, P. M.; Heath, G. R.; Maffei, A.; Chave, A.; Howe, B.; Wilcock, W.; Delaney, J.; Kirkham, H.

    2002-01-01

    The NEPTUNE project will establish a linked array of undersea observatories on the Juan de Fuca tectonic plate. This observatory will provide a new kind of research platform for real-time, long-term, plate-scale studies in the ocean and Earth sciences.

  5. The Boyden Observatories Museum -- Project Overview

    NASA Astrophysics Data System (ADS)

    Van Heerden, H. J.; van Jaarsveldt, D. P.; Hoffman, M. J. H.

    2010-12-01

    The planned museum at Boyden about the history of the observatories in Bloemfontein as well as the Roberts archives and all the most important contributors to astronomy in the region will be discussed. The layout, current progress, future plans, the people involved and all relevant information will be shown. A conclusion about the possible impact and the possible events around the opening will then be made.

  6. NASA Extends Chandra X-ray Observatory Contract with the Smithsonian Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    2002-07-01

    NASA NASA has extended its contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass. to August 2003 to provide science and operational support for the Chandra X- ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract is an 11-month period of performance extension to the Chandra X-ray Center contract, with an estimated value of 50.75 million. Total contract value is now 298.2 million. The contract extension resulted from the delay of the launch of the Chandra X-ray Observatory from August 1998 to July 1999. The revised period of performance will continue the contract through Aug. 31, 2003, which is 48 months beyond operational checkout of the observatory. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes both the observatory operations and the science data processing and general observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and distributing by satellite the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and the processing and delivery of the resulting scientific data. Each year, there are on the order of 200 to 250 observing proposals selected out of about 800 submitted, with a total amount of observing time about 20 million seconds. X-ray astronomy can only be performed from space because Earth's atmosphere blocks X-rays from reaching the surface. The Chandra Observatory travels one-third of the way to the Moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg-shaped, orbit is 200 times higher than that of its visible-light- gathering sister, the Hubble Space Telescope. NASA

  7. Implementation of a Project Management Office (PMO)--experiences from year 1.

    PubMed

    Isola, Miriam; Polikaitis, Audrius; Laureto, Rose Ann

    2006-01-01

    Recognized as an early leader in clinical information systems, the University of Illinois Medical Center was challenged to meet the ever-increasing demand for information systems. Interviews with key stakeholders revealed unfavorable attitudes toward the Information Services department. Reasons given were that projects often are not aligned with business strategy, projects are delayed, IS itself is a barrier to progress, and a lack of proactive planning precipitates crises. Under the leadership of a new CIO, IS began developing a Project Management Office, or PMO, to better meet medical center business objectives and to more effectively manage technology projects. Successes during the first year included comprehensive IT strategic planning. Collaborative relationships were established with departmental leaders for planning, prioritizing, budgeting, and executing projects. A formal Web-based process for requesting IS projects was implemented, project management training was provided, and elements of standard project management methodology were implemented. While a framework for effective project management was created, significant effort is still required to firmly root these new processes within the organizational culture. Project management office goals for the second year include implementing a project portfolio management tool, refining the benefits methodology, and continuing the advancement of the project management methodology.

  8. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; VanLew, K.; Melsheimer, T.; Sackett, C.

    2000-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. The telescope is operational over the Internet, and we are now debugging the software to enable schools to control the telescope from classroom computers and take images. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have completed the first teacher training workshops to allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms. The workshops were accredited by the school district, and received very favorable reviews.

  9. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  10. Code Sharing and Collaboration: Experiences from the Scientist's Expert Assistant Project and their Relevance to the Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Grosvenor, Sandy; Wolf, Karl; Li, Connie; Koratkar, Anuradha; Powers, Edward I. (Technical Monitor)

    2001-01-01

    In the Virtual Observatory (VO), software tools will perform the functions that have traditionally been performed by physical observatories and their instruments. These tools will not be adjuncts to VO functionality but will make up the very core of the VO. Consequently, the tradition of observatory and system independent tools serving a small user base is not valid for the VO. For the VO to succeed, we must improve software collaboration and code sharing between projects and groups. A significant goal of the Scientist's Expert Assistant (SEA) project has been promoting effective collaboration and code sharing between groups. During the past three years, the SEA project has been developing prototypes for new observation planning software tools and strategies. Initially funded by the Next Generation Space Telescope, parts of the SEA code have since been adopted by the Space Telescope Science Institute. SEA has also supplied code for SOFIA, the SIRTF planning tools, and the JSky Open Source Java library. The potential benefits of sharing code are clear. The recipient gains functionality for considerably less cost. The provider gains additional developers working with their code. If enough users groups adopt a set of common code and tools, defacto standards can emerge (as demonstrated by the success of the FITS standard). Code sharing also raises a number of challenges related to the management of the code. In this talk, we will review our experiences with SEA - both successes and failures - and offer some lessons learned that may promote further successes in collaboration and re-use.

  11. Code Sharing and Collaboration: Experiences From the Scientist's Expert Assistant Project and Their Relevance to the Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Korathkar, Anuradha; Grosvenor, Sandy; Jones, Jeremy; Li, Connie; Mackey, Jennifer; Neher, Ken; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    In the Virtual Observatory (VO), software tools will perform the functions that have traditionally been performed by physical observatories and their instruments. These tools will not be adjuncts to VO functionality but will make up the very core of the VO. Consequently, the tradition of observatory and system independent tools serving a small user base is not valid for the VO. For the VO to succeed, we must improve software collaboration and code sharing between projects and groups. A significant goal of the Scientist's Expert Assistant (SEA) project has been promoting effective collaboration and code sharing among groups. During the past three years, the SEA project has been developing prototypes for new observation planning software tools and strategies. Initially funded by the Next Generation Space Telescope, parts of the SEA code have since been adopted by the Space Telescope Science Institute. SEA has also supplied code for the SIRTF (Space Infrared Telescope Facility) planning tools, and the JSky Open Source Java library. The potential benefits of sharing code are clear. The recipient gains functionality for considerably less cost. The provider gains additional developers working with their code. If enough users groups adopt a set of common code and tools, de facto standards can emerge (as demonstrated by the success of the FITS standard). Code sharing also raises a number of challenges related to the management of the code. In this talk, we will review our experiences with SEA--both successes and failures, and offer some lessons learned that might promote further successes in collaboration and re-use.

  12. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  13. 48 CFR 2052.215-71 - Project officer authority.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of the work description. (3) Review and, where required by the contract, approve technical reports... subject to the technical direction of the NRC project officer. The term technical direction is defined to include the following: (1) Technical direction to the contractor which shifts work emphasis between areas...

  14. 48 CFR 2052.215-71 - Project officer authority.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of the work description. (3) Review and, where required by the contract, approve technical reports... subject to the technical direction of the NRC project officer. The term technical direction is defined to include the following: (1) Technical direction to the contractor which shifts work emphasis between areas...

  15. 48 CFR 2052.215-71 - Project officer authority.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of the work description. (3) Review and, where required by the contract, approve technical reports... subject to the technical direction of the NRC project officer. The term technical direction is defined to include the following: (1) Technical direction to the contractor which shifts work emphasis between areas...

  16. 48 CFR 2052.215-71 - Project officer authority.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of the work description. (3) Review and, where required by the contract, approve technical reports... subject to the technical direction of the NRC project officer. The term technical direction is defined to include the following: (1) Technical direction to the contractor which shifts work emphasis between areas...

  17. Climate Change Literacy across the Critical Zone Observatory Network

    NASA Astrophysics Data System (ADS)

    Moore, A.; Derry, L. A.; Zabel, I.; Duggan-Haas, D.; Ross, R. M.

    2017-12-01

    Earth's Critical Zone extends from the top of the tree canopy to the base of the groundwater lens. Thus the Critical Zone is examined as a suite of interconnected systems and study of the CZ is inherently interdisciplinary. Climate change is an important driver of CZ processes. The US Critical Zone Observatory Network comprises nine observatories and a coordinating National Office. Educational programs and materials developed at each CZO and the National Office have been collected, reviewed, and presented on-line at the CZONO (criticalzone.org/national/education-outreach/resources). Because the CZOs are designed to observe and measure a suite of common parameters on varying geological substrates and within different ecological contexts, educational resources reflect the diversity of processes represented across the network. As climate change has a network-wide impact, the fundamental building blocks of climate change literacy are key elements in many activities within the CZONO resource collection. Carbon-cycle and hydrologic cycle processes are well-represented, with emphasis on human interactions with these resources, as well as the impact of extreme events and the changing climate. Current work on the resource collection focuses on connecting individual resources to "Teach Climate Science" project and the Teacher-Friendly Guide to Climate Change (teachclimatescience.wordpress.com). The Teacher-Friendly Guide is a manual for K-12 teachers that presents both the fundamentals of climate science alongside resources for effective teaching of this controversial topic. Using the reach of the CZO network we hope to disseminate effective climate literacy resources and support to the K-12 community.

  18. Technical Support Services for the Office of Naval Research Littoral Warfare Advanced Development Project

    DTIC Science & Technology

    2005-09-30

    Technical Support Services for the Office of Naval Research Littoral Warfare Advanced Development Project William R. Metzger Marine...Support Services for the Office of Naval Research Littoral Warfare Advanced Development Project 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  19. The Little Thompson Observatory's Astronomy Education Programs

    NASA Astrophysics Data System (ADS)

    Schweitzer, Andrea E.

    2007-12-01

    The Little Thompson Observatory is a community-built E/PO observatory and is a member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. Annually we have approximately 5,000 visitors, which is roughly equal to the population of the small town of Berthoud, CO. This past year, we have used the funding from our NASA ROSS E/PO grant to expand our teacher workshop programs, and included the baseball-sized meteorite that landed in Berthoud three years ago. Our teacher programs have involved scientists from the Southwest Research Institute and from Fiske Planetarium at CU-Boulder. We thank the NASA ROSS E/PO program for providing this funding! We also held a Colorado Project ASTRO-GEO workshop, and the observatory continues to make high-school astronomy courses available to students from the surrounding school districts. Statewide, this year we helped support the development and construction of three new educational observatories in Colorado, located in Estes Park, Keystone, and Gunnison. The LTO is grateful to have received the recently-retired 24-inch telescope from Mount Wilson Observatory as part of the TIE program. To provide a new home for this historic telescope, we have doubled the size of the observatory and are building a second dome (all with volunteer labor). During 2008 we plan to build a custom pier and refurbish the telescope.

  20. Mechanical Overview of the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; McClelland, Ryan S.

    2009-01-01

    The International X-ray Observatory (IXO) is a new collaboration between NASA, ESA, and JAXA which is under study for launch in 2020. IXO will be a large 6600 kilogram Great Observatory-class mission which will build upon the legacies of the Chandra and XMM-Newton X-ray observatories. It combines elements from NASA's Constellation-X program and ESA's XEUS program. The observatory will have a 20-25 meter focal length, which necessitates the use of a deployable instrument module. Currently the project is actively trading configurations and layouts of the various instruments and spacecraft components. This paper will provide a snapshot of the latest observatory configuration under consideration and summarize the observatory from the mechanical engineering perspective.

  1. Georg Neumayer and Melbourne Observatory: an institutional legacy

    NASA Astrophysics Data System (ADS)

    Gillespie, Richard

    This paper assesses Georg Neumayer's impact on the Victorian scientific community, and especially his role in the establishment of Melbourne Observatory as a major scientific institution in colonial Australia. Neumayer's arrival in Melbourne to pursue his own scientific project triggered a chain of events that would lead to the creation of Melbourne Observatory and the integration of Neumayer's geomagnetic and meteorological research into the ongoing program of the observatory. The location of the observatory in South Yarra was a direct result of Neumayer's insistence that the site was the most suitable for geomagnetic measurement. Most critically, Neumayer's attempts to get approval for his project highlighted the need for local scientists to establish political and scientific alliances that would ensure endorsement by international, notably British, scientists, and that would persuade local elites and government of the practical value of their research.

  2. 21st Century Lightning Protection for High Altitude Observatories

    NASA Astrophysics Data System (ADS)

    Kithil, Richard

    2013-05-01

    One of the first recorded lightning insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times lightning has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to lightning outages to data acquisition computers and connected cabling. The University of Arizona has reported "lightning strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where lightning protection for personnel, electrical systems, associated electronics and data are critical. Designstage lightning protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories lightning protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered lightning protection subsystems in a carefully planned methodology which is specific to each site.

  3. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2002-12-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." In addition, this past summer our program became an accredited course by Colorado State University. Our next project is to partner with the Discovery Center Science Museum and Colorado State University to provide additional teacher education programs. Our training materials have also been shared with TIE/Mt. Wilson, NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  4. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2003-05-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." In addition, this past summer our program became an accredited course by Colorado State University. Our next project is to partner with the Discovery Center Science Museum and Colorado State University to provide additional teacher education programs. Our training materials have also been shared with TIE/Mt. Wilson, NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  5. 18 CFR 375.308 - Delegations to the Director of the Office of Energy Projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Director of the Office of Energy Projects. 375.308 Section 375.308 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REVISED GENERAL RULES THE COMMISSION Delegations § 375.308 Delegations to the Director of the Office of Energy Projects. The Commission authorizes...

  6. 18 CFR 375.308 - Delegations to the Director of the Office of Energy Projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Director of the Office of Energy Projects. 375.308 Section 375.308 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REVISED GENERAL RULES THE COMMISSION Delegations § 375.308 Delegations to the Director of the Office of Energy Projects. The Commission authorizes...

  7. 18 CFR 375.308 - Delegations to the Director of the Office of Energy Projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Director of the Office of Energy Projects. 375.308 Section 375.308 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REVISED GENERAL RULES THE COMMISSION Delegations § 375.308 Delegations to the Director of the Office of Energy Projects. The Commission authorizes...

  8. 18 CFR 375.308 - Delegations to the Director of the Office of Energy Projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Director of the Office of Energy Projects. 375.308 Section 375.308 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REVISED GENERAL RULES THE COMMISSION Delegations § 375.308 Delegations to the Director of the Office of Energy Projects. The Commission authorizes...

  9. 4. DETAIL OF EAST SIDE, SHOWING TRACK SUPERVISOR'S OFFICE PROJECTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF EAST SIDE, SHOWING TRACK SUPERVISOR'S OFFICE PROJECTION. VIEW TO WEST. - Commercial & Industrial Buildings, Illinois Central Railroad Passenger Depot, Iowa & Jones Streets, Dubuque, Dubuque County, IA

  10. The Little Thompson Observatory's Astronomy Education Programs

    NASA Astrophysics Data System (ADS)

    Schweitzer, Andrea E.

    2008-05-01

    The Little Thompson Observatory is a community-built E/PO observatory and is a member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. Annually we have approximately 5,000 visitors, which is roughly equal to the population of the small town of Berthoud, CO. In spring 2008, we offered a special training session to boost participation in the GLOBE at Night international observing program. During 2005-2007 we used the funding from our NASA ROSS E/PO grant to expand our teacher workshop programs, and included the baseball-sized meteorite that landed in Berthoud four years ago. Our teacher programs are ongoing, and include scientists from the Southwest Research Institute and from Fiske Planetarium at CU-Boulder. We thank the NASA ROSS E/PO program for providing this funding! Statewide, we are a founding member of Colorado Project ASTRO-GEO, and the observatory offers high-school astronomy courses to students from the surrounding school districts. We continue to support the development and construction of three new educational observatories in Colorado, located in Estes Park, Keystone and Gunnison. The LTO is grateful to have received the retired 24-inch telescope from Mount Wilson Observatory as part of the TIE program. To provide a new home for this historic telescope, we have doubled the size of the observatory and are building a second dome (almost all construction done with volunteer labor). During 2008 we will be building a custom pier and refurbishing the telescope.

  11. The Cerro Tololo Inter-American Observatory Summer Student Programs in La Serena, Chile

    NASA Astrophysics Data System (ADS)

    Kaleida, Catherine C.; Smith, C.; Van Der Bliek, N. S.; James, D.

    2014-01-01

    The Cerro Tololo Inter-American Observatory (CTIO) offers positions for U.S. and Chilean student interns during the Chilean summer months of January-March (northern winter semester) at the CTIO offices in La Serena, Chile. CTIO is part of the National Optical Astronomy Observatory (NOAO) of the United States, focused on the development of astronomy in the southern hemisphere. Six undergraduate research assistantships are offered for U.S. physics and astronomy undergraduate students through the NSF-funded Research Experiences for Undergraduates (REU) program. The CTIO-funded Prácticas de Investigación en Astronomía (PIA) program is run concurrently with the REU program, and offers two research assistantships for Chilean undergraduate or 1st or 2nd year masters students, also at the CTIO offices in La Serena, Chile. The CTIO REU and PIA programs provide exceptional opportunities for students considering a career in astronomy to engage in substantive research activities with scientists working at the forefront of contemporary astrophysics. Student participants work on specific research projects in close collaboration with members of the CTIO scientific and technical staff, such as galaxy clusters, gravitational lensing, supernovae, planetary nebulae, stellar populations, star clusters, star formation, variable stars and interstellar medium. The CTIO REU and PIA programs emphasize observational techniques and provide opportunities for direct observational experience using CTIO's state-of-the-art telescopes and instrumentation. The programs run for 10 weeks, from mid-January to the end of March. A two-night observing run on Cerro Tololo and a field trip to another observatory in Chile are included for students of both programs. These positions are full time, and those selected will receive a modest stipend and subsidized housing on the grounds of the offices of CTIO in La Serena, as well as travel costs to and from La Serena. In addition, the students have the

  12. Education and public engagement in observatory operations

    NASA Astrophysics Data System (ADS)

    Gabor, Pavel; Mayo, Louis; Zaritsky, Dennis

    2016-07-01

    Education and public engagement (EPE) is an essential part of astronomy's mission. New technologies, remote observing and robotic facilities are opening new possibilities for EPE. A number of projects (e.g., Telescopes In Education, MicroObservatory, Goldstone Apple Valley Radio Telescope and UNC's Skynet) have developed new infrastructure, a number of observatories (e.g., University of Arizona's "full-engagement initiative" towards its astronomy majors, Vatican Observatory's collaboration with high-schools) have dedicated their resources to practical instruction and EPE. Some of the facilities are purpose built, others are legacy telescopes upgraded for remote or automated observing. Networking among institutions is most beneficial for EPE, and its implementation ranges from informal agreements between colleagues to advanced software packages with web interfaces. The deliverables range from reduced data to time and hands-on instruction while operating a telescope. EPE represents a set of tasks and challenges which is distinct from research applications of the new astronomical facilities and operation modes. In this paper we examine the experience with several EPE projects, and some lessons and challenges for observatory operation.

  13. Enabling Virtual Access to Latin-American Southern Observatories

    NASA Astrophysics Data System (ADS)

    Filippi, G.

    2010-12-01

    EVALSO (Enabling Virtual Access to Latin-American Southern Observatories) is an international consortium of nine astronomical organisations and research network operators, part-funded under the European Commission FP7, to create and exploit high-speed bandwidth connections to South American observatories. A brief description of the project is presented. The EVALSO Consortium inaugurated a fibre link between the Paranal Observatory and international networks on 4 November 2010 capable of 10 Gigabit per second.

  14. Support to 2nd Generation RLV Propulsion Project Office

    NASA Technical Reports Server (NTRS)

    Lee, Thomas J.

    2002-01-01

    In this final report regarding support to the second generation RLV (Reusable Launch Vehicle) propulsion project office, a list of tasks accomplished is presented. During this period, Lee & Associates, LLC participated in numerous Systems Requirements Reviews (SRR) related to the Cobra development program.

  15. Congressional hearing reviews NSF major research and facilities projects

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    An 8 March congressional hearing about the U.S. National Science Foundation's Major Research Equipment and Facilities Construction (NSF MREFC) account focused on fiscal management and accountability of projects in that account and reviewed concerns raised by NSF's Office of Inspector General (OIG). NSF established the MREFC account in 1995 to better plan and manage investments in major equipment and facilities projects, which can cost from tens of millions to hundreds of millions of dollars, and the foundation has funded 17 MREFC projects since then. The Obama administration's proposed fiscal year (FY) 2013 budget includes funding for four MREFC projects: Advanced Laser Gravitational-Wave Observatory (AdvLIGO), Advanced Technology Solar Telescope (ATST), National Ecological Observatory (NEON), and Ocean Observatories Initiative (OOI). The hearing, held by a subcommittee of the House of Representatives' Committee on Science, Space, and Technology, reviewed management oversight throughout the life cycles of MREFC projects and concerns raised in recent OIG reports about the use of budget contingency funds. NSF's February 2012 manual called "Risk management guide for large facilities" states that cost contingency is "that portion of the project budget required to cover `known unknowns,'" such as planning and estimating errors and omissions, minor labor or material price fluctuations, and design developments and changes within the project scope. Committee members acknowledged measures that NSF has made to improve the MREFC oversight process, but they also urged the agency to continue to take steps to ensure better project management.

  16. Morro Azul Observatory: A New Center for Teaching and Popularization of Astronomy.

    NASA Astrophysics Data System (ADS)

    Bretones, Paulo Sergio; Cardoso de Oliveira, Vladimir

    2002-08-01

    In 1999, the Instituto Superior de Ciências Aplicadas (ISCA Faculdades de Limeira) started a project to build an observatory and initiate several astronomy related activities in the city of Limeira and region (São Paulo state) with the aim of teaching and popularizing astronomy. After contracting teachers, a technician and an intern, the Morro Azul Observatory was inaugurated in March 2000 as a part of the geosciences department of ISCA Faculdades. This poster describes the development phases of the Observatory, the activities initiated by the Observatory, and assesses the impact of the project. Several issues will be discussed such as the criteria for choosing the site, buildings, instruments, group visits, and particularly the goals that were reached. The Observatory, as described here, serves as a model for other centers with the same purpose in the country. The achievements of this project include the creation of two astronomical disciplines for the geography course and liaisons with other courses such as tourism, pedagogy, social communication and engineering. New activities were initiated, educational materials created, and the Observatory is now part of the regions teaching network and is in contact with other Brazilian and foreign centers. This poster presents the results from report analyses, visitor records, the local media, goal strategy assessment, and the current state of the project. It concludes with an evaluation of the social commitment of the Observatory, its initiatives for the constant renewal and growth of the project, its policy of maintaining the activities and interchange with other national and international astronomy centers, and the future perspectives in terms of its contribution for the research in science education.

  17. High Altitude Observatory YBJ and ARGO Project

    NASA Astrophysics Data System (ADS)

    Tan, Y.; ARGO Collaboration

    A 5800 m2 RPC (Resistive Plate Chamber) full coverage air shower array is under construction in the YangBaJing Cosmic Ray Observatory, Tibet of China, by the ChinaItaly ARGO Collaboration. YBJ is a large flat grassland with an area 10 × 70 km2 at 4300m altitude, about 90 north west from Lhasa. Its nearby power station, asphalt road to Lhasa, passing railway (will be constructed during the coming 5 years), optical fiber link to the INTERNET, rare snow and other favourable weather conditions are well suitable for setting an Astrophysical Observatory here. The installation of a large area carpet-like detector in this peculiar site will allow one to perform an all-sky and high duty cycle study of high energy gamma rays from 100GeV to 50 TeV as well as accurate measurements on UHE cosmic rays. To insure the stable and uniform working condition of RPCs, a 104 M2 carpet hall was constructed, the RPC installation have be started in it since last November. The natural distribution and daily variation of temperature in the hall, the data concerning the performances of the installed RPCs, have been measured, the results are presented. ce

  18. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2003-12-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Our program is also accredited by Colorado State University.

  19. The Astrophysical Multimessenger Observatory Network (AMON)

    NASA Technical Reports Server (NTRS)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; hide

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  20. The forest ecosystems observatory in Guadeloupe (FWI)

    Treesearch

    G. Van Laere; Y. Gall; A. Rousteau

    2016-01-01

    Between 2010 and 2012, Parc National de la Guadeloupe, Office National des Forêts, and Université des Antilles et de la Guyane established 9 permanent 1-ha plots in tropical rain forest of Basse-Terre Island (Guadeloupe). These plots comprise the Guadeloupian Forest Observatory, and are specifically designed for long-term tree growth measurements and forest-dynamics...

  1. NASA X-Ray Observatory Completes Tests Under Harsh Simulated Space Conditions

    NASA Astrophysics Data System (ADS)

    1998-07-01

    NASA's most powerful X-ray observatory has successfully completed a month-long series of tests in the extreme heat, cold, and airless conditions it will encounter in space during its five-year mission to shed new light on some of the darkest mysteries of the universe. The Advanced X-ray Astrophysics Facility was put through the rigorous testing as it was alternately heated and cooled in a special vacuum chamber at TRW Space and Electronics Group in Redondo Beach, Calif., NASA's prime contractor for the observatory. "Successful completion of thermal vacuum testing marks a significant step in readying the observatory for launch aboard the Space Shuttle in January," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "The observatory is a complex, highly sophisticated, precision instrument," explained Wojtalik. "We are pleased with the outcome of the testing, and are very proud of the tremendous team of NASA and contractor technicians, engineers and scientists that came together and worked hard to meet this challenging task." Testing began in May after the observatory was raised into the 60-foot thermal vacuum chamber at TRW. Testing was completed on June 20. During the tests the Advanced X-ray Astrophysics Facility was exposed to 232 degree heat and 195 degree below zero Fahrenheit cold. During four temperature cycles, all elements of the observatory - the spacecraft, telescope, and science instruments - were checked out. Computer commands directing the observatory to perform certain functions were sent from test consoles at TRW to all Advanced X-ray Astrophysics Facility components. A team of contractor and NASA engineers and scientists monitored and evaluated the results. Commands were also sent from, and test data monitored at, the Advanced X-ray Astrophysics Facility Operations Control Center in Cambridge, Mass., as part of the test series. The observatory will be managed and controlled from

  2. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  3. The MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used

  4. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-01-01

    This photograph shows the High Energy Astronomy Observatory (HEAO)-1 being assembled at TRW Systems of Redondo Beach, California. The HEAO was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit.

  5. Office of Maternal and Child Health Active Projects FY 1989. An Annotated Listing.

    ERIC Educational Resources Information Center

    National Center for Education in Maternal and Child Health, Washington, DC.

    An annotated listing is presented of projects offering maternal and child health care services. These projects, referred to as special projects of regional and national significance (SPRANS), are supported by the Office of Maternal and Child Health of the Department of Health and Human Services. The first section provides information on services…

  6. Exploring remote operation for ALMA Observatory

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Ovando, Nicolás.; Velez, Gaston; Fuica, Soledad; Schemrl, Anton; Robles, Andres; Ibsen, Jorge; Filippi, Giorgio; Pietriga, Emmanuel

    2014-08-01

    The Atacama Large Millimeter /submillimeter Array (ALMA) will be a unique research instrument composed of at least 66 reconfigurable high-precision antennas, located at the Chajnantor plain in the Chilean Andes at an elevation of 5000 m. The observatory has another office located in Santiago of Chile, 1600 km from the Chajnantor plain. In the Atacama desert, the wonderful observing conditions imply precarious living conditions and extremely high operation costs: i.e: flight tickets, hospitality, infrastructure, water, electricity, etc. It is clear that a purely remote operational model is impossible, but we believe that a mixture of remote and local operation scheme would be beneficial to the observatory, not only in reducing the cost but also in increasing the observatory overall efficiency. This paper describes the challenges and experience gained in such experimental proof of the concept. The experiment was performed over the existing 100 Mbps bandwidth, which connects both sites through a third party telecommunication infrastructure. During the experiment, all of the existent capacities of the observing software were validated successfully, although room for improvement was clearly detected. Network virtualization, MPLS configuration, L2TPv3 tunneling, NFS adjustment, operational workstations design are part of the experiment.

  7. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-01-01

    Both of the High Energy Astronomy Observatory (HEAO) 2/Einstein Observatory imaging devices were used to observe the Great Nebula in Andromeda, M31. This image is a wide field x-ray view of the center region of M31 by the HEAO-2's Imaging Proportional Counter. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  8. Summary of interference measurements at selected radio observatories

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C.

    1990-01-01

    Results are presented from a series of RF interference (RFI) observations conducted during 1989 and 1990 at selected radio astronomy observatories in order to choose a site for the SETI, where the local and orbital RFI would be as benign as possible for observations of weak electromagnetic signals. These observatories included the DSS13 at Goldstone (California), the Arecibo Observatory (Puerto Rico), the Algonquin Radio Observatory in Ottawa (Canada), the Ohio State University Radio Observatory in Columbus (Ohio), and the NRAO in Green Bank (West Virginia). The observations characterize the RFI environment at these sites from 1 to 10 GHz, using radio astronomy antennas, feeds, and receivers; SETI signal processors; and stand-alone equipment built specifically for this purpose. The results served as part of the basis for the selection (by the NASA SETI Microwave Observing Project) of NRAO as the site of choice for SETI observations.

  9. Digitising the Patrimonial Collections of the Paris Observatory Library

    NASA Astrophysics Data System (ADS)

    Laurenceau, A.

    2015-04-01

    In the past few years, there have been many emerging digital library projects, and digitising heritage collections has become a major issue for libraries. Digitisation supports the preservation of collections and facilitates accessibility to the public. Furthermore, the richness and variety of the Paris Observatory's patrimonial collections, which includes ancient books, periodicals, manuscripts, archives, and iconographic documents, makes it an invaluable source for research on the history of astronomy. This is why the Paris Observatory library has started work on a digitisation policy and has since launched several digitisation projects.

  10. An Overview of the Performance of the Chandra X-ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Aldcroft, T. L.; Bautz, M.; Cameron, R. A.; Dewey, D.; Drake, J. J.; Grant, C. E.; Marshall, H. L.; Murray, S. S.

    2004-01-01

    The Chandra X-ray Observatory is the X-ray component of NASA's Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASA s Marshall Space Flight Center (MSFC) manages the Project and provides Project Science; Northrop Grumman Space Technology (NGST - formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the Observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support and is responsible for ground operations including the Chandra X-ray Center (CXC). Telescope and instrument teams at SAO, the Massachusetts Institute of Technology (MIT), the Pennsylvania State University (PSU), the Space Research Institute of the Netherlands (SRON), the Max-Planck Institut fur extraterrestrische Physik (MPE), and the University of Kiel support also provide technical support to the Chandra Project. We present here a detailed description of the hardware, its on-orbit performance, and a brief overview of some of the remarkable discoveries that illustrate that performance.

  11. Astronomical Research with the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1997-05-01

    We have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. The MicroObservatory Net consists of five of these telescopes. They are currently being deployed around the world at widely distributed longitudes. Remote access to the MicroObservatories over the Internet has now been implemented. Software for computer control, pointing, focusing, filter selection as well as pattern recognition have all been developed as part of the project. The telescopes can be controlled in real time or in delay mode, from a Macintosh, PC or other computer using Web-based software. The Internet address of the telescopes is http://cfa- www.harvard.edu/cfa/sed/MicroObservatory/MicroObservatory.html. In the real-time mode, individuals have access to all of the telescope control functions without the need for an `on-site' operator. Users can sign up for a specific period of ti me. In the batch mode, users can submit requests for delayed telescope observations. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. The telescopes were designed for classroom instruction, as well as for use by students and amateur astronomers for original scientific research projects. We are currently examining a variety of technical and educational questions about the use of the telescopes including: (1) What are the best approaches to scheduling real-time versus batch mode observations? (2) What criteria should be used for allocating telescope time? (3) With deployment of more than one telescope, is it advantageous for each telescope to be used for just one type of observation, i.e., some for photometric use, others for imaging? And (4) What are the most valuable applications of the MicroObservatories in astronomical research? Support for the MicroObservatory

  12. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  13. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2006. The observatory is expected to operate for over 20 years. The first light science instruments and some science projects will be discussed.

  14. The Cosmic Ray Observatory Project: Results of a Summer High-School Student, Teacher, University Scientist Partnership Using a Capstone Research Experience

    ERIC Educational Resources Information Center

    Shell, Duane F.; Snow, Gregory R.; Claes, Daniel R.

    2011-01-01

    This paper reports results from evaluation of the Cosmic Ray Observatory Project (CROP), a student, teacher, scientist partnership to engage high-school students and teachers in school based cosmic ray research. Specifically, this study examined whether an intensive summer workshop experience could effectively prepare teacher-student teams to…

  15. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    This supernova in the constellation Cassiopeia was observed by Tycho Brahe in 1572. In this x-ray image from the High Energy Astronomy Observatory (HEAO-2/Einstein Observatory produced by nearly a day of exposure time, the center region appears filled with emissions that can be resolved into patches or knots of material. However, no central pulsar or other collapsed object can be seen. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  16. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This is an x-ray image of the Crab Nebula taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The image is demonstrated by a pulsar, which appears as a bright point due to its pulsed x-ray emissions. The strongest region of diffused emissions comes from just northwest of the pulsar, and corresponds closely to the region of brightest visible-light emission. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  17. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This image is an x-ray view of Eta Carinae Nebula showing bright stars taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The Eta Carinae Nebula is a large and complex cloud of gas, crisscrossed with dark lanes of dust, some 6,500 light years from Earth. Buried deep in this cloud are many bright young stars and a very peculiar variable star. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  18. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    This x-ray photograph of the Supernova remnant Cassiopeia A, taken with the High Energy Astronomy Observatory (HEAO) 2/Einstein Observatory, shows that the regions with fast moving knots of material in the expanding shell are bright and clear. A faint x-ray halo, just outside the bright shell, is interpreted as a shock wave moving ahead of the expanding debris. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  19. Dark Skies Africa: a Prototype Project with the IAU Office of Astronomy for Development

    NASA Astrophysics Data System (ADS)

    Walker, Constance Elaine; Tellez, Daniel; Pompea, Stephen M.

    2015-08-01

    The IAU’s Office of Astronomy for Development (OAD) awarded the National Optical Astronomy Observatory (NOAO) with a grant to deliver a “Dark Skies Outreach to Sub-Saharan Africa” program to institutions in 12 African countries during 2013: Algeria, Nigeria, Rwanda, Tanzania, Ghana, Zambia, South Africa, Ethiopia, Gabon, Kenya, Namibia and Senegal. The program helped students identify wasteful and inefficient lighting and provided ways to reduce consumption and to keep energy costs in check. The goal was to inspire students to be responsible stewards in helping their community safeguard one of Africa’s natural resources - a dark night sky.Thirteen kits made by the NOAO Education and Public Outreach group were sent to coordinators at university, science center and planetarium-type institutions in the 12 countries and to the IAU OAD. The program’s kit included complete instructional guides and supplies for six hands-on activities (e.g., on the importance of shielding lights and using energy efficient bulbs) and a project on energy conservation and responsible lighting (through energy audits). The activities were taught to the coordinators in a series of six Google+ Hangout sessions scheduled from June to mid-November. The coordinators at the institutions in turn trained local teachers in junior and senior high schools. The Google+ Hangout sessions also included instruction on carrying out evaluations. From the end of November until mid-December students from the different African countries shared final class projects (such as posters or powerpoints) on the program’s website.The entire program was designed to help coordinators and educators work with students, parents and the community to identify dark sky resource, lighting and energy issues and to assess their status, efficiency and effectiveness. The audience will take away from the presentation lessons learned on how well the techniques succeeded in using Google+ Hangout sessions to instruct and

  20. The IAU Office of Astronomy Development

    NASA Astrophysics Data System (ADS)

    Mauduit, Jean-Christophe; Govender, K.

    2014-01-01

    The International Astronomical Union (IAU), the largest body of professional astronomers in the world, has set up the Office of Astronomy for Development (OAD) in partnership with the South African National Research Foundation (NRF). The OAD is located at the South African Astronomical Observatory (SAAO) in Cape Town. Its mission is to realise the IAU's Strategic Plan, which aims to use astronomy as a tool for development. It focuses on the following three main areas: "Universities and Research", "Children and Schools" and "Public Outreach". Eighteen projects worldwide have been funded for 2013 and are currently under way. More will be starting in 2014. The OAD is also setting up regional nodes and language expertise centres around the world. This presentation will describe the ongoing activities of the OAD and plans for the future.

  1. Design of a Lunar Farside Observatory

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design of a mantendable lunar farside observatory and science base is presented. A farside observatory will allow high accuracy astronomical observations, as well as the opportunity to perform geological and low gravity studies on the Moon. The requirements of the observatory and its support facilities are determined, and a preliminary timeline for the project development is presented. The primary areas of investigation include observatory equipment, communications, habitation, and surface operations. Each area was investigated to determine the available options, and each option was evaluated to determine the advantages and disadvantages. The options selected for incorporation into the design of the farside base are presented. The observatory equipment deemed most suitable for placement on the lunar farside consist of large optical and radio arrays and seismic equipment. A communications system consisting of a temporary satellite about the L sub 2 libration point and followed by a satellite at the stable L sub 5 libration point was selected. A space station common module was found to be the most practical option for housing the astronauts at the base. Finally, a support system based upon robotic construction vehicles and the use of lunar materials was determined to be a necessary component of the base.

  2. Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.

  3. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.; Sackett, C.

    2001-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools in Colorado to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. We are honored that a committee of teachers and administrators from the Thompson School district have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Also in the past year, our training materials have been shared with NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  4. Brazil to Join the European Southern Observatory

    NASA Astrophysics Data System (ADS)

    2010-12-01

    The Federative Republic of Brazil has yesterday signed the formal accession agreement paving the way for it to become a Member State of the European Southern Observatory (ESO). Following government ratification Brazil will become the fifteenth Member State and the first from outside Europe. On 29 December 2010, at a ceremony in Brasilia, the Brazilian Minister of Science and Technology, Sergio Machado Rezende and the ESO Director General, Tim de Zeeuw signed the formal accession agreement aiming to make Brazil a Member State of the European Southern Observatory. Brazil will become the fifteen Member State and the first from outside Europe. Since the agreement means accession to an international convention, the agreement must now be submitted to the Brazilian Parliament for ratification [1]. The signing of the agreement followed the unanimous approval by the ESO Council during an extraordinary meeting on 21 December 2010. "Joining ESO will give new impetus to the development of science, technology and innovation in Brazil as part of the considerable efforts our government is making to keep the country advancing in these strategic areas," says Rezende. The European Southern Observatory has a long history of successful involvement with South America, ever since Chile was selected as the best site for its observatories in 1963. Until now, however, no non-European country has joined ESO as a Member State. "The membership of Brazil will give the vibrant Brazilian astronomical community full access to the most productive observatory in the world and open up opportunities for Brazilian high-tech industry to contribute to the European Extremely Large Telescope project. It will also bring new resources and skills to the organisation at the right time for them to make a major contribution to this exciting project," adds ESO Director General, Tim de Zeeuw. The European Extremely Large Telescope (E-ELT) telescope design phase was recently completed and a major review was

  5. Remote observing with the Nickel Telescope at Lick Observatory

    NASA Astrophysics Data System (ADS)

    Grigsby, Bryant; Chloros, Konstantinos; Gates, John; Deich, William T. S.; Gates, Elinor; Kibrick, Robert

    2008-07-01

    We describe a project to enable remote observing on the Nickel 1-meter Telescope at Lick Observatory. The purpose was to increase the subscription rate and create more economical means for graduate- and undergraduate students to observe with this telescope. The Nickel Telescope resides in a 125 year old dome on Mount Hamilton. Remote observers may work from any of the University of California (UC) remote observing facilities that have been created to support remote work at both Keck Observatory and Lick Observatory. The project included hardware and software upgrades to enable computer control of all equipment that must be operated by the astronomer; a remote observing architecture that is closely modeled on UCO/Lick's work to implement remote observing between UC campuses and Keck Observatory; new policies to ensure safety of Observatory staff and equipment, while ensuring that the telescope subsystems would be suitably configured for remote use; and new software to enforce the safety-related policies. The results increased the subscription rate from a few nights per month to nearly full subscription, and has spurred the installation of remote observing sites at more UC campuses. Thanks to the increased automation and computer control, local observing has also benefitted and is more efficient. Remote observing is now being implemented for the Shane 3- meter telescope.

  6. The Science and Design of the AGIS Observatory

    NASA Astrophysics Data System (ADS)

    Schroedter, Martin

    2010-02-01

    The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100 GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05^o diameter) camera. The instrument is designed to provide millicrab sensitivity over a wide (8^o diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. I will describe science drivers behind the AGIS observatory and the design and status of the project. )

  7. The Science and Design of the AGIS Observatory

    NASA Astrophysics Data System (ADS)

    Falcone, Abraham; Aliu, E.; Arlen, T.; Benbow, W.; Buckley, J.; Bugaev, S.; Byrum, K.; Ciupik, L.; Coppi, P.; Digel, S.; Drake, G.; Finley, J.; Fortson, L.; Franco, J.; Funk, S.; Guarino, V.; Gyuk, G.; Hanna, D.; Hiriart, D.; Humensky, B.; Holder, J.; Kaaret, P.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; LeBohec, S.; Maier, G.; Mukherjee, R.; Ong, R.; Otte, N.; Pareschi, G.; Pohl, M.; Quinn, J.; Ramsey, B.; Romani, R.; Rovero, A. C.; Schroedter, M.; Sinnis, C.; Slane, P.; Smith, A.; Swordy, S.; Tajima, H.; Vassiliev, V.; Wagner, R.; Wakely, S. P.; Weekes, T. C.; Weinstein, A.; Williams, D.

    2010-01-01

    The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05 degree/pixel) camera. The instrument is designed to provide millicrab sensitivity over a wide (8 degree diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. This presentation will include a description of science drivers behind the AGIS observatory and the design and status of the project.

  8. Observatories on the moon

    NASA Astrophysics Data System (ADS)

    Burns, J. O.; Duric, N.; Taylor, G. J.; Johnson, S. W.

    1990-03-01

    It is suggested that the moon could be a haven for astronomy with observatories on its surface yielding extraordinarily detailed views of the heavens and open new windows to study the universe. The near absence of an atmosphere, the seismic stability of its surface, the low levels of interference from light and radio waves and the abundance of raw materials make the moon an ideal site for constructing advanced astronomical observatories. Due to increased interest in the U.S. in the moon as a scientific platform, planning has begun for a permanent lunar base and for astronomical observatories that might be built on the moon in the 21st century. Three specific projects are discussed: (1) the Very Low Frequency Array (VLFA), which would consist of about 200 dipole antennas, each resembling a TV reception antenna about one meter in length; (2) the Lunar Optical-UV-IR Synthesis Array (LOUISA), which will improve on the resolution of the largest ground-based telescope by a factor of 100,000; and (3) a moon-earth radio interferometer, which would have a resolution of about one-hundredth-thousandth of an arc second at a frequency of 10 GHz.

  9. A Virtual Field Trip to the Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Fisher, R. Scott; Michaud, P. D.

    2010-01-01

    Live from Gemini (LfG) is a virtual field trip using video conferencing technology to connect primary, secondary and post-secondary students with scientists and educators at the Gemini Observatory. As a pilot project, LfG is rapidly becoming one of the observatory's most often-requested educational programs for learners of all ages. The program aligns exceptionally well with national science (and technology) standards, as well as existing school curricula. This combination makes it easy for teachers to justify participation in the program, especially as the necessary video conferencing technology becomes ever more ubiquitous in classrooms and technology learning centers around the world. In developing and testing this pilot project, a programmatic approach and philosophy evolved that includes post-field-trip educational materials, multi-disciplinary subject matter (astronomy, geology, mathematics, meteorology, engineering and even language - the program is offered in Spanish from Gemini South in Chile), and the establishment of a personal connection and rapport with students. The presenters work to create a comfortable interaction despite the perceived technological barriers. The authors’ experiences with the LfG pilot project convince us that this model is viable for almost any astronomical observatory and should be considered by any dynamic, technology- and education-oriented facility.

  10. Astronomical Research at the U.S. Air Force Academy Observatory

    NASA Astrophysics Data System (ADS)

    Della-Rose, Devin J.; Carlson, Randall E.; Chun, Francis K.; Giblin, Timothy W.; Novotny, Steven J.; Polsgrove, Daniel E.

    2018-01-01

    The U.S. Air Force Academy (USAFA) Observatory houses 61-cm and 41-cm Ritchey-Chrétien (RC) reflecting telescopes, and serves as the hub for a world-wide network of 50-cm RC reflectors known as the Falcon Telescope Network (FTN). Since the 1970s, the USAFA Observatory has hosted a wide range of student and faculty research projects including variable star photometry, exoplanet light curve and radial velocity studies, near-Earth object astrometry, and “lucky imaging” of manmade spacecraft. Further, the FTN has been used extensively for LEO through GEO satellite photometry and spectroscopy, and for exoplanet photometry. Future capabilities of our observatory complex include fielding several new FTN observatory sites and the acquisition of a 1-meter RC fast-tracking telescope at the USAFA Observatory.

  11. Chemical OSSEs in Global Modeling and Assimilation Office (GMAO)

    NASA Technical Reports Server (NTRS)

    Pawson, Steven

    2008-01-01

    This presentation will summarize ongoing 'chemical observing system simulation experiment (OSSE)' work in the Global Modeling and Assimilation Office (GMAO). Weather OSSEs are being studied in detail, with a 'nature run' based on the European Centre for Medium-Range Weather Forecasts (ECMWF) model that can be sampled by a synthesized suite of satellites that reproduces present-day observations. Chemical OSSEs are based largely on the carbon-cycle project and aim to study (1) how well we can reproduce the observed carbon distribution with the Atmospheric Infrared Sounder (AIRS) and Orbiting Carbon Observatory (OCO) sensors and (2) with what accuracy can we deduce surface sources and sinks of carbon species in an assimilation system.

  12. Baseline assessment of the Strategic Petroleum Reserve Project Management Office

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Oak Ridge Operations Office (ORO) was assigned overall responsibility for implementation of the Strategic Petroleum Reserve Project (SPR) by the Secretary of Energy on June 15, 1983. One of the actions immediately initiated by the Manager of ORO was the establishment of a Task Force under a charter which included directions to conduct a review of the Strategic Petroleum Reserve Project Management Office (SPRPMO) in New Orleans, Louisiana, and to compile a report which would establish a baseline of the PMO status at the time of this major management transition. The purpose of this report is to document thosemore » findings and recommendations for use by the Manager of ORO. The Task Force was also chartered to conduct a full and complete review of all allegations of mismanagement and misconduct since inception of the program in 1977. The review of each allegation of misconduct and mismanagement will be documented in a second report which will be issued at a later date. By necessity, this report covers a broad range of project activities; therefore, within the allotted schedule, it was impossible to conduct an in-depth review and analysis of all of these areas. It is believed, however, that the materials contained within this report are representative of many of the conditions which prevail at the SPRPMO and should serve as a useful basis for management decisions.« less

  13. Lessons Learned during the Development and Operation of Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Ohishi, M.; Shirasaki, Y.; Komiya, Y.; Mizumoto, Y.; Yasuda, N.; Tanaka, M.

    2010-12-01

    In the last a few years several Virtual Observatory (VO) projects have entered from the research and development phase to the operations phase. The VO projects include AstroGrid (UK), Virtual Astronomical Observatory (former National Virtual Observatory, USA), EURO-VO (EU), Japanese Virtual Observatory (Japan), and so on. This successful transition from the development phase to the operations phase owes primarily to the concerted action to develop standard interfaces among the VO projects in the world, that has been conducted in the International Virtual Observatory Alliance. The registry interface has been one of the most important key to share among the VO projects and data centers (data providers) with the observed data and the catalog data. Data access protocols and/or language (SIAP, SSAP, ADQL) and the common data format (VOTable) are other keys. Consequently we are able to find scientific papers so far published. However, we had faced some experience during the implementation process as follows:

  14. At the initial stage of the registry implementation, some fraction of the registry meta data were not correctly set, or some meta data were missing. IVOA members found that it would be needed to have validation tools to check the compliance before making the interface public;
  15. It seemed that some data centers and/or data providers might find some difficulties to implement various standardized interfaces (protocols) in order to publish their data through the VO interfaces. If there were some kind of VO interface toolkits, it would be much easier for the data centers to implement the VO interfaces; At the current VO standardization, it has not been discussed in depth on the quality assurance on the published data, or how we could provide indexes on the data quality. Such measures would be quite helpful for the data users in order to judge the data quality. It would be needed to discuss this issue not only within IVOA but with observatories and data

  16. A Mediterranean atmospheric observatory in Corsica within the framework of HyMEx and ChArMEx

    NASA Astrophysics Data System (ADS)

    Lambert, D.

    2010-09-01

    In the western Mediterranean basin, Corsica is at a strategic location for oceanographic and atmospheric studies in the framework of the Mediterranean projects HyMeX and ChArMEx. The development of a multi-site instrumented platform located on this island is the core of the project CORSiCA (Corsican Observatory for Research and Studies on Climate and Atmosphere-ocean environment). Several measurement sites are planned in various places in Corsica, but the main site gathering the largest panel of measurements will be located near Ersa at the northern tip of the island (Cap Corse). This area is relevant for many reasons: it is open to the Gulf of Genoa and is not impacted by local and regional anthropogenic inputs. In the close area of Ersa, five sites are particularly interesting: the Semaphore du Cap Corse belonging to the French Navy, the wind-mill farm on the mountain crest, two sites at Centuri and Tollare, and the Giraglia island. Contacts and partnerships have been established with local partners in Corsica: Departmental Centres of Météo-France (CDM 2B and CDM 2A), OEC (the Corsica environmental office, a regional agency co-funding the CORSiCA observatory), the University of Corsica, Qualitair Corse (the local air quality agency) and STARESO (Station de Recherches Sous-marines et Océanographiques, an oceanographic station located on the west coast of Corsica). CORSiCA will be operated for the HyMEx and ChArMEx Long Observation Period (LOP), Enhanced Observation Period (EOP) and Special Observation Periods (SOP). In addition, this observatory will also be of interest for the MERMEx experiment (Marine Ecosystems Response in the Mediterranean Experiment). Furthermore, it will be supported by the MOOSE network (Mediterranean Ocean Observing System on Environment) to maintain long-term observations of key atmospheric parameters on this site. In the present communication we will expose the scientific objectives and we will describe the type of instrumentation and

  17. First Light of the Renovated Thacher Observatory

    NASA Astrophysics Data System (ADS)

    O'Neill, Katie; Yin, Yao; Edwards, Nick; Swift, Jonathan

    2017-01-01

    The Thacher Observatory, originally a collaboration between UCLA (P.I. G. Abell), Caltech, Pomona College, and the Thacher School, was built in the early 1960s. The goal of the facility was to serve as a training ground for undergraduate and graduate students in Los Angeles area colleges and also to provide hands-on technical training and experience for Thacher students. It was the birthplace of the Summer Science Program which continues today at other campuses. The observatory has now been fully renovated and modernized with a new, 0.7m telescope and dome that can be controlled remotely and in an automated manner. Science programs involving accurate and precise photometry have been initiated, and we project that we will be presenting the first scientific results of the renovated observatory at this meeting.

  18. 48 CFR 1553.209-71 - EPA Form 1900-27, Project Officer's Evaluation of Contractor Performance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Officer's Evaluation of Contractor Performance. 1553.209-71 Section 1553.209-71 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY CLAUSES AND FORMS FORMS Prescription of Forms 1553.209-71 EPA Form 1900-27, Project Officer's Evaluation of Contractor Performance. As prescribed in 1509.170-4...

  19. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    NASA Kennedy Space Center Public Affairs Officer George Diller, moderates a briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  20. FixO3: Advancement towards Open Ocean Observatory Data Management Harmonisation

    NASA Astrophysics Data System (ADS)

    Behnken, Andree; Pagnani, Maureen; Huber, Robert; Lampitt, Richard

    2015-04-01

    Since 2002 there has been a sustained effort, supported as European framework projects, to harmonise both the technology and the data management of Open Ocean fixed observatories run by European nations. FixO3 started in September 2013, and for 3 more years will coordinate the convergence of data management best practice across a constellation of moorings in the Atlantic, in both hemispheres, and in the Mediterranean. To ensure the continued existence of these unique sources of oceanographic data as sustained observatories it is vital to improve access to the data collected, both in terms of methods of presentation, real-time availability, long-term archiving and quality assurance. The data management component of FixO3 improves access to marine observatory data by harmonising data management standards, formats and workflows covering the complete life cycle of data from real time data acquisition to long-term archiving. Legal and data policy aspects have been examined and discussed to identify transnational barriers to open-access to marine observatory data. As a result, a harmonised FixO3 data policy was drafted, which provides a formal basis for data exchange between FixO3 infrastructures, and also enables open access to data for the general public. FixO3 interacts with other European infrastructures such as EMODnet, SeaDataNet, PANGAEA, and especially aims to harmonise efforts with OceanSites and MyOcean. The project landing page (www.fixo3.eu) offers detailed information about every observatory as well as data visualisations and direct downloads. In addition to this, metadata for all FixO3 - relevant data are available from the searchable FixO3 metadata catalogue, which is also accessible from the project web page. This catalogue is hosted by PANGAEA and receives updates in regular intervals. The FixO3 Standards & Services registry ties in with the GEOSS Components and Services Registry (CSR) and provides additional observatory information. The data management

  21. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This image is an observation of Quasar 3C 273 by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. It reveals the presence of a new source (upper left) with a red shift that indicates that it is about 10 billion light years away. Quasars are mysterious, bright, star-like objects apparently located at the very edge of the visible universe. Although no bigger than our solar system, they radiate as much visible light as a thousand galaxies. Quasars also emit radio signals and were previously recognized as x-ray sources. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2 was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center.

  22. Logistical Support for the Installation of the Plate Boundary Observatory GPS and Borehole Strainmeter Networks

    NASA Astrophysics Data System (ADS)

    Kurnik, C.; Austin, K.; Coyle, B.; Dittmann, T.; Feaux, K.; Friesen, B.; Johnson, W.; Mencin, D.; Pauk, B.; Walls, C.

    2007-12-01

    The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, is designed to study the three- dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, UNAVCO will install 880 continuous GPS stations, 103 borehole strainmeter stations, 28 tiltmeters, and five laser strainmeters by October 2008. Such a broad network presents significant logisitical challenges, including moving supplies, equipment, and personnel around 6 million square kilometers, and this requires accurate tracking and careful planning. The PBO logistics chain includes the PBO headquarters at UNAVCO in Boulder, Colorado and five regional offices in the continental United States and Alaska, served by dozens of suppliers spread across the globe. These offices are responsible for building and maintaining sites in their region. Most equipment and supplies first arrive in Boulder, where they are tagged and entered into a UNAVCO-wide equipment database, assembled and quality checked as necessary, and sent on to the appropriate regional office. Larger items which are costly to store and ship from Boulder, such as batteries or long sections of stainless steel pipe and bar required for monuments, are shipped directly from the supplier to each region as needed. These supplies and equipment are also tracked through the ordering, delivery, installation, and maintenance cycle via Earned Value Management techniques which allow us to meet NSF and other Federal procurement rules. Early prototypes and assembly configurations aid the development of material and supply budgets. A thorough understanding of Federal procurement rules at project start up is critical as the project moves forward.

  1. The Fram Strait integrated ocean observatory

    NASA Astrophysics Data System (ADS)

    Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.

    2012-04-01

    A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision

  2. How To Cover NASA's Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    1999-07-01

    NASA's newest space telescope, the Chandra X-ray Observatory, is scheduled for launch not earlier than July 20, 1999, aboard Space Shuttle mission STS-93. The world's most powerful X-ray observatory, Chandra will join the Hubble Space Telescope and NASA's other great observatories in an unprecedented study of our universe. With its capability to "see" an otherwise invisible but violent, vibrant and ever-changing universe, Chandra will provide insights into the universe's structure and evolution. The following information is designed to assist news media representatives cover launch and activation of the Chandra X-ray Observatory. Covering from the Chandra Control Center NASA will establish a news center at the Chandra X-ray Observatory Operations Control Center in Cambridge, Mass., during the critical period of launch and early activation. The news center will be open from approximately two days prior to launch until the observatory is established in its operating orbit approximately 11 days after launch. The telephone numbers for the news center are: (617) 496-4454 (617) 496-4462 (617) 496-4484 The news center will be staffed around the clock during the Shuttle mission by media relations officers knowledgeable about the Chandra mission and its status. Media covering from the news center will be provided work space and have opportunities for face-to-face interviews with Chandra management, control team members and Chandra scientists. They will be able to participate in daily Chandra status briefings and have access to a special control room viewing area. Additionally, media covering from Cambridge will receive periodic status reports on Chandra and the STS-93 mission, and will be able to participate in interactive televised briefings on the STS-93 mission originating from other NASA centers. While advance accreditation is not required, media interested in covering Chandra from the Operations Control Center should contact Dave Drachlis by telephone at (256) 544

  3. International ultraviolet explorer observatory operations

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This volume contains the Final Report for the International Ultraviolet Explorer (IUE) Observatory Operations contract, NAS5-28787. The report summarizes the activities of the IUE Observatory over the 13-month period from November 1985 through November 1986 and is arranged in sections according to the functions specified in the Statement of Work (SOW) of the contract. In order to preserve numerical correspondence between the technical SOW elements specified by the contract and the sections of this report, project management activities (SOW element 0.0.) are reported here in Section 7, following the reports of technical SOW elements 1.0 through 6.0. Routine activities have been summarized briefly whenever possible; statistical compilations, reports, and more lengthy supplementary material are contained in the Appendices.

  4. W. M. Keck Observatory primary mirror segment repair project: overview and status

    NASA Astrophysics Data System (ADS)

    Meeks, Robert L.; Doyle, Steve; Higginson, Jamie; Hudek, John S.; Irace, William; McBride, Dennis; Pollard, Mike; Tai, Kuochou; Von Boeckmann, Tod; Wold, Leslie; Wold, Truman

    2016-07-01

    The W. M. Keck Observatory Segment Repair Project is repairing stress-induced fractures near the support points in the primary mirror segments. The cracks are believed to result from deficiencies in the original design and implementation of the adhesive joints connecting the Invar support components to the ZERODUR mirror. Stresses caused by temperature cycling over 20 years of service drove cracks that developed at the glass-metal interfaces. Over the last few years the extent and cause of the cracks have been studied, and new supports have been designed. Repair of the damaged glass required development of specialized tools and procedures for: (1) transport of the segments; (2) pre-repair metrology to establish the initial condition; (3) removal of support hardware assemblies; (4) removal of the original supports; (5) grinding and re-surfacing the damaged glass areas; (6) etching to remove sub-surface damage; (7) bonding new supports; (8) re-installation of support assemblies; and (9) post-repair metrology. Repair of the first segment demonstrated the new tools and processes. On-sky measurements before and after repair verified compliance with the requirements. This paper summarizes the repair process, on-sky results, and transportation system, and also provides an update on the project status and schedule for repairing all 84 mirror segments. Strategies for maintaining quality and ensuring that repairs are done consistently are also presented.

  5. Building Bridges: Using the Office Consultation Project to Connect Students to Theory and Practice

    ERIC Educational Resources Information Center

    Wawrzynski, Korine Steinke; Jessup-Anger, Jody E.

    2014-01-01

    The Office Consultation Project is an innovative capstone project that partners graduate students in student affairs preparation programs with academic and student affairs practitioners. It provides an opportunity for students to apply research and scholarship to practical settings, while giving practitioners new insight into their units,…

  6. Camille Flammarion's observatory: towards a revival

    NASA Astrophysics Data System (ADS)

    Morel, P.; Pecker, J. C.; Flammarion, A.; Fuentes, P.; Stépanoff, C. A.; Sol, R.; Dufour, G.; Chaufour, R.; Goury-Laffont, J.

    2011-06-01

    Camille Flammarion's observatory, located in Juvisy-sur-Orge in the suburbs of Paris, has been idle since 1962. Property of the Société Astronomique de France (SAF), it was made available to the city of Juvisy-sur-Orge since 1971, and contains a unique collection of objects and books currently being sorted out. The observatory is being restored by the SAF, thanks to the support of the city of Juvisy-sur-Orge, the French Académie des Sciences and the ``Amis de Camille Flammarion'' association. In 2006, the Maxime Goury Laffont foundation funded the refurbishment of the 240 mm refractor and in 2007 funds were obtained to restore the dome and central building. The main aim of the project is to make this historical place a popular observatory dedicated to astronomy and the sciences which Camille Flammarion enjoyed and contributed to. It constitutes a unique example in France of synergies linking associations, municipality, regional- and national-level institutions.

  7. Region 9 Tribal Grant Program - Project Officer and Tribal Contact Information Map Service

    EPA Pesticide Factsheets

    This compilation of geospatial data is for the purpose of managing and communicating information about current EPA project officers, tribal contacts, and tribal grants, both internally and with external stakeholders.

  8. The high energy astronomy observatories

    NASA Technical Reports Server (NTRS)

    Neighbors, A. K.; Doolittle, R. F.; Halpers, R. E.

    1977-01-01

    The forthcoming NASA project of orbiting High Energy Astronomy Observatories (HEAO's) designed to probe the universe by tracing celestial radiations and particles is outlined. Solutions to engineering problems concerning HEAO's which are integrated, yet built to function independently are discussed, including the onboard digital processor, mirror assembly and the thermal shield. The principle of maximal efficiency with minimal cost and the potential capability of the project to provide explanations to black holes, pulsars and gamma-ray bursts are also stressed. The first satellite is scheduled for launch in April 1977.

  9. The Busot Observatory: towards a robotic autonomous telescope

    NASA Astrophysics Data System (ADS)

    García-Lozano, R.; Rodes, J. J.; Torrejón, J. M.; Bernabéu, G.; Berná, J. Á.

    2016-12-01

    We describe the Busot observatory, our project of a fully robotic autonomous telescope. This astronomical observatory, which obtained the Minor Planet Centre code MPC-J02 in 2009, includes a 14 inch MEADE LX200GPS telescope, a 2 m dome, a ST8-XME CCD camera from SBIG, with an AO-8 adaptive optics system, and a filter wheel equipped with UBVRI system. We are also implementing a spectrograph SGS ST-8 for the telescope. Currently, we are involved in long term studies of variable sources such as X-ray binaries systems, and variable stars. In this work we also present the discovery of W UMa systems and its orbital periods derived from the photometry light curve obtained at Busot Observatory.

  10. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  11. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Vanlew, K.; Melsheimer, T.; Melsheimer, L.; Rideout, C.; Patterson, T.

    1997-12-01

    A second observatory of the Telescopes in Education (TIE) project is in the planning stages, with hopes to be in use by fall 1998. The Little Thompson Observatory will be located adjacent to Berthoud High School in northern Colorado. TIE has offered the observatory a Tinsley 18" Cassegrain telescope on a 10-year loan. Local schools and youth organizations will have prioritized access to the telescope until midnight; after that, the telescope will be open to world-wide use by schools via the Internet. The first TIE observatory is a 24" telescope on Mt. Wilson, already booked through July 1998. That telescope has been in use every clear night for the past four years by up to 50 schools per month. Students remotely control the telescope over the Internet, and then receive the images on their local computers. The estimated cost of the Little Thompson Observatory is roughly \\170,000. However, donations of labor and materials have reduced the final price tag closer to \\40,000. Habitat for Humanity is organized to construct the dome, classrooms, and other facilities. Tom and Linda Melsheimer, who developed the remote telescope control system for the University of Denver's Mount Evans Observatory, are donating a similar control system. The formally-trained, all-volunteer staff will be comprised of local residents, teachers and amateur astronomers. Utilities and Internet access will be provided by the Thompson School District.

  12. Citizen Observatories: A Standards Based Architecture

    NASA Astrophysics Data System (ADS)

    Simonis, Ingo

    2015-04-01

    A number of large-scale research projects are currently under way exploring the various components of citizen observatories, e.g. CITI-SENSE (http://www.citi-sense.eu), Citclops (http://citclops.eu), COBWEB (http://cobwebproject.eu), OMNISCIENTIS (http://www.omniscientis.eu), and WeSenseIt (http://www.wesenseit.eu). Common to all projects is the motivation to develop a platform enabling effective participation by citizens in environmental projects, while considering important aspects such as security, privacy, long-term storage and availability, accessibility of raw and processed data and its proper integration into catalogues and international exchange and collaboration systems such as GEOSS or INSPIRE. This paper describes the software architecture implemented for setting up crowdsourcing campaigns using standardized components, interfaces, security features, and distribution capabilities. It illustrates the Citizen Observatory Toolkit, a software suite that allows defining crowdsourcing campaigns, to invite registered and unregistered participants to participate in crowdsourcing campaigns, and to analyze, process, and visualize raw and quality enhanced crowd sourcing data and derived products. The Citizen Observatory Toolkit is not a single software product. Instead, it is a framework of components that are built using internationally adopted standards wherever possible (e.g. OGC standards from Sensor Web Enablement, GeoPackage, and Web Mapping and Processing Services, as well as security and metadata/cataloguing standards), defines profiles of those standards where necessary (e.g. SWE O&M profile, SensorML profile), and implements design decisions based on the motivation to maximize interoperability and reusability of all components. The toolkit contains tools to set up, manage and maintain crowdsourcing campaigns, allows building on-demand apps optimized for the specific sampling focus, supports offline and online sampling modes using modern cell phones with

  13. OPERATION DOMINIC. FISH BOWL SERIES. Project Officer’s Report. Project 8A.3. Close-In Thermal and X-Ray Vulnerability Measurements--Shots Blue Gill and King Fish

    DTIC Science & Technology

    1985-09-01

    QDC hLt umi ^ POR.2037 (WT-2037)(EX) VOLUME 1 EXTRACTED VERSION OPERATION DOMINIC, FISH BOWL SERIES Project Officer’s Report—Project 8A.3...Close-In Thermal and X-ray Vulnerability Measurements—Shots Blue Gill and King Fish F. D. Adams, Project Officer Flight Dynamics Laboratory Wright...version of POR-2037 (WT-2037), Volume 1, OPERATION DOMINIC; Fish Bowl Series, Project 8A. 3. Approved for public release; distribution is unlimited

  14. The Virtual Observatory: Retrospective and Prospectus

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2010-12-01

    At the ADASS XV in San Lorenzo de El Escorial, Spain, in October 2005, I gave an overview of the accomplishments of the Virtual Observatory initiatives and discussed the imminent transition from development to operations. That transition remains on the horizon for the US Virtual Observatory, and VO projects worldwide have encountered various programmatic challenges. The successes of the Virtual Observatory are many, but thus far are primarily of a technical nature. We have developed a data discovery and data access infrastructure that has been taken up by data centers and observatories around the world. We have web-based interfaces, downloadable toolkits and applications, a security and restricted access capability, standard vocabularies, a sophisticated messaging and alert system for transient events, and the ability for applications to exchange messages and work together seamlessly. This has been accomplished through a strong collaboration between astronomers and information technology specialists. We have been less successful engaging the astronomical researcher. Relatively few papers have been published based on VO-enabled research, and many astronomers remain unfamiliar with the capabilities of the VO despite active training and tutorial programs hosted by several of the major VO projects. As we (finally!) enter the operational phase of the VO, we need to focus on areas that have contributed to the limited take-up of the VO amongst active scientists, such as ease of use, reliability, and consistency. We need to routinely test VO services for aliveness and adherence to standards, working with data providers to fix errors and otherwise removing non-compliant services from those seen by end-users. Technical developments will need to be motivated and prioritized based on scientific utility. We need to continue to embrace new technology and employ it in a context that focuses on research productivity.

  15. Gemini Observatory base facility operations: systems engineering process and lessons learned

    NASA Astrophysics Data System (ADS)

    Serio, Andrew; Cordova, Martin; Arriagada, Gustavo; Adamson, Andy; Close, Madeline; Coulson, Dolores; Nitta, Atsuko; Nunez, Arturo

    2016-08-01

    Gemini North Observatory successfully began nighttime remote operations from the Hilo Base Facility control room in November 2015. The implementation of the Gemini North Base Facility Operations (BFO) products was a great learning experience for many of our employees, including the author of this paper, the BFO Systems Engineer. In this paper we focus on the tailored Systems Engineering processes used for the project, the various software tools used in project support, and finally discuss the lessons learned from the Gemini North implementation. This experience and the lessons learned will be used both to aid our implementation of the Gemini South BFO in 2016, and in future technical projects at Gemini Observatory.

  16. NASA Names Premier X-Ray Observatory and Schedules Launch

    NASA Astrophysics Data System (ADS)

    1998-12-01

    Chicago until his death in 1995. The Chandra X-ray Observatory will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of X rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-radiation is an invisible form of light produced by multimillion degree gas. Chandra will provide X-ray images that are fifty times more detailed than previous missions. At more than 45 feet in length and weighing more than five tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. Tyrel Johnson, a student at Priest River Lamanna High School in Priest River, Idaho, and Jatila van der Veen, a physics and astronomy teacher at Adolfo Camarillo High School in Camarillo, California, who submitted the winning name and essays, will receive a trip to the Kennedy Space Center in Florida to view the launch of the Chandra X-ray Observatory, a prize donated by TRW. Members of the contest's selection committee were Timothy Hannemann, executive vice president and general manager, TRW Space & Electronics Group; the late CNN correspondent John Holliman; former Secretary of the Air Force Sheila Widnall, professor of aeronautics at MIT; Charles Petit, senior writer for U.S. News & World Report; Sidney Wolff, Director, National Optical Astronomy Observatories; Martin Weisskopf, Advanced X-ray Astrophysics Facility project scientist, Marshall Space Flight Center, Huntsville, AL.; and Harvey Tananbaum, director of the Advanced X-ray Astrophysics Facility Science Center, Smithsonian Astrophysical Observatory, Cambridge, MA. The Chandra X-ray Observatory program is managed by the Marshall Center for the Office of Space Science, NASA Headquarters, Washington, DC. TRW Space and Electronics Group, Redondo Beach, CA, is NASA's prime contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations of the observatory for NASA

  17. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1982-01-01

    This artist's concept depicts the High Energy Astronomy Observatory (HEAO)-2 in orbit. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  18. Project Management Series Case Study: The Office of Registration and Records

    ERIC Educational Resources Information Center

    Burgher, Karl E.; Snyder, Michael

    2012-01-01

    This is the third in a series of eight articles on project management (PM) in the academy. In this article, the authors describe the step-by-step implementation of a structural change to Indiana State University's (ISU's) Office of Registration and Records (ORR). The process described may vary as it is implemented elsewhere, but the authors…

  19. The Climatic Observatory of the Karst (O.C.C.), a scientific facility within an important tourist framework

    NASA Astrophysics Data System (ADS)

    Colucci, R. R.; Micheletti, S.; Fabbo, R.

    2009-09-01

    The Climatic Observatory of the Karst, officially inaugurated on 2nd October, 2008, is born in the same place of the historical headquarter of the Borgo Grotta Gigante Meteorological Office, which was set up in 1966 and has been officially operating since 1st January, 1967. The meteorological facilities and the weather office are located on the premises of the visitor centre of "Grotta Gigante”, which is a very popular karstic cave of Trieste, visited each year by at least 70k people. The privileged position induced the promoters of this initiative to think about an integrated meteorological multilanguages system for the visitors. This system provides in real time weather forecasts and meteorological data and, at the same time, general tourist information as well. The synergic cooperation of various Scientific Organizations, which are involved in climatic research at the Borgo Grotta Gigante Climatic Observatory of the Karst, makes possible the realization of this project: "E.Boegan” Cave Commission of S.A.G. (the administrative body); ARPA-OSMER, the Friuli Venezia-Giulia Meteorological Observatory of the Regional Agency of the Environmental Protection, (which manages the automatic station, broadcasts and publishes data in real time and forecasts in the visitors waiting room); C.N.R.-I.S.M.A.R., the Marine Science Institute in Trieste of the National Research Council of Italy (which manages and maintains mechanical instruments, publishes data and carries out checks, files data and publishes reports); U.M.F.V.G., the Friuli Venezia Giulia Meteorological Union (which is involved in scientific dissemination activity and web sharing of information); the Environmental and Public Works Section and Water Service of the Friuli Venezia Giulia Region (water resources monitoring). Moreover one of the main characteristic of the Observatory, also because of didactic reasons, is to maintain the traditional mechanical-analogue part of data collection, carried out by

  20. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    Like the Crab Nebula, the Vela Supernova Remnant has a radio pulsar at its center. In this image taken by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory, the pulsar appears as a point source surrounded by weak and diffused emissions of x-rays. HEAO-2's computer processing system was able to record and display the total number of x-ray photons (a tiny bundle of radiant energy used as the fundamental unit of electromagnetic radiation) on a scale along the margin of the picture. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  1. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2002-05-01

    The Little Thompson Observatory is believed to be the first of its kind, located next to a high school and accessible to other schools remotely over the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction was done completely by volunteer labor, and the observatory was built on the grounds of Berthoud High School in northern Colorado. During 2001, we averaged 400-500 visitors per month. We are grateful to have received a STScI IDEAS grant to provide teacher training workshops for K-12 schools in northern Colorado to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. We are honored that a committee of teachers and administrators from the Thompson School district have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Also in the past year, our training materials have been shared with NASA Goddard and Howard University, which are working together to develop a similar teacher education program. Our next goal is to add solar observing capability! Please visit our website at www.starkids.org.

  2. Nobeyama Radio Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nobeyama Radio Observatory has telescopes at millimeter and submillimeter wavelengths. It was established in 1982 as an observatory of Tokyo Astronomical Observatory (NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN since 1987), and operates the 45 m telescope, Nobeyama Millimeter Array, and Radioheliograph. High-resolution images of star forming regions and molecular clouds have revealed many aspects of...

  3. Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to the Enterprise

    DTIC Science & Technology

    2010-04-29

    Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to

  4. Sir Thomas Brisbane's Legacy to Colonial Science: Colonial Astronomy at the Parramatta Observatory, 1822-1848

    NASA Astrophysics Data System (ADS)

    Saunders, Shirley D.

    2004-12-01

    Sir Thomas Makdougall Brisbane's legacy to colonial science derives from his initiative in establishing a privately owned observatory in the southern hemisphere, the Parramatta Observatory, during his term as Governor of the Colony of New South Wales from 1822 to 1825. In this paper a discussion is given of the origin and setting up of Brisbane's Parramatta Observatory, including the recruitment and employment of Carl Rümker and James Dunlop. An account is given of the choice of the work undertaken at Parramatta Observatory when it was privately owned by Brisbane such as the rediscovery of Encke's Comet in 1822, the publication of a catalogue of 7,385 southern stars in 1835 and measurements of earthly phenomena such as the weather, the temperature of the interior of the Earth and the figure of the Earth. An investigation is made of the ensuing struggles as the Parramatta Observatory moved from a private, gentlemanly endeavour to a more accountable public-sector institution in a distant colony of Britain. The main events concerning the public Parramatta Observatory are chronicled from 1826 to 1830 during the years when Rümker worked at the Observatory. A discussion is given of the period 1831 to 1848 at the Parramatta Observatory during Dunlop's term of public office, concluding with an account of the decay and demolition of the observatory.

  5. MDM Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    MDM Observatory was founded by the University of Michigan, Dartmouth College and the Massachusetts Institute of Technology. Current operating partners include Michigan, Dartmouth, MIT, Ohio State University and Columbia University. The observatory is located on the southwest ridge of the KITT PEAK NATIONAL OBSERVATORY near Tucson, Arizona. It operates the 2.4 m Hiltner Telescope and the 1.3 m McG...

  6. WIYN Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Located at Kitt Peak in Arizona. The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, Yale University and the National Optical Astronomy Observatories (NOAO). Most of the capital costs of the observatory were provided by these universities, while NOAO, which operates the other telescopes of the KITT PEAK NATIONAL OBS...

  7. Private Observatories in South Africa

    NASA Astrophysics Data System (ADS)

    Rijsdijk, C.

    2016-12-01

    Descriptions of private observatories in South Africa, written by their owners. Positions, equipment descriptions and observing programmes are given. Included are: Klein Karoo Observatory (B. Monard), Cederberg Observatory (various), Centurion Planetary and Lunar Observatory (C. Foster), Le Marischel Observatory (L. Ferreira), Sterkastaaing Observatory (M. Streicher), Henley on Klip (B. Fraser), Archer Observatory (B. Dumas), Overbeek Observatory (A. Overbeek), Overberg Observatory (A. van Staden), St Cyprian's School Observatory, Fisherhaven Small Telescope Observatory (J. Retief), COSPAR 0433 (G. Roberts), COSPAR 0434 (I. Roberts), Weltevreden Karoo Observatory (D. Bullis), Winobs (M. Shafer)

  8. Observation Report for the Year 2012: Humacao University Observatory

    NASA Astrophysics Data System (ADS)

    Muller, R.; Cersosimo, J.; Cotto, D.; Rodriguez, R.; Diaz, M.; Rosario, M.; Nieves, Y.; Franco, E.; Lopez, A.; Torres, B.; Vergara, N.; Del Valle, Y.; Ortiz, D.; Espinosa, G.; Reyes, M.; Carromero, O.; Martinez J.

    2017-01-01

    We report on the measurement of position angle and separation of 93 binary pairs. The data was obtained using the NURO Telescope at the Anderson Mesa location of Lowell Observatory, 20 miles east of Flagstaff, Arizona on May and September 2012. We gathered the data using the 2K x 2K CCD camera,-NASACAM-at the prime focus of the 31 inch telescope. The data was transferred and analyzed at the Humacao University Observatory by undergraduate students undertaking research projects.

  9. Complementarity of NGST, ALMA, and far IR Space Observatories

    NASA Technical Reports Server (NTRS)

    Mather, John C.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    The Next Generation Space Telescope (NGST) and the Atacama Large Millimeter Array (ALMA) will both start operations long before a new far IR observatory in space can be launched. What will be unknown even after they are operational, and what will a far IR space observatory be able to add? I will compare the telescope design concepts and capabilities and the advertised scientific programs for the projects and attempt to forecast the research topics that will be at the forefront in 2010.

  10. Norwegian Ocean Observatory Network (NOON)

    NASA Astrophysics Data System (ADS)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  11. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    NASA Astrophysics Data System (ADS)

    Uyeda, S.; Nagao, T.; Hattori, K.; Hayakawa, M.; Miyaki, K.; Molchanov, O.; Gladychev, V.; Baransky, L.; Chtchekotov, A.; Fedorov, E.; Pokhotelov, O.; Andreevsky, S.; Rozhnoi, A.; Khabazin, Y.; Gorbatikov, A.; Gordeev, E.; Chebrov, V.; Sinitzin, V.; Lutikov, A.; Yunga, S.; Kosarev, G.; Surkov, V.; Belyaev, G.

    Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity). The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 - 40 Hz) and meteorological recordings, together with seismo-acoustic (∆F = 30 - 1000 Hz) and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 - 30 Hz), three-component electric potential variations ( ∆F < 1.0 Hz), and VLF transmitter's signal perturbations ( ∆F ~ 10 - 40 kHz).

  12. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    N° 73-2001 - Paris, 5 December 2001 The aim of AVO is to give astronomers instant access to the vast databanks now being built up by the world's observatories and forming what is in effect a "digital sky". Using AVO astronomers will be able, for example, to retrieve the elusive traces of the passage of an asteroid as it passes the Earth and so predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded, adding invaluable data to the study of the evolution of stars. Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data -corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being digitally reconstructed in the databanks. The volume and complexity of data and information available to astronomers are overwhelming. Hence the problem of how astronomers can possibly manage, distribute and analyse this great wealth of data. The Astrophysical Virtual Observatory will enable them to meet the challenge and "put the Universe online". AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The Commission has awarded a contract valued at EUR 4m for the project, starting on 15 November. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the "real" sky would, in comparison, both be prohibitively costly and take far too long. Towards a Global Virtual Observatory The

  13. 150 Years of the American Nautical Almanac Office

    NASA Astrophysics Data System (ADS)

    Dick, S. J.

    1999-05-01

    In 1849, 50 years before the founding of the American Astronomical Society, the American Nautical Almanac Office was established in Cambridge, Massachusetts. Although the British had published a Nautical Almanac since 1767, both patriotic and practical reasons lay behind the founding of an American Nautical Almanac Office in the context of the growth of science in the United States. Lt. Charles Henry Davis served as the first Superintendent. In 1866 the Office moved to Washington, D. C., and beginning in 1893 it was physically located at the new (present) site of the U. S. Naval Observatory, of which it became a part over the next few years, and where it has since remained. >From its beginning the work of the Office was much broader than the publication of data for navigation. The Office also sought to improve the theories of motion of the Sun, Moon and planets, and the astronomical constants on which the Almanac was based. Under Simon Newcomb, Superintendent of the Office from 1877 until his retirement in 1897, a consistent system of constants was devised; some of these constants remained unchanged until 1984. The American Nautical Almanac Office was dominated before World War II by its Directors William S. Eichelberger (1910-1929) and A. James Robertson (1929-1939). During the War years Wallace J. Eckert introduced punched card techniques to the Office. Gerald Clemence used these techniques to improve planetary theories during his years as Director (1945-1958), and also ushered in the era of the electronic computer for both research and production. International collaboration was a hallmark of the tenures of Clemence, Edgar Woolard, Raynor Duncombe and P. K. Seidelmann, who also implemented changes necessitated by the Space Age. Since 1990 the Nautical Almanac Office has been part of the Astronomical Applications Department of the Naval Observatory.

  14. Office of the Chief Financial Officer Annual Report 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Jeffrey

    2009-12-15

    Presented is the 2009 Chief Financial Officer's Annual Report. The data included in this report has been compiled from the Budget Office, the Controller, Procurement and Property Management and the Sponsored Projects Office.

  15. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Lt. Joseph Round, launch weather officer, USAF 30th Space Wing Weather Squadron, discusses the weather forecast for launch of NASA’s Orbiting Carbon Observatory-2 (OCO-2) onboard a ULA Delta II rocket, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  16. Social Media Programs at the National Optical Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Sparks, Robert T.; Walker, Constance Elaine; Pompea, Stephen M.

    2015-08-01

    Observatories and other science research organizations want to share their research and activities with the public. The last several years, social media has become and increasingly important venue for communicating information about observatory activities, research and education and public outreach.The National Optical Astronomy Observatory (NOAO) uses a wide variety of social media to communicate with different audiences. NOAO is active on social media platforms including Facebook, Twitter, Google+ and Pinterest. Our social media accounts include those for the National Optical Astronomy Observatory, Cerro Tololo Inter-American Observatory, Kitt Peak National Observatory and our dark skies conservation program Globe at Night.Our social media programs have a variety of audiences. NOAO uses social media to announce and promote NOAO sponsored meetings, observatory news and proposal deadlines to the professional astronomical community. Social media accounts are used to disseminate NOAO press releases, images from the observatory and other science using data from NOAO telescopes.Social media is important in our Education and Public Outreach programs (EPO). Globe at Night has very active facebook and twitter accounts encouraging people to become involved in preserving dark skies. Social media plays a role in recruiting teachers for professional development workshops such as Project Astro.NOAO produces monthly podcasts for the 365 Days of Astronomy podcast featuring interviews with NOAO astronomers. Each podcast highlights the science of an NOAO astronomer, an NOAO operated telescope or instrument, or an NOAO program. A separate series of podcasts is produced for NOAO’s Dark Skies Education programs. All the podcasts are archived at 365daysofastronomy.org.

  17. Project of space research and technology center in Engelhardt astronomical observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.; Gusev, A.; Sherstukov, O.; Kascheev, R.; Zagretdinov, R.

    2012-09-01

    Today on the basis of Engelhardt astronomical observatory (EAO) is created Space research and technology center as consistent with Program for expansion of the Kazan University. The Centre has the following missions: • EDUCATION • SCIENCE • ASTRONOMICAL TOURISM

  18. Report: EPA Managers Did Not Hold Supervisors and Project Officers Accountable for Grants Management

    EPA Pesticide Factsheets

    Report #2005-P-00027, September 27, 2005. Managers did not sufficiently hold supervisors and project officers accountable for grants management because there is no process to measure most grants management activity.

  19. DOE Contribution to the 2015 US CLIVAR Project Office Budget

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeWeaver, Eric; Patterson, Michael

    The primary goal of the US Climate Variability and Predictability (CLIVAR) Project Office is to enable science community planning and implementation of research to understand and predict climate variability and change on intraseasonal-to-centennial timescales, through observations and modeling with emphasis on the role of the ocean and its interaction with other elements of the Earth system, and to serve the climate community and society through the coordination and facilitation of research on outstanding climate questions.

  20. Complementarity of NGST, ALMA, and Far IR Space Observatories

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2004-01-01

    The Next Generation Space Telescope (NGST) and the Atacama Large Millimeter Array (ALMA) will both start operations long before a new far IR observatory to follow SIRTF into space can be launched. What will be unknown even after they are operational, and what will a far IR space observatory be able to add? I will compare the telescope design concepts and capabilities and the advertised scientific programs for the projects and attempt to forecast the research topics that will be at the forefront in 2010.

  1. Building a pipeline of talent for operating radio observatories

    NASA Astrophysics Data System (ADS)

    Wingate, Lory M.

    2016-07-01

    The National Radio Astronomy Observatory's (NRAO) National and International Non-Traditional Exchange (NINE) Program teaches concepts of project management and systems engineering in a focused, nine-week, continuous effort that includes a hands-on build project with the objective of constructing and verifying the performance of a student-level basic radio instrument. The combination of using a project management (PM)/systems engineering (SE) methodical approach based on internationally recognized standards in completing this build is to demonstrate clearly to the learner the positive net effects of following methodical approaches to achieving optimal results. It also exposes the learner to basic radio science theory. An additional simple research project is used to impress upon the learner both the methodical approach, and to provide a basic understanding of the functional area of interest to the learner. This program is designed to teach sustainable skills throughout the full spectrum of activities associated with constructing, operating and maintaining radio astronomy observatories. NINE Program learners thereby return to their host sites and implement the program in their own location as a NINE Hub. This requires forming a committed relationship (through a formal Letter of Agreement), establishing a site location, and developing a program that takes into consideration the needs of the community they represent. The anticipated outcome of this program is worldwide partnerships with fast growing radio astronomy communities designed to facilitate the exchange of staff and the mentoring of under-represented1 groups of learners, thereby developing a strong pipeline of global talent to construct, operate and maintain radio astronomy observatories.

  2. Stratospheric observatory for infrared astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Moon, L. J.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have instrumentation that will allow astronomical surveys that were not possible on the KAO. A future SOFIA survey project related to astrochemistry is discussed.

  3. Fostering Student Awareness in Observatory STEM Careers

    NASA Astrophysics Data System (ADS)

    Keonaonaokalauae Acohido, Alexis Ann; Michaud, Peter D.; Gemini Public Information and Outreach Staff

    2016-01-01

    It takes more than scientists to run an observatory. Like most observatories, only about 20% of Gemini Observatory's staff is PhD. Scientists, but 100% of those scientists would not be able to do their jobs without the help of engineers, administrators, and other support staff that make things run smoothly. Gemini's Career Brochure was first published in 2014 to show that there are many different career paths available (especially in local host communities) at an astronomical observatory. Along with the printed career brochure, there are supplementary videos available on Gemini's website and Youtube pages that provide a more detailed and personal glimpse into the day-in-the-life of a wide assortment of Gemini employees. A weakness in most observatory's outreach programming point to the notion that students (and teachers) feel there is a disconnect between academics and where students would like to end up in their career future. This project is one of the ways Gemini addresses these concerns. During my 6-month internship at Gemini, I have updated the Career Brochure website conducted more in-depth interviews with Gemini staff to include as inserts with the brochure, and expanded the array of featured careers. The goal of my work is to provide readers with detailed and individualized employee career paths to show; 1) that there are many ways to establish a career in the STEM fields, and 2), that the STEM fields are vastly diverse.

  4. Profile measurements and data from the 2011 Optics, Acoustics, and Stress In Situ (OASIS) project at the Martha's Vineyard Coastal Observatory

    USGS Publications Warehouse

    Sherwood, Christopher R.; Dickhudt, Patrick J.; Martini, Marinna A.; Montgomery, Ellyn T.; Boss, Emmanuel S.

    2012-01-01

    This report documents data collected by the U.S. Geological Survey (USGS) for the Coastal Model Applications and Field Measurements project under the auspices of the U.S. Navy Office of Naval Research Optics, Acoustics, and Stress In Situ (OASIS) Project. The objective of the measurements was to relate optical and acoustic properties of suspended particles to changes in particle size, concentration, and vertical distribution in the bottom boundary layer near the seafloor caused by wave- and current-induced stresses. This information on the physics of particle resuspension and aggregation and light penetration and water clarity will help improve models of sediment transport, benthic primary productivity, and underwater visibility. There is well-established technology for acoustic profiling, but optical profiles are more difficult to obtain because of the rapid attenuation of light in water. A specially modified tripod with a moving arm was designed to solve this problem by moving instruments vertically in the bottom boundary layer, between the bottom and about 2 meters above the seafloor. The profiling arm was designed, built, and tested during spring and summer 2011 by a team of USGS scientists, engineers, and technicians. To accommodate power requirements and the large data files recorded by some of the optical instruments, the tripod was connected via underwater cable to the Martha's Vineyard Coastal Observatory, operated by the Woods Hole Oceanographic Institution (WHOI). This afforded real-time Internet communication with the embedded computers aboard the tripod. Instruments were mounted on the profiling arm, and additional instruments were mounted elsewhere on the tripod and nearby on the seafloor. The tripod and a small mooring for a profiling current meter were deployed on September 17, 2011, at the Martha's Vineyard Coastal Observatory 12-meter-deep underwater node about 2 kilometers south of Martha's Vineyard, Massachusetts. Divers assisted in the

  5. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint US and German SOFIA project to develop and operate a 2.5 m infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2007. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.

  6. Lessons from the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1998-12-01

    Over the past several years, we have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. Each telescope can be pointed and focused remotely, and filters, field of view and exposure times can be changed easily. The MicroObservatory Net consists of five of these telescopes. They are being deployed around the world at widely distributed longitudes for access to distant night skies during local daytime. Remote access to the MicroObservatories over the Internet has been available to select schools since 1995. The telescopes can be controlled in real time or in delay mode, from any computer using Web-based software. Individuals have access to all of the telescope control functions without the need for an `on-site' operator. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. Images are archived at the Web site, along with sample challenges and a user bulletin board, all of which encourage collaboration between schools. The Internet address of the telescopes is http://mo-www.harvard.edu/MicroObservatory/. The telescopes were designed for classroom instruction by teachers, as well as for use by students and amateur astronomers for original scientific research projects. In this talk, we will review some of the experiences we, students and teachers have had in using the telescopes. Support for the MicroObservatory Net has been provided by the NSF, Apple Computer, Inc. and Kodak, Inc.

  7. NASA Awards Chandra X-Ray Observatory Follow-On Contract

    NASA Astrophysics Data System (ADS)

    2003-08-01

    blocks X-rays from reaching the surface. The Chandra Observatory travels one-third of the way to the moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg- shaped, orbit is 200 times higher than that of its visible- light-gathering sister, the Hubble Space Telescope. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. For information about NASA on the Internet, visit: http://www.nasa.gov For information about the Chandra X-ray Observatory on the Internet, visit: http://chandra.harvard.edu and http://chandra.nasa.gov

  8. Water Vapor Monitoring at the Roque de LOS Muchachos Observatory

    NASA Astrophysics Data System (ADS)

    Rodriguez-Espinosa, J. M.; Kidger, M.; del Rosario, J. C.; Trancho, G.

    1997-12-01

    We present the first results from a long-term campaign of water vapor monitoring at the Roque de los Muchachos Observatory (Canary Islands, Spain). This observatory is situated on a volcanic peak, on the small island of La Palma. Although its altitude is relatively low (2400 meters), our initial site-testing, taken for site selection for the Spanish 10m telescope project, shows that a significant fraction of nights have water vapor column of 1mm, or lower, with values of 2mm and lower being relatively common, even in summer. The water vapor column can be stable at under 1mm for several nights, with only minimal variations. We contrast the results obtained using an infrared radiometer (on loan from Kitt Peak National Observatory), with those obtained using the 940nm water vapor line and comment briefly on plans for future automatic monitoring of water vapor at the observatory.

  9. 78 FR 53477 - Notice of Relocation of the Bureau of Land Management's San Pedro Project Office in Sierra Vista, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLAZG02000.L143000000.EQ0000.TAS:14X1109.241A] Notice of Relocation of the Bureau of Land Management's San Pedro Project Office in Sierra Vista... relocation of the Bureau of Land Management's (BLM) San Pedro Project Office (SPPO), temporary closure of the...

  10. Ground System for Solar Dynamics Observatory (SDO) Mission

    NASA Technical Reports Server (NTRS)

    Tann, Hun K.; Silva, Christopher J.; Pages, Raymond J.

    2005-01-01

    NASA s Goddard Space Flight Center (GSFC) has recently completed its Critical Design Review (CDR) of a new dual Ka and S-band ground system for the Solar Dynamics Observatory (SDO) Mission. SDO, the flagship mission under the new Living with a Star Program Office, is one of GSFC s most recent large-scale in-house missions. The observatory is scheduled for launch in August 2008 from the Kennedy Space Center aboard an Atlas-5 expendable launch vehicle. Unique to this mission is an extremely challenging science data capture requirement. The mission is required to capture 99.99% of available science over 95% of all observation opportunities. Due to the continuous, high volume (150 Mbps) science data rate, no on-board storage of science data will be implemented on this mission. With the observatory placed in a geo-synchronous orbit at 36,000 kilometers within view of dedicated ground stations, the ground system will in effect implement a "real-time" science data pipeline with appropriate data accounting, data storage, data distribution, data recovery, and automated system failure detection and correction to keep the science data flowing continuously to three separate Science Operations Centers (SOCs). Data storage rates of approx. 45 Tera-bytes per month are expected. The Mission Operations Center (MOC) will be based at GSFC and is designed to be highly automated. Three SOCs will share in the observatory operations, each operating their own instrument. Remote operations of a multi-antenna ground station in White Sands, New Mexico from the MOC is part of the design baseline.

  11. Observatories and Telescopes of Modern Times

    NASA Astrophysics Data System (ADS)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  12. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric E.; Casey, Sean C.; Davidson, Jacqueline A.; Savage, Maureen L.

    1998-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter IR airborne telescope in a Boeing 747-SP is now in its second year. The Universities Space Research Association , teamed with Raytheon E-Systems and United Airlines, is developing and will operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies led by MAN. Work on the aircraft and the preliminary mirror has started. First science flights will begin in 2001 with 20 percent of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, US science instrument complement, and operations concept for the SOFIA observatory, with an emphasis on the science community's participation are discussed.

  13. High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This artist's concept depicts the High Energy Astronomy Observatory (HEAO)-2 in orbit. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  14. Precovery of near-Earth asteroids by a citizen-science project of the Spanish Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Solano, E.; Rodrigo, C.; Pulido, R.; Carry, B.

    2014-02-01

    This article describes a citizen-science project conducted by the Spanish Virtual Observatory (SVO) to improve the orbits of near-Earth asteroids (NEAs) using data from astronomical archives. The list of NEAs maintained at the Minor Planet Center (MPC) is checked daily to identify new objects or changes in the orbital parameters of already catalogued objects. Using NEODyS we compute the position and magnitude of these objects at the observing epochs of the 938 046 images comprising the Eigth Data Release of the Sloan Digitised Sky Survey (SDSS). If the object lies within the image boundaries and the magnitude is brighter than the limiting magnitude, then the associated image is visually inspected by the project's collaborators ({the citizens}) to confirm or discard the presence of the NEA. If confirmed, accurate coordinates and, sometimes, magnitudes are submitted to the MPC. Using this methodology, 3226 registered users have made during the first fifteen months of the project more than 167 000 measurements which have improved the orbital elements of 551 NEAs (6 % of the total number of this type of asteroids). Even more remarkable is the fact that these results have been obtained at zero cost to telescope time as NEAs were serendipitously observed while the survey was being carried out. This demonstrates the enormous scientific potential hidden in astronomical archives. The great reception of the project as well as the results obtained makes it a valuable and reliable tool for improving the orbital parameters of near-Earth asteroids.

  15. Current Status of Carl Sagan Observatory in Mexico

    NASA Astrophysics Data System (ADS)

    Sanchez-Ibarra, A.

    The current status of Observatory "Carl Sagan" (OCS) of University of Sonora is presented. This project was born in 1996 focused to build a small solar-stellar observatory completely operated by remote control. The observatory will be at "Cerro Azul", a 2480 m peak in one of the best regions in the world for astronomical observation, at the Sonora-Arizona desert. The OCS, with three 16 cm solar telescopes and a 55 cm stellar telescope is one of the cheapest observatories, valuated in US200,000 Added to its scientific goals to study solar coronal holes and Supernovae Type 1A, the OCS has a strong educative and cultural program in Astronomy to all levels. At the end of 2001, we started the Program "Constelacion", to build small planetariums through all the countries with a cost of only US80,000. Also, the webcast system for transmission of the solar observations from the prototype OCS at the campus, was expanded to webcast educational programs in Astronomy since July of this year, including courses and diplomats for Latin American people. All of these advances are exposed here.

  16. LAGO: The Latin American giant observatory

    NASA Astrophysics Data System (ADS)

    Sidelnik, Iván; Asorey, Hernán; LAGO Collaboration

    2017-12-01

    The Latin American Giant Observatory (LAGO) is an extended cosmic ray observatory composed of a network of water-Cherenkov detectors (WCD) spanning over different sites located at significantly different altitudes (from sea level up to more than 5000 m a.s.l.) and latitudes across Latin America, covering a wide range of geomagnetic rigidity cut-offs and atmospheric absorption/reaction levels. The LAGO WCD is simple and robust, and incorporates several integrated devices to allow time synchronization, autonomous operation, on board data analysis, as well as remote control and automated data transfer. This detection network is designed to make detailed measurements of the temporal evolution of the radiation flux coming from outer space at ground level. LAGO is mainly oriented to perform basic research in three areas: high energy phenomena, space weather and atmospheric radiation at ground level. It is an observatory designed, built and operated by the LAGO Collaboration, a non-centralized collaborative union of more than 30 institutions from ten countries. In this paper we describe the scientific and academic goals of the LAGO project - illustrating its present status with some recent results - and outline its future perspectives.

  17. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  18. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36more » was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  19. FixO3 : Early progress towards Open Ocean observatory Data Management Harmonisation

    NASA Astrophysics Data System (ADS)

    Pagnani, Maureen; Huber, Robert; Lampitt, Richard

    2014-05-01

    Since 2002 there has been a sustained effort, supported as European framework projects, to harmonise both the technology and the data management of Open Ocean fixed observatories run by European nations. FixO3 started in September 2013, and for 4 years will coordinate the convergence of data management best practice across a constellation of moorings in the Atlantic, in both hemispheres, and in the Mediterranean. To ensure the continued existence of these unique sources of oceanographic data as sustained observatories it is vital to improve access to the data collected, both in terms of methods of presentation, real-time availability, long-term archiving and quality assurance. The data management component of FixO3 will improve access to marine observatory data by harmonizing data management standards and workflows covering the complete life cycle of data from real time data acquisition to long-term archiving. Legal and data policy aspects will be examined to identify transnational barriers to open-access to marine observatory data. A harmonised FixO3 data policy is being synthesised from the partner's existing policies, which will overcome the identified barriers, and provide a formal basis for data exchange between FixO3 infrastructures. Presently, the interpretation and implementation of accepted standards has considerable incompatibilities within the observatory community, and these different approaches will be unified into the FixO3 approach. Further, FixO3 aims to harmonise data management and standardisation efforts with other European and international marine data and observatory infrastructures. The FixO3 synthesis will build on the standards established in other European infrastructures such as EDMONET, SEADATANET, PANGAEA, EuroSITES (European contribution to JCOMMP OceanSITES programme), and MyOcean (the Marine Core Service for GMES) infrastructures as well as relevant international infrastructures and data centres such as the ICOS Ocean Thematic Centre

  20. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2008. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of 1-st light spectroscopic astrochemistry science are discussed.

  1. Okayama Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Okayama Astrophysical Observatory (OAO) is a branch Observatory of the NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN. Its main facilities are 188 cm and 91 cm telescopes, equipped with newly built instruments with CCD/IR cameras (e.g. OASIS). OAO accepts nearly 300 astronomers a year, according to the observation program scheduled by the committee....

  2. Early Science Results from SOFIA, the Worlds Largest Airborne Observatory

    NASA Astrophysics Data System (ADS)

    De Buizer, J.

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the largest flying observatory ever built, consisting of a 2.7-meter diameter telescope embedded in a modified Boeing 747-SP aircraft. SOFIA is a joint project between NASA and the German Aerospace Center Deutsches Zentrum fur Luft und-Raumfahrt. By flying at altitudes up to 45000 feet, the observatory gets above 99.9% of the infrared-absorbing water vapor in the Earth's atmosphere. This opens up an almost uninterrupted wavelength range from 0.3-1600 microns that is in large part obscured from ground based observatories. Since its 'Initial Science Flight' in December 2010, SOFIA has flown several dozen science flights, and has observed a wide array of objects from Solar System bodies, to stellar nurseries, to distant galaxies. This talk will review some of the exciting new science results from these first flights which were made by three instruments: the mid-infrared camera FORCAST, the far-infrared heterodyne spectrometer GREAT, and the optical occultation photometer HIPO.

  3. The Virtual Astronomical Observatory: Re-engineering access to astronomical data

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.; Berriman, G. B.; Lazio, T. J. W.; Emery Bunn, S.; Evans, J.; McGlynn, T. A.; Plante, R.

    2015-06-01

    The US Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the US coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within the US National Virtual Observatory, and summarizes its main accomplishments. These accomplishments include the development of both scripting toolkits that allow scientists to incorporate VO data directly into their reduction and analysis environments and high-level science applications for data discovery, integration, analysis, and catalog cross-comparison. Working with the international community, and based on the experience from the software development, the VAO was a major contributor to international standards within the International Virtual Observatory Alliance. The VAO also demonstrated how an operational virtual observatory could be deployed, providing a robust operational environment in which VO services worldwide were routinely checked for aliveness and compliance with international standards. Finally, the VAO engaged in community outreach, developing a comprehensive web site with on-line tutorials, announcements, links to both US and internationally developed tools and services, and exhibits and hands-on training at annual meetings of the American Astronomical Society and through summer schools and community days. All digital products of the VAO Project, including software, documentation, and tutorials, are stored in a repository for community access. The enduring legacy of the VAO is an increasing expectation that new telescopes and facilities incorporate VO capabilities during the design of their data management systems.

  4. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric E.; Horn, Jochen M. M.

    The joint US and German SOFIA project to develop and operate a 2.5 - meter infrared airborne telescope in a Boeing 747-SP is now well into development. Work on the aircraft and the telescope has started. First science flights will begin in 2003 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have instrumentation that will allow astronomical surveys that were not possible on the KAO. A future SOFIA project related to astrochemistry is discussed.

  5. The Rare Book Collection of Capodimonte Astronomical Observatory Will be on the Web: Ancient Science Available to Everyone

    NASA Astrophysics Data System (ADS)

    Cirella, E. O.; Caprio, G.

    2015-04-01

    This paper describes a project for the preservation, promotion, and creation of a website for the rare book collection of Capodimonte Astronomical Observatory. The project, promoted by INAF—Capodimonte Astronomical Observatory, was supported by the Campania Region through European funds. The final component of the project was the publication of a bibliographical catalog, Le Cinquecentine dell'Osservatorio Astronomico di Capodimonte, which was addressed to specialized users, including historians of science and bibliophiles.

  6. International Ultraviolet Explorer Observatory operations

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This volume contains the final report for the International Ultraviolet Explorer IUE Observatory Operations contract. The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to translate competitively selected observing programs into IUE observations, to reduce these observations into meaningful scientific data, and then to present these data to the Guest Observer in a form amenable to the pursuit of scientific research. The IUE Observatory is the key to this objective since it is the central control and support facility for all science operations functions within the IUE Project. In carrying out the operation of this facility, a number of complex functions were provided beginning with telescope scheduling and operation, proceeding to data processing, and ending with data distribution and scientific data analysis. In support of these critical-path functions, a number of other significant activities were also provided, including scientific instrument calibration, systems analysis, and software support. Routine activities have been summarized briefly whenever possible.

  7. TRU waste lead organization -- WIPP Project Office Interface Management semi-annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, J.V.; Gorton, J.M.

    1985-05-01

    The Charter establishing the Interface Control Board and the administrative organization to manage the interface of the TRU Waste Lead Organization and the WIPP Project Office also requires preparation of a summary report describing significant interface activities.'' This report includes a discussion of Interface Working Group (IWG) recommendations and resolutions considered and implemented'' over the reporting period October 1984 to March 1985.

  8. 76 FR 56973 - Office of National Marine Sanctuaries Final Policy and Permit Guidance for Submarine Cable Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... National Marine Sanctuaries Final Policy and Permit Guidance for Submarine Cable Projects AGENCY: Office of National Marine Sanctuaries (ONMS), National Oceanic and Atmospheric Administration (NOAA), Department of... Marine Sanctuaries (ONMS) has developed final policy and permitting guidance for submarine cable projects...

  9. The healthy workplace project: Reduced viral exposure in an office setting.

    PubMed

    Reynolds, Kelly A; Beamer, Paloma I; Plotkin, Kevin R; Sifuentes, Laura Y; Koenig, David W; Gerba, Charles P

    2016-05-03

    Viral illnesses such as gastroenteritis and the common cold create a substantial burden in the workplace due to reduced productivity, increased absenteeism, and increased health care costs. Behaviors in the workplace contribute to the spread of human viruses via direct contact between hands, contaminated surfaces, and the mouth, eyes, and/or nose. This study assessed whether implementation of the Healthy Workplace Project (HWP) (providing hand sanitizers, disinfecting wipes, facial tissues, and use instructions) would reduce viral loads in an office setting of approximately 80 employees after seeding fomites and the hands of volunteer participants with an MS-2 phage tracer. The HWP significantly reduced viable phage detected on participants' hands, communal fomites, and personal fomites (p ≤ .010) in office environments and presents a cost-effective method for reducing the health and economic burden associated with viral illnesses in the workplace.

  10. Project NEPTUNE: an innovative, powered, fibre-optic cabled deep ocean observatory spanning the Juan de Fuca plate, NE Pacific

    NASA Astrophysics Data System (ADS)

    Barnes, C.; Delaney, J.

    2003-04-01

    NEPTUNE is an innovative facility, a deep-water cabled observatory, that will transform marine science. MARS and VENUS are deep and shallow-water test bed facilities for NEPTUNE located in Monterey Canyon, California and in southern British Columbia, respectively; both were funded in 2002. NEPTUNE will be a network of over 30 subsea observatories covering the 200,000 sq. km Juan de Fuca tectonic plate, Northeast Pacific. It will draw power via two shore stations and receive and exchange data with scientists through 3000 km of submarine fiber-optic cables. Each observatory, and cabled extensions, will host and power many scientific instruments on the surrounding seafloor, in seafloor boreholes and buoyed through the water column. Remotely operated and autonomous vehicles will reside at depth, recharge at observatories, and respond to distant labs. Continuous near-real-time multidisciplinary measurement series will extend over 30 years. Free from the limitations of battery life, ship schedules/ accommodations, bad weather and delayed access to data, scientists will monitor remotely their deep-sea experiments in real time on the Internet, and routinely command instruments to respond to storms, plankton blooms, earthquakes, eruptions, slope slides and other events. Scientists will be able to pose entirely new sets of questions and experiments to understand complex, interacting Earth System processes such as the structure and seismic behavior of the ocean crust; dynamics of hot and cold fluids and gas hydrates in the upper ocean crust and overlying sediments; ocean climate change and its effect on the ocean biota at all depths; and the barely known deep-sea ecosystem dynamics and biodiversity. NEPTUNE is a US/Canada (70/30) partnership to design, test, build and operate the network on behalf of a wide scientific community. The total cost of the project is estimated at about U.S. 250 million from concept to operation. Over U.S. 50 million has already been funded for

  11. THE PROJECT: an Observatory / Transport Spaceship for Discovering and Populating Habitable Extrasolar Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Kilston, S.

    1998-12-01

    Recent extrasolar planet discoveries and related progress in astrophysics have refined our knowledge of the implications of the Drake equation. The Space Interferometry Mission and the planned Terrestrial Planet Finder will deepen this understanding, and begin pointing the way to places we need to explore at closer range. If the correct resolution of the Fermi paradox regarding intelligent extraterrestrials (``where are they?") is found to lie in the actual scarcity of such beings, it may turn out that we are more advanced than most other life-forms in our galaxy. In this case, a main purpose in finding planets may be to find places for us to go: astronomy will once again play a major role in human navigation and migration. We describe a strawman design concept for an astronomical observatory ship designed for launch beyond our solar system within several hundred years. This ship design would employ plausible physics, biology, technology, sociology, and economics to carry one million passengers in a one-G environment shielded from space radiation. A cruising speed under 0.01 c, slower than in many science-fiction concepts, minimizes power requirements and the danger from collisional impacts. The ship would contain all subsystems needed to sustain multi-generational life on a voyage of thousands of years, as well as the observatories to identify for human settlement a habitable extrasolar planet. Even the modestly advanced technology described here could spread intelligent life throughout our galaxy within 40 million years, a very small fraction of the galaxy's age. Motivation for such an ambitious project is three-fold: expanding our knowledge of the universe, enlisting the efforts and enthusiasms of humankind toward a very grand goal which will stimulate progress in all aspects of our cultures and technologies, and participating in the process of spreading life so its survivability and fruition are enhanced.

  12. Astronomical virtual observatory and the place and role of Bulgarian one

    NASA Astrophysics Data System (ADS)

    Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen

    2009-07-01

    , publications, news and so on. This large growth of astronomical data and the necessity of an easy access to those data led to the foundation of the International Virtual Observatory Alliance (IVOA). IVOA was formed in June 2002. By January 2005, the IVOA has grown to include 15 funded VO projects from Australia, Canada, China, Europe, France, Germany, Hungary, India, Italy, Japan, Korea, Russia, Spain, the United Kingdom, and the United States. At the time being Bulgaria is not a member of European Astronomical Virtual Observatory and as the Bulgarian Virtual Observatory is not a legal entity, we are not members of IVOA. The main purpose of the project is Bulgarian Virtual Observatory to join the leading virtual astronomical institutions in the world. Initially the Bulgarian Virtual Observatory will include: - BG Galaxian virtual observatory; - BG Solar virtual observatory; - Department Star clusters of IA, BAS; - WFPDB group of IA, BAS. All available data will be integrated in the Bulgarian centers of astronomical data, conducted by the Wide Field Plate Archive data centre. For the above purpose POSTGRESQL or/and MySQL will be installed on the server of BG-VO and SAADA tools, ESO-MEX or/and DAL ToolKit to transform our FITS files in standard format for VO-tools. A part of the participants was acquainted with the principles of these products during the "Days of virtual observatory in Sofia" January, 2008.

  13. The Role in the Virtual Astronomical Observatory in the Era of Massive Data Sets

    NASA Technical Reports Server (NTRS)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.

    2012-01-01

    The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of services and protocols that respond to the growing size and complexity of astronomy data sets. This paper describes how VAO staff are active in such development efforts, especially in innovative strategies and techniques that recognize the limited operating budgets likely available to astronomers even as demand increases. The project has a program of professional outreach whereby new services and protocols are evaluated.

  14. The role in the Virtual Astronomical Observatory in the era of massive data sets

    NASA Astrophysics Data System (ADS)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.

    2012-09-01

    The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of services and protocols that respond to the growing size and complexity of astronomy data sets. This paper describes how VAO staff are active in such development efforts, especially in innovative strategies and techniques that recognize the limited operating budgets likely available to astronomers even as demand increases. The project has a program of professional outreach whereby new services and protocols are evaluated.

  15. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    Vast Databanks at the Astronomers' Fingertips Summary A new European initiative called the Astrophysical Virtual Observatory (AVO) is being launched to provide astronomers with a breathtaking potential for new discoveries. It will enable them to seamlessly combine the data from both ground- and space-based telescopes which are making observations of the Universe across the whole range of wavelengths - from high-energy gamma rays through the ultraviolet and visible to the infrared and radio. The aim of the Astrophysical Virtual Observatory (AVO) project, which started on 15 November 2001, is to allow astronomers instant access to the vast databanks now being built up by the world's observatories and which are forming what is, in effect, a "digital sky" . Using the AVO, astronomers will, for example, be able to retrieve the elusive traces of the passage of an asteroid as it passes near the Earth and so enable them to predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded so adding invaluable data to the study of the evolution of stars. Background information on the Astrophysical Virtual Observatory is available in the Appendix. PR Photo 34a/01 : The Astrophysical Virtual Observatory - an artist's impression. The rapidly accumulating database ESO PR Photo 34a/01 ESO PR Photo 34a/01 [Preview - JPEG: 400 x 345 pix - 90k] [Normal - JPEG: 800 x 689 pix - 656k] [Hi-Res - JPEG: 3000 x 2582 pix - 4.3M] ESO PR Photo 34a/01 shows an artist's impression of the Astrophysical Virtual Observatory . Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data - corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being

  16. Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R.

    1996-05-01

    Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. Themore » DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2.« less

  17. The Paris Observatory has 350 years

    NASA Astrophysics Data System (ADS)

    Lequeux, James

    2017-01-01

    The Paris Observatory is the oldest astronomical observatory that has worked without interruption since its foundation to the present day. The building due to Claude Perrault is still in existence with few modifications, but of course other buildings have been added all along the centuries for housing new instruments and laboratories. In particular, a large dome has been built on the terrace in 1847, with a 38-cm diameter telescope completed in 1857: both are still visible. The main initial purpose of the Observatory was to determine longitudes. This was achieved by Jean-Dominique Cassini using the eclipses of the satellites of Jupiter: a much better map of France was the produced using this method, which unfortunately does not work at sea. Incidentally, the observation of these eclipses led to the discovery in 1676 of the finite velocity of light by Cassini and Rømer. Cassini also discovered the differential rotation of Jupiter and four satellites of Saturn. Then, geodesy was to be the main activity of the Observatory for more than a century, culminating in the famous Cassini map of France completed around 1790. During the first half of the 19th century, under François Arago, the Observatory was at the centre of French physics, which then developed very rapidly. Arago initiated astrophysics in 1810 by showing that the Sun and stars are made of incandescent gas. In 1854, the new director, Urbain Le Verrier, put emphasis on astrometry and celestial mechanics, discovering in particular the anomalous advance of the perihelion of Mercury, which was later to be a proof of General Relativity. In 1858, Leon Foucault built the first modern reflecting telescopes with their silvered glass mirror. Le Verrier created on his side modern meteorology, including some primitive forecasts. The following period was not so bright, due to the enormous project of the Carte du Ciel, which took much of the forces of the Observatory for half a century with little scientific return. In

  18. The Cherenkov Telescope Array Observatory: top level use cases

    NASA Astrophysics Data System (ADS)

    Bulgarelli, A.; Kosack, K.; Hinton, J.; Tosti, G.; Schwanke, U.; Schwarz, J.; Colomé, P.; Conforti, V.; Khelifi, B.; Goullon, J.; Ong, R.; Markoff, S.; Contreras, J. L.; Lucarelli, F.; Antonelli, L. A.; Bigongiari, C.; Boisson, C.; Bosnjak, Z.; Brau-Nogué, S.; Carosi, A.; Chen, A.; Cotter, G.; Covino, S.; Daniel, M.; De Cesare, G.; de Ona Wilhelmi, E.; Della Volpe, M.; Di Pierro, F.; Fioretti, V.; Füßling, M.; Garczarczyk, M.; Gaug, M.; Glicenstein, J. F.; Goldoni, P.; Götz, D.; Grandi, P.; Heller, M.; Hermann, G.; Inoue, S.; Knödlseder, J.; Lenain, J.-P.; Lindfors, E.; Lombardi, S.; Luque-Escamilla, P.; Maier, G.; Marisaldi, M.; Mundell, C.; Neyroud, N.; Noda, K.; O'Brien, P.; Petrucci, P. O.; Martí Ribas, J.; Ribó, M.; Rodriguez, J.; Romano, P.; Schmid, J.; Serre, N.; Sol, H.; Schussler, F.; Stamerra, A.; Stolarczyk, T.; Vandenbrouck, J.; Vercellone, S.; Vergani, S.; Zech, A.; Zoli, A.

    2016-08-01

    Today the scientific community is facing an increasing complexity of the scientific projects, from both a technological and a management point of view. The reason for this is in the advance of science itself, where new experiments with unprecedented levels of accuracy, precision and coverage (time and spatial) are realised. Astronomy is one of the fields of the physical sciences where a strong interaction between the scientists, the instrument and software developers is necessary to achieve the goals of any Big Science Project. The Cherenkov Telescope Array (CTA) will be the largest ground-based very high-energy gamma-ray observatory of the next decades. To achieve the full potential of the CTA Observatory, the system must be put into place to enable users to operate the telescopes productively. The software will cover all stages of the CTA system, from the preparation of the observing proposals to the final data reduction, and must also fit into the overall system. Scientists, engineers, operators and others will use the system to operate the Observatory, hence they should be involved in the design process from the beginning. We have organised a workgroup and a workflow for the definition of the CTA Top Level Use Cases in the context of the Requirement Management activities of the CTA Observatory. Scientists, instrument and software developers are collaborating and sharing information to provide a common and general understanding of the Observatory from a functional point of view. Scientists that will use the CTA Observatory will provide mainly Science Driven Use Cases, whereas software engineers will subsequently provide more detailed Use Cases, comments and feedbacks. The main purposes are to define observing modes and strategies, and to provide a framework for the flow down of the Use Cases and requirements to check missing requirements and the already developed Use-Case models at CTA sub-system level. Use Cases will also provide the basis for the definition of

  19. McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    McDonald Observatory, located in West Texas near Fort Davis, is the astronomical observatory of the University of Texas at Austin. Discoveries at McDonald Observatory include water vapor on Mars, the abundance of rare-earth chemical elements in stars, the discovery of planets circling around nearby stars and the use of the measurements of rapid oscillations in the brightness of white dwarf stars ...

  20. A Technical Overview and Description of SOFIA (Stratospheric Observatory for Infrared Astronomy)

    NASA Technical Reports Server (NTRS)

    Kunz, Nans

    2003-01-01

    This paper provides a technical overview of SOFIA, a unique airborne observatory, from an engineering perspective. It will do this by describing several of the systems of this observatory that are common with mountain top ground based observatories but mostly emphasize those more unique features and systems that are required to facilitate world class astronomy from a highly modified Boeing 747-SP flying at Mach 0.84 in the Stratosphere. This paper provides a technical overview of SOFIA by reviewing each of the performance specifications (the level one requirements for development) and describing some of the technical advancements for the telescope as well as the platform required to achieve these performance specifications. The technical advancements involved include mirror technologies, control system features, the telescope suspension system, and the aircraft open port cavity with associated cavity door that opens in flight and tracks the telescope elevation angle. For background this paper will provide a brief programmatic overview of the SOFIA project including the joint project arrangement between the US and Germany (NASA and DLR). Additionally, this paper will describe the up to date status of the development of SOFIA as the Observatory nears the date of the first test flight in the summer of 2004.

  1. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  2. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  3. Women geoscientists select officers

    NASA Astrophysics Data System (ADS)

    1984-04-01

    The Association for Women Geoscientists Foundation has selected a board of directors to spearhead the development of educational and community programs geared to the earth sciences. The foundation, established in 1983, plans to provide grants to women studying the geosciences, to support a geology field program in cooperation with the Girl Scouts of America, and to undertake development of career guidance programs targeting junior and senior high school girls.Lois K. Ongley, an independent geologist in Houston, Tex., is president. Gwenn M. Jensen, an exploration geologist for Cities Service Oil & Gas Corp. in Denver, Colo., is vice president. Constance A. Sancetta, associate research scientist at the Lamont-Doherty Geological Observatory, is secretary. Susan J. Mara, resource analyst for the Pacific Gas & Electric Co. in San Francisco, Calif., is treasurer. The board of directors' three advisors are Maria Luisa Crawford, department chairman and professor at the geology department, Bryn Mawr College, Bryn Mawr, Pa.; Judith B. Mooney, project manager in the office of nuclear waste isolation of Battelle Memorial Institute in Columbus, Ohio; and A.F. Spilhaus, Jr., AGU executive director and Eos editor-in-chief.

  4. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  5. The Renovation and Future Capabilities of the Thacher Observatory

    NASA Astrophysics Data System (ADS)

    O'Neill, Katie; Osuna, Natalie; Edwards, Nick; Klink, Douglas; Swift, Jonathan; Vyhnal, Chris; Meyer, Kurt

    2016-01-01

    The Thacher School is in the process of renovating the campus observatory with a new meter class telescope and full automation capabilities for the purpose of scientific research and education. New equipment on site has provided a preliminary site characterization including seeing and V-band sky brightness measurements. These data, along with commissioning data from the MINERVA project (which uses comparable hardware) are used to estimate the capabilities of the observatory once renovation is complete. Our V-band limiting magnitude is expected to be better than 21.3 for a one minute integration time, and we estimate that milli-magnitude precision photometry will be possible for a V=14.5 point source over approximately 5 min timescales. The quick response, autonomous operation, and multi-band photometric capabilities of the renovated observatory will make it a powerful follow-up science facility for exoplanets, eclipsing binaries, near-Earth objects, stellar variability, and supernovae.

  6. The Software Distribution for Gemini Observatory's Science Operations Group

    NASA Astrophysics Data System (ADS)

    Hoenig, M. D.; Clarke, M.; Pohlen, M.; Hirst, P.

    2014-05-01

    Gemini Observatory consists of two telescopes in different hemispheres. It also operates mostly on a queue observing model, meaning observations are performed by staff working shifts as opposed to PIs. For these two reasons alone, maintaining and distributing a diverse software suite is not a trivial matter. We present a way to make the appropriate tools available to staff at Gemini North and South, whether they are working on the summit or from our base facility offices in Hilo, Hawai'i and La Serena, Chile.

  7. Recent Science from the Cape Verde Atmospheric Observatory (CVAO)

    NASA Astrophysics Data System (ADS)

    Read, Katie; Lee, James; Punjabi, Shalini; Carpenter, Lucy; Lewis, Alastair; Moller, Sarah; Mendes Neves, Luis; Fleming, Zoe; Evans, Mat; Arnold, Steve; Hopkins, James

    2013-04-01

    The Cape Verde Atmospheric Observatory (16,848°N, 24.871°W), a subtropical marine boundary layer atmospheric monitoring station situated at Calhau on the island of São Vicente, has been in operation since October 2006. Almost continuous measurements of the trace gases O3, CO, NMVOC, NO, and NO2 have been obtained. Other data from the CVAO, for example of greenhouse gases, aerosol (physical and chemical parameters), halocarbons, halogen oxides, are also available over various timescales (see http://ncasweb.leeds.ac.uk/capeverde/ for more details). Through the newly EU funded Global Mercury Observation System (GMOS) project, atmospheric measurements of mercury began in 2011. The observatory has hosted a number of field campaigns including Reactive Halogens in the Marine Boundary Layer experiment (RHaMBLe) in 2007 (Lee et al., 2010) which focussed on halogen chemistry and Seasonal Oxidant Study (SOS) in 2009 which looked at how the oxidation chemistry varied seasonally. The prevailing strong on-shore winds bring marine air masses with varying inputs of Saharan dust and of long range transport from North American Europe, thus the CVAO is an appealing location for both short and long term research into a variety of atmospheric phenomena. Aged air masses from North America, Europe, and Africa influence the measurements at the observatory, but fresh emissions from coastal Africa and the ocean may also play a major role. Through the use of the UK Met office's NAME model (http://www.metoffice.gov.uk/research/modelling-systems/dispersion-model) it has recently been possible to classify the air received by the site and this has since been employed in further interpretation of the datasets (Carpenter et al., 2010). Measurements from the last six years will be presented at the conference together with comparisons with the output of the CAM-Chem global chemistry transport model (Read et al., 2012). The CVAO is a global GAW (Global Atmospheric Watch) station and so data is

  8. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  9. Stratospheric Observatory For Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Davidson, J. A.; Horn, J. M. M.

    1999-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 - meter infrared airborne telescope in a Boeing 747-SP is now in its second year of development. Work on the aircraft and the primary mirror has started. First science flights will begin in 2002 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have facility instrumentation that will allow astronomical surveys that were not possible on the KAO. Two future SOFIA projects related to cosmology and astrochemistry are discussed.

  10. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52more » was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  11. New developments in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Fitzgerald, Michael P.; Johnson, James; Larkin, James E.; Lewis, Hilton A.; Martin, Christopher; Matthews, Keith Y.; Prochaska, J. X.; Wizinowich, Peter

    2014-07-01

    The W. M. Keck Observatory continues to develop new capabilities in support of our science driven strategic plan which emphasizes leadership in key areas of observational astronomy. This leadership is a key component of the scientific productivity of our observing community and depends on our ability to develop new instrumentation, upgrades to existing instrumentation, and upgrades to supporting infrastructure at the observatory. In this paper we describe the as measured performance of projects completed in 2014 and the expected performance of projects currently in the development or construction phases. Projects reaching completion in 2014 include a near-IR tip/tilt sensor for the Keck I adaptive optics system, a new center launch system for the Keck II laser guide star facility, and NIRES, a near-IR Echelle spectrograph for the Keck II telescope. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, a deployable tertiary mirror for the Keck I telescope, upgrades to the spectrograph detector and the imager of the OSIRIS instrument, and an upgrade to the telescope control systems on both Keck telescopes.

  12. Estimates of the Officer Force Structure Required to Man the Projected Naval Combatant Forces of the 1980s and 1990s.

    DTIC Science & Technology

    1980-10-01

    Element, 64709N Prototype Manpower/Personnel Systems (U), Project Z1302-PN Officer Career Models (U), funded by the Office of the Deputy Assistant... Models for Navy Officer Billets portion of the proposed NPS research effort to develop an integrated officer system planning model ; the purpose of this...attempting to model the Naval officer force structure as a system. This study considers the primary first order factors which drive the requirements

  13. HELIO: The Heliophysics Integrated Observatory

    NASA Technical Reports Server (NTRS)

    Bentley, R. D.; Csillaghy, A.; Aboudarham, J.; Jacquey, C.; Hapgood, M. A.; Bocchialini, K.; Messerotti, M.; Brooke, J.; Gallagher, P.; Fox, P.; hide

    2011-01-01

    Heliophysics is a new research field that explores the Sun-Solar System Connection; it requires the joint exploitation of solar, heliospheric, magnetospheric and ionospheric observations. HELIO, the Heliophysics Integrated Observatory, will facilitate this study by creating an integrated e-Infrastructure that has no equivalent anywhere else. It will be a key component of a worldwide effort to integrate heliophysics data and will coordinate closely with international organizations to exploit synergies with complementary domains. HELIO was proposed under a Research Infrastructure call in the Capacities Programme of the European Commission's 7th Framework Programme (FP7). The project was selected for negotiation in January 2009; following a successful conclusion to these, the project started on 1 June 2009 and will last for 36 months.

  14. Providing Undergraduate Research Opportunities Through the World Rivers Observatory Collaborative Network

    NASA Astrophysics Data System (ADS)

    Gillies, S. L.; Marsh, S. J.; Janmaat, A.; Peucker-Ehrenbrink, B.; Voss, B.; Holmes, R. M.

    2013-12-01

    Successful research collaboration exists between the University of the Fraser Valley (UFV), a primarily undergraduate-serving university located on the Fraser River in British Columbia, and the World Rivers Observatory that is coordinated through the Woods Hole Oceanographic Institution (WHOI) and the Woods Hole Research Center (WHRC). The World Rivers Observatory coordinates time-series sampling of 15 large rivers, with particular focus on the large Arctic rivers, the Ganges-Brahmaputra, Congo, Fraser, Yangtze (Changjiang), Amazon, and Mackenzie River systems. The success of this international observatory critically depends on the participation of local collaborators, such as UFV, that are necessary in order to collect temporally resolved data from these rivers. Several faculty members and undergraduate students from the Biology and Geography Departments of UFV received on-site training from the lead-PIs of the Global Rivers Observatory. To share information and ensure good quality control of sampling methods, WHOI and WHRC hosted two international workshops at Woods Hole for collaborators. For the past four years, faculty and students from UFV have been collecting a variety of bi-monthly water samples from the Fraser River for the World Rivers Observatory. UFV undergraduate students who become involved learn proper sampling techniques and are given the opportunity to design and conduct their own research. Students have collected, analyzed and presented data from this project at regional, national, and international scientific meetings. UFV undergraduate students have also been hosted by WHOI and WHRC as guest students to work on independent research projects. While at WHOI and WHRC, students are able to conduct research using state-of-the-art specialized research facilities not available at UFV.

  15. Stratospheric Observatory For Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Moon, L. J.

    2003-06-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have a number of experiments related to Brown Dwarf research; some of these are discussed.

  16. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-01-01

    This photograph was taken during the assembly of the High Energy Astronomy Observatory (HEAO)-2 at TRW, Inc., the prime contractor for the HEAOs. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. TRW, Inc. designed and developed the HEAO, under the project management of the Marshall Space Flight Center. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  17. Open Technologies at Athabasca University's Geospace Observatories

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Schofield, I. S.

    2012-12-01

    Athabasca University Geophysical Observatories feature two auroral observation sites situated in the subauroral zone of western Canada, separated by approximately 25 km. These sites are both on high-speed internet and ideal for observing phenomena detectable from this latitude, which include noctilucent clouds, meteors, and magnetic and optical aspects of the aurora. General aspects of use of Linux in observatory management are described, with emphasis on recent imaging projects involving control of high resolution digital SLR cameras at low cadence, and inexpensive white light analog video cameras at 30 Hz. Linux shell scripts are extensively used, with image capture controlled by gphoto2, the ivtv-utils package, x264 video coding library, and ffmpeg. Imagemagick allows processing of images in an automated fashion. Image archives and movies are created and can be correlated with magnetic data. Much of the magnetic data stream also uses GMT (Generic Mapping Tools) within shell scripts for display. Additionally, SPASE metadata are generated for most of the magnetic data, thus allowing users of our AUTUMN magnetic data repository to perform SPASE queries on the dataset. Visualization products from our twin observatories will be presented.

  18. Press Meeting 20 January 2003: First Light for Europe's Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Imagine you are an astronomer with instant, fingertip access to all existing observations of a given object and the opportunity to sift through them at will. In just a few moments, you can have information on all kinds about objects out of catalogues all over the world, including observations taken at different times. Over the next two years this scenario will become reality as Europe's Astrophysical Virtual Observatory (AVO) develops. Established only a year ago (cf. ESO PR 26/01), the AVO already offers astronomers a unique, prototype research tool that will lead the way to many outstanding new discoveries. Journalists are invited to a live demonstration of the capabilities of this exciting new initiative in astronomy. The demonstration will take place at the Jodrell Bank Observatory in Manchester, in the United Kingdom, on 20 January 2003, starting at 11:00. Sophisticated AVO tools will help scientists find the most distant supernovae - objects that reveal the cosmological makeup of our Universe. The tools are also helping astronomers measure the rate of birth of stars in extremely red and distant galaxies. Journalists will also have the opportunity to discuss the project with leading astronomers from across Europe. The new AVO website has been launched today, explaining the progress being made in this European Commission-funded project: URL: http://www.euro-vo.org/ To register your intention to attend the AVO First Light Demonstration, please provide your name and affiliation by January 13, 2003, to: Ian Morison, Jodrell Bank Observatory (full contact details below). Information on getting to the event is included on the webpage above. Programme for the AVO First Light Demonstration 11:00 Welcome, Phil Diamond (University of Manchester/Jodrell Bank Observatory) 11:05 Short introduction to Virtual Observatories, Piero Benvenuti (ESA/ST-ECF) 11:15 Q&A 11:20 Short introduction to the Astrophysical Virtual Observatory, Peter Quinn (ESO) 11:30 Q&A 11:35 Screening of

  19. What's Educational about Online Telescopes? Evaluating 10 Years of MicroObservatory

    ERIC Educational Resources Information Center

    Gould, Roy; Dussault, Mary; Sadler, Philip

    2007-01-01

    The MicroObservatory network of five online telescopes has been used by middle and high school students, their teachers, and the public in all 50 states to carry out a wide variety of inquiry-driven projects. From an analysis of 475 student projects and other data, we report substantial gains in students' conceptual understanding of what…

  20. The Carl Sagan solar and stellar observatories as remote observatories

    NASA Astrophysics Data System (ADS)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  1. WNCC Observatory

    NASA Astrophysics Data System (ADS)

    Snyder, L. F.

    2003-05-01

    Western Nevada Community College (WNCC), located in Carson City, Nevada, is a small two year college with only 6,000 students. Associate degrees and Cer- tificates of Achievement are awarded. The college was built and started classes in 1971 and about 12 years ago the chair of the physics department along with a few in administration had dreams of building a small observatory for education. Around that time a local foundation, Nevada Gaming Foundation for Education Excellence, was looking for a beneficiary in the education field to receive a grant. They decided an observatory at the college met their criteria. Grants to the foundation instigated by Senators, businesses, and Casinos and donations from the local public now total $1.3 million. This paper will explain the different facets of building the observatory, the planning, construction, telescopes and equipment decisions and how we think it will operate for the public, education and research. The organization of local volunteers to operate and maintain the observatory and the planned re- search will be explained.

  2. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1975-07-01

    This illustration is a schematic of the High Energy Astronomy Observatory (HEAO)-2 and its experiments. It shows the focal plane instruments (at the right) plus the associated electronics for operating the telescope as it transmitted its observations to the ground. A fifth instrument, the Monitor Proportional Counter, is located near the front of the telescope. Four separate astronomical instruments are located at the focus of this telescope and they could be interchanged for different types of observations as the observatory pointed at interesting areas of the Sky. Two of these instruments produced images; a High Resolution Imaging Detector and an Imaging Proportional Counter. The other two instruments, the Solid State Spectrometer and the Crystal Spectrometer, measured the spectra of x-ray objects. A fifth instrument, the Monitor Proportional Counter, continuously viewed space independently to study a wider band of x-ray wavelengths and to examine the rapid time variations in the sources. The HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  3. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    The dramatic change in x-ray emission from the Terzan 2 cluster is shown in this series of 2.5-minute exposures taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory immediately before, during, and after the burst. Total exposure (20 minutes) of the object, including the outburst, is shown in the fourth photograph. These images represent the first observation of an x-ray burst in progress. The actual burst lasted 50 seconds. Among the rarest, and most bizarre, phenomena observed by x-ray astronomers are the so-called cosmic bursters (x-ray sources that suddenly and dramatically increase in intensity then subside). These sudden bursts of intense x-ray radiation apparently come from compact objects with a diameter smaller than 30 miles (48 kilometers). Yet, despite their minuscule size, a typical x-ray burster can release more x-ray energy in a single brief burst than our Sun does in an entire week. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center.

  4. The brazilian indigenous planetary-observatory

    NASA Astrophysics Data System (ADS)

    Afonso, G. B.

    2003-08-01

    We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.

  5. Cyberinfrastructure (CI) for Interactive Ocean Observatories: LOOKING Ahead

    NASA Astrophysics Data System (ADS)

    Orcutt, J.; Abbott, M.; Bellingham, J.; Chave, A.; Delaney, J.; Johnson, R.; Lazowska, E.; Moline, M.; Smarr, L.

    2004-12-01

    Investments in next-generation facilities to achieve a permanent, interactive telepresence throughout remote or hostile environments can empower a broad spectrum of autonomous sensornet facilities through the NSF Major Research Equipment and Facililties Construction Ocean Observatories Initiative (OOI). These systems must involve powerful suites of generic cyberinfrastructure tools designed to optimize access and benefits to a large academic and public user base. Many future research and educational efforts focused throughout the ocean basins, especially within heavily populated coastal regions, will be empowered by these new systems. Our project LOOKING (Laboratory for the Ocean Observatory Knowledge Integration Grid) is developing prototype CI for the OOI to achieve these goals. In the case of ocean observatory networks, it is essential to establish powerful network infrastructures linking the wet or subsea portion, with a host of shore station facilities. These components in turn must seamlessly communicate with an ensemble of data repositories, and relevant computer and visualization resources designed to serve a widely diverse ocean science community with real time, broadband access to all observatory system data, products, and metadata. This infrastructure must be secure, reliable, and resilient. It must meet the potentially ambitious latency, bandwidth, and performance requirements demanded by a set of evolving autonomous sensor platforms over a period of decades. This Grid environment must seamlessly interconnect all relevant national and international research and education nets accessible through high speed, next generation communication networks. The primary components of LOOKING are remote services that fulfill the CI needs of the ocean observatory community. These services arise from overarching science and education requirements: 1) Instrument Services operate at the sensor end of an ocean observatory, and are dominantly but not exclusively wet. 2

  6. Stratospheric Observatory for Infrared Astronomy (SOPHIA) Mirror Coating Facility

    NASA Astrophysics Data System (ADS)

    Austin, Ed

    The joint US and German project, Stratospheric Observatory for Infrared Astronomy (SOFIA), to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP began late last year. Universities Space Research Association (USRA), teamed with Raytheon E-Systems and United Airlines, was selected by NASA to develop and operate SOPHIA. The 2.5 meter telescope will be designed and built by a consortium of German companies. The observatory is expected to operate for over 29 years with the first science flights beginning in 2001. The SOPHIA Observatory will fly at and above 12.5 km, where the telescope will collect radiation in the wavelength range from 0.3 micrometers to a 1.6 millimeters. Universities Space Research Association (USRA) with support from NASA is currently evaluating methods of recoating the primary mirror in preparation for procurement of mirror coating equipment. The decision analysis technique, decision criteria and telescope specifications will be discussed.

  7. Software for autonomous astronomical observatories: challenges and opportunities in the age of big data

    NASA Astrophysics Data System (ADS)

    Sybilski, Piotr W.; Pawłaszek, Rafał; Kozłowski, Stanisław K.; Konacki, Maciej; Ratajczak, Milena; Hełminiak, Krzysztof G.

    2014-07-01

    We present the software solution developed for a network of autonomous telescopes, deployed and tested in Solaris Project. The software aims to fulfil the contemporary needs of distributed autonomous observatories housing medium sized telescopes: ergonomics, availability, security and reusability. The datafication of such facilities seems inevitable and we give a preliminary study of the challenges and opportunities waiting for software developers. Project Solaris is a global network of four 0.5 m autonomous telescopes conducting a survey of eclipsing binaries in the Southern Hemisphere. The Project's goal is to detect and characterise circumbinary planets using the eclipse timing method. The observatories are located on three continents, and the headquarters coordinating and monitoring the network is in Poland. All four are operational as of December 2013.

  8. Artificial intelligence for the CTA Observatory scheduler

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro

    2014-08-01

    The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint

  9. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Ralph Basilio, OCO-2 project manager with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, left, and Mike Gunson, OCO-2 project scientist at JPL, discuss the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  10. EMSO: European multidisciplinary seafloor observatory

    NASA Astrophysics Data System (ADS)

    Favali, Paolo; Beranzoli, Laura

    2009-04-01

    EMSO has been identified by the ESFRI Report 2006 as one of the Research Infrastructures that European members and associated states are asked to develop in the next decades. It will be based on a European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the aim of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes, providing long time series data for the different phenomenon scales which constitute the new frontier for study of Earth interior, deep-sea biology and chemistry, and ocean processes. The development of an underwater network is based on past EU projects and is supported by several EU initiatives, such as the on-going ESONET-NoE, aimed at strengthening the ocean observatories' scientific and technological community. The EMSO development relies on the synergy between the scientific community and industry to improve European competitiveness with respect to countries such as USA, Canada and Japan. Within the FP7 Programme launched in 2006, a call for Preparatory Phase (PP) was issued in order to support the foundation of the legal and organisational entity in charge of building up and managing the infrastructure, and coordinating the financial effort among the countries. The EMSO-PP project, coordinated by the Italian INGV with participation by 11 institutions from as many European countries, started in April 2008 and will last four years.

  11. Virtual Observatory and Colitec Software: Modules, Features, Methods

    NASA Astrophysics Data System (ADS)

    Pohorelov, A. V.; Khlamov, S. V.; Savanevych, V. E.; Briukhovetskyi, A. B.; Vlasenko, V. P.

    In this article we described complex processing system created by the CoLiTec project. This system includes features, user-friendly tools for processing control, results reviewing, integration with online catalogs and a lot of different computational modules that are based on the developed methods. Some of them are described in the article.The main directions of the CoLiTec software development are the Virtual Observatory, software for automated asteroids and comets detection and software for brightness equalization.The CoLiTec software is widely used in a number of observatories in the CIS. It has been used in about 700 000 observations, during which 1560 asteroids, including 5 NEO, 21 Trojan asteroids of Jupiter, 1 Centaur and four comets were discovered.

  12. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1995-01-14

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  13. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  14. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  15. Asteroid families spin and shape models to be supported by the ProjectSoft robotic observatory

    NASA Astrophysics Data System (ADS)

    Brož, M.; Ďurech, J.; Hanuš, J.; Lehký, M.

    2014-07-01

    In our recent work (Hanuš et al. 2013), we studied dynamics of asteroid families constrained by the distribution of pole latitudes vs semimajor axis. The model contained the following ingredients: (i) the Yarkovsky semimajor-axis drift; (ii) secular spin evolution due to the YORP effect; (iii) collisional re-orientations; (iv) a simple treatment of spin-orbit resonances; and (v) of mass shedding. We suggest to use a different complementary approach, based on distribution functions of shape parameters. Based on ˜1000 old and new convex-hull shape models, we construct the distributions of suitable quantities (ellipticity, normalized facet areas, etc.) and we discuss a significance of differences among asteroid populations. We check for outlier points which may then serve as a possible identification of (large) interlopers among ''real'' family members. This has also implications for SPH models of asteroid disruptions which can be possibly further constrained by the shape models of resulting fragments. Up to now, the observed size-frequency distribution and velocity field were used as constraints, sometimes allowing for a removal of interlopers (Michel et al. 2011). We also outline an ongoing construction of the ProjectSoft robotic observatory called ''Blue Eye 600'', which will support our efforts to complete the sample of shapes for a substantial fraction of (large) family members. Dense photometry will be targeted in such a way to maximize a possibility to derive a new pole/shape model. Other possible applications of the observatory include: (i) fast resolved observations of fireballs (thanks to a fast-motion capability, tens of degrees per second); or, (ii) an automatic survey of a particular population of objects (main-belt and near-Earth asteroids, variable stars, novae etc.)

  16. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.

  17. Annual Report 2008 -- Office of the Chief Financial Officer (OCFO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Jeffrey

    2008-12-22

    It is with great pleasure that I present to you the 2008 Chief Financial Officer's Annual Report. The data included in this report has been compiled from the Budget Office, the Controller, Procurement and Property Management and the Sponsored Projects Office. Also included are some financial comparisons with other DOE Laboratories and a glossary of commonly used acronyms.

  18. The McDonald Observatory lunar laser ranging project

    NASA Technical Reports Server (NTRS)

    Silverberg, E. C.

    1978-01-01

    A summary of the activities of the McDonald lunar laser ranging station at Fort Davis for the FY 77-78 fiscal year is presented. The lunar laser experiment uses the observatory 2.7m reflecting telescope on a thrice-per-day, 21-day-per-lunation schedule. Data are recorded on magnetic tapes and sent to the University of Texas at Austin where the data is processed. After processing, the data is distributed to interested analysis centers and later to the National Space Science Data Center where it is available for routine distribution. Detailed reports are published on the McDonald operations after every fourth lunation or approximately once every 115 days. These reports contain a day-by-day documentation of the ranging activity, detailed discussions of the equipment development efforts, and an abundance of other information as is needed to document and archive this important data type.

  19. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Annmarie Eldering, OCO-2 deputy project scientist, JPL talks during an Orbiting Carbon Observatory-2 (OCO-2) science briefing, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  20. Office of Inspector General audit report on credit card usage at the Ohio Field Office and the Fernald and Miamisburg Environmental Management Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    In 1994 the Department of Energy (Department) obtained the services of Rocky Mountain BankCard System, through the use of a General Services Administration contract, as a means for the Department and its contractors to make small purchases. The use of credit cards was expected to simplify small purchase procedures and improve cash management. The Ohio Field Office (Field Office) uses the credit card system and oversees usage by its area offices. Contractors under the Field Office also use the credit card system to make small purchases. The Office of Inspector General (OIG) has issued one audit report concerning the usemore » of credit cards. In April 1996, the OIG issued Report WR-B-96-06, Audit of Bonneville Power Administration`s Management of Information Resources. The audit concluded that improvements could be made in implementing credit card and property procedures in Bonneville`s management of computer-related equipment. Specifically, many credit card purchases were made by employees whose authority to buy was not properly documented, and the purchasing files often lacked invoices that would show what was purchased. Additionally, some cardholders split purchases to avoid credit card limits. The objective of this audit was to determine whether the Field Office, Fernald and Miamisburg Environmental Management Projects, Fluor Daniel, and B and W were using credit cards for the appropriate purposes and within the limitations established by Federal and Departmental regulations.« less

  1. The NCU Lu-Lin Observatory Survived the Taiwan 921 Earthquake

    NASA Astrophysics Data System (ADS)

    Tsay, W. S.; Chang, K. H.; Li, H. H.

    1999-12-01

    The NCU (National Central University) Lu-Lin Observatory is located at Mt. Front Lu-Lin, 120o 52' 25" E and 23o 28' 07" N, a 2862-m peak in the Yu-Shan National Park. The construction of Lu-Lin Observatory was finished in January 1999. Fortunately the Lu-Lin Observatory survived the Taiwan 921 Earthquake that was 7.3 on the Ritcher scale. We are proud of the design of Lu-Lin Observatory adopted H-beam and steel wall even the center of earthquake was only 40 km away. The initial study of Lu-Lin site was started since late 1989. Later on, a three-year project was founded by the National Science Council , which supported the development of a modern seeing monitor for this site survey study from 1990 through 1993. The average seeing of Lu-Lin site is about 1.39 arc-second with average 200 clear nights annually. The sky background of this site is 20.72 mag/arcsec2 in V band and 21.22 mag/arcsec2 in B band. The Lu-Lin observatory is developed for both research and education activity. A homemade 76-cm Super Light Telescope (SLT) and three TAOS's 50-cm robotic telescopes will be the two major research facilities. This work is supported by the National Science Council of Taiwan.

  2. The making of the Chandra X-Ray Observatory: The project scientist’s perspective

    PubMed Central

    Weisskopf, Martin C.

    2010-01-01

    The history of the development of the Chandra X-Ray Observatory is reviewed from a personal perspective. This review is necessarily biased and limited by space because it attempts to cover a time span approaching five decades. PMID:20194740

  3. [Psychiatric patients and relatives instruct German police officers - an anti-stigma project of "BASTA - the alliance for mentally ill people"].

    PubMed

    Wundsam, Kerstin; Pitschel-Walz, Gabi; Leucht, Stefan; Kissling, Werner

    2007-05-01

    Contact with police officers due to schizophrenia and resort to violence in such interactions is a common occurrence and represents a source for stigmatisation of mentally ill people. Aim of this project was to establish a program for police officers to reduce that stigma. The seminar was developed by a German anti-stigma organisation in cooperation with sociology teachers of the Bavarian police academy. Evaluations focussed on the police officers "social distance" and "negative stereotypes" towards mentally ill people. The personal contact between officers and the referees (patients, relatives, professionals) was the core of the seminar. Results of a debriefing after the pilot-project was overall positive. Evaluations in the renewal years showed significant improvement within the scale "social distance" (p < 0.0001) and amelioration in the stereotype-categories "violence" and "treatability". The need for special training of the police regarding mental illnesses was acknowledged by all participants. Personal contact of police officers with patients and relatives appeared to be important for the efficacy of this seminar and should become a main focus in similar anti-stigma interventions.

  4. Reengineering observatory operations for the time domain

    NASA Astrophysics Data System (ADS)

    Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.

    2014-07-01

    Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.

  5. AstroGrid: the UK's Virtual Observatory Initiative

    NASA Astrophysics Data System (ADS)

    Mann, Robert G.; Astrogrid Consortium; Lawrence, Andy; Davenhall, Clive; Mann, Bob; McMahon, Richard; Irwin, Mike; Walton, Nic; Rixon, Guy; Watson, Mike; Osborne, Julian; Page, Clive; Allan, Peter; Giaretta, David; Perry, Chris; Pike, Dave; Sherman, John; Murtagh, Fionn; Harra, Louise; Bentley, Bob; Mason, Keith; Garrington, Simon

    AstroGrid is the UK's Virtual Observatory (VO) initiative. It brings together the principal astronomical data centres in the UK, and has been funded to the tune of ˜pounds 5M over the next three years, via PPARC, as part of the UK e--science programme. Its twin goals are the provision of the infrastructure and tools for the federation and exploitation of large astronomical (X-ray to radio), solar and space plasma physics datasets, and the delivery of federations of current datasets for its user communities to exploit using those tools. Whilst AstroGrid's work will be centred on existing and future (e.g. VISTA) UK datasets, it will seek solutions to generic VO problems and will contribute to the developing international virtual observatory framework: AstroGrid is a member of the EU-funded Astrophysical Virtual Observatory project, has close links to a second EU Grid initiative, the European Grid of Solar Observations (EGSO), and will seek an active role in the development of the common standards on which the international virtual observatory will rely. In this paper we shall primarily describe the concrete plans for AstroGrid's one-year Phase A study, which will centre on: (i) the definition of detailed science requirements through community consultation; (ii) the undertaking of a ``functionality market survey" to test the utility of existing technologies for the VO; and (iii) a pilot programme of database federations, each addressing different aspects of the general database federation problem. Further information on AstroGrid can be found at AstroGrid .

  6. Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.

    2012-09-01

    Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.

  7. SOFIA: Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The SOFIA project to develop and operate a 2 5-meter infrared telescope in a Boeing 747-SP is in its final stages of development First science flights will begin in 2008 with the observatory designed to operate for over 20 years Status of the development and technical issues will be discussed along with the expected sensitivity and first light science instruments Also discussed will be examples of the science to be carried out and opportunities for the science community to use SOFIA

  8. Stratospheric Observatory For Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Moon, L. J.

    2004-12-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have a number of experiments related to Dust Debris Disks; some of these are discussed.

  9. Research and Grant Management: The Role of the Project Management Office (PMO) in a European Research Consortium Context

    ERIC Educational Resources Information Center

    Wedekind, Gerben Kristian; Philbin, Simon Patrick

    2018-01-01

    This paper illustrates how a university-based project management office (PMO) can provide focused support across the entire grant project lifecycle within a European research context. In recent years, EU (European Union) research and innovation grant programs have increasingly shifted to support multidisciplinary consortia composed of industry,…

  10. Progress and Prospects toward a Space-based Gravitational-Wave Observatory

    NASA Technical Reports Server (NTRS)

    Baker, John

    2012-01-01

    Over the last few years there has been much activity in the effort to produce a space-based gravitational-wave observatory. These efforts have enriched the understanding of the scientific capabilities of such an observatory leading to broad recognition of its value as an astronomical instrument. At the same time, rapidly developing events in the US and Europe have lead to a more complicated outlook than the baseline Laser Interferometer Space Antenna (LISA) project plan of a few years ago. I will discuss recent progress and developments resulting from the European eLISA study and the SGO study in the US and prospects looking forward.

  11. The BINA collaboration: science at the Royal Observatory of Belgium

    NASA Astrophysics Data System (ADS)

    De Cat, Peter; Cuypers, Jan; Blomme, Ronny; Frémat, Yves; Groenewegen, Martin; Lampens, Patricia; Lobel, Alex; Pauwels, Thierry; Van de Steene, Griet; van Hoof, Peter

    2018-04-01

    The Belgo-Indian Network for Astronomy and Astrophysics (BINA) is a collaboration between Indian and Belgian astronomical institutes with the main aim to optimize the scientific output of the Indo-Belgian telescopes, being the 4.0-m International Liquid Mirror Telescope and the 3.6-m Devasthal Optical Telescope. These new facilities are both located at the Devasthal Observatory near Nainital, India. In this contribution, we introduce projects that are of scientific interest for colleagues of the department "Astronomy and Astrophysics" of the Royal Observatory of Belgium (ROB). It serves as an invitation for Indian astronomers to participate. We highlight how these projects could benefit from observations with the Indo-Belgian telescopes by using instruments from the first-generation (currently offered) and/or the next-generation (development or design phase). We show that, from an ROB point-of-view, the BINA would be the most successful if the 3.6-m DOT would be equipped with an efficient optical high-resolution spectrograph.

  12. Airborne optic and magnetic observatory (ABOMO) for the investigation of the ionosphere, magnetosphere, and atmospheric proceses

    NASA Astrophysics Data System (ADS)

    Raspopov, Oleg M.; Pochtarev, V. I.; Domaratskij, Serguej N.

    1993-11-01

    The St. Petersburg Filial (Division) of IZMIRAN has recently initiated a major new research project involving the Airborne Optic and Magnetic Observatory (ABOMO). ABOMO is designed specifically for studies of auroral, magnetic, ionospheric and atmospheric phenomena including ozone and other important atmospheric constituents. The observatory is constructed aboard a modified four-engine turboprop aircraft AN-12.

  13. Urban observatories opportunities for environmental monitoring: solid wastes.

    PubMed

    Rojas-Caldelas, R I; Corona Zambrano, E A

    2008-01-01

    Towns concentrate around 50% of world-wide population and the trend is oriented to underscore an urban profile of population. In addition, towns have become important for their economic contribution to the Gross Internal Product. The negative side of towns is the environmental and social impacts as a result of productive and domestic activities, besides the lack of available data. In order to overcome these shortcomings, the United Nations has established a project of urban monitoring throughout the Global Network of Urban Observatories; Mexico joined the project in 2005. The Local Urban Observatory of Mexicali has the task to produce information about cities that is useful to design public policies. Some of this information deals with a set of environmental indicators in the United Nations Habitat Agenda, which includes solid wastes. Therefore, this paper deals with two main topics; firstly, from the Habitat Agenda, a comparative urban analysis of waste production and coverage of domestic waste collection services; secondly, from the Local Agenda, the identification and ranking of environmental problems according to public perception coming from people involved in the municipal planning and decision making process. Results will be used to develop local indicators and public environmental policies.

  14. Euro-VO-Coordination of virtual observatory activities in Europe

    NASA Astrophysics Data System (ADS)

    Genova, Françoise; Allen, Mark G.; Arviset, Christophe; Lawrence, Andy; Pasian, Fabio; Solano, Enrique; Wambsganss, Joachim

    2015-06-01

    The European Virtual Observatory Euro-VO has been coordinating European VO activities through a series of projects co-funded by the European Commission over the last 15 years. The bulk of VO work in Europe is ensured by the national VO initiatives and those of intergovernmental agencies. VO activities at the European level coordinate the work in support of the three "pillars" of the Virtual Observatory: support to the scientific community, take-up by the data providers, and technological activities. Several Euro-VO projects have also provided direct support to selected developments and prototyping. This paper explains the methodology used by Euro-VO over the years. It summarises the activities which were performed and their evolutions at different stages of the development of the VO, explains the Euro-VO role with respect to the international and national levels of VO activities, details the lessons learnt for best practices for the coordination of the VO building blocks, and the liaison with other European initiatives, documenting the added-value of European coordination. Finally, the current status and next steps of Euro-VO are briefly addressed.

  15. Chandra X-Ray Observatory High Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical 'telescope' portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  16. The Virtual Observatory as Critical Scientific Cyber Infrastructure.

    NASA Astrophysics Data System (ADS)

    Fox, P.

    2006-12-01

    Virtual Observatories can provide access to vast stores of scientific data: observations and models as well as services to analyze, visualize and assimilate multiple data sources. As these electronic resource become widely used, there is potential to improve the efficiency, interoperability, collaborative potential, and impact of a wide range of interdisciplinary scientific research. In addition, we know that as the diversity of collaborative science and volume of accompanying data and data generators/consumers grows so do the challenges. In order for Virtual Observatories to realize their potential and become indispensible infrastructure, social, political and technical challenges need to be addressed concerning (at least) roles and responsibilities, data and services policies, representations and interoperability of services, data search, access, and usability. In this presentation, we discuss several concepts and instances of the Virtual Observatory and related projects that may, and may not, be meeting the abovementioned challanges. We also argue that science driven needs and architecture development are critical in the development of sustainable (and thus agile) cyberinfrastructure. Finally we some present or emerging candidate technologies and organizational constructs that will need to be pursued.

  17. The World Space Observatory Ultraviolet (WSO-UV), as a bridge to future UV astronomy

    NASA Astrophysics Data System (ADS)

    Shustov, B.; Gómez de Castro, A. I.; Sachkov, M.; Vallejo, J. C.; Marcos-Arenal, P.; Kanev, E.; Savanov, I.; Shugarov, A.; Sichevskii, S.

    2018-04-01

    Ultraviolet (UV) astronomy is a vital branch of space astronomy. Many dozens of short-term UV-experiments in space, as well as long-term observatories, have brought a very important knowledge on the physics and chemistry of the Universe during the last decades. Unfortunately, no large UV-observatories are planned to be launched by most of space agencies in the coming 10-15 years. Conversely, the large UVOIR observatories of the future will appear not earlier than in 2030s. This paper briefly describes the projects that have been proposed by various groups. We conclude that the World Space Observatory-Ultraviolet (WSO-UV) will be the only 2-m class UV telescope with capabilities similar to those of the HST for the next decade. The WSO-UV has been described in detail in previous publications, and this paper updates the main characteristics of its instruments and the current state of the whole project. It also addresses the major science topics that have been included in the core program of the WSO-UV, making this core program very relevant to the current state of the UV-astronomy. Finally, we also present here the ground segment architecture that will implement this program.

  18. EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, E. T.; Becklin, E. E.; De Buizer, J. M.

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7 m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 {mu}m to 1.6 mm, SOFIA operates above 99.8% of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center Deutsches Zentrum fuer Luft und-Raumfahrt, began initial sciencemore » flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This Letter provides an overview of the observatory and its early performance.« less

  19. The TJO-OAdM Robotic Observatory: the scheduler

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Casteels, Kevin; Ribas, Ignasi; Francisco, Xavier

    2010-07-01

    The Joan Oró Telescope at the Montsec Astronomical Observatory (TJO - OAdM) is a small-class observatory working under completely unattended control, due to the isolation of the site. Robotic operation is mandatory for its routine use. The level of robotization of an observatory is given by its reliability in responding to environment changes and by the required human interaction due to possible alarms. These two points establish a level of human attendance to ensure low risk at any time. But there is another key point when deciding how the system performs as a robot: the capability to adapt the scheduled observation to actual conditions. The scheduler represents a fundamental element to fully achieve an intelligent response at any time. Its main task is the mid- and short-term time optimization and it has a direct effect on the scientific return achieved by the observatory. We present a description of the scheduler developed for the TJO - OAdM, which is separated in two parts. Firstly, a pre-scheduler that makes a temporary selection of objects from the available projects according to their possibility of observation. This process is carried out before the beginning of the night following different selection criteria. Secondly, a dynamic scheduler that is executed any time a target observation is complete and a new one must be scheduled. The latter enables the selection of the best target in real time according to actual environment conditions and the set of priorities.

  20. The Serendip piggyback SETI project

    NASA Technical Reports Server (NTRS)

    Lampton, Michael; Bowyer, Stuart; Werthimer, Dan; Donnelly, Charles; Herrick, Walter

    1988-01-01

    The Serendip project, an ongoing SETI program of monitoring and processing broadband radio signals acquired by existing radio astronomy observatories, are summarized. Serendip operates in a piggyback mode, making use of whatever observing plan is under way at its host observatory. The Serendip system at NRAO and the signature detection and identification techniques used by the project are described. The method used to reject terrestrial interference is discussed.

  1. The EuroSITES network: Integrating and enhancing fixed-point open ocean observatories around Europe

    NASA Astrophysics Data System (ADS)

    Lampitt, Richard S.; Larkin, Kate E.; EuroSITES Consortium

    2010-05-01

    EuroSITES is a 3 year (2008-2011) EU collaborative project (3.5MEuro) with the objective to integrate and enhance the nine existing open ocean fixed point observatories around Europe (www.eurosites.info). These observatories are primarily composed of full depth moorings and make multidisciplinary in situ observations within the water column as the European contribution to the global array OceanSITES (www.oceansites.org). In the first 18 months, all 9 observatories have been active and integration has been significant through the maintenance and enhancement of observatory hardware. Highlights include the enhancement of observatories with sensors to measure O2, pCO2, chlorophyll, and nitrate in near real-time from the upper 1000 m. In addition, some seafloor missions are also actively supported. These include seafloor platforms currently deployed in the Mediterranean, one for tsunami detection and one to monitor fluid flow related to seismic activity and slope stability. Upcoming seafloor science missions in 2010 include monitoring benthic biological communities and associated biogeochemistry as indicators of climate change in both the Northeast Atlantic and Mediterranean. EuroSITES also promotes the development of innovative sensors and samplers in order to progress capability to measure climate-relevant properties of the ocean. These include further developing current technologies for autonomous long-term monitoring of oxygen consumption in the mesopelagic, pH and mesozooplankton abundance. Many of these science missions are directly related to complementary activities in other European projects such as EPOCA, HYPOX and ESONET. In 2010 a direct collaboration including in situ field work will take place between ESONET and EuroSITES. The demonstration mission MODOO (funded by ESONET) will be implemented in 2010 at the EuroSITES PAP observatory. Field work will include deployment of a seafloor lander system with various sensors which will send data to shore in real

  2. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-01-01

    Managed by the Marshall Space Flight Center and built by TRW, the second High Energy Astronomy Observatory was launched November 13, 1978. The observatory carried the largest X-ray telescope ever built and was renamed the Einstein Observatory after achieving orbit.

  3. Citizen observatory of water as a data engine supporting the people-hydrology nexus: experience of the WeSenseIt project

    NASA Astrophysics Data System (ADS)

    Ferri, Michele; Baruffi, Francesco; Norbiato, Daniele; Monego, Martina; Tomei, Giovanni; Solomatine, Dimitri; Alfonso, Leonardo; Mazzoleni, Maurizio; Chacon, Juan Carlos; Wehn, Uta; Ciravegna, Fabio

    2016-04-01

    Citizen observatories (COs) present an interesting case of strong multi-facet feedback between the physical (water) system and humans. CO is a form of crowdsourcing ensuring a data flow from citizens observing environment (e.g. water level in a river) to a central data processing unit which is typically part of a more complex social arrangement (e.g. water authorities responsible for flood forecasting). The EU-funded project WeSenseIt (www.wesenseit.eu) aims at developing technologies and tools supporting creation of such COs [1,2,3,4]. Citizens which form a CO play the role of "social sensors" which however are very specific. The data streams from such sensors have varying temporal and spatial coverage and information value (uncertainty). The crowdsourced data can be of course simply visualized and presented to public, but it is much more interesting to consider cases when such data are assimilated into the existing forecasting systems, e.g. flood early warning systems based on hydrological and hydraulic models. COs may also affect water management and governance [4], and in fact can be seen as data engines supporting the people-hydrology nexus. In the framework of WeSenseIt project several approaches were developed allowing for optimal assimilation of intermittent data streams with varying spatial coverage into distributed hydrological models [1, 2]. The mentioned specific features of CO data required updates of the existing data assimilation algorithms (Ensemble Kalman Filter was used as the basic algorithm). The developed algorithms have been implemented in the operational flood forecasting systems of the Alto Adriatico Water Authority (AAWA), Venice. In this paper we analyse various scenarios of employing citizens data (COs) for flood forecasting. This study is partly supported by the FP7 European Project WeSenseIt Citizen Water Observatory (www.http://wesenseit.eu/). References [1] Mazzoleni, M., Alfonso, L., Chacon-Hurtado, J., Solomatine, D. (2015

  4. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-05-01

    This photograph shows the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  5. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1996-12-16

    This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  6. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-12-16

    This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSCF was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  7. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-05-01

    This photograph shows the Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  8. High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This illustration is a schematic of the High Energy Astronomy Observatory (HEAO)-2 and its experiments. It shows the focal plane instruments (at the right) plus the associated electronics for operating the telescope as it transmitted its observations to the ground. A fifth instrument, the Monitor Proportional Counter, is located near the front of the telescope. Four separate astronomical instruments are located at the focus of this telescope and they could be interchanged for different types of observations as the observatory pointed at interesting areas of the Sky. Two of these instruments produced images; a High Resolution Imaging Detector and an Imaging Proportional Counter. The other two instruments, the Solid State Spectrometer and the Crystal Spectrometer, measured the spectra of x-ray objects. A fifth instrument, the Monitor Proportional Counter, continuously viewed space independently to study a wider band of x-ray wavelengths and to examine the rapid time variations in the sources. The HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  9. The Penllergare Observatory

    NASA Astrophysics Data System (ADS)

    Birks, J. L.

    2005-12-01

    This rather picturesque and historically important Victorian observatory was built by the wealthy John Dillwyn Llewelyn near to his mansion, some four miles north-west of Swansea, Wales. He had many scientific interests, in addition to astronomy, and was a notable pioneer of photography in Wales. Together with his eldest daughter, Thereza, (who married the grandson of the fifth Astronomer Royal, Nevil Maskelyne), he took some early photographs of the Moon from this site. This paper describes the construction of the observatory, and some of those primarily involved with it. Despite its having undergone restoration work in 1982, the state of the observatory is again the cause for much concern.

  10. An Observatory to Enhance the Preparation of Future California Teachers

    NASA Astrophysics Data System (ADS)

    Connolly, L.; Lederer, S.

    2004-12-01

    With a major grant from the W. M. Keck Foundation, California State University, San Bernardino is establishing a state-of-the-art teaching astronomical observatory. The Observatory will be fundamental to an innovative undergraduate physics and astronomy curriculum for Physics and Liberal Studies majors and will be integrated into our General Education program. The critical need for a research and educational observatory is linked to changes in California's Science Competencies for teacher certification. Development of the Observatory will also complement a new infusion of NASA funding and equipment support for our growing astronomy education programs and the University's established Strategic Plan for excellence in education and teacher preparation. The Observatory will consist of two domed towers. One tower will house a 20" Ritchey-Chretien telescope equipped with a CCD camera in conjunction with either UBVRI broadband filters or a spectrometer for evening laboratories and student research projects. The second tower will house the university's existing 12" Schmidt-Cassegrain optical telescope coupled with a CCD camera and an array of filters. A small aperture solar telescope will be attached to the 12" for observing solar prominences while a milar filter can be attached to the 12" for sunspot viewing. We have been very fortunate to receive a challenge grant of \\600,000 from the W. M. Keck Foundation to equip the two domed towers; we continue to seek a further \\800,000 to meet our construction needs. Funding also provided by the California State University, San Bernardino.

  11. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  12. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph B.

    2007-01-01

    The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."

  13. NASA Marshall Space Flight Center solar observatory report, January - June 1991

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1991-01-01

    Given here is a summary of the solar vector magnetic field, H-alpha, and white-light observations made at the NASA/Marshall Space Flight Center (MSFC) Solar Observatory during its daily periods of operation. The MSFC Solar Observatory facilities consist of the Solar Magnetograph, an f/13, 30-cm Cassegrain system with a 3.5-cm image of the Sun, housed on top of a 12.8-meter tower; a 12.5-cm Razdow H-alpha telescope housed at the base of the tower; an 18-cm Questar telescope with a full aperture white-light filter mounted at the base of the tower; a 30-cm Cassegrain telescope located in a second metal dome; and a 16.5-cm H-alpha telescope mounted on side of the Solar Vector Magnetograph. A concrete block building provides office space, a darkroom for developing film and performing optical testing, a workshop, video displays, and a computer facility for data reduction.

  14. NASA Marshall Space Flight Center Solar Observatory report, July - December 1991

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1992-01-01

    A summary is given of the solar vector magnetic field, H-alpha, and white light observations made at the NASA/Marshall Space Flight Center (MSFC) Solar Observatory during its daily periods of observation. The MSFC Solar Observatory facilities consist of the Solar Magnetograph, an f-13, 30 cm Cassegrain system with a 3.5 cm image of the Sun housed on top of a 12.8 meter tower, a 12.5 cm Razdow H-alpha telescope housed at the base of the tower, an 18 cm Questar telescope with a full aperture white-light filter mounted at the base of the tower, a 30 cm Cassegrain telescope located in a second metal dome, and a 16.5 cm H-alpha telescope mounted on the side of the Solar Vector Magnetograph. A concrete block building provides office space, a darkroom for developing film and performing optical testing, a workshop, video displays, and a computer facility for data reduction.

  15. Distributions of spin/shape parameters of asteroid families and targeted photometry by ProjectSoft robotic observatory

    NASA Astrophysics Data System (ADS)

    Broz, Miroslav; Durech, Josef; Hanus, Josef; Lehky, Martin

    2014-11-01

    In our recent work (Hanus et al. 2013) we studied dynamics of asteroid families constrained by the distribution of pole latitudes vs semimajor axis. The model contained the following ingredients: (i) the Yarkovsky semimajor-axis drift, (ii) secular spin evolution due to the YORP effect, (iii) collisional reorientations, (iv) a simple treatment of spin-orbit resonances and (v) of mass shedding.We suggest to use a different complementary approach, based on distribution functions of shape parameters. Based on ~1000 old and new convex-hull shape models, we construct the distributions of suitable quantities (ellipticity, normalized facet areas, etc.) and we discuss differences among asteroid populations. We also check for outlier points which may then serve as a possible identification of (large) interlopers among "real" family members.This has also implications for SPH models of asteroid disruptions which can be possibly further constrained by the shape models of resulting fragments. Up to now, the observed size-frequency distribution and velocity field were used as constraints, sometimes allowing for a removal of interlopers (Michel et al. 2011).We also describe ongoing observations by the ProjectSoft robotic observatory called "Blue Eye 600", which supports our efforts to complete the sample of shapes for a substantial fraction of (large) family members. Dense photometry is targeted in such a way to maximize a possibility to derive a new pole/shape model.Other possible applications of the observatory include: (i) fast resolved observations of fireballs (thanks to a fast-motion capability, up to 90 degrees/second), or (ii) an automatic survey of a particular population of objects (MBAs, NEAs, variable stars, novae etc.)Acknowledgements: This work was supported by the Technology Agency of the Czech Republic (grant no. TA03011171) and Czech Science Foundation (grant no. 13-01308S).

  16. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Annmarie Eldering, OCO-2 deputy project scientist, JPL is seen talking on the monitors during an Orbiting Carbon Observatory-2 (OCO-2) science briefing, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  17. SOFIA, an airborne observatory for infrared astronomy

    NASA Astrophysics Data System (ADS)

    Krabbe, Alfred; Mehlert, Dörte; Röser, Hans-Peter; Scorza, Cecilia

    2013-11-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project operating a 2.7 m infrared airborne telescope onboard a modified Boeing 747-SP in the stratosphere at altitudes up to 13.7 km. SOFIA covers a spectral range from 0.3 µm to 1.6 mm, with an average atmospheric transmission greater than 80%. After successfully completing its commissioning, SOFIA commenced regular astronomical observation in spring 2013, and will ramp up to more than one hundred 8 to 10 h flights per year by 2015. The observatory is expected to operate until the mid 2030s. SOFIA's initial complement of seven focal plane instruments includes broadband imagers, moderate-resolution spectrographs and high-resolution spectrometers. SOFIA also includes an elaborate program for Education and Public Outreach. We describe the SOFIA facility together with its first light instrumentation and include some of its first scientific results. In addition, the education and public outreach program is presented.

  18. The Arecibo Observatory Space Academy

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ford, Linda A.; Zambrano-Marin, Luisa; Petty, Bryan M.; Sternke, Elizabeth; Ortiz, Andrew M.; Rivera-Valentin, Edgard G.

    2015-11-01

    The Arecibo Observatory Space Academy (AOSA) is a ten (10) week pre-college research program for students in grades 9-12. Our mission is to prepare students for academic and professional careers by allowing them to receive an independent and collaborative research experience on topics related to space and aide in their individual academic and social development. Our objectives are to (1) Supplement the student’s STEM education via inquiry-based learning and indirect teaching methods, (2) Immerse students in an ESL environment, further developing their verbal and written presentation skills, and (3) To foster in every student an interest in science by exploiting their natural curiosity and knowledge in order to further develop their critical thinking and investigation skills. AOSA provides students with the opportunity to share lectures with Arecibo Observatory staff, who have expertise in various STEM fields. Each Fall and Spring semester, selected high school students, or Cadets, from all over Puerto Rico participate in this Saturday academy where they receive experience designing, proposing, and carrying out research projects related to space exploration, focusing on four fields: Physics/Astronomy, Biology, Engineering, and Sociology. Cadets get the opportunity to explore their topic of choice while practicing many of the foundations of scientific research with the goal of designing a space settlement, which they present at the NSS-NASA Ames Space Settlement Design Contest. At the end of each semester students present their research to their peers, program mentors, and Arecibo Observatory staff. Funding for this program is provided by NASA SSERVI-LPI: Center for Lunar Science and Exploration with partial support from the Angel Ramos Visitor Center through UMET and management by USRA.

  19. The Inventive Thinking Curriculum Project. An Outreach Program of the United States Patent and Trademark Office. Third Edition.

    ERIC Educational Resources Information Center

    Department of Commerce, Washington, DC.

    The Inventive Thinking Curriculum Project is one of the many projects included in the national outreach program of the U.S. Patent and Trademark Office. It is designed to be used in conjunction with a thinking skills program as a means of applying critical and creative thinking and problem-solving skills through the activity of creating an…

  20. Implementing an Education and Outreach Program for the Gemini Observatory in Chile.

    NASA Astrophysics Data System (ADS)

    Garcia, M. A.

    2006-08-01

    Beginning in 2001, the Gemini Observatory began the development of an innovative and aggressive education and outreach program at its Southern Hemisphere site in northern Chile. A principal focus of this effort is centered on local education and outreach to communities surrounding the observatory and its base facility in La Serena Chile. Programs are now established with local schools using two portable StarLab planetaria, an internet-based teacher exchange called StarTeachers and multiple partnerships with local educational institutions. Other elements include a CD-ROM-based virtual tour that allows students, teachers and the public to experience the observatory's sites in Chile and Hawaii. This virtual environment allows interaction using a variety of immersive scenarios such as a simulated observation using real data from Gemini. Pilot projects like "Live from Gemini" are currently being developed which use internet videoconferencing technologies to bring the observatory's facilities into classrooms at universities and remote institutions. Lessons learned from the implementation of these and other programs will be introduced and the challenges of developing educational programming in a developing country will be shared.

  1. Site Testing at the Mexican National Astronomical Observatory in San Pedro Martir

    NASA Astrophysics Data System (ADS)

    Costero, R.; Echevarria, J.; Tapia, M.

    1996-05-01

    Measurements on the local seeing have been carried out during two and a half yea rs (March 29, 1992 to October 7, 1994), over a total of 378 nights. The Site Tes ting Telescope (STT) from the Steward Observatory yields a median seeing of 0.61 arcsec and a first quartile of 0.50 arcsec. Additional measurements with the Carnegie Monitor (CM), many of them done simultaneously with the STT, yield almost identical results. The Micro--Thermal Array (MTA), also from Steward Observatory, show that the seeing size decreases about 0.1 arcsec at 15 meters above the ground. The seeing does not show any dependence on wind velocity or direction, at least for wind velocities smaller than 40 kilometers per hour. We will present the details of these results. The participation of several persons in this project is here acknowledge, especially that of R. Cromwell and N. Wolf, from Steward Observatory, and S.E. Persson and D.M. Carr, from The Observatories of the Carnegie Institution of Washington.

  2. NASA's Great Observatories: Paper Model.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

  3. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    1999-03-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP is now in full development. Work on the aircraft and the primary mirror has started. First science flights will begin in 2001 with 20 per cent of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have facility instrumentation that will allow much more use by scientists than was possible on the KAO.

  4. Everyday astronomy @ Sydney Observatory

    NASA Astrophysics Data System (ADS)

    Parello, S. L.

    2008-06-01

    Catering to a broad range of audiences, including many non-English speaking visitors, Sydney Observatory offers everything from school programmes to public sessions, day care activities to night observing, personal interactions to web-based outreach. With a history of nearly 150 years of watching the heavens, Sydney Observatory is now engaged in sharing the wonder with everybody in traditional and innovative ways. Along with time-honoured tours of the sky through two main telescopes, as well as a small planetarium, Sydney Observatory also boasts a 3D theatre, and offers programmes 363 days a year - rain or shine, day and night. Additionally, our website neversleeps, with a blog, YouTube videos, and night sky watching podcasts. And for good measure, a sprinkling of special events such as the incomparable Festival of the Stars, for which most of northern Sydney turns out their lights. Sydney Observatory is the oldest working observatory in Australia, and we're thrilled to be looking forward to our 150th Anniversary next year in anticipation of the International Year of Astronomy immediately thereafter.

  5. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, P.; Partnership, Emso

    2009-04-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. EMSO will reply also to the need expressed in the frame of GMES (Global Monitoring for Environment and Security) to develop a marine segment integrated in the in situ and satellite global monitoring system. The EMSO development relays upon the synergy between the scientific community and the industry to improve the European competitiveness with respect to countries like USA/Canada, NEPTUNE, VENUS and MARS projects, Taiwan, MACHO project, and Japan, DONET project. In Europe the development of an underwater network is based on previous EU-funded projects since early '90, and presently supported by EU initiatives. The EMSO infrastructure will constitute the extension to the sea of the land-based networks. Examples of data recorded by seafloor observatories will be presented. EMSO is presently at the stage of Preparatory Phase (PP), funded in the EC FP7 Capacities Programme. The project has started in April 2008 and will last 4 years with the participation of 12 Institutions representing 12 countries. EMSO potential will be significantly increased also with the interaction with other Research Infrastructures addressed to Earth Science. 2. IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph Waldmann); IMI-Irish Marine Institute (Ireland, ref. Michael Gillooly); UTM-CSIC-Unidad de

  6. Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedialmore » action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building.« less

  7. Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial actionmore » contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  8. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer

    Bob Busey; Larry Hinzman

    2012-04-01

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  9. Asteroseismology and the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Suárez, J. C.

    2010-12-01

    Virtual Observatory is an international project aiming at solving the problem of interoperability among astronomical archives and the scalability in the classical methods of retrieving and analyzing astronomical data in order to deal with huge amounts of datasets. This is being tackled thanks to the standardization of astronomical archives favoring their access in a efficient manner. This project, which is nowadays a reality, is more and more adopted by many fields of Science. In the present paper I will describe the origin of a new era in Stellar Physics whose main role is played by the relationship between asteroseismology and V.O. I will summarize the main concerns of both fields and the current development of VO tools for the development of what we could name as asteroseismology online, in which not only observed datasets are concerned but also the management of model databases.

  10. The University of Tokyo Atacama Observatory 6.5m telescope: project overview and current status

    NASA Astrophysics Data System (ADS)

    Yoshii, Y.; Doi, M.; Kohno, K.; Miyata, T.; Motohara, K.; Kawara, K.; Tanaka, M.; Minezaki, T.; Sako, S.; Morokuma, T.; Tamura, Y.; Tanabe, T.; Takahashi, H.; Konishi, M.; Kamizuka, T.; Kato, N.; Aoki, T.; Soyano, T.; Tarusawa, K.; Handa, T.; Koshida, S.; Bronfman, L.; Ruiz, M. T.; Hamuy, M.; Garay, G.

    2016-07-01

    The University of Tokyo Atacama Observatory Project is to construct a 6.5m infrared telescope at the summit of Co. Chajnantor (5640m altitude) in northern Chile, promoted by the University of Tokyo. Thanks to the dry climate (PWV 0.5mm) and the high altitude, it will achieve excellent performance in the NIR to MIR wavelengths. The telescope has two Nasmyth foci where the facility instruments are installed and two folded-Cassegrain foci for carry-in instruments. All these four foci can be switched by rotating a tertiary mirror. The final focal ratio is 12.2 and the telescope foci have large field-of-view of 25° in diameter. We adopted the 6.5m light-weighted borosilicate honeycomb primary mirror and its support system that are developed by Steward Observatory Richard F. Caris Mirror Lab. The dome enclosure has the shape of carousel, and large ventilation windows with shutters control the wind to flush heat inside the dome. The operation building with control room, aluminizing chamber and maintenance facilities is located at the side of the dome. Two cameras, SWIMS for spectroscopy and imaging in the near-infrared and MIMIZUKU in the mid-infrared, are being developed as the first-generation facility instruments. The operation of the telescope will be remotely carried out from a base facility at San Pedro de Atacama, 50km away from the summit. The construction of the telescope is now underway. Fabrication of the telescope mount has almost finished, and the pre-assembly has been carried out in Japan. The primary, secondary, and tertiary mirrors and their cells have been also fabricated, as well as their cells and support systems. Fabrication of the enclosure is now underway, and their pre-assembly in Japan will be carried out in 2016. Construction of the base facility at San Pedro de Atacama has been already completed in 2014, and operated for the activities in Atacama. The telescope is now scheduled to see the first light at the beginning of 2018.

  11. FixO3 project results, legacy and module migration to EMSO

    NASA Astrophysics Data System (ADS)

    Lampitt, Richard

    2017-04-01

    The fixed point open ocean observatory network (FixO3) project is an international project aimed at integrating in a single network all fixed point open ocean observatories operated by European organisations and to harmonise and coordinate technological, procedural and data management across the stations. The project is running for four years since September 2013 with 29 partners across Europe and a budget of 7M Euros and is now coming to its final phase. In contrast to several past programmes, the opportunity has arisen to ensure that many of the project achievements can migrate into the newly formed European Multidisciplinary Seafloor and water column Observatory (EMSO) research infrastructure. The final phase of the project will focus on developing a strategy to transfer the results in an efficient way to maintain their relevance and maximise their use. In this presentation, we will highlight the significant achievements of FixO3 over the past three years focussing on the modules which will be transferred to EMSO in the coming 9 months. These include: 1. Handbook of best practices for operating fixed point observatories 2. Metadata catalogue 3. Earth Virtual Observatory (EarthVO) for data visualisation and comparison 4. Open Ocean Observatory Yellow Pages (O3YP) 5. Training material for hardware, data and data products used

  12. The Willard L. Eccles Observatory: Commissioning and Development of Remote Operation Capabilities

    NASA Astrophysics Data System (ADS)

    Springer, Wayne; Dawson, Kyle; Gondolo, Paolo; Ricketts, Paul; Ramsrud, Nicolas; Samarasingha, Upul

    2011-03-01

    The University of Utah completed construction of the Willard L. Eccles Observatory located on Frisco Peak near Milford, UT in October 2009. The observatory site is located on a prominent peak at an altitude of approximately 9600 feet in a region with minimal light pollution. The Frisco Peak site was chosen after careful consideration of many factors including climate, light pollution and available infrastructure. The facility houses a 32" telescope manufactured by DFM Engineering of Longmont, CO. Further development of remote operation capabilities is currently being undertaken. Monitoring of the weather and seeing conditions are being performed and confirm the excellent nature of the site for astronomical observations. The observatory facilities will be used for educational and public outreach activities as well as research projects. A description of the facility and its planned use will be provided.

  13. Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Young, E.; Marcum, P.; Krabbe, A.

    2010-12-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  14. A VBA Desktop Database for Proposal Processing at National Optical Astronomy Observatories

    NASA Astrophysics Data System (ADS)

    Brown, Christa L.

    National Optical Astronomy Observatories (NOAO) has developed a relational Microsoft Windows desktop database using Microsoft Access and the Microsoft Office programming language, Visual Basic for Applications (VBA). The database is used to track data relating to observing proposals from original receipt through the review process, scheduling, observing, and final statistical reporting. The database has automated proposal processing and distribution of information. It allows NOAO to collect and archive data so as to query and analyze information about our science programs in new ways.

  15. Implementing Earned Value Management in the CxP EVA Systems Project Office

    NASA Technical Reports Server (NTRS)

    Sorge, Les L.

    2009-01-01

    Earned Value Management (EVM), like project management, is as much art as it is science to develop an implementation plan for a project. This presentation will cover issues that were overcome and the implementation strategy to deploy Earned Value Management (EVM) within the Constellation Program (CxP), EVA Systems Project Office (ESPO), as well as discuss additional hurdles that currently prevent the organization from optimizing EVM. Each organization and each project within an organization needs to mold an EVM implementation plan around existing processes and tools, while at the same time revising those existing processes and tools as necessary to make them compatible with EVM. The ESPO EVM implementation covers work breakdown structure, organizational breakdown structure, control account, work/planning package development; integrated master schedule development using an integrated master plan; incorporating reporting requirements for existing funding process such as Planning, Programming, Budgeting, and Execution (PPBE) and JSC Internal Task Agreements (ITA); and interfacing with other software tools such as the Systems Applications and Products (SAP) accounting system and the CxP wInsight EVM analysis tool. However, there are always areas for improvement and EVM is no exception. As EVM continues to mature within the NASA CxP, these areas will continue to be worked to resolution to provide the Program Managers, Project Managers, and Control Account Managers the best EVM data possible to make informed decisions.

  16. Publication of sensor data in the long-term environmental sub-observatory TERENO Northeast

    NASA Astrophysics Data System (ADS)

    Stender, Vivien; Ulbricht, Damian; Klump, Jens

    2017-04-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR (TEreno Online Data repOsitORry). TEODOOR bundles the data provided by the different web services of the single observatories and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes data available through standard web services. TEODOOR accesses the OGC Sensor Web Enablement (SWE) interfaces offered by the regional observatories. In addition to the SWE interface, TERENO Northeast also publishes time series of environmental sensor data through the DOI registration service at GFZ Potsdam. This service uses the DataCite infrastructure to make research data citable and is able to keep and disseminate metadata popular to the geosciences [1]. The metadata required by DataCite are created in an automated process by extracting information from the SWE SensorML metadata. The GFZ data management tool kit panMetaDocs is used to manage and archive file based datasets and to register Digital Object Identifiers (DOI

  17. A small Internet controllable observatory for research and education at the University of North Dakota

    NASA Astrophysics Data System (ADS)

    Hardersen, P. S.; de Silva, S.; Reddy, V.; Cui, P.; Kumar, S.; Gaffey, M. J.

    2006-06-01

    One of the challenges in astronomy education today is to introduce college students to the real-world practice and science of observational astronomy. Along with a good theoretical background, college students can gain an earlier, deeper understanding of the astronomy profession through direct observational and data reduction experience. However, building and managing a modest observatory is still too costly for many colleges and universities. Fortunately, advances in commercial astronomical hardware and software now allow universities to build and operate small Internet controllable observatories for a modest investment. The advantages of an Internet observatory include: 1) remote operation from a comfortable location, 2) immediate data access, 3) telescope control via a web browser, and 4) allowing both on-campus and distance education students the ability to conduct a variety of observing projects. Internet capabilities vastly expand the number of students who will be able to use the observatory, thus exposing them to astronomy as a science and as a potential career. In September 2005, the University of North Dakota (UND) Department of Space Studies began operating a small, recently renovated Internet controllable observatory. Housed within a roll-off roof 10 miles west of UND, the observatory includes a Meade 16-inch, f/10 Schmidt-Cassegrain telescope, an SBIG STL-6303e CCD with broadband filters, ACP observatory control software, focuser, and associated equipment. The observatory cost \\25,000 to build in 1996; 2005 renovation costs total \\28,000. An observatory operator prepares the telescope for use each night. Through remote operation, the roof is opened and the telescope/CCD power is turned on. The telescope is then aligned and focused before allowing students to access the observatory. Students communicate with the observatory operator via an online chat room and via telephone, if necessary, to answer questions and resolve any problems. Additional

  18. Chandra X-Ray Observatory (CXO) on Orbit Animation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is an on-orbit animation of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the remnants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  19. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Ralph Basilio, OCO-2 project manager, JPL, discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  20. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This photograph was taken during encapsulation of the High Energy Astronomy Observatory (HEAO)-3. Designed and developed by TRW, Inc. under the direction of the Marshall Space Flight Center, the objectives of the HEAO-3 were to survey and map the celestial sphere for gamma-ray flux and make detailed measurements of cosmic-ray particles. It carried three scientific experiments: a gamma-ray spectrometer, a cosmic-ray isotope experiment, and a heavy cosmic-ray nuclei experiment. The HEAO-3 was originally identified as HEAO-C but the designation was changed once the spacecraft achieved orbit. The Marshall Space Flight Center had the project management responsibilities for the HEAO missions.

  1. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This photograph shows the High Energy Astronomy Observatory (HEAO)-3 being prepared for encapsulation. Designed and developed by TRW, Inc. under the direction of the Marshall Space Flight Center, the objectives of the HEAO-3 were to survey and map the celestial sphere for gamma-ray flux and make detailed measurements of cosmic-ray particles. It carried three scientific experiments: a gamma-ray spectrometer, a cosmic-ray isotope experiment, and a heavy cosmic-ray nuclei experiment. The HEAO-3 was originally identified as HEAO-C but the designation was changed once the spacecraft achieved orbit. The Marshall Space Flight Center had the project management responsibilities for the HEAO missions.

  2. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This photograph shows the High Energy Astronomy Observatory (HEAO)-3 being assembled at TRW, Inc. Designed and developed by TRW, Inc. under the direction of the Marshall Space Flight Center, the objectives of the HEAO-3 were to survey and map the celestial sphere for gamma-ray flux and make detailed measurements of cosmic-ray particles. It carried three scientific experiments: a gamma-ray spectrometer, a cosmic-ray isotope experiment, and a heavy cosmic-ray nuclei experiment. The HEAO-3 was originally identified as HEAO-C but the designation was changed once the spacecraft achieved orbit. The Marshall Space Flight Center had the project management responsibilities for the HEAO missions.

  3. the Large Aperture GRB Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertou, Xavier

    2009-04-30

    The Large Aperture GRB Observatory (LAGO) aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique (SPT) in ground based water Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on the project progresses and the first operation at high altitude, search for bursts in 6 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  4. The Einstein Observatory: A New Public/Private Observatory Complex for Community Education and Scientific Research

    NASA Astrophysics Data System (ADS)

    Sowell, J.

    1999-12-01

    The Development Authority of Cherokee County (Georgia) is leading a public/private partnership of business/industry professionals, educators, and university scientists that seeks to develop a national prototype educational and scientific research facility for grades K-12, as well as college-level research, that will inspire our youth to become literate in science and technology. In particular, the goal is to make this complex a science, math, and engineering magnet learning facility and to raise the average SAT scores of local area students by 100 points. A dark-site mountain, nestled on the foothills of the Blue Ridge Mountains at the northern-most edge of Atlanta, will become the home for the "Einstein" Observatory. The complex will have four telescopes: one 50-inch, one 24-inch, and two 16-inch telescopes. Each telescope will have digital cameras and an optic-fiber feed to a single, medium-resolution spectroscope. All four telescopes will be electronically accessible from local schools. Professional astronomers will establish suitable observational research projects and will lead K-12 and college students in the acquisition and analysis of data. Astronomers will also assist the local area schoolteachers in methods for nurturing children's scientific inquiry. The observatory mountain will have 100 platform locations for individual viewing by visiting families, school groups, and amateur astronomers. The Atlanta Astronomer Club will provide numerous evening programs and viewing opportunities for the general public. An accompanying Planetarium & Science Center will be located on the nearby campus of Reinhardt College. The Planetarium & Science Center will be integrated with Reinhardt College's theme of learning focused upon studying the past and present as a basis for projecting the future.

  5. Graphics interfaces and numerical simulations: Mexican Virtual Solar Observatory

    NASA Astrophysics Data System (ADS)

    Hernández, L.; González, A.; Salas, G.; Santillán, A.

    2007-08-01

    Preliminary results associated to the computational development and creation of the Mexican Virtual Solar Observatory (MVSO) are presented. Basically, the MVSO prototype consists of two parts: the first, related to observations that have been made during the past ten years at the Solar Observation Station (EOS) and at the Carl Sagan Observatory (OCS) of the Universidad de Sonora in Mexico. The second part is associated to the creation and manipulation of a database produced by numerical simulations related to solar phenomena, we are using the MHD ZEUS-3D code. The development of this prototype was made using mysql, apache, java and VSO 1.2. based GNU and `open source philosophy'. A graphic user interface (GUI) was created in order to make web-based, remote numerical simulations. For this purpose, Mono was used, because it is provides the necessary software to develop and run .NET client and server applications on Linux. Although this project is still under development, we hope to have access, by means of this portal, to other virtual solar observatories and to be able to count on a database created through numerical simulations or, given the case, perform simulations associated to solar phenomena.

  6. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-04-15

    This photograph captures the installation of the Chandra X-Ray Observatory, formerly Advanced X-Ray Astrophysics Facility (AXAF), Advanced Charged-Coupled Device (CCD) Imaging Spectrometer (ACIS) into the Vacuum Chamber at the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The AXAF was renamed Chandra X-Ray Observatory (CXO) in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The ACIS is one of two focal plane instruments. As the name suggests, this instrument is an array of CCDs similar to those used in a camcorder. This instrument will be especially useful because it can make x-ray images and measure the energies of incoming x-rays. It is the instrument of choice for studying the temperature variation across x-ray sources, such as vast clouds of hot-gas intergalactic space. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  7. Studying the Light Pollution around Urban Observatories: Columbus State University’s WestRock Observatory

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Brendon Andrew; Johnson, Michael

    2017-01-01

    Light pollution plays an ever increasing role in the operations of observatories across the world. This is especially true in urban environments like Columbus, GA, where Columbus State University’s WestRock Observatory is located. Light pollution’s effects on an observatory include high background levels, which results in a lower signal to noise ratio. Overall, this will limit what the telescope can detect, and therefore limit the capabilities of the observatory as a whole.Light pollution has been mapped in Columbus before using VIIRS DNB composites. However, this approach did not provide the detailed resolution required to narrow down the problem areas around the vicinity of the observatory. The purpose of this study is to assess the current state of light pollution surrounding the WestRock observatory by measuring and mapping the brightness of the sky due to light pollution using light meters and geographic information system (GIS) software.Compared to VIIRS data this study allows for an improved spatial resolution and a direct measurement of the sky background. This assessment will enable future studies to compare their results to the baseline established here, ensuring that any changes to the way the outdoors are illuminated and their effects can be accurately measured, and counterbalanced.

  8. The Role of the Virtual Astronomical Observatory in the Era of Big Data

    NASA Astrophysics Data System (ADS)

    Berriman, G. B.; Hanisch, R. J.; Lazio, T. J.

    2013-01-01

    The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. The rapid growth in the size and complexity of data sets is transforming the computing landscape in astronomy. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of an information backbone that responds to this growth. Such a backbone will, when complete, provide innovative mechanisms for fast discovery of, and access to, massive data sets, and services that enable distributed storage, publication processing of large datasets. All these services will be built so that new projects can incorporate them as part of their data management and processing plans. Services under development to date include a general purpose indexing scheme for fast access to data sets, a cross-comparison engine that operate on catalogs of 1 billion records or more, and an interface for managing distributed data sets and connecting them to data discovery and analysis tools. The VAO advises projects on technology solutions for their data access and processing needs, and recently advised the Sagan Workshop on using cloud computing to support hands-on data analysis sessions for 150+ participants. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  9. Developing a NASA strategy for the verification of large space telescope observatories

    NASA Astrophysics Data System (ADS)

    Crooke, Julie A.; Gunderson, Johanna A.; Hagopian, John G.; Levine, Marie

    2006-06-01

    In July 2005, the Office of Program Analysis and Evaluation (PA&E) at NASA Headquarters was directed to develop a strategy for verification of the performance of large space telescope observatories, which occurs predominantly in a thermal vacuum test facility. A mission model of the expected astronomical observatory missions over the next 20 years was identified along with performance, facility and resource requirements. Ground testing versus alternatives was analyzed to determine the pros, cons and break points in the verification process. Existing facilities and their capabilities were examined across NASA, industry and other government agencies as well as the future demand for these facilities across NASA's Mission Directorates. Options were developed to meet the full suite of mission verification requirements, and performance, cost, risk and other analyses were performed. Findings and recommendations from the study were presented to the NASA Administrator and the NASA Strategic Management Council (SMC) in February 2006. This paper details the analysis, results, and findings from this study.

  10. New Observatory at the University of Tennessee at Martin

    NASA Astrophysics Data System (ADS)

    Crews, Lionel J.; Chrysler, R.; Turner, K.

    2010-01-01

    A new observatory has been completed at the University of Tennessee at Martin and is now open for student research, local teacher training, and public outreach. The telescope is a 16" Meade RCT on a Software Bisque Paramount ME mount, 10' HomeDome, and SBIG CCD camera. The project endured many delays from a necessary change in housing from roll-top roof to dome, to the shutter blowing off in a heavy windstorm. This project was funded primarily by a Tennessee Math-Science Partnership grant (PI: Dr. Michael Gibson, UT Martin) directed at secondary teacher training in sciences.

  11. 75 FR 55786 - Office of Special Education Programs, Office of Special Education and Rehabilitative Services...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... DEPARTMENT OF EDUCATION Office of Special Education Programs, Office of Special Education and Rehabilitative Services, Department of Education; Notice of Final Extension of Project Period and Waiver for the... Transition Technical Assistance Center (NSTTAC). Currently, the Office of Special Education Programs (OSEP...

  12. EVALSO: A New High-speed Data Link to Chilean Observatories

    NASA Astrophysics Data System (ADS)

    2010-11-01

    Stretching 100 kilometres through Chile's harsh Atacama Desert, a newly inaugurated data cable is creating new opportunities at ESO's Paranal Observatory and the Observatorio Cerro Armazones. Connecting these facilities to the main Latin American scientific data backbone completes the last gap in the high-speed link between the observatories and Europe. This new cable is part of the EVALSO (Enabling Virtual Access to Latin American Southern Observatories) project [1], a European Commission FP7 [2] co-funded programme co-ordinated by the University of Trieste that includes ESO, Observatorio Cerro Armazones (OCA, part of Ruhr-Universität Bochum), the Chilean academic network REUNA and other organisations. As well as the cable itself, the EVALSO project involves buying capacity on existing infrastructure to complete a high-bandwidth connection from the Paranal area to ESO's headquarters near Munich, Germany. Project co-ordinator Fernando Liello said: "This project has been an excellent collaboration between the consortium members. As well as giving a fast connection to the two observatories, it brings wider benefits to the academic communities both in Europe and Latin America." The sites of Paranal and Armazones are ideal for astronomical observation due to their high altitude, clear skies and remoteness from light pollution. But their location means they are far from any pre-existing communications infrastructure, which until now has left them dependent on a microwave link to send scientific data back to a base station near Antofagasta. Telescopes at ESO's Paranal observatory produce well over 100 gigabytes of data per night, equivalent to more than 20 DVDs, even after compressing the files. While the existing link is sufficient to carry the data from the current generation of instruments at the Very Large Telescope (VLT), it does not have the bandwidth to handle data from the VISTA telescope (Visible and Infrared Survey Telescope for Astronomy, see eso0949), or for

  13. Office Space: How Will Technology Affect the Education Office Environment?

    ERIC Educational Resources Information Center

    Day, C. William

    2009-01-01

    The office environment 10 years from now will be different from the one today. More office personnel will be organized around processes rather than functions. More work activities will be done by teams rather than individuals, and those teams will change over time, as will the nature of the work projects and the people who constitute the team. The…

  14. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-11-13

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  15. A SensorML-based Metadata Model and Registry for Ocean Observatories: a Contribution from European Projects NeXOS and FixO3

    NASA Astrophysics Data System (ADS)

    Delory, E.; Jirka, S.

    2016-02-01

    Discovering sensors and observation data is important when enabling the exchange of oceanographic data between observatories and scientists that need the data sets for their work. To better support this discovery process, one task of the European project FixO3 (Fixed-point Open Ocean Observatories) is dealing with the question which elements are needed for developing a better registry for sensors. This has resulted in four items which are addressed by the FixO3 project in cooperation with further European projects such as NeXOS (http://www.nexosproject.eu/). 1.) Metadata description format: To store and retrieve information about sensors and platforms it is necessary to have a common approach how to provide and encode the metadata. For this purpose, the OGC Sensor Model Language (SensorML) 2.0 standard was selected. Especially the opportunity to distinguish between sensor types and instances offers new chances for a more efficient provision and maintenance of sensor metadata. 2.) Conversion of existing metadata into a SensorML 2.0 representation: In order to ensure a sustainable re-use of already provided metadata content (e.g. from ESONET-FixO3 yellow pages), it is important to provide a mechanism which is capable of transforming these already available metadata sets into the new SensorML 2.0 structure. 3.) Metadata editor: To create descriptions of sensors and platforms, it is not possible to expect users to manually edit XML-based description files. Thus, a visual interface is necessary to help during the metadata creation. We will outline a prototype of this editor, building upon the development of the ESONET sensor registry interface. 4.) Sensor Metadata Store: A server is needed that for storing and querying the created sensor descriptions. For this purpose different options exist which will be discussed. In summary, we will present a set of different elements enabling sensor discovery ranging from metadata formats, metadata conversion and editing to metadata

  16. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  17. NASA Announces Contest to Name X-Ray Observatory

    NASA Astrophysics Data System (ADS)

    1998-04-01

    NASA is searching for a new name for the Advanced X-ray Astrophysics Facility (AXAF), currently scheduled for launch Dec. 3, 1998, from the Space Shuttle Columbia. AXAF is the third of NASA's Great Observatories, after the Hubble Space Telescope and the Compton Gamma Ray Observatory. Once in orbit around Earth, it will explore hot, turbulent regions in the universe where X-rays are produced. Dr. Alan Bunner, director of NASA's Structure and Evolution of the universe science program, will announce April 18 at the National Science Teacher's Association meeting in Las Vegas, NV, the start of a contest, open to people worldwide, to find a new name for the observatory. Entries should contain the name of a person (not living), place, or thing from history, mythology, or fiction. Contestants should describe in a few sentences why this choice would be a good name for AXAF. The name must not have been used before on space missions by NASA or other organizations or countries. The grand prize will be a trip to NASA's Kennedy Space Center in Cape Canaveral, FL, to see the launch of the satellite aboard the Space Shuttle. Ten runner-up prizes will be awarded and all entrants will receive an AXAF poster. The grand prize is sponsored by TRW Inc., AXAF's prime contractor. The AXAF Science Center in Cambridge, MA, will run the contest for NASA. NASA will announce the final selection of the winning name later this year. Entries also can be mailed to: AXAF Contest, AXAF Science Center, Office of Education and Public Outreach, 60 Garden Street, MS 83, Cambridge, MA 02138. Mailed entries must be postmarked no later than June 30, 1998. All entries must state a name for the mission, along with the reason the name would make a good choice. The observatory, now in the final stages of assembly and testing at TRW's facility in Redondo Beach, CA, is more than 45 feet long and weighs 10,500 pounds. AXAF is the largest and most powerful X-ray observatory ever constructed, and its images will be

  18. Infrastructure and the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Dowler, P.; Gaudet, S.; Schade, D.

    2011-07-01

    The modern data center is faced with architectural and software engineering challenges that grow along with the challenges facing observatories: massive data flow, distributed computing environments, and distributed teams collaborating on large and small projects. By using VO standards as key components of the infrastructure, projects can take advantage of a decade of intellectual investment by the IVOA community. By their nature, these standards are proven and tested designs that already exist. Adopting VO standards saves considerable design effort, allows projects to take advantage of open-source software and test suites to speed development, and enables the use of third party tools that understand the VO protocols. The evolving CADC architecture now makes heavy use of VO standards. We show examples of how these standards may be used directly, coupled with non-VO standards, or extended with custom capabilities to solve real problems and provide value to our users. In the end, we use VO services as major parts of the core infrastructure to reduce cost rather than as an extra layer with additional cost and we can deliver more general purpose and robust services to our user community.

  19. Griffith Observatory: Hollywood's Celestial Theater

    NASA Astrophysics Data System (ADS)

    Margolis, Emily A.; Dr. Stuart W. Leslie

    2018-01-01

    The Griffith Observatory, perched atop the Hollywood Hills, is perhaps the most recognizable observatory in the world. Since opening in 1935, this Los Angeles icon has brought millions of visitors closer to the heavens. Through an analysis of planning documentation, internal newsletters, media coverage, programming and exhibition design, I demonstrate how the Observatory’s Southern California location shaped its form and function. The astronomical community at nearby Mt. Wilson Observatory and Caltech informed the selection of instrumentation and programming, especially for presentations with the Observatory’s Zeiss Planetarium, the second installed in the United States. Meanwhile the Observatory staff called upon some of Hollywood’s best artists, model makers, and scriptwriters to translate the latest astronomical discoveries into spectacular audiovisual experiences, which were enhanced with Space Age technological displays on loan from Southern California’s aerospace companies. The influences of these three communities- professional astronomy, entertainment, and aerospace- persist today and continue to make Griffith Observatory one of the premiere sites of public astronomy in the country.

  20. The Pulkovo Observatory in the last 50 years through the eyes of its Learned Secretary Yu. I. Vitinsky.

    NASA Astrophysics Data System (ADS)

    Zhukov, V. Yu.; Soboleva, T. V.

    A solar physicist, a Pulkovo astronomer, Yury Ivanovich Vitinsky (1926-2003) was the author of 210 scientific papers known in both Russia and abroad. He worked in the Observatory for about half a century (1953-2002) and held the office of the Learned Secretary of the Russian Academy of Sciences Main Astronomical Observatory for 35 years (1965-2000). In the last years of his life, Vitinsky brought his recollections that he titled "My Pulkovo" to the Main Astronomical Observatory Archive. His memoirs narrate about problems of the astronomical science, staff members and deeds of Pulkovo, things he thought of an events he was through. This is the half-a-century history of the Pulkovo Observatory in biographies of persons. The writer of the Recollections mentions the names of fifty persons most of whom are the Main Astronomical Observatory staff members that he worked with side by side. The memoirs provide accurate descriptions that are brief yet rather capacious of the author's Pulkovo colleagues, as well as other astronomers. The language of Vitinsky's recollection is good and clear. His memoirs contain moderate balanced views of people and events and provide objective and trustworthy data. "My Pulkovo" is an indispensable biographical source for the historian of the astronomical science, the Pulkovo Observatory and its scholarly staff members of the most recent decades. It is also just an interesting human document. In 2006, Yury Ivanovich would have been eighty.

  1. CSU's MWV Observatory: A Facility for Research, Education and Outreach

    NASA Astrophysics Data System (ADS)

    Hood, John; Carpenter, N. D.; McCarty, C. B.; Samford, J. H.; Johnson, M.; Puckett, A. W.; Williams, R. N.; Cruzen, S. T.

    2014-01-01

    The Mead Westvaco Observatory (MWVO), located in Columbus State University's Coca-Cola Space Science Center, is dedicated to education and research in astronomy through hands-on engagement and public participation. The MWVO has recently received funding to upgrade from a 16-inch Meade LX-200 telescope to a PlaneWave CDK 24-inch Corrected Dall-Kirkham Astrograph telescope. This and other technological upgrades will allow this observatory to stream live webcasts for astronomical events, allowing a worldwide public audience to become a part of the growing astronomical community. This poster will explain the upgrades that are currently in progress as well as the results from the current calibrations. The goal of these upgrades is to provide facilities capable of both research-class projects and widespread use in education and public outreach. We will present our initial calibration and tests of the observatory equipment, as well as its use in webcasts of astronomical events, in solar observing through the use of specialized piggy-backed telescopes, and in research into such topics as asteroids, planetary and nebula imaging. We will describe a pilot research project on asteroid orbit refinement and light curves, to be carried out by Columbus State University students. We will also outline many of the K-12 educational and public outreach activities we have designed for these facilities. Support and funding for the acquisition and installation of the new PlaneWave CDK 24 has been provided by the International Museum and Library Services via the Museums for America Award.

  2. Science Initiatives of the US Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2012-09-01

    The United States Virtual Astronomical Observatory program is the operational facility successor to the National Virtual Observatory development project. The primary goal of the US VAO is to build on the standards, protocols, and associated infrastructure developed by NVO and the International Virtual Observatory Alliance partners and to bring to fruition a suite of applications and web-based tools that greatly enhance the research productivity of professional astronomers. To this end, and guided by the advice of our Science Council (Fabbiano et al. 2011), we have focused on five science initiatives in the first two years of VAO operations: 1) scalable cross-comparisons between astronomical source catalogs, 2) dynamic spectral energy distribution construction, visualization, and model fitting, 3) integration and periodogram analysis of time series data from the Harvard Time Series Center and NASA Star and Exoplanet Database, 4) integration of VO data discovery and access tools into the IRAF data analysis environment, and 5) a web-based portal to VO data discovery, access, and display tools. We are also developing tools for data linking and semantic discovery, and have a plan for providing data mining and advanced statistical analysis resources for VAO users. Initial versions of these applications and web-based services are being released over the course of the summer and fall of 2011, with further updates and enhancements planned for throughout 2012 and beyond.

  3. Proceedings of the XIIIth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing

    USGS Publications Warehouse

    Love, Jeffrey J.

    2009-01-01

    The thirteenth biennial International Association of Geomagnetism and Aeronomy (IAGA) Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing was held in the United States for the first time on June 9-18, 2008. Hosted by the U.S. Geological Survey's (USGS) Geomagnetism Program, the workshop's measurement session was held at the Boulder Observatory and the scientific session was held on the campus of the Colorado School of Mines in Golden, Colorado. More than 100 participants came from 36 countries and 6 continents. Preparation for the workshop began when the USGS Geomagnetism Program agreed, at the close of the twelfth workshop in Belsk Poland in 2006, to host the next workshop. Working under the leadership of Alan Berarducci, who served as the chairman of the local organizing committee, and Tim White, who served as co-chairman, preparations began in 2007. The Boulder Observatory was extensively renovated and additional observation piers were installed. Meeting space on the Colorado School of Mines campus was arranged, and considerable planning was devoted to managing the many large and small issues that accompany an international meeting. Without the devoted efforts of both Alan and Tim, other Geomagnetism Program staff, and our partners at the Colorado School of Mines, the workshop simply would not have occurred. We express our thanks to Jill McCarthy, the USGS Central Region Geologic Hazards Team Chief Scientist; Carol A. Finn, the Group Leader of the USGS Geomagnetism Program; the USGS International Office; and Melody Francisco of the Office of Special Programs and Continuing Education of the Colorado School of Mines. We also thank the student employees that the Geomagnetism Program has had over the years and leading up to the time of the workshop. For preparation of the proceedings, thanks go to Eddie and Tim. And, finally, we thank our sponsors, the USGS, IAGA, and the Colorado School of Mines.

  4. Introduction to the Infrared Space Observatory (ISO)

    NASA Technical Reports Server (NTRS)

    Kessler, M. F.; Sibille, F.

    1989-01-01

    The Infrared Space Observatory (ISO) is an astronomical satellite, which will operate at infrared wavelengths (2.5 to 200 microns) for a period of at least 18 months. Imaging, spectroscopic, photometric and polarimetric observations will be obtained by four scientific instruments in the focal plane of its 60-cm diameter, cryogenically-cooled telescope. Two-thirds of ISO's observing time will be available to the astronomical community. ISO is a fully approved and funded project of the European Space Agency (ESA) with a foreseen launch date of May 1993.

  5. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Ralph Basilio, OCO-2 project manager with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  6. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Mike Gunson, OCO-2 project scientist with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  7. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Mike Gunson, OCO-2 project scientist with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, listens to a question during a press briefing for the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  8. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Dave Crisp, OCO-2 science team leader, JPL, left, and Annmarie Eldering, OCO-2 deputy project scientist, JPL, are seen during a science briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  9. Observatory data and the Swarm mission

    NASA Astrophysics Data System (ADS)

    Macmillan, S.; Olsen, N.

    2013-11-01

    The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth's core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those that may use higher cadence 1-second and 1-minute data from observatories.

  10. Integrating Near Fault Observatories (NFO) for EPOS Implementation Phase

    NASA Astrophysics Data System (ADS)

    Chiaraluce, Lauro

    2015-04-01

    Following the European Plate Observing System (EPOS) project vision aimed at creating a pan-European infrastructure for Earth sciences to support science for a more sustainable society, we are working on the integration of Near-Fault Observatories (NFOs). NFOs are state of the art research infrastructures consisting of advanced networks of multi-parametric sensors continuously monitoring the chemical and physical processes related to the common underlying earth instabilities governing active faults evolution and the genesis of earthquakes. Such a methodological approach, currently applicable only at the local scale (areas of tens to few hundreds of kilometres), is based on extremely dense networks and less common instruments deserving an extraordinary work on data quality control and multi-parameter data description. These networks in fact usually complement regional seismic and geodetic networks (typically with station spacing of 50-100km) with high-density distributions of seismic, geodetic, geochemical and geophysical sensors located typically within 10-20 km of active faults where large earthquakes are expected in the future. In the initial phase of EPOS-IP, seven NFO nodes will be linked: the Alto Tiberina and Irpinia Observatories in Italy, the Corinth Observatory in Greece, the South-Iceland Seismic Zone, the Valais Observatory in Switzerland, Marmara Sea GEO Supersite in Turkey (EU MARSite) and the Vrancea Observatory in Romania. Our work is aimed at establishing standards and integration within this first core group of NFOs while other NFOs are expected to be installed in the next years adopting the standards established and developed within the EPOS Thematic Core Services (TCS). The goal of our group is to build upon the initial development supported by these few key national observatories coordinated under previous EU projects (NERA and REAKT), inclusive and harmonised TCS supporting the installation over the next decade of tens of near

  11. Model-Atmosphere Spectra of Central Stars of Planetary Nebulae - Access via the Virtual Observatory Service TheoSSA

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Reindl, N.

    2014-04-01

    In the framework of the Virtual Observatory (VO), the German Astrophysical Virtual Observatory GAVO project provides easy access to theoretical spectral energy distributions (SEDs) within the registered GAVO service TheoSSA (http://dc.g-vo.org/theossa). TheoSSA is based on the well established Tübingen NLTE Model-Atmosphere Package (TMAP) for hot, compact stars. This includes central stars of planetary nebulae. We show examples of TheoSSA in operation.

  12. The Radio JOVE Project

    NASA Astrophysics Data System (ADS)

    Garcia, L.; Thieman, J.; Higgins, C.

    1999-09-01

    Radio JOVE is an interactive educational activity which brings the radio sounds of Jupiter and the Sun to students, teachers, and the general public. This is accomplished through the construction of a simple radio telescope kit and the use of a real-time radio observatory on the Internet. Our website (http://radiojove.gsfc.nasa.gov/) will contain science information, instruction manuals, observing guides, and education resources for students and teachers. Our target audience is high school science classes, but subjects can be tailored to college undergraduate physics and astronomy courses or even to middle school science classes. The goals of the project are: 1) Educate people about planetary and solar radio astronomy, space physics, and the scientific method 2) Provide teachers and students with a hands-on radio astronomy exercise as a science curriculum support activity by building and using a simple radio telescope receiver/antenna kit 3) Create the first ever online radio observatory which provides real-time data for those with internet access 4) Allow interactions among participating schools by facilitating exchanges of ideas, data, and observing experiences. Our current funding will allow us to impact 100 schools by partially subsidizing their participation in the program. We expect to expand well beyond this number as publicity and general interest increase. Additional schools are welcome to fully participate, but we will not be able to subsidize their kit purchases. We hope to make a wide impact among the schools by advertising through appropriate newsletters, space grant consortia, the INSPIRE project (http://image.gsfc.nasa.gov/poetry/inspire/), electronic links, and science and education meetings. We would like to acknoledge support from the NASA/GSFC Director's Discretionary Fund, the STScI IDEAS grant program and the NASA/GSFC Space Science Data Operations Office.

  13. 20. DETAIL OF OFFICE FURNITURE IN NORTHEAST CORNER OF SECRETARIES' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL OF OFFICE FURNITURE IN NORTHEAST CORNER OF SECRETARIES' OFFICE ALONG NORTH SIDE OF FIRST FLOOR. VIEW TO NORTHEAST. - Boise Project, Boise Project Office, 214 Broadway, Boise, Ada County, ID

  14. Pulkovo Observatory - One of the Main Centers of Astronomical Education in Russia

    NASA Astrophysics Data System (ADS)

    Shakht, Natalia A.

    2007-08-01

    Since the beginning of the activity in 1839, Pulkovo observatory was an important center of the teaching of astronomy and geodesy in Russia. The first director of Pulkovo observatory W. Ja. Struve together with Pulkovo astronomers taught the topographers and specialists in geodesy and to naval officers the methods of geographic coordinates determinations. Pulkovo observatory was the center of the improvement of such specialists till 1928. Pulkovo astronomers lecture for students in the leading educational centers during many decades and at present and also lead the aspirants and researchers. The works of Pulkovo astronomers have been united in the known textbooks of astronomy and stellar astronomy with several re-editions. In 1957-1965 after the first launch of artificial satellite, many seminars and schools, which were dedicated to study of observations of artificial satellites and to the space geodesy have been organized at Pulkovo. Each year, about 10-15 thousands of guests visit Pulkovo. Our astronomers have the contact with the amateurs of astronomy in many countries and collect the information on their observations. More than 1,000,000 observations of asteroids and comets made by amateurs are collected with the scientific aims, particularly for the enlargement of the information about NEOs. Pulkovo astronomers lecture and give the practical lessons in ecological expeditions, which unite young people of various places of Russia.

  15. The Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Odell, C. R.

    1979-01-01

    A convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists is presented. An attempt is made to provide enough detail so that a professional scientist, observer or theorist, can plan how the observatory may be used to further his observing programs or to test theoretical models.

  16. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Anna Michalak, an Orbiting Carbon Observatory science team member from the University of Michigan, Ann Arbor, speaks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  17. Networking of Bibliographical Information: Lessons learned for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Genova, Françoise; Egret, Daniel

    Networking of bibliographic information is particularly remarkable in astronomy. On-line journals, the ADS bibliographic database, SIMBAD and NED are everyday tools for research, and provide easy navigation from one resource to another. Tables are published on line, in close collaboration with data centers. Recent new developments include the links between observatory archives and the ADS, as well as the large scale prototyping of object links between Astronomy and Astrophysics and SIMBAD, following those implemented a few years ago with New Astronomy and the International Bulletin of Variable stars . This networking has been made possible by close collaboration between the ADS, data centers such as the CDS and NED, and the journals, and this partnership being now extended to observatory archives. Simple, de facto exchange standards, like the bibcode to refer to a published paper, have been the key for building links and exchanging data. This partnership, in which practitioners from different disciplines agree to link their resources and to work together to define useful and usable standards, has produced a revolution in scientists' practice. It is an excellent model for the Virtual Observatory projects.

  18. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft; Lewis, Hilton; Martin, Chris; McLean, Ian S.; Rockosi, Constance; Wizinowich, Peter

    2010-07-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in the context of the Observatory's science driven strategic plan which seeks to address key questions in observational astronomy for extra-galactic, Galactic, and planetary science with both seeing limited capabilities and high angular resolution adaptive optics capabilities. This paper will review recently completed projects as well as new instruments in development including MOSFIRE, a near IR multi-object spectrograph nearing completion, a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, and the Keck Next Generation Adaptive Optics facility and its first light science instrument DAVINCI.

  19. INTERMAGNET and magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, Arnaud

    2012-01-01

    A magnetic observatory is a specially designed ground-based facility that supports time-series measurement of the Earth’s magnetic field. Observatory data record a superposition of time-dependent signals related to a fantastic diversity of physical processes in the Earth’s core, mantle, lithosphere, ocean, ionosphere, magnetosphere, and, even, the Sun and solar wind.

  20. Kronos Observatory Operations Challenges in a Lean Environment

    NASA Astrophysics Data System (ADS)

    Koratkar, Anuradha; Peterson, Bradley M.; Polidan, Ronald S.

    2003-02-01

    Kronos is a multiwavelength observatory designed to map the accretion disks and environments of supermassive black holes in various environments using the natural intrinsic variability of the accretion-driven sources. Kronos is envisaged as a Medium Explorer mission to NASA Office of Space Science under the Structure and Evolution of the Universe theme. We will achieve the Kronos science objectives by developing cost-effective techniques for obtaining and assimilating data from the research spacecraft and its subsequent work on the ground. The science operations assumptions for the mission are: (1 Need for flexible scheduling due to the variable nature of targets, (2) Large data volumes but minimal ground station contact, (3) Very small staff for operations. Our first assumption implies that we will have to consider an effective strategy to dynamically reprioritize the observing schedule to maximize science data acquisition. The flexibility we seek greatly increases the science return of the mission, because variability events can be properly captured. Our second assumption implies that we will have to develop some basic on-board analysis strategies to determine which data get downloaded. The small size of the operations staff implies that we need to "automate" as many routine processes of science operations as possible. In this paper we will discuss the various solutions that we are considering to optimize our operations and maximize science returns on the observatory.

  1. WFIRST Observatory Performance

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The WFIRST observatory will be a powerful and flexible wide-field near-infrared facility. The planned surveys will provide data applicable to an enormous variety of astrophysical science. This presentation will provide a description of the observatory and its performance characteristics. This will include a discussion of the point spread function, signal-to-noise budgets for representative observing scenarios and the corresponding limiting sensitivity. Emphasis will be given to providing prospective Guest Observers with information needed to begin thinking about new observing programs.

  2. Management approach recommendations. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Management analyses and tradeoffs were performed to determine the most cost effective management approach for the Earth Observatory Satellite (EOS) Phase C/D. The basic objectives of the management approach are identified. Some of the subjects considered are as follows: (1) contract startup phase, (2) project management control system, (3) configuration management, (4) quality control and reliability engineering requirements, and (5) the parts procurement program.

  3. Office of Legacy Management Decision Tree for Solar Photovoltaic Projects - 13317

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmer, John; Butherus, Michael; Barr, Deborah L.

    2013-07-01

    To support consideration of renewable energy power development as a land reuse option, the DOE Office of Legacy Management (LM) and the National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of wind and solar renewable energy resources on LM lands. From a solar capacity perspective, the larger sites in the western United States present opportunities for constructing solar photovoltaic (PV) projects. A detailed analysis and preliminary plan was developed for three large sites in New Mexico, assessing the costs, the conceptual layout of a PV system, and the electric utility interconnection process. As a result ofmore » the study, a 1,214-hectare (3,000-acre) site near Grants, New Mexico, was chosen for further study. The state incentives, utility connection process, and transmission line capacity were key factors in assessing the feasibility of the project. LM's Durango, Colorado, Disposal Site was also chosen for consideration because the uranium mill tailings disposal cell is on a hillside facing south, transmission lines cross the property, and the community was very supportive of the project. LM worked with the regulators to demonstrate that the disposal cell's long-term performance would not be impacted by the installation of a PV solar system. A number of LM-unique issues were resolved in making the site available for a private party to lease a portion of the site for a solar PV project. A lease was awarded in September 2012. Using a solar decision tree that was developed and launched by the EPA and NREL, LM has modified and expanded the decision tree structure to address the unique aspects and challenges faced by LM on its multiple sites. The LM solar decision tree covers factors such as land ownership, usable acreage, financial viability of the project, stakeholder involvement, and transmission line capacity. As additional sites are transferred to LM in the future, the decision tree will assist in determining whether

  4. Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    1997-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP began earlier this year. Universities Space Research Association (USRA), teamed with Raytheon E systems and United Airlines, was selected by NASA to develop and operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies lead by MAN-GHH. Work on the aircraft and the primary mirror has started. First science flights will begin in 2001, and the observatory is expected to operate for over 20 years. The specifications, instruments and science potential of SOFIA are discussed.

  5. The Virtual Watershed Observatory: Cyberinfrastructure for Model-Data Integration and Access

    NASA Astrophysics Data System (ADS)

    Duffy, C.; Leonard, L. N.; Giles, L.; Bhatt, G.; Yu, X.

    2011-12-01

    The Virtual Watershed Observatory (VWO) is a concept where scientists, water managers, educators and the general public can create a virtual observatory from integrated hydrologic model results, national databases and historical or real-time observations via web services. In this paper, we propose a prototype for automated and virtualized web services software using national data products for climate reanalysis, soils, geology, terrain and land cover. The VWO has the broad purpose of making accessible water resource simulations, real-time data assimilation, calibration and archival at the scale of HUC 12 watersheds (Hydrologic Unit Code) anywhere in the continental US. Our prototype for model-data integration focuses on creating tools for fast data storage from selected national databases, as well as the computational resources necessary for a dynamic, distributed watershed simulation. The paper will describe cyberinfrastructure tools and workflow that attempts to resolve the problem of model-data accessibility and scalability such that individuals, research teams, managers and educators can create a WVO in a desired context. Examples are given for the NSF-funded Shale Hills Critical Zone Observatory and the European Critical Zone Observatories within the SoilTrEC project. In the future implementation of WVO services will benefit from the development of a cloud cyber infrastructure as the prototype evolves to data and model intensive computation for continental scale water resource predictions.

  6. Stratospheric Observatory for Infrared Astronomy (SOFIA) Acoustical Resonance Technical Assessment Report

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Kehoe, Michael W.; Gupta, Kajal K.; Kegerise, Michael A.; Ginsberg, Jerry H.; Kolar, Ramesh

    2009-01-01

    A request was submitted on September 2, 2004 concerning the uncertainties regarding the acoustic environment within the Stratospheric Observatory for Infrared Astronomy (SOFIA) cavity, and the potential for structural damage from acoustical resonance or tones, especially if they occur at or near a structural mode. The requestor asked for an independent expert opinion on the approach taken by the SOFIA project to determine if the project's analysis, structural design and proposed approach to flight test were sound and conservative. The findings from this assessment are recorded in this document.

  7. Constellation Program Mission Operations Project Office Status and Support Philosophy

    NASA Technical Reports Server (NTRS)

    Smith, Ernest; Webb, Dennis

    2007-01-01

    The Constellation Program Mission Operations Project Office (CxP MOP) at Johnson Space Center in Houston Texas is preparing to support the CxP mission operations objectives for the CEV/Orion flights, the Lunar Lander, and and Lunar surface operations. Initially the CEV will provide access to the International Space Station, then progress to the Lunar missions. Initial CEV mission operations support will be conceptually similar to the Apollo missions, and we have set a challenge to support the CEV mission with 50% of the mission operations support currently required for Shuttle missions. Therefore, we are assessing more efficient way to organize the support and new technologies which will enhance our operations support. This paper will address the status of our preparation for these CxP missions, our philosophical approach to CxP operations support, and some of the technologies we are assessing to streamline our mission operations infrastructure.

  8. Geothermal Technologies Office 2012 Peer Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-04-01

    On May 7-10, 2012, the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Office conducted its annual program peer review in Westminster, CO. In accordance with the EERE Peer Review Guide, the review provides an independent, expert evaluation of the strategic goals and direction of the office and is a forum for feedback and recommendations on future office planning. The purpose of the review was to evaluate DOE-funded projects for their contribution to the mission and goals of the office and to assess progress made against stated objectives. Project scoring results, expert reviewer comments, andmore » key findings and recommendations are included in this report.« less

  9. Sofia Observatory Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Temi, Pasquale; Miller, Walter; Dunham, Edward; McLean, Ian; Wolf, Jurgen; Becklin, Eric; Bida, Tom; Brewster, Rick; Casey, Sean; Collins, Peter; hide

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration (SCAI) flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument configuration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. SCAI activities included in-flight partial Science Instrument commissioning prior to the use of the instruments as measuring engines. This paper reports on the data collected during the SCAI flights and presents current SOFIA Observatory performance and characterization.

  10. A Report on Double Star Observations for the Year 2014 by the Humacao University Observatory

    NASA Astrophysics Data System (ADS)

    Muller, R. J.; Cotto, D.; Cersosimo, J. C.; Rodriguez, R.; Diaz, M.; Rosario, M.; Nieves, Y.; Franco, E.; Lopez, A.; Torres, B. S.; Vergara, N.; Mendoza, L.; Ortiz, D.; Martinez, J.; Reyes, M.; del Valle-Rodriguez, Y.; Espinosa, G.; Diaz, V.; Rivera, C.; Morales, B.

    2018-01-01

    We report measurements of separation and position angle of 79 binary pairs. The data were obtained using the NURO Telescope at the Anderson Mesa location of Lowell Observatory, 20 miles east of Flagstaff, Arizona, at an altitude of 7000 feet, on June 12 and 13, 2014. We gathered the data using the 2K x 2K CCD camera,-NASACAM-at the prime focus of the 31 inch telescope. The data was transferred and analyzed at the Humacao University Observatory of the University of Puerto Rico by students undertaking research projects.

  11. Creating Data that Never Die: Building a Spectrograph Data Pipeline in the Virtual Observatory Era

    NASA Astrophysics Data System (ADS)

    Mink, D. J.; Wyatt, W. F.; Roll, J. B.; Tokarz, S. P.; Conroy, M. A.; Caldwell, N.; Kurtz, M.; Geller, M. J.

    2005-12-01

    Data pipelines for modern complex astronomical instruments do not begin when the data is taken and end when it is delivered to the user. Information must flow between the observatory and the observer from the time a project is conceived and between the observatory and the world well past the time when the original observers have extracted all the information they want from the data. For the 300-fiber Hectospec low dispersion spectrograph on the MMT, the SAO Telescope Data Center is constructing a data pipeline which provides assistance from preparing and submitting observing proposals through observation, reduction, and analysis to publication and an afterlife in the Virtual Observatory. We will describe our semi-automatic pipeline and how it has evolved over the first nine months of operation.

  12. In Brief: Deep-sea observatory

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  13. Gamma ray observatory dynamics simulator in Ada (GRODY)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This experiment involved the parallel development of dynamics simulators for the Gamma Ray Observatory in both FORTRAN and Ada for the purpose of evaluating the applicability of Ada to the NASA/Goddard Space Flight Center's flight dynamics environment. The experiment successfully demonstrated that Ada is a viable, valuable technology for use in this environment. In addition to building a simulator, the Ada team evaluated training approaches, developed an Ada methodology appropriate to the flight dynamics environment, and established a baseline for evaluating future Ada projects.

  14. Managing distributed software development in the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Evans, Janet D.; Plante, Raymond L.; Boneventura, Nina; Busko, Ivo; Cresitello-Dittmar, Mark; D'Abrusco, Raffaele; Doe, Stephen; Ebert, Rick; Laurino, Omar; Pevunova, Olga; Refsdal, Brian; Thomas, Brian

    2012-09-01

    The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides guidelines to ensure the project is cohesive and stays on track is key to success. Internal product deliveries with a planned test and feedback loop are critical. Release candidates are measured against use cases established early in the process, and provide the opportunity to assess priorities and make course corrections during development. Also key is the participation of a stakeholder such as a lead scientist who manages the technical questions, advises on priorities, and is actively involved as a lead tester. Finally, frequent scheduled communications (for example a bi-weekly tele-conference) assure issues are resolved quickly and the team is working toward a common vision.

  15. Decision Analysis Tools for Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  16. Cabled observatories: Connecting coastal communities to local ocean data

    NASA Astrophysics Data System (ADS)

    Pelz, M.; Hoeberechts, M.; Brown, J. C. K.; McLean, M. A.; Ewing, N.; Moran, K.

    2015-12-01

    Coastal communities are facing a wide range of rapid changes due to anthropogenic and natural environmental influences. Communities are under pressure to adapt to effects of climate change, including altered shorelines, changes in availability of seafood, and in northern regions, changes to the extent, formation and break-up of land-fast and sea-ice. Access to up-to-date scientific data and basic climate literacy are essential tools to enable community members to make informed decisions about their own coast. Ocean Networks Canada (ONC) operates the world-leading NEPTUNE and VENUS cabled ocean observatories off the west coast of British Columbia (BC). ONC also operates smaller, coastal community observatories which provide data for both scientific and educational initiatives.The first Arctic community observatory, deployed in 2012, is located in Cambridge Bay, Nunavut. Real-time data flowing from the platform are collected by a range of instruments, including a conductivity-temperature-depth sensor (CTD), hydrophone, video camera, and an ice profiler. There is also a meteorological station and time lapse camera on the dock. Five additional community observatories are being installed over the next year along the coast of BC. Indigenous communities, including the Inuit population in Cambridge Bay and First Nations on BC's north and central coast, are key partners and collaborators of this initiative.Benefits to communities from cabled observatory ocean monitoring can only be achieved if the data collected are relevant to community members and contribute to research priorities identified within the community. The data must be easily accessible and complement existing environmental monitoring initiatives. Community members must possess knowledge and tools to analyze and interpret the data for their purposes. For these reasons, community involvement is critical to the project, including the design of user interfaces for data access, development of educational programs

  17. The Legacy of the Georgetown College Observatory (D.C.)

    NASA Astrophysics Data System (ADS)

    Caron, Laura; Maglieri, Grace; Seitzer, Patrick

    2018-01-01

    Founded in 1841 as part of a nascent worldwide network of Jesuit-run astronomical observatories, the Georgetown College Observatory of Georgetown University in Washington, D.C. has been home to more than 125 years of astronomical research, from Father Curley’s calculations of the latitude and longitude of D.C. to Father McNally’s award-winning solar eclipse photography. But the impact of the Georgetown astronomy program was not limited to the observatory itself: it reached much further, into the local community and schools, and into the lives of everyone involved. This was never more apparent than under the directorship of Father Francis J Heyden, S.J., who arrived at Georgetown after World War II and stayed for almost three decades. He started a graduate program with over 90 graduates, hosting student researchers from local high schools and colleges, teaching graduate and undergraduate astronomy courses, and speaking at schools in the area, all while simultaneously managing Georgetown’s student radio station and hosting astronomical conferences on campus. Father Heyden’s research focused mainly on solar eclipses for geodetic purposes and planetary spectroscopy. But perhaps even more than research, Father Heyden dedicated his time and energy to the astronomy students, the notable of which include Vera Rubin, John P. Hagen of Project Vanguard, and a generation of Jesuit astronomers including Martin McCarthy, George Coyne, and Richard Boyle. Following the closure of the astronomy department in 1972, Father Heyden returned to Manila, where he had begun his astronomical career, to become Chief of the Solar Division at the Manila Observatory. His dedication to his work and to students serves as an inspiration for academic researchers across fields, and for the Georgetown University Astronomical Society, which, even in the absence of a formal astronomy program at Georgetown, continues his work in education and outreach today. In 1987, almost 150 years after its

  18. New Opportunities for Cabled Ocean Observatories

    NASA Astrophysics Data System (ADS)

    Duennebier, F. K.; Butler, R.; Karl, D. M.; Roger, L. B.

    2002-12-01

    With the decommissioning of transoceanic telecommunications cables as they become obsolete or uneconomical, there is an opportunity to use these systems for ocean observatories. Two coaxial cables, TPC-1 and HAW-2 are currently in use for observatories, and another, ANZCAN, is scheduled to be used beginning in 2004 to provide a cabled observatory at Station ALOHA, north of Oahu. The ALOHA observatory will provide several Mb/s data rates and about 1 kW of power to experiments installed at Station ALOHA. Sensors can be installed either by wet mateable connection to a junction box on the ocean floor using an ROV, or by acoustic data link to the system. In either case real-time data will be provided to users over the Internet. A Small Experiment Module, to be first installed at the Hawaii-2 Observatory, and later at Station ALOHA, will provide relatively cheap and uncomplicated access to the observatories for relatively simple sensors. Within the next few years, the first electro-optical cables installed in the 1980's will be decommissioned and could be available for scientific use. These cables could provide long "extension cords" (thousands of km) with very high bandwidth and reasonable power to several observatories in remote locations in the ocean. While they could be used in-place, a more exciting scenario is to use cable ships to pick up sections of cable and move them to locations of higher scientific interest. While such moves would not be cheap, the costs would rival the cost of installation and maintenance of a buoyed observatory, with far more bandwidth and power available for science use.

  19. Daily variation characteristics at polar geomagnetic observatories

    NASA Astrophysics Data System (ADS)

    Lepidi, S.; Cafarella, L.; Pietrolungo, M.; Di Mauro, D.

    2011-08-01

    This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French-Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D'Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.

  20. MSE observatory: a revised and optimized astronomical facility

    NASA Astrophysics Data System (ADS)

    Bauman, Steven E.; Angers, Mathieu; Benedict, Tom; Crampton, David; Flagey, Nicolas; Gedig, Mike; Green, Greg; Liu, Andy; Lo, David; Loewen, Nathan; McConnachie, Alan; Murowinski, Rick; Racine, René; Salmon, Derrick; Stiemer, Siegfried; Szeto, Kei; Wu, Di

    2016-07-01

    The Canada-France-Hawaii-Telescope Corporation (CFHT) plans to repurpose its observatory on the summit of Maunakea and operate a (60 segment) 11.25m aperture wide field spectroscopic survey telescope, the Maunakea Spectroscopic Explorer (MSE). The prime focus telescope will be equipped with dedicated instrumentation to take advantage of one of the best sites in the northern hemisphere and offer its users the ability to perform large surveys. Central themes of the development plan are reusing and upgrading wherever possible. MSE will reuse the CFHT site and build upon the existing observatory infrastructure, using the same building and telescope pier as CFHT, while minimizing environmental impact on the summit. MSE will require structural support upgrades to the building to meet the latest building seismic code requirements and accommodate a new larger telescope and upgraded enclosure. It will be necessary to replace the current dome since a larger slit opening is needed for a larger telescope. MSE will use a thermal management system to remove heat generated by loads from the building, flush excess heat from lower levels, and maintain the observing environment temperature. This paper describes the design approach for redeveloping the CFHT facility for MSE. Once the project is completed the new facility will be almost indistinguishable on the outside from the current CFHT observatory. Past experience and lessons learned from CFHT staff and the astronomical community will be used to create a modern, optimized, and transformative scientific data collecting machine.

  1. Observatories of Sawai Jai Singh II

    NASA Astrophysics Data System (ADS)

    Johnson-Roehr, Susan N.

    Sawai Jai Singh II, Maharaja of Amber and Jaipur, constructed five observatories in the second quarter of the eighteenth century in the north Indian cities of Shahjahanabad (Delhi), Jaipur, Ujjain, Mathura, and Varanasi. Believing the accuracy of his naked-eye observations would improve with larger, more stable instruments, Jai Singh reengineered common brass instruments using stone construction methods. His applied ingenuity led to the invention of several outsize masonry instruments, the majority of which were used to determine the coordinates of celestial objects with reference to the local horizon. During Jai Singh's lifetime, the observatories were used to make observations in order to update existing ephemerides such as the Zīj-i Ulugh Begī. Jai Singh established communications with European astronomers through a number of Jesuits living and working in India. In addition to dispatching ambassadorial parties to Portugal, he invited French and Bavarian Jesuits to visit and make use of the observatories in Shahjahanabad and Jaipur. The observatories were abandoned after Jai Singh's death in 1743 CE. The Mathura observatory was disassembled completely before 1857. The instruments at the remaining observatories were restored extensively during the nineteenth and twentieth centuries.

  2. The Pierre Auger Cosmic Ray Observatory

    DOE PAGES

    Aab, Alexander

    2015-07-08

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km 2 overlooked by 24 air fluorescence telescopes. Additionally, three high elevation fluorescence telescopes overlook a 23.5 km 2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operationmore » since completion in 2008 and has recorded data from an exposure exceeding 40,000 km 2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.« less

  3. Change of the layout of an office of a metallurgical company: simple projects, big solutions.

    PubMed

    Duarte, Luiz Carlos da Silva; Eckhardt, Moacir; da Motta, Giordano Paulo

    2012-01-01

    The posture, a good organization and the proper layout of the environment and workplaces have a positive influence on the income of an employee. To develop the work it is used a methodology that addressed the study phases of the theory involving the subject, description of the current situation, preparation of conceptions, choice of design, implementation and reporting of results. Through the project of "Change of the layout of an office of a metallurgical company" there was an intervention in these reported aspects providing improvements in the office, regarding ergonomic, layout, workplace and lighting issues, bringing welfare to the official, with the intent to improve its performance within the company and facilitating its actions, as the company's customer service. The results provided improvements in layout, in the workplace and especially in comfort for the human resources that perform their activities.

  4. Commisioning and ``First-Light'' of the Willard L. Eccles Observatory at Frisco Peak

    NASA Astrophysics Data System (ADS)

    Springer, Wayne; Dawson, Kyle; Ricketts, Paul; Ramsrud, Nicolas; Samarasingha, Upul

    2010-10-01

    The University of Utah completed construction of the Willard L. Eccles Observatory located on Frisco Peak near Milford, Utah in October 2009. The observatory site is located on a prominent peak at an altitude of approximately 9600 feet in a region with minimal light pollution. The Frisco Peak site was chosen after careful consideration of many factors including climate, light pollution and available infrastructure. The facility houses a 32'' Schmidt-Cassegrain telescope manufactured by DFM Engineering of Longmont, CO. Commissioning and development of remote operation capabilities is currently being undertaken. Monitoring of the weather and seeing conditions are being performed and confirm the excellent nature of the site for astronomical observations. The observatory facilities will be used for educational and public outreach activities as well as research projects. A description of the facility and its planned use will be provided. Measurements of the ``seeing'' and night sky background from images obtained with the telescope will also be presented.

  5. Science Operations of the International Ultraviolet Explorer (IUE) Observatory

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to support competitively selected astronomical research program. Through the IUE program, researchers make IUE observations, have their scientific data reduced in a meaningful way, and receive data products in a form amenable to the pursuit of scientific research. The IUE Observatory is key to the program since it is the central control and support facility for all science support functions within the IUE project.

  6. Reducing RN Vacancy Rate: A Nursing Recruitment Office Process Improvement Project.

    PubMed

    Hisgen, Stephanie A; Page, Nancy E; Thornlow, Deirdre K; Merwin, Elizabeth I

    2018-06-01

    The aim of this study was to reduce the RN vacancy rate at an academic medical center by improving the hiring process in the Nursing Recruitment Office. Inability to fill RN positions can lead to higher vacancy rates and negatively impact staff and patient satisfaction, quality outcomes, and the organization's bottom line. The Model for Improvement was used to design and implement a process improvement project to improve the hiring process from time of interview through the position being filled. Number of days to interview and check references decreased significantly, but no change in overall time to hire and time to fill positions was noted. RN vacancy rate also decreased significantly. Nurse manager satisfaction with the hiring process increased significantly. Redesigning the recruitment process supported operational efficiencies of the organization related to RN recruitment.

  7. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Ken Jucks, OCO-2 program scientist, NASA Headquarters, left, Dave Crisp, OCO-2 science team leader, JPL, and Annmarie Eldering, OCO-2 deputy project scientist, JPL, right, give a science briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  8. US Instrument Options for the SPICA Observatory

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Carter, Ruth; Benner, Steve; Rossetti, Dino; Leete, Stephen; Townsend, Jackie; Keer, Beth; Davis, Chris

    2012-01-01

    NASA has engaged in studying options for a US contribution to the Japanese-led Space II Astrophysics (SPICA). This cryogenic 3m-class telescope builds on the scientific and technological legacies of Akari and Hershel. The primary portion of a US contribution would be a far-infrared spectrometer, but with a sensitivity several hundred times greater than Herschel, opening up this wavelength range for study of emission lines from galaxies up to the highest redshifts. We describe efforts to formulate an approach that fits within project and programmatic constraints and fulfills the scientific promise of the SPICA observatory.

  9. Byurakan Astrophysical Observatory as Cultural Centre

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.

    2017-07-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts. Keywords: Byurakan Astrophysical Observatory, architecture, botanic garden, tourism, Cultural Astronomy.

  10. ESO's First Observatory Celebrates 40th Anniversary

    NASA Astrophysics Data System (ADS)

    2009-03-01

    night skies on the Earth. At its peak, La Silla was home to no fewer than 15 telescopes, among them the first -- and, for a very long time, the only -- telescope working in submillimetric waves (the 15-metre SEST) in the southern hemisphere, which paved the way for APEX and ALMA, and the 1-metre Schmidt telescope, which completed the first photographic mapping of the southern sky. The telescopes at La Silla have also supported countless space missions, e.g., by obtaining the last images of comet Shoemaker Levy 9 before it crashed into Jupiter, thereby helping predicting the exact moment when the Galileo spacecraft should observe to capture images of the cosmic collision. "Many of the current generation of astronomers were trained on La Silla where they got their first experience with what were then considered large telescopes," says Bruno Leibundgut, ESO Director for Science. While some of the smaller telescopes have been closed over the years, frontline observations continue with the larger telescopes, aided by new and innovative astronomical instruments. La Silla currently hosts two of the most productive 4-metre class telescopes in the world, the 3.5-metre New Technology Telescope (NTT) and the 3.6-metre ESO telescope. "The NTT broke new ground for telescope engineering and design," says Andreas Kaufer, director of the La Silla Paranal Observatory. The NTT was the first in the world to have a computer-controlled main mirror (active optics), a technology developed at ESO and now applied to the VLT and most of the world's current large telescopes. The ESO 3.6-metre telescope, which was for many years one of the largest European telescopes in operation, is now home to the extrasolar planet hunter, HARPS (High Accuracy Radial velocity Planet Searcher), a spectrograph with unrivalled precision. The infrastructure of La Silla is used by many of the ESO member states for targeted projects such as the Swiss 1.2-metre Euler telescope, the Italian Rapid-Eye Mount (REM) and

  11. Photoelectric observations of the long-period eclipsing binaries at Yonsei University Observatory

    NASA Technical Reports Server (NTRS)

    Nha, I. S.; Lee, Y. S.; Chun, Y. W.; Kim, H. I.; Kim, Y. S.

    1985-01-01

    A long term project (ten-years; 1982-92) for the photoelectric observation in the UBV passbands of selected eclipsing binaries with P 10 days has initiated at Yonsei University Observatory using 40-cm and 61-cm reflectors. The instrumentation used and the observation techniques and the reduction procedures applied to this investigation are described.

  12. Use Management Techniques in Office Practice

    ERIC Educational Resources Information Center

    Holehan, E. Lee

    1977-01-01

    Notes that authenticity can be added to student work projects in an office practice class by having the teacher assume the role of the office manager or supervisor and putting office management techniques into practice. Ways in which such techniques may be infused into classes are examined. (TA)

  13. The ALMA CONOPS project: the impact of funding decisions on observatory performance

    NASA Astrophysics Data System (ADS)

    Ibsen, Jorge; Hibbard, John; Filippi, Giorgio

    2014-08-01

    In time when every penny counts, many organizations are facing the question of how much scientific impact a budget cut can have or, putting it in more general terms, which is the science impact of alternative (less costly) operational modes. In reply to such question posted by the governing bodies, the ALMA project had to develop a methodology (ALMA Concepts for Operations, CONOPS) that attempts to measure the impact that alternative operational scenarios may have on the overall scientific production of the Observatory. Although the analysis and the results are ALMA specific, the developed approach is rather general and provides a methodology for a cost-performance analysis of alternatives before any radical alterations to the operations model are adopted. This paper describes the key aspects of the methodology: a) the definition of the Figures of Merit (FoMs) for the assessment of quantitative science performance impacts as well as qualitative impacts, and presents a methodology using these FoMs to evaluate the cost and impact of the different operational scenarios; b) the definition of a REFERENCE operational baseline; c) the identification of Alternative Scenarios each replacing one or more concepts in the REFERENCE by a different concept that has a lower cost and some level of scientific and/or operational impact; d) the use of a Cost-Performance plane to graphically combine the effects that the alternative scenarios can have in terms of cost reduction and affected performance. Although is a firstorder assessment, we believe this approach is useful for comparing different operational models and to understand the cost performance impact of these choices. This can be used to take decision to meet budget cuts as well as in evaluating possible new emergent opportunities.

  14. End-to-end operations at the National Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Radziwill, Nicole M.

    2008-07-01

    In 2006 NRAO launched a formal organization, the Office of End to End Operations (OEO), to broaden access to its instruments (VLA/EVLA, VLBA, GBT and ALMA) in the most cost-effective ways possible. The VLA, VLBA and GBT are mature instruments, and the EVLA and ALMA are currently under construction, which presents unique challenges for integrating software across the Observatory. This article 1) provides a survey of the new developments over the past year, and those planned for the next year, 2) describes the business model used to deliver many of these services, and 3) discusses the management models being applied to ensure continuous innovation in operations, while preserving the flexibility and autonomy of telescope software development groups.

  15. S-net : Construction of large scale seafloor observatory network for tsunamis and earthquakes along the Japan Trench

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Uehira, K.; Kanazawa, T.; Shiomi, K.; Kunugi, T.; Aoi, S.; Matsumoto, T.; Sekiguchi, S.; Yamamoto, N.; Takahashi, N.; Nakamura, T.; Shinohara, M.; Yamada, T.

    2017-12-01

    NIED has launched the project of constructing a seafloor observatory network for tsunamis and earthquakes after the occurrence of the 2011 Tohoku Earthquake to enhance reliability of early warnings of tsunamis and earthquakes. The observatory network was named "S-net". The S-net project has been financially supported by MEXT.The S-net consists of 150 seafloor observatories which are connected in line with submarine optical cables. The total length of submarine optical cable is about 5,500 km. The S-net covers the focal region of the 2011 Tohoku Earthquake and its vicinity regions. Each observatory equips two units of a high sensitive pressure gauges as a tsunami meter and four sets of three-component seismometers. The S-net is composed of six segment networks. Five of six segment networks had been already installed. Installation of the last segment network covering the outer rise area have been finally finished by the end of FY2016. The outer rise segment has special features like no other five segments of the S-net. Those features are deep water and long distance. Most of 25 observatories on the outer rise segment are located at the depth of deeper than 6,000m WD. Especially, three observatories are set on the seafloor of deeper than about 7.000m WD, and then the pressure gauges capable of being used even at 8,000m WD are equipped on those three observatories. Total length of the submarine cables of the outer rise segment is about two times longer than those of the other segments. The longer the cable system is, the higher voltage supply is needed, and thus the observatories on the outer rise segment have high withstanding voltage characteristics. We employ a dispersion management line of a low loss formed by combining a plurality of optical fibers for the outer rise segment cable, in order to achieve long-distance, high-speed and large-capacity data transmission Installation of the outer rise segment was finished and then full-scale operation of S-net has started

  16. 1982 Texas Competency Validation Project for Auto Mechanics, Diesel Mechanics, Office Occupations, Printshop Trades, and Welding. Final Report.

    ERIC Educational Resources Information Center

    Rogers, Sandra K.; Dahlberg, Maurine F.

    This report documents a statewide competency validation project to provide current information about job skills considered "important to know" by Texas industrial experts in the areas of auto mechanics, diesel mechanics, office occupations, print shop trades, and welding. Section 1 describes the steps used to conduct the study and…

  17. FLARE: The Far Side Lunar Research Expedition. A design of a far side lunar observatory

    NASA Technical Reports Server (NTRS)

    Bishop, David W.; Chakrabarty, Rudhmala P.; Hannula, Dawn M.; Hargus, William A., Jr.; Melendrez, A. Dean; Niemann, Christopher J.; Neuenschwander, Amy L.; Padgett, Brett D.; Patel, Sanjiv R.; Wiesehuegel, Leland J.

    1991-01-01

    This document outlines the design completed by members of Lone Star Aerospace, Inc. (L.S.A.) of a lunar observatory on the far side of the Moon. Such a base would not only establish a long term human presence on the Moon, but would also allow more accurate astronomical data to be obtained. A lunar observatory is more desirable than an Earth based observatory for the following reasons: instrument weight is reduced due to the Moon's weaker gravity; near vacuum conditions exist on the Moon; the Moon has slow rotation to reveal the entire sky; and the lunar surface is stable for long baseline instruments. All the conditions listed above are favorable for astronomical data recording. The technical aspects investigated in the completion of this project included site selection, mission scenario, scientific instruments, communication and power systems, habitation and transportation, cargo spacecraft design, thermal systems, robotic systems, and trajectory analysis. The site selection group focused its efforts on finding a suitable location for the observatory. Hertzsprung, a large equatorial crater on the eastern limb, was chosen as the base site.

  18. An international network of magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  19. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  20. IAU South West and Central Asian Regional Office of Astronomy for Development

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Hakopian, S. A.; Farmanyan, S. V.; Mikayelyan, G. A.

    2017-12-01

    The International Astronomical Union (IAU) announced its Strategic Plan on Astronomy for Development in 2009, during the International Year of Astronomy (IYA). One of its main components was the creation of the Office of Astronomy for Development (OAD) and corresponding Regional Offices (ROADs) for implementation and coordination of its aims. The OAD was created in Cape Town, South Africa and later on ROADs were created in 8 regions. Since 2015, Armenia hosts one of them, IAU South West Asian (SWA), later renamed to South West and Central Asian (SWCA) ROAD. At present, already 6 countries have officially joined (Armenia, Georgia, Iran, Kazakhstan, Tajikistan, and Turkey), but the Office serves for a rather broad region, from Eastern Europe to Central Asia. Armenia's geographical location and its historical role in astronomy (both for well-known archaeoastronomical heritage and the presence of the famous Byurakan Astrophysical Observatory (BAO) founded by Viktor Ambartsumian in 1946) serve as a link between Europe and Eastern Partnership countries, Middle East and Asia in general. We run activities in 3 directions, Task Forces (TF): TF1 Universities and Research, TF2 Children and Schools and TF3 Public Outreach. We present our projects and all other accomplishments and discuss the role of our ROAD in maintaining contacts and development of astronomy in the region, as well as contacts between Europe and the Eastern Partnership countries. Most up-to-date information about the IAU SWCA ROAD is available on its webpage at http://iau-swa-road.aras.am/eng/index.php.

  1. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, Paolo

    2010-05-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap (Report 2006, http://cordis.europa.eu/esfri/roadmap.htm), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. The development of an underwater network is based on previous EU-funded projects since early '90 and is being supported by several EU initiatives, as the on-going ESONET-NoE, coordinated by IFREMER (2007-2011, http://www.esonet-emso.org/esonet-noe/), and aims at gathering together the Research Community of the Ocean Observatories. In 2006 the FP7 Capacities Programme launched a call for Preparatory Phase (PP) projects, that will provide the support to create the legal and organisational entities in charge of managing the infrastructures, and coordinating the financial effort among the countries. Under this call the EMSO-PP project was approved in 2007 with the coordination of INGV and the participation of other 11 Institutions of 11 countries. The project has started in April 2008 and will last 4 years. The EMSO is a key-infrastructure both for Ocean Sciences and for Solid Earth Sciences. In this respect it will enhance and complement profitably the capabilities of other European research infrastructures such as EPOS, ERICON-Aurora Borealis, and SIOS. The perspective of the synergy among EMSO and other ESFRI Research Infrastructures will be outlined. EMSO Partners: IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph

  2. A continued program of planetary study at the University of Texas McDonald Observatory

    NASA Technical Reports Server (NTRS)

    Trafton, L.

    1991-01-01

    The program conducts solar system research in support of NASA missions and of general astronomical interest. Investigations of composition, physical characteristics and changes in solar system bodies are conducted primarily using the facilities of McDonald Observatory. Progress, accomplishments, and projected accomplishments are discussed.

  3. SN-1 and NEMO: the Italian cabled observatories

    NASA Astrophysics Data System (ADS)

    Favali, P.; Beranzoli, L.; Calore, D.; D'Anna, G.; Gasparoni, F.; NEMO Collaboration Team

    2003-04-01

    A fruitful synergy between Geophysics, Environmental Sciences, Nuclear Physics and Marine Technology has started through ongoing projects within different Italian research frameworks. The Neutrino Mediterranean Observatory (NEMO) project, funded by INFN, aims at the realization of a deep-sea experiment for the detection of cosmic neutrinos using an array of towers equipped by photosensors. To test the technological solutions proposed for the realization of the project, the Laboratiori Nazionali del Sud have set up an underwater Test Site off-shore Catania. A 25 km long submarine electro-optical cable was deployed in September 2001, in order to supply power from land and receive data from the underwater site located at a depth of 2000 m. A shore station has also been realize inside the Catania port area. In October 2001, Submarine Network-1 (SN-1), the first Italian deep-sea multidisciplinary observatory for geophysical and environmental monitoring was deployed at a depth of 2105 m, in the area of the Ibleo-maltese escarpment, in proximity of the marine tail of the NEMO cable. SN-1, funded by the Italian Gruppo Nazionale di Difesa dai Terremoti and coordinated by INGV, is presently operating in local mode storing measurements on hard disks and is powered by lithium batteries with an autonomy of approximately 200 days. In the view of mutual assistance, the coordinator institutions of NEMO and SN-1 have agreed that part of the optic fibres and power lines of the NEMO-1 underwater cable be made available to power SN-1 from land and to transfer in real time the signals acquired by the geophysical and environmental sensor packages of SN-1. On this latter's side, time series of environmental parameters useful for the analysis and interpretation of NEMO-1 detections will be available. A description of the two projects and of the 'state of the art' will be given and the benefits of the development of a submarine Italian prone site will be pointed out.

  4. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric E.

    1998-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter IR airborne telescope in a Boeing 747-SP is now in its second year. The Universities Space Research Association, teamed with Raytheon E-Systems and United Airlines, is developing and will operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies led by MAN. Work on the aircraft and the primary mirror has started. First science flights will begin in 2001 with 20 percent of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed.

  5. The European Virtual Observatory EURO-VO | Euro-VO

    Science.gov Websites

    : VOTECH EuroVO-DCA EuroVO-AIDA EuroVO-ICE The European Virtual Observatory EURO-VO The Virtual Observatory news Workshop on Virtual Observatory Tools and their Applications, Krakow, Poland June 16-18, organized present the Astronomical Virtual Observatory at the Copernicus (European Earth Observation Programme) Big

  6. Virtual Observatory Science Applications

    NASA Technical Reports Server (NTRS)

    McGlynn, Tom

    2005-01-01

    Many Virtual-Observatory-based applications are now available to astronomers for use in their research. These span data discovery, access, visualization and analysis. Tools can quickly gather and organize information from sites around the world to help in planning a response to a gamma-ray burst, help users pick filters to isolate a desired feature, make an average template for z=2 AGN, select sources based upon information in many catalogs, or correlate massive distributed databases. Using VO protocols, the reach of existing software tools and packages can be greatly extended, allowing users to find and access remote information almost as conveniently as local data. The talk highlights just a few of the tools available to scientists, describes how both large and small scale projects can use existing tools, and previews some of the new capabilities that will be available in the next few years.

  7. Laser Guide Star Based Astrophysics at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C; Gavel, D.; Friedman, H.

    2000-03-10

    The resolution of ground-based telescopes is typically limited to {approx}1 second of arc because of the blurring effects of atmospheric turbulence. Adaptive optics (AO) technology senses and corrects for the optical distortions due to turbulence hundreds of times per second using high-speed sensors, computers, deformable mirror, and laser technology. The goal of this project is to make AO systems widely useful astronomical tools providing resolutions up to an order of magnitude better than current, ground-based telescopes. Astronomers at the University of California Lick Observatory at Mt. Hamilton now routinely use the LLNL developed AO system for high resolution imaging ofmore » astrophysical objects. We report here on the instrument development progress and on the science observations made with this system during this 3-year ERI project.« less

  8. 110th Anniversary of the Engelhardt Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.

    2012-09-01

    The Engelhardt Astronomical Observatory (EAO) was founded in September 21, 1901. The history of creation of the Engelhard Astronomical Observatory was begun in 1897 with transfer a complimentary to the Kazan University of the unique astronomical equipment of the private observatory in Dresden by known astronomer Vasily Pavlovichem Engelgardt. Having stopped astronomical activity owing to advanced years and illnesses Engelgardt has decided to offer all tools and library of the Astronomical observatory of the Kazan University. Vasily Pavlovich has put the first condition of the donation that his tools have been established as soon as possible and on them supervision are started. In 1898 the decree of Emperor had been allocated means and the ground for construction of the Astronomical observatory is allocated. There is the main historical telescope of the Engelhard Astronomical Observatory the 12-inch refractor which was constructed by English master Grubbom in 1875. The unique tool of the Engelhard Astronomical Observatory is unique in the world now a working telescope heliometer. It's one of the first heliometers, left workshops Repsolda. It has been made in 1874 and established in Engelgardt observatory in 1908 in especially for him the constructed round pavilion in diameter of 3.6 m. Today the Engelhard Astronomical Observatory is the only thing scientifically - educational and cultural - the cognitive astronomical center, located on territory from Moscow up to the most east border of Russia. Currently, the observatory is preparing to enter the protected UNESCO World Heritage List.

  9. Kitt Peak National Observatory | ast.noao.edu

    Science.gov Websites

    National Observatory (KPNO), part of the National Optical Astronomy Observatory (NOAO), supports the most diverse collection of astronomical observatories on Earth for nighttime optical and infrared astronomy and NOAO is the national center for ground-based nighttime astronomy in the United States and is operated

  10. Academy Sharing Knowledge (ASK). The NASA Source for Project Management Magazine, Volume 11, March 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    APPL is a research-based organization that serves NASA program and project managers, as well as project teams, at every level of development. In 1997, APPL was created from an earlier program to underscore the importance that NASA places on project management and project teams through a wide variety of products and services, including knowledge sharing, classroom and online courses, career development guidance, performance support, university partnerships, and advanced technology tools. ASK Magazine grew out of APPL's Knowledge Sharing Initiative. The stories that appear in ASK are written by the 'best of the best' project managers, primarily from NASA, but also from other government agencies and industry. Contributors to this issue include: Teresa Bailey, a librarian at the Jet Propulsion Laboratory, Roy Malone, Deputy Director in the Safety and Mission Assurance (S&MA) Office at the NASA Marshall Space Flight Center (MSFC), W. Scott Cameron, Capital Systems Manager for the Food and Beverage Global Business Unit of Procter and Gamble, Ray Morgan, recent retiree as Vice President of AeroVironment, Inc., Marty Davis, Program Manager of the Geostationary Operational Environmental Satellite (GOES) at the NASA Goddard Space Flight Center (GSFC) in Greenbelt, Maryland, Todd Post, editor of ASK Magazine, and works for EduTech Ltd. in Silver Spring, Maryland, Dr. Owen Gadeken, professor of Engineering Management at the Defense Acquisition University, Ken Schwer, currently the Project Manager of Solar Dynamics Observatory, Dr. Edward Hoffmwan, Director of the NASA Academy of Program and Project Leadership, Frank Snow, a member of the NASA Explorer Program at Goddard Space Flight Center since 1992, Dr. Alexander Laufer, Editor-in-Chief of ASK Magazine and a member of the Advisory Board of the NASA Academy of Program and Project Leadership, Judy Stokley, presently Air Force Program Executive Officer for Weapons in Washington, D.C. and Terry Little, Director of the Kinetic

  11. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1995-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate themore » facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.« less

  12. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-07-01

    A crew member of the STS-93 mission took this photograph of the Chandra X-Ray Observatory, still attached to the Inertial Upper Stage (IUS), backdropped against the darkness of space not long after its release from Orbiter Columbia. Two firings of an attached IUS rocket placed the Observatory into its working orbit. The primary duty of the crew of this mission was to deploy the 50,162-pound Observatory, the world's most powerful x-ray telescope.

  13. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  14. Summary of the NASA Science Instrument, Observatories and Sensor Systems (SIOSS) Technology Assessment Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology Assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assessed the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. This needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper summarizes the SIOSS findings and recommendations.

  15. Early German plans for southern observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    2002-07-01

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century, Heidelberg and Potsdam astronomers proposed a southern observatory. Then Göttingen astronomers suggested building an observatory in Windhoek for photographing the sky and measuring the solar constant. In 1910 Karl Schwarzschild (1873-1916), after a visit to observatories in the United States, pointed out the usefulness of an observatory in South West Africa, in a climate superior to that in Germany, giving German astronomers access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhoek to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963.

  16. The French Astronomical Archives Alidade Project

    NASA Astrophysics Data System (ADS)

    Debarbat, S.; Bobis, L.

    2004-12-01

    The present state of Alidade, an archival project of Paris Observatory, including not only archival papers, but also instruments, documents, iconography, paintings etc., of various institutions, is described. Documents and collections, e.g. from donations or purchases, are still integrated into the archives, and selected material is displayed in temporary exhibits at the Observatory. Modern uses of old material are briefly mentioned

  17. Image of the Supernova Cassiopeia Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This supernova in the constellation Cassiopeia was observed by Tycho Brahe in 1572. In this x-ray image from the High Energy Astronomy Observatory (HEAO-2/Einstein Observatory produced by nearly a day of exposure time, the center region appears filled with emissions that can be resolved into patches or knots of material. However, no central pulsar or other collapsed object can be seen. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  18. Image of the Crab Nebula Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This is an x-ray image of the Crab Nebula taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The image is demonstrated by a pulsar, which appears as a bright point due to its pulsed x-ray emissions. The strongest region of diffused emissions comes from just northwest of the pulsar, and corresponds closely to the region of brightest visible-light emission. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  19. Educational Programs at the Lake Afton Public Observatory

    NASA Astrophysics Data System (ADS)

    Alexander, D. R.; Novacek, G. R.

    1994-05-01

    The Lake Afton Public Observatory was founded 14 years ago as a joint project of the city, county, local schools, and Wichita State University to provide educational programs for the public and school children. A staff of 4 professional astronomers presents daytime and evening programs at the Observatory and makes presentations in schools to over 20,000 people per year. Programs are scheduled 6 days a week during the academic year and 3 days a week in the summer. Our public programs deviate significantly from the traditional observatory open house by following a specific theme. Selection and discussion of each object is centered on that theme. For example, a program on The Life Story of a Star would view a diffuse nebula (to discuss star formation), a young star cluster (to discuss one outcome of star formation), a double star (to discuss how the properties of stars are determined), and a planetary nebula (to discuss the death of a star). To complement the observing experiences of our visitors, we have developed a wide range of interactive exhibits to develop the concepts touched on in the viewing programs. We have also developed exhibit lending kits for extended use in school classrooms, educational games, activity manuals for teachers, and short videos to introduce single concepts in the classroom. In the past year we have begun to offer a series of workshops for in-service teachers to expand their knowledge of astronomy and to provide them with additional resources for teaching astronomy. This work is supported in part by NSF EPSCoR grant OSR-9255223.

  20. Telescope Scientist on the Advanced X-Ray Astrophysics Observatory

    NASA Technical Reports Server (NTRS)

    VanSpeybroeck, Leon

    1999-01-01

    The most important activity during this reporting period was the calibration of the AXAF High Resolution Mirror Assembly (HRMA) and the analysis of the copious data which were obtained during that project. The calibration was highly successful, and will result in the AXAF being by far the best calibrated X-ray observatory ever flown, and more accurate results by all of its users. This period also included participation in the spacecraft alignment and assembly activities and final flight readiness reviews. The planning of the first year of Telescope Scientist AXAF observations also was accomplished. The Telescope Scientist team also served as a technical resource for various problems which were encountered during this period. Many of these contributions have been documented in memoranda sent to the project.

  1. DAG: a new observatory and a prospective observing site for other potential telescopes

    NASA Astrophysics Data System (ADS)

    Yeşilyaprak, Cahit; Yerli, Sinan K.; Keskin, Onur; Güçsav, B. Bülent

    2016-07-01

    DAG (Eastern Anatolia Observatory is read as "Doğu Anadolu Gözlemevi" in Turkish) is the newest and largest observatory of Turkey, constructed at an altitude of 3150 m in Konaklı/Erzurum provenience, with an optical and nearinfrared telescope (4 m in diameter) and its robust observing site infrastructure. This national project consists of three main phases: DAG (Telescope, Enclosure, Buildings and Infrastructures), FPI (Focal Plane Instruments and Adaptive Optics) and MCP (Mirror Coating Plant). All these three phases are supported by the Ministry of Development of Turkey and funding is awarded to Atatürk University. Telescope, enclosure and building tenders were completed in 2014, 2015 and 2016, respectively. The final design of telescope, enclosure and building and almost all main infrastructure components of DAG site have been completed; mainly: road work, geological and atmospheric surveys, electric and fiber cabling, water line, generator system, cable car to summit. This poster explains recent developments of DAG project and talks about the future possible collaborations for various telescopes which can be constructed at the site.

  2. SOFIA - Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  3. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  4. The Malaysian Robotic Solar Observatory (P29)

    NASA Astrophysics Data System (ADS)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  5. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-08-01

    This picture is of an Atlas/Centaur launch vehicle, carrying the High Energy Astronomy Observatory (HEAO)-1, on Launch Complex 36 at the Air Force Eastern Test Range prior to launch on August 12, 1977. The Kennedy Space Center managed the launch operations that included a pre-aunch checkout, launch, and flight, up through the observatory separation in orbit.

  6. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2010-06-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint U.S./German Project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP that flies in the stratosphere at altitudes as high as 45,000 feet and is capable of observations from 0.3 microns to 1.6 mm with an average transmission of greater than 80 percent. SOFIA will be staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations Center (SSMOC) will be located at NASA Ames Research Center, Moffett Field, CA. Open door test flights began in December of 2009. First science flights will begin in 2010, and the number of flights will ramp up annually with a flight rate of over 100 eight to ten hour flights per year expected by 2014. The observatory is expected to operate until the mid 2030's. We review the status of the SOFIA facility and its initial complement of eight focal plane instruments that include broadband imagers, moderate resolution spectrographs that will resolve broad features due to dust and large molecules, and high resolution spectrometers capable of studying the kinematics of molecular and atomic gas lines at km/s resolution.

  7. What kind of scientific observations can we still doing with a small ground-based telescopes? Case Study of Oukaimeden Observatory

    NASA Astrophysics Data System (ADS)

    Benkhaldoun, Zouhair

    2015-08-01

    We propose to discuss the issue based on the experience gained at the Oukaimeden Observatory since 1988. Indeed, during the past few years, this observatory located in the Moroccan High Atlas, is experiencing a substantial rise in term of scientific work. After being selected in the last 80’s, for a solar helioseismology experiment (IRIS Experiment) and having been the subject of several site testing campaigns, it is quickly becoming one of the most important sky surveyor in the region, and beyond.It has in fact proven, especially thanks to its very good seeing and recent discoveries of comets and near-Earth asteroids, that we still need to invest in observation from the ground with instruments of modest size and costs. The site has a median seeing of about 0.9 arcsec with frequent peaks at 0.5-0.6 arcsec. It has very good climate statistics especially in terms of the number of good photometrical night (280 per year).In this work, we propose to review the qualities of the site of the Oukaimeden observatory, the projects that have been developed, the projects under development and finally the potential it represents for the community to turn it into a unique observation location in the region. We will also present some scientific results from various programs previously developed, as well as projections on the basis of projects currently discussed.

  8. My Work in the NASA Glenn History Office and Records Management Office

    NASA Technical Reports Server (NTRS)

    Mate, Robert C.

    2004-01-01

    This is my fourth summer working with my mentor, Kevin P. Coleman, who is the Center History Coordinator, Center Records Manager, and Center Forms Manager. I am working in the GRC History Office with some overlap in the Records Management Office. I have three major projects this summer. First, I am assisting in the documentation of historic facilities. Second, I am involved in a project to organize files and create an archives at Plum Brook Station. Third, I have helped the records management office with its inventory of stored records at Plum Brook. Also, I received an award this summer for research work I had done for NASA in the past. First, my primary project is to help assemble documentation for historic facilities at Glenn. This is somewhat of an extension of my project from last summer. Last summer, I worked to compile a complete list of all of NASA s historic sites and landmarks (as designated by the National Park Service, as well as several private organizations) throughout the country. Then, I briefly researched the significance of historic designation under federal law. Finally, I put my findings into a report which was submitted to NASA Headquarters. Upon review by the NASA History Office and several center-level history officials, it was decided that NASA should work to update its documentation of its historic sites and landmarks since some of the documentation was outdated or unavailable. Until recently, many project managers and facility managers working at historic facilities were not even aware that their surroundings had been designated as historic under federal law (most specifically, the National Historic Preservation Act of 1966 and its amendments). Therefore, they were unaware of the legal obligations for historic preservation. This summer, my project is to research some of Glenn s historic sites and landmarks in more detail. The goal is to put together a template for documenting historic NASA facilities. The hope is that this template of

  9. Observatory Bibliographies as Research Tools

    NASA Astrophysics Data System (ADS)

    Rots, Arnold H.; Winkelman, S. L.

    2013-01-01

    Traditionally, observatory bibliographies were maintained to provide insight in how successful a observatory is as measured by its prominence in the (refereed) literature. When we set up the bibliographic database for the Chandra X-ray Observatory (http://cxc.harvard.edu/cgi-gen/cda/bibliography) as part of the Chandra Data Archive ((http://cxc.harvard.edu/cda/), very early in the mission, our objective was to make it primarily a useful tool for our user community. To achieve this we are: (1) casting a very wide net in collecting Chandra-related publications; (2) including for each literature reference in the database a wealth of metadata that is useful for the users; and (3) providing specific links between the articles and the datasets in the archive that they use. As a result our users are able to browse the literature and the data archive simultaneously. As an added bonus, the rich metadata content and data links have also allowed us to assemble more meaningful statistics about the scientific efficacy of the observatory. In all this we collaborate closely with the Astrophysics Data System (ADS). Among the plans for future enhancement are the inclusion of press releases and the Chandra image gallery, linking with ADS semantic searching tools, full-text metadata mining, and linking with other observatories' bibliographies. This work is supported by NASA contract NAS8-03060 (CXC) and depends critically on the services provided by the ADS.

  10. The project office of the Gaia Data Processing and Analysis Consortium

    NASA Astrophysics Data System (ADS)

    Mercier, E.; Els, S.; Gracia, G.; O'Mullane, W.; Lock, T.; Comoretto, G.

    2010-07-01

    Gaia is Europe's future astrometry satellite which is currently under development. The data collected by Gaia will be treated and analyzed by the "Data Processing and Analysis Consortium" (DPAC). DPAC consists of over 400 scientists in more than 22 countries, which are currently developing the required data reduction, analysis and handling algorithms and routines. DPAC is organized in Coordination Units (CU's) and Data Processing Centres (DPCs). Each of these entities is individually responsible for the development of software for the processing of the different data. In 2008, the DPAC Project Office (PO) has been set-up with the task to manage the day-to-day activities of the consortium including implementation, development and operations. This paper describes the tasks DPAC faces and the role of the DPAC PO in the Gaia framework and how it supports the DPAC entities in their effort to fulfill the Gaia promise.

  11. Promoting Your e-Books: Lessons from the UK JISC National e-Book Observatory

    ERIC Educational Resources Information Center

    Lonsdale, Ray; Armstrong, Chris

    2010-01-01

    Purpose: The purpose of this paper is to describe the findings from the qualitative strand of the National e-Book Observatory (2007-2009) project, relating to the promotion of e-textbooks in UK universities by the library, academics and publishers. A complementary paper on the ways in which students and academics locate e-books provided by their…

  12. Science Enabled by Ocean Observatory Acoustics

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lee, C.; Gobat, J.; Freitag, L.; Miller, J. H.; Committee, I.

    2004-12-01

    Ocean observatories have the potential to examine the physical, chemical, biological, and geological parameters and processes of the ocean at time and space scales previously unexplored. Acoustics provides an efficient and cost-effective means by which these parameters and processes can be measured and information can be communicated. Integrated acoustics systems providing navigation and communications for mobile platforms and conducting acoustical measurements in support of science objectives are critical and essential elements of the ocean observatories presently in the planning and implementation stages. The ORION Workshop (Puerto Rico, 4-8 January 2004) developed science themes that can be addressed utilizing ocean observatory infrastructure. The use of acoustics to sense the 3-d/volumetric ocean environment on all temporal and spatial scales was discussed in many ORION working groups. Science themes that are related to acoustics and measurements using acoustics are reviewed and tabulated, as are the related and sometimes competing requirements for passive listening, acoustic navigation and acoustic communication around observatories. Sound in the sea, brought from observatories to universities and schools via the internet, will also be a major education and outreach mechanism.

  13. Programs and Projects of the Office of General Counsel (OGC)

    EPA Pesticide Factsheets

    The Office of General Counsel (OGC) attorneys work with EPA headquarters and regional offices to provide legal support for the issuance of permits, the approval of state environmental programs, and the initiation and litigation of enforcement actions.

  14. CARMENES: management of a schedule-driven project

    NASA Astrophysics Data System (ADS)

    García-Vargas, M. L.; Caballero, J.; Pérez-Calpena, A.; Amado, Pedro; Seifert, Walter; Azzaro, Marco; Mandel, Holger; Quirrenbach, Andreas; Ribas, Ignasi; Reiners, Ansgar; Guenther, Eike; Gesa, Lluís.; Galadí, David; Aceituno, Jesús

    2016-08-01

    CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs) is an instrument consistent in two ultra-stable high resolution (R 82,000) spectrographs covering simultaneously the visible (0.5 - 1.0μm) and near-IR (1.0 - 1.7μm) ranges to provide high-accuracy radial-velocity measurements (˜1 m/s) thanks to the long-term stability. CARMENES was the initiative of a consortium of eleven German and Spanish institutions. CARMENES has been built for the 3.5m telescope at the Centro Astronómico Hipano- Alemán (CAHA), Calar Alto Observatory (Almería, Spain) and is currently in operation. CAHA is jointly operated by the Max-Planck-Society (MPG) and the Spanish National Research Council (CSIC). The project received the green light in October 2010 and in February 2013 passed a Final Design Review. Six months later, the MPG and CSIC, the observatory's owners, made an independent evaluation concluding that CARMENES had to be ready for operations at the end of 2015. Since then, fulfilling the calendar was the driver of all project decisions. Moreover, the observatory's survival was linked to the instrument's success: should the instrument fail, the observatory would be closed. On the contrary, the instrument's success would give unique capabilities to the Observatory for Big Science. Such a challenge became to be our private Olympic Games: we had to be on time. This decision definitively impacted on the project dynamics, there was no room for a delay. The deadline, December 31st, 2015, was controlled by a strict tracking of the critical path; calendar deviations were corrected with risky decisions while fast tracking or even crashing methods were applied. The management scenario was far from optimum: most key people in the project shared their time with other duties; the observatory funding cuts; the budget was tight and distributed among the 11 partner centers with their own different rules, etc. Despite

  15. Byurakan Astrophysical Observatory as Cultural Centre

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.

    2016-12-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts.

  16. ESO Demonstration Project with the NRAO 12-m Antenna

    NASA Astrophysics Data System (ADS)

    Heald, R.; Karban, R.

    2000-03-01

    During the months of September through November 1999, an ALMA joint demonstration project between the European Southern Observatory (ESO) and the National Radio Astronomy Observatory (NRAO) was carried out in Socorro/New Mexico. During this period, Robert Karban (ESO) and Ron Heald (NRAO) worked together on the ESO Demonstration Project. The project integrated ESO software and existing NRAO software (a prototype for the future ALMA control software) to control the motion of the Kitt Peak 12-m antenna. ESO software from the VLT provided the operator interface and coordinate transformation software, while Pat Wallace's TPOINT provided the pointing- model software.

  17. CTK-II & RTK: The CCD-cameras operated at the auxiliary telescopes of the University Observatory Jena

    NASA Astrophysics Data System (ADS)

    Mugrauer, M.

    2016-03-01

    The Cassegrain-Teleskop-Kamera (CTK-II) and the Refraktor-Teleskop-Kamera (RTK) are two CCD-imagers which are operated at the 25 cm Cassegrain and 20 cm refractor auxiliary telescopes of the University Observatory Jena. This article describes the main characteristics of these instruments. The properties of the CCD-detectors, the astrometry, the image quality, and the detection limits of both CCD-cameras, as well as some results of ongoing observing projects, carried out with these instruments, are presented. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  18. Health, Safety and Performance in High Altitude Observatories: A Sustainable Approach

    NASA Astrophysics Data System (ADS)

    Böcker, Michael; Vogt, Joachim; Christ, Oliver; Müller-Leonhardt, Alice

    2009-09-01

    The research project “Optimising Performance, Health and Safety in High Altitude Observatories” was initiated by ESO to establish an approach to promote the well-being of staff working at its high altitude observatories, and in particular at the Antiplano de Chajnantor. A survey by a questionnaire given to both workers and visitors was employed to assess the effects of working conditions at high altitude. Earlier articles have outlined the project and reported early results. The final results and conclusions are presented, together with a concept for sustainable development to improve the performance, health and safety at high altitude employing Critical Incident Stress Management.

  19. Construction/Application of the Internet Observatories in Japan

    NASA Astrophysics Data System (ADS)

    Satoh, T.; Tsubota, Y.; Matsumoto, N.; Takahashi, N.

    2000-05-01

    We have successfully built two Internet Observatories in Japan: one at Noda campus of the Science University of Tokyo and another at Hiyoshi campus of the Keio Senior High School. Both observatories are equipped with a computerized Meade LX-200 telescope (8" tube at the SUT site and 12" at the Keio site) with a CCD video camera inside the sliding-roof type observatory. Each observatory is controlled by two personal computer: one controls almost everything, including the roof, the telescope, and the camera, while another is dedicated to encode the real-time picture from the CCD video camera into the RealVideo format for live broadcasting. A user can operate the observatory through the web-based interface and can enjoy the real-time picture of the objects via the RealPlayer software. The administrator can run a sequence of batch commands with which no human interaction is needed from the beginning to the end of an observation. Although our observatories are primarily for educational purposes, this system can easily be converted to a signal-triggered one which may be very useful to observe transient phenomena, such as afterglows of gamma-ray bursts. The most remarkable feature of our observatories is that it is very inexpensive (it costs only a few tens of grands). We'll report details of the observatories in the poster, and at the same time, will demonstrate operating the observatories using an internet-connected PC from the meeting site. This work has been supported through the funding from the Telecommunicaitons Advancement Foundation for FY 1998 and 1999.

  20. The CUREA 1996 Summer Program in Astrophysics at Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Snider, Joe; Faison, Michael

    1996-05-01

    The Consortium for Undergraduate Research and Education in Astronomy (CUREA) will present its hands-on course in astrophysics and observational astronomy at Mount Wilson Observatory for the seventh time, from August 7-20, 1996. Students and staff live and work at the Observatory, situated in the San Gabriel Mountains above Los Angeles. This is a beautiful site at which the atmospheric seeing conditions are equal to the best in the world. This poster paper presents in text and photographs some of the highlights of past programs. During the program informal discussions led by staff members provide the necessary background for using the following facilities: the Snow Horizontal Solar Telescope, which was the first major solar telescope in the world and the first telescope to be installed on Mount Wilson when G.E.Hale founded the Observatory; a high-resolution Littrow pit spectrograph; a 6-inch diffraction-limited refractor and 24- inch reflector; a photometer and a CCD detector; a unique atomic-beam apparatus for recording solar 5-minute oscillations; and this summer for the first time, the historic 100-inch Hooker Telescope. Attention is devoted to many observable solar phenomena, such as sunspots, granulation, limb darkening, important spectral lines, Zeeman splitting of solar lines, and the measurement of solar rotation using the Doppler shift of a spectral line. Nighttime observing includes celestial objects such as the Moon, planets, variable stars, clusters, galaxies and other deep-sky objects. Students learn how to process celestial photographs and spectral plates in the darkroom. Each student works on a special project she or he has chosen, and reports on it at the end of the program. Tours of research projects on the mountain, talks by visiting astronomers and field trips to JPL, Cal Tech and Palomar are included.

  1. Lick Observatory, California, and 20th Century Leadership in Optical Astronomy

    NASA Astrophysics Data System (ADS)

    Miller, Joseph

    2008-04-01

    With the establishment of the Lick Observatory on Mt. Hamilton in California in 1888 it was immediately established that an observatory located on a relatively high site far from city lights was a far superior location for optical astronomy than the previously common city locations. A few years after its beginning, astronomers at Lick convincingly demonstrated the clear advantage of the reflecting telescope for astrophysical research. Not only was a reflector achromatic over all wavelengths, but it could be made with a small focal ratio that provided high photographic speed. Furthermore, since light did not pass through the optic and it could be supported from behind, it could easily be made in large sizes. Over the first half of the 20^th century the establishment of the Mt. Wilson and Palomar Observatories expanded California's dominance in optical astronomy. Also with the new larger telescopes came major progress in the in design of focal plane instrumentation that allowed these telescopes to be superb tools for astrophysical research. The California observatories of the 20th century were largely independent of Federal funding for operations. Their facilities were were maintained and mostly used by their permanent staffs. This led to a style of doing forefront research that was highly effective, as both long-term survey-type programs and more speculative investigations with less-clear payoffs at the outset could be supported. Also the, the close connection of the scientists doing the research to the development of the telescopes and instruments they used for their research conferred advantages. At present, this style of doing astronomical observational research is a relatively small fraction of all this kind of research. At the end of the 20^th century the California pioneering advancement in ground-based optical astronomy was repeated with the creation of the Keck Observatory. A joint project of the University of California and the California Institute of

  2. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.

  3. A Green Robotic Observatory for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  4. Early German Plans for a Southern Observatory

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century the Heidelberg astronomer Max Wolf (1863-1932) proposed a southern observatory. In 1907 Hermann Carl Vogel (1841-1907), director of the Astrophysical Observatory Potsdam, suggested a southern station in Spain. His ideas for building an observatory in Windhuk for photographing the sky and measuring the solar constant were taken over by the Göttingen astronomers. In 1910 Karl Schwarzschild (1873-1916), after having visited the observatories in America, pointed out the usefulness of an observatory in South West Africa, where it would have better weather than in Germany and also give access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhuk to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963, as is well described by Blaauw (1991). Blaauw, Adriaan: ESO's Early History. The European Southern Observatory from Concept to Reality. Garching bei München: ESO 1991.

  5. 2017 Building Technologies Office Peer Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2017 Building Technologies Office Peer Review Report summarizes the feedback submitted by reviewers for the 109 Building Technologies Office (BTO) projects presented at the 2017 BTO Peer Review. The report presents an overview of the goals and activities under each technology program area, a summary of project scores for each program, and a brief analysis of general evaluation trends within each program area or its constituent subprograms.

  6. Image of the Eta Carinae Nebula Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This image is an x-ray view of Eta Carinae Nebula showing bright stars taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The Eta Carinae Nebula is a large and complex cloud of gas, crisscrossed with dark lanes of dust, some 6,500 light years from Earth. Buried deep in this cloud are many bright young stars and a very peculiar variable star. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  7. The Virtual Earth-Solar Observatory of the SCiESMEX

    NASA Astrophysics Data System (ADS)

    De la Luz, V.; Gonzalez-Esparza, A.; Cifuentes-Nava, G.

    2015-12-01

    The Mexican Space Weather Service (SCiESMEX, http://www.sciesmex.unam.mx) started operations in October 2014. The project includes the Virtual Earth-Solar Observatory (VESO, http://www.veso.unam.mx). The VESO is a improved project wich objetive is integrate the space weather instrumentation network from the National Autonomous University of Mexico (UNAM). The network includes the Mexican Array Radiotelescope (MEXART), the Callisto receptor (MEXART), a Neutron Telescope, a Cosmic Ray Telescope. the Schumann Antenna, the National Magnetic Service, and the mexican GPS network (TlalocNet). The VESO facility is located at the Geophysics Institute campus Michoacan (UNAM). We offer the service of data store, real-time data, and quasi real-time data. The hardware of VESO includes a High Performance Computer (HPC) dedicated specially to big data storage.

  8. ALMA Observatory Equipped with its First Antenna

    NASA Astrophysics Data System (ADS)

    2008-12-01

    High in the Atacama region of northern Chile one of the world’s most advanced telescopes has just passed a major milestone. The first of many state-of-the-art antennas has been handed over to the Atacama Large Millimeter/submillimeter Array (ALMA) project. ALMA is being built by a global partnership whose North American partners are led by the National Radio Astronomy Observatory (NRAO). With ALMA, astronomers will study the cool Universe, the molecular gas and tiny dust grains from which stars, planetary systems, galaxies and even life are formed. ALMA will provide new, much-needed insights into the formation of stars and planets, and will reveal distant galaxies in the early Universe, which we see as they were over ten billion years ago. ALMA will initially comprise 66 high-precision antennas, with the option to expand in the future. There will be an array of fifty 12-meter diameter antennas, acting together as a single giant telescope, and a compact array composed of 7-meter and 12-meter antennas. The first 12-meter antenna to be handed over to the observatory was built by Mitsubishi Electric Corporation for the National Astronomical Observatory of Japan, one of the ALMA partners. It will shortly be joined by North American and European antennas. “Our Japanese colleagues have produced this state-of-the-art antenna to exacting specifications. We are very excited about the handover because now we can fully equip this antenna for scientific observations,” said Thijs de Graauw, ALMA Director. Antennas arriving at the ALMA site undergo a series of tests to ensure that they meet the strict requirements of the telescope. The antennas have surfaces accurate to less than the thickness of a human hair, and can be pointed precisely enough to pick out a golf ball at a distance of 9 miles. “The handover of the first Japanese antenna is the crowning achievement of the ALMA Project to date,” said Adrian Russell, the North American ALMA Project Director at NRAO. The

  9. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Gurman, J. B.; Hourclé, J. A.; Bogart, R. S.; Tian, K.; Hill, F.; Suàrez-Sola, I.; Zarro, D. M.; Davey, A. R.; Martens, P. C.; Yoshimura, K.; Reardon, K. M.

    2006-12-01

    The Virtual Solar Observatory (VSO) has survived its infancy and provides metadata search and data identification for measurements from 45 instrument data sets held at 12 online archives, as well as flare and coronal mass ejection (CME) event lists. Like any toddler, the VSO is good at getting into anything and everything, and is now extending its grasp to more data sets, new missions, and new access methods using its application programming interface (API). We discuss and demonstrate recent changes, including developments for STEREO and SDO, and an IDL-callable interface for the VSO API. We urge the heliophysics community to help civilize this obstreperous youngster by providing input on ways to make the VSO even more useful for system science research in its role as part of the growing cluster of Heliophysics Virtual Observatories.

  10. Measurement of Light Pollution of Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Son Hosseini, S.; Nasiri, S.

    2006-08-01

    The problem of Light pollution became important mainly since 1960, by growth of urban development and using more artificial lights and lamps at the nighttimes. Optical telescopes share the same range of wavelengths as are used to provide illumination of roadways, buildings and automobiles. The light glow that emanates from man made pollution will scatter off the atmosphere and affects the images taken by the observatory instruments. A method of estimating the night sky brightness produced by a city of known population and distance is useful in site testing of the new observatories, as well as in studying the likely future deterioration of existing sites. Now with planning the Iranian National Observatory that will house a 2-meter telescope and on the way of the site selection project, studying the light pollution is propounded in Iran. Thus, we need a site with the least light pollution, beside other parameters, i.e. seeing, meteorological, geophysical and local parameters. The seeing parameter is being measured in our 4 preliminary selected sites at Qom, Kashan, Kerman and Birjand since 2 years ago using an out of focus Differential Image Motion Monitor. These sites are selected among 33 candidate sites by studying the meteorological data obtained from the local synoptic stations and the Meteosat. We use the Walker's law to estimate the Sky glow of these sites having the population and the distances of the nearby regions. The results are corrected by the methods introduced by Treanor and Berry using the atmospheric extinction coefficients. The data obtained using an 11 inch telescope with a ST7 CCD camera for above sites are consistent with the estimated values of the light pollution mentioned above.

  11. Erik Lindbergh unveils a plaque commemorating his grandfather to dedicate the 747 Clipper Lindbergh, a NASA airborne infrared observatory known as SOFIA

    NASA Image and Video Library

    2007-05-21

    Erik Lindbergh, grandson of aviator Charles Lindbergh, unveiled a plaque commemorating his grandfather on the 80th anniversary of Charles Lindbergh's transatlantic flight. The event was a dedication of the 747 Clipper Lindbergh, a NASA airborne infrared observatory that is beginning test flights in preparation for conducting world-class airborne astronomy. The project is known as the Stratospheric Observatory for Infrared Astronomy, or SOFIA.

  12. SIM Lite Astrometric Observatory progress report

    NASA Astrophysics Data System (ADS)

    Marr, James C., IV; Shao, Michael; Goullioud, Renaud

    2010-07-01

    The SIM Lite Astrometric Observatory (aka SIM Lite), a micro-arcsecond astrometry space mission, has been developed in response to NASA's indefinite deferral of the SIM PlanetQuest mission. The SIM Lite mission, while significantly more affordable than the SIM PlanetQuest mission concept, still addresses the full breadth of SIM science envisioned by two previous National Research Council (NRC) Astrophysics Decadal Surveys at the most stringent "Goal" level of astrometric measurement performance envisioned in those surveys. Over the past two years, the project has completed the conceptual design of the SIM Lite mission using only the completed SIM technology; published a 250 page book describing the science and mission design (available at the SIM website: http://sim.jpl.nasa.gov); been subject to an independent cost and technical readiness assessment by the Aerospace Corporation; and submitted a number of information responses to the NRC Astro2010 Decadal Survey. The project also conducted an exoplanet-finding capability double blind study that clearly demonstrated the ability of the mission to survey 60 to 100 nearby sun-like dwarf stars for terrestrial, habitable zone planets in complex planetary systems. Additionally, the project has continued Engineering Risk Reduction activities by building brassboard (form, fit & function to flight) version of key instrument elements and subjecting them to flight qualification environmental and performance testing. This paper summarizes the progress over the last two years and the current state of the SIM Lite project.

  13. Terrestrial Planet Finder Coronagraph Observatory summary

    NASA Technical Reports Server (NTRS)

    Ford, Virginia; Levine-Westa, Marie; Kissila, Andy; Kwacka, Eug; Hoa, Tim; Dumonta, Phil; Lismana, Doug; Fehera, Peter; Cafferty, Terry

    2005-01-01

    Creating an optical space telescope observatory capable of detecting and characterizing light from extra-solar terrestrial planets poses technical challenges related to extreme wavefront stability. The Terrestrial Planet Finder Coronagraph design team has been developing an observatory based on trade studies, modeling and analysis that has guided us towards design choices to enable this challenging mission. This paper will describe the current flight baseline design of the observatory and the trade studies that have been performed. The modeling and analysis of this design will be described including predicted performance and the tasks yet to be done.

  14. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Annmarie Eldering, OCO-2 deputy project scientist with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, demonstrates with a few white beans in a container of black beans the small differences in carbon dioxide in the atmosphere that the Orbiting Carbon Observatory-2 (OCO-2) will be able to measure, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2, NASA’s first spacecraft dedicated to studying carbon dioxide, is set for a July 1, 2014, launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  15. LIGO - The Laser Interferometer Gravitational-Wave Observatory

    NASA Technical Reports Server (NTRS)

    Abramovici, Alex; Althouse, William E.; Drever, Ronald W. P.; Gursel, Yekta; Kawamura, Seiji; Raab, Frederick J.; Shoemaker, David; Sievers, Lisa; Spero, Robert E.; Thorne, Kip S.

    1992-01-01

    The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy. LIGO will support studies concerning the nature and nonlinear dynamics for gravity, the structures of black holes, and the equation of state of nuclear matter. It will also measure the masses, birth rates, collisions, and distributions of black holes and neutron stars in the universe and probe the cores of supernovae and the very early universe. The technology for LIGO has been developed during the past 20 years. Construction will begin in 1992, and under the present schedule, LIGO's gravitational-wave searches will begin in 1998.

  16. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Madhulika Guhathakurta, far right, SDO Program Scientist at NASA Headquarters in Washington, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Pictured from left of Dr. Guhathakurta's are: Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto and Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. Photo Credit: (NASA/Carla Cioffi)

  17. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Scientists involved in NASA's Solar Dynamics Observatory (SDO) mission attend a press conference to discuss recent images captured by the SDO spacecraft Wednesday, April 21, 2010, at the Newseum in Washington. Pictured right to left are: Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington; Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto and Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. Photo Credit: (NASA/Carla Cioffi)

  18. Operational support and service concepts for observatories

    NASA Astrophysics Data System (ADS)

    Emde, Peter; Chapus, Pierre

    2014-08-01

    The operational support and service for observatories aim at the provision, the preservation and the increase of the availability and performance of the entire structural, mechanical, drive and control systems of telescopes and the related infrastructure. The operational support and service levels range from the basic service with inspections, preventive maintenance, remote diagnostics and spare parts supply over the availability service with telephone hotline, online and on-site support, condition monitoring and spare parts logistics to the extended service with operations and site and facility management. For the level of improvements and lifecycle management support they consist of expert assessments and studies, refurbishments and upgrades including the related engineering and project management activities.

  19. PBO Nucleus Project Status: Integration of 209 Existing GPS Stations into the Plate Boundary Observatory

    NASA Astrophysics Data System (ADS)

    Blume, F.; Meertens, C.; Anderson, G.; Eriksson, S.; Boyce, E.

    2007-12-01

    Tectonic and earthquake research in the US has experienced a quiet revolution over the last decade precipitated by the recognition that slow-motion faulting events can both trigger and be triggered by regular earthquakes. Transient motion has now been found in essentially all tectonic environments, and the detection and analysis of such events is the first-order science target of the EarthScope Project. Because of this and a host of other fundamental tectonics questions that can be answered only with long-duration geodetic time series, the incipient 1100-station EarthScope Plate Boundary Observatory (PBO) network has been designed to leverage 445 existing continuous GPS stations whose measurements extend back over a decade. The irreplaceable recording history of these stations will accelerate EarthScope scientific return by providing the highest possible resolution. This resolution will be used to detect and understand transients, to determine the three-dimensional velocity field (particularly vertical motion), and to improve measurement precision by understanding the complex noise sources inherent in GPS. The PBO Nucleus project supports the operation, maintenance and hardware upgrades of a subset of the six western U.S. geodetic networks until they are subsumed by PBO. Uninterrupted data flow from these stations will effectively double the time-series length of PBO over the expected life of EarthScope, and has created, for the first time, a single GPS-based geodetic network in the US. The other existing sites remain in operation under support from non-NSF sources (e.g. the USGS), and EarthScope continues to benefit from their continued operation On the grounds of relevance to EarthScope science goals, geographic distribution and data quality, 209 of the 432 existing stations were selected as the nucleus upon which to build PBO. Conversion of these stations to a PBO-compatible mode of operation was begun under previous funding, and as a result data now flow

  20. The Cosmic Ray Observatory Project: Results of a Summer High-School Student, Teacher, University Scientist Partnership Using a Capstone Research Experience

    NASA Astrophysics Data System (ADS)

    Shell, Duane F.; Snow, Gregory R.; Claes, Daniel R.

    2011-04-01

    This paper reports results from evaluation of the Cosmic Ray Observatory Project (CROP), a student, teacher, scientist partnership to engage high-school students and teachers in school based cosmic ray research. Specifically, this study examined whether an intensive summer workshop experience could effectively prepare teacher—student teams to engage in cutting edge high-energy physics research. Results showed that teachers and students could acquire enough knowledge about cosmic ray physics and self-efficacy for conducting cosmic ray research during a summer workshop to be full participants in an SSP conducting research in their schools, and a capstone anchoring approach using an authentic research activity was effective for motivating student engagement in didactic classroom learning. CROP demonstrated "proof of concept" that setting up cosmic ray detector arrays in schools run by teachers and students was feasible, but found that set-up and operation in a high-school was technically difficult.

  1. Astronomical Honeymoon Continues as X-Ray Observatory Marks First Anniversary

    NASA Astrophysics Data System (ADS)

    2000-08-01

    NASA's Chandra X-ray Observatory celebrates its initial year in orbit with an impressive list of firsts. Through Chandra's unique X-ray vision, scientists have seen for the first time the full impact of a blast wave from an exploding star, a flare from a brown dwarf, and a small galaxy being cannibalized by a larger one. Chandra is the third in NASA's family of great observatories, complementing the Hubble Space Telescope and the Compton Gamma Ray Observatory. "Our goal is to identify never-before-seen phenomena, whether they're new or millions of years old. All this leads to a better understanding of our universe, " said Martin Weisskopf, chief project scientist for the Chandra program at NASA's Marshall Space Flight Center, Huntsville, AL. "Indeed, Chandra has changed the way we look at the universe." Chandra was launched in July 1999. After only two months in space, the observatory revealed a brilliant ring around the heart of the Crab Pulsar in the Crab Nebula ­ the remains of a stellar explosion ­ providing clues about how the nebula is energized by a pulsing neutron, or collapsed, star. Chandra also detected a faint X-ray source in the Milky Way galaxy, which may be the long-sought X-ray emission from the known massive black hole at the galaxy's center. A black hole is a region of space with so much concentrated mass there is no way for a nearby object, even light, to escape its gravitational pull. The observatory captured as well an image that revealed gas funneling into a massive black hole in the heart of a galaxy, two million light years from our own Milky Way, is much cooler than expected. "Chandra is teaching us to expect the unexpected about all sorts of objects ranging from comets in our solar system and relatively nearby brown dwarfs to distant black holes billions of light years away," said Harvey Tananbaum, director of the Chandra X-ray Center in Cambridge, MA. Perhaps one of Chandra's greatest contributions to X-ray astronomy is the resolution

  2. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  3. Conceptual Design of a Chesapeake Bay Environmental Observatory (CBEO)

    NASA Astrophysics Data System (ADS)

    Ball, W. P.; di Toro, D.; Gross, T. F.; Kemp, W. M.; Burns, R.; Piasecki, M.; Zaslavsky, I.; Cuker, B. E.; Murray, L.

    2006-12-01

    A new project is underway to develop and deploy a Chesapeake Bay Environmental Observatory (CBEO), which is intended to serve as a prototype of cyberinfrastructure (CI) for environmental observatory networks (EONs) that will demonstrate the transformative power of CI. The CBEO will be developed by a team of highly qualified computer scientists, ecologists, oceanographers and environmental engineers with a track record of working together on environmental observatory projects and complex cross-discipline research efforts. The project approach has been organized around the following four concurrent interacting elements, which follow the acronym "NETS": (1) The CBEO:N group will incorporate the test bed CI into the national EONs by constructing a GEON-based node for the CBEO. This will entail resolving complex cross-disciplinary issues of semantics, syntax and inter- operability as well as developing new shared CI tools for data assimilation and interpolation. (2) CBEO:E is the education element and will use the CBEO to translate observational science for public consumption. Direct participation of multicultural students and a K-12 teacher are planned. The test-bed and network components (described below and above) will provide the focus of five workshops for users, managers and science educators; (3) Prior to full integration via CBEO:N, CBEO:T will rapidly construct a locally accessible CBEO test-bed prototype that will integrate a subset of currently available large data sets characterized by multiple variables and widely disparate time and space scales ? grab and continuous sampling at fixed stations, undulating towed sensors, and satellite and aircraft remote sensing. A novel feature will be the inclusion of the fifteen year (1986-2000) simulated data from the Bay-wide fine spatial (1-10 km) and temporal (0.02-1 hr) scale hydrodynamic and water quality model. CBEO:T will serve initially as the development platform for data integration, interpolation, and

  4. The Sungrazer Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Battams, K.

    2016-12-01

    The NASA-funded Sungrazer Project is one of the oldest and most successful Citizen Science projects, having more than doubled the number of officially designated comets since it became public in 2002. The Sungrazer Project has enabled the discovery of more than 3,100 previously unknown near-Sun and Sungrazing comets in images returned by the joint ESA-NASA Solar and Heliospheric Observatory (SOHO), which was launched in 1995, and the NASA Solar Terrestrial Relations Observatories (STEREO), launched in 2006. The Sungrazer Project offers a centralized web site for amateur astronomers ("comet hunters") to report potential comets in SOHO and STEREO data, which the Project PI then confirms/rejects. It is then the task of the Project PI to perform precise astrometric measurements of all new comets, and supply the resulting data to the Minor Planet Center for official orbit determinations and designation. Almost 100 individuals from all over the world have discovered comets via the Project, with successful participants as young as 13-years old. In this talk I will discuss the history of the project, report the current discovery statistics, and highlight a few of the major discoveries enabled by the Project. I will also discuss the logistic of the program, participation requirements, day-to-day operations, and outreach efforts. Finally I will present an outlook for the project with respect to future space-based heliophysics missions.

  5. 1. Photographic copy of photograph, in possession of SCIP Office, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photographic copy of photograph, in possession of SCIP Office, Coolidge, AZ. No date, circa 1940. Photographer unknown. HEADQUARTERS OFFICE, 205 W. ROOSEVELT, COOLIDGE, AZ. - San Carlos Irrigation Project, San Carlos Irrigation Project Headquarters, 205 West Roosevelt, Coolidge, Pinal County, AZ

  6. 36 CFR 218.3 - Reviewing officer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Agriculture or Under Secretary, Natural Resources and Environment is the reviewing officer. (b) The reviewing... Section 218.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PROJECT-LEVEL... officer is the U.S. Department of Agriculture (USDA) or Forest Service official having the delegated...

  7. Cherenkov Telescope Array: the next-generation gamma ray observatory

    NASA Astrophysics Data System (ADS)

    Ebr, Jan

    2017-08-01

    The Cherenkov Telescope Array (CTA) is a project to build the next generation ground-based observatory for gamma-ray astronomy at very-high energies in the range from 20 GeV to 300 TeV, which will both surpass the sensitivity of existing instruments in their energy domains and extend the limits of the observed energy spectrum. It will probe some of the most energetic processes in the Universe and provide insight into topics such as the acceleration of charged cosmic rays and their role in galaxy evolution, processes in relativistic jets, wind and explosions and the nature and distribution of dark matter. The CTA Observatory will consist of more than a hundred imaging atmospheric Cherenkov telescopes (IACT) of three different size classes, installed at two premier astronomical locations, one in each hemisphere. It is foreseen that the telescopes will use a variety of optical designs including parabolic primary mirrors, variations of the Davies-Cotton design and two-mirror setups such as the Schwarzschild-Couder telescope, and several camera designs, using both photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) for detection of the nanosecond-scale Cherenkov flashes. Each telescope will feature a precise but lightweight and agile mount, allowing even the largest telescopes to change targets within 20 seconds, with systems of sensors and actuators actively controlling the shape of the reflecting surfaces. As an integral part, the Observatory will feature extensive calibration facilities, closely monitoring both the detectors themselves and the surrounding atmosphere. Several telescope prototypes already exist and the installation works at the northern site have started.

  8. Solar Terrestrial Relations Observatory Spacecraft Artist Concept

    NASA Image and Video Library

    2011-06-01

    An artist conception of one of NASA Solar Terrestrial Relations Observatory STEREO spacecraft. The two observatories currently lie on either side of the sun, providing views of the entire sun simultaneously.

  9. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  10. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  11. Orbiting Astronomical Observatory-C (OAO-C): Press kit

    NASA Technical Reports Server (NTRS)

    Allaway, H. G.

    1972-01-01

    Mission planning for the Orbiting Astronomical Observatory-C (OAO-C) is presented. The characteristics of the observatory and its capabilities are described. The following experiments are discussed: (1) Princeton Experiment Package, (2) X-ray experiment, and (3) guest investigator program. Results of the OAO-2 observatory are presented. A tabulation of flight events is included.

  12. Robotic Software for the Thacher Observatory

    NASA Astrophysics Data System (ADS)

    Lawrence, George; Luebbers, Julien; Eastman, Jason D.; Johnson, John A.; Swift, Jonathan

    2018-06-01

    The Thacher Observatory—a research and educational facility located in Ojai, CA—uses a 0.7 meter telescope to conduct photometric research on a variety of targets including eclipsing binaries, exoplanet transits, and supernovae. Currently, observations are automated using commercial software. In order to expand the flexibility for specialized scientific observations and to increase the educational value of the facility on campus, we are adapting and implementing the custom observatory control software and queue scheduling developed for the Miniature Exoplanet Radial Velocity Array (MINERVA) to the Thacher Observatory. We present the design and implementation of this new software as well as its demonstrated functionality on the Thacher Observatory.

  13. Planetary research at Lowell Observatory

    NASA Technical Reports Server (NTRS)

    Baum, William A.

    1988-01-01

    Scientific goals include a better determination of the basic physical characteristics of cometary nuclei, a more complete understanding of the complex processes in the comae, a survey of abundances and gas/dust ratios in a large number of comets, and measurement of primordial (12)C/(13)C and (14)N/(15)N ratios. The program also includes the observation of Pluto-Charon mutual eclipses to derive dimensions. Reduction and analysis of extensive narrowband photometry of Comet Halley from Cerro Tololo Inter-American Observatory, Perth Observatory, Lowell Observatory, and Mauna Kea Observatory were completed. It was shown that the 7.4-day periodicity in the activity of Comet Halley was present from late February through at least early June 1986, but there is no conclusive evidence of periodic variability in the preperihelion data. Greatly improved NH scalelengths and lifetimes were derived from the Halley data which lead to the conclusion that the abundance of NH in comets is much higher than previously believed. Simultaneous optical and thermal infrared observations were obtained of Comet P/Temple 2 using the MKO 2.2 m telescope and the NASA IRTF. Preliminary analysis of these observations shows that the comet's nucleus is highly elongated, very dark, and quite red.

  14. The JCMT as operated by the East Asian Observatory: a brief (but thrilling) history

    NASA Astrophysics Data System (ADS)

    Dempsey, Jessica T.; Ho, Paul T. P.; Walther, Craig; Friberg, Per; Bell, Graham S.; Parsons, Harriet; Chen, Ming-Tang

    2016-07-01

    The newly formed East Asian Observatory assumed operations of the James Clerk Maxwell Telescope in March of 2015. In just three weeks, the facility needed to run up completely mothballed observatory operations, introduce the telescope to a vast new scientist base with no familiarity with the facility, and create a non-existent science program. The handover to the EAO has since been a succession of challenging time-lines, and nearly unique problems requiring novel solutions. The results, however, have been spectacular, with subscription rates at unprecedented levels, a new series of Large Programs underway, as well as an exciting Future Instrumentation Project that together promises to keep JCMT at the forefront of wide-field submillimeter astronomy for the next decade.

  15. ASCOT: A Collaborative Platform for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Marcos, D.; Connolly, A. J.; Krughoff, K. S.; Smith, I.; Wallace, S. C.

    2012-09-01

    The digital networks are changing the way that knowledge is created, structured, curated, consumed, archived and referenced. Projects like Wikipedia, Github or Galaxy Zoo have shown the potential of online communities to develop and communicate ideas. ASCOT is a web based framework that facilitates collaboration among astronomers providing a simple way to share, explore, interact and analyze large amounts of data from a broad range of sources available trough the Virtual Observatories (VO). Designed with a strong emphasis on usability, ASCOT takes advantage of the latest generation of web standards and cloud technologies to implement an extendable and customizable stack of web tools and services.

  16. SPASE, Metadata, and the Heliophysics Virtual Observatories

    NASA Technical Reports Server (NTRS)

    Thieman, James; King, Todd; Roberts, Aaron

    2010-01-01

    To provide data search and access capability in the field of Heliophysics (the study of the Sun and its effects on the Solar System, especially the Earth) a number of Virtual Observatories (VO) have been established both via direct funding from the U.S. National Aeronautics and Space Administration (NASA) and through other funding agencies in the U.S. and worldwide. At least 15 systems can be labeled as Virtual Observatories in the Heliophysics community, 9 of them funded by NASA. The problem is that different metadata and data search approaches are used by these VO's and a search for data relevant to a particular research question can involve consulting with multiple VO's - needing to learn a different approach for finding and acquiring data for each. The Space Physics Archive Search and Extract (SPASE) project is intended to provide a common data model for Heliophysics data and therefore a common set of metadata for searches of the VO's. The SPASE Data Model has been developed through the common efforts of the Heliophysics Data and Model Consortium (HDMC) representatives over a number of years. We currently have released Version 2.1 of the Data Model. The advantages and disadvantages of the Data Model will be discussed along with the plans for the future. Recent changes requested by new members of the SPASE community indicate some of the directions for further development.

  17. Developing a Virtual Network of Research Observatories

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Kirschtl, D.

    2008-12-01

    The hydrologic community has been discussing the concept of a network of observatories for the advancement of hydrologic science in areas of scaling processes, in testing generality of hypotheses, and in examining non-linear couplings between hydrologic, biotic, and human systems. The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is exploring the formation of a virtual network of observatories, formed from existing field studies without regard to funding source. Such a network would encourage sharing of data, metadata, field methods, and data analysis techniques to enable multidisciplinary synthesis, meta-analysis, and scientific collaboration in hydrologic and environmental science and engineering. The virtual network would strive to provide both the data and the environmental context of the data through advanced cyberinfrastructure support. The foundation for this virtual network is Water Data Services that enable the publication of time-series data collected at fixed points using a services-oriented architecture. These publication services, developed in the CUAHSI Hydrologic Information Systems project, permit the discovery of data from both academic and government sources through a single portal. Additional services under consideration are publication of geospatial data sets, immersive environments based upon site digital elevation models, and a common web portal to member sites populated with structured data about the site (such as land use history and geologic setting) to permit understanding the environmental context of the data being shared.

  18. TUM Critical Zone Observatory, Germany

    NASA Astrophysics Data System (ADS)

    Völkel, Jörg; Eden, Marie

    2014-05-01

    Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.

  19. Education and public outreach at the Carl Sagan Solar Observatory of the University of Sonora

    NASA Astrophysics Data System (ADS)

    Saucedo-Morales Julio; Loera-González, Pablo

    2013-05-01

    We discuss the importance of small solar observatories for EPO (Education and Public Outreach), mentioning why they are relevant and what kind of equipment and software require. We stress the fact that technological advances have made them affordable and that they should be widely available. This work is a result of our experience with one: The Carl Sagan Solar Observatory (CSSO). We briefly describe its status and the solar data obtained daily with students participation. We present examples of the data obtained in the visible, Ca II and two in Hα. Data which is widely used for education. Finally we talk about the capability for remote operation as an open invitation for collaboration in educational and scientific projects.

  20. Education and public outreach at the Carl Sagan Solar Observatory of the University of Sonora.

    PubMed

    Saucedo-Morales, Julio; Loera-González, Pablo

    2013-05-01

    We discuss the importance of small solar observatories for EPO (Education and Public Outreach), mentioning why they are relevant and what kind of equipment and software require. We stress the fact that technological advances have made them affordable and that they should be widely available. This work is a result of our experience with one: The Carl Sagan Solar Observatory (CSSO). We briefly describe its status and the solar data obtained daily with students participation. We present examples of the data obtained in the visible, Ca II and two in Hα. Data which is widely used for education. Finally we talk about the capability for remote operation as an open invitation for collaboration in educational and scientific projects.

  1. Benthic long-term Observatories based on Lander Technology

    NASA Astrophysics Data System (ADS)

    Linke, P.; Pfannkuche, O.; Sommer, S.; Gubsch, S.; Gust, G.

    2003-04-01

    Landers are autonomous carrier systems for a wide range of scientific applications. The GEOMAR Lander System is based on a tripod-shaped platform for various scientific payloads to monitor, measure and experiment at the deep sea floor. These landers can be deployed using hybrid fibre optical or coaxial cables with a special launching device or in the conventional free falling mode. The launcher enables accurate positioning on meter scale, soft deployment and rapid disconnection of lander and launcher by an electric release. The bi-directional video and data telemetry provides on line video transmission, power supply and surface control of various relay functions. Within the collaborative project LOTUS novel long-term observatories have been developed and integrated into the GEOMAR Lander System. An overview of the recent developments is presented. Two new observatories are presented in detail to study the temporal variability of physico-chemical and biogeochemical mechanisms, flux- and turnover rates related to the decomposition and formation of near surface gas hydrates embedded in their original sedimentary matrix. With the Biogeochemical Observatory, BIGO, the temporal variability of the biologically facilitated methane turnover in the sediment and fluxes across the sediment water interface is studied in two mesocosms. Inside the mesocosms the oxygen content can be maintained by a chemostat. The in situ flow regime is measured outside the mesocosms and is reproduced within the chamber with an intelligent stirring system. This approach represents a major step in the development of benthic chambers from stationary to dynamic systems. The Fluid-Flux Observatory (FLUFO) measures the different types of fluid fluxes at the benthic boundary layer of sediments overlying near surface gas hydrates and monitors relevant environmental parameters as temperature, pressure and near bottom currents. FLUFO consists of two chamber units. Both units separate the gas phase from the

  2. Global TIE: Developing a Virtual Network of Robotic Observatories for K-12 Education

    NASA Astrophysics Data System (ADS)

    Mayo, L. A.; Clark, G.

    2001-11-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible to schools all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA-sponsored Telescopes In Education (TIE, http://tie.jpl.nasa.gov) project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. Global TIE provides unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns essentially unused observatory facilities into valuable, state-of-the-art teaching centers. This presentation describes the Global TIE Observatory data and organizational systems and details the

  3. Planetary transit observations at the University Observatory Jena: TrES-2

    NASA Astrophysics Data System (ADS)

    Raetz, St.; Mugrauer, M.; Schmidt, T. O. B.; Roell, T.; Eisenbeiss, T.; Hohle, M. M.; Koeltzsch, A.; Vaňko, M.; Ginski, Ch.; Marka, C.; Moualla, M.; Tetzlaff, N.; Seifahrt, A.; Broeg, Ch.; Koppenhoefer, J.; Raetz, M.; Neuhäuser, R.

    2009-05-01

    We report on observations of several transit events of the transiting planet TrES-2 obtained with the Cassegrain-Teleskop-Kamera at the University Observatory Jena. Between March 2007 and November 2008 ten different transits and almost a complete orbital period were observed. Overall, in 40 nights of observation 4291 exposures (in total 71.52 h of observation) of the TrES-2 parent star were taken. With the transit timings for TrES-2 from the 34 events published by the TrES-network, the Transit Light Curve project and the Exoplanet Transit Database plus our own ten transits, we find that the orbital period is P=(2.470614± 0.000001) d, a slight change by ˜ 0.6 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we found a second dip after the transit which could either be due to a blended variable star or occultation of a second star or even an additional object in the system. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University Jena and the 80cm telescope of the Wendelstein Observatory of the Ludwig-Maximilians-University Munich.

  4. Operations of and Future Plans for the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, : J.; Abreu, P.; Aglietta, M.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Augermore » Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.« less

  5. Long-lived space observatories for astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Becklin, Eric E.; Beckwith, Steven V. W.; Cowie, Lennox L.; Dupree, Andrea K.; Elliot, James L.; Gallagher, John S.; Helfand, David J.; Jenkins, Edward F.; Johnston, Kenneth J.

    1987-01-01

    NASA's plan to build and launch a fleet of long-lived space observatories that include the Hubble Space Telescope (HST), the Gamma Ray Observatory (GRO), the Advanced X Ray Astrophysics Observatory (AXAF), and the Space Infrared Telescope Facility (SIRTF) are discussed. These facilities are expected to have a profound impact on the sciences of astronomy and astrophysics. The long-lived observatories will provide new insights about astronomical and astrophysical problems that range from the presence of planets orbiting nearby stars to the large-scale distribution and evolution of matter in the universe. An important concern to NASA and the scientific community is the operation and maintenance cost of the four observatories described above. The HST cost about $1.3 billion (1984 dollars) to build and is estimated to require $160 million (1986 dollars) a year to operate and maintain. If HST is operated for 20 years, the accumulated costs will be considerably more than those required for its construction. Therefore, it is essential to plan carefully for observatory operations and maintenance before a long-lived facility is constructed. The primary goal of this report is to help NASA develop guidelines for the operations and management of these future observatories so as to achieve the best possible scientific results for the resources available. Eight recommendations are given.

  6. Distributed Observatory Management

    NASA Astrophysics Data System (ADS)

    Godin, M. A.; Bellingham, J. G.

    2006-12-01

    A collection of tools for collaboratively managing a coastal ocean observatory have been developed and used in a multi-institutional, interdisciplinary field experiment. The Autonomous Ocean Sampling Network program created these tools to support the Adaptive Sampling and Prediction (ASAP) field experiment that occurred in Monterey Bay in the summer of 2006. ASAP involved the day-to-day participation of a large group of researchers located across North America. The goal of these investigators was to adapt an array of observational assets to optimize data collection and analysis. Achieving the goal required continual interaction, but the long duration of the observatory made sustained co-location of researchers difficult. The ASAP team needed a remote collaboration tool, the capability to add non-standard, interdisciplinary data sets to the overall data collection, and the ability to retrieve standardized data sets from the collection. Over the course of several months and "virtual experiments," the Ocean Observatory Portal (COOP) collaboration tool was created, along with tools for centralizing, cataloging, and converting data sets into common formats, and tools for generating automated plots of the common format data. Accumulating the data in a central location and converting the data to common formats allowed any team member to manipulate any data set quickly, without having to rely heavily on the expertise of data generators to read the data. The common data collection allowed for the development of a wide range of comparison plots and allowed team members to assimilate new data sources into derived outputs such as ocean models quickly. In addition to the standardized outputs, team members were able to produce their own specialized products and link to these through the collaborative portal, which made the experimental process more interdisciplinary and interactive. COOP was used to manage the ASAP vehicle program from its start in July 2006. New summaries were

  7. Image of the Supernova Remnant Cassiopeia A Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This x-ray photograph of the Supernova remnant Cassiopeia A, taken with the High Energy Astronomy Observatory (HEAO) 2/Einstein Observatory, shows that the regions with fast moving knots of material in the expanding shell are bright and clear. A faint x-ray halo, just outside the bright shell, is interpreted as a shock wave moving ahead of the expanding debris. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  8. 33 CFR 211.22 - Real estate Claims Officers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Real estate Claims Officers. 211..., DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Real Estate Claims § 211.22 Real estate Claims Officers. In each Division Office the Division...

  9. 33 CFR 211.22 - Real estate Claims Officers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Real estate Claims Officers. 211..., DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Real Estate Claims § 211.22 Real estate Claims Officers. In each Division Office the Division...

  10. 33 CFR 211.22 - Real estate Claims Officers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Real estate Claims Officers. 211..., DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Real Estate Claims § 211.22 Real estate Claims Officers. In each Division Office the Division...

  11. 33 CFR 211.22 - Real estate Claims Officers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Real estate Claims Officers. 211..., DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Real Estate Claims § 211.22 Real estate Claims Officers. In each Division Office the Division...

  12. METEOSPACE, solar monitoring and space weather at Calern observatory

    NASA Astrophysics Data System (ADS)

    Corbard, T.; Malherbe, J.-M.; Crussaire, D.; Morand, F.; Ruty, F.; Biree, L.; Aboudarham, J.; Fuller, N.; Renaud, C.; Meftah, M.

    2016-12-01

    METEOSPACE is a new partnership project between the Paris Observatory (OP), the Observatoire de la Côte d'Azur (OCA), the French Air Force and a service company (LUNA technology) for the development and operation of a set of small telescopes Hα / Ca II K / Ca II H / G band to be installed at on the Calern plateau (OCA). The objective is to monitor solar activity for both research and its applications in space weather through continuous optical observations of the dynamic phenomena that are visible in the chromosphere: eruptions, destabilization of the filaments triggering coronal mass ejections and associated Moreton waves.

  13. Early laser operations at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Rahmer, Gustavo; Lefebvre, Michael; Christou, Julian; Raab, Walfried; Rabien, Sebastian; Ziegleder, Julian; Borelli, José L.; Gässler, Wolfgang

    2014-08-01

    ARGOS is the GLAO (Ground-Layer Adaptive Optics) Rayleigh-based LGS (Laser Guide Star) facility for the Large Binocular Telescope Observatory (LBTO). It is dedicated for observations with LUCI1 and LUCI2, LBTO's pair of NIR imagers and multi-object spectrographs. The system projects three laser beams from the back of each of the two secondary mirror units, which create two constellations circumscribed on circles of 2 arcmin radius with 120 degree spacing. Each of the six Nd:YAG lasers provides a beam of green (532nm) pulses at a rate of 10kHz with a power of 14W to 18W. We achieved first on-sky propagation on the night of November 5, 2013, and commissioning of the full system will take place during 2014. We present the initial results of laser operations at the observatory, including safety procedures and the required coordination with external agencies (FAA, Space Command, and Military Airspace Manager). We also describe our operational procedures and report on our experiences with aircraft spotters. Future plans for safer and more efficient aircraft monitoring and detection are discussed.

  14. The First Astronomical Observatory in Cluj-Napoca

    NASA Astrophysics Data System (ADS)

    Szenkovits, Ferenc

    2008-09-01

    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.

  15. SOFIA: Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the great astronomical observatories both space and land based that are now operational. It shows the history of the development of SOFIA, from its conception in 1986 through the contract awards in 1996 and through the planned first flight in 2007. The major components of the observatory are shown and there is a comparison of the SOFIA with the Kuiper Airborne Observatory (KAO), which is the direct predecessor to SOFIA. The development of the aft ramp of the KAO was developed as a result of the wind tunnel tests performed for SOFIA development. Further slides show the airborne observatory layout and the telescope's optical layout. Included are also vies of the 2.5 Meter effective aperture, and the major telescope's components. The presentations reviews the technical challenges encountered during the development of SOFIA. There are also slides that review the wind tunnel tests, and CFD modeling performed during the development of SOFIA. Closing views show many views of the airplane, and views of SOFIA.

  16. DSN Aperture Enhancement Project Office

    NASA Technical Reports Server (NTRS)

    Marina, Miguel

    2012-01-01

    All contracts are underway for antennas, associated facilities modifications and new transmitters. High risk CPI 100kW klystron and JPL high power uplink microwave components have been designed, prototyped and successfully tested at GDSCC to support the 80kW transmitter implementation and testing at vendor facility. Open issues, which might affect project delivery date, have plans in place or are being created, to maintain DSS-35 Operational Date. There are no known open issues that affect performance. Overall good progress has been made in all areas (procurements, contracts, design and development) and the project is confident that DSS-35 & 36 antennas and the three 80kW Uplink systems will be delivered according to plan.

  17. President of Czech Republic visits ESO's Paranal Observatory

    NASA Astrophysics Data System (ADS)

    2011-04-01

    , Czech representative at the ESO Council. After the opening of the telescopes, President Klaus had the opportunity to enjoy the spectacular sunset over the Pacific Ocean from the VLT platform. Then he visited the VLT control room, which operates the four Unit Telescopes and the VLT Interferometer (VLTI). Here, the President took part in the start of observations from the console of one of the VLT Unit telescopes. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  18. Gemini Observatory |

    Science.gov Websites

    Now Open Operations View All Observing databases offline May 30 Status of Gemini North eNewscast View Gemini Observatory Strategic Vision PDF Gemini North with open wind vents and observing slit at sunset . Gemini South with star-trails of the South Celestial Pole overhead. Gemini Science Meeting Open For

  19. Visits to La Plata Observatory

    NASA Astrophysics Data System (ADS)

    Feinstein, A.

    1985-03-01

    La Plata Observatory will welcome visitors to ESO-La Silla that are willing to make a stop at Buenos Aires on their trip to Chile or on their way back. There is a nice guesthouse at the Observatory that can be used, for a couple of days or so, by astronomers interested in visiting the Observatory and delivering talks on their research work to the Argentine colleagues. No payments can, however, be made at present. La Plata is at 60 km from Buenos Aires. In the same area lie the Instituto de Astronomia y Fisica dei Espacio (IAFE), in Buenos Aires proper, and the Instituto Argentino de Radioastronomia (IAR). about 40 km from Buenos Aires on the way to La Plata. Those interested should contacl: Sr Decano Prof. Cesar A. Mondinalli, or Dr Alejandro Feinstein, Observatorio Astron6mico, Paseo dei Bosque, 1900 La Plata, Argentina. Telex: 31216 CESLA AR.

  20. Hydrologic Observatories: Design, Operation, and the Neuse Basin Prototype

    NASA Astrophysics Data System (ADS)

    Reckhow, K.; Band, L.

    2003-12-01

    Hydrologic observatories are conceived as major research facilities that will be available to the full hydrologic community, to facilitate comprehensive, cross-disciplinary and multi-scale measurements necessary to address the current and next generation of critical science and management issues. A network of hydrologic observatories is proposed that both develop national comparable, multidisciplinary data sets and provide study areas to allow scientists, through their own creativity, to make scientific breakthroughs that would be impossible without the proposed observatories. The core objective of an observatory is to improve predictive understanding of the flow paths, fluxes, and residence times of water, sediment and nutrients (the "core data") across a range of spatial and temporal scales across `interfaces'. To assess attainment of this objective, a benchmark will be established in the first year, and evaluated periodically. The benchmark should provide an estimate of prediction uncertainty at points in the stream across scale; the general principle is that predictive understanding must be demonstrated internal to the catchment as well as its outlet. The core data will be needed for practically any hydrologic study, yet absence of these data has been a barrier to larger scale studies in the past. However, advancement of hydrologic science facilitated by the network of hydrologic observatories is expected to focus on a set of science drivers, drawn from the major scientific questions posed by the set of NRC reports and refined into CUAHSI themes. These hypotheses will be tested at all observatories and will be used in the design to ensure the sufficiency of the data set. To make the observatories a national (and international) resource, a key aspect of the operation is the support of remote PI's. This support will include a resident staff of scientists and technicians on the order of 10 FTE's, availability of dormitory, laboratory, workshop space for all